M. M. Stevens, Biomaterials for bone tissue engineering, Materials Today. mai, vol.11, issue.5, pp.18-25, 2008.

E. Beniash, Biominerals-hierarchical nanocomposites: the example of bone: Biomineralshierarchical nanocomposites, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. janv, vol.3, issue.1, pp.47-69, 2011.

A. K. Nair, A. Gautieri, S. Chang, and M. J. Buehler, Molecular mechanics of mineralized collagen fibrils in bone, Nature Communications [Internet]. déc, vol.4, issue.1, 2013.

I. Pereira, C. Rodrigues, A. Rodrigues, M. Oliveira, and M. Gama, Injectable hydrogels as a delivery system for bone regeneration, Bioinspired Materials for Medical Applications

A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, Bone Tissue Engineering: Recent Advances and Challenges, Crit Rev Biomed Eng, vol.40, issue.5, pp.363-408, 2012.

D. Sommerfeldt and C. Rubin, Biology of bone and how it orchestrates the form and function of the skeleton, Eur Spine J. oct, vol.10, issue.2, pp.86-95, 2001.

A. Lindahl, M. Brittberg, D. Gibbs, J. I. Dawson, J. Kanczler et al., Cartilage and Bone Regeneration, Tissue Engineering, pp.529-82, 2015.

L. Polo-corrales, M. Latorre-esteves, and J. E. Ramirez-vick, Scaffold Design for Bone Regeneration, Journal of Nanoscience and Nanotechnology. 1 janv, vol.14, issue.1, pp.15-56, 2014.

J. S. Walsh, Normal bone physiology, remodelling and its hormonal regulation, Surgery (Oxford). 1 janv, vol.33, issue.1, pp.1-6, 2015.

F. Sasso-gr-da, S. Sasso-cerri, E. Simões, M. J. Cerri, and P. S. , Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells, 2015.

D. Sur,

C. Lalande, Developpement d'un nouveau produit d'ingenierie tissulaire osseuse à base de polymères et de cellules souches du tissu adipeux, 2011.

B. Clarke, Normal Bone Anatomy and Physiology, Clinical Journal of the American Society of Nephrology, vol.3, pp.131-140, 2008.

J. Rouwkema, Prevascularized bone tissue engineering, 2007.

A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, Bone Tissue Engineering: Recent Advances and Challenges, Critical Reviews TM in Biomedical Engineering, vol.40, pp.363-408, 2012.

K. R. Mohamed, Biocomposite Materials. Composites and Their Applications, 2012.

D. Sur,

J. R. Porter, T. T. Ruckh, and K. C. Popat, Bone tissue engineering: A review in bone biomimetics and drug delivery strategies, Biotechnology Progress, vol.25, issue.6, pp.1539-60, 2009.

U. Kini and B. N. Nandeesh, Physiology of Bone Formation, Remodeling, and Metabolism. In: Fogelman I, Gnanasegaran G, van der Wall H, éditeurs. Radionuclide and Hybrid Bone Imaging

H. Berlin, , pp.29-57, 2012.

W. Wang and K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioactive Materials. déc, vol.2, issue.4, pp.224-271, 2017.

P. Marie, Différenciation, fonction et contrôle de l'ostéoblaste. médecine/sciences, déc, vol.17, issue.12, pp.1252-1261, 2001.

. L'os-À-l'échelle-microscopique, , 2018.

B. Weyand, V. Schroeder, and H. P. , Bone Challenges for the Hand Surgeon: From Basic Bone Biology to Future Clinical Applications. Clinics in Plastic Surgery, vol.32, pp.537-584, 2005.

J. R. García and A. J. García, Biomaterial-mediated strategies targeting vascularization for bone repair, Drug Delivery and Translational Research. avr, vol.6, issue.2, pp.77-95, 2016.

Á. E. Mercado-pagán, A. M. Stahl, Y. Shanjani, and Y. Yang, Vascularization in Bone Tissue Engineering Constructs, Annals of Biomedical Engineering. mars, vol.43, issue.3, pp.718-747, 2015.

J. Filipowska, K. A. Tomaszewski, ?. Nied?wiedzki, J. A. Walocha, and T. Nied?wiedzki, The role of vasculature in bone development, regeneration and proper systemic functioning, Angiogenesis, vol.20, issue.3, pp.291-302, 2017.

D. Tang, R. S. Tare, L. Yang, D. F. Williams, K. Ou et al., Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration, Biomaterials. 1 mars, vol.83, pp.363-82, 2016.

A. Marrella, T. Y. Lee, D. H. Lee, S. Karuthedom, D. Syla et al., Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration, Materials Today. mai, vol.21, issue.4, pp.362-76, 2018.

M. I. Santos and R. L. Reis, Vascularization in Bone Tissue Engineering: Physiology, Current Strategies, Major Hurdles and Future Challenges, Macromolecular Bioscience, vol.10, issue.1, pp.12-27

K. Hu and B. R. Olsen, The roles of vascular endothelial growth factor in bone repair and regeneration, Bone, vol.91, pp.30-38, 2016.

Y. Wang, M. R. Newman, and D. Benoit, Development of Controlled Drug Delivery Systems for Bone Fracture-Targeted Therapeutic Delivery: A Review, European Journal of Pharmaceutics and Biopharmaceutics

D. Sur,

M. Mohammadi, M. Shaegh, S. A. Alibolandi, M. Ebrahimzadeh, M. H. Tamayol et al., Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs, Journal of Controlled Release. 28 mars, vol.274, pp.35-55, 2018.

M. Mehta, K. Schmidt-bleek, G. N. Duda, and D. J. Mooney, Biomaterial delivery of morphogens to mimic the natural healing cascade in bone, Advanced Drug Delivery Reviews. sept, vol.64, issue.12, pp.1257-76, 2012.

R. Agarwal and A. J. García, Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair, vol.94, pp.53-62, 2015.

A. K. Shakya and U. Kandalam, Three-dimensional macroporous materials for tissue engineering of craniofacial bone. British Journal of Oral and Maxillofacial Surgery, vol.55, pp.875-91, 2017.

M. Rizzo and S. Moran, Vascularized Bone Grafts and Their Applications in the Treatment of Carpal Pathology, Seminars in Plastic Surgery. août, vol.22, issue.03, pp.213-240, 2008.

F. D. Beaman, L. W. Bancroft, J. J. Peterson, and M. J. Kransdorf, Bone Graft Materials and Synthetic Substitutes. Radiologic Clinics of North America. 1 mai, vol.44, issue.3, pp.451-61, 2006.

L. Krishnan, N. J. Willett, and R. E. Guldberg, Vascularization Strategies for Bone Regeneration, Annals of Biomedical Engineering. févr, vol.42, issue.2, pp.432-476, 2014.

G. Raoul, L. Myon, F. Chai, N. Blanchemain, and J. Ferri, Ingénierie d'un lambeau osseux vascularisé à destinée maxillofaciale : les limites techniques, Revue de Stomatologie et de Chirurgie Maxillofaciale. 1 sept, vol.112, issue.4, pp.249-61, 2011.

C. Flores, Substituts hybrides (polymères/biocéramiques) à libération prolongée d'antibiotiques pour le traitement des infections osseuses, 2015.

S. Titsinides, G. Agrogiannis, and T. Karatzas, Bone grafting materials in dentoalveolar reconstruction: A comprehensive review, vol.28

D. Sur,

V. Campana, G. Milano, E. Pagano, M. Barba, C. Cicione et al., Bone substitutes in orthopaedic surgery: from basic science to clinical practice, J Mater Sci Mater Med, vol.25, issue.10, pp.2445-61, 2014.

A. Kolk, J. Handschel, W. Drescher, D. Rothamel, F. Kloss et al., Current trends and future perspectives of bone substitute materials -From space holders to innovative biomaterials, Journal of Cranio-Maxillofacial Surgery. déc, vol.40, issue.8, pp.706-724, 2012.

G. Fernandez-de-grado, L. Keller, Y. Idoux-gillet, Q. Wagner, A. Musset et al., Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management, Journal of Tissue Engineering. janv, vol.9, p.204173141877681, 2018.

R. A. Bhatt and T. D. Rozental, Bone Graft Substitutes. Hand Clinics, vol.28, issue.4, pp.457-68, 2012.

M. Navarro, A. Michiardi, O. Castaño, and J. Planell, Biomaterials in orthopaedics, J R Soc Interface, vol.5, issue.27, pp.1137-58, 2008.

H. Q. Nguyen, D. A. Deporter, R. M. Pilliar, N. Valiquette, and R. Yakubovich, The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants, Biomaterials. 1 févr, vol.25, issue.5, pp.865-76, 2004.

A. Ho-shui-ling, J. Bolander, L. E. Rustom, A. W. Johnson, F. P. Luyten et al., Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives, Biomaterials, vol.180, pp.143-62, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02013014

D. I. Ilan and A. L. Ladd, Bone graft substitutes. Operative Techniques in Plastic and Reconstructive Surgery, vol.9, pp.151-60, 2002.

G. Thrivikraman, A. Athirasala, C. Twohig, S. K. Boda, and L. E. Bertassoni, Biomaterials for Craniofacial Bone Regeneration. Dental Clinics of North America, vol.61, pp.835-56, 2017.

H. Van-cauwenberge, P. Georis, S. Figiel, and P. Gillet, Reconstruction osseuse et BMP-2 (Inductos) : une expérience de 70 patients, Revue de Chirurgie Orthopédique et Traumatologique, vol.98, issue.7, p.289, 2012.

N. Mansouri and . Samirabagheri, The influence of topography on tissue engineering perspective, Materials Science and Engineering: C. avr, vol.61, pp.906-927, 2016.

V. Petrovic, P. Zivkovic, D. Petrovic, and V. Stefanovic, Craniofacial bone tissue engineering. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, sept, vol.114, issue.3, pp.1-9, 2012.

L. N. Melek, Tissue engineering in oral and maxillofacial reconstruction, Tanta Dental Journal. 1 sept, vol.12, issue.3, pp.211-234, 2015.

L. Roseti, V. Parisi, M. Petretta, C. Cavallo, G. Desando et al., Scaffolds for Bone Tissue Engineering: State of the art and new perspectives, Materials Science and Engineering: C. sept, vol.78, pp.1246-62, 2017.

D. Sengupta, S. D. Waldman, and S. Li, From In Vitro to, In Situ Tissue Engineering. Annals of Biomedical Engineering. juill, vol.42, issue.7, pp.1537-1582, 2014.

F. J. O'brien, Biomaterials & scaffolds for tissue engineering. Materials Today. mars, vol.14, issue.3, pp.88-95, 2011.

D. Lopes, C. Martins-cruz, M. B. Oliveira, and J. F. Mano, Bone physiology as inspiration for tissue regenerative therapies, Biomaterials. 1 déc, vol.185, pp.240-75, 2018.

K. L. Sellgren and T. Ma, Effects of flow configuration on bone tissue engineering using human mesenchymal stem cells in 3D chitosan composite scaffolds: EFFECTS OF FLOW CONFIGURATION ON BONE TISSUE ENGINEERING, Journal of Biomedical Materials Research Part A. août, vol.103, issue.8, pp.2509-2529, 2015.

X. He, R. Dziak, X. Yuan, K. Mao, R. Genco et al., BMP2 Genetically Engineered MSCs and EPCs Promote Vascularized Bone Regeneration in Rat Critical-Sized Calvarial Bone Defects, PLOS ONE. abr, vol.8, issue.4, p.60473, 2013.

Z. Xing, Y. Xue, A. Finne-wistrand, Z. Yang, and K. Mustafa, Copolymer cell/scaffold constructs for bone tissue engineering: Co-culture of low ratios of human endothelial and osteoblast-like cells in a dynamic culture system, Journal of Biomedical Materials Research Part A, vol.101, issue.4, pp.1113-1133, 2013.

P. Hassanzadeh, F. Atyabi, and R. Dinarvand, Tissue engineering: Still facing a long way ahead, Journal of Controlled Release. juin, vol.279, pp.181-97, 2018.

M. H. Murdock and S. F. Badylak, Biomaterials-based in situ tissue engineering, Current Opinion in Biomedical Engineering. mars, vol.1, pp.4-7, 2017.

S. J. Lee, J. J. Yoo, and A. Atala, Fundamentals of In Situ Tissue Regeneration, Situ Tissue Regeneration, pp.3-17, 2016.

Q. Li, L. Ma, and C. Gao, Biomaterials for in situ tissue regeneration: development and perspectives, Journal of Materials Chemistry B, vol.3, issue.46, pp.8921-8959, 2015.

K. Andreas, M. Sittinger, and J. Ringe, Toward in situ tissue engineering: chemokine-guided stem cell recruitment, Trends in Biotechnology. sept, vol.32, issue.9, pp.483-92, 2014.

J. D. Boerckel, Y. M. Kolambkar, K. M. Dupont, B. A. Uhrig, E. A. Phelps et al., Effects of protein dose and delivery system on BMP-mediated bone regeneration, Biomaterials. août, vol.32, issue.22, pp.5241-51, 2011.

F. Akter and J. Ibanez, Bone and Cartilage Tissue Engineering, Tissue Engineering Made Easy, pp.77-97, 2016.

V. Tollemar, Z. J. Collier, M. K. Mohammed, M. J. Lee, G. A. Ameer et al., Stem cells, growth factors and scaffolds in craniofacial regenerative medicine, Genes & Diseases. mars, vol.3, issue.1, pp.56-71, 2016.

M. Herrmann, M. W. Laschke, M. Alini, A. Scherberich, and S. Verrier, Vascularization, Survival, and Functionality of Tissue-Engineered Constructs, Tissue Engineering, 2014.

B. Buranawat, P. Kalia, D. Silvio, and L. , Vascularisation of tissue-engineered constructs, Standardisation in Cell and Tissue Engineering, pp.77-103, 2013.

M. Herrmann, S. Verrier, and M. Alini, Strategies to Stimulate Mobilization and Homing of Endogenous Stem and Progenitor Cells for Bone Tissue Repair, Frontiers in Bioengineering and Biotechnology, vol.2, issue.2015

J. Fu and D. Wang, Situ Organ-Specific Vascularization in Tissue Engineering, vol.36, pp.834-883, 2018.

S. Bose, M. Roy, and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends in Biotechnology, vol.30, issue.10, pp.546-54, 2012.

B. P. Chan and K. W. Leong, Scaffolding in tissue engineering: general approaches and tissue-specific considerations, European Spine Journal. déc, vol.17, issue.S4, pp.467-79, 2008.

G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia et al., 3D bioactive composite scaffolds for bone tissue engineering, Bioactive Materials. 1 sept, vol.3, issue.3, pp.278-314, 2018.

P. Soundarya, S. , H. Menon, A. , V. Chandran et al., Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques, International Journal of Biological Macromolecules, vol.119, pp.1228-1267, 2018.

T. Tian, T. Zhang, Y. Lin, and X. Cai, Vascularization in Craniofacial Bone Tissue Engineering, Journal of Dental Research. août, vol.97, issue.9, pp.969-76, 2018.

S. Eap, A. Ferrand, C. Mendoza-palomares, A. Hébraud, J. Stoltz et al., Electrospun nanofibrous 3D scaffold for bone tissue engineering, Bio-Medical Materials and Engineering. 1 janv, vol.22, issue.1-3, pp.137-178, 2012.

A. Grémare, V. Guduric, R. Bareille, V. Heroguez, S. Latour et al., Characterization of printed PLA scaffolds for bone tissue engineering, Journal of Biomedical Materials Research Part A, vol.106, issue.4, pp.887-94, 2018.

Z. Hao, Z. Song, J. Huang, K. Huang, A. Panetta et al., The scaffold microenvironment for stem cell based bone tissue engineering, Biomater Sci. 26 juill, vol.5, issue.8, pp.1382-92, 2017.

E. Meurice, F. Bouchart, J. C. Hornez, A. Leriche, D. Hautcoeur et al., Osteoblastic cells colonization inside beta-TCP macroporous structures obtained by ice-templating, Journal of the European Ceramic Society. 1 sept, vol.36, issue.12, pp.2895-901, 2016.

H. Shao, J. He, T. Lin, Z. Zhang, Y. Zhang et al., 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering, Ceramics International. 1 janv, vol.45, issue.1, pp.1163-70, 2019.

H. Lian, L. Zhang, and Z. Meng, Biomimetic hydroxyapatite/gelatin composites for bone tissue regeneration: Fabrication, characterization, and osteogenic differentiation in vitro, Materials & Design, vol.156, pp.381-389, 2018.

C. Moreira, S. M. Carvalho, R. G. Sousa, H. S. Mansur, and M. M. Pereira, Nanostructured chitosan/gelatin/bioactive glass in situ forming hydrogel composites as a potential injectable matrix for bone tissue engineering, Materials Chemistry and Physics, vol.218, pp.304-320, 2018.

T. N. Vo, F. K. Kasper, and A. G. Mikos, Strategies for controlled delivery of growth factors and cells for bone regeneration, Advanced Drug Delivery Reviews. sept, vol.64, issue.12, pp.1292-309, 2012.

C. A. Custódio, R. L. Reis, and J. F. Mano, Engineering Biomolecular Microenvironments for Cell Instructive Biomaterials, Advanced Healthcare Materials, vol.3, issue.6, pp.797-810, 2014.

V. Kesireddy and F. K. Kasper, Approaches for building bioactive elements into synthetic scaffolds for bone tissue engineering, J Mater Chem B, vol.4, issue.42, pp.6773-86, 2016.

S. Lee and H. Shin, Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering, Advanced Drug Delivery Reviews. mai, vol.59, issue.4-5, pp.339-59, 2007.

A. Malhotra, M. H. Pelletier, Y. Yu, and W. R. Walsh, Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes, Arch Orthop Trauma Surg. 1 févr, vol.133, issue.2, pp.153-65, 2013.

S. Almubarak, H. Nethercott, M. Freeberg, C. Beaudon, A. Jha et al., Tissue engineering strategies for promoting vascularized bone regeneration, Bone. 1 févr, vol.83, pp.197-209, 2016.

U. Saran, G. Piperni, S. Chatterjee, and S. , Role of angiogenesis in bone repair, Archives of Biochemistry and Biophysics, vol.561, pp.109-126, 2014.

D. Rosa, L. , D. Stasi, R. , and D. Ld, Pro-angiogenic peptides in biomedicine, Archives of Biochemistry and Biophysics. déc, vol.660, pp.72-86, 2018.

B. Beamer, C. Hettrich, and J. Lane, Vascular Endothelial Growth Factor: An Essential Component of Angiogenesis and Fracture Healing, HSS Jrnl. 1 févr, vol.6, issue.1, pp.85-94, 2010.

B. De-la-riva, C. Nowak, E. Sánchez, A. Hernández, M. Schulz-siegmund et al., VEGFcontrolled release within a bone defect from alginate/chitosan/PLA-H scaffolds, European Journal of Pharmaceutics and Biopharmaceutics. 1 sept, vol.73, issue.1, pp.50-58, 2009.

B. Behr, M. Sorkin, M. Lehnhardt, R. A. Longaker, M. T. Quarto et al., A comparative analysis of the osteogenic effects of BMP-2, FGF-2, and VEGFA in a calvarial defect model, Tissue Eng Part A. mai, vol.18, issue.9, pp.1079-86, 2012.

M. Farokhi, F. Mottaghitalab, M. A. Shokrgozar, A. J. Hadjati, J. Azami et al., Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor, Materials Science and Engineering: C. 1 févr, vol.35, pp.401-411, 2014.

B. Li, H. Wang, G. Zhou, J. Zhang, X. Su et al., VEGF-loaded biomimetic scaffolds: a promising approach to improve angiogenesis and osteogenesis in an ischemic environment, RSC Advances, vol.7, issue.8, pp.4253-4262, 2017.

F. Chen, M. Zhang, and Z. Wu, Toward delivery of multiple growth factors in tissue engineering, Biomaterials. 1 août, vol.31, issue.24, pp.6279-308, 2010.

F. Chen, L. Wu, M. Zhang, R. Zhang, and H. Sun, Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives, Biomaterials. avr, vol.32, issue.12, pp.3189-209, 2011.

J. Amirian, N. Linh, Y. K. Min, and B. Lee, Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF, International Journal of Biological Macromolecules. mai, vol.76, pp.10-24, 2015.

D. D. Dou, G. Zhou, H. W. Liu, J. Zhang, M. L. Liu et al., Sequential releasing of VEGF and BMP-2 in hydroxyapatite collagen scaffolds for bone tissue engineering: Design and characterization, International Journal of Biological Macromolecules. févr, vol.123, pp.622-630, 2019.

D. Kempen, L. Lu, A. Heijink, T. E. Hefferan, L. B. Creemers et al., Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration, Biomaterials. 1 mai, vol.30, issue.14, pp.2816-2841, 2009.

B. De-la-riva, E. Sánchez, A. Hernández, R. Reyes, F. Tamimi et al., Local controlled release of VEGF and PDGF from a combined brushite-chitosan system enhances bone regeneration, Journal of Controlled Release. 2 avr, vol.143, issue.1, pp.45-52, 2010.

M. Farokhi, F. Mottaghitalab, A. J. Shokrgozar, and M. A. , Sustained release of platelet-derived growth factor and vascular endothelial growth factor from silk/calcium phosphate/PLGA based nanocomposite scaffold, International Journal of Pharmaceutics. 15 sept, vol.454, issue.1, pp.216-241, 2013.

X. Bai, M. Gao, S. Syed, J. Zhuang, X. Xu et al., Bioactive hydrogels for bone regeneration, Bioactive Materials. 1 déc, vol.3, issue.4, pp.401-418, 2018.

N. Bhattarai, J. Gunn, and M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery, Advanced Drug Delivery Reviews. janv, vol.62, issue.1, pp.83-99, 2010.

A. Kishida and Y. Ikada, Hydrogels for Biomedical and Pharmaceutical Applications, 2001.

S. Naahidi, M. Jafari, M. Logan, Y. Wang, Y. Yuan et al., Biocompatibility of hydrogel-based scaffolds for tissue engineering applications, Biotechnology Advances. 1 sept, vol.35, issue.5, pp.530-574, 2017.

F. Ullah, M. Othman, F. Javed, Z. Ahmad, and H. M. Akil, Classification, processing and application of hydrogels: A review, Materials Science and Engineering: C. déc, vol.57, pp.414-447, 2015.

K. Varaprasad, G. M. Raghavendra, T. Jayaramudu, M. M. Yallapu, and R. Sadiku, A mini review on hydrogels classification and recent developments in miscellaneous applications, Materials Science and Engineering: C. oct, vol.79, pp.958-71, 2017.

M. Bahram, N. Mohseni, and M. Moghtader, An Introduction to Hydrogels and Some Recent Applications, Majee SB, éditeur. Emerging Concepts in Analysis and Applications of Hydrogels, 2016.

D. Sur,

E. Zahedi, S. Ansari, B. M. Wu, S. Bencharit, and A. Moshaverinia, Hydrogels in craniofacial tissue engineering. In: Biomaterials for Oral and Dental Tissue Engineering, 2017.

K. Park, H. Kim, S. Moon, and K. Na, Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering, Journal of Bioscience and Bioengineering. 1 déc, vol.108, issue.6, pp.530-537, 2009.

A. Kumar, R. Sivashanmugam, A. Deepthi, S. Bumgardner, J. D. Nair et al., Nanofibrin stabilized CaSO 4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & osteogenesis, Carbohydrate Polymers. avr, vol.140, pp.144-53, 2016.

S. S. Silva, N. M. Oliveira, M. B. Oliveira, D. Da-costa, D. Naskar et al., Fabrication and characterization of Eri silk fibers-based sponges for biomedical application, Acta Biomaterialia. mars, vol.32, pp.178-89, 2016.

M. Ribeiro, M. H. Fernandes, M. M. Beppu, F. J. Monteiro, and M. P. Ferraz, Silk fibroin/nanohydroxyapatite hydrogels for promoted bioactivity and osteoblastic proliferation and differentiation of human bone marrow stromal cells, Materials Science and Engineering: C. 1 août, vol.89, pp.336-381, 2018.

N. Davidenko, T. Gibb, C. Schuster, S. M. Best, J. J. Campbell et al., Biomimetic collagen scaffolds with anisotropic pore architecture, Acta Biomaterialia. févr, vol.8, issue.2, pp.667-76, 2012.

D. Zhang, X. Wu, J. Chen, and K. Lin, The development of collagen based composite scaffolds for bone regeneration, Bioactive Materials. 1 mars, vol.3, issue.1, pp.129-167, 2018.

I. Rodriguez, S. Sell, J. Mccool, G. Saxena, A. Spence et al., A Preliminary Evaluation of Lyophilized Gelatin Sponges, Enhanced with Platelet-Rich Plasma, Hydroxyapatite and Chitin Whiskers for Bone Regeneration, Cells. 26 avr, vol.2, issue.2, pp.244-65, 2013.

M. C. Echave, P. Sánchez, J. L. Pedraz, and G. Orive, Progress of gelatin-based 3D approaches for bone regeneration, Journal of Drug Delivery Science and Technology. 1 déc, vol.42, pp.63-74, 2017.

S. Kapoor and S. C. Kundu, Silk protein-based hydrogels: Promising advanced materials for biomedical applications, Acta Biomaterialia. 1 févr, vol.31, pp.17-32, 2016.

Y. Zhang, P. Heher, J. Hilborn, H. Redl, and D. A. Ossipov, Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications, Acta Biomaterialia. 1 juill, vol.38, pp.23-32, 2016.

J. Patterson, R. Siew, S. W. Herring, A. Lin, R. Guldberg et al., Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration, Biomaterials. sept, vol.31, issue.26, pp.6772-81, 2010.

O. Guillaume, S. M. Naqvi, K. Lennon, and C. T. Buckley, Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair, Journal of Biomaterials Applications. avr, vol.29, issue.9, pp.1230-1276, 2015.

P. Diaz-rodriguez, P. Garcia-triñanes, E. López, M. M. Santoveña, A. Landin et al., Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications, Carbohydrate Polymers. 1 sept, vol.195, pp.235-277, 2018.

D. M. Varma, G. T. Gold, P. J. Taub, and S. B. Nicoll, Injectable carboxymethylcellulose hydrogels for soft tissue filler applications, Acta Biomaterialia. 1 déc, vol.10, issue.12, pp.4996-5004, 2014.

S. Laïb, B. H. Fellah, A. Fatimi, S. Quillard, C. Vinatier et al., The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering, Biomaterials. mars, vol.30, issue.8, pp.1568-77, 2009.

Y. Zheng, K. Huang, X. You, B. Huang, J. Wu et al., Hybrid hydrogels with high strength and biocompatibility for bone regeneration, International Journal of Biological Macromolecules, vol.104, pp.1143-1152, 2017.

J. H. Lee, Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering, Biomater Res, vol.26, issue.2018

A. Sivashanmugam, A. Kumar, R. , V. Priya, M. Nair et al., An overview of injectable polymeric hydrogels for tissue engineering, European Polymer Journal. nov, vol.72, pp.543-65, 2015.

A. Pal, B. L. Vernon, and M. Nikkhah, Therapeutic neovascularization promoted by injectable hydrogels, Bioactive Materials. déc, vol.3, issue.4, pp.389-400, 2018.

S. Saravanan, S. Vimalraj, P. Thanikaivelan, S. Banudevi, and G. Manivasagam, A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration, International Journal of Biological Macromolecules. 1 janv, vol.121, pp.38-54, 2019.

B. Chang, N. Ahuja, C. Ma, and X. Liu, Injectable scaffolds: Preparation and application in dental and craniofacial regeneration, Mater Sci Eng R Rep. janv, vol.111, pp.1-26, 2017.

M. H. Chen, L. L. Wang, J. J. Chung, Y. Kim, P. Atluri et al., Methods To Assess ShearThinning Hydrogels for Application As Injectable Biomaterials, ACS Biomater Sci Eng. 11 déc, vol.3, issue.12, pp.3146-60, 2017.

M. Guvendiren, H. D. Lu, and J. A. Burdick, Shear-thinning hydrogels for biomedical applications, Soft Matter. 8 déc, vol.8, issue.2, pp.260-72, 2011.

P. M. Chichiricco, R. Riva, J. Thomassin, J. Lesoeur, X. Struillou et al., In situ photochemical crosslinking of hydrogel membrane for Guided Tissue Regeneration, Dental Materials. déc, vol.34, issue.12, pp.1769-82, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01896996

Y. Tang, C. L. Heaysman, S. Willis, and A. L. Lewis, Physical hydrogels with self-assembled nanostructures as drug delivery systems, Expert Opinion on Drug Delivery. sept, vol.8, issue.9, pp.1141-59, 2011.

Q. V. Nguyen, D. P. Huynh, J. H. Park, and D. S. Lee, Injectable polymeric hydrogels for the delivery of therapeutic agents: A review, European Polymer Journal, vol.72, pp.602-621, 2015.

A. A. Foster, L. M. Marquardt, and S. C. Heilshorn, The diverse roles of hydrogel mechanics in injectable stem cell transplantation. Current Opinion in Chemical Engineering, vol.15, pp.15-23, 2017.

S. Van-vlierberghe, G. Graulus, K. Samal, S. Van-nieuwenhove, I. Dubruel et al., Porous hydrogel biomedical foam scaffolds for tissue repair, Biomedical Foams for Tissue Engineering Applications, pp.335-90, 2014.

, Basics of rheology :: Anton Paar Wiki

A. Paar,

D. Sur,

R. Mclemore, Rheological properties of injectable biomaterials, Injectable Biomaterials, pp.46-60, 2011.

A. Borzacchiello and L. Ambrosio, Structure-Property Relationships in Hydrogels, Hydrogels [Internet, pp.9-20, 2009.

B. Von-lospichl, S. Hemmati-sadeghi, P. Dey, T. Dehne, R. Haag et al., Injectable hydrogels for treatment of osteoarthritis -A rheological study, Colloids and Surfaces B: Biointerfaces, vol.159, 2017.

D. Sur,

S. Kona, A. S. Wadajkar, and K. T. Nguyen, Tissue engineering applications of injectable biomaterials, Injectable Biomaterials, pp.142-82, 2011.

H. Wang, M. B. Hansen, D. Löwik, J. Van-hest, Y. Li et al., Oppositely Charged Gelatin Nanospheres as Building Blocks for Injectable and Biodegradable Gels, Advanced Materials. 25 mars, vol.23, issue.12, pp.119-143, 2011.

R. O'hara, F. Buchanan, and N. Dunne, Injectable calcium phosphate cements for spinal bone repair, Biomaterials for Bone Regeneration, pp.26-61, 2014.

D. B. Lima, R. D. Almeida, M. Pasquali, S. P. Borges, M. L. Fook et al., Physical characterization and modeling of chitosan/peg blends for injectable scaffolds, Carbohydrate Polymers. juin, vol.189, pp.238-287, 2018.

A. Vo, M. Doumit, and G. Rockwell, The Biomechanics and Optimization of the Needle-Syringe System for Injecting Triamcinolone Acetonide into Keloids, Journal of Medical Engineering, vol.2016, pp.1-8, 2016.

F. Cilurzo, F. Selmin, P. Minghetti, M. Adami, E. Bertoni et al., Injectability Evaluation: An Open Issue, AAPS PharmSciTech. juin, vol.12, issue.2, pp.604-613, 2011.

B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, Polymeric Scaffolds in Tissue Engineering Application: A Review, International Journal of Polymer Science, 2011.

K. Flégeau, R. Pace, H. Gautier, G. Rethore, J. Guicheux et al., Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine, Advances in Colloid and Interface Science. 1 sept, vol.247, pp.589-609, 2017.

J. Venkatesan and S. K. Kim, Chitosan for bone repair and regeneration, Bone Substitute Biomaterials, pp.244-60, 2014.

J. Berretta, J. D. Bumgardner, and J. A. Jennings, Lyophilized chitosan sponges, Chitosan Based Biomaterials, vol.1, pp.239-53, 2017.

F. Croisier and C. Jérôme, Chitosan-based biomaterials for tissue engineering, European Polymer Journal. avr, vol.49, issue.4, pp.780-92, 2013.

X. Liu, L. Ma, Z. Mao, and C. Gao, Chitosan-Based Biomaterials for Tissue Repair and Regeneration, Jayakumar R, Prabaharan M, Muzzarelli RAA, éditeurs. Chitosan for Biomaterials II

H. Berlin, , pp.81-127, 2011.

S. Saravanan, R. S. Leena, and N. Selvamurugan, Chitosan based biocomposite scaffolds for bone tissue engineering, International Journal of Biological Macromolecules. 1 déc, vol.93, pp.1354-65, 2016.

L. Racine, I. Texier, and R. Auzély-velty, Chitosan-based hydrogels: recent design concepts to tailor properties and functions: Chitosan-based hydrogels: tailoring properties and functions, Polymer International. juill, vol.66, issue.7, pp.981-98, 2017.

S. Ahmed, A. A. Annu, and J. Sheikh, A review on chitosan centred scaffolds and their applications in tissue engineering, International Journal of Biological Macromolecules. sept, vol.116, pp.849-62, 2018.

A. Vedadghavami, F. Minooei, M. H. Mohammadi, S. Khetani, R. Kolahchi et al., Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications, Acta Biomaterialia, vol.62, pp.42-63, 2017.

R. M. Felfel, M. J. Gideon-adeniyi, Z. Hossain, K. M. Roberts, G. Grant et al., Structural, mechanical and swelling characteristics of 3D scaffolds from chitosan-agarose blends, Carbohydrate Polymers. janv, vol.204, pp.59-67, 2019.

E. S. Gil, J. A. Kluge, D. N. Rockwood, R. Rajkhowa, L. Wang et al., Mechanical improvements to reinforced porous silk scaffolds, Journal of Biomedical Materials Research Part A, vol.99, issue.1, pp.16-28, 2011.

E. Vunain, A. K. Mishra, and B. B. Mamba, Fundamentals of chitosan for biomedical applications, Chitosan Based Biomaterials, vol.1, pp.3-30, 2017.

H. Mittal, S. S. Ray, B. S. Kaith, J. K. Bhatia, . Sukriti et al., Recent progress in the structural modification of chitosan for applications in diversified biomedical fields, European Polymer Journal. déc, vol.109, pp.402-436, 2018.

A. Tchobanian, H. Van-oosterwyck, and P. Fardim, Polysaccharides for tissue engineering: Current landscape and future prospects, Carbohydrate Polymers. févr, vol.205, pp.601-626, 2019.

M. Rinaudo, Chitin and chitosan: Properties and applications, Progress in Polymer Science. 1 juill, vol.31, issue.7, pp.603-635, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305792

A. Muxika, A. Etxabide, J. Uranga, P. Guerrero, and K. De-la-caba, Chitosan as a bioactive polymer: Processing, properties and applications, International Journal of Biological Macromolecules. déc, vol.105, pp.1358-68, 2017.

R. Cheung, T. B. Ng, J. H. Wong, and W. Y. Chan, Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications, Mar Drugs. 14 août, vol.13, issue.8, pp.5156-86, 2015.

S. L. Levengood and M. Zhang, Chitosan-based scaffolds for bone tissue engineering, J Mater Chem B Mater Biol Med. 7 juin, vol.2, issue.21, pp.3161-84, 2014.

A. Anitha, S. Sowmya, P. Kumar, S. Deepthi, K. P. Chennazhi et al., Chitin and chitosan in selected biomedical applications, Progress in Polymer Science. 1 sept, vol.39, issue.9, pp.1644-67, 2014.

S. Deepthi, J. Venkatesan, S. Kim, J. D. Bumgardner, and R. Jayakumar, An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering, International Journal of Biological Macromolecules. déc, vol.93, pp.1338-53, 2016.

Y. Zhou, H. Gao, L. Shen, Z. Pan, L. Mao et al., Chitosan microspheres with an extracellular matrix-mimicking nanofibrous structure as cell-carrier building blocks for bottom-up cartilage tissue engineering, Nanoscale. 17 déc, vol.8, issue.1, pp.309-326, 2015.

M. Kozicki, M. Ko?odziejczyk, M. Szynkowska, A. Pawlaczyk, E. Le?niewska et al., Hydrogels made from chitosan and silver nitrate, Carbohydrate Polymers. avr, vol.140, pp.74-87, 2016.

A. Aussel, N. B. Thébaud, X. Bérard, V. Brizzi, S. Delmond et al., Chitosan-based hydrogels for developing a small-diameter vascular graft: in vitro and in vivo evaluation, Biomedical Materials, vol.12, issue.6, p.65003, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01659658

S. Ouerghemmi, S. Degoutin, N. Tabary, F. Cazaux, M. Maton et al., Triclosan loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte complex, International Journal of Pharmaceutics, vol.513, issue.1, pp.483-95, 2016.

M. A. Shamekhi, A. Rabiee, H. Mirzadeh, H. Mahdavi, D. Mohebbi-kalhori et al., Fabrication and characterization of hydrothermal cross-linked chitosan porous scaffolds for cartilage tissue engineering applications. Materials Science and Engineering: C, vol.80, pp.532-574, 2017.

T. Ikeda, K. Ikeda, K. Yamamoto, H. Ishizaki, Y. Yoshizawa et al., Fabrication and Characteristics of Chitosan Sponge as a Tissue Engineering Scaffold, BioMed Research International, vol.2014, pp.1-8, 2014.

M. Dash, F. Chiellini, R. M. Ottenbrite, and E. Chiellini, Chitosan-A versatile semi-synthetic polymer in biomedical applications, Progress in Polymer Science. août, vol.36, issue.8, pp.981-1014, 2011.

T. Kean and M. Thanou, Biodegradation, biodistribution and toxicity of chitosan, Advanced Drug Delivery Reviews. janv, vol.62, issue.1, pp.3-11, 2010.

B. Porstmann, K. Jung, H. Schmechta, U. Evers, M. Pergande et al., Measurement of lysozyme in human body fluids: Comparison of various enzyme immunoassay techniques and their diagnostic application, Clinical Biochemistry. oct, vol.22, issue.5, pp.349-55, 1989.

P. K. Dutta, K. Rinki, and J. Dutta, Chitosan: A Promising Biomaterial for Tissue Engineering Scaffolds, Jayakumar R, Prabaharan M, Muzzarelli RAA, éditeurs. Chitosan for Biomaterials II

H. Berlin, , pp.45-79, 2011.

R. P. Richter, N. S. Baranova, A. J. Day, and J. C. Kwok, Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets?, Current Opinion in Structural Biology. 1 juin, vol.50, pp.65-74, 2018.

N. Celikkin, C. Rinoldi, M. Costantini, M. Trombetta, A. Rainer et al., Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications, Materials Science and Engineering: C. 1 sept, vol.78, pp.1277-99, 2017.

B. G. Kozen, S. J. Kircher, J. Henao, F. S. Godinez, and A. S. Johnson, An Alternative Hemostatic Dressing: Comparison of CELOX, HemCon, and QuikClot, Academic Emergency Medicine, vol.15, issue.1, pp.74-81, 2008.

D. R. Perinelli, L. Fagioli, R. Campana, J. Lam, W. Baffone et al., Chitosan-based nanosystems and their exploited antimicrobial activity, European Journal of Pharmaceutical Sciences. mai, vol.117, pp.8-20, 2018.

R. Logithkumar, A. Keshavnarayan, S. Dhivya, A. Chawla, S. Saravanan et al., A review of chitosan and its derivatives in bone tissue engineering. Carbohydrate Polymers, vol.151, pp.172-88, 2016.

I. Aranaz, M. Mengibar, R. Harris, I. Panos, B. Miralles et al., Functional Characterization of Chitin and Chitosan, Current Chemical Biology. 1 mai, vol.3, issue.2, pp.203-233, 2009.

A. Domard, M. Domard, and . Chitosan, Structure-Properties Relationship and Biomedical Applications. In: Dumitriu S, éditeur. Polymeric Biomaterials, 2001.

D. Sur,

C. Chatelet, Influence of the degree of acetylation on some biological properties of chitosan films, Biomaterials. févr, vol.22, issue.3, pp.261-269, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00313081

R. Seda-t??l?, A. Karakeçili, and M. Gümü?derelio?lu, In vitro characterization of chitosan scaffolds: influence of composition and deacetylation degree, Journal of Materials Science: Materials in Medicine. 7 août, vol.18, issue.9, pp.1665-74, 2007.

J. D. Bumgardner, V. P. Murali, H. Su, O. D. Jenkins, D. Velasquez-pulgarin et al., Characterization of chitosan matters, Chitosan Based Biomaterials, vol.1

J. A. Jennings, Controlling chitosan degradation properties in vitro and in vivo, Chitosan Based Biomaterials, vol.1, pp.159-82, 2017.

A. Padmanabhan and L. S. Nair, Chitosan Hydrogels for Regenerative Engineering, Chitin and Chitosan for Regenerative Medicine

. Springer, Springer Series on Polymer and Composite Materials). Disponible sur, pp.3-40, 2016.

D. Fong and C. D. Hoemann, Chitosan immunomodulatory properties: perspectives on the impact of structural properties and dosage, Future Sci OA, vol.14, issue.2017

N. B. Milosavljevi?, L. M. Kljajevi?, I. G. Popovi?, J. M. Filipovi?, and M. Kru?i?, Chitosan, itaconic acid and poly(vinyl alcohol) hybrid polymer networks of high degree of swelling and good mechanical strength, Polymer International, vol.59, issue.5, pp.686-94, 2010.

A. Singh, S. S. Narvi, P. K. Dutta, and N. D. Pandey, External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde, Bull Mater Sci. 1 juin, vol.29, issue.3, pp.233-241, 2006.

R. Muzzarelli, Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers. 22 mai, vol.77, pp.1-9, 2009.

T. M. Tamer, M. A. Hassan, A. M. Omer, W. Baset, M. E. Hassan et al., Synthesis, characterization and antimicrobial evaluation of two aromatic chitosan Schiff base derivatives, Process Biochemistry, vol.51, issue.10, pp.1721-1751, 2016.

X. Gao, Y. Zhou, G. Ma, S. Shi, D. Yang et al., A water-soluble photocrosslinkable chitosan derivative prepared by Michael-addition reaction as a precursor for injectable hydrogel, Carbohydrate Polymers. 11 févr, vol.79, issue.3, pp.507-519, 2010.

S. Sakai, M. Khanmohammadi, A. B. Khoshfetrat, and M. Taya, Horseradish peroxidase-catalyzed formation of hydrogels from chitosan and poly(vinyl alcohol) derivatives both possessing phenolic hydroxyl groups. Carbohydrate Polymers, vol.111, pp.404-413, 2014.

J. Nilsen-nygaard, S. Strand, K. Vårum, K. Draget, C. Nordgård et al., Gels and Interfacial Properties, vol.7, pp.552-79, 2015.

M. Pellá, M. K. Lima-tenório, E. T. Tenório-neto, M. R. Guilherme, E. C. Muniz et al., Chitosanbased hydrogels: From preparation to biomedical applications, Carbohydrate Polymers. 15 sept, vol.196, pp.233-278, 2018.

A. Montembault, C. Viton, and A. Domard, Rheometric study of the gelation of chitosan in a hydroalcoholic medium, Biomaterials. 1 mai, vol.26, issue.14, pp.1633-1676, 2005.

A. Aussel, A. Montembault, S. Malaise, M. P. Foulc, W. Faure et al., In Vitro Mechanical Property Evaluation of Chitosan-Based Hydrogels Intended for Vascular Graft Development, Journal of Cardiovascular Translational Research. déc, vol.10, issue.5-6, pp.480-488, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01730354

A. Montembault, C. Viton, and A. Domard, Rheometric Study of the Gelation of Chitosan in Aqueous Solution without Cross-Linking Agent, Biomacromolecules. mars, vol.6, issue.2, pp.653-62, 2005.

S. Ladet, L. David, and A. Domard, Multi-membrane hydrogels, Nature. mars, vol.452, issue.7183, pp.76-85, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00374008

R. Auzély-velty and M. Rinaudo, New Supramolecular Assemblies of a Cyclodextrin-Grafted Chitosan through Specific Complexation, Macromolecules, vol.35, issue.21, pp.7955-62, 2002.

I. Yamaguchi, S. Iizuka, A. Osaka, H. Monma, and J. Tanaka, The effect of citric acid addition on chitosan/hydroxyapatite composites, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 12 mars, vol.214, issue.1, pp.111-119, 2003.

Y. Liu, X. Shen, H. Zhou, Y. Wang, and L. Deng, Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization, Applied Surface Science. 1 mai, vol.370, pp.270-278, 2016.

P. Sacco, S. Paoletti, M. Cok, F. Asaro, M. Abrami et al., Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers, International Journal of Biological Macromolecules, vol.92, pp.476-83, 2016.

V. S. Meka, M. Sing, M. R. Pichika, S. R. Nali, V. Kolapalli et al., A comprehensive review on polyelectrolyte complexes. Drug Discovery Today, vol.22, pp.1697-706, 2017.

Y. Luo and Q. Wang, Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery, International Journal of Biological Macromolecules. 1 mars, vol.64, pp.353-67, 2014.

H. Hamedi, S. Moradi, S. M. Hudson, and A. E. Tonelli, Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydrate Polymers, vol.199, pp.445-60, 2018.

M. Buriuli and D. Verma, Polyelectrolyte Complexes (PECs) for Biomedical Applications, Advances in Biomaterials for Biomedical Applications

. Springer, , 2017.

, Advanced Structured Materials). Disponible sur, pp.45-93

. Voron'ko, . Ng, S. R. Derkach, Y. A. Kuchina, and N. I. Sokolan, The chitosan-gelatin (bio)polyelectrolyte complexes formation in an acidic medium, Carbohydrate Polymers. 15 mars, vol.138, pp.265-72, 2016.

J. Kuo, T. Wu, H. , Y. Lee, and S. , A novel injectable chitosan/polyglutamate polyelectrolyte complex hydrogel with hydroxyapatite for soft-tissue augmentation, Carbohydrate Polymers. août, vol.89, issue.4, pp.1123-1153, 2012.

H. Wu, Y. Tsai, T. , J. Chang, W. Chen et al., Development of a chitosanpolyglutamate based injectable polyelectrolyte complex scaffold, Carbohydrate Polymers. mai, vol.85, issue.2, pp.318-342, 2011.

H. V. Saether, H. K. Holme, G. Maurstad, O. Smidsrød, and B. T. Stokke, Polyelectrolyte complex formation using alginate and chitosan. Carbohydrate Polymers, vol.74, pp.813-834, 2008.

G. Rassu, A. Salis, E. P. Porcu, P. Giunchedi, M. Roldo et al., Composite chitosan/alginate hydrogel for controlled release of deferoxamine: A system to potentially treat iron dysregulation diseases, Carbohydrate Polymers. 20 janv, vol.136, pp.1338-1385, 2016.

X. Li, H. Xie, J. Lin, W. Xie, and X. Ma, Characterization and biodegradation of chitosan-alginate polyelectrolyte complexes, Polymer Degradation and Stability. 1 janv, vol.94, issue.1, pp.1-6, 2009.

S. Kaderli, C. Boulocher, E. Pillet, D. Watrelot-virieux, A. L. Rougemont et al., A novel biocompatible hyaluronic acid-chitosan hybrid hydrogel for osteoarthrosis therapy, International Journal of Pharmaceutics. 10 avr, vol.483, issue.1, pp.158-68, 2015.

S. J. Kim, K. J. Lee, and S. I. Kim, Swelling behavior of polyelectrolyte complex hydrogels composed of chitosan and hyaluronic acid, Journal of Applied Polymer Science, vol.93, issue.3, pp.1097-101, 2004.

H. Chen and M. Fan, Novel Thermally Sensitive pH-dependent Chitosan/ Carboxymethyl Cellulose Hydrogels, Journal of Bioactive and Compatible Polymers. janv, vol.23, issue.1, pp.38-48, 2008.

L. Neufeld and H. Bianco-peled, Pectin-chitosan physical hydrogels as potential drug delivery vehicles, International Journal of Biological Macromolecules. 1 août, vol.101, pp.852-61, 2017.

P. Bernabé and C. Peniche, Argüelles-Monal W. Swelling behavior of chitosan/pectin polyelectrolyte complex membranes. Effect of thermal cross-linking, Polymer Bulletin, vol.55, issue.5, pp.367-75, 2005.

A. C. De-oliveira, B. H. Vilsinski, E. G. Bonafé, J. P. Monteiro, M. J. Kipper et al., Chitosan content modulates durability and structural homogeneity of chitosan-gellan gum assemblies, International Journal of Biological Macromolecules. 1 mai, vol.128, pp.114-137, 2019.

A. V. Volod'ko, V. N. Davydova, V. P. Glazunov, G. N. Likhatskaya, and I. M. Yermak, Influence of structural features of carrageenan on the formation of polyelectrolyte complexes with chitosan, International Journal of Biological Macromolecules. 1 mars, vol.84, pp.434-475, 2016.

D. J. Maciel and M. Ferreira-il-de, Properties evaluation of polyelectrolyte complex based on iota carrageenan and chitosan in acidic and basic media, Materials Letters, vol.229, pp.142-149, 2018.

A. Martínez-ruvalcaba, E. Chornet, and D. Rodrigue, Viscoelastic properties of dispersed chitosan/xanthan hydrogels. Carbohydrate Polymers. 19 févr, vol.67, pp.586-95, 2007.

S. Argin-soysal, P. Kofinas, and Y. M. Lo, Effect of complexation conditions on xanthan-chitosan polyelectrolyte complex gels, Food Hydrocolloids. 1 janv, vol.23, issue.1, pp.202-211, 2009.

J. Zhang and P. X. Ma, Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective, vol.65, 2013.

P. Jansook, N. Ogawa, and T. Loftsson, Cyclodextrins: structure, physicochemical properties and pharmaceutical applications, International Journal of Pharmaceutics. janv, vol.535, issue.1-2, pp.272-84, 2018.

H. Kono and T. Teshirogi, Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery, International Journal of Biological Macromolecules. janv, vol.72, pp.299-308, 2015.

G. Crini, Review: A History of Cyclodextrins, Chemical Reviews, vol.12, issue.21, pp.10940-75, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01089582

M. E. Davis and M. E. Brewster, Cyclodextrin-based pharmaceutics: past, present and future, Nature Reviews Drug Discovery. déc, vol.3, issue.12, pp.1023-1058, 2004.

C. Folch-cano, M. Yazdani-pedram, and C. Olea-azar, Inclusion and Functionalization of Polymers with Cyclodextrins: Current Applications and Future Prospects, Molecules. 9 sept, vol.19, issue.9, pp.14066-79, 2014.

S. Y. Yang, R. Hoonor, H. Jin, and J. Kim, Synthesis and Characterization of Cationic and Anionic Cyclodextrin Oligomers and Their Use in Layer-by-Layer Film Formation, Bulletin of the Korean Chemical Society. 20 juill, vol.34, issue.7, pp.2016-2038, 2013.

J. Junthip, N. Tabary, L. Leclercq, and B. Martel, Cationic ?-cyclodextrin polymer applied to a dual cyclodextrin polyelectrolyte multilayer system, Carbohydrate Polymers. 1 août, vol.126, pp.156-67, 2015.

S. Simoes, F. Veiga, J. J. Torres-labandeira, A. Ribeiro, A. C. Alvarez-lorenzo et al., Self-Assembled Cyclodextrin Gels for Drug Delivery, Current Topics in Medicinal Chemistry, 2014.

D. Sur,

B. Martel, D. Ruffin, M. Weltrowski, Y. Lekchiri, and M. Morcellet, Water-soluble polymers and gels from the polycondensation between cyclodextrins and poly(carboxylic acid)s: A study of the preparation parameters, Journal of Applied Polymer Science. 15 juill, vol.97, issue.2, pp.433-475, 2005.

M. J. Garcia-fernandez, N. Tabary, F. Chai, F. Cazaux, N. Blanchemain et al., New multifunctional pharmaceutical excipient in tablet formulation based on citric acid-cyclodextrin polymer, International Journal of Pharmaceutics. sept, vol.511, issue.2, pp.913-933, 2016.

A. Martin, N. Tabary, L. Leclercq, J. Junthip, S. Degoutin et al., Multilayered textile coating based on a ?-cyclodextrin polyelectrolyte for the controlled release of drugs, Carbohydrate Polymers. 2 avr, vol.93, issue.2, pp.718-748, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003157

A. Martin, N. Tabary, F. Chai, L. Leclercq, J. Junthip et al., Build-up of an antimicrobial multilayer coating on a textile support based on a methylene blue-poly(cyclodextrin) complex, Biomed Mater. déc, vol.8, issue.6, p.65006, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01004022

A. Mogrovejo-valdivia, O. Rahmouni, N. Tabary, M. Maton, C. Neut et al., In vitro evaluation of drug release and antibacterial activity of a silver-loaded wound dressing coated with a multilayer system, International Journal of Pharmaceutics, vol.13, issue.2018

D. Sur,

J. Junthip, N. Tabary, F. Chai, L. Leclercq, M. Maton et al., Layer-by-layer coating of textile with two oppositely charged cyclodextrin polyelectrolytes for extended drug delivery, Journal of Biomedical Materials Research Part A, vol.104, issue.6, pp.1408-1432

A. Pérez-anes, M. Gargouri, L. W. Van-den-berghe, H. Courcot, E. Sobocinski et al., Bioinspired Titanium Drug Eluting Platforms Based on a Poly-?-cyclodextrin-Chitosan Layer-byLayer Self-Assembly Targeting Infections, ACS Appl Mater Interfaces. 17 juin, vol.7, issue.23, pp.12882-93, 2015.

C. Flores, M. Lopez, N. Tabary, C. Neut, F. Chai et al., Preparation and characterization of novel chitosan and ?-cyclodextrin polymer sponges for wound dressing applications. Carbohydrate Polymers, vol.173, pp.535-581, 2017.

S. G. Ladet, K. Tahiri, A. S. Montembault, A. J. Domard, and M. Corvol, Multi-membrane chitosan hydrogels as chondrocytic cell bioreactors, Biomaterials. 1 août, vol.32, issue.23, pp.5354-64, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649105

J. Nie, W. Lu, J. Ma, L. Yang, Z. Wang et al., Orientation in multi-layer chitosan hydrogel: morphology, mechanism, and design principle, Scientific Reports. 6 janv, vol.5, p.7635, 2015.

A. Chenite, C. Chaput, D. Wang, C. Combes, M. D. Buschmann et al., Novel injectable neutral solutions of chitosan form biodegradable gels in situ, Biomaterials, vol.21, issue.21, pp.2155-61, 2000.

H. Naderi-meshkin, A. K. Matin, M. M. Sittinger, M. Bidkhori, H. R. Ahmadiankia et al., Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering, Cell Biol Int. 1 janv, vol.38, issue.1, pp.72-84, 2014.

M. J. Moura, H. Faneca, M. P. Lima, M. H. Gil, and M. M. Figueiredo, Situ Forming Chitosan Hydrogels Prepared via Ionic/Covalent Co-Cross-Linking

Z. Liu and P. Yao, Versatile injectable supramolecular hydrogels containing drug loaded micelles for delivery of various drugs, Polym Chem. 24 déc, vol.5, issue.3, pp.1072-81, 2013.

W. C. Liu, S. Chen, L. Zheng, and L. Qin, Angiogenesis Assays for the Evaluation of Angiogenic Properties of Orthopaedic Biomaterials -A General Review, Advanced Healthcare Materials. mars, vol.6, issue.5, p.1600434, 2017.

D. S. Morais, M. A. Rodrigues, T. I. Silva, M. A. Lopes, M. Santos et al., Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes, Carbohydrate Polymers. 5 juin, vol.95, issue.1, pp.134-176, 2013.

A. Ressler, J. Ródenas-rochina, M. Ivankovi?, H. Ivankovi?, A. Rogina et al., Injectable chitosan-hydroxyapatite hydrogels promote the osteogenic differentiation of mesenchymal stem cells. Carbohydrate Polymers, vol.197, pp.469-77, 2018.

Y. Seol, J. Lee, Y. Park, Y. Lee, Y. Ku et al., Chitosan sponges as tissue engineering scaffolds for bone formation, Biotechnology Letters. 1 juill, vol.26, issue.13, pp.1037-1078, 2004.

S. M. Ahsan, M. Thomas, K. K. Reddy, S. G. Sooraparaju, A. Asthana et al., Chitosan as biomaterial in drug delivery and tissue engineering, International Journal of Biological Macromolecules. 15 avr, vol.110, pp.97-109, 2018.

I. G. Be?karde?, T. T. Demirta?, M. D. Durukan, and M. Gümü?derelio?lu, Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds, Journal of Tissue Engineering and Regenerative Medicine, vol.9, issue.11, pp.1233-1279

A. Shavandi, A. Bekhit, Z. Sun, A. Ali, and M. Gould, A novel squid pen chitosan/hydroxyapatite/?-tricalcium phosphate composite for bone tissue engineering, Materials Science and Engineering: C, vol.55, pp.373-83, 2015.

J. S. Lee, S. D. Baek, J. Venkatesan, I. Bhatnagar, H. K. Chang et al., In vivo study of chitosannatural nano hydroxyapatite scaffolds for bone tissue regeneration, International Journal of Biological Macromolecules. 1 juin, vol.67, pp.360-366, 2014.

A. Haider, S. Haider, S. S. Han, and I. Kang, Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review, RSC Adv. 20 janv, vol.7, issue.13, pp.7442-58, 2017.

. Promocell, , 2018.

S. Gnavi, L. Blasio, T. Di, C. Mancardi, A. Primo et al., Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering, Journal of Tissue Engineering and Regenerative Medicine, vol.11, issue.2, pp.459-70

X. Yan, Y. W. Yang, F. Kersten-niessen, M. Jansen, J. A. Both et al., Effects of Continuous Passaging on Mineralization of MC3T3-E1 Cells with Improved Osteogenic Culture Protocol, Tissue Engineering Part C: Methods. mars, vol.20, issue.3, pp.198-204, 2014.

, HUVEC: Human Umbilical Vein Endothelial Cells

. Promocell,

D. Sur,

M. A. Lopez-heredia, K. Sariibrahimoglu, W. Yang, M. Bohner, D. Yamashita et al., Influence of the pore generator on the evolution of the mechanical properties and the porosity and interconnectivity of a calcium phosphate cement, Acta Biomaterialia. 1 janv, vol.8, issue.1, pp.404-418, 2012.

, alamarBlue Cell Viability Reagent -Thermo Fisher Scientific

D. Sur,

J. Amirian, N. Linh, Y. K. Min, and B. Lee, The effect of BMP-2 and VEGF loading of gelatin-pectin-BCP scaffolds to enhance osteoblast proliferation, Journal of Applied Polymer Science, vol.132, issue.2

A. M. Goodwin, In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents, Microvascular Research. sept, vol.74, issue.2-3, pp.172-83, 2007.

M. W. Irvin, A. Zijlstra, J. P. Wikswo, and A. Pozzi, Techniques and assays for the study of angiogenesis, Experimental Biology and Medicine, vol.239, issue.11, pp.1476-88, 2014.

S. R. Raghavan and B. H. Cipriano, Gel Formation: Phase Diagrams Using Tabletop Rheology and Calorimetry, Molecular Gels

D. Springer, , pp.241-52, 2006.

F. Wahid, Y. Zhou, H. Wang, T. Wan, C. Zhong et al., Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity, International Journal of Biological Macromolecules. juill, vol.114, pp.1233-1242, 2018.

M. Anraku, D. Iohara, A. Hiraga, K. Uekama, S. Ifuku et al., Formation of Elastic Gels from Deacetylated Chitin Nanofibers Reinforced with Sulfobutyl Ether ?-Cyclodextrin, Chemistry Letters. 5 mars, vol.44, issue.3, pp.285-292, 2015.

L. Y. Lim, E. Khor, and C. E. Ling, Effects of dry heat and saturated steam on the physical properties of chitosan, J Biomed Mater Res, vol.48, issue.2, pp.111-117, 1999.

C. Ji and J. Shi, Thermal-crosslinked porous chitosan scaffolds for soft tissue engineering applications, Materials Science and Engineering: C, vol.33, issue.7, pp.3780-3785, 2013.

A. Lejardi, R. Hernández, M. Criado, J. I. Santos, A. Etxeberria et al., Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties, Carbohydrate Polymers. 15 mars, vol.103, pp.267-73, 2014.

I. Dimzon and T. P. Knepper, Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares, International Journal of Biological Macromolecules. 1 janv, vol.72, pp.939-984, 2015.

J. Hernandez-montelongo, N. Naveas, S. Degoutin, N. Tabary, F. Chai et al., Porous silicon-cyclodextrin based polymer composites for drug delivery applications, Carbohydrate Polymers. 22 sept, vol.110, pp.238-52, 2014.

Q. Wang and D. Chen, Synthesis and characterization of a chitosan based nanocomposite injectable hydrogel, Carbohydrate Polymers. 20 janv, vol.136, pp.1228-1265, 2016.

R. Niranjan, C. Koushik, S. Saravanan, A. Moorthi, M. Vairamani et al., A novel injectable temperature-sensitive zinc doped chitosan/?-glycerophosphate hydrogel for bone tissue engineering, International Journal of Biological Macromolecules. 1 mars, vol.54, pp.24-33, 2013.

U. Wegst, M. Schecter, A. E. Donius, and P. M. Hunger, Biomaterials by freeze casting, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 28 avr, vol.368, pp.2099-121, 1917.

, Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method, Iranian Biomedical Journal. 1 juill, vol.21, issue.4, pp.228-267, 2017.

S. Laasri, M. Taha, A. Hajjaji, A. Laghzizil, and E. K. Hlil, Mechanical properties of calcium phosphate biomaterials, Molecular Crystals and Liquid Crystals. 23 mars, vol.628, issue.1, pp.198-203, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01882995

Z. Kuo, P. Lai, E. Toh, C. Weng, H. Tseng et al., Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge, vol.6

T. Zhang, S. Lin, X. Shao, Q. Zhang, C. Xue et al., Effect of matrix stiffness on osteoblast functionalization, Cell Proliferation, vol.50, issue.3, p.12338, 2017.

E. Szyma?ska and K. Winnicka, Stability of Chitosan-A Challenge for Pharmaceutical and Biomedical Applications, Marine Drugs. 1 avr, vol.13, issue.4, pp.1819-1865, 2015.

I. F. Amaral, P. Sampaio, and M. A. Barbosa, Three-dimensional culture of human osteoblastic cells in chitosan sponges: The effect of the degree of acetylation, Journal of Biomedical Materials Research Part A. févr, vol.76, issue.2, pp.335-381, 2006.

J. Ran, L. Xie, G. Sun, J. Hu, S. Chen et al., A facile method for the preparation of chitosanbased scaffolds with anisotropic pores for tissue engineering applications. Carbohydrate Polymers, vol.152, pp.615-638, 2016.

A. Mohandas, B. S. Anisha, K. P. Chennazhi, and R. Jayakumar, Chitosan-hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds, Colloids and Surfaces B: Biointerfaces. 1 mars, vol.127, pp.105-118, 2015.

T. E. Finn, A. C. Nunez, M. Sunde, and E. Sb, Serum Albumin Prevents Protein Aggregation and Amyloid Formation and Retains Chaperone-like Activity in the Presence of Physiological Ligands, J Biol Chem. 15 juin, vol.287, issue.25, pp.21530-21570, 2012.

A. Rogina, A. Ressler, I. Mati?, G. Ferrer, G. Marijanovi? et al., Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system, Carbohydrate Polymers. juin, vol.166, pp.173-82, 2017.

M. Vishnu-priya, A. Sivshanmugam, A. R. Boccaccini, O. M. Goudouri, W. Sun et al., Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects, Biomedical Materials. 15 juin, vol.11, issue.3, p.35017, 2016.

W. Dyondi and R. Banerjee, A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration, International Journal of Nanomedicine. déc, vol.47, 2012.

R. Herbois, S. Noël, B. Léger, S. Tilloy, S. Menuel et al., Ruthenium-containing ?-cyclodextrin polymer globules for the catalytic hydrogenation of biomass-derived furanic compounds, Green Chem. 7 avr, vol.17, issue.4, pp.2444-54, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01664683

E. Alarçin, T. Y. Lee, S. Karuthedom, M. Mohammadi, M. A. Brennan et al., Injectable shearthinning hydrogels for delivering osteogenic and angiogenic cells and growth factors, Biomater Sci. 29 mai, vol.6, issue.6, pp.1604-1619, 2018.

A. Sivashanmugam, P. Charoenlarp, S. Deepthi, A. Rajendran, S. V. Nair et al., Injectable Shear-Thinning CaSO4/FGF-18-Incorporated Chitin-PLGA Hydrogel Enhances Bone Regeneration in Mice Cranial Bone Defect Model, ACS Appl Mater Interfaces. 13 déc, vol.9, issue.49, pp.42639-52, 2017.

B. Ren, X. Chen, S. Du, Y. Ma, H. Chen et al., Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering, International Journal of Biological Macromolecules. oct, vol.118, pp.1257-66, 2018.

I. R. Serra, R. Fradique, M. Vallejo, T. R. Correia, S. P. Miguel et al., Production and characterization of chitosan/gelatin/?-TCP scaffolds for improved bone tissue regeneration, Materials Science and Engineering: C. oct, vol.55, pp.592-604, 2015.

S. Bose and S. Tarafder, Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review, Acta Biomater. avr, vol.8, issue.4, pp.1401-1422, 2012.

A. Sionkowska and J. Koz?owska, Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute, International Journal of Biological Macromolecules, vol.47, issue.4, pp.483-490, 2010.

S. Türk, I. Alt?nsoy, Ç. Efe, G. Ipek, M. Özacar et al., 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering, Materials Science and Engineering: C. nov, vol.92, pp.757-68, 2018.

X. Cai, L. Chen, T. Jiang, X. Shen, J. Hu et al., Facile synthesis of anisotropic porous chitosan/hydroxyapatite scaffolds for bone tissue engineering, Journal of Materials Chemistry, vol.21, issue.32, p.12015, 2011.

, Liste de publications et de communications

?. Publications, C. Palomino-durand, M. Lopez, F. Cazaux, B. Martel et al., Influence of the Soluble-Insoluble Ratios of Cyclodextrins Polymers on the Viscoelastic Properties of Injectable Chitosan-Based Hydrogels for Biomedical Application, Polymers, vol.11, 2019.

?. C. Palomino-durand, C. Flores, F. Chai, J. C. Hornez, F. Cazaux et al., Étude sur un hydrogel de chitosane incorpore dans une pièce 3D d'hydroxyapatite macroporeuse pour une libération prolongée de la ciprofloxacine, Secondes Journées Annuelles de la commission mixte Matériaux pour la Santé, 2016.

?. C. Palomino-durand, C. Flores, F. Chai, J. C. Hornez, F. Cazaux et al., Study on the chitosan hydrogel incorporated in 3D macroporous hydroxyapatite for sustained release of ciprofloxacin. SINAPSIS 2016. I Encuentro de científicos peruanos en Europa, 2016.

?. M. Lopez, C. Palomino-durand, J. Hornez, F. Chai, G. Raoul et al., Développement d'hydrogels à base de chitosan/?-cyclodextrine et d'hydroxyapatite pour la chirurgie mini invasive. 17èmes Journées Cyclodextrines, 2016.

?. C. Palomino-durand, A. Gauzit-amiel, M. Lopez, F. Cazaux, B. Martel et al.,

. Chai, Effect of the molecular weight of chitosan on the properties of the chitosan/polycyclodextrin hydrogels and sponges for bone tissue engineering

F. Ambleteuse, , 2017.

?. C. Palomino-durand, A. Gauzit-amiel, M. Lopez, F. Cazaux, B. Martel et al., Chitosan/poly-cyclodextrin hydrogels and sponges for bone tissue engineering application. 17e Journee Andre VERBERT -Colloque Annuel des Doctorants, 2017.

?. C. Palomino-durand, A. Gauzit-amiel, M. Lopez, F. Cazaux, B. Martel et al., Formation d'hydrogels et d'éponges à base de chitosane et poly-?-cyclodextrine pour l'application dans l

F. Lens, , 2017.

, Congres Internationaux

?. C. Palomino-durand, A. Gauzit-amiel, M. Lopez, F. Cazaux, B. Martel et al., Chitosan/poly-cyclodextrin hydrogels and sponges for bone tissue engineering application. SINAPSIS 2017. II Encuentro de científicos peruanos en Europa, 2017.

?. A. Gauzit-amiel, C. Palomino-durand, M. Lopez, M. Maton, F. Cazaux et al., Ciprofloxacin loaded sponges (Chitosan/Cyclodextrin polymer) for bone infection treatment, ICS 2018 -19 th International Cyclodextrin Symposium. Tokio, Japon, 2018.

?. A. Gauzit-amiel, C. Palomino-durand, M. Lopez, M. Maton, F. Cazaux et al., Ciprofloxacin loaded sponges (Chitosan/Cyclodextrin polymer) for bone infection. 2nd BIOMAT Congress, 2017.

?. C. Palomino-durand, A. Gauzit-amiel, M. López, F. Cazaux, B. Martel et al.,

. Chai, Development of chitosan/poly-cyclodextrin hydrogels and sponges for bone tissue engineering application. 2ème journée Recherche de la faculté de Pharmacie, 2018.

?. C. Palomino-durand, A. Gauzit-amiel, M. López, F. Cazaux, B. Martel et al.,

. Chai, Development of chitosan/poly-cyclodextrin hydrogels and sponges for bone tissue engineering application, THERMEC 2018. International Conference on Processing & Manufacturing of Advanced Materials, 2018.

, Congres Internationaux

?. A. Gauzit-amiel, C. Palomino-durand, M. Lopez, M. Maton, F. Cazaux et al., Ciprofloxacin loaded sponge (Chitosan/Cyclodextrin polymer) for bone infection treatment, ESB 2017 -28th European Conference on Biomaterials

G. Athens, , 2017.

?. A. Gauzit-amiel, C. Palomino-durand, M. Lopez, M. Maton, F. Cazaux et al., Physical hydrogel of chitosan and cyclodextrin polymer for the formation of a drug release device for bone infections treatment, 5th European Conference on Cyclodextrins, 2017.

, Liste de publications et communications, p.207

?. C. Palomino-durand, M. Lopez, F. Cazaux, B. Martel, N. Blanchemain et al., VEGF delivery by chitosan/poly-cyclodextrin composite sponges for bone tissue engineering, TERMIS World Congress, 2018.

?. C. Palomino-durand, A. Gauzit-amiel, M. Lopez, F. Cazaux, B. Martel et al.,

. Chai, Development of chitosan/poly-?-cyclodextrin sponges for bone tissue engineering application, ESB 2018 -29th Annual Meeting of the European Society for Biomaterials

P. Maastricht and . Bas, , 2018.

?. C. Palomino-durand, M. Lopez, F. Cazaux, B. Martel, N. Blanchemain et al., Influence of different cyclodextrin polymers on the properties of chitosan-hydrogels for tissue engineering application, ESB 2018 -29th Annual Meeting of the European Society for Biomaterials. Maastricht, Pays bas, 2018.

?. A. Gauzit-amiel, C. Palomino-durand, M. Lopez, M. Maton, F. Cazaux et al., Chitosan-polycyclodextrin physical sponge for anti infectious drug release device, ESB 2018 -29th Annual Meeting of the European Society for Biomaterials. Maastricht, Pays bas, 2018.

?. Durand, M. Lopez, F. Cazaux, B. Martel, N. Blanchemain et al., VEGF delivery by chitosan/poly-cyclodextrin sponges for bone tissue engineering, 2018.

. Prix,

, Prix de la meilleure présentation flash-poster. 2ème journée Recherche de la faculté de Pharmacie, 2018.

. ?-troisième-prix-du-meilleur and . Poster, Sinapsis 2018. III Encuentro de Científicos Peruanos en Europa, 2018.

?. D. Formations, U. Dispositifs-médicaux-implantables, and F. De-lille, RESUME La réparation de défauts osseux par les techniques de l'ingénierie tissulaire osseuse (ITO) est considérée comme une alternative aux greffes conventionnelles. L'objectif de ce projet de thèse fut de développer des matériaux destinés à servir de scaffolds pour le comblement et la régénération osseuse, ces derniers étant sous la forme d'hydrogels injectables d'une part, et d'éponges, d'autre part. Ces deux types de matériaux ont été obtenus par mélange de chitosane (CHT, cationique), et de polymère de cyclodextrine réticulé par l'acide citrique (PCD, anionique), interagissant via des liaisons ioniques et formant des complexes polyélectrolytes. La première partie de la thèse a été consacrée au développement et caractérisation d'une éponge CHT/PCDs qui a été chargée avec le facteur de croissance de l'endothélium vasculaire (VEFG) dans le but de favoriser sa vascularisation. Le second volet de la thèse a eu pour objectif d'optimiser la formulation d'un hydrogel injectable destiné à la chirurgie mini-invasive, 2018.

, optimisation et la caractérisation des propriétés rhéologiques de l'hydrogel. Enfin, une étude prospective sur le développement de l'hydrogel/éponge composite en ajoutant une phase minérale -l'hydroxyapatite (HAp) dans la formulation a été réalisée afin d'améliorer les propriétés mécaniques et ostéoconductrices

, Une porosité élevée (~87%) avec des pores interconnectés a été observée par microtomographie de rayons X, ainsi qu'une bonne adhésion et colonisation cellulaire au sein de l'éponge par microscopie électronique à balayage (MEB). Le VEGF a été incorporé dans l'éponge, et son profil de libération a été suivi, ainsi que la bio-activité du VEGF libéré. La libération du VEGF a été rapide pendant les trois premiers jours, L'éponges CHT/PCDs à ratio 3 :3 a été obtenue par lyophilisation des hydrogels et a subi un traitement thermique (TT) afin d'améliorer leur stabilité par la formation des liaisons covalentes

, leur injectabilité, et leur cytotoxicité. L'impact de l'ajoute du PCDi dans l'hydrogel a été clairement observé par analyses rhéologiques Ainsi, l'hydrogel CHT/PCD, composé à parts égales de PCDi et de PCDs, a démontré le meilleur compromis entre stabilité structurelle, propriétés rhéofluidifiantes et autoréparantes, Les hydrogels injectables de CHT/PCDi/PCDs à différents ratios ont été optimisés et caractérisés en fonction de leurs propriétés rhéologiques

, Les éponges composites, élaborées par lyophilisation de ces hydrogels, ont montré que les particules de HAp étaient dispersées de manière homogène dans la structure macroporeuse de l'éponge. Ces résultats encourageants ont montré qu'il était possible de fournir un hydrogel injectable ou une éponge composite comme scaffold pour l'ITO. En conclusion, nous avons développé deux biomatériaux basés sur la formation d'un complexe polyélectrolyte entre le CHT et le PCD : une éponge (dit hydrogel macroporeux) pour combler les défauts osseux relativement larges, et un hydrogel injectable pour la chirurgie mini-invasive, Basés sur la formulation optimisée, l'HAp a été incorporée à différentes concentrations dans l'hydrogel. L'ajout de la phase minérale n'a pas perturbé la formation ni la stabilité structurelle des hydrogels, mais a amélioré les propriétés viscoélastiques