R. Meldola, The Chemistry of Photography. Elibron Classics, p.1889

P. W. Anderson, More is different, Science, vol.177, issue.4047, pp.393-396, 1972.

R. Han, J. W. Ha, C. Xiao, Y. Pei, Z. Qi et al., Geometry-assisted three-dimensional superlocalization imaging of single-molecule catalysis on modular multilayer nanocatalysts, Angew. Chem. Int. Ed, vol.126, issue.47, p.4, 2014.

J. B. Sanbur, T. Chen, E. Choudhary, G. Chen, E. J. Nissen et al., Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes, Nature, vol.530, issue.7588, p.4, 2016.

C. Wu, W. J. Wolf, Y. Levartovsky, H. A. Bechtel, M. C. Martin et al., High spatial resolution mapping of catalytic reactions on single particles, Nature, vol.541, issue.7638, p.4, 2017.

S. W. Hell, Nobel lecture: Nanoscopy with freely propagating light, Rev. Mod. Phys, vol.87, p.4, 2015.

A. Bogner, P. Jouneau, G. Thollet, D. Basset, and C. Gauthier, A history of scanning electron microscopy developments: Towards wet-stem imaging, Micron, vol.38, issue.4, p.4, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434138

J. P. Patterson, P. Abellan, M. S. Denny, C. Park, N. D. Browning et al., Observing the growth of metal organic frameworks by in situ liquid cell transmission electron microscopy, J. Am. Chem. Soc, vol.137, issue.23, p.4, 2015.

T. Uematsu, M. Baba, Y. Oshima, T. Tsuda, T. Torimoto et al., Atomic resolution imaging of gold nanoparticle generation and growth in ionic liquids, J. Am. Chem. Soc, vol.136, issue.39, p.4, 2014.

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, 7x7 reconstruction on si(111) resolved in real space, Phys. Rev. Lett, vol.50, p.5, 1983.

C. M. Cyrus and . Mody, Intrumental Community, vol.5, p.29, 2011.

K. Suto and O. M. Magnussen, In situ video-stm studies of sulfate dynamics on au(1 1 1), J. Electroanal. Chem, vol.649, issue.1-2, p.5, 2010.

A. Craig, D. A. Jeffrey, S. Harrington, and . Morin, In situ scanning tunneling microscopy of bismuth electrodeposition on au(1 1 1) surfaces, Surf. Sci, vol.512, issue.1-2, p.5, 2002.

J. Velmurugan, J. Noel, W. Nogala, and M. V. Mirkin, Nucleation and growth of metal on nanoelectrodes, Chem. Sci, vol.3, p.5, 2012.

M. V. Mirkin, T. Sun, Y. Yu, and M. Zhou, Electrochemistry at one nanoparticle, Acc. Chem. Res, vol.49, issue.10, p.6, 2016.

F. Fu-ren, A. J. Fan, and . Bard, Electrochemical detection of single molecules, Science, vol.267, issue.5199, p.6, 1995.

Y. Je-hyun-bae, M. V. Yu, and . Mirkin, Recessed nanoelectrodes for nanogap voltammetry, ChemElectroChem, vol.3, issue.12, p.6, 2016.

A. G. Marcel, P. S. Zevenbergen, E. D. Singh, B. L. Goluch, S. G. Wolfrum et al., Stochastic sensing of single molecules in a nanofluidic electrochemical device, Nano Lett, vol.11, issue.7, p.6, 2011.

S. Pradyumna, E. Singh, K. Katelhon, B. Mathwig, S. G. Wolfrum et al., Stochasticity in single-molecule nanoelectrochemistry: Origins, consequences, and solutions, ACS Nano, vol.6, issue.11, p.6, 2012.

Q. Chen, K. Mckelvey, M. A. Edwards, and H. S. White, Redox cycling in nanogap electrochemical cells. the role of electrostatics in determining the cell response, J. Phys. Chem. C, vol.120, issue.31, p.6, 2016.

X. Xiao and A. J. Bard, Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification, J. Am. Chem. Soc, vol.129, issue.31, p.11, 2007.

A. J. Bard, H. Zhou, and S. Jung-kwon, Electrochemistry of single nanoparticles via electrocatalytic amplification, Isr. J. Chem, vol.50, issue.3, pp.267-276, 2010.

H. Seong-jung-kwon, . Zhou, F. Fu-ren, V. Fan, B. Vorobyev et al., Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes-theory and experiments, Phys. Chem. Chem. Phys, vol.13, pp.5394-5402, 2011.

D. A. Robinson, A. M. Kondajji, A. D. Castañeda, R. Dasari, R. M. Crooks et al., Addressing colloidal stability for unambiguous electroanalysis of single nanoparticle impacts, The Journal of Physical Chemistry Letters, vol.7, issue.13, pp.2512-2517, 2016.

R. Dasari, K. Tai, D. A. Robinson, and K. J. Stevenson, Electrochemical monitoring of single nanoparticle collisions at mercury-modified platinum ultramicroelectrodes, ACS Nano, vol.8, issue.5, pp.4539-4546, 2014.

X. Xiao, F. Fu-ren, J. Fan, A. J. Zhou, and . Bard, Current transients in single nanoparticle collision events, J. Am. Chem. Soc, vol.130, issue.49, p.9, 2008.

E. F. Steven, B. Kleijn, A. I. Serrano-bou, M. T. Yanson, and . Koper, Influence of hydrazine-induced aggregation on the electrochemical detection of platinum nanoparticles, Langmuir, vol.29, issue.6, p.9, 2013.

D. A. Robinson, J. Duay, A. M. Kondajji, and K. J. Stevenson, Mechanistic aspects of hydrazine-induced pt colloid instability and monitoring aggregation kinetics with nanoparticle impact electroanalysis, Farad. Disc, vol.193, p.9, 2016.

A. D. Castañeda, T. M. Alligrant, J. A. Loussaert, and R. M. Crooks, Electrocatalytic amplification of nanoparticle collisions at electrodes modified with polyelectrolyte multilayer films, Langmuir, vol.31, issue.2, p.9, 2015.

J. E. Dick and A. J. Bard, Toward the digital electrochemical recognition of cobalt, iridium, nickel, and iron ion collisions by catalytic amplification, J. Am. Chem. Soc, vol.138, issue.27, p.9, 2016.

J. E. Dick and A. J. Bard, Recognizing single collisions of ptcl62+ at femtomolar concentrations on ultramicroelectrodes by nucleating electrocatalytic clusters, J. Am. Chem. Soc, vol.137, issue.43, p.9, 2015.

. Seong-jung-kwon, F. Fu-ren, A. J. Fan, and . Bard, Observing iridium oxide (irox) single nanoparticle collisions at ultramicroelectrodes, J. Am. Chem. Soc, vol.132, issue.38, p.9, 2010.

C. M. Christopher, E. Neumann, K. Laborda, K. R. Tschulik, R. G. Ward et al., Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape, Nano Res, vol.6, issue.7, p.9, 2013.

Y. Wang, E. Laborda, K. Tschulik, C. Damm, A. Molina et al., Strong negative nanocatalysis: oxygen reduction and hydrogen evolution at very small (2 nm) gold nanoparticles, Nanoscale, vol.6, p.9, 2014.

C. Batchelor-mcauley, J. Ellison, K. Tschulik, P. L. Hurst, R. Boldt et al., situ nanoparticle sizing with zeptomole sensitivity, vol.140, p.10, 2015.

K. Tschulik, C. Batchelor-mcauley, . Her-shuang, E. J. Toh, R. G. Stuart et al., Electrochemical studies of silver nanoparticles: a guide for experimentalists and a perspective, Phys. Chem. Chem. Phys, vol.16, p.59, 2014.

S. Y. Loretta, C. Ly, K. Batchelor-mcauley, E. Tschulik, R. G. Katelhon et al., A critical evaluation of the interpretation of electrocatalytic nanoimpacts, J. Phys. Chem. C, vol.118, issue.31, p.9, 2014.

J. Ellison, K. Tschulik, E. J. Stuart, K. Jurkschat, D. Omanovi? et al., Get more out of your data: A new approach to agglomeration and aggregation studies using nanoparticle impact experiments, ChemistryOpen, vol.2, issue.2, p.59, 2013.

K. Tschulik, K. Ngamchuea, C. Ziegler, M. G. Beier, C. Damm et al., Core-shell nanoparticles: Characterizing multifunctional materials beyond imaging: Distinguishing and quantifying perfect and broken shells, Adv. Funct. Mater, vol.25, issue.32, p.11, 2015.

L. R. Holt, B. J. Plowman, N. P. Young, K. Tschulik, and R. G. , Compton. The electrochemical characterization of single core-shell nanoparticles, Angew. Chem. Int. Ed, vol.55, issue.1, p.11, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-00003672

Y. Zhou, N. V. Rees, and R. G. Compton, The electrochemical detection of tagged nanoparticlesvia particle-electrode collisions: nanoelectroanalysis beyond immobilisation, Chem. Commun, vol.48, p.11, 2012.

J. Blake, N. P. Plowman, C. Young, and R. G. Batchelor-mcauley, Compton. Nanorod aspect ratios determined by the nano-impact technique, Angew. Chem. Int. Ed, vol.55, issue.24, p.11, 2016.

Y. Zhou, N. V. Rees, and R. G. Compton, The electrochemical detection and characterization of silver nanoparticles in aqueous solution, Angew. Chem. Int. Ed, vol.50, issue.18, p.11, 2011.

J. E. Emma, Y. Stuart, N. V. Zhou, R. G. Rees, and . Compton, Determining unknown concentrations of nanoparticles: the particle-impact electrochemistry of nickel and silver, RSC Adv, vol.2, p.11, 2012.

E. J. Stuart, N. V. Rees, J. T. Cullen, and R. G. Compton, Direct electrochemical detection and sizing of silver nanoparticles in seawater media, Nanoscale, vol.5, p.11, 2013.

C. Her-shuang-toh, K. Batchelor-mcauley, R. G. Tschulik, and . Compton, Electrochemical detection of chloride levels in sweat using silver nanoparticles: a basis for the preliminary screening for cystic fibrosis, Analyst, vol.138, p.11, 2013.

B. M. Quinn, P. G. Van't-hof, and S. G. Lemay, Time-resolved electrochemical detection of discrete adsorption events, J. Am. Chem. Soc, vol.126, issue.27, p.12, 2004.

S. E. Fosdick, M. J. Anderson, E. G. Nettleton, and R. M. Crooks, Correlated electrochemical and optical tracking of discrete collision events, J. Am. Chem. Soc, vol.135, issue.16, p.12, 2013.

X. Li, C. Batchelor-mcauley, L. Shao, V. Stanislav, N. P. Sokolov et al., Quantifying single-carbon nanotube-electrode contact via the nanoimpact method, The Journal of Physical Chemistry Letters, vol.8, issue.2, p.12, 2017.

M. A. Edwards, S. R. German, J. E. Dick, A. J. Bard, and H. S. White, High-speed multipass coulter counter with ultrahigh resolution, ACS Nano, vol.9, issue.12, p.12, 2015.

K. Mckelvey, M. A. Edwards, and H. S. White, Resistive pulse delivery of single nanoparticles to electrochemical interfaces, J. Phys. Chem. Lett, vol.7, issue.19, p.12, 2016.

J. Clausmeyer, J. Masa, E. Ventosa, D. Ohl, and W. Schuhmann, Nanoelectrodes reveal the electrochemistry of single nickelhydroxide nanoparticles, Chem. Commun, vol.52, p.12, 2016.

Y. Li, J. T. Cox, and B. Zhang, Electrochemical responses and electrocatalysis at single au nanoparticles, J. Am. Chem. Soc, vol.132, issue.9, p.12, 2010.

Y. Yu, Y. Gao, K. Hu, P. Blanchard, J. Noël et al., Electrochemistry and electrocatalysis at single gold nanoparticles attached to carbon nanoelectrodes, ChemElectroChem, vol.2, issue.1, p.12, 2015.

J. Kim, H. Xiong, M. Hofmann, J. Kong, and S. Amemiya, Scanning electrochemical microscopy of individual single-walled carbon nanotubes, Anal. Chem, vol.82, issue.5, p.12, 2010.

L. Nault, C. Taofifenua, A. Anne, A. Chovin, C. Demaille et al., Electrochemical atomic force microscopy imaging of redox-immunomarked proteins on native potyviruses: From subparticle to single-protein resolution, ACS Nano, vol.9, issue.5, p.12, 2015.

A. Anne, M. A. Bahri, A. Chovin, C. Demaille, and C. Taofifenua, Probing the conformation and 2d-distribution of pyrene-terminated redoxlabeled poly(ethylene glycol) chains end-adsorbed on hopg using cyclic voltammetry and atomic force electrochemical microscopy, Phys. Chem. Chem. Phys, vol.16, p.12, 2014.

C. S. Stanley, P. V. Lai, J. V. Dudin, P. R. Macpherson, and . Unwin, Visualizing zeptomole (electro)catalysis at single nanoparticles within an ensemble, J. Am. Chem. Soc, vol.133, issue.28, p.13, 2011.

M. Kang, D. Perry, Y. Kim, A. W. Colburn, R. A. Lazenby et al., Time-resolved detection and analysis of single nanoparticle electrocatalytic impacts, J. Am. Chem. Soc, vol.137, issue.34, p.13, 2015.

E. F. Steven, . Kleijn, C. S. Stanley, T. S. Lai, A. I. Miller et al., Landing and catalytic characterization of individual nanoparticles on electrode surfaces, J. Am. Chem. Soc, vol.134, issue.45, p.13, 2012.

A. G. Guell, K. E. Meadows, P. V. Dudin, N. Ebejer, J. V. Macpherson et al., Mapping nanoscale electrochemistry of individual single-walled carbon nanotubes, Nano Letters, vol.14, issue.1, p.13, 2014.

P. V. Dudin, M. E. Snowden, J. V. Macpherson, and P. R. Unwin, Electrochemistry at nanoscale electrodes: Individual single-walled carbon nanotubes (swnts) and swnt-templated metal nanowires, ACS Nano, vol.5, issue.12, p.13, 2011.

M. Faraday, The bakerian lecture: Experimental relations of gold (and other metals) to light, Phil. Trans. Royal Soc. London, vol.147, p.14

G. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metallösungen, Annalen der Physik, vol.330, issue.3, p.14, 1908.

R. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Phil. Trans. Royal Soc. London, vol.18, issue.1, p.14, 1902.

L. Rayleigh, On the dynamical theory of gratings, Phil. Trans. Royal Soc. A, vol.79, issue.532, p.14, 1907.

A. G. Brolo, Plasmonics for future biosensors, Nat. Photon, vol.6, issue.11, p.14, 2012.

V. Sergey and . Gaponenko, Introduction to Nanophotonics, vol.15, p.14, 2010.

N. J. Halas, Plasmonics: An emerging field fostered by nano letters, Nano Lett, vol.10, issue.10, p.14, 2010.

K. A. Willets and R. P. Van-duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem, vol.58, issue.1, p.14, 2007.

E. C. Ru and P. G. Etchegoin, Single-molecule surface-enhanced raman spectroscopy, Annu. Rev. Phys. Chem, vol.63, issue.1, p.15, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00649569

J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van-duyne, A frequency domain existence proof of single-molecule surface-enhanced raman spectroscopy, J. Am. Chem. Soc, vol.129, issue.51, p.15, 2007.

P. Zijlstra, M. R. Pedro, M. Paulo, and . Orrit, Optical detection of single nonabsorbing molecules using the surface plasmon resonance of a gold nanorod, Nature Nanotech, vol.7, issue.6, p.15, 2012.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, Plasmonic nanostructures: Artificial molecules, Acc. Chem. Res, vol.40, issue.1, p.15, 2007.

P. Nordlander and E. Prodan, Plasmon hybridization in nanoparticles near metallic surfaces, Nano Lett, vol.4, issue.11, p.15, 2004.

G. Baffou and R. Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat, Laser and Photon. Rev, vol.7, issue.2, p.15, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00904949

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Photothermal imaging of nanometer-sized metal particles among scatterers, Science, vol.297, issue.5584, p.15, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01696880

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, Room-temperature detection of a single molecule's absorption by photothermal contrast, Science, vol.330, issue.6002, p.15, 2010.

Z. Zeng, S. Huang, D. Wu, L. Meng, M. Li et al., Electrochemical tip-enhanced raman spectroscopy, J. Am. Chem. Soc, vol.137, issue.37, p.15, 2015.

S. Zaleski, A. J. Wilson, M. Mattei, X. Chen, G. Goubert et al., Investigating nanoscale electrochemistry with surface-and tip-enhanced raman spectroscopy, Acc. Chem. Res, vol.49, issue.9, p.25, 2016.

M. Mattei, G. Kang, G. Goubert, V. Dhabih, G. C. Chulhai et al., Tip-enhanced raman voltammetry: Coverage dependence and quantitative modeling, Nano Lett, vol.17, issue.1, p.15, 2017.

Y. Van-quynh-nguyen, P. Ai, J. Martin, and . Lacroix, Plasmoninduced nanolocalized reduction of diazonium salts, ACS Omega, vol.2, issue.5, p.15, 2017.

Y. Ai, J. Van-quynh-nguyen, P. Ghilane, J. Lacaze, and . Lacroix, Plasmon-induced conductance switching of an electroactive conjugated polymer nanojunction, ACS Appl. Mater. Interfaces, vol.9, issue.33, p.15, 2017.

G. Baffou and R. Quidant, Nanoplasmonics for chemistry, Chem. Soc. Rev, vol.43, p.15, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00991937

M. Orrit and J. Bernard, Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal, Phys. Rev. Lett, vol.65, p.15, 1990.

M. Orrit, Single-molecule spectroscopy: The road ahead, J. Chem. Phys, vol.117, issue.24, p.15, 2002.

S. Nie, D. T. Chiu, and R. N. Zare, Probing individual molecules with confocal fluorescence microscopy, Science, vol.266, issue.5187, p.15, 1994.

Y. Roger and . Tsien, The green fluorescent protein, Annu. Rev. Biochem, vol.67, issue.1, p.15, 1998.

W. E. William and E. Moerner, Nobel lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy, Rev. Mod. Phys, vol.87, p.16, 2015.

B. Huang, M. Bates, and X. Zhuang, Super-resolution fluorescence microscopy, Annu. Rev. Biochem, vol.78, issue.1, p.16, 2009.

A. Von-diezmann, Y. Shechtman, and W. E. Moerner, Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking, Chem. Rev, vol.117, issue.11, p.16, 2017.

T. Müller, C. Schumann, and A. Kraegeloh, STED microscopy and its applications: New insights into cellular processes on the nanoscale, vol.13, p.16, 1986.

S. W. Hell, Far-field optical nanoscopy, Science, vol.316, issue.5828, p.17, 2007.

E. Betzig, Proposed method for molecular optical imaging, Opt. Lett, vol.20, issue.3, p.17, 1995.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych et al.,

. Hess, Imaging intracellular fluorescent proteins at nanometer resolution, Science, vol.313, issue.5793, p.17, 2006.

S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Opt. Lett, vol.19, issue.11, p.17, 1994.

T. Chen, B. Dong, K. Chen, F. Zhao, X. Cheng et al., Optical superresolution imaging of surface reactions, Chem. Rev, vol.0, issue.0, p.0

T. Chen, B. Dong, K. Chen, F. Zhao, X. Cheng et al., Optical superresolution imaging of surface reactions, Chem. Rev, vol.117, issue.11, p.17, 2017.

A. Martinez-marrades, J. Rupprecht, M. Gross, and G. Tessier, Stochastic 3d optical mapping by holographic localization of brownian scatterers, Opt. Express, vol.22, issue.23, p.17, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083885

G. Kyu-sung-han, X. Liu, R. E. Zhou, P. Medina, and . Chen, How does a single pt nanocatalyst behave in two different reactions? a single-molecule study, Nano Letters, vol.12, issue.3, p.18, 2012.

X. Zhou, N. M. Andoy, G. Liu, E. Choudhary, K. Han et al., Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts, Nature Nanotech, vol.7, p.18, 2012.

X. Nesha-may-andoy, E. Zhou, H. Choudhary, G. Shen, P. Liu et al., Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2d nanocrystals, J. Am. Chem. Soc, vol.135, issue.5, p.18, 2013.

H. Shen, X. Zhou, N. Zou, and P. Chen, Single-molecule kinetics reveals a hidden surface reaction intermediate in single-nanoparticle catalysis, J. Phys. Chem. C, vol.118, issue.46, p.18, 2014.

W. Kaim and J. Fiedler, Spectroelectrochemistry: the best of two worlds, Chem. Soc. Rev, vol.38, p.19, 2009.

A. Berisha, C. Combellas, G. Hallais, F. Kanoufi, J. Pinson et al., Photochemical grafting and patterning of metallic surfaces by organic layers derived from acetonitrile, Chem. Mater, vol.23, issue.15, p.19, 2011.

M. Bouriga, M. M. Chehimi, C. Combellas, P. Decorse, F. Kanoufi et al., Sensitized photografting of diazonium salts by visible light, Chem. Mater, vol.25, issue.1, p.19, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01654441

S. Nunige, R. Cornut, H. Hazimeh, F. Hauquier, C. Lefrou et al., Reactivity of surfaces determined by local electrochemical triggering: A bromo-terminated self-assembled monolayer, Angew. Chem. Int. Ed, vol.51, issue.21, p.19, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00709269

G. Roman, D. Fedorov, and . Mandler, Local deposition of anisotropic nanoparticles using scanning electrochemical microscopy (secm), Phys. Chem. Chem. Phys, vol.15, p.19, 2013.

D. J. Wasylenko, C. Rodríguez, M. L. Pegis, and J. M. Mayer, Direct comparison of electrochemical and spectrochemical kinetics for catalytic oxygen reduction, J. Am. Chem. Soc, vol.136, issue.36, p.19, 2014.

M. T. Jorik-van-de-groep, H. A. Sheldon, A. Atwater, and . Polman, Thermodynamic theory of the plasmoelectric effect, Sci. Rep, vol.6, p.20, 2016.

M. T. Sheldon, J. Van-de-groep, A. M. Brown, A. Polman, and H. A. Atwater, Plasmoelectric potentials in metal nanostructures, Science, vol.346, issue.6211, p.20, 2014.

C. Novo, A. M. Funston, and P. Mulvaney, Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy, Nature Nanotech, vol.3, issue.10, p.20, 2008.

C. Li-xia-qin, Y. Jing, D. Li, Y. Li, and . Long, Real-time monitoring of the aging of single plasmonic copper nanoparticles, Chem. Commun, vol.48, p.20, 2012.

H. Zhou, Q. Liu, F. J. Rawson, W. Ma, D. Li et al., Optical monitoring of faradaic reaction using single plasmon-resonant nanorods functionalized with graphene, Chem. Commun, vol.51, p.20, 2015.

Y. Gang-logan-liu, Y. Long, T. Choi, L. P. Kang, and . Lee, Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer

. Meth, , vol.4, p.20, 2007.

C. Jing, Z. Gu, T. Xie, and Y. Long, Color-coded imaging of electrochromic process at single nanoparticle level, Chem. Sci, vol.7, p.20, 2016.

Y. Fang, W. Wang, X. Wo, Y. Luo, S. Yin et al., Plasmonic imaging of electrochemical oxidation of single nanoparticles, J. Am. Chem. Soc, vol.136, issue.36, p.22, 2014.

X. Shan, U. Patel, S. Wang, R. Iglesias, and N. Tao, Imaging local electrochemical current via surface plasmon resonance, Science, vol.327, issue.5971, p.22, 2010.

X. Shan, I. Diez-perez, L. Wang, P. Wiktor, Y. Gu et al., Imaging the electrocatalytic activity of single nanoparticles, Nature Nanotech, vol.7, issue.10, p.22, 2012.

C. M. Hill and S. Pan, A dark-field scattering spectroelectrochemical technique for tracking the electrodeposition of single silver nanoparticles, J. Am. Chem. Soc, vol.135, issue.46, p.22, 2013.

C. M. Hill, R. Bennett, C. Zhou, and S. Street, Single ag nanoparticle spectroelectrochemistry via dark-field scattering and fluorescence microscopies, J. Phys. Chem. C, vol.119, issue.12, p.22, 2015.

B. S. Hoener, C. P. Byers, T. S. Heiderscheit, A. S. De-silva-indrasekara, A. Hoggard et al., Spectroelectrochemistry of halide anion adsorption and dissolution of single gold nanorods, J. Phys. Chem. C, vol.120, issue.37, p.23, 2016.

C. P. Byers, B. S. Hoener, W. Chang, S. Link, and C. F. Landes, Single-particle plasmon voltammetry (sppv) for detecting anion adsorption, Nano Lett, vol.16, issue.4, p.23, 2016.

Y. Wang, X. Shan, H. Wang, S. Wang, and N. Tao, Plasmonic imaging of surface electrochemical reactions of single gold nanowires, J. Am. Chem. Soc, vol.139, issue.4, p.23, 2017.

C. Jing, Z. Gu, and Y. Long, Imaging electrocatalytic processes on single gold nanorods, Faraday Discuss, vol.193, p.23, 2016.

D. Jiang, Y. Jiang, Z. Li, T. Liu, X. Wo et al., Optical imaging of phase transition and li-ion diffusion kinetics of single licoo2 nanoparticles during electrochemical cycling, J. Am. Chem. Soc, vol.139, issue.1, p.24, 2017.

C. Lei, D. Hu, and E. J. Ackerman, Single-molecule fluorescence spectroelectrochemistry of cresyl violet, Chem. Commun, p.23, 2008.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett, vol.26, issue.2, p.24, 1974.

L. David, R. P. Jeanmaire, and . Van-duyne, Surface raman spectroelectrochemistry, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.84, issue.1, p.24, 1977.

S. Nie and S. R. Emory, Probing single molecules and single nanoparticles by surface-enhanced raman scattering, Science, vol.275, issue.5303, p.24, 1997.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan et al., Single molecule detection using surface-enhanced raman scattering (SERS), Phys. Rev. Lett, vol.78, p.24, 1997.

W. Wang, Y. Huang, and D. Liu, Fang-Fang Wang, Zhong-Qun Tian, and Dongping Zhan. Electrochemically roughened gold microelectrode for surface-enhanced raman spectroscopy, J. Electroanal. Chem, vol.779, p.24, 2016.

C. Li, J. Dong, X. Jin, S. Chen, R. Panneerselvam et al., In situ monitoring of electrooxidation processes at gold single crystal surfaces using shellisolated nanoparticle-enhanced raman spectroscopy, J. Am. Chem. Soc, vol.137, issue.24, p.24, 2015.

J. Wang, J. Dong, J. Yang, Y. Wang, C. Zhang et al., In situ SERS and SHINERS study of electrochemical hydrogenation of p-ethynylaniline in nonaqueous solvents, Electrochem. Commun, vol.78, p.24, 2017.

J. Li, Y. Zhang, A. V. Rudnev, J. R. Anema, S. Li et al., Electrochemical shell-isolated nanoparticle-enhanced raman spectroscopy: Correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface, J. Am. Chem. Soc, vol.137, issue.6, p.24, 2015.

G. Cabello, X. Chen, R. Panneerselvam, and Z. Tian, Potential dependent thiocyanate adsorption on gold electrodes: a comparison study between SERS and SHINERS, J. Raman Spectrosc, vol.47, issue.10, p.24, 2016.

E. Cortes, P. G. Etchegoin, E. C. Le-ru, A. Fainstein, M. E. Vela et al., Monitoring the electrochemistry of single molecules by surfaceenhanced raman spectroscopy, J. Am. Chem. Soc, vol.132, issue.51, p.24, 2010.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok et al., Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices, Science, vol.355, issue.6330, p.25, 2017.

B. Radha, M. Arif, R. Datta, T. K. Kundu, and G. U. Kulkarni, Movable au microplates as fluorescence enhancing substrates for live cells, Nano Res, vol.3, issue.10, p.25, 2010.

J. Li, Y. Zhang, S. Ding, R. Panneerselvam, and Z. Tian, Core-shell nanoparticle-enhanced raman spectroscopy, Chem. Rev, vol.117, issue.7, p.25, 2017.

W. Zhang, M. Caldarola, B. Pradhan, and M. Orrit, Gold nanorod enhanced fluorescence enables single-molecule electrochemistry of methylene blue, Angew. Chem. Int. Ed, vol.56, issue.13, p.25, 2017.

T. Touzalin, A. L. Dauphin, S. Joiret, I. T. Lucas, and E. Maisonhaute, Tip enhanced raman spectroscopy imaging of opaque samples in organic liquid, Phys. Chem. Chem. Phys, vol.18, p.25, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01332239

J. B. Sambur and P. Chen, Distinguishing direct and indirect photoelectrocatalytic oxidation mechanisms using quantitative single-molecule reaction imaging and photocurrent measurements, J. Phys. Chem. C, vol.120, issue.37, p.25, 2016.

A. Fernando, S. Parajuli, and M. A. Alpuche-aviles, Observation of individual semiconducting nanoparticle collisions by stochastic photoelectrochemical currents, J. Am. Chem. Soc, vol.135, issue.30, p.26, 2013.

K. K. Barakoti, S. Parajuli, P. Chhetri, R. Ganesh, R. Rana et al., Stochastic electrochemistry and photoelectrochemistry of colloidal dye-sensitized anatase nanoparticles at a pt ultramicroelectrode, Faraday Discuss, vol.193, p.26, 2016.

D. A. Clayton, D. M. Benoist, Y. Zhu, and S. Pan, Photoluminescence and spectroelectrochemistry of single ag nanowires, ACS Nano, vol.4, issue.4, p.26, 2010.

V. Brasiliense, A. N. Patel, A. Martinez-marrades, J. Shi, Y. Chen et al., Correlated electrochemical and optical detection reveals the chemical reactivity of individual silver nanoparticles, J. Am. Chem. Soc, vol.138, issue.10, p.29, 2016.

V. Brasiliense, P. Berto, C. Combellas, G. Tessier, and F. Kanoufi, Electrochemistry of single nanodomains revealed by three-dimensional holographic microscopy, Acc. Chem. Res, vol.49, issue.9, p.29, 2016.

V. Brasiliense, P. Berto, C. Combellas, R. Kuszelewicz, G. Tessier et al., Electrochemical transformation of individual nanoparticles revealed by coupling microscopy and spectroscopy, Farad. Disc, vol.193, p.29, 2016.

I. Prigogine and I. Stengers, La Nouvelle Alliance. Gallimartd, p.29, 1979.

R. Young, J. Ward, and F. Scire, The topografiner: An instrument for measuring surface microtopography, Rev. Sci. Instrum, vol.43, issue.7, p.29, 1972.

S. Chernousova and M. Epple, Silver as antibacterial agent: Ion, nanoparticle, and metal, Angew. Chem. Int. Ed, vol.52, issue.6, p.30, 2013.

S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao et al., Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, vol.18, issue.22, p.30, 2007.

S. Prabhu and E. K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett, vol.2, issue.1, p.30, 2012.

A. Georgios, S. E. Sotiriou, and . Pratsinis, Antibacterial activity of nanosilver ions and particles, Environ. Sci. Technol, vol.44, issue.14, p.30, 2010.

P. Li, J. Li, C. Wu, Q. Wu, and J. Li, Synergistic antibacterial effects of ?-lactam antibiotic combined with silver nanoparticles, Nanotechnology, vol.16, issue.9, p.30, 2005.

F. Steffen, A. Hansen, and . Baun, When enough is enough, Nature Nanotech, vol.7, p.30, 2012.

Y. Han, R. Lupitskyy, T. Chou, C. M. Stafford, H. Du et al., Effect of oxidation on surface-enhanced raman scattering activity of silver nanoparticles: A quantitative correlation, Anal. Chem, vol.83, issue.15, p.30, 2011.

P. B. Johnson and R. W. Christy, Optical constants of the noble metals, Phys. Rev. B, vol.6, p.31, 1972.

K. Virender, R. A. Sharma, Y. Yngard, and . Lin, Silver nanoparticles: Green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci, vol.145, issue.1-2, p.31, 2009.

E. I. Alarcon and M. Griffith, Silver Nanoparticle Applications: In the Fabrication and Design of Medical and Biosensing Devices. Engineering Materials, p.31, 2015.

B. Buszewski, K. Rafilska, P. Pomastowski, J. Walczak, and A. Rogowska, Novel aspects of silver nanoparticles functionalization, Colloids Surf., A, vol.506, p.31, 2016.

A. Sooresh, H. Kwon, R. Taylor, P. Pietrantonio, M. Pine et al., Surface functionalization of silver nanoparticles: Novel applications for insect vector control, ACS Appl. Mater. Interfaces, vol.3, issue.10, p.31, 2011.

K. Chaloupka, Y. Malam, and A. M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical applications, Trends in Biotechnol, vol.28, issue.11, p.31, 2010.

C. Marambio, -. , and E. M. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanopart. Res, vol.12, issue.5, p.31, 2010.

S. E. Jones, F. W. Campbell, R. Baron, L. Xiao, and R. G. Compton, Particle size and surface coverage effects in the stripping voltammetry of silver nanoparticles: Theory and experiment, J. Phys. Chem. C, vol.112, issue.46, p.31, 2008.

I. Streeter, R. Baron, and R. G. Compton, Voltammetry at nanoparticle and microparticle modified electrodes: Theory and experiment, J. Phys. Chem. C, vol.111, issue.45, p.31, 2007.

W. Fallyn, S. R. Campbell, R. Belding, L. Baron, and R. G. Xiao, Compton. The hydrogen evolution reaction at a silver nanoparticle array and a silver macroelectrode compared: Changed electrode kinetics between the macro-and nanoscales, J. Phys. Chem. C, vol.113, issue.33, p.31, 2009.

W. J. Plieth, Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced raman scattering, The Journal of Physical Chemistry, vol.86, issue.16, p.31, 1982.

C. Her-shuang-toh, K. Batchelor-mcauley, M. Tschulik, A. Uhlemann, R. G. Crossley et al., The anodic stripping voltammetry of nanoparticles: electrochemical evidence for the surface agglomeration of silver nanoparticles, Nanoscale, vol.5, p.31, 2013.

K. Her-shuang-toh, R. G. Jurkschat, and . Compton, The influence of the capping agent on the oxidation of silver nanoparticles: Nano-impacts versus stripping voltammetry, Chem. Eur. J, vol.21, issue.7, p.32, 2015.

E. L. Eden, K. Tanner, R. Tschulik, K. Tahany, C. Jurkschat et al., Nanoparticle capping agent dynamics and electron transfer: Polymer-gated oxidation of silver nanoparticles, J. Phys. Chem. C, vol.119, issue.32, p.32, 2015.

E. Ning-saw, V. Grasmik, C. Rurainsky, M. Epple, and K. Tschulik, Electrochemistry at single bimetallic nanoparticles -using nano impacts for sizing and compositional analysis of individual agau alloy nanoparticles, Faraday Discuss, vol.193, p.32, 2016.

F. Ubbo and . Wiersema, Brownian Motion Calculus, vol.145, p.91, 2010.

C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, p.34, 2009.

A. Rutkowska, M. Tahani, J. V. Bawazeer, P. R. Macpherson, and . Unwin, Visualisation of electrochemical processes at optically transparent carbon nanotube ultramicroelectrodes (ot-cnt-umes), Phys. Chem. Chem. Phys, vol.13, p.37, 2011.

J. Edgar, L. J. Lopez-naranjo, L. M. Gonzalez-ortiz, E. M. Apatiga, A. Rivera-muñoz et al., Transparent electrodes: A review of the use of carbonbased nanomaterials, J.Nanomater, p.37, 2016.

L. Santos, P. Martin, J. Ghilane, P. Lacaze, H. Randriamahazaka et al., Electrosynthesis of wellorganized nanoporous poly(3,4-ethylenedioxythiophene) by nanosphere lithography. Electrochem, Commun, vol.12, issue.7, p.37, 2010.

B. Derjaguin and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Progress in Surface Science, vol.43, issue.1, p.39, 1993.

E. J. Verwey, J. T. Overbeek, and K. Van-nes, Theory of the Stability of Lyophobic Colloids: The Interaction of Sol Particles Having an Electric Double Layer, vol.54, p.39, 1948.

W. M. Haynes, CRC Handbook of Chemistry and Physics. CRC, vol.42, p.39

S. Eloul, E. Kätelhön, C. Batchelor-mcauley, K. Tschulik, and R. G. Compton, Diffusional nanoimpacts: The stochastic limit, J. Phys. Chem. C, vol.119, issue.25, p.39, 2015.

C. Lin and R. G. Compton, Size effects in nanoparticle catalysis at nanoparticle modified electrodes: The interplay of diffusion and chemical reactions, J. Phys. Chem. C, vol.121, issue.5, p.39, 2017.

G. Charlot, Les méthodes de la Chimie Analytique : Analyse Quantitative Minérale. Masson et Cte, vol.49, p.42, 1966.

A. Lombardi, P. Marcin, A. Grzelczak, P. Crut, I. Maioli et al., Optical response of individual au-ag@sio2 heterodimers, ACS Nano, vol.7, issue.3, p.47, 2013.

I. Streeter, R. Baron, and R. G. Compton, Voltammetry at nanoparticle and microparticle modified electrodes: Theory and experiment, J. Phys. Chem. C, vol.111, issue.45, p.49, 2007.

M. Stephen, D. A. Oja, N. J. Robinson, M. A. Vitti, Y. Edwards et al., Observation of multipeak collision behavior during the electro-oxidation of single ag nanoparticles, J. Am. Chem. Soc, vol.139, issue.2, p.59, 2017.

E. Ning-saw, M. Kratz, and K. Tschulik, Time-resolved impact electrochemistry for quantitative measurement of single-nanoparticle reaction kinetics, Nano Res, vol.59, p.51, 2017.

J. Ustarroz, M. Kang, E. Bullions, and P. R. Unwin, Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events, Chem. Sci, vol.8, p.59, 2017.

W. Ma, H. Ma, J. Chen, Y. Peng, Z. Yang et al., Tracking motion trajectories of individual nanoparticles using time-resolved current traces, Chem. Sci, vol.8, p.51, 2017.

A. N. Patel, A. Martinez-marrades, V. Brasiliense, D. Koshelev, M. Besbes et al., Deciphering the elementary steps of transport-reaction processes at individual Ag nanoparticles by 3D superlocalization microscopy, Nano Lett, vol.15, issue.10, p.53, 2015.

J. Noel, V. Brasiliense, K. Wonner, and V. Rouchon, Catherine Combellas, Kristina Tschulik, and Frédéric Kanoufi. Local electrosynthesis and in situ characterization of uncapped colloidal silver nanocubes and gold nanoflowers, Chem. Sci, p.53, 2017.

T. M. Squires, R. J. Messinger, and S. R. Manalis, Making it stick: convection, reaction and diffusion in surface-based biosensors, Nat. Biotechnol, vol.26, issue.4, p.53, 2008.

K. Tschulik, G. Robert, C. Palgrave, R. Batchelor-mcauley, and . Compton, Sticky electrodes for the detection of silver nanoparticles, Nanotechnology, vol.24, issue.29, p.54, 2013.

K. Ouhenia-ouadahi, A. Andrieux-ledier, J. Richardi, P. Albouy, P. Beaunier et al., Tuning the growth mode of 3D silver nanocrystal superlattices by triphenylphosphine, Chem. Mater, vol.28, issue.12, p.61, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01375824

A. Courty, J. Richardi, P. Albouy, and M. Pileni, How to control the crystalline structure of supracrystals of 5-nm silver nanocrystals, Chem. Mater, vol.23, issue.18, p.60, 2011.

L. Chapus, P. Aubertin, S. Joiret, I. T. Lucas, E. Maisonhaute et al., Tunable SERS platforms from small nanoparticles 3d superlattices: comparison between gold, silver and copper, p.60

P. Aubertin, M. A. Ben-aissa, N. Raouafi, S. Joiret, A. Courty et al., Optical response and sers properties of individual large scale supracrystals made of small silver nanocrystals, Nano Res, vol.8, issue.5, p.60, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01298105

A. Andrieux-ledier, B. Tremblay, and A. Courty, Synthesis of silver nanoparticles using different silver phosphine precursors: Formation mechanism and size control, J. Phys. Chem. C, vol.117, issue.28, p.64, 2013.

N. Zheng, J. Fan, and G. D. Stucky, One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals, Journal of the American Chemical Society, vol.128, issue.20, p.64, 2006.

A. Taleb, C. Petit, and M. P. Pileni, Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A way to 2D and 3D self-organization, Chem. Mater, vol.9, issue.4, p.64, 1997.

P. Aubertin, Propriétés optiques, spectroscopiques et électrochimiques d' autoorganisation tridimensionnelles de nanoparticules, UPMC, p.64, 2016.

C. Keir, S. M. Neuman, and . Block, Optical trapping, Rev. Sci. Instrum, vol.75, issue.9, p.73, 2004.

M. Onofrio, P. H. Marago, P. G. Jones, G. Gucciardi, A. C. Volpe et al., Optical trapping and manipulation of nanostructures, Nature Nanotech, vol.8, issue.11, p.73, 2013.

J. P. Gordon, Radiation forces and momenta in dielectric media, Phys. Rev. A, vol.8, p.73, 1973.

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena. A Wiley International edition, p.77, 2007.

M. Giglio and A. Vendramini, Soret-type motion of macromolecules in solution, Phys. Rev. Lett, vol.38, p.78, 1977.

B. Gans, R. Kita, S. Wiegand, and J. Luettmer-strathmann, Unusual thermal diffusion in polymer solutions, Phys. Rev. Lett, vol.91, p.78, 2003.

S. Duhr and D. Braun, Thermophoretic depletion follows boltzmann distribution, Phys. Rev. Lett, vol.96, p.78, 2006.

L. Lin, X. Peng, and Y. Zheng, Reconfigurable opto-thermoelectric printing of colloidal particles, Chem. Commun, vol.53, p.78, 2017.

L. Lin, X. Peng, M. Wang, L. Scarabelli, Z. Mao et al., Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis, ACS Nano, vol.10, issue.10, p.78, 2016.

H. Brenner, Elementary kinematical model of thermal diffusion in liquids and gases, Phys. Rev. E, vol.74, p.78, 2006.

R. James, H. Bielenberg, and . Brenner, A hydrodynamic/brownian motion model of thermal diffusion in liquids, Physica A, vol.356, issue.2, p.78, 2005.

A. Würger, Temperature dependence of the soret motion in colloids, Langmuir, vol.25, issue.12, p.78, 2009.

S. Duhr and D. Braun, Why molecules move along a temperature gradient, Proc. Natl. Acad. Sci. USA, vol.103, p.78, 2006.

A. Würger, Is soret equilibrium a non-equilibrium effect?, 10th International Meeting on Thermodiffusion, vol.341, p.79, 2013.

R. Piazza, Thermophoresis: moving particles with thermal gradients, Soft Matter, vol.4, p.79, 2008.

R. Spill, W. Köhler, G. Lindenblatt, and W. Schaertl, Thermal diffusion and soret feedback of gold-doped polyorganosiloxane nanospheres in toluene, Phys. Rev. E, vol.62, p.79, 2000.

M. Braibanti, D. Vigolo, and R. Piazza, Does thermophoretic mobility depend on particle size?, Phys. Rev. Lett, vol.100, p.79, 2008.

A. L. Sehnem, R. Aquino, A. F. Campos, F. A. Tourinho, J. Depeyrot et al., Thermodiffusion in positively charged magnetic colloids: Influence of the particle diameter, Phys. Rev. E, vol.89, p.79, 2014.

M. Yang and M. Ripoll, Driving forces and polymer hydrodynamics in the Soret effect, J. Phys. Condens. Matter, vol.24, issue.19, p.79, 2012.

A. P. Bregulla and F. Cichos, Size dependent efficiency of photophoretic swimmers, Farad. Disc, vol.184, p.79, 2015.

J. Palacci, B. Abécassis, C. Cottin-bizonne, C. Ybert, and L. Bocquet, Colloidal motility and pattern formation under rectified diffusiophoresis, Phys. Rev. Lett, vol.104, p.82, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01628772

R. Metzler, J. Jeon, A. G. Cherstvy, and E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys, vol.16, p.87, 2014.

J. Vitor-brasiliense, A. L. Clausmeyer, J. Dauphin, P. Noël, G. Berto et al., Opto-electrochemical in situ monitoring of the cathodic formation of single cobalt nanoparticles, Angew. Chem. Int. Ed, vol.56, issue.35, p.95, 2017.

J. Vitor-brasiliense, A. L. Clausmeyer, J. Dauphin, P. Noël, G. Berto et al., Opto-electrochemical in situ monitoring of the cathodic formation of single cobalt nanoparticles, Anal. Chem, p.95

G. Wulfsberg, Chimie inorganique : Cours et exercices corrigés, Sciences Sup, p.96, 2002.

M. Bryan, H. B. Hunter, A. M. Gray, and . Müller, Earth-abundant heterogeneous water oxidation catalysts, Chem. Rev, vol.116, issue.22, p.96, 2016.

M. Carmo and D. L. Fritz, J?A comprehensive review on PEM water electrolysis, Int. J. Hydrog. Energy, vol.38, issue.12, p.96, 2013.

X. Li, X. Hao, A. Abudula, and G. Guan, Nanostructured catalysts for electrochemical water splitting: current state and prospects, J. Mater. Chem. A, vol.4, p.96, 2016.

C. L. Charles, S. Mccrory, J. C. Jung, T. F. Peters, and . Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc, vol.135, issue.45, p.96, 2013.

N. Chouhan, R. S. Liu, and J. Zhang, Photochemical Water Splitting: Materials and Applications. Electrochemical Energy Storage and Conversion, p.96, 2017.

W. Matthew, D. G. Kanan, and . Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and co2+, Science, vol.321, issue.5892, p.96, 2008.

D. A. Lutterman, Y. Surendranath, and D. G. Nocera, A self-healing oxygenevolving catalyst, J. Am. Chem. Soc, vol.131, issue.11, p.96, 2009.

Y. Surendranath, D. A. Lutterman, Y. Liu, and D. G. Nocera, Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst, J. Am. Chem. Soc, vol.134, issue.14, p.96, 2012.

Y. Surendranath, M. Dinca, and D. G. Nocera, Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts, J. Am. Chem. Soc, vol.131, issue.7, p.96, 2009.

Y. Liu and D. G. Nocera, Spectroscopic studies of nanoparticulate thin films of a cobalt-based oxygen evolution catalyst, J. Phys. Chem. C, vol.118, issue.30, p.96, 2014.

F. Corolleur, D. Gault, . Juttard, J. Maire, and . Muller, Effect of the metal particle size in supported catalysts on the selectivity and the reaction mechanisms, J. Catal, vol.27, issue.3, p.96, 1972.

G. Fan, F. Li, D. G. Evans, and X. Duan, Catalytic applications of layered double hydroxides: recent advances and perspectives, Chem. Soc. Rev, vol.43, p.97, 2014.

P. Actis, S. Tokar, J. Clausmeyer, B. Babakinejad, S. Mikhaleva et al., Electrochemical nanoprobes for single-cell analysis, ACS Nano, vol.8, issue.1, p.97, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01164088

Y. Takahashi, A. I. Shevchuk, P. Novak, Y. Zhang, N. Ebejer et al., Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces, Angew. Chem. Int. Ed, vol.50, issue.41, p.97, 2011.

P. J. Rodgers, S. Amemiya, Y. Wang, and M. V. Mirkin, Nanopipet voltammetry of common ions across the liquid-liquid interface. theory and limitations in kinetic analysis of nanoelectrode voltammograms, Anal. Chem, vol.82, issue.1, p.97, 2010.

A. C. Ferrari and J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon, Phys. Rev. B, vol.61, p.97, 2000.

C. Costentin, T. R. Porter, and J. Savéant, Conduction and reactivity in heterogeneous-molecular catalysis: New insights in water oxidation catalysis by phosphate cobalt oxide films, J. Am. Chem. Soc, vol.138, issue.17, p.101, 2016.

P. Karthryn, J. Ta, and . Newman, Mass transfer and kinetic phenomena at the nickel hydroxide electrode, J. Electrochem. Soc, vol.145, issue.11, p.109, 1998.

E. M. Garcia, J. S. Santos, E. C. Pereira, and M. B. Freitas, Electrodeposition of cobalt from spent Li-ion battery cathodes by the electrochemistry quartz crystal microbalance technique, J. Power Sources, vol.185, issue.1, p.112, 2008.

A. L. Barker, J. V. Macpherson, C. J. Slevin, and P. R. Unwin, Scanning electrochemical microscopy (SECM) as a probe of transfer processes in two-phase systems: Theory and experimental applications of SECM-induced transfer with arbitrary partition coefficients, diffusion coefficients, and interfacial kinetics, J. Phys. Chem. B, vol.102, issue.9, p.114, 1998.

M. Risch, F. Ringleb, M. Kohlhoff, P. Bogdanoff, P. Chernev et al., Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis, Energy Environ. Sci, vol.8, p.116, 2015.

C. Costentin, T. R. Porter, and J. Savéant, Conduction and reactivity in heterogeneous-molecular catalysis: New insights in water oxidation catalysis by phosphate cobalt oxide films, J. Am. Chem. Soc, vol.138, issue.17, p.115, 2016.

N. Kaeffer, A. Morozan, J. Fize, E. Martinez, L. Guetaz et al., The dark side of molecular catalysis: Diimine-dioxime cobalt complexes are not the actual hydrogen evolution electrocatalyst in acidic aqueous solutions, ACS Catalysis, vol.6, issue.6, p.116, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01344089

H. S. Ahn and A. J. Bard, Surface interrogation of Co-Pi water oxidation catalyst by scanning electrochemical microscopy, J. Am. Chem. Soc, vol.137, issue.2, p.118, 2015.

J. Gregory-mcalpin, Y. Surendranath, M. Dinca, T. A. Stich, S. A. Stoian et al., EPR evidence for Co(iv) species produced during water oxidation at neutral ph, J. Am. Chem. Soc, vol.132, issue.20, p.118, 2010.

S. F. Johnston, Holographic Visions: A History of New Science. Spencer, H.; Herbert Spencer lectures, OUP Oxford, vol.130, p.132, 2006.

E. N. Leith and J. Upatnieks, Reconstructed wavefronts and communication theory, J. Opt. Soc. Am, vol.52, issue.10, p.130, 1962.

J. W. Goodman, Introduction to Fourier Optics. McGraw-Hill physical and quantum electronics series, vol.132, p.130, 2005.

D. Gabor, A new microscopic principle, Nature, vol.161, p.130, 1965.

E. N. Leith and J. Upatnieks, Wavefront reconstruction with continuous-tone objects, J. Opt. Soc. Am, vol.53, issue.12, p.132, 1963.

E. N. Leith and J. Upatnieks, Wavefront reconstruction with diffused illumination and three-dimensional objects, J. Opt. Soc. Am, vol.54, issue.11, p.132, 1964.

R. F. Wuerker, Holography and holographic interferometry : Industrial applications, Ann. N. Y. Acad. Sci, vol.168, issue.3, p.133, 1969.

J. Hecht, Holography and the laser, Opt. Photon. News, vol.21, issue.7, p.133, 2010.

M. Ozaki, J. Kato, and S. Kawata, Surface-plasmon holography with whitelight illumination, Science, vol.332, issue.6026, p.133, 2011.

J. W. Gates, Holography, industry and the rebirth of optics, Review of Physics in Technology, vol.2, issue.3, p.133, 1971.

S. Schedin, G. Pedrini, H. J. Tiziani, and F. Santoyo, Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography, Appl. Opt, vol.38, issue.34, p.133, 1999.

J. N. Butters and J. A. Leendertz, Speckle pattern and holographic techniques in engineering metrology, Opt. Laser Technol, vol.3, issue.1, p.133, 1971.

A. Foust, V. Zampini, D. Tanese, E. Papagiakoumou, and V. Emiliani, Computer-generated holography enhances voltage dye fluorescence discrimination in adjacent neuronal structures, Neurophotonics, vol.2, issue.2, p.133

G. Pedrini, Y. L. Zou, and H. J. Tiziani, Digital double-pulsed holographic interferometry for vibration analysis, J. Mod. Opt, vol.42, issue.2, p.133, 1995.

A. W. Lohmann and D. P. Paris, Binary fraunhofer holograms, generated by computer, Appl. Opt, vol.6, issue.10, p.133, 1967.

B. R. Brown and A. W. Lohmann, Computer-generated binary holograms, IBM Journal of Research and Development, vol.13, issue.2, p.133, 1969.

U. Schnars and W. Jüptner, Direct recording of holograms by a ccd target and numerical reconstruction, Appl. Opt, vol.33, issue.2, p.133, 1994.

M. Yamaguchi, Light-field and holographic three-dimensional displays, J. Opt. Soc. Am. A, vol.33, issue.12, p.133, 2016.

T. Kakue, T. Nishitsuji, T. Kawashima, K. Suzuki, T. Shimobaba et al., Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors, Sci. Rep, vol.5, p.133, 2015.

W. Microsoft-hololens, , p.133

E. Sánchez-ortiga, A. Doblas, G. Saavedra, M. Martínez-corral, and J. Garcia-sucerquia, Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit, Appl. Opt, vol.53, issue.10, p.138, 2014.

N. Verrier and M. Atlan, Off-axis digital hologram reconstruction: some practical considerations, Appl. Opt, vol.50, issue.34, p.139, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00642060

F. Verpillat, Suivi 3D de nanoparticules d'or par holographie digitale, p.141, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00836925

R. E. Thompson, D. R. Larson, and W. W. Webb, Precise nanometer localization analysis for individual fluorescent probes, Biophys. J, vol.82, issue.5, p.142, 2002.

T. Albrecht, J. Macpherson, O. Magnussen, D. Fermin, R. Crooks et al., Electrochemistry of single nanoparticles: general discussion, Farad. Disc, vol.193, p.143, 2016.

H. C. Van-hulst, Light Scattering by Small Particles, p.143, 1981.

R. Metzler, J. Jeon, A. G. Cherstvy, and E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys, vol.16, p.146, 2014.

H. C. Berg, Random Walks in Biology. Princeton paperbacks, p.146, 1993.

K. Svoboda and S. M. Block, Biological applications of optical forces, Annu. Rev. Biophys, vol.23, issue.1, p.147, 1994.