R. R. Boyer, G. Welsch, and E. W. Collings, Materials properties Handbook -Titanium Alloys, 1994.

Y. Combres, Métallurgie et recyclage du titane et de ses alliages, 1997.

, ASM Handbook -Properties and selection : nonferrous and special-purpose materials, vol.2, 1995.

E. H. Kraft, Summary of emerging titanium cost reduction technologies, 2004.

M. J. Donachie, Titanium, a technical guide. Statewide Agricultural Land Use Baseline, 2000.

C. Arnaud, Dog-bone copper specimens prepared by one-step spark plasma sintering, J. Mater. Sci, vol.50, pp.7364-7373, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01727547

M. Eriksson, M. Radwan, and Z. Shen, Spark plasma sintering of WC, cemented carbide and functional graded materials, Int. J. Refract. Met. Hard Mater, vol.36, pp.31-37, 2013.

W. Kun, Study on fabrication and mechanism in of porous metals by spark plasma sintering, J. Mater. Sci, vol.42, pp.302-306, 2007.

R. S. Dobedoe, G. D. West, and M. H. Lewis, Spark plasma sintering of ceramics: understanding temperature distribution enables more realistic comparison with conventional processing, Adv. Appl. Ceram, vol.104, pp.110-116, 2005.

Z. A. Munir, U. Anselmi-tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci, vol.41, pp.763-777, 2006.

M. Omori, Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS), Mater. Sci. Eng. A, vol.287, pp.183-188, 2000.

S. Grasso, Low-temperature spark plasma sintering of pure nano WC powder, J. Am. Ceram. Soc, vol.96, pp.1702-1705, 2013.

C. Musa, Energy efficiency during conventional and novel sintering processes: the case of Ti-Al2O3-TiC composites, J. Clean. Prod, vol.17, pp.877-882, 2009.

W. G. Burgers, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium, Physica, vol.1, pp.561-589, 1933.

C. Buirette, Etude des mécanismes de propagation de fissures dans l'alliage de titane TA6V soudé par faisceau d'électrons, 2011.

M. Kato, S. Onaka, and T. Fujii, Energy consideration for variant selection in precipitation on dislocations, Sci. Technol. Adv. Mater, vol.2, pp.375-380, 2001.

C. Vargel, Propriétés générales de l'aluminium et de ses alliages, 2005.

Y. Combres, Propriétés du titane et de ses alliages, 2010.

G. Murry and A. Généralités, Aciers. Généralités. Tech. l'ingénieur, 2016.

T. Savoie, Guide de conception et de réalisation d'équipements en Titane, 1996.

E. K. Molchanova, Phase diagrams of titanium alloys

, Isr. Progr. Sci. Transl, 1965.

I. Polmear, J. Light Alloys. Light Alloys, 2005.

G. Lutjering, J. Williams, and . Titanium, , 2007.

G. T. Gray, G. Luetjering, and J. C. Williams, The influence of oxygen on the structure, fracture, and fatigue crack propagation behavior of Ti-8.6 wt Pct Al, Metall. Mater. Trans. A, vol.21, pp.95-105, 1990.

J. Y. Lim, C. J. Mcmahon, D. P. Pope, and J. C. William, The effect of the oxygen on the structure and mechanical behaviour of aged Ti-8Al, Metall. Trans. A, vol.7, pp.139-144, 1976.

, Alloy Phase Diagrams, ASM. ASM Handbook, vol.3, 1992.

R. I. Jafee and H. M. Burte, Titanium science and technology, 1973.

R. Tricot, Traitements thermomécaniques des alliages de titane pour l'aéronautique. Matériaux Tech, vol.67, pp.47-64, 1988.

S. Weissmann and A. Shrier, Strain distribution in oxidized alpha titanium crystals, The science, Technology and Application of Titanium, pp.441-451, 1970.

G. Wahlbeck and P. W. Gilles, Reinvestigation of the phase diagram for the system titanium-oxygen, J. Am. Ceram. Soc, vol.49, pp.180-183, 1966.

. Duwez, The martensitic transformation temperature in titanium binary alloy, Trans. Am. Soc. Met, vol.45, p.934, 1953.

G. Broihanne, Fonderie et moulage du titane et des alliages de titane, 1995.

A. I. Kahveci and G. E. Welsch, Effect of oxygen on the hardness and alpha/beta phase ratio of Ti-6Al-4V alloy, Scr. Metall, vol.20, pp.1287-1290, 1986.

H. W. Rosenberg, Titanium alloying in theory and practice, The Science, Technology and Application of Titanium, pp.851-859, 1970.

G. Lutjering, J. C. Williams, and A. Gysler, Microstructure and Properties of Materials, p.77, 1998.

G. A. Lenning, C. M. Craighead, and R. I. Jaffee, Constitution and mechanical properties of Titanium-hydrogen alloys, Trans. Am. Inst. Mining, Metall. Pet. Eng, vol.200, pp.367-376, 1954.

J. Huez, X. Feaugas, A. L. Helbert, I. Guillot, and M. Clavel, Damage process in commercially pure ?-Titanium alloy without (Ti40) and with (Ti40-H) fydrides, Metall. Mater. Trans. A, vol.29, pp.1615-1628, 1998.

N. E. Paton, B. S. Hickman, and D. H. Leslie, Behavior of hydrogen in ?-Phase Ti-Al alloys, Metall. Trans, vol.2, pp.2791-2796, 1971.

R. Penelle, Influence of microstructure on mechanical properties and plasticity of titanium and titanium alloys, Proceedings of the sixth world conference on titanium, pp.1457-1465, 1988.

W. Huiqiang, F. Jicai, and H. Jingshan, Microstructure evolution and fracture behaviour for electron beam welding of Ti-6Al-4V, Bull. Mater. Sci, vol.27, pp.387-392, 2004.

R. Castro and L. Seraphin, Contribution à l'étude métallographique et structurale de l'alliage de titane TA6V, Mémoires Sci. la Rev. métallurgie, vol.63, p.1036, 1966.

S. Malinov, P. Markovsky, W. Sha, and Z. Guo, Resistivity study and computer modelling of the isothermal transformation kinetics of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si alloys, J. Alloys Compd, vol.314, pp.181-192, 2001.

O. M. Ivasishin, S. V. Shevchenko, and S. L. Semiatin, Effect of crystallographic texture on the isothermal beta grain-growth kinetics of Ti-6Al-4V, Mater. Sci. Eng. A, vol.332, pp.343-350, 2002.

S. L. Semiatin, P. N. Fagin, M. G. Glavicic, I. M. Sukonnik, and O. M. Ivasishin, Influence on texture on beta grain growth during continuous annealing of Ti-6Al-4V, Mater. Sci. Eng. A, vol.299, pp.225-234, 2001.

G. Thomas and J. Nutting, The mechanisms of phase Transformations in Metals, 1956.

Y. Combres, Traitements thermiques des alliages de titane, 2013.

F. J. Gil, J. M. Manero, M. P. Ginebra, and J. A. Planell, The effect of cooling rate on the cyclic deformation of ?-annealed Ti-6Al-4V, Mater. Sci. Eng. A, vol.349, pp.150-155, 2003.

G. Lütjering, Influence of processing on microstructure and mechanical properties of (?+?) titanium alloys, Mater. Sci. Eng. A, vol.243, pp.32-45, 1998.

J. Sieniawski, W. Ziaja, K. Kubiak, and M. Motyka, Titanium Alloys -Advances in Properties Control, 2013.

C. Sauer and G. Lütjering, Influence of ? layers at ? grain boundaries on mechanical properties of Ti-alloys, Mater. Sci. Eng. A, vol.321, pp.393-397, 2001.

I. Weiss, F. H. Froes, D. Eylon, and G. E. Welsch, Modification of alpha morphology in Ti-6Al-4V by thermomechanical processing, Metall. Trans. A, vol.17, pp.1935-1947, 1986.

N. Come-dingremont, Déformation à chaud et évolutions microstructurales des alliages de titane TA6V et ?-CEZ dans le domaine ?, 1991.

L. E. Tanner, Time-Temperature-Transformation diagrams of the titanium sheetrollingprogram alloys, 1959.

J. Huez, C. Buirette, E. Andrieu, S. Perusin, and S. Audion, Characterization of the mechanical behaviour of both fusion zone and base metal of electron beam welded TA6V titanium alloy, Mater. Sci. Forum, vol.654, pp.890-893, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00845099

J. C. Williams and E. A. Starke, The role of thermomechanical processing in tailoring the properties of aluminum and titanium alloys, in deformation, processing, and structure, 1984.

O. M. Ivasishin and R. V. Teliovich, Potential of rapid heat treatment of titanium alloys and steels, Mater. Sci. Eng. A, vol.263, pp.142-154, 1999.

R. G. Sherman and H. D. Kessler, Investigation of the heat treatability of the 6% aluminum -4% vanadium titanium based alloy, Trans. Am. Soc. Met, vol.48, pp.657-676, 1956.

I. W. Hall and C. Hammond, Titanium and titanium alloys : scientific and technological aspects, Proceeding of the third international conference on titanium, pp.601-613, 1976.

J. S. Lecomte, Etude de la plasticité de l'alliage TA6V, 2000.

W. Zhou and K. G. Chew, The rate dependent response of a titanium alloy subjected to quasi-static loading in ambient environment, J. Mater. Sci, vol.37, pp.5159-5165, 2002.

C. Veiga and J. P. Davim, Properties and applications of titanium alloys : a brief review, Rev. Adv. Mater. Sci, vol.32, pp.133-148, 2012.

M. T. Jovanovi?, S. Tadi?, S. Zec, Z. Mi?kovi?, and I. Bobi?, The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy, Mater. Des, vol.27, pp.192-199, 2006.

K. Mutombo, P. Rossouw, and G. Govender, Mechanical properties of mill-annealed Ti6Al-4V investment cast, Mater. Sci. Forum, vol.690, pp.69-72, 2011.

D. J. Chronister, S. W. Scott, D. R. Stickle, D. Eylon, and F. H. Froes, Induction skull melting of titanium and other reactive alloys, J. Met, vol.38, pp.51-54, 1986.

S. Zhang and F. Pan, Hydrogen treatment of cast Ti-6Al-4V alloy, Chinese J. Metall. Sci. Technol, vol.6, pp.187-192, 1990.

D. Eylon, F. H. Froes, and R. W. Gardiner, Developments in titanium alloy casting technology, JOM J. Miner. Met. Mater. Soc, vol.35, pp.35-47, 1983.

K. Zhang, J. Mei, N. Wain, and X. Wu, Effect of hot-isostatic-pressing parameters on the microstructure and properties of powder Ti-6Al-4V hot-isostatically-pressed samples, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.41, pp.1033-1045, 2010.

G. Abouelmagd, H. P. Buchkremer, E. El-magd, and D. Stover, Mechanical properties of a Ti-6Al-4V alloy processed by powder metallurgy, J. Mater. Process. Technol, vol.37, pp.583-597, 1993.

Y. Kim, E. Kim, Y. Song, S. H. Lee, and Y. Kwon, Microstructure and mechanical properties of hot isostatically pressed Ti-6Al-4V alloy, J. Alloys Compd, vol.603, pp.207-212, 2014.

A. Molinari and M. Zadra, Influence of the sintering temperature on microstructure and tensile properties of Ti-6Al-4V produced by spark plasma Sintering, Euro PM2009 -PM Lightweight & Porous materials I, pp.4-9, 2009.

N. V. Junior, Spark plasma sintering of titanium and cobalt alloys for biomedical application, 2012.

J. F. Lu, Z. H. Zhang, Z. F. Liu, and F. C. Wang, Sintering mechanism of Ti-6Al-4V prepared by, SPS. Appl. Mech. Mater, vol.782, pp.97-101, 2015.

D. Bernache-assollant and J. Bonnet, Frittage : aspects physico-chimiques Partie 1 : frittage en phase solide, 2005.
URL : https://hal.archives-ouvertes.fr/emse-00497555

A. G. Bloxam, GB Patent 27002, 1906.

A. G. Bloxam, GB Patent 9020, 1906.

K. Inoue and . Patent, , 1966.

K. Inoue, US Patent 3250892, 1966.

M. Wada and F. Yamashita, New method of making Nd-Fe-Co-B full dense magnet, Intermag Conf, vol.26, p.2601, 1990.

S. H. Yoo, K. M. Sethuram, and T. S. Sudarshan, US Patent, vol.5989487, 1999.

E. A. Olevsky, S. Kandukuri, and L. Froyen, Consolidation enhancement in spark-plasma sintering: Impact of high heating rates, J. Appl. Phys, vol.102, pp.0-12, 2007.

E. A. Olevsky and L. Froyen, Impact of thermal diffusion on densification during SPS, J. Am. Ceram. Soc, vol.92, pp.122-132, 2009.

O. Yanagisawa, H. Kuramoto, K. Matsugi, and M. Komatsu, Observation of particle behavior in copper powder compact during pulsed electric discharge, Mater. Sci. Eng. A, vol.350, pp.184-189, 2003.

R. Marder, C. Estournès, G. Chevallier, and R. Chaim, Plasma in spark plasma sintering of ceramic particle compacts, Scr. Mater, vol.82, pp.57-60, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01130774

X. Song, X. Liu, and J. Zhang, Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering, J. Am. Ceram. Soc, vol.89, pp.494-500, 2006.

M. Tokita, Mechanism of spark plasma sintering, Proc. Int. Symp. Microwave, Plasma Thermochem. Process, pp.67-76, 1997.

M. Lahmani, C. Bréchignac, and P. Houdy, Les nanosciences 2.Nanomatériaux et nanochimie, 2006.

E. A. Olevsky and L. Froyen, Constitutive modeling of spark plasma sintering of conductive materials, Scr. Mater, vol.55, pp.1175-1178, 2006.

N. Bertolino, J. Garay, U. Anselmi-tamburini, and Z. A. Munir, Electromigration effects in Al-Au multilayers, Scr. Mater, vol.44, pp.737-742, 2001.

J. R. Friedman, J. E. Garay, U. Anselmi-tamburini, and Z. A. Munir, Modified interfacial reactions in Ag-Zn multilayers under the influence of high DC currents, Intermetallics, vol.12, pp.589-597, 2004.

Z. Trzaska and J. Monchoux, Electromigration experiments by spark plasma sintering in the silver-zinc system, J. Alloys Compd, vol.635, pp.142-149, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01730177

J. M. Frei, U. Anselmi-tamburini, and Z. A. Munir, Current effects on neck growth in the sintering of copper spheres to copper plates by the pulsed electric current method, J. Appl. Phys, vol.101, 2007.

J. G. Santanach, Spark plasma sintering of alumina: study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth, Acta Mater, vol.59, pp.1400-1408, 2011.

F. Brouillet, Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations, J. Mater. Sci. Mater. Med, vol.26, p.223, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186448

D. M. Hulbert, The absence of plasma in "spark plasma sintering, J. Appl. Phys, vol.104, 2008.

D. M. Hulbert, A. Anders, J. Andersson, E. J. Lavernia, and A. K. Mukherjee, A discussion on the absence of plasma in spark plasma sintering, Scr. Mater, vol.60, pp.835-838, 2009.

G. Bernard-granger, Spark plasma sintering of a commercially available granulated zirconia powder: comparison with hot-pressing, Acta Mater, vol.58, pp.3390-3399, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00639059

H. Conrad, Electroplasticity in metals and ceramics, Mater. Sci. Eng. A, vol.287, pp.276-287, 2000.

H. Conrad, Effects of electric current on solid state phase transformations in metals, Mater. Sci. Eng. A, vol.287, pp.227-237, 2000.

H. Conrad, Thermally activated plastic flow of metals and ceramics with an electric field or current, Mater. Sci. Eng. A, vol.322, pp.100-107, 2002.

A. Zavaliangos, J. Zhang, M. Krammer, and J. R. Groza, Temperature evolution during field activated sintering, Mater. Sci. Eng. A, vol.379, pp.218-228, 2004.

K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. Vanderbiest, Modelling of the temperature distribution during field assisted sintering, Acta Mater, vol.53, pp.4379-4388, 2005.

M. Eriksson, Z. Shen, and M. Nygren, Fast densification and deformation of titanium powder, Powder Metall, vol.48, pp.231-236, 2005.

J. H. Shon, Effects of various sintering methods on microstructure and mechanical properties of CP-Ti powder consolidations, Trans. Nonferrous Met. Soc. China (English Ed, vol.24, pp.59-67, 2014.

M. Zadra, Microstructure and mechanical properties of cp-titanium produced by spark plasma sintering, Powder Metall, vol.51, pp.59-65, 2008.

F. J. Gil, C. Aparicio, and J. A. Planell, Effect of oxygen oontent on grain growth kinetics of titanium, J. Mater, vol.10, pp.10-13, 2003.

R. Chaudhari and R. Bauri, Microstructure and mechanical properties of titanium processed by spark plasma sintering, Metallogr. Microstruct. Anal, vol.3, pp.30-35, 2014.

K. Matsugi, H. Kuramoto, T. Hatayama, and O. Yanagisawa, Temperature distribution at steady state under constant current discharge in spark sintering process of Ti and Al2O3 powders, J. Mater. Process. Technol, vol.134, pp.0-7, 2003.

N. S. Weston, F. Derguti, A. Tudball, and M. Jackson, Spark plasma sintering of commercial and development titanium alloy powders, J. Mater. Sci, vol.50, pp.4860-4878, 2015.

K. Crosby, Enhancement in Ti-6Al-4V sintering via nanostructured powder and spark plasma sintering, Powder Metall, vol.57, pp.147-154, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131920

S. A. Miller and P. R. Roberts, ASM Handbook, vol.7, pp.97-101, 1998.

Y. Millet, Fabrication de poudres métalliques par la méthode PREP. Tech. l'ingénieur IN221, 2015.

L. Facchini, Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders, Rapid Prototyp. J, vol.16, pp.450-459, 2010.

S. Malinov, W. Sha, Z. Guo, C. .. Tang, and . Long, Synchrotron X-ray diffraction study of the phase transformations in titanium alloys, Mater. Charact, vol.48, pp.279-295, 2002.

M. A. Imam and C. M. Gilmore, Fatigue and microstructural properties of quenched Ti6Al-4V, Metall. Trans. A, vol.14, pp.233-240, 1983.

S. Tamirisakandala, Method of modifying thermal and electrical properties of multi component titanium alloys, vol.8, 2012.

M. Boivineau, Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy, Int. J. Thermophys, vol.27, pp.507-529, 2006.

. Aubert&duval, E. Macherauch, H. Wohlfahrt, and U. Wolfstieg, Zur zweckmäßigen definition von eigenspannungen, Härterei Tech. Mittelungen, vol.28, pp.201-211, 1973.

M. G. , M. W. , and E. , Mathematical correction for stress in removed layers in X-ray diffraction residual stress analysis, SAE Transactions, vol.66, 1958.

E. Macherauch, Die Eingenspannungsbestimmung mit Röntgenstrahlen, International kolloquium der hochschule für elektrotechnik, p.359, 1958.

E. Macherauch and P. Müller, Das sin 2 ? -Verfarhen der röntgenographischen Spannungsmessung, Zeitschrift für Angew. Phys, vol.13, p.305, 1959.

, Phoenix datos| x Advanced CT software for fully automated data acquisition, reconstruction ad volume processing www.ge-mcs, General Electric

J. Vicente, site web : iMorph.fr ; version 2.9-juin, 2015.

G. Fantozzi, S. Le-gallet, and J. Nièpce, Sciences et technologies céramiques, 2011.

S. Diouf, A. Fedrizzi, and A. Molinari, A fractographic and microstructural analysis of the neck regions of coarse copper particles consolidated by spark plasma sintering, Mater. Lett, vol.111, pp.17-19, 2013.

Y. Aman, V. Garnier, and E. Djurado, Pressure-less spark plasma sintering effect on nonconventional necking process during the initial stage of sintering of copper and alumina, J. Mater. Sci, vol.47, pp.5766-5773, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01834924

U. Anselmi-tamburini, S. Gennari, J. E. Garay, and . Munir, Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions, Mater. Sci. Eng. A, vol.394, pp.139-148, 2005.

E. Liniger and R. Raj, Packing and sintering of two-dimensional structures made from bimodal particle size distributions, J. Am. Ceram. Soc, vol.70, pp.843-849, 1987.

A. C. Pierre, Introduction aux procédés sol-gel, 1992.

T. Misawa, Observation of internal pulsed current flow through the ZnO specimen in the spark plasma sintering method, J. Mater. Sci, vol.44, pp.1641-1651, 2009.

J. Vicente, F. Topin, and J. Daurelle, Open celled material structural properties measurement: from morphology to transport properties, Mater. Trans, vol.47, pp.2195-2202, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00343850

E. Brun, De l'imagerie 3D des structures à l'étude des mécanismes de transport dans en milieux cellulaires, 2009.

J. Mollicone, Fonctionnalisation de supports de SiC par imprégnation de sols et/ou de suspensions en vue d'améliorer les rendements de conversion d'échangeurs solaires, 2015.

Z. Trzaska, A. Couret, and J. P. Monchoux, Spark plasma sintering mechanisms at the necks between TiAl powder particles, Acta Mater, vol.118, pp.100-108, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01726306

C. Manière, Spark Plasma Sintering : couplage entre les approches Modélisation, Instrumentation et Matériaux, 2015.

C. Manière, Identification of the norton-green compaction model for the prediction of the ti-6al-4v densification during the spark plasma sintering process, Adv. Eng. Mater, 2016.

R. J. Green, A plasticity theory for porous solids, Int. J. Mech. Sci, vol.14, pp.215-224, 1972.

E. A. Olevsky, Fundamental aspects of spark plasma sintering: II. Finite element analysis of scalability, J. Am. Ceram. Soc, vol.95, pp.2414-2422, 2012.

R. K. Verma, N. S. Mahesh, and M. Anwar, Numerical analysis of powder compaction to obtain high relative density in "601AB" aluminum powder, SAS Technol, vol.11, pp.79-84, 2012.

M. Abouaf, J. L. Chenot, G. Raisson, and P. Bauduin, Finite element simulation of hot isostatic pressing of metal powders, Int. J. Numer. Methods Eng, vol.25, pp.191-212, 1988.

M. Abouaf, Modélisation de la compaction de poudres métalliques frittées, 1985.

M. Surand, Etude du comportement viscoplastique en traction et en fluage de l'alliage de titane TA6V de 20°C à 600°C, 2013.

Y. Xue, L. H. Lang, G. L. Bu, and L. Li, Densification modeling of titanium alloy powder during hot isostatic pressing, Sci. Sinter, vol.43, pp.247-260, 2011.

M. N. Rahaman, Sintering of ceramics, 2008.

F. Saint-antonin, Essais de fluage, l'Ingenieur M, pp.1-14, 1995.

T. Sugahara, The effect of Widmanstätten and equiaxed microstructures of Ti-6Al-4V on the oxidation rate and creep behavior, Mater. Sci. Forum, vol.636, issue.637, pp.657-662, 2010.

S. Malinov, Z. Guo, W. Sha, and A. Wilson, Differential scanning calorimetry study and computer modeling of ? ? ? phase transformation in a Ti-6Al-4V alloy, Metall. Mater. Trans. A, vol.32, pp.879-887, 2001.

S. Grasso, Y. Sakka, and G. Maizza, Pressure Effects on Temperature Distribution during Spark Plasma Sintering with Graphite Sample, Mater. Trans, vol.50, pp.2111-2114, 2009.

S. Grasso, Y. Sakka, G. Maizza, and C. Hu, Pressure effect on the homogeneity of spark plasma-sintered tungsten carbide powder, J. Am. Ceram. Soc, vol.92, pp.2418-2421, 2009.

F. X. Mur, D. Rodr, and J. A. Planell, Influence of tempering temperature and time on the ?'-Ti-6Al-4V martensite, J. Alloys Compd, vol.234, pp.287-289, 1996.

V. .. Tumanov, V. .. Funke, and M. Baskin,

T. Novika, Effect of temperature on the physical properties of tungsten carbides-cobalt alloys, pp.113-120, 1964.

. Mersen, Graphite materials for sintering

M. M. Yovanovich, Four decades of research on thermal contact, gap, and joint resistance in microelectronics, IEEE Trans. Components Packag. Technol, vol.28, pp.182-206, 2005.

A. Pavia, Études fondamentales pour la compréhension des mécanismes de densification des matériaux par la technologie Spark Plasma Sintering, 2012.

B. R. Sridhar, W. G. Nafde, and K. A. Padmanabhan, Effect of shot peening on the residual stress distribution in two commercial titanium alloys, J. Mater. Sci, vol.27, pp.5783-5788, 1992.

P. S. Prevéy and J. T. Cammett, The effect of shot peening coverage on residual stress, cold work and fatigue in a Ni-Cr-Mo low alloy steel, 8th Int. Conf. Shot Peen, pp.1-7, 2002.

V. A. Joshi, Titanium alloys : an atlas of structures and fracture features, 2006.

A. L. Helbert and X. Feaugas, the Influence of Internal Stresses on Plastic Instabilities in ?/? Titanium Alloys, vol.36, pp.1067-1073, 1997.