, Report of the Ad hoc Working Group on defining critical raw materials, EuropeanCommission, 2014.

K. Aizu, Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals, Phys. Rev. B, vol.2, pp.754-772, 1970.

A. Magneli, Crystal structure studies on beta-tungsten oxide, Ark. foer Kemi, vol.1, pp.513-523, 1949.

C. D. Capio, E. F. Dearborn, W. A. Bonner, R. November, and C. N. Hannay, Some Characteristics of Niobates Having 'Filled' Tetragonal Tungsten Bronze-Like Structures, Mat. Res. Bull, vol.3, pp.47-57, 1968.

L. G. Van-uitert, S. Singh, H. J. Levinstein, J. E. Geusic, and W. A. Bonner, A new and stable nonlinear optical material, Appl. Phys. Lett, vol.11, pp.161-163, 1967.

F. Pan, Nonstoichiometric Control of Tunnel-Filling Order, Thermal Expansion, and Dielectric Relaxation in Tetragonal Tungsten Bronzes Ba0.5-xTaO3-x, Inorg. Chem, vol.54, pp.8978-8986, 2015.

X. Zhu, A Crystal-chemical framework for relaxor versus normal ferroelectric behavior in tetragonal tungsten bronzes, Chem. Mater, vol.27, pp.3250-3261, 2015.

, Bell Lab. Rec, vol.1, p.240, 1926.

P. B. Jamieson, Ferroelectric Tungsten Bronze-Type Crystal Structures. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78, J. Chem. Phys, vol.48, p.5048, 1968.

J. Gardner, Relaxor-to-Ferroelectric Crossover and Disruption of Polar Order in 'Empty' Tetragonal Tungsten Bronzes, Chem. Mater, vol.28, pp.4616-4627, 2016.

Y. Yuan, X. M. Chen, and Y. J. Wu, Diffused ferroelectrics of Ba6Ti2Nb8O30 and Sr6Ti2Nb8O30 with filled tungsten-bronze structure, J. Appl. Phys, vol.98, p.84110, 2005.

H. A. Graetsch, C. S. Pandey, J. Schreuer, M. Burianek, and M. Mühlberg, Incommensurate modulation of calcium barium niobate (CBN28 and Ce:CBN28), Acta Crystallogr. Sect. B Struct. Sci, vol.68, pp.101-106, 2012.

M. Josse, Original Crystal-Chemical Behaviors in (Ba,Sr)2Ln(Fe,Nb,Ta)5O15 Tetragonal Tungsten Bronze: Anion-Driven Properties Evidenced by Cationic Substitutions, Cryst. Growth Des, vol.14, pp.5428-5435, 2014.

M. C. Stennett, Dielectric and structural studies of Ba2MTi2Nb3O15 (BMTNO15, M=Bi3+,La3+,Nd3+,Sm3+,Gd3+) tetragonal tungsten bronze-structured ceramics, J. Appl. Phys, vol.101, pp.1-7, 2007.

H. A. Graetsch, J. Schreuer, M. Burianek, and M. Mühlberg, Thermally induced structural changes in incommensurate calcium barium niobate Ca0.28Ba0.72Nb2O6 (CBN28), J. Solid State Chem, vol.196, pp.255-266, 2012.

M. C. Stennett, G. C. Miles, J. Sharman, I. M. Reaney, and A. R. West, A new family of ferroelectric tetragonal tungsten bronze phases, Ba2MTi2X3O15, J. Eur. Ceram. Soc, vol.25, pp.2471-2475, 2005.

J. Gardner, F. D. Morrison, . La, . Nd, . Sm et al., A-site size effect in a family of unfilled ferroelectric tetragonal tungsten bronzes, Dalt. Trans, vol.43, p.11687, 2014.

J. Ravez, H. El-alaoui-belghiti, M. Elaatmani, and A. Simon, Relations between ionic order or disorder and classical or relaxor ferroelectric behaviour in two lead-free TKWBtype ceramics, Mater. Lett, vol.47, pp.159-164, 2001.

D. C. Arnold and F. D. Morrison, B-cation Effects in Relaxor and Ferroelectric Tetragonal Tungsten Bronzes, J. Mater. Chem, vol.19, p.6485, 2009.

C. Hu, L. Hou, L. Fang, and L. Liu, Preparation and dielectric properties of unfilled tungsten bronze ferroelectrics Ba4RETiNb9O30, J. Alloys Compd, 2013.

P. V. Lenzo, E. G. Spencer, and A. A. Ballman, Electro-optic coefficients of ferroelectric strontium barium niobate, Appl. Phys. Lett, vol.11, pp.23-24, 1967.

A. Simon, J. Ravez, and M. Maglione, The crossover from a ferroelectric to a relaxor state in lead-free solid solutions, J. Phys. Condens. Matter, vol.16, pp.963-970, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00136253

A. Rotaru, F. D. Morrison, and . Vogel, Fulcher analysis of relaxor dielectrics with the tetragonal tungsten bronze structure: Ba6MNb9O30 (M = Ga, vol.120, pp.1249-1259, 2015.

M. Prades, N. Masó, H. Beltrán, E. Cordoncillo, and A. R. West, Synthesis, structural characterization, and electrical properties of new oxygen-deficient tetragonal tungsten bronzes Ba2NdTi(2+x)Nb(3-x)O(15-x/2), Inorg. Chem, vol.52, pp.1729-1765, 2013.

A. Simon and J. Ravez, Solid-state chemistry and non-linear properties of tetragonal tungsten bronzes materials, Comptes Rendus Chimie, pp.1268-1276, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00096836

E. Castel, M. Josse, D. Michau, and M. Maglione, Flexible relaxor materials: Ba(2)Pr(x)Nd(1-x)FeNb(4)O(15) tetragonal tungsten bronze solid solution, J. Phys. Condens. Matter, vol.21, p.452201, 2009.

E. Garcia-gonzalez, A. Torres-pardo, R. Jimenez, and J. M. Gonzalez-calbet, Structural singularities in ferroelectric Sr2NaNb5O15, Chem. Mater, vol.19, pp.3575-3580, 2007.

E. Choukri, Dielectric Properties Of Lead Potassium Lithium Niobate (Pb 1,85 K 1,15 Li 0,15 Nb 5 O 15 ) With Tetragonal Tungsten Bronze (TTB) Type Structure, M. J. Condens. Matter, vol.12, pp.86-91, 2010.

M. Josse, The Ba2LnFeNb4O15 'tetragonal tungsten bronze': Towards RT composite multiferroics, Solid State Sci, vol.11, pp.1118-1123, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00175326

E. Castel, Crystal growth and characterization of tetragonal tungsten bronze FerroNiobates Ba2LnFeNb4O15, J. Cryst. Growth, vol.340, pp.156-165, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00664962

M. Albino, Growth and Characterization of Centimeter-Sized Ba2LaFeNb4O15 Crystals from High-Temperature Solution under a Controlled Atmosphere, Eur. J. Inorg. Chem, pp.2817-2825, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00834750

M. Albino, P. Veber, S. Pechev, and M. Maglione,

, Eu) Relaxor Single Crystals. Cryst. Growth Des, vol.14, pp.500-512, 2014.

I. Levin, Coupling between octahedral tilting and ferroelectric order in tetragonal tungsten bronze-structured dielectrics, Appl. Phys. Lett, vol.89, p.122908, 2006.

E. Castel, Synthèse de nouveaux matériaux multiferroïques au sein de la famille des bronzes quadratiques de formule Ba2LnFeNb4O15, 2008.

I. S. Zheludev, . Ferroelectricity, and . Symmetry, Solid State Phys, vol.26, pp.429-464, 1971.

H. Prakash and . Vachaspati, Polarization of Dielectric, Il nuovo cimiento, vol.53, pp.43-52, 1968.

P. Curie and J. Curie, Contractions and expansions produced by voltages in hemihedral crystals with inclined faces, Comptes rendus l'Académie des Sci, vol.93, p.1137, 1881.

G. Lippman,

, Ann. Chim. Phys, vol.24, p.145, 1881.

G. Sebald, Nouveaux monocristaux à forte conversion piezoelectrique: croissance, modélisation et caractérisation, 2004.

, Regulation (EC) No 1907/2006 of the European Parliament and of the Council, vol.18

, concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, 2006.

M. D. Maeder, D. Damjanovic, and N. Setter, Lead free piezoelectric materials, J. Electroceramics, vol.13, pp.385-392, 2004.

W. Voigt, Lehrbuch der Kristallphysik, 1910.

S. M. Yoon, N. J. Cho, and K. Kanazawa, Analyzing Spur-Distorted Impedance Spectra for the QCM, J. Sensors Article ID, vol.8, p.pages, 2009.

S. Lang, Sourcebook of pyroelectricity. (Gordon and Breach science publishers, 1974.

L. Landau and E. Lifchitz, Phys. Stat. MIR, 1967.

E. Castel, Synthèse de nouveaux matériaux multiferroïques au sein de la famille des bronzes quadratiques de formule Ba2LnFeNb4O15, 2009.

D. E. O'reilly and T. Tsang, Deuteron magnetic resonance and proton relaxation times 253 in ferroelectric ammonium sulfate, J. Chem. Phys, vol.46, pp.1291-1300, 1967.

W. Cao and L. E. Cross, Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition, Phys. Rev. B, vol.44, pp.5-12, 1991.

S. Triebwasser, Study of the Second-Order Ferroelectric Transition in Tri-Glycine Sulfate, IBM J, pp.212-217, 1958.

N. Sircon, Nature of the ferroelectric phase transition in PbTiO3, Phys. Rev. B, vol.50, p.50, 1994.

R. Blinc and B. ?ek?, Dynamics of order-disorder-type ferroelectrics and antiferroelectrics, Adv. Phys, vol.21, pp.693-757, 1972.

J. Ge, Dynamic hysteresis and scaling behavior in epitaxial antiferroelectric film, Thin Solid Films, vol.584, pp.108-111, 2015.

W. Kanzig and . Ferroelectrics, Solid State Physics, 1957.

L. E. Cross and . Vii, A thermodynamic treatment of ferroelectricity and antiferroelectricity in pseudo-cubic dielectrics, Philos. Mag, vol.1, p.76, 1956.

C. F. Pulvari and . Ferrielectricity, Phys. Rev, vol.120, pp.1670-1673, 1960.

C. F. Pulvari and A. S. De-la-paz, Phenomenological Theory of Polarization Reversal in Ferrielectric Bi4Ti3O12 Single Crystals, J. Appl. Phys, vol.37, pp.1754-1763, 1966.

L. E. Cross, Relaxor ferroelectrics : An overview, Ferroelectrics, vol.151, pp.305-320, 1994.

A. A. Bokov and Z. G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure, J. Mater. Sci, vol.41, pp.31-52, 2006.

G. A. Smolenskii and A. I. Agranovskaya, Dielectric polarization and losses of some complex compounds, Zhur. Tekh. Fiz, vol.28, 1958.

V. Bovtun, Broad-band dielectric response of PbMg1/3Nb2/3O3 relaxor ferroelectrics: Single crystals, ceramics and thin films, J. Eur. Ceram. Soc, vol.26, pp.2867-2875, 2006.

L. E. Cross and . Relaxor, Ferroelectrics, vol.76, pp.241-267, 1987.

V. Q. Bokov and I. E. Mylnikova, Ferroelectric properties of monocrystals of new perovskite compounds, Sov. Physics-Solid State, vol.2, pp.2428-2432, 1961.

C. A. Randall, .. S. Bhalla, T. R. Shrout, and L. E. Cross, Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order, J. Mater. Res, vol.5, pp.829-834, 1990.

H. Vogel, The law of the relation between the viscosity of liquids and the temperature, Phys. Z, vol.22, p.645, 1921.

G. Fulcher, Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc, vol.8, p.339, 1925.

D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, Freezing of the polarization fluctuations in lead magnesium niobate relaxors, J. Appl. Phys, vol.68, pp.2916-2921, 1990.

X. Dai, Z. Xu, and D. Viehland, The spontaneous relaxor to normal ferroelectric transformation in La-modified lead zirconate titanate, Philos. Mag. Part B, vol.70, pp.33-48, 1994.

J. F. Scott, Ferroelectrics go bananas, J. Phys. Condens. Matter, vol.20, p.21001, 2008.

M. Verwerft, G. Van-tendeloo, J. Van-landuyt, and S. Amelinckx, A complementary study by electron microscopy of modulated phases in Ba2NaNb5O15, Ferroelectrics, vol.88, pp.27-36, 1988.

Y. Gagou, On the nature of phase transitions in the tetragonal tungsten bronze GdK2Nb5O15 ceramics, J. Appl. Phys, vol.115, pp.0-8, 2014.

A. Aydi, H. Khemakhem, C. Boudaya, A. Simon, and R. Von-der-m??hll, X-ray and dielectric studies of ferroelectric or relaxor phases in the Ca1-xNaxSn1-xNbxO3 system, Solid State Sci, vol.7, pp.249-255, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00022223

R. R. Neurgaonkar, J. R. Oliver, and L. E. Cross, Ferroelectric properties of tetragonal tungsten bronze single crystals, Ferroelectrics, vol.56, pp.31-36, 1984.

P. H. Fang and R. S. Roth, Ferroelectric and Ferrimagnetic Properties of (Ba6?2xR2x) (Nb9?xFe1+x)O30, J. Appl. Phys, vol.31, p.278, 1960.

P. Heijboer, Etude des propriétés diélectriques et structurales de monocristaux et céramiques de structure TTB, 2014.

F. Roulland, M. Josse, E. Castel, and M. Maglione, Influence of ceramic process and Eu content on the composite multiferroic properties of the Ba6-2xLn2xFe1+xNb9-xO30 TTB system, Solid State Sci, vol.11, pp.1709-1716, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419959

E. Castel, In-situ formation of barium ferrite in iron-doped 'tetragonal tungsten bronze': Elaboration of room temperature multiferroic composites, J. Magn. Magn
URL : https://hal.archives-ouvertes.fr/hal-00381988

. Mater, , vol.321, pp.1773-1777, 2009.

R. D. Shannon and C. T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem, vol.25, pp.925-946, 1969.

S. Le, S. Zhu, X. Zhu, and K. Sun, Densification of Sm0.2Ce0.8O1.9 with the addition of lithium oxide as sintering aid, J. Power Sources, vol.222, pp.367-372, 2013.

G. R. Villalobos, J. S. Sanghera, and I. D. Aggarwal, Degradation of magnesium aluminum spinel by lithium fluoride sintering aid, J. Am. Ceram. Soc, vol.88, pp.1321-1322, 2005.

A. Potin, J. Ravez, and J. P. Bonnet, Liquid-phase sintering of barium titanate with lithium fluoride, J. Mater. Res, vol.2, pp.485-488, 1987.

D. E. Bugaris and H. C. Zur-loye, Materials discovery by flux crystal growth: Quaternary and higher order oxides, Angew. Chemie -Int. Ed, vol.51, pp.3780-3811, 2012.

M. Albino, Synthèse et caractérisation structurale et diélectrique de céramiques et de monocristaux relaxeurs de structure TTB, 2013.

R. Vincent and P. A. Midgley, Double conical beam-rocking system for measurement of integrated electron diffraction intensities, Ultramicroscopy, vol.53, pp.271-282, 1994.

U. Kolb, T. Gorelik, C. Kübel, M. T. Otten, and D. Hubert, Towards automated diffraction tomography: Part I-Data acquisition, Ultramicroscopy, vol.107, pp.507-513, 2007.

U. Kolb, T. Gorelik, and M. T. Otten, Towards automated diffraction tomography. Part II-Cell parameter determination, Ultramicroscopy, vol.108, pp.763-772, 2008.

L. Palatinus, V. Pet?í?ek, and C. A. Corrêa, Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation, Acta Crystallogr. Sect. A Found. Adv, vol.71, pp.235-244, 2015.

E. Mugnaioli, T. Gorelik, and U. Kolb, Ab initio' structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique, Ultramicroscopy, vol.109, pp.758-765, 2009.

L. Palatinus, Structure refinement using precession electron diffraction tomography and dynamical diffraction: Tests on experimental data, Acta Crystallogr. Sect. B Struct
URL : https://hal.archives-ouvertes.fr/hal-02112206

, Sci. Cryst. Eng. Mater, vol.71, pp.740-751, 2015.

L. Palatinus, Hydrogen positions in single nanocrystals revealed by electron diffraction. Science (80-. ), vol.355, pp.166-169, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01840157

G. Steciuk, Unusual Relaxor Ferroelectric Behavior in Stairlike Aurivillius Phases, Inorg. Chem, vol.55, pp.8881-8891, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02112170

N. A. Hill, Why are there so few magnetic ferroelectrics ?, J. Phys. Chem. B, vol.104, pp.6694-6709, 2000.

N. A. Hill and A. Filippetti, Why are there any magnetic ferroelectrics?, J. Magn. Magn. Mater, pp.976-979, 2002.

D. I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity 1), J. Magn. Magn. Mater, 2004.

N. Spaldin and M. Fiebig, The Renaissance of magnetoelectric multiferroics. Science (80-. ), vol.309, pp.391-392, 2005.

Y. Kajiwara, Transmission of electrical signals by spin-wave interconversion in a magnetic insulator

J. Lu, D. Pan, and L. Qiao, The principle of a virtual amplifier and its application to magnetoelectric measurement system, Sci. Technol, pp.1-11

P. Wadley, Electrical switching of an antiferromagnet. Science (80-. ), vol.351, pp.587-590, 2016.

T. Kosub, Purely Antiferromagnetic Magnetoelectric Random Access Memory, Nat. Commun, pp.1-7, 2016.

N. Ortega, A. Kumar, J. F. Scott, and R. S. Katiyar, Multifunctional magnetoelectric materials for device applications, J. Phys. Condens. Matter, vol.27, p.504002, 2015.

S. Dong, J. Liu, S. Cheong, and Z. Ren, Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology, Adv. Phys, vol.64, pp.519-626, 2015.

C. Ederer and N. A. Spaldin, A new route to magnetic ferroelectrics, Nat. news views, 2004.

B. B. Van-aken, T. T. Palstra, A. Filippetti, and N. Spaldin, The origin of ferroelectricity in magnetoelectric YMnO3, Nat. Mater, vol.3, pp.164-170, 2004.

R. Ramesh and N. A. Spaldin, Multiferroics: progress and prospects in thin films, Nat. Mater, vol.6, pp.21-29, 2007.

N. A. Spaldin, Sang-Wook Cheong & Ramesh, R. Multiferroics : past, present, and future, Phys. Today, 2010.

P. Curie, Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique, J. Phys. Theor. Appl, vol.3, pp.395-415, 1894.

&. Landau and . Lifshitz, Electrodynamics of continuous media, 1958.

I. E. Dzyaloshinsky, K voprosu o magnitno-elektricheskom effekte v antiferromagnetikakh, J. Extpl. Theor. Phys, vol.37, pp.881-882, 1959.

D. N. Astrov, The magnetoelectric effect in antiferromagnetics, Sov. Phys. JETP, vol.11, pp.708-709, 1960.

V. J. Folen, G. T. Rado, and E. W. Stalder, Anisotropy of the magnetoelectric effectin Cr203, Phys. Rev. Lett, vol.6, p.607, 1961.

E. Ascher, H. Rieder, H. Schmid, and H. Stössel, Some properties of ferromagnetoelectric nickel-iodine boracite, Ni 3B7O13I, J. Appl. Phys, vol.37, pp.1404-1405, 1966.

H. Schmid, Ferroelectrics Multi-ferroic magnetoelectrics, Ferroelectrics, vol.162, pp.317-338, 1994.

J. P. Rivera, A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics, Eur. Phys. J. B, vol.71, pp.299-313, 2009.

N. A. Hill, Why Are There so Few Magnetic Ferroelectrics?, J. Phys. Chem.B, vol.104, pp.6694-6709, 2000.

J. M. Rondinelli, A. S. Eidelson, and N. A. Spaldin, Non-d 0 Mn-driven ferroelectricity in antiferromagnetic BaMnO 3, Phys. Rev B, vol.79, p.205119, 2009.

W. Eerenstein, N. D. Mathur, and J. F. Scott, Multi-ferroic and magnetoelectric materials and interfaces, Nature, vol.442, 2006.

D. Khomskii, Classifying multiferroics: Mechanisms and effects, Physics, issue.2, 2009.

A. K. Zvezdin, Magnetoelectric effects in gadolinium iron borate GdFe3(BO3), p.4

. Lett, J. Exp. Theor. Phys, vol.81, pp.272-276, 2005.

W. Von-wartburg, The magnetic structure of magnetoelectric nickel-iodine boracite Ni3B7O13I, Phys. Status Solidi, vol.21, pp.557-568, 1974.

S. Roberts, Dielectric and piezoelectric properties of barium titanate, Phys. Rev, vol.71, pp.890-895, 1947.

T. Watanabe and K. Kohn, Magnetoelectric effect and low temperature transition of PbFe0.5Nb0.5O3 single crystal, Phase Transitions, vol.15, pp.57-68, 1989.

I. P. Raevski, Studies of Ferroelectric and Magnetic Phase Transitions in Multiferroic PbFe0.5Ta0.5O3, Ferroelectrics, vol.475, pp.52-60, 2015.

V. A. Isupov, Ferroelectric and Antiferroelectric Perovskites PbB? 0.5 B?? 0.5 O 3, Ferroelectrics, vol.289, 2003.

D. H. Fabini, Dynamic Stereochemical Activity of the Sn2+ Lone Pair in Perovskite CsSnBr3, J. Am. Chem. Soc, vol.138, pp.11820-11832, 2016.

H. D. Hochheimer, Study of the ferroelectric phase transition of TlGaSe2 by dielectric, calorimetric, infrared and X-ray diffraction measurements, J. Phys. Condens. Matter, vol.73, pp.257-263, 1988.

J. G. Bos, C. V. Colin, and T. T. Palstra, Magnetoelectric coupling in the cubic ferrimagnet Cu2OSeO3, Phys. Rev. B, vol.78, p.94416, 2008.

E. N. Bunting, G. R. Shelton, and A. S. Creamer, Properties of barium-strontium titanate dielectrics, J. Am. Ceram. Soc, vol.30, pp.114-125, 1947.

N. A. Hill and K. M. Rabe, First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite, Phys. Rev. B, vol.59, p.8759, 1999.

M. Li, M. Ning, Y. Ma, Q. Wu, and C. K. Ong, Room temperature ferroelectric, ferromagnetic and magnetoelectric properties of Ba-doped BiFeO3 thin films, J. Phys

, D. Appl. Phys, vol.40, pp.1603-1607, 2007.

J. Brink and D. I. Van-den-&-khomskii, Multiferroicity due to charge ordering, J. physics. Condens. matter, vol.20, 2008.

N. Ikeda, Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4, Nature, vol.436, pp.1136-1138, 2005.

N. Fujimura, T. Ishida, T. Yoshimura, and T. Ito, Epitaxially grown YMnO3 film: New candidate for nonvolatile memory devices, Appl. Phys. Lett, vol.69, pp.1011-1013, 1996.

T. Kimura, Magnetic control of ferroelectric polarization, Nature, vol.426, pp.55-58, 2003.

N. Hur, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields, Nature, vol.429, pp.392-395, 2004.

S. Sawada, Y. Shiroishi, A. Yamamoto, M. Takashige, M. Matsuo et al., J. Phys. Soc. Japan, vol.43, pp.2099-2100, 1997.

A. P. Levanyuk and D. G. Sannikov, Improper ferroelectrics, Sov. Phys. Uspekhi, vol.17, pp.199-214, 1974.

T. Kimura, Spiral Magnets as Magnetoelectrics, Annu. Rev. Mater. Res, vol.37, pp.387-413, 2007.

Y. Tokura and S. Seki, Multiferroics with spiral spin orders, Adv. Mater, vol.22, pp.1554-1565, 2010.

Y. Yamasaki, Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide, Phys. Rev. Lett, vol.96, pp.1-4, 2006.

S. Ishiwata, Y. Taguchi, and H. Murakawa, Low Magnetic-Field Control of Electric Polarization Vector in a Helimagnet, Science, p.319, 2008.

S. Seki, Y. Onose, and Y. Tokura, Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO2, vol.101, pp.1-4, 2008.

J. Van-suchtelen, Product Properties : a New Application of Composite Materials, Philips Res. Repts, vol.27, pp.28-37, 1972.

C. W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases, Phys. Rev. B, vol.50, pp.6082-6088, 1994.

D. Sallagoity, Synthesis of dense arrays of multiferroic CoFe
URL : https://hal.archives-ouvertes.fr/hal-01415912

, O 3 core/shell nanocables, RSC Adv, vol.6, pp.106716-106722, 2016.

H. Greve, Low damping resonant magnetoelectric sensors, Appl. Phys. Lett, vol.97, p.152503, 2010.

L. Yan, Review of magnetoelectric perovskite-spinel self-assembled nanocomposite thin films, J. Mater. Sci, vol.44, pp.5080-5094, 2009.

L. Piraux, Template approach for novel magnetic-ferroelectric nanocomposites, Appl. Phys. Express, vol.4, 2011.

G. H. Jaffari, Effect of densification on the ferroelectric response of Ba0.4Sr0.6TiO3, Solid State Commun, vol.205, pp.46-50, 2015.

G. Fantozzi, S. Le-gallet, and J. Niepce, Sciences et Technologies Ceramiques, 2016.

D. Tadic, F. Beckmann, K. Schwarz, and M. Epple, A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering, Biomaterials, vol.25, pp.3335-3340, 2004.

S. F. Wang, Transparent ceramics: Processing, materials and applications, Prog. Solid State Chem, vol.41, pp.20-54, 2013.

R. M. German, Sintering theory and practice, 1996.

R. M. German, Sintering: from empirical observations to scinetific principles, 2014.

S. R. Challa, Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening, J. Am. Chem. Soc, vol.133, pp.20672-20675, 2011.

D. Bernache-assollant, A. Ababou, E. Champion, and M. Heughebaert, Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2 I. Calcination and particle growth

, J. Eur. Ceram. Soc, vol.23, pp.229-241, 2003.

C. Bousquet, Tuning Al2O3 crystallinity under supercritical fluid conditions: Effect on sintering, J. Eur. Ceram. Soc, vol.28, pp.223-228, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00189707

R. L. Coble, Sintering Alumina: Effect of Atmospheres, J. Am. Ceram. Soc, vol.45, pp.123-127, 1962.

J. K. Mackenzie and R. Shuttleworth, A phenomenological theory of sintering, Proc. Phys. Soc. Sect. B, vol.62, pp.833-852, 1949.

P. L. Murray, D. Livey, and J. Williams, Hot pressing of ceramics, Ceram. Fabr. Process, pp.147-171, 1958.

G. E. Mangsen, W. A. Lambertson, and B. Best, Hot Pressing of Aluminium Oxide, J. Am. Ceram. Soc, vol.43, pp.55-59, 1960.

T. Vasilos, Hot Pressing of Fused Silica, J. Am. Ceram. Soc, vol.43, pp.517-519, 1960.

J. D. Mcclelland, Plastic Flow Model of Hot Pressing, J. Am. Ceram. Soc, vol.44, p.526, 1961.

R. L. Coble and J. S. Ellis, Hot-Pressing Alumina-Mechanisms Transport, J. Am. Ceram. Soc, vol.46, pp.438-441, 1963.

G. Zhang, Z. Deng, N. Kondo, J. Yang, and T. Ohji, Reactive Hot Pressing of ZrB2-SiC Composites, J. Am. Ceram. Soc, vol.83, pp.2330-2332, 2000.

W. Wang, Z. Fu, H. Wang, and R. Yuan, Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics, J. Eur. Ceram. Soc, vol.22, pp.1045-1049, 2002.

W. W. Wu, G. J. Zhang, Y. M. Kan, and P. L. Wang, Reactive hot pressing of ZrB 2-SiC-ZrC ultra high-temperature ceramics at 1800??C, J. Am. Ceram. Soc, vol.89, pp.2967-2969, 2006.

W. Zhang, Improvement of optical properties of Nd:YAG transparent ceramics by post-annealing and post hot isostatic pressing, Opt. Mater. (Amst), vol.35, pp.2405-2410, 2013.

M. H. Bocanegra-bernal, Hot isostatic pressing (HIP) technology and its applications to metals and ceramics, J. Mater. Sci, vol.39, pp.6399-6420, 2004.

D. Agrawal, Material R. I. Microwave Sintering of Ceramics, Composites, and Metallic Materials, and Melting of Glasses, Trans. Indian Ceram. Soc, vol.65, pp.129-144, 2006.

K. H. Brosnan, G. L. Messing, and D. K. Agrawal, Microwave Sintering of Alumina at 2 . 45 GHz, J. Am. Ceram. Soc, vol.86, p.1307, 2003.

M. Tokita, Chapter 11.2.3 -Spark Plasma Sintering (SPS) Method, system and applications, Handbook of Advanced Ceramics, 2013.

S. Grasso, B. N. Kim, C. Hu, G. Maizza, and Y. Sakka, Highly transparent pure alumina fabricated by high-pressure spark plasma sintering, J. Am. Ceram. Soc, vol.93, pp.2460-2462, 2010.

U. Anselmi-tamburini, J. E. Garay, and Z. A. Munir, Fast low-temperature consolidation of bulk nanometric ceramic materials, Scr. Mater, vol.54, pp.823-828, 2006.

U. Anselmi-tamburini, S. Gennari, J. E. Garay, and Z. A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions, Mater. Sci. Eng. A, vol.394, pp.139-148, 2005.

Z. A. Munir, U. Anselmi-tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci, vol.41, pp.763-777, 2006.

Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, Spark Plasma Sintering of Alumina, J. Am. Ceram. Soc, vol.85, pp.1921-1927, 2002.

V. Gauthier, F. Bernard, E. Gaffet, Z. A. Munir, and J. P. Larpin, Structural evolution during mechanical alloying and annealing of a Nb-25at% Al alloy, Intermetallics, vol.9, pp.571-580, 2001.

H. C. Kim, I. J. Shon, J. E. Garay, and Z. A. Munir, Consolidation and properties of binderless sub-micron tungsten carbide by field-activated sintering, Int. J. Refract. Met. Hard Mater, vol.22, pp.257-264, 2004.

M. Omori, Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS), Mater. Sci. Eng. A, vol.287, pp.183-188, 2000.

S. T. Oh, K. I. Tajima, M. Ando, and T. Ohji, Strengthening of porous alumina by pulse electric current sintering and nanocomposite processing, J. Am. Ceram. Soc, vol.83, pp.1314-1316, 2000.

S. Schwarz, A. M. Thron, J. Rufner, K. Van-benthem, and O. Guillon, Low temperature sintering of nanocrystalline zinc oxide: Effect of heating rate achieved by field assisted sintering/spark plasma sintering, J. Am. Ceram. Soc, vol.95, pp.2451-2457, 2012.

E. A. Olevsky, S. Kandukuri, and L. Froyen, Consolidation enhancement in spark-plasma sintering: Impact of high heating rates, J. Appl. Phys, vol.102, 2007.

N. Massoni, Sintering of synthetic barytocalcite BaCa(CO3)2, kutnahorite CaMn(CO3)2 and rhodochrosite MnCO3 for carbon-14 sequestration, J. Eur. Ceram. Soc, vol.35, pp.297-308, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02015354

J. Monchoux, M. Dollé, P. Rozier, and J. Galy, Reaction kinetics during synthesis of CuxV2O5 and AgyV2O5 by spark plasma sintering, Solid State Ionics, vol.182, pp.24-31, 2011.

T. M. Harrison and E. B. Watson, Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content, Contrib. to Mineral. Petrol, vol.84, pp.66-72, 1983.

D. L. Corker, R. W. Whatmore, E. Ringgaard, and W. W. Wolny, Liquid-phase sintering of PZT ceramics, J. Eur. Ceram. Soc, vol.20, pp.2039-2045, 2000.

N. Yamasaki, K. Yanagisawa, M. Nishioka, and S. Kanahara, A hydrothermal hotpressing method: apparatus and application, J. Mater. ?, vol.5, pp.355-356, 1986.

K. Yanagisawa, K. Ioku, and N. Yamasaki, Formation of Anatase Porous Ceramics by Hydrothermal Hot-Pressing of Amorphous Titania Spheres, J. Am. Ceram. Soc, vol.80, pp.1303-1306, 1997.

N. Yamasaki, T. Weiping, and K. Jiajun, Low-temperature sintering of calcium carbonate by a hydrothermal hot-pressing technique, J. Mater. Sci. Lett, vol.11, pp.934-936, 1992.

N. Yamasaki, T. Kai, M. Nishioka, K. Yanagisawa, and K. Ioku, Porous hydroxyapatite ceramics prepared by hydrothermal hot-pressing, J. Mater. Sci. Lett, vol.9, pp.1150-1151, 1990.

K. Yanagisawa, M. Nishioka, K. Ioku, and N. Yamasaki, Densification of silica gels by hydrothermal hot-pressing, J. Mater. Sci. Lett, vol.12, pp.1073-1075, 1993.

J. Guo, Cold Sintering Process of Composites : Bridging the Processing Temperature Gap of Ceramic and Polymer Materials, Adv. Funct. Mater, vol.26, pp.1-7, 2016.

H. Guo, A. Baker, J. Guo, and C. A. Randall, Cold Sintering Process: A Novel Technique for Low-Temperature Ceramic Processing of Ferroelectrics, J. Am. Ceram. Soc, vol.19, pp.1-19, 2016.

C. Vakifahmetoglu, Reactive Hydrothermal Liquid-Phase Densification (rHLPD), p.265

, of Ceramics? A Study of the BaTiO3[TiO2] Composite System, J. Am. Ceram. Soc, vol.99, pp.3893-3901, 2016.

H. Yu, J. Liu, W. Zhang, and S. Zhang, Ultra-low sintering temperature ceramics for LTCC applications: a review, J. Mater. Sci. Mater. Electron, vol.26, pp.9414-9423, 2015.

B. T. Matthias and J. P. Remeika, Ferroelectricity in ammonium sulfate, Phys. Rev, vol.103, p.262, 1956.

J. Belkouch, L. Monceaux, E. Bordes, and P. Courtine, Comparative structural study of mixed metals pyrophosphates, Mater. Res. Bull, vol.30, pp.149-160, 1995.

B. F. Alfonso, On the crystal structure and thermal decomposition of ammoniumiron(iii) bis(hydrogenphosphate), Dalt. Trans, vol.39, pp.1791-1796, 2010.

E. Dvoncova and K. Lii, Synthesis, crystal structure, and magnetic susceptibilities of CsFeP2O7 and RbFeP2O7, J. solid state Chem, vol.105, pp.279-286, 1993.

K. V. Terebilenko, Structure and magnetic properties of AgFeP2O7, J. Solid State Chem, 2010.

B. Tekin and H. Güler, The synthesis and characterization of NH4FeP2O7, NaCaPO4, WP2O7 compounds using microwave energy, J. Balikesir Univ. Inst. Sci. Technol, vol.9, pp.68-76, 2007.

S. Gentil, Synthesis, structure and magnetic susceptibility of KCrP2O7 , a potential antiferromagnetic magnetoelectric, Ferroelectrics, vol.204, pp.35-44, 1997.

J. S. Kinyon, R. Clark, N. S. Dalal, E. S. Choi, and H. Zhou, Ferroelectricity in the gapless quantum antiferromagnet NH4CuCl3, Phys. Rev. B, vol.92, p.144103, 2015.

M. Josse, Dielectric study of unexpected transitions in Multiferroic Mn1-x(Mg,Zn)xWO4 ceramics, Ferroelectrics, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00710008

A. H. Arkenbout, T. T. Palstra, T. Siegrist, and T. Kimura, Ferroelectricity in the cycloidal spiral magnetic phase of MnWO4, Phys. Rev. B -Condens. Matter Mater. Phys, 2006.

G. Will, B. C. Frazer, G. Shirane, D. E. Cox, and P. J. Brown, Magnetic structure of MnSO4, Phys. Rev, vol.140, pp.2139-2142, 1965.

E. Legrand, S. Hautecler, W. Wegener, and G. Will, Magnetic phase transition in MnSO4, J. Magn. Magn. Mater, vol.18, pp.529-530, 1980.

A. K. Gregson and N. T. Moxon, Average and Single-Crystal Magnetic Properties of Potassium Bis( carbonato)cuprate(II): A Three-Dimensional Ferromagnet, Inorg. Chem, vol.21, pp.3464-3466, 1982.

A. Farrand, A. Gregson, B. Skelton, and A. White, Crystal structure of the ferromagnetic polymer potassium Bis(carbonato)cuprate(II), Aust. J. Chem, vol.33, pp.431-434, 1980.

B. N. Figgis, P. A. Reynolds, A. H. White, and G. A. Williams, The electronic structure of copper in the polymer potassium bis(carbonato)cuprate(II) as determined from precise X-ray diffraction data, Journal of the Chemical Society, 1981.

A. K. Gregson and N. T. Moxon, Single-Crystal Magnetic Properties of Sodium Bis(carbonato)cuprate(II): Three-Dimensional Antiferromagnet, Inorg. Chem, vol.20, pp.78-81, 1981.

N. Wetchakun and B. Incessungvorn, Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol-gel method, Mater. Lett, vol.82, pp.195-198, 2012.

D. Riou, N. Nguyen, R. Benloucif, and B. Raveau, LiFeP2O7 : Structure and magnetic properties, Mater. Res. Bull, vol.25, pp.1363-1369, 1990.

P. C. Healy and A. H. White, Crystal Structure and Physical Properties of Anhydrous Sodium Copper, J. Chem. Soc. Dalt. Trans, pp.1913-1917, 1972.

A. K. Gregson and P. C. Healey, Ferromagnetic interactions in sodium bis(carbonato)cuprate(II), Inorg. Chem, vol.17, pp.2969-2970, 1978.

A. K. Gregson, N. T. Moxon, R. R. Weller, and W. E. Hatfield, Ferromagnetic Exchange Coupling in Sodium Biscarbonatocuprate(II) Trihydrate, Aust. J. Chem, vol.35, pp.1537-1541, 1982.

Y. V. Nelyubina, A. A. Korlyukov, I. Fedyanin, and K. A. Lyssenko, Extremely Long Cu ··· O Contact as a Possible Pathway for Magnetic Interactions

, Inorg. Chem, vol.52, pp.14355-14363, 2013.

. Deville, Mémoire sur les combinaisons des carbonates metalliques avec les carbonates alcalins et ammoniacaux, Ann. Chim. Phys, 1856.

W. C. Reynolds, Chemical properties of condensed solutions of certain salts Part I. Double potassium carbonates, J. Chem. Soc. Trans, vol.73, pp.262-267, 1898.

S. U. Pickering, Potassium cupricarbonates, J. Chem. Soc. Trans, vol.94, pp.800-811, 1911.

M. P. Applebey and K. W. Lane, Double Carbonates of Sodium and Potassium with the Heavy Metals, J. Chem. Soc, vol.113, pp.609-622, 1918.

. Deville, Mémoire sur les combinaisons des carbonates métalliques avec les carbonates alcalins et ammoniacaux, Ann. Chim. Phys, vol.33, p.75, 1851.

A. Mosset, J. J. Bonnet, and J. Galy, Structure cristalline de la chalconatronite synthetique : Na2Cu(CO3)2, 3H2O, Zeitschrift für Krist, vol.148, pp.165-177, 1978.

G. Will, The crystal structure of MnSO4, Acta Crystallogr, vol.19, pp.854-857, 1965.

T. Pascal, . Manganese, and . Zinc,

P. Narayanchar, P. Basaveswara-rao, and M. Aneesuddin, DTA studies on preparation of MnSO4 by reacting pyrite and pyrolusite at high temperatures, J. Therm. Anal, vol.35, pp.1553-1560, 1989.

Y. Le-fur, J. Coing-boyat, G. Bassi, F. ;-m-=-mn, N. Co et al., Structure des sulfates monohydrates, monocliniques

, Comptes Rendus Hebd. des Seances l'Academie des Sci. Ser. C, Sci. Chim, vol.262, pp.632-635, 1966.

A. Kirfel and G. Will, New high temperature phase of MnSO4, vol.6, pp.525-527, 1974.

Y. Allain, J. P. Krebs, and J. De-gunzbourg, Magnetic study of the manganous sulfates MnSO4 and MnSO4.H2O, J. Appl. Phys, vol.39, pp.1124-1125, 1968.

M. K. Mani, G. Viola, J. P. Hall, S. Grasso, and M. J. Reece, Observation of Curie transition during spark plasma sintering of ferromagnetic materials, J. Magn. Magn. Mater, vol.382, pp.202-205, 2015.

M. Lecomte, J. De-gunzbourg, M. Teyrol, A. Miedan-gros, and Y. Allain, Magnetic transitions in manganese sulfates Mn SO4 and Mn SO4·H2O, Solid State Communications, 1972.

G. Will, B. C. Frazer, G. Shirane, D. E. Cox, and P. J. Brown, Cycloidal Spin Configuration of Orthorhombic MnSO4, J. Appl. Phys, vol.36, p.1095, 1965.

Y. Liu, M. Eriksson, Z. Jin, M. Nygren, and Z. Shen, Micro-hydrothermal reactions mediated grain growth during spark plasma sintering of a carbonate-containing hydroxyapatite nanopowder, J. Eur. Ceram. Soc, vol.34, pp.4395-4401, 2014.

H. Euler, H. Kutzke, B. Barbier, and A. Kirfel, Refinement of crystal structure of copper acetate diammine, Cu(CH3COO)2, 2NH3, Z. Krist, vol.224, pp.725-726, 2009.

A. Baker, H. Guo, J. Guo, and C. Randall, Utilizing the Cold Sintering Process for Flexible-Printable Electroceramic Device Fabrication, J. Am. Ceram. Soc, vol.3, pp.1-3, 2016.

M. Josse, Des fluorures aux ferroïques, l'empire de la cristallochimie, 2012.

N. A. Spaldin, M. Fiebig, and M. Mostovoy, The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect, J. Phys. Condens. Matter, vol.20, p.434203, 2008.

D. Bernache-assollant and J. Bonnet, Frittage : aspects physico-chimiques Partie 2 : frittage en phase liquide, 2005.
URL : https://hal.archives-ouvertes.fr/emse-00497549