, B Tuning double wedges of FeCoB and TaOx layers in Ta/FeCoB/TaOx for skyrmion

, Characterizing magnetic properties of Ta/FeCoB/TaOx trilayer by MOKE magnetometry

, Study of magnetic domain configuration by p-MOKE microscopy90

, Skyrmion bubbles in Perpendicular Magnetic Anisotropy to Paramagnetic state transition region

, Skyrmion bubbles in Perpendicular Magnetic Anisotropy to In Plane Anisotropy state transition region

B. , Analytical Model to explain the stable skyrmionic bubble zones 94

.. .. C-conclusion,

.. .. B-perspectives,

.. .. C-offshoots,

C. , Ultrafast laser induced generation of skyrmion bubble lattices, vol.124

. .. , Brownian motion of skyrmionic bubbles, vol.124

, 96 8.1 Summary of experimental parameters, with their measurement method, voltage and time scale

, In the case of -20V (a), the spins point outwards (left-handed chirality) while in the +80V(e) case, with opposite DMI sign, an opposite chirality (right-handed chirality) is stabilized. In this latter case however, the domain walls are not completely Néel type. For +88V(f) a perfect right handed Néel type skyrmion is obtained. We also show that at intermediate voltage: +37V (d), where the magnetization configuration of the skyrmion becomes Bloch-like with no preferred chirality as DMI is close to zero at this voltage. The magnetic parameters, vol.119

. .. , 124 10.2 (Left) Kerr image of skyrmionic bubbles under perpendicular magnetic field. (Right) Plot of mean square displacement of skyrmions as a function of time, p.125

M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen-van-dau, F. Petroff et al., Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices, Phys. Rev. Lett, vol.61, pp.2472-2475, 1988.

G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B, vol.39, pp.4828-4830, 1989.

S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal fe/mgo/fe magnetic tunnel junctions, Nature materials, vol.3, pp.868-71, 2005.

S. Parkin, C. Kaiser, A. Panchula, P. Rice, B. Hughes et al., Giant tunneling magnetoresistance at room temperature with mgo(100) tunnel barriers, Nature materials, vol.3, pp.862-869, 2005.

M. Julliere, Tunneling between ferromagnetic films, Physics Letters A, vol.54, p.1975

J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett, vol.74, pp.3273-3276, 1995.

S. P. Stuart, M. Parkin, L. Hayashi, and . Thomas, Magnetic domain-wall racetrack memory, Science, vol.320, issue.5873, p.32, 2008.

A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: advances in physics and potential applications, Nature Reviews Materials, vol.2, issue.7, p.17031, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02076548

A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nature Nanotechnology, vol.8, issue.3, p.32, 2013.

P. Bruno, Theory of interlayer exchange interactions in magnetic multilayers, Journal of Physics: Condensed Matter, vol.11, issue.48, p.9403, 1999.

J. Faure-vincent, C. Tiusan, C. Bellouard, E. Popova, M. Hehn et al., Interlayer magnetic coupling interactions of two ferromagnetic layers by spin polarized tunneling, Physical Review Letters, vol.89, issue.10, p.107206

S. Blundell, Magnetism in Condensed Matter, OUP Oxford, 2001.

J. M. Coey, Magnetism and magnetic materials by j. m. d. coey, pp.2010-2013

, URL /core/books/magnetism-and-magnetic-materials/ AD3557E2D4538CAA8488A8C1057313BC

A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures, 1998.

O. Fruchart, Lecture notes on Nanomagnetism

L. Néel, Anisotropie magnétique superficielle et surstructures d'orientation, Journal de Physique et le Radium, vol.15, issue.4, p.24, 1954.

D. A-v-khvalkovskiy, . Apalkov, . Watts, R. Chepulskii, . Beach et al., Basic principles of stt-mram cell operation in memory arrays, Journal of Physics D: Applied Physics, vol.46, issue.7, p.129, 2013.

M. T. Johnson, P. J. Bloemen, F. J. Broeder, and J. J. De-vries, Magnetic anisotropy in metallic multilayers, Reports on Progress in Physics, vol.59, issue.11, p.69, 1996.

P. Bruno and J. P. Renard, Magnetic surface anisotropy of transition metal ultrathin films, Applied Physics A Solids and Surfaces, vol.49, issue.5, p.130, 1989.

I. Dzialoshinskii, Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances, Soviet Physics Jetp-Ussr, vol.5, issue.6, pp.1259-1272, 1957.

T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Physical Review, vol.120, issue.1, pp.91-98, 1960.

S. Heinze, M. Kirsten-von-bergmann, J. Menzel, A. Brede, R. Kubetzka et al., Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nature Physics, vol.7, issue.9, p.27, 2011.

M. Bode, M. Heide, K. Bergmann, P. Ferriani, S. Heinze et al., Chiral magnetic order at surfaces driven by inversion asymmetry, Nature, vol.447, issue.7141, p.26, 2007.

A. Fert and P. M. Levy, Role of anisotropic exchange interactions in determining the properties of spin-glasses, Physical Review Letters, vol.44, issue.23, p.43, 1980.

A. R. Fert, Magnetic and transport properties of metallic multilayers, 1990.

A. Crépieux and C. Lacroix, Dzyaloshinskyâmoriya interactions induced by symmetry breaking at a surface, Journal of Magnetism and Magnetic Materials, vol.182, issue.3, pp.341-349, 1998.

. Kyoung-whan, H. Kim, K. Lee, M. D. Lee, and . Stiles, Chirality from interfacial spin-orbit coupling effects in magnetic bilayers, Physical Review Letters, vol.111, issue.21, p.102

K. V. Shanavas, Z. S. Popovi, and S. Satpathy, Theoretical model for rashba spin-orbit interaction in d electrons, Physical Review B, vol.90, issue.16, p.19, 2014.

A. Thiaville, S. Rohart, É. Jué, V. Cros, and A. Fert, Dynamics of dzyaloshinskii domain walls in ultrathin magnetic films, Europhysics Letters), vol.100, issue.5, p.57002, 2012.

J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nucleation, stability and currentinduced motion of isolated magnetic skyrmions in nanostructures, Nature Nanotechnology, vol.8, issue.11, pp.839-844, 2013.

M. Heide, G. Bihlmayer, and S. Blügel, Non-planar dzyaloshinskii spirals and magnetic domain walls in non-centrosymmetric systems with orthorhombic anisotropy, Journal of Nanoscience and Nanotechnology, vol.11, issue.4, p.17, 2011.

A. Bogdanov and D. Yablonskii, Thermodynamicallystable "vortices" in magneticallyordered crystals.the mixed state of magnets, vol.3, p.18

A. Bogdanov and A. Hubert, Thermodynamically stable magnetic vortex states in magnetic crystals, Journal of Magnetism and Magnetic Materials, vol.138, issue.3, pp.255-269, 1994.

S. Rohart and A. Thiaville, Skyrmion confinement in ultrathin film nanostructures in the presence of dzyaloshinskii-moriya interaction, Physical Review B, vol.88, issue.18, p.24

M. Perini, S. Meyer, B. Dupé, A. Stephan-von-malottki, K. V. Kubetzka et al., Domain walls and dzyaloshinskii-moriya interaction in epitaxial co/ir(111) and pt/co/ir(111), Physical Review B, vol.97, p.184425, 2018.

B. Dupé, M. Hoffmann, C. Paillard, and S. Heinze, Tailoring magnetic skyrmions in ultra-thin transition metal films, Nature Communications, vol.5, p.42, 2014.

H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, Anatomy of dzyaloshinskii-moriya interaction at Co/Pt interfaces, Physical Review Letters, vol.115, issue.26, p.267210, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01576697

C. Moreau-luchaire, C. Moutaïs, N. Reyren, J. Sampaio, C. A. Vaz et al., Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nature Nanotechnology, vol.11, issue.5, p.43, 2016.

A. Hrabec, N. A. Porter, A. Wells, M. J. Benitez, G. Burnell et al., Measuring and tailoring the dzyaloshinskii-moriya interaction in perpendicularly magnetized thin ïlms, Physical Review B, vol.90, pp.7-2014

Y. A. Bychkov and E. I. Rashba, Properties of a 2d electron gas with lifted spectral degeneracy, Soviet Journal of Experimental and Theoretical Physics Letters, vol.39, p.78, 1984.

Y. A. Bychkov and E. I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, Journal of Physics C: Solid State Physics, vol.17, issue.33, p.6039, 1984.

A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, New perspectives for rashba spinâorbit coupling, Nature Materials, vol.14, issue.9, pp.871-882, 2015.

H. Yang, O. Boulle, V. Cros, A. Fert, and M. Chshiev, Controlling dzyaloshinskii-moriya interaction via chirality dependent layer stacking, insulator capping and electric field, Scientific Reports, vol.8, p.109, 12356.
URL : https://hal.archives-ouvertes.fr/hal-01864799

P. Gambardella and . Ioan-mihai-miron, Current-induced spin-orbit torques, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.369, pp.3175-3197, 1948.

A. Hoffmann, Spin hall effects in metals, IEEE Transactions on Magnetics, vol.49, issue.10, pp.5172-5193, 2013.

J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin hall effects, Reviews of Modern Physics, vol.87, issue.4, pp.1213-1260, 2015.

V. M. Edelstein, Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems, Solid State Communications, vol.73, issue.3, pp.233-235, 1990.

A. V. Chaplik, M. V. Entin, and L. I. Magarill, Spin orientation of electrons by lateral electric field in 2d system without inversion symmetry. Physica E: Lowdimensional Systems and Nanostructures, vol.13, pp.273-277, 2002.

F. Bloch, Zur theorie des austauschproblems und der remanenzerscheinung der ferromagnetika, Zeitschrift für Physik, vol.74, issue.5, pp.295-335, 1932.


S. Jung, W. Kim, T. Lee, K. Lee, and H. Lee, Current-induced domain wall motion in a nanowire with perpendicular magnetic anisotropy, Applied Physics Letters, vol.92, issue.20, p.202508, 2008.

S. V. Tarasenko, A. Stankiewicz, V. V. Tarasenko, and J. Ferré, Bloch wall dynamics in ultrathin ferromagnetic films, Journal of Magnetism and Magnetic Materials, vol.189, pp.19-24, 1998.

M. Heide, G. Bihlmayer, and S. Blügel, Dzyaloshinskii-moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/w(110), Physical Review B, vol.78, issue.14, p.140403, 2008.

T. H. Skyrme, A unified field theory of mesons and baryons, Nuclear Physics, vol.31, pp.556-569, 1962.

A. Bocdanov and A. Hubert, The properties of isolated magnetic vortices. physica status solidi (b), vol.186, pp.527-543, 1994.

B. A. Ivanov, V. A. Stephanovich, and A. A. Zhmudskii, Magnetic vortices îÿ the microscopic analogs of magnetic bubbles, Journal of Magnetism and Magnetic Materials, vol.88, issue.1, pp.116-120, 1990.

N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature Nanotechnology, vol.8, issue.12, pp.899-911, 2013.

H. Braun, Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons, Advances in Physics, vol.61, issue.1, pp.1-116, 2012.

S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch et al., Skyrmion lattice in a chiral magnet, Science, vol.323, issue.5916, p.97, 2009.

X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han et al., Real-space observation of a two-dimensional skyrmion crystal, Nature, vol.465, issue.7300, p.97, 2010.

X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang et al., Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe, Nature Materials, vol.10, issue.2, pp.106-109, 2011.

N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter et al., Writing and deleting single magnetic skyrmions, Science, vol.341, issue.6146, pp.636-639, 2013.

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch et al., Blowing magnetic skyrmion bubbles, Science, vol.349, issue.6245, p.93, 2015.

S. Woo, K. Litzius, B. Krüger, M. Im, L. Caretta et al., Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets, Nature Materials, vol.15, issue.5, p.105, 2016.

O. Boulle, J. Vogel, H. Yang, S. Pizzini, D. De-souza et al., Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures, Nature Nanotechnology, vol.11, issue.5, p.87, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01271350

G. Yu, P. Upadhyaya, X. Li, W. Li, Y. Se-kwon-kim et al., Roomtemperature creation and spinâorbit torque manipulation of skyrmions in thin films with engineered asymmetry, Nano Letters, vol.16, issue.3, p.102, 2016.

A. Bernand-mantel, L. Camosi, A. Wartelle, N. Rougemaille, M. Darques et al., The skyrmion-bubble transition in a ferromagnetic thin film, SciPost Physics, vol.4, issue.5, p.27, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01907918

F. Büttner, I. Lemesh, and G. S. Beach, Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications, Scientific Reports, vol.8, issue.1, p.4464, 2018.

M. Schott, A. Bernand-mantel, L. Ranno, S. Pizzini, J. Vogel et al., The skyrmion switch: Turning magnetic skyrmion bubbles on and off with an electric field, Nano Letters, vol.17, issue.5, p.131, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01639157

T. Srivastava, M. Schott, R. Juge, V. Krizakova, M. Belmeguenai et al., Large-voltage tuning of dzyaloshinskiiâmoriya interactions: A route toward dynamic control of skyrmion chirality, Nano Letters, vol.18, issue.8, pp.4871-4877, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01873478

P. Hsu, A. Kubetzka, A. Finco, N. Romming, R. Kirsten-von-bergmann et al., Electric-field-driven switching of individual magnetic skyrmions, Nature Nanotechnology, vol.12, issue.2, p.131, 2017.

R. Tolley, S. A. Montoya, and E. E. Fullerton, Room-temperature observation and current control of skyrmions in pt/co/os/pt thin films, Physical Review Materials, vol.2, issue.4, p.44404, 2018.

W. Legrand, D. Maccariello, N. Reyren, K. Garcia, C. Moutafis et al., Room-temperature current-induced generation and motion of sub-100 nm skyrmions, Nano Letters, vol.17, issue.4, pp.2703-2712, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02076552

M. Anjan-soumyanarayanan, A. L. Raju, A. K. Gonzalez-oyarce, . Tan, A. P. Im et al., Tunable room-temperature magnetic skyrmions in ir/fe/co/pt multilayers, Nature Materials, vol.16, issue.9, pp.898-904, 2017.

R. Juge, D. Soong-geun-je, . De-souza, S. Chaves, L. D. Pizzini et al., Magnetic skyrmions in confined geometries: Effect of the magnetic field and the disorder, Journal of Magnetism and Magnetic Materials, vol.455, pp.3-8, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01764982

C. Hanneken, F. Otte, A. Kubetzka, B. Dupé, N. Romming et al., Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance, Nature Nanotechnology, vol.10, issue.12, pp.1039-1042, 2015.

D. Maccariello, W. Legrand, N. Reyren, K. Garcia, K. Bouzehouane et al., Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature, Nature Nanotechnology, vol.13, issue.3, pp.233-237, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02076578

A. A. Thiele, Steady-state motion of magnetic domains, Physical Review Letters, vol.30, issue.6, pp.230-233, 1973.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang et al., Direct observation of the skyrmion hall effect, Nature Physics, vol.13, issue.2, p.30, 2017.

S. Emori, U. Bauer, S. Ahn, E. Martinez, and G. S. Beach, Current-driven dynamics of chiral ferromagnetic domain walls, Nature Materials, vol.12, issue.7, pp.611-616, 2013.

M. Nguyen, D. C. Ralph, and R. A. Buhrman, Spin torque study of the spin hall conductivity and spin diffusion length in platinum thin films with varying resistivity, Physical Review Letters, vol.116, issue.12, p.126601, 2016.

A. Hrabec, J. Sampaio, M. Belmeguenai, I. Gross, R. Weil et al., Current-induced skyrmion generation and dynamics in symmetric bilayers, Nature Communications, vol.8, p.15765, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01562694

S. Woo, K. M. Song, X. Zhang, Y. Zhou, M. Ezawa et al., Current-driven dynamics and inhibition of the skyrmion hall effect of ferrimagnetic skyrmions in GdFeCo films, Nature Communications, vol.9, issue.1, p.959, 2018.

K. Se-kwon-kim, Y. Lee, and . Tserkovnyak, Self-focusing skyrmion racetracks in ferrimagnets, Physical Review B, vol.95, issue.14, p.140404, 2017.

L. Caretta, M. Mann, F. Büttner, K. Ueda, B. Pfau et al., Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet, Nature Nanotechnology, vol.13, pp.1154-1160, 2018.

K. Ajaya, V. Nayak, T. Kumar, P. Ma, E. Werner et al., Magnetic antiskyrmions above room temperature in tetragonal heusler materials, Nature, vol.548, issue.7669, pp.561-566, 2017.

L. Camosi, N. Rougemaille, O. Fruchart, J. Vogel, and S. Rohart, Micromagnetics of antiskyrmions in ultrathin films, Physical Review B, vol.97, issue.13, p.134404, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01662113

X. Zhang, J. Xia, Y. Zhou, D. Wang, X. Liu et al., Control and manipulation of a magnetic skyrmionium in nanostructures, Physical Review B, vol.94, issue.9, p.130, 2016.

S. Zhang, F. Kronast, G. Van-der-laan, and T. Hesjedal, Real-space observation of skyrmionium in a ferromagnet-magnetic topological insulator heterostructure, Nano Letters, vol.18, issue.2, pp.1057-1063, 2018.

A. G. Kolesnikov, M. E. Stebliy, A. S. Samardak, and A. V. Ognev, Skyrmionium â high velocity without the skyrmion hall effect, Scientific Reports, vol.8, issue.1, p.16966, 2018.

M. Shen, Y. Zhang, J. Ou-yang, X. Yang, and L. You, Motion of a skyrmionium driven by spin wave, Applied Physics Letters, vol.112, issue.6, p.62403, 2018.

S. Parkin and S. Yang, Memory on the racetrack, Nature Nanotechnology, vol.10, pp.195-198, 2015.

W. Kang, Y. Huang, C. Zheng, W. Lv, N. Lei et al., Voltage controlled magnetic skyrmion motion for racetrack memory, Scientific Reports, vol.6, p.23164, 2016.

X. Zhang, Y. Zhou, and M. Ezawa, Magnetic bilayer-skyrmions without skyrmion hall effect, Nature Communications, vol.7, p.10293, 2016.

X. Zhang, M. Ezawa, and Y. Zhou, Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions, Scientific Reports, vol.5, p.9400, 2015.

G. Finocchio, M. Ricci, R. Tomasello, A. Giordano, M. Lanuzza et al., Skyrmion based microwave detectors and harvesting, Applied Physics Letters, vol.107, issue.26, p.262401, 2015.

M. Carpentieri, R. Tomasello, R. Zivieri, and G. Finocchio, Topological, non-topological and instanton droplets driven by spin-transfer torque in materials with perpendicular magnetic anisotropy and dzyaloshinskiiâmoriya interaction, Scientific Reports, vol.5, p.16184, 2015.

F. Garcia-sanchez, J. Sampaio, N. Reyren, V. Cros, and J. Kim, A skyrmion-based spin-torque nano-oscillator, New Journal of Physics, vol.18, issue.7, p.75011, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02076520

Y. Huang, W. Kang, X. Zhang, Y. Zhou, and W. Zhao, Magnetic skyrmion-based synaptic devices, Nanotechnology, vol.28, issue.8, pp.8-10, 2017.

D. Pinna, F. Araujo, J. Kim, V. Cros, D. Querlioz et al., Skyrmion gas manipulation for probabilistic computing, Physical Review Applied, vol.9, issue.6, pp.2018-2024

P. Winiowski, J. M. Almeida, S. Cardoso, N. P. Barradas, and P. P. Freitas, Effect of free layer thickness and shape anisotropy on the transfer curves of MgO magnetic tunnel junctions, Journal of Applied Physics, vol.103, issue.7, pp.7-910, 2008.

T. Takenaga, C. Yoshida, Y. Yamazaki, A. Hatada, M. Nakabayashi et al., MgO based magnetic tunnel junctions with Co 20 Fe 60 B 20 sensing layer for magnetic field sensors, IEEE Transactions on Magnetics, vol.49, issue.7, pp.3878-3881, 2013.

S. Miwa, Y. Shiota, K. Yakushiji, H. Kubota, T. Nozaki et al., Composition dependence of perpendicular magnetic anisotropy

S. Monso, B. Rodmacq, S. Auffret, G. Casali, F. Fettar et al., Crossover from in-plane to perpendicular anisotropy in pt/CoFe/AlOx sandwiches as a function of al oxidation: A very accurate control of the oxidation of tunnel barriers, Applied Physics Letters, vol.80, issue.22, pp.4157-4159, 2002.

J. G. Alzate, P. Khalili-amiri, G. Yu, P. Upadhyaya, J. A. Katine et al., Temperature dependence of the voltage-controlled perpendicular anisotropy in nanoscale MgO / CoFeB / Ta magnetic tunnel junctions, Applied Physics Letters, vol.104, issue.11, p.130, 2014.

Y. Evgeny, . Tsymbal, and . Spintronics, Electric toggling of magnets, Nature Materials, vol.11, issue.1, p.100, 2012.

F. Matsukura, Y. Tokura, and H. Ohno, Control of magnetism by electric fields, Nature Nanotechnology, vol.10, issue.3, p.107, 2015.

M. Weisheit, S. Fãhler, A. Marty, Y. Souche, C. Poinsignon et al., Electric field-induced modification of magnetism in thin-film ferromagnets, Science, vol.315, issue.5810, pp.349-351, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00153072

U. Bauer, L. Yao, A. Tan, P. Agrawal, S. Emori et al., Magneto-ionic control of interfacial magnetism, Nature Materials, vol.14, issue.2, p.110, 2015.

Y. Shiota, T. Maruyama, T. Nozaki, T. Shinjo, M. Shiraishi et al., Voltage-assisted magnetization switching in ultrathin fe80co20 alloy layers, Applied Physics Express, vol.2, issue.6, p.131, 2009.

T. Nozaki, Y. Shiota, M. Shiraishi, T. Shinjo, and Y. Suzuki, Voltage-induced perpendicular magnetic anisotropy change in magnetic tunnel junctions, Applied Physics Letters, vol.96, issue.2, p.22506, 2010.

M. Endo, S. Kanai, S. Ikeda, F. Matsukura, and H. Ohno, Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/co40fe40b20/ta structures

, Applied Physics Letters, vol.96, issue.21, p.131, 2010.

J. Torrejon, J. Kim, J. Sinha, S. Mitani, M. Hayashi et al., Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers, Nature Communications, vol.5, p.102, 2014.

X. Ma, G. Yu, X. Li, T. Wang, D. Wu et al., Interfacial control of dzyaloshinskii-moriya interaction in heavy metal/ferromagnetic metal thin film heterostructures, Physical Review B, vol.94, issue.18, p.131, 2016.

A. L. Balk, K. Kim, D. T. Pierce, M. D. Stiles, J. Unguris et al., Simultaneous control of the dzyaloshinskii-moriya interaction and magnetic anisotropy in nanomagnetic trilayers, Physical Review Letters, vol.119, issue.7, p.131, 2017.

A. Belabbes, G. Bihlmayer, S. Blügel, and A. Manchon, Oxygenenabled control of dzyaloshinskii-moriya interaction in ultra-thin magnetic films, Scientific Reports, vol.6, p.115, 2016.

K. Nawaoka, S. Miwa, Y. Shiota, N. Mizuochi, and Y. Suzuki, Voltage induction of interfacial dzyaloshinskiiâmoriya interaction in au/fe/MgO artificial multilayer, Applied Physics Express, vol.8, issue.6, p.109, 2015.

M. R. Parker, The kerr magneto-optic effect (1876â1976). Physica B+C, pp.1171-1176, 1977.

T. Hans, J. M. Nembach, M. Shaw, E. Weiler, T. J. Jué et al., Linear relation between heisenberg exchange and interfacial dzyaloshinskiiâmoriya interaction in metal films, Nature Physics, vol.11, issue.10, p.133, 2015.

M. Belmeguenai, M. S. Gabor, Y. Roussigné, A. Stashkevich, S. M. Chérif et al., Brillouin light scattering investigation of the thickness dependence of dzyaloshinskii-moriya interaction in c o 0.5 f e 0.5 ultrathin films, Physical Review B, vol.93, issue.17, p.99, 2016.

M. Belmeguenai, J. Adam, Y. Roussigné, S. Eimer, T. Devolder et al., Interfacial dzyaloshinskii-moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by brillouin light spectroscopy, Physical Review B, vol.91, issue.18, p.102

K. Di, V. L. Zhang, H. Siah-lim, M. Ser-choon-ng, J. Hau-kuok et al., Direct observation of the dzyaloshinskiimoriya interaction in a pt/co/ni film, Physical Review Letters, vol.114, issue.4, p.99, 2015.

T. Zhu, Q. Zhang, and R. Yu, Tuning perpendicular magnetic anisotropy in the MgO/-CoFeB/ta thin films, 2015 IEEE International Magnetics Conference (INTERMAG), vol.78, p.80, 2015.

A. Manchon, C. Ducruet, L. Lombard, S. Auffret, B. Rodmacq et al., Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers, Journal of Applied Physics, vol.104, issue.4, p.85, 2008.

B. Rodmacq, S. Auffret, B. Dieny, S. Monso, and P. Boyer, Crossovers from in-plane to perpendicular anisotropy in magnetic tunnel junctions as a function of the barrier degree of oxidation, Journal of Applied Physics, vol.93, issue.10, p.85, 2003.

M. Heide, G. Bihlmayer, and S. Blügel, Dzyaloshinskii-moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110), Physical Review B, vol.78, issue.14, p.105, 2008.

U. K. Röbler, A. N. Bogdanov, and C. Pfleiderer, Spontaneous skyrmion ground states in magnetic metals, Nature, vol.442, issue.7104, pp.797-801, 2006.

H. Bouloussa, Y. Yu, M. Roussigné, . Belmeguenai, H. Stashkevitch et al., Brillouin light scattering investigation of interfacial dzyaloshinskiiâmoriya interaction in ultrathin co/pt nanostripe arrays, Journal of Physics D: Applied Physics, vol.51, issue.22, p.225005, 2018.

R. A. Khan, P. M. Shepley, A. Hrabec, A. W. Wells, B. Ocker et al., Effect of annealing on the interfacial dzyaloshinskii-moriya interaction in

. Ta/cofeb/mgo-trilayers, Applied Physics Letters, vol.109, issue.13, p.132404, 2016.

I. Gross, L. J. Martínez, J. Tetienne, T. Hingant, J. Roch et al., Direct measurement of interfacial dzyaloshinskii-moriya interaction in x | CoFeB | MgO heterostructures with a scanning NV magnetometer ( x = Ta , TaN , and W ), Physical Review B, vol.94, issue.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01383969

S. Pizzini, J. Vogel, S. Rohart, L. D. Buda-prejbeanu, E. Jué et al., Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlO ultrathin microstructures, Physical Review Letters, vol.113, issue.4, p.47203, 2014.

G. Yu, P. Upadhyaya, Q. Shao, H. Wu, G. Yin et al., Roomtemperature skyrmion shift device for memory application, Nano Letters, vol.17, issue.1, pp.261-268

B. Kaplan and G. A. Gehring, The domain structure in ultrathin magnetic films, Journal of Magnetism and Magnetic Materials, vol.128, issue.1, pp.111-116, 1993.

S. E. Barnes, S. Ieda, and . Maekawa, Rashba spin-orbit anisotropy and the electric field control of magnetism, Scientific Reports, vol.4, p.4105, 2014.

J. F. Conley, Y. Ono, R. Solanki, G. Stecker, and W. Zhuang, Electrical properties of HfO2 deposited via atomic layer deposition using hf(NO3)4 and h2o, Applied Physics Letters, vol.82, issue.20, pp.3508-3510, 2003.

S. Amara-dababi, R. C. Sousa, M. Chshiev, H. Béa, J. Alvarez-hérault et al., Charge trapping-detrapping mechanism of barrier breakdown in MgO magnetic tunnel junctions, Applied Physics Letters, vol.99, issue.8, p.83501, 2011.

A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garciasanchez et al., The design and verification of MuMax3, AIP Advances, vol.4, issue.10, p.107133, 2014.

P. Soong-geun-je, T. Vallobra, J. Srivastava, T. H. Rojas-sánchez, M. Pham et al., Creation of magnetic skyrmion bubble lattices by ultrafast laser in ultrathin films, Nano Letters, vol.18, issue.11, pp.7362-7371, 2018.