, La liste présentée ci-après recense les publications et les participations à des confé-rences scientiques auxquelles j'ai contribué personnellement, portant sur les travaux menés au cours de cette thèse (qui s'est déroulée entre 1 er février, 2016.

L. Richard, D. Romanini, and I. Ventrillard, Nitric oxide analysis down to ppt levels by optical-feedback cavity-enhanced absorption spectroscopy, Sensors, vol.18, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01865029

L. Richard, S. Vasilchenko, D. Mondelain, I. Ventrillard, D. Romanini et al., Water vapor self-continuum absorption measurements in the 4.0 and 2.1 µm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.201, pp.171-179, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01766014

L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel et al.,

, Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser : application to SO 2 trace analysis, Conférences nationales et internationales, vol.122, p.247, 2016.

L. Richard, D. Romanini, and I. Ventrillard, Nitric Oxide measurements down to ppt levels by Optical-Feedback Cavity Enhanced Absorption Spectroscopy, Poster, Field Laser Applications in Industry and Research (FLAIR), 2018.

L. Richard, D. Romanini, and I. Ventrillard, Spectromètre dédié à la détection du monoxyde d'azote dans le soue par, Optical Feedback Cavity Enhanced Absorption Spectroscopy, 2018.

L. Richard, I. Ventrillard, D. Romanini, A. Campargue, D. Mondelain et al.,

. Jaulin, OF-CEAS with an Interband Cascade Laser (ICL) at 4 µm : SO 2 trace detection and water vapor continuum measurements, Oral, International User Meeting on Cavity Enhanced Spectroscopy, 2017.

L. Richard, D. Romanini, and I. Ventrillard, Laser spectroscopy for breath analysis, Oral, Rencontre Jeunes Physiciens, 2017.

L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel et al., Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) with an Interband Cascade Laser (ICL), Oral, Field Laser Applications in Industry and Research (FLAIR), 2016.

X. Cui, C. Lengignon, W. Tao, W. Zhao, G. Wysocki et al., Yujun Zhang, and Fengzhong Dong. Photonic sensing of the atmosphere by absorption spectroscopy, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.113, issue.11, p.13001316, 2012.

J. S. Li, W. Chen, and H. Fischer, Quantum Cascade Laser Spectrometry Techniques : A New Trend in Atmospheric Chemistry, Applied Spectroscopy Reviews, vol.48, issue.7, p.523559, 2013.

. Peter-w-werle, Diode-Laser Sensors for In-Situ Gas Analysis, Laser in Environmental and Life Sciences, p.223243, 2004.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt et al., Laser spectroscopy for breath analysis : towards clinical implementation, Applied Physics B, vol.124, issue.8, p.161, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01865035

I. E. Gordon, L. S. Rothman, R. V. Hill, . Kochanov, P. F. Tan et al.,

S. N. Massie, . Mikhailenko, H. S. Moazzen-ahmadi, O. V. Müller, A. V. Naumenko et al., The HITRAN2016 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.203, issue.0, p.369, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01765945

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, .. L. Hutchinson et al., Quantum Cascade Laser, Science, vol.264, issue.5158, p.553556, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00156810

R. F. Kazarinov and R. A. Suris, Possibility of the amplication of electromagnetic waves in a semiconductor with a superlattice, Soviet Physics -Semiconductors, vol.5, issue.4, p.707709, 1971.

Q. Rui and . Yang, Infrared laser based on intersubband transitions in quantum wells, 1995.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle et al., Interband cascade laser emitting at ?=3.75 µm in continuous wave above room temperature, Applied Physics Letters, vol.92, issue.19, pp.10-13, 2008.

R. Donald, . Herriott, J. Harry, and . Schulte, Folded Optical Delay Lines. Applied Optics, vol.4, issue.8, p.883, 1965.

J. B. Mcmanus, P. L-kebabian, and M. Zahniser, Astigmatic mirror multipass absorption cells for long-path-length spectroscopy, Applied Optics, vol.34, issue.18, p.3336, 1995.

C. Robert, Simple, stable, and compact multiple-reection optical cell for very long optical paths, Applied Optics, vol.46, issue.22, p.5408, 2007.

J. U. White, Very long optical paths in air, Journal of the Optical Society of America, vol.66, issue.5, p.411, 1976.

M. L. Thoma, R. Kaschow, and F. J. Hindelang, A multiple-reection cell suited for absorption measurements in shock tubes, Shock Waves, vol.4, issue.1, p.5153, 1994.

M. Béla-tuzson, H. Mangold, A. Looser, L. Manninen, and . Emmenegger, Compact multipass optical cell for laser spectroscopy, Optics Letters, vol.38, issue.3, p.257, 2013.

J. Hodgkinson and R. P. Tatam, Optical gas sensing : A review, Measurement Science and Technology, vol.24, issue.1, 2013.

G. Gagliardi and H. Loock, Cavity-Enhanced Spectroscopy and Sensing, Springer Series in Optical Sciences, vol.179, 2014.

D. Z. Anderson, J. C. Frisch, and C. S. Masser, Mirror reectometer based on optical cavity decay time, Applied Optics, vol.23, issue.8, p.1238, 1984.

O. Anthony, D. A. Keefe, and . Deacon, Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources, Review of Scientic Instruments, vol.59, issue.12, p.25442551, 1988.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, CW cavity ring down spectroscopy, Chemical Physics Letters, vol.264, issue.3-4, p.316322, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01097378

J. Burkart, D. Romanini, and S. Kassi, Optical feedback frequency stabilized cavity ring-down spectroscopy, Optics Letters, vol.39, issue.16, p.4695, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01109330

B. Johannes, Optical feedback frequency-stabilized cavity ring-down spectroscopy -Highly coherent near-infrared laser sources and metrological applications in molecular absorption spectroscopy, 2015.

J. Burkart and S. Kassi, Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy, Applied Physics B, vol.119, issue.1, p.97109, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252159

J. Ye, L. Ma, and J. L. Hall, Ultrasensitive detections in atomic and molecular physics : demonstration in molecular overtone spectroscopy, Journal of the Optical Society of America B, vol.15, issue.1, p.6, 1998.

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, Noise-immune cavityenhanced optical heterodyne molecular spectroscopy : Current status and future potential, Applied Physics B : Lasers and Optics, vol.92, issue.3, pp.313-326, 2008.

O. Axner, P. Ehlers, A. Foltynowicz, I. Silander, and J. Wang, NICE-OHMSFrequency Modulation Cavity-Enhanced SpectroscopyPrinciples and Performance, Cavity-Enhanced Spectroscopy and Sensing, p.211251, 2014.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Fast, low-noise, modeby-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking, Applied Physics B, vol.80, issue.8, p.10271038, 2005.

S. Kassi, . Chenevier, . Gianfrani, Y. Salhi, . Rouillard et al., Looking into the volcano with a Mid-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy, Optics Express, vol.14, issue.23, p.11442, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00328196

E. R. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H. Jost et al., A water isotope, issue.2, p.17

, 18 O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications, Applied Physics B, vol.85, issue.2-3, p.397406, 2006.

P. J. Crutzen, The inuence of nitrogen oxides on the atmospheric ozone content, Quart. J. R. Met. Soc, vol.96, p.320325, 1970.

J. Barbara, J. N. Finlayson-pitts, and . Pitts, Overview of the Chemistry of Polluted and Remote Atmospheres, Chemistry of the Upper and Lower Atmosphere, p.114, 2000.

B. C. Mcdonald, T. R. Dallmann, E. W. Martin, and R. A. Harley, Long-term trends in nitrogen oxide emissions from motor vehicles at national, state, and air basin scales, Journal of Geophysical Research Atmospheres, vol.117, issue.17, p.111, 2012.

R. E. Honrath and D. A. Jae, The seasonal cycle of nitrogen oxides in the Arctic troposphere at Barrow, Alaska. Journal of Geophysical Research, vol.97, issue.D18, p.20615, 1992.

A. E. Jones, R. Weller, E. W. Wol, and H. W. Jacobi, Speciation and rate of photochemical NO and NO 2 production in Antarctic snow, Geophysical Research Letters, vol.27, issue.3, p.345348, 2000.

A. Jeerson, F. Tanner, D. Eisele, . Davis, . Chen et al., OH photochemistry and methane sulfonic acid formation in the coastal Antarctic boundary layer, Journal of Geophysical Research : Atmospheres, vol.103, issue.D1, p.16471656, 1998.

A. M. Grannas, A. E. Jones, J. Dibb, M. Ammann, C. Anastasio et al., An overview of snow photochemistry : evidence, mechanisms and impacts, Atmospheric Chemistry and Physics, vol.7, issue.16, p.43294373, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00328056

S. A. Kharitonov and P. J. Barnes, Exhaled Markers of Pulmonary Disease, American Journal of Respiratory and Critical Care Medicine, vol.163, issue.7, p.16931722, 2001.

A. Schneider, L. Tilemann, T. Schermer, L. Gindner, G. Laux et al., Diagnosing asthma in general practice with portable exhaled nitric oxide measurement -results of a prospective diagnostic study, Respiratory Research, vol.10, p.111, 2009.

M. Maignan, R. Briot, D. Romanini, S. Gennai, F. Hazane-puch et al., Real-time measurements of endogenous carbon monoxide production in isolated pig lungs, Journal of Biomedical Optics, vol.19, issue.4, p.47001, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00997466

K. P. Shine, A. Campargue, D. Mondelain, R. A. Mcpheat, I. V. Ptashnik et al., The water vapour continuum in near-infrared windows Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, vol.327, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430606

A. Yariv, Quantum Electronics -Third Edition, 1984.

. A-e-siegman, Lasers. University Science Books, 1986.

D. Hennequin, V. Dangoisse, and . Zehnlé-dhaoui, Les lasers : cours et exercices corrigés. Sciences sup. Dunod, 2013.

H. Kogelnik and . Li, Laser Beams and Resonators. Applied Optics, vol.5, issue.10, p.1550, 1966.

D. Romanini, I. Ventrillard, G. Méjean, J. Morville, and E. Kerstel, Introduction to Cavity Enhanced Absorption Spectroscopy, Cavity-Enhanced Spectroscopy and Sensing, vol.179, p.160, 2014.

K. Petermann, Laser Diode Modulation and Noise, 1988.

R. Lang and K. Kobayashi, External Optical Feedback Eects on Semiconductor Injection Laser Properties, IEEE Journal of Quantum Electronics, vol.16, issue.3, p.347355, 1980.

P. Laurent, C. Clairon, and . Breant, Frequency noise analysis of optically selflocked diode lasers, IEEE Journal of Quantum Electronics, vol.25, issue.6, p.11311142, 1989.

J. Morville, Injection des cavités optiques de haute nesse par laser à diode-Application à la CW-CRDS et à la détection de traces atmosphériques, 2001.

J. Morville, D. Romanini, and E. Kerstel, Cavity Enhanced Absorption Spectroscopy with Optical Feedback, Cavity-Enhanced Spectroscopy and Sensing, pp.163-209, 2014.

C. H. Henry, Theory of the Linewidth of Semiconductor Lasers, IEEE Journal of Quantum Electronics, vol.18, issue.2, p.259264, 1982.

D. Romanini, Modelling the excitation eld of an optical resonator, Applied Physics B, vol.115, issue.4, p.517531, 2014.

P. Gorrotxategi-carbajo, E. Fasci, M. Ventrillard, G. Carras, D. Maisons et al., Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit, Applied Physics B, vol.110, issue.3, p.309314, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00996555

K. K. Lehmann and D. Romanini, The superposition principle and cavity ring-down spectroscopy, The Journal of Chemical Physics, vol.105, issue.23, pp.10263-10277, 1996.

P. Anne, . Thorne, and . Spectrophysics, , 1988.

W. Voigt, Über Emission und Absorption schichtenweise stetig inhomogener Körper, Annalen der Physik, vol.344, issue.16, p.13811407, 1912.

B. H. Armstrong, Spectrum line proles : The Voigt function, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.7, issue.1, p.6188, 1967.

G. Sergei, I. I. Rautian, and . Sobel, man. the Eect of Collisions on the Doppler Broadening of Spectral Lines. Soviet Physics Uspekhi, vol.9, issue.5, p.701716, 1967.

M. Nelkin and A. Ghatak, Simple Binary Collision Model for Van Hove's G s (r, t), Physical Review, vol.135, issue.1A, pp.4-9, 1964.

H. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01833211

N. H. Ngo, D. Lisak, H. Tran, and J. M. Hartmann, An isolated line-shape model to go beyond the Voigt prole in spectroscopic databases and radiative transfer codes, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.129, p.89100, 2013.

J. and M. Hollas, Modern Spectroscopy -4th Edition, 2004.

N. Hoa, N. Profil, D. Des-raies, and . Télédétection--partie-1, , 2013.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk et al.,

J. Smith, R. N. Tennyson, R. A. Tolchenov, J. Toth, P. Vander-auwera et al., The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.96, issue.2, p.139204, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00113988

E. Ziegel, W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes : The Art of Scientic Computing, vol.29, 1987.

I. Ventrillard, I. Xueref-remy, M. Schmidt, C. Y. Kwok, X. Faïn et al., Comparison of optical-feedback cavityenhanced absorption spectroscopy and gas chromatography for ground-based and airborne measurements of atmospheric CO concentration, Atmospheric Measurement Techniques, vol.10, issue.5, p.18031812, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01592166

J. A. Timothy, D. Butler, J. Mellon, J. Kim, A. J. Litman et al., Optical-Feedback Cavity Ring-Down Spectroscopy Measurements of Extinction by Aerosol Particles, The Journal of Physical Chemistry A, vol.113, issue.16, p.39633972, 2009.

M. R. Querry, Optical constants of minerals and other materials from the millimeter to the ultraviolet, 1987.

M. N. Polyanskiy, Refractive index database

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki et al., Application of quantum cascade lasers to trace gas analysis, Applied Physics B : Lasers and Optics, vol.90, issue.2, p.165176, 2008.

P. G. Maisons, M. Carbajo, D. Carras, and . Romanini, Opticalfeedback cavity-enhanced absorption spectroscopy with a quantum cascade laser, Optics Letters, vol.35, issue.21, p.3607, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00563656

L. Richard, D. Romanini, and I. Ventrillard, Nitric oxide analysis down to ppt levels by optical-feedback cavity-enhanced absorption spectroscopy, Sensors (Switzerland), vol.18, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01865029

H. Kogelnik and C. V. Shank, Coupled-wave theory of distributed feedback lasers, Journal of Applied Physics, vol.43, issue.5, p.23272335, 1972.

H. Kogelnik and C. V. Shank, Stimulated emission in a periodic structure, Applied Physics Letters, vol.18, issue.4, p.152154, 1971.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim et al., Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption, Nature Communications, vol.2, issue.1, p.585587, 2011.

I. Vurgaftman, W. William, C. L. Bewley, C. S. Canedy, M. Kim et al., Mid-IR Type-II Interband Cascade Lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.17, issue.5, p.14351444, 2011.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy et al., Interband cascade lasers, Journal of Physics D : Applied Physics, vol.48, issue.12, p.123001, 2015.

E. Rosencher, B. Vinter, and . Optoélectronique, Enseignement de la physique, 1998.

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2012.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-mohan, Mid-IR vertical-cavity surface-emitting lasers, IEEE Journal of Quantum Electronics, vol.34, issue.1, p.147156, 1998.

K. M. Manfred, G. A. Ritchie, N. Lang, J. Röpcke, and J. H. Van-helden, Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 µm interband cascade laser, Applied Physics Letters, vol.106, issue.22, p.15, 2015.

L. Richard, I. Ventrillard, G. Chau, K. Jaulin, E. Kerstel et al., Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser : application to SO 2 trace analysis, Applied Physics B, vol.122, issue.9, p.247, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430406

I. Ventrillard, P. Gorrotxategi-carbajo, and D. Romanini, Part per trillion nitric oxide measurement by optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared, Applied Physics B, vol.123, issue.6, p.180, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01592145

I. Ventrillard-courtillot, T. Gonthiez, C. Clerici, and D. Romanini, Multispecies breath analysis faster than a single respiratory cycle by optical-feedback cavity-enhanced absorption spectroscopy, Journal of Biomedical Optics, vol.14, issue.6, p.64026, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00997478

L. Richard, S. Vasilchenko, D. Mondelain, I. Ventrillard, D. Romanini et al., Water vapor self-continuum absorption measurements in the 4.0 and 2.1 µm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.201, p.171179, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01766014

D. W. Allan, Statistics of Atomic Frequency Standards, Proceedings of the IEEE, vol.54, issue.2, p.221230, 1966.

R. P-werle, F. Miicke, and . Slemr, The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)

, Applied Physics B Photophysics and Laser Chemistry, vol.57, issue.2, p.131139, 1993.

P. Werle, Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence, Applied Physics B, vol.102, issue.2, p.313329, 2011.

R. J-p-waclawek, H. Lewicki, M. Moser, F. Brandstetter, and . Tittel, Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL, Applied Physics B, vol.117, issue.1, p.113120, 2014.

A. Mohammed, J. Gondal, and . Mastromarino, Pulsed laser photoacoustic detection of SO 2 near 225.7 nm, Appl. Opt, 2001.

M. Ian, A. Balfour-lynn, R. Laverty, and . Dinwiddie, Reduced upper airway nitric oxide in cystic brosis, Archives of Disease in Childhood, vol.75, issue.4, p.319322, 1996.

R. Stephen, S. A. Thomas, S. F. Kharitonov, M. E. Scott, P. J. Hodson et al., Nasal and exhaled nitric oxide is reduced in adult patients with cystic brosis and does not correlate with cystic brosis genotype, Chest, vol.117, issue.4, p.10851089, 2000.

A. Kasperska-zajac, Z. Brzoza, E. Czecior, B. Rogala, A. Polok et al., Elevated levels of exhaled nitric oxide in recurrent tonsillitis, European Respiratory Journal, vol.31, issue.4, p.909910, 2008.

S. Steen, Q. Liao, N. Per, R. Wierup, L. Bolys et al., Transplantation of lungs from nonheart-beating donors after functional assessment ex vivo, The Annals of Thoracic Surgery, vol.76, issue.1, p.244252, 2003.

P. Wierup, Å. Haraldsson, F. Nilsson, L. Pierre, and H. Scherstén, Martin Silverborn, Trygve Sjöberg, Ulla Westfeldt, and Stig Steen, Annals of Thoracic Surgery, vol.81, issue.2, p.460466, 2006.

S. I. Anders, J. H. Andreasson, A. J. Dark, and . Fisher, Ex vivo lung perfusion in clinical lung transplantation-State of the art, European Journal of Cardio-thoracic Surgery, vol.46, issue.5, p.779788, 2014.

R. Briot, S. Gennai, and M. Maignan, Redha Souilamas, and Christophe Pison, Anaesthesia Critical Care and Pain Medicine, vol.35, issue.2, p.123131, 2016.

S. Steen, T. Sjöberg, L. Pierre, Q. Liao, L. Eriksson et al., Transplantation of lungs from a non-heart-beating donor, The Lancet, vol.357, issue.9259, p.825829, 2001.

S. Steen, R. Ingemansson, L. Eriksson, L. Pierre, L. Algotsson et al., First Human Transplantation of a Nonacceptable Donor Lung After Reconditioning Ex Vivo, Annals of Thoracic Surgery, vol.83, issue.6, p.21912194, 2007.

N. Marczin, The biology of exhaled nitric oxide (NO) in ischemiareperfusion-induced lung injury : A tale of dynamism of NO production and consumption, Vascular Pharmacology, vol.43, issue.6, p.415424, 2005.

M. R. Mccurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, Recent advances of laser-spectroscopy-based techniques for applications in breath analysis, Journal of Breath Research, vol.1, issue.1, p.14001, 2007.

C. C. Womack, J. A. Neuman, P. R. Veres, S. J. Eilerman, C. A. Brock et al., Evaluation of the accuracy of thermal dissociation CRDS and LIF techniques for atmospheric measurement of reactive nitrogen species, vol.10, p.19111926, 2017.

B. Tuzson, K. Zeyer, M. Steinbacher, J. B. Mcmanus, D. D. Nelson et al., Selective measurements of NO, NO 2 and NO y in the free troposphere using quantum cascade laser spectroscopy, Atmospheric Measurement Techniques, vol.6, issue.4, p.927936, 2013.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O'-keefe, Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL, Applied Physics B, vol.81, issue.5, p.705710, 2005.

D. Marchenko, J. Mandon, S. M. Cristescu, P. J. Merkus, and F. J. Harren, Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide, Applied Physics B, vol.111, issue.3, p.359365, 2013.

J. Mandon, M. Hogman, J. F. Peter, J. Merkus, . Van-amsterdam et al., Exhaled nitric oxide monitoring by quantum cascade laser : comparison with chemiluminescent and electrochemical sensors, Journal of Biomedical Optics, vol.17, issue.1, p.17003, 2012.

M. Kohring, S. Huang, M. Jahjah, W. Jiang, W. Ren et al., QCL-based TDLAS sensor for detection of NO toward emission measurements from ovarian cancer cells, Applied Physics B : Lasers and Optics, vol.117, issue.1, p.445451, 2014.

H. Fuchs, W. P. Dubé, B. M. Lerner, N. L. Wagner, E. J. Williams et al., A sensitive and versatile detector for atmospheric NO 2 and NO X based on blue diode laser cavity ring-down spectroscopy, Environmental Science and Technology, vol.43, issue.20, p.78317836, 2009.

R. J. Wild, P. M. Edwards, W. P. Dubé, K. Baumann, E. S. Edgerton et al.,

K. Dube, E. S. Baumann, P. K. Edgerton, J. M. Quinn, A. W. Roberts et al., A Measurement of Total Reactive Nitrogen, NO y , together with NO 2 , NO, and O 3 via Cavity Ring-down Spectroscopy, Science and Technology, vol.48, issue.16, p.96099615, 2014.

D. Kley and M. Mcfarland, Chemiluminescence detector for NO and NO 2, vol.12, 1980.

D. Davis, G. Nowak, M. Chen, R. Buhr, . Arimoto et al., Unexpected high levels of NO observed at South Pole, Geophysical Research Letters, vol.28, issue.19, p.36253628, 2001.

D. Davis, G. Chen, M. Buhr, J. Crawford, D. Lenschow et al., South Pole NO x Chemistry : An assessment of factors controlling variability and absolute levels, Atmospheric Environment, vol.38, issue.32, p.53755388, 2004.

N. Wagner, W. P. Dubé, C. Washenfelder, . Young, T. Pollack et al., Diode laser-based cavity ring-down instrument for NO 3, Atmospheric Measurement Techniques, vol.4, issue.2 O 5, p.12271240, 2011.

, Wolfgang Demtröder. Laser Spectroscopy, vol.1, 2014.

, HITRAN on line, dénitions and units

W. Demtröder, Laser Spectroscopy, vol.1, 1996.

G. Giusfredi, I. Galli, D. Mazzotti, P. Cancio, and P. Natale, Theory of saturated-absorption cavity ring-down : radiocarbon dioxide detection, a case study, Journal of the Optical Society of America B, vol.32, issue.10, p.2223, 2015.

R. Christine, K. K. Bucher, D. F. Lehmann, G. Plusquellic, and . Fraser, Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy, Applied Optics, vol.39, issue.18, p.3154, 2000.

I. Ventrillard, D. Romanini, D. Mondelain, and A. Campargue, Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 µm atmospheric window, The Journal of Chemical Physics, vol.143, issue.13, p.134304, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252310

J. Tyndall, The Bakerian Lecture : On the Absorption and Radiation of Heat by Gases and Vapours, and on the Physical Connexion of Radiation, Absorption, and Conduction, Philosophical Transactions of the Royal Society of London, vol.151, p.136, 1861.

G. Hettner, Über das ultrarote Absorptionsspektrum des Wasserdampfes, Annalen der Physik, vol.360, issue.6, p.476496, 1918.

D. Paynter and V. Ramaswamy, Variations in water vapor continuum radiative transfer with atmospheric conditions, Journal of Geophysical Research : Atmospheres, vol.117, issue.D16, 2012.

M. Isaac, B. J. Held, and . Soden, Water Vapor Feedback and Global Warning, Annual Review of Energy and the Environment, vol.25, issue.1, p.441475, 2000.

T. Nakajima and M. D. King, Determination of the Optical Thickness and Eective Particle Radius of Clouds from Reected Solar Radiation Measurements. Part I : Theory, Journal of the Atmospheric Sciences, vol.47, issue.15, p.18781893, 1990.

S. A. Clough, F. X. Kneizys, and R. W. Davies, Line shape and the water vapor continuum, Atmospheric Research, vol.23, issue.3-4, p.229241, 1989.

I. V. Ptashnik, R. A. Mcpheat, K. P. Shine, K. M. Smith, and R. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research, vol.116, issue.D16, p.16305, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01131045

D. E. Burch and R. L. Alt, Continuum absorption by H 2 O in the 700-1200 cm report, 1984.

Q. Ma, R. H. Tipping, and C. Leforestier, Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines, The Journal of Chemical Physics, vol.128, issue.12, p.124313, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00490187

A. A. Vigasin, Water vapor continuous absorption in various mixtures : possible role of weakly bound complexes, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.64, issue.1, p.2540, 2000.

E. J. Mlawer, V. H. Payne, J. Moncet, J. S. Delamere, M. J. Alvarado et al., Development and recent evaluation of the MT_CKD model of continuum absorption, Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.370, p.25202556, 1968.

L. S. Rothman, R. R. Gamache, A. Goldman, L. R-brown, R. Toth et al., The HITRAN database : 1986 edition, vol.26, p.4058, 1987.

R. R. Gamache, C. Roller, E. Lopes, I. E. Gordon, L. S. Rothman et al.,

S. A. Drouin, V. I. Tashkun, R. V. Perevalov, and . Kochanov, Total internal partition sums for 166 isotopologues of 51 molecules important in planetary atmospheres : Application to HITRAN2016 and beyond, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.203, p.7087, 2017.

L. Lechevallier, S. Vasilchenko, R. Grilli, D. Mondelain, D. Romanini et al., The water vapour self-continuum absorption in the infrared atmospheric windows : New laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, vol.11, issue.4, p.21592171, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01908294

. R-h-dicke, The Eect of Collisions upon the Doppler Width of Spectral Lines, Physical Review, vol.89, issue.2, p.472473, 1953.

K. P. Shine, I. V. Ptashnik, and G. Rädel, The Water Vapour Continuum : Brief History and Recent Developments, Surveys in Geophysics, vol.33, issue.3-4, p.535555, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01131043

Y. I. Baranov and W. J. Laerty, The water-vapor continuum and selective absorption in the 35µm spectral region at temperatures from 311 to 363K, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.112, issue.8, p.13041313, 2011.

I. V. Ptashnik, T. M. Petrova, Y. N. Ponomarev, K. P. Shine, A. A. Solodov et al., Near-infrared water vapour self-continuum at close to room temperature, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.120, pp.23-35, 2013.

I. V. Ptashnik, T. M. Petrova, and Y. N. Ponomarev, Water vapor continuum absorption in near-IR atmospheric windows. Atmospheric and Oceanic Optics, vol.28, p.115120, 2015.

A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, and D. Romanini, Accurate laboratory determination of the near-infrared water vapor self-continuum : A test of the MT_CKD model, Journal of Geophysical Research : Atmospheres, vol.121, issue.21, p.203, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430402

Y. I. Baranov and W. J. Laerty, The water vapour self-and water-nitrogen continuum absorption in the 1000 and 2500 cm ?1 atmospheric windows. Philosophical, Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.370, p.25782589, 1968.

K. Bignell, The water-vapour infra-red continuum, Quarterly Journal of the Royal Meteorological Society, vol.96, issue.409, p.390403, 1970.

B. E. Rocher-casterline, L. C. Ch'ng, A. K. Mollner, and H. Reisler, Communication : Determination of the bond dissociation energy (D 0 ) of the water dimer, The Journal of Chemical Physics, vol.134, issue.2, p.211101, 2011.

C. B. Farmer and J. T. Houghton, Collision-induced Absorption in the Earth's Atmosphere, Nature, vol.209, issue.5030, p.13411342, 1966.

C. Richard, I. E. Gordon, L. S. Rothman, M. Abel, L. Frommhold et al., New section of the HITRAN database : Collision-induced absorption (CIA), Journal of Quantitative Spectroscopy and Radiative Transfer, vol.113, issue.11, p.12761285, 2012.

Y. I. Baranov, W. J. Laerty, and G. T. Fraser, Investigation of collision-induced absorption in the vibrational fundamental bands of O 2 and N 2 at elevated temperatures, Journal of Molecular Spectroscopy, vol.233, issue.1, p.160163, 2005.

J. Walter, A. M. Laerty, A. Solodov, W. B. Weber, J. Olson et al., Infrared collision-induced absorption by N 2 near 43 µm for atmospheric applications : measurements and empirical modeling, Applied Optics, vol.35, issue.30, p.5911, 1996.

R. V-menoux, C. Le-doucen, . Boulet, . Roblin, and . Bouchardy, Collisioninduced absorption in the fundamental band of N 2 : temperature dependence of the absorption for N 2 N 2 and N 2 O 2 pairs, Applied Optics, vol.32, issue.3, p.263, 1993.

P. L. Roney, F. Reid, and J. Theriault, Transmission window near 2400 cm ?1 : an experimental and modeling study, Applied Optics, vol.30, issue.15, 1991.

D. E. Burch, D. A. Cryvnak, and J. D. Pembrook, Investigation oh the absorption of infrared radiation by atmospheric gases : watern nitrogen, nitrous oxide, 1971.

N. I. Moskalenko, I. A. Ilin, S. N. Parzhin, and L. V. Rodionov, Pressure-induced infrared radiation absorption in atmospheres, Akademiia Nauk SSSR Fizika Atmosfery i Okeana, vol.15, p.912919, 1979.

C. P. Rinsland, R. Zander, A. Goldman, F. J. Murcray, D. G. Murcray et al., The fundamental quadrupole band of 14 N 2 : Line positions from high-resolution stratospheric solar absorption spectra, Journal of Molecular Spectroscopy, vol.148, issue.1, p.274279, 1991.

D. Reuter, D. E. Jennings, and J. W. Brault, The ? = 1 0 quadrupole spectrum of N 2, Journal of Molecular Spectroscopy, vol.115, issue.2, p.294304, 1986.

J. L. Robert, Y. Roy, C. Huang, and . Jary, An accurate analytic potential function for ground-state N 2 from a direct-potential-t analysis of spectroscopic data, Journal of Chemical Physics, vol.125, issue.16, p.112, 2006.