, Journée de l'environnement, 5 juin, p.12, 2018.

, 100% plastiques recyclés en 2025 : 55 industriels et fédérations s'engagent en faveur du recyclage et de l'éco-conception, 2018.

E. Bioplastics, BIOPLASTICS facts and figures, 2018.

-. Plastiques, U. Industrie, and . Et-contestée, Plastics Europe, CP 19/06/18, p.12, 2018.

A. Taguet, P. Cassagnau, and J. Lopez-cuesta, Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends, Prog. Polym. Sci, vol.39, issue.8, pp.1526-1563, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01087663

L. Elias, F. Fenouillot, J. Majesté, G. Martin, and P. Cassagnau, Migration of Nanosilica Particles in Polymer Blends, J. Polym. Sci. Part B Polym. Phys, vol.46, pp.1976-1983, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00373896

P. J. Flory, Thermodynamics of high polymer solutions, J. Chem. Phys, vol.9, issue.8, pp.660-661, 1941.

M. L. Huggins, Solutions of long chain compounds, J. Chem. Phys, vol.9, issue.5, pp.440-440, 1941.

Y. Germain and M. Glotin, Introduction à la mécanique des polymères," in Introduction à l'optimisation des alliages de polymères, pp.211-223, 1995.

C. W. Macosko, Morphology development and control in immiscible polymer blends, Macromol. Symp, vol.149, pp.171-184, 2000.

W. P. Gergen, R. G. Lutz, and S. Davison, Hydrogenated block copolymers in thermoplastic elastomer interpenetrating polymer networks, 1996.

C. Koning, M. Van-dui, C. Pagnoulle, and R. Jerome, Strategies for Compatibilization of Polymer Blends, Prog. Polym. Sci, vol.23, issue.4, pp.707-757, 1998.

C. E. Scott and C. W. Macosko, Morphology development during the initial stages of polymerpolymer blending, Polymer (Guildf), vol.36, issue.3, pp.461-470, 1995.

G. I. Taylor, The viscosity of a Fluid Containing Small Drops of another Fluid, Proceedings of the Royal Society of London, Series a-Containing Papers of a Mathetical and Physical Character, vol.138, issue.834, p.41, 1932.

G. I. Taylor, The Formation of Emulsions in Definable Fields of Flow, Proceedings of the Royal Society of London, Series a-Mathematical and Physical Sciences, vol.146, issue.A858, pp.501-523, 1934.

H. P. Grace, Dispersion Phenomena in High Viscosity Immiscible Fluid Systems and Application of Static Mixers as Dispersion Devices in such Systems, Chem. Eng. Commun, vol.14, issue.3-6, pp.225-277, 1982.

S. Wu, Formation of Dispersed Phase in Incompatible Polymer Blends -Interfacial and Rheological Effects, Polym. Eng. Sci, vol.27, issue.5, pp.335-343, 1987.

G. Serpe, J. Jarrin, and F. Dawans, Morphology-Processing Relationships in PolyethylenePolyamide Blends, Polym. Eng. Sci, vol.30, p.553, 1990.

B. D. Favis, The effect of processing parameters on the morphology of an immiscible binary blend, J. Appl. Polym. Sci, vol.39, issue.2, pp.285-300, 1990.

U. Sundararaj and C. W. Macosko, Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization, Macromolecules, vol.28, p.2647, 1995.

N. Grizzuti and O. Bifulco, Effects of coalescence and breakup shear flow, Rheol. Acta, vol.36, issue.4, pp.406-415, 1997.

P. Sarazin and B. D. Favis, Influence of temperature-induced coalescence effects on co-continuous morphology in poly, caprolactone)/polystyrene blends, vol.46, pp.5966-5978, 2005.

A. K. Chesters, The Modelling of Coalescence Processes in Fluid-Liquid Dispersions: A Review of Current Understanding, Chem. Eng. Res. Des, vol.69, issue.4, pp.259-270, 1991.

J. J. Elmendorp, A. K. Van-der, and . Vegt, A Study on Polymer Blending Microrheology: Part IV. The Influence of Coalescence on Blend Morphology Origination, Polym. Eng. Sci, vol.26, issue.19, pp.1332-1338, 1986.

J. M. Janssen and H. E. Meijer, Dynamics of liquid-liquid mixing -A 2-zone model, Polym. Eng. Sci, vol.35, issue.22, pp.1766-1780, 1995.

I. Vinckier, P. Moldenaers, A. M. Terraciano, and N. Grizzuti, Droplet size evolution during coalescence in semiconcentrated model blends, AIChE J, vol.44, issue.4, pp.951-958, 1998.

D. R. Paul and S. Newman, Chapter 12: Interfacial agents for polymer blends, Polymer blends, vol.2, pp.35-62, 1978.

M. Xanthos, Interfacial agents for multiphase polymer systems: Recent advances, Polym. Eng. Sci, vol.28, issue.21, pp.1392-1400, 1988.

L. Z. Pillon and L. A. Utracki, Compatibilization of polyester/polyamide blends via catalytic esteramide interchange reaction, Polym. Eng. Sci, vol.24, issue.17, pp.1300-1305, 1984.

Z. Yao, J. Sun, Q. Wang, and K. Cao, Study on Ester-Amide Exchange Reaction between PBS and PA6IcoT, Ind. Eng. Chem. Res, vol.51, p.751, 2011.

L. Lim, R. Auras, and M. Rubino, Processing technologies for poly(lactic acid), Prog. Polym. Sci, vol.33, issue.8, pp.820-852, 2008.

W. Groot, J. Van-krieken, O. Sliekersl, and S. De-vos, Production and purification of lactic acid and lactide, Synthesis, structures, properties, processing, and applications, pp.3-18, 2010.

D. Garlotta, A Literature Review of Poly ( Lactic Acid ), J. Polym. Environ, vol.9, issue.2, pp.63-84, 2002.

J. J. Kolstad, Crystallization kinetics of poly(L-lactide-co-meso-lactide), J. Appl. Polym. Sci, vol.62, issue.7, pp.1079-1091, 1996.

P. , D. Santis, and A. J. Kovacs, Molecular conformation of poly(S-lactic acid), Biopolymers, vol.6, issue.3, pp.299-306, 1968.

T. Miyata and T. Masuko, Morphology of poly(l-lactide) solution-grown crystals, Polymer (Guildf), vol.38, issue.16, pp.4003-4009, 1997.

B. Eling, S. Gogolewski, and A. J. Pennings, Biodegradable materials of poly(l-lactic acid): 1. Meltspun and solution-spun fibres, Polymer (Guildf), vol.23, issue.11, pp.1587-1593, 1982.

L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali et al., Epitaxial crystallization and crystalline polymorphism of polylactides, Polymer (Guildf), vol.41, issue.25, pp.8909-8919, 2000.

T. Kawai, N. Rahman, G. Matsuba, K. Nishida, T. Kanaya et al., Crystallization and Melting Behavior of Poly (llactic Acid), Macromolecules, vol.40, issue.26, pp.9463-9469, 2007.

J. Zhang, K. Tashiro, H. Tsuji, and A. Domb, Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(l-lactide) Investigated by Simultaneous Measurements of WAXD and DSC, Macromolecules, vol.41, issue.4, pp.1352-1357, 2008.

J. Menczel and B. Wunderlich, Heat capacity hysteresis of semicrystalline macromolecular glasses, J. Polym. Sci. Polym. Lett. Ed, vol.19, issue.5, pp.261-264, 1981.

N. Delpouve, A. Saiter, J. F. Mano, and E. Dargent, Cooperative rearranging region size in semicrystalline poly(l-lactic acid), Polymer (Guildf), vol.49, pp.3130-3135, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02152267

E. Zuza, J. M. Ugartemendia, A. Lopez, E. Meaurio, A. Lejardi et al., Glass transition behavior and dynamic fragility in polylactides containing mobile and rigid amorphous fractions, Polymer (Guildf), vol.49, issue.20, pp.4427-4432, 2008.

G. Perego, G. D. Cella, and C. Bastioli, Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties, J. Appl. Polym. Sci, vol.59, issue.1, pp.37-43, 1996.

H. Tsuji, R. Okino, H. Daimon, and K. Fujie, Water vapor permeability of poly(lactide)s: Effects of molecular characteristics and crystallinity, J. Appl. Polym. Sci, vol.99, issue.5, pp.2245-2252, 2006.

C. Courgneau, S. Domenek, R. Lebossé, A. Guinault, L. Avérous et al., Effect of crystallization on barrier properties of formulated polylactide, Polym. Int, vol.61, issue.2, pp.180-189, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01200977

A. Guinault, C. Sollogoub, V. Ducruet, and S. Domenek, Impact of crystallinity of poly(lactide) on helium and oxygen barrier properties, Eur. Polym. J, vol.48, issue.4, pp.779-788, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01203341

R. Auras, B. Harte, and S. Selke, An overview of polylactides as packaging materials, Macromol. Biosci, vol.4, issue.9, pp.835-864, 2004.

J. J. Cooper-white and M. E. Mackay, Effect of molecular weight and temperature on the viscoelasticity of poly(l-lactic acid), J. Polym. Sci. Part B Polym. Phys, vol.37, issue.15, pp.1803-1814, 1999.

Q. Fang and M. A. Hanna, Rheological properties of amorphous and semicrystalline polylactic acid polymers, Ind. Crops Prod, vol.10, issue.1, pp.47-53, 1999.

S. Jacobsen and H. G. Fritz, Plasticizing polylactide?the effect of different plasticizers on the mechanical properties, Polym. Eng. Sci, vol.39, issue.7, pp.1303-1310, 1999.

A. Sodergard, Properties of lactic acid based polymers and their correlationwith composition, Prog. Polym. Sci, vol.27, issue.6, pp.1123-1163, 2002.

K. Van-de-velde and P. Kiekens, Biopolymers: overview of several properties and consequences on their applications, Polym. Test, vol.21, issue.4, pp.433-442, 2002.

K. S. Anderson, K. M. Schreck, and M. A. Hillmyer, Toughening Polylactide, Polym. Rev, vol.48, issue.1, pp.85-108, 2008.

H. Yamane and K. Sasai, Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid), Polymer (Guildf), vol.44, issue.8, pp.2569-2575, 2003.

H. Tsuji, Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications, Macromol. Biosci, vol.5, issue.7, pp.569-597, 2005.

Y. Furuhashi, Y. Kimura, N. Yoshie, and H. Yamane, Higher-order structures and mechanical properties of stereocomplex-type poly(lactic acid) melt spun fibers, Polymer (Guildf), vol.47, issue.16, pp.5965-5972, 2006.

V. Krikorian and D. J. Pochan, Poly (l-Lactic Acid)/Layered Silicate Nanocomposite: Fabrication, Characterization, and Properties, Chem. Mater, vol.15, issue.22, pp.4317-4324, 2003.

T. Wu and C. Wu, Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: Preparation and characterization, Polym. Degrad. Stab, vol.91, issue.9, pp.2198-2204, 2006.

S. Sinha-ray and M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci, vol.28, issue.11, pp.1539-1641, 2003.

S. R. Suprakas, M. Pralay, O. Masami, Y. Kazunobu, and K. Ueda, New Polylactide/Layered Silicate Nanocomposites. 1. Preparation, Characterization, and Properties, Macromolecules, vol.35, issue.8, pp.3104-3110, 2002.

M. Paul, M. Alexandre, P. Degée, C. Henrist, A. Rulmont et al., New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: thermal and morphological study, Polymer (Guildf), vol.44, issue.2, pp.443-450, 2003.

S. S. Sabet and A. A. Katbab, Interfacially compatibilized poly(lactic acid) and poly(lactic acid)/polycaprolactone/organoclay nanocomposites with improved biodegradability and barrier properties: Effects of the compatibilizer structural parameters and feeding route, J. Appl. Polym. Sci, vol.111, issue.4, pp.1954-1963, 2009.

C. Guang-xin, K. Hun-sik, S. Jae-hun, and J. Yoon, Role of Epoxy Groups on Clay Surface in the Improvement of Morphology of Poly(l-lactide)/Clay Composites, Macromolecules, vol.38, issue.9, pp.3738-3744, 2005.

K. Fukushima, D. Tabuani, and G. Camino, Nanocomposites of PLA and PCL based on montmorillonite and sepiolite, Mater. Sci. Eng. C, vol.29, issue.4, pp.1433-1441, 2009.

M. Liu, Z. Jia, D. Jia, and C. Zhou, Recent advance in research on halloysite nanotubes-polymer nanocomposite, Prog. Polym. Sci, vol.39, issue.8, pp.1498-1525, 2014.

R. T. Silva, M. Soheilmoghaddam, K. L. Goh, M. U. Wahit, S. A. Bee et al., Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites, Polym. Compos, vol.37, issue.3, pp.861-869, 2016.

Y. Chen, L. M. Geever, J. A. Killion, J. G. Lyons, C. L. Higginbotham et al., Halloysite nanotube reinforced polylactic acid composite, Polym. Compos, vol.38, issue.10, pp.2166-2173, 2017.

K. Prashantha, B. Lecouvet, M. Sclavons, M. F. Lacrampe, and P. Krawczak, Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment, J. Appl. Polym. Sci, vol.128, issue.3, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01773168

P. Krishnaiah, C. T. Ratnam, and S. Manickam, Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamicmechanical properties, Appl. Clay Sci, vol.135, pp.583-595, 2017.

S. Bourbigot and G. Fontaine, Flame retardancy of polylactide: an overview, Polym. Chem, vol.1, issue.9, p.1413, 2010.

K. Kimura and Y. Horikoshi, Bio-based polymers, Fujitsu Sci. Tech. J, vol.41, issue.2, pp.173-180, 2005.

K. Iga, T. Ueno, K. Mizuno, T. Ishikawa, and K. Takeda, The Flammability and Cage Effect of the Immiscible Alloy Polycarbonate/Polylactic Acid, Kobunshi Ronbunshu, vol.64, issue.9, pp.561-567, 2007.

H. Nishida, Y. Fan, T. Mori, N. Oyagi, Y. Shirai et al., Feedstock Recycling of Flame-Resisting Poly(lactic acid)/Aluminum Hydroxide Composite to l,l-lactide, Ind. Eng. Chem. Res, vol.44, issue.5, pp.1433-1437, 2005.

H. Kubokawa, M. Ohta, and T. Hatakeyama, Flame-Retarding of Polylactide Fabrics, Sen'i Gakkaishi, vol.55, pp.290-297, 1999.

R. Sonnier, A. Taguet, L. Ferry, and J. Lopez-cuesta, Flame Retardant Biobased Polymers, Towards Bio-based Flame Retardant Polymers, pp.1-32, 2018.

C. Réti, M. Casetta, S. Duquesne, S. Bourbigot, and R. Delobel, Flammability properties of intumescent PLA including starch and lignin, Polym. Adv. Technol, vol.19, issue.6, pp.628-635, 2008.

J. Zhan, L. Song, S. Nie, and Y. Hu, Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant, Polym. Degrad. Stab, vol.94, issue.3, pp.291-296, 2009.

S. Xuan, X. Wang, L. Song, W. Xing, H. Lu et al., Study on flame-retardancy and thermal degradation behaviors of intumescent flame-retardant polylactide systems, Polym. Int, vol.60, issue.10, pp.1541-1547, 2011.

G. Stoclet, M. Sclavons, B. Lecouvet, J. Devaux, P. Van-velthem et al., Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: structure, mechanical properties and fire performance, RSC Adv, vol.4, issue.101, pp.57553-57563, 2014.

J. Lopez-cuesta and F. Laoutid, Multicomponents FR systems: polymer nanocomposites combined with additional materials, Fire retardancy of polymeric materials, 2010.

G. Fontaine and S. Bourbigot, Intumescent polylactide: A nonflammable material, J. Appl. Polym. Sci, vol.113, issue.6, pp.3860-3865, 2009.

Z. Matusinovic and C. A. Wilkie, Fire retardancy and morphology of layered double hydroxide nanocomposites: a review, J. Mater. Chem, vol.22, issue.36, p.18701, 2012.

D. Wang, A. Leuteritz, Y. Wang, U. Wagenknecht, and G. Heinrich, Preparation and burning behaviors of flame retarding biodegradable poly(lactic acid) nanocomposite based on zinc aluminum layered double hydroxide, Polym. Degrad. Stab, vol.95, issue.12, pp.2474-2480, 2010.

D. M. Fox, J. Lee, C. J. Citro, and M. Novy, Flame retarded poly(lactic acid) using POSS-modified cellulose. 1. Thermal and combustion properties of intumescing composites, Polym. Degrad. Stab, vol.98, issue.2, pp.590-596, 2013.

D. M. Fox, M. Novy, K. Brown, M. Zammarano, R. H. Harris et al., Flame retarded poly(lactic acid) using POSS-modified cellulose. 2. Effects of intumescing flame retardant formulations on polymer degradation and composite physical properties, Polym. Degrad. Stab, vol.106, pp.54-62, 2014.

M. Murariu, A. L. Dechief, L. Bonnaud, Y. Paint, A. Gallos et al., The production and properties of polylactide composites filled with expanded graphite, Polym. Degrad. Stab, vol.95, issue.5, pp.889-900, 2010.

M. Joshi, Textbook of field crops, 2015.

M. I. Kohan, Nylon Plastics, 1973.

D. R. Lide, CRC handbook of chemistry and physics, 2004.

Y. Kinoshita, An investigation of the structures of polyamide series, Die Makromol. Chemie, vol.33, issue.1, pp.1-20, 1959.

W. P. Slichter, Crystal structures in polyamides made from ?-amino acids, J. Polym. Sci, vol.36, issue.130, pp.259-266, 1959.

J. H. Magill, Formation of spherulities in polyamides. IV. Even-odd polyamides and poly(?-aminocarboxylic acids), J. Polym. Sci. Part A-2 Polym. Phys, vol.7, issue.1, pp.123-142, 1969.

M. Dosiere and J. J. Point, Anisotropic swelling of doubly oriented nylon-11 with a lamellar structure, J. Polym. Sci. Polym. Phys. Ed, vol.22, issue.4, pp.749-758, 1984.

G. H. Herman, F. Mark, N. G. Gaylord, and N. M. Bikales, Encyclopedia of polymer science and technology plastics, resins, rubbers, fibers, polyesters to rayons, vol.11, 1969.

D. W. Van-krevelen, Properties of polymers, 1997.

J. P. Trotignon, M. Piperaud, J. Verdu, and A. Drobaczynski, Précis de matières plastiques : Structure-propriétés-mise en oeuvre et applications,. Nathan afnor, 1994.

R. Puffr and J. ?ebenda, On the Structure and Properties of Polyamides. XXVII. The Mechanism of Water Sorption in Polyamides, J. Polym. Sci. Part C Polym. Symp, vol.16, issue.1, pp.79-93, 2007.

F. Poulard, Adhésion du polyamide 11 : mécanismes et vieillissement hygrothermal, Ecole Nationale Supérieure des Mines de Paris, 2004.

G. Serpe and N. Chaupart, Relaxation-structure relationship in bulk and plasticized polyamide 11, J. Polym. Sci. Part B Polym. Phys, vol.34, issue.14, pp.2351-2365, 1996.

G. Filippone, S. C. Carroccio, G. Curcuruto, E. Passaglia, C. Gambarotti et al., Timeresolved rheology as a tool to monitor the progress of polymer degradation in the melt state -Part I: Thermal and thermo-oxidative degradation of polyamide 11, Polymer (Guildf), vol.72, pp.134-141, 2015.

M. J. Oliveira and G. Botelho, Degradation of polyamide 11 in rotational moulding, Polym. Degrad. Stab, vol.93, issue.1, pp.139-146, 2008.

S. Acierno and P. Van-puyvelde, Rheological behavior of polyamide 11 with varying initial moisture content, J. Appl. Polym. Sci, vol.97, issue.2, pp.666-670, 2005.

C. Gourier, Contribution à l 'étude de matériaux biocomposites à matrice thermoplastique polyamide-11 et renforcés par des fibres de lin T, 2016.

. Arkema, RILSAN® PA 11: CREATED FROM A RENEWABLE SOURCE, 2005.

S. V. Levchik, L. Costa, and G. Camino, Effect of the fire-retardant, ammonium polyphosphate, on the thermal decomposition of aliphatic polyamides. I. Polyamides 11 and 12, Polym. Degrad. Stab, vol.36, issue.1, pp.31-41, 1992.

S. Huang, M. Wang, T. Liu, W. Zhang, W. C. Tjiu et al., Morphology, thermal, and rheological behavior of nylon 11/multi-walled carbon nanotube nanocomposites prepared by melt compounding, Polym. Eng. Sci, vol.49, issue.6, pp.1063-1068, 2009.

S. C. Lao, J. H. Koo, T. J. Moon, M. Londa, C. C. Ibeh et al., Flame-retardant polyamide 11 nanocomposites: Further thermal and flammability studies, J. Fire Sci, vol.29, issue.6, pp.479-498, 2011.

L. Ferry, R. Sonnier, J. M. Lopez-cuesta, S. Petigny, and C. Bert, Thermal degradation and flammability of polyamide 11 filled with nanoboehmite, J. Therm. Anal. Calorim, vol.129, issue.2, pp.1029-1037, 2017.

K. S. Anderson and M. A. Hillmyer, The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends, Polymer (Guildf), vol.45, issue.26, pp.8809-8823, 2004.

Y. F. Kim, C. N. Choi, Y. D. Kim, K. Y. Lee, and M. S. Lee, Compatibilization of immiscible poly(llactide) and low density polyethylene blends, Fibers Polym, vol.5, issue.4, pp.270-274, 2004.

P. Choudhary, S. Mohanty, S. K. Kayak, and L. Unnikrishnan, Poly(L-lactide)/Polypropylene Blends: Evaluation of Mechanical, Thermal, and Morphological Characteristics, J. Appl. Polym. Sci, vol.121, issue.6, pp.3223-3237, 2011.

J. Han and H. Huang, Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends, J. Appl. Polym. Sci, vol.120, issue.6, pp.3217-3223, 2011.

F. Feng and L. Ye, Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends, J. Appl. Polym. Sci, vol.119, issue.5, pp.2778-2783, 2011.

M. E. Broz, D. L. Vanderhart, and N. R. Washburn, Structure and mechanical properties of poly(D,L-lactic acid)/poly(?-caprolactone) blends, Biomaterials, vol.24, issue.23, pp.4181-4190, 2003.

N. López-rodríguez, A. López-arraiza, E. Meaurio, and J. R. Sarasua, Crystallization, morphology, and mechanical behavior of polylactide/poly(?-caprolactone) blends, Polym. Eng. Sci, vol.46, issue.9, pp.1299-1308, 2006.

T. Semba, K. Kitagawa, U. S. Ishiaku, M. Kotaki, and H. Hamada, Effect of compounding procedure on mechanical properties and dispersed phase morphology of poly(lactic acid)/polycaprolactone blends containing peroxide, J. Appl. Polym. Sci, vol.103, issue.2, pp.1066-1074, 2007.

C. L. Simões, J. C. Viana, and A. M. Cunha, Mechanical properties of poly(?-caprolactone) and poly(lactic acid) blends, J. Appl. Polym. Sci, vol.112, issue.1, pp.345-352, 2009.

G. X. Chen, H. S. Kim, E. S. Kim, and J. S. Yoon, Compatibilization-like effect of reactive organoclay on the poly(l-lactide)/poly(butylene succinate) blends, Polymer (Guildf), vol.46, issue.25, pp.11829-11836, 2005.

A. Bhatia, R. K. Gupta, S. N. Bhattacharya, and H. J. Choi, Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application, Korea Aust. Rheol. J, vol.19, issue.3, pp.125-131, 2007.

Y. Deng and N. L. Thomas, Blending poly(butylene succinate) with poly(lactic acid): Ductility and phase inversion effects, Eur. Polym. J, vol.71, pp.534-546, 2015.

L. Jiang, M. P. Wolcott, and J. Zhang, Study of biodegradable polylactide/poly(butylene adipateco-terephthalate) blends, Biomacromolecules, vol.7, p.199, 2006.

S. Y. Gu, K. Zhang, J. Ren, and H. Zhan, Melt rheology of polylactide/poly(butylene adipate-coterephthalate) blends, Carbohydr. Polym, vol.74, issue.1, pp.79-85, 2008.

F. Signori, M. Coltelli, and S. Bronco, Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing, Polym. Degrad. Stab, vol.94, issue.1, pp.74-82, 2009.

J. Yeh, C. Tsou, C. Huang, K. Chen, C. Wu et al., Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends, J. Appl. Polym. Sci, vol.116, issue.2, 2009.

F. Feng and L. Ye, Structure and Property of Polylactide/Polyamide Blends, J. Macromol. Sci. Part B, vol.49, issue.6, pp.1117-1127, 2010.

M. Y. Meshchankina, Y. A. Kuznetsova, M. A. Shcherbina, and S. N. Chvalun, Biodegradable blends obtained via reactive blending of polylactide and polyamide-6, Polym. Sci. Ser. B, vol.58, issue.2, pp.214-225, 2016.

V. Sedlarik, O. Otgonzul, T. Kitano, A. Gregorova, M. Hrabalova et al., Effect of Phase Arrangement on Solid State Mechanical and Thermal Properties of Polyamide 6/Polylactide Based Co-polyester Blends, J. Macromol. Sci. Part B, vol.51, issue.5, pp.982-1001, 2012.

P. Kucharczyk, O. Otgonzu, T. Kitano, A. Gregorova, D. Kreuh et al., Correlation of Morphology and Viscoelastic Properties of Partially Biodegradable Polymer Blends Based on Polyamide 6 and Polylactide Copolyester, Polym. Plast. Technol. Eng, vol.51, issue.14, pp.1432-1442, 2012.

Y. Wang, X. Hu, H. Li, X. Ji, and Z. Li, Polyamide-6/Poly(lactic acid) Blends Compatibilized by the Maleic Anhydride Grafted Polyethylene-Octene Elastomer, Polym. Plast. Technol. Eng, vol.49, issue.12, pp.1241-1246, 2010.

P. Kucharczyk, V. Sedlarik, N. Miskolczi, H. Szakacs, and T. Kitano, Properties enhancement of partially biodegradable polyamide/polylactide blends through compatibilization with novel polyalkenyl-poly-maleic-anhydride-amide/imide-based additives, J. Reinf. Plast. Compos, vol.31, issue.3, pp.189-202, 2012.

F. C. Pai, S. M. Lai, and H. H. Chu, Characterization and properties of reactive poly(lactic acid)/polyamide 610 biomass blends, J. Appl. Polym. Sci, vol.130, issue.4, pp.2563-2571, 2013.

T. Moriyama, N. Sumiya, and T. Saito, Impact strength improvement of polyamide 11 without flexural modulus reduction by dispersing poly(butylene succinate) particles, Polym. J, vol.48, issue.2, pp.221-224, 2016.

G. C. Gemeinhardt, A. A. Moore, and R. B. Moore, Influence of ionomeric compatibilizers on the morphology and properties of amorphous polyester/polyamide blends, Polym. Eng. Sci, vol.44, issue.9, pp.1721-1731, 2004.

J. Kawada, M. Kitou, M. Mouri, T. Mitsuoka, T. Araki et al., Morphology Controlled PA11 Bio-Alloys with Excellent Impact Strength, ACS Sustain. Chem. Eng, vol.4, issue.4, pp.2158-2164, 2016.

V. A. Deimede, K. V. Fragou, E. G. Koulouri, J. K. Kallitsis, and G. A. Voyiatzis, Miscibility behavior of polyamide 11/sulfonated polysulfone blends using thermal and spectroscopic techniques, Polymer (Guildf), vol.41, issue.26, pp.9095-9101, 2000.

M. R. Kamal, M. A. Sahto, and L. A. Utracki, Some solid-state properties of blends of polyethylene terephthalate and polyamide-6,6, Polym. Eng. Sci, vol.22, issue.17, pp.1127-1137, 1982.

K. Watanabe, M. Kita, A. Izuka, and K. Sumita, New Developments in Thermoplastic Alloys, Compalloy '90, pp.269-75, 1990.

N. Wakita, Melt elasticity of incompatible blends of poly(butylene terephthalate)(PBT) and polyamide 6 (PA6), Polym. Eng. Sci, vol.33, issue.13, pp.781-788, 1993.

L. A. Utracki, A. M. Catani, G. L. Bata, M. R. Kamal, and V. Tan, Melt rheology of blends of semicrystalline polymers. I. Degradation and viscosity of poly(ethylene terephthalate)-polyamide-6,6 mixtures, J. Appl. Polym. Sci, vol.27, issue.6, pp.1913-1931, 1982.

G. L. Utracki and L. A. Bata, No Title, 1982.

G. L. Utracki and L. A. Bata, No Title, Spe Antec, Technical Papers, p.84, 1982.

A. Retolaza, J. I. Eguiazábal, and J. Nazábal, Structure and mechanical properties of polyamide-6,6/poly(ethylene terephthalate) blends, Polym. Eng. Sci, vol.44, issue.8, pp.1405-1413, 2004.

M. Evstatiev, J. M. Schultz, S. Petrovich, G. Georgiev, S. Fakirov et al., Situ Polymer / Polymer Composites from Poly, p.66

. Blends, J. Appl. Polym. Sci, vol.67, pp.723-737, 1998.

K. C. Chiou and F. C. Chang, Reactive compatibilization of polyamide-6 (PA 6)/polybutylene terephthalate (PBT) blends by a multifunctional epoxy resin, J. Polym. Sci. Part B Polym. Phys, vol.38, issue.1, pp.23-33, 2000.

J. U. An, J. Ce, and Y. Liu, Special Effect of Epoxy Resin E-44 on Compatibility and Mechanical Properties of Poly ( buty1ene terephthalate )/ Polyamide-6 Blends, vol.60, pp.1803-1810, 1996.

R. Jeziórska, Studies on reactive compatibilisation of polyamide 6/poly(butylene terephthalate) blends by low molecular weight bis-oxazoline, Polym. Degrad. Stab, vol.90, issue.2, pp.224-233, 2005.

R. Scaffaro, L. Botta, F. P. La-mantia, P. Magagnini, D. Acierno et al., Effect of adding new phosphazene compounds to poly(butylene terephthalate)/polyamide blends. I: Preliminary study in a batch mixer, Polym. Degrad. Stab, vol.90, issue.2, pp.234-243, 2005.

R. Scaffaro, L. Botta, F. P. La-mantia, M. Gleria, R. Bertani et al., Effect of adding new phosphazene compounds to poly(butylene terephthalate)/polyamide blends. II: Effect of different polyamides on the properties of extruded samples, Polym. Degrad. Stab, vol.91, issue.10, pp.2265-2274, 2006.

J. John and M. Bhattacharya, Synthesis and properties of reactively compatibilized polyester and polyamide blends, Polym. Int, vol.49, pp.860-866, 2000.

G. Stoclet, R. Seguela, and J. Lefebvre, Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11, Polymer (Guildf), vol.52, issue.6, pp.1417-1425, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01822570

V. Heshmati, A. M. Zolali, and B. D. Favis, Morphology development in poly (lactic acid)/polyamide11 biobased blends: Chain mobility and interfacial interactions, Polym. (United Kingdom), vol.120, pp.197-208, 2017.

R. Patel, D. A. Ruehle, J. R. Dorgan, P. Halley, and D. Martin, Biorenewable blends of polyamide-11 and polylactide, Polym. Eng. Sci, vol.54, pp.1523-1532, 2014.

L. Pillon and L. A. Utracki, Spectroscopic Study of Poly(Ethy1ene Terephthalate)/ Poly(Amide-6,6) Blends, Polym. Eng. Sci, vol.27, issue.8, pp.562-567, 1987.

F. Samperi, C. Puglisi, R. Alicata, and G. Montando, Essential Role of Chain Ends in the Nylon-6/Poly(ethylene terephthalate) Exchange, J. Polym. Sci., Part A Polym. Chem, vol.41, p.2778, 2003.

J. Gug and M. J. Sobkowicz, Improvement of the mechanical behavior of bioplastic poly(lactic acid)/polyamide blends by reactive compatibilization, J. Appl. Polym. Sci, vol.43350, 2016.

W. Dong, X. Cao, and Y. Li, High-performance biosourced poly(lactic acid)/polyamide 11 blends with controlled salami structure, Polym. Int, vol.63, issue.16, pp.1094-1100, 2013.

J. M. Younker, R. H. Poladi, H. Bendler, and H. B. Sunkara, Computational screening of renewably sourced polyalkylene glycol plasticizers for nylon polyamides, vol.2015, 2015.

F. Walha, K. Lamnawar, A. Maazouz, and M. Jaziri, Rheological, Morphological and Mechanical Studies of Sustainably Sourced Polymer Blends Based on Poly(Lactic Acid) and Polyamide 11, Polymers (Basel), vol.8, issue.3, pp.61-83, 2016.

A. M. Zolali and B. D. Favis, Compatibilization and Toughening of Cocontinuous PLA/PA11 Blend via Controlled Localization of Partially Wet Droplets at the Interface, Polymer (Guildf), vol.114, pp.277-288, 2017.

T. Young, An Essay on the Cohesion of Fluids, Philos. Trans. R. Soc. London, vol.95, pp.65-87, 1805.

A. M. Zolali, V. Heshmati, and B. D. Favis, Ultratough Co-Continuous PLA/PA11 by Interfacially Percolated Polyether-b-amide, Macromolecules, vol.50, pp.264-274, 2017.

A. Nuzzo, S. Coiai, S. C. Carroccio, N. T. Dintcheva, C. Gambarotti et al., Heat-Resistant Fully Bio-Based Nanocomposite Blends Based on Poly, Macromol. Mater. Eng, vol.299, issue.1, pp.31-40, 2014.

A. Nuzzo, E. Bilotti, T. Peijs, D. Acierno, and G. Filippone, Nanoparticle-induced co-continuity in immiscible polymer blends -A comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes, Polymer (Guildf), vol.55, issue.19, pp.4908-4919, 2014.

B. J. Rashmi, K. Prashantha, M. Lacrampe, and P. Krawczak, Toughening of poly(lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes, Express Polym. Lett, vol.9, issue.8, pp.721-735, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01773469

J. Gug, B. Tan, J. Soule, M. Downie, J. Barrington et al., Analysis of Models Predicting Morphology Transitions in Reactive Twin-Screw Extrusion of Bio-Based Polyester/Polyamide Blends, Int. Polym. Process, vol.32, issue.3, pp.363-377, 2017.

B. N. Imamura, H. Sakamoto, Y. Higuchi, S. Kawasaki, M. Okoshi et al., Evaluation of Mechanical Properties and Flame Resistance of Biobased Polymer Compounds, Plastics Engineering, vol.69, issue.07, pp.58-63, 2013.

V. Heshmati, M. R. Kamal, and B. D. Favis, Tuning the localization of finely dispersed cellulose nanocrystal in poly (lactic acid)/bio-polyamide11 blends, J. Polym. Sci. Part B Polym. Phys, vol.2, issue.5, pp.1886-1895, 2017.

V. Heshmati, M. R. Kamal, and B. D. Favis, Cellulose nanocrystal in poly(lactic acid)/polyamide11 blends: Preparation, morphology and co-continuity, Eur. Polym. J, vol.98, pp.11-20, 2018.

J. H. Wu, C. W. Chen, M. C. Kuo, M. S. Yen, and K. Y. Lee, High Toughness and Fast Crystallization Poly(Lactic Acid)/Polyamide 11/SiO2Composites, J. Polym. Environ, vol.26, issue.2, pp.626-635, 2018.

F. Bergaya, B. K. Theng, and G. Lagaly, Handbook of clay science. Developments of clay science, 2006.

A. Loiseau, Elaboration et caractérisation de Nanocomposites modéles Laponite/Polyoxyde d'éthylène, 2006.

S. B. Hendricks, Lattice Structure of Clay Minerals and Some Properties of Clays, J. Geol, vol.50, issue.3, pp.276-290, 1942.

J. Sivathasan, Preparation of Clay-dye pigment and its dispersion in polymers, 2007.

M. Zanetti, S. Lomakin, and G. Camino, Polymer layered silicate nanocomposites, Macromol. Mater. Eng, vol.279, issue.1, pp.1-9, 2000.

Q. T. Nguyen and D. G. Baird, Preparation of polymer-clay nanocomposites and their properties, Adv. Polym. Technol, vol.25, issue.4, pp.270-285, 2006.

K. Fukushima, A. Fina, F. Geobaldo, A. Venturello, and G. Camino, Properties of poly(lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate, Express Polym. Lett, vol.6, issue.11, pp.914-926, 2012.

M. Günther and F. Horst, Principes fondamentaux de l'Aerosil, 1992.

A. M. Torró-palau, J. C. Fernández-garc??a, A. Orgilés-barceló, and J. M. Mart??n-mart??nez, Characterization of polyurethanes containing different silicas, Int. J. Adhes. Adhes, vol.21, issue.1, pp.1-9, 2001.

S. U. Pickering, CXCVI.-Emulsions, J. Chem. Soc.{,} Trans, vol.91, issue.0, 1907.

S. Arditty, C. P. Whitby, B. P. Binks, V. Schmitt, and F. Leal-calderon, Some general features of limited coalescence in solid-stabilized emulsions, Eur. Phys. J. E, vol.11, issue.3, pp.273-281, 2003.

O. T. Gritsenko and A. E. Nesterov, Segmental adsorption energy and phase behaviour of filled polymer blends, Eur. Polym. J, vol.27, issue.4-5, pp.455-459, 1991.

Y. S. Lipatov and A. E. Nesterov, Effect of filler concentration on the phase separation in poly(vinyl acetate)-poly(methyl methacrylate) mixtures, Polym. Eng. Sci, vol.32, issue.17, pp.1261-1263, 1992.

A. E. Nesterov and Y. S. Lipatov, Compatibilizing effect of a filler in binary polymer mixtures, Polymer (Guildf), vol.40, issue.5, pp.1347-1349, 1999.

A. E. Nesterov, Y. S. Lipatov, and T. D. Ignatova, Effect of an interface with solid on the component distribution in separated phases of binary polymer mixtures, Eur. Polym. J, vol.37, issue.2, pp.281-285, 2001.

Y. S. Lipatov, A. E. Nesterov, T. D. Ignatova, and D. A. Nesterov, Effect of polymer-filler surface interactions on the phase separation in polymer blends, Polymer (Guildf), vol.43, issue.3, pp.875-880, 2002.

Y. S. Lipatov, Phase Separation in Filled Polymer Blends, J. Macromol. Sci. Part B, vol.45, issue.5, pp.871-888, 2006.

V. Ginzburg, Influence of Nanoparticles on Miscibility of Polymer Blends. A Simple Theory, Macromolecules, vol.38, issue.6, pp.2362-2367, 2005.

R. Aveyard, B. P. Binks, and J. H. Clint, Emulsions stabilised solely by colloidal particles, Adv. Colloid Interface Sci, pp.503-546, 2003.

B. P. Binks, Particles as surfactants-similarities and differences, Références bibliographiques, vol.7, p.258, 2002.

B. P. Binks and J. H. Clint, Solid Wettability from Surface Energy Components: Relevance to Pickering Emulsions, Langmuir, vol.18, issue.4, pp.1270-1273, 2002.

A. Baudouin and C. Bailly, Interface localization of carbon nanotubes in blends of two copolymers, Polym. Degrad. Stab, vol.95, issue.3, pp.389-398, 2010.

A. Baudouin, J. Devaux, and C. Bailly, Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer, Polymer (Guildf), vol.51, issue.6, pp.1341-1354, 2010.

A. Baudouin, D. Auhl, F. Tao, J. Devaux, and C. Bailly, Polymer blend emulsion stabilization using carbon nanotubes interfacial confinement, Polymer (Guildf), vol.52, issue.1, pp.149-156, 2011.

Y. Yoo, C. Park, S. Lee, K. Choi, D. S. Kim et al., Influence of Addition of Organoclays on Morphologies in Nylon 6/LLDPE Blends, Macromol. Chem. Phys, vol.206, issue.8, pp.878-884, 2005.

O. Breuer, R. Tchoudakov, M. Narkis, and A. Siegmann, Segregated structures in carbon blackcontaining immiscible polymer blends: HIPS/LLDPE systems, J. Appl. Polym. Sci, vol.64, issue.6, pp.1097-1106, 1997.

M. Kong, Y. Huang, Y. Lv, S. Wang, Q. Yang et al., Flow-induced morphological instability in nanosilica-filled polyamide 6/polystyrene blends, Polymer (Guildf), vol.55, issue.16, pp.4348-4357, 2014.

M. Kong, Y. Huang, Y. Lv, Q. Yang, and G. Li, Formation and stability of string phase in polyamide 6/polystyrene blends in confined flow: Effects of nanoparticles and blend ratio, AIChE J, 2015.

X. Hao, J. Kaschta, and D. W. Schubert, Viscous and elastic properties of polylactide melts filled with silica particles: Effect of particle size and concentration, Compos. Part B Eng, vol.89, pp.44-53, 2016.

P. Cassagnau, Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state, Polymer (Guildf), vol.44, issue.8, pp.2455-2462, 2003.

J. Paquien, J. Galy, J. Gérard, and A. Pouchelon, Rheological studies of fumed silicapolydimethylsiloxane suspensions, Colloids Surfaces A Physicochem. Eng. Asp, vol.260, issue.1-3, pp.165-172, 2005.

R. Inoubli, S. Dagréou, A. Lapp, L. Billon, and J. Peyrelasse, Nanostructure and Mechanical Properties of Polybutylacrylate Filled with Grafted Silica Particles, Langmuir, vol.22, issue.15, pp.6683-6689, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00085724

H. A. Barnes, A. Handbook, and . Elementary-rheology, , 2000.

L. Basilissi, G. D. Silvestro, H. Farina, and M. A. Ortenzi, Synthesis and Characterization of PLA Nanocomposites Containing Nanosilica Modified with Different Organosilanes I. Effect of the Organosilanes on the Properties of Nanocomposites: Macromolecular, Morphological, and Rheologic Characterization, J. Appl. Polym. Sci, issue.128, pp.1575-1582, 2012.

E. Acik, N. Orbey, and U. Yilmazer, Rheological properties of poly(lactic acid) based nanocomposites: Effects of different organoclay modifiers and compatibilizers, J. Appl. Polym. Sci, vol.133, issue.4, 2016.

X. Hao, J. Kaschta, Y. Pan, X. Liu, and D. W. Schubert, Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica, Polymer (Guildf), vol.82, pp.57-65, 2016.

M. Zhang, Y. Huang, M. Kong, H. Zhu, G. Chen et al., Morphology and rheology of poly(llactide)/polystyrene blends filled with silica nanoparticles, J. Mater. Sci, vol.47, issue.3, pp.1339-1347, 2012.

I. S. Polios, M. Soliman, C. Lee, S. P. Gido, K. Schmidt-rohr et al., Late Stages of Phase Separation in a Binary Polymer Blend Studied by Rheology, Optical and Electron Microscopy, and Solid State NMR, Macromolecules, vol.30, issue.15, pp.4470-4480, 1997.

C. Weis, J. Leukel, K. Borkenstein, D. Maier, and W. Gronski, Morphological and rheological detection of the phase inversion of PMMA / PS polymer blends, vol.241, pp.235-241, 1998.

I. Vinckier and H. M. Laun, Manifestation of phase separation processes in oscillatory shear: Droplet-matrix systems versus co-continuous morphologies, Rheol. Acta, vol.38, issue.4, pp.274-286, 1999.

I. Vinckier and H. M. Laun, Manifestation of spinodal decomposition in oscillatory measurements, Macromol. Symp, vol.149, pp.151-156, 2000.

J. Huitric, J. Ville, P. Médéric, M. Moan, and T. Aubry, Rheological, morphological and structural properties of PE/PA/nanoclay ternary blends: Effect of clay weight fraction, J. Rheol. (N. Y. N. Y), vol.53, issue.5, pp.1101-1119, 2009.

J. Ville, P. Médéric, J. Huitric, and T. Aubry, Structural and rheological investigation of interphase in polyethylene/polyamide/nanoclay ternary blends, Polymer (Guildf), vol.53, issue.8, pp.1733-1740, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00714723

J. Chang, Y. U. An, and G. S. Sur, Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability, J. Polym. Sci. Part B Polym. Phys, vol.41, issue.1, pp.94-103, 2003.

L. E. Nielsen, Mechanical Properties of Particulate-Filled Systems, J. Compos. Mater, vol.1, issue.1, pp.100-119, 1967.

S. Sahu and L. J. Broutman, Mechanical properties of particulate composites, Polym. Eng. Sci, vol.12, issue.2, pp.91-100, 1972.

M. E. Dekkers and D. Heikens, The effect of interfacial adhesion on the tensile behavior of polystyrene-glass-bead composites, J. Appl. Polym. Sci, vol.28, issue.12, pp.3809-3815, 1983.

G. Levita, A. Marchetti, and A. Lazzeri, Fracture of ultrafine calcium carbonate/polypropylene composites, Polym. Compos, vol.10, issue.1, pp.39-43, 1989.

G. Filippone, N. T. Dintcheva, F. P. La-mantia, and D. Acierno, Selective localization of organoclay and effects on the morphology and mechanical properties of LDPE/PA11 blends with distributed and co-continuous morphology, J. Polym. Sci. Part B Polym. Phys, vol.48, issue.5, pp.600-609, 2010.

H. Ebadi-dehaghani, H. A. Khonakdar, M. Barikani, S. H. Jafari, U. Wagenknecht et al., On Localization of Clay Nanoparticles in Polypropylene/poly(Lactic Acid) Blend Nanocomposites: Correlation with Mechanical Properties, J. Macromol. Sci. Part B Phys, vol.55, issue.4, pp.344-360, 2016.

K. Nuñez, C. Rosales, R. Perera, N. Villarreal, and J. M. Pastor, Nanocomposites of PLA/PP blends based on sepiolite, Polym. Bull, vol.67, issue.9, 1991.

E. Reynaud, Etude des relations Structure -Propriétés mécaniques de thermoplastiques renforcés par des particules inorganiques nanoscopiques, 2000.

Y. Shen, M. Finot, A. Needleman, and S. Suresh, Effective elastic response of two-phase composites, Acta Metall. Mater, vol.42, issue.1, pp.77-97, 1994.

H. Alter, Filler particle size and mechanical properties of polymers, J. Appl. Polym. Sci, vol.9, issue.4, pp.1525-1531, 1965.

K. Okuno and R. T. Woodhams, Mechanical Properties of Phenolic Resin Diafoams : Kenji Okuno Mater Res Cent, J. Cell. Plast, vol.10, issue.6, pp.295-300, 1974.

B. Turcsányi, B. Pukánszky, and F. Tüdõs, Composition dependence of tensile yield stress in filled polymers, J. Mater. Sci. Lett, vol.7, issue.2, pp.160-162, 1988.

F. Yu and H. Huang, Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles, Polym. Test, vol.45, pp.107-113, 2015.

V. Dias and J. Vandooren, Chimie de la combustion Flammes à base d'hydrocarbures, p.6210, 2004.

F. Laoutid, L. Bonnaud, M. Alexandre, J. Lopez-cuesta, and P. Dubois, New prospects in flame retardant polymer materials: From fundamentals to nanocomposites, Mater. Sci. Eng. R Reports, vol.63, issue.3, pp.100-125, 2009.

J. Lopez-cuesta and L. Ferry, , p.3060, 2013.

D. Dupuis, O. Mathieu, S. Boucard, S. Jeol, and J. Duchet-rumeau, Nanocomposites à nanocharges lamellaires, p.3223, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00377432

M. Batistella, A. S. Caro-bretelle, B. Otazaghine, P. Ienny, R. Sonnier et al., The influence of dispersion and distribution of ultrafine kaolinite in polyamide-6 on the mechanical properties and fire retardancy, Appl. Clay Sci, pp.8-15, 2015.

J. Zhang and C. A. Wilkie, Fire retardancy of polyethylene-alumina trihydrate containing clay as a synergist, Polym. Adv. Technol, vol.16, issue.7, pp.549-553, 2005.

Y. Tang, Y. Hu, J. Xiao, J. Wang, L. Song et al., PA-6 and EVA alloy/clay nanocomposites as char forming agents in poly(propylene) intumescent formulations, Polym. Adv. Technol, vol.16, issue.4, pp.338-343, 2005.

H. Vahabi, R. Sonnier, B. Otazaghine, G. L. Saout, and J. M. Lopez-cuesta, Nanocomposites of polypropylene/polyamide 6 blends based on three different nanoclays: Thermal stability and flame retardancy, Polimery/Polymers, vol.58, issue.5, pp.350-360, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00825562

G. Tang, D. Deng, J. Chen, K. Zhou, H. Zhang et al., The influence of organomodified sepiolite on the flame-retardant and thermal properties of intumescent flame-retardant polylactide composites, J. Therm. Anal. Calorim, vol.130, issue.2, pp.763-772, 2017.

M. Peixiang-xing, D. Bousmina, M. R. Rodrigue, and . Kamal, Critical Experimental Comparison between Five Techniques for the Determination of Interfacial Tension in Polymer Blends: Model System of Polystyrene/Polyamide-6, Macromolecules, vol.33, issue.21, pp.8020-8034, 2000.

S. Wu, Calculation of Interfacial Tension in Polymer Systems, J. Polym. Sci., Polym. Symp, vol.34, p.19, 1971.

D. K. Owens and R. C. Wendt, Estimation of the Surface Free Energy of Polymers, J. Appl. Polym. Sci, vol.13, p.1741, 1969.

F. Fenouillot, P. Cassagnau, and J. C. Majesté, Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends, Polymer (Guildf), vol.50, issue.6, pp.1333-1350, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00374439

L. Elias, F. Fenouillot, J. C. Majeste, and P. Cassagnau, Morphology and rheology of immiscible polymer blends filled with silica nanoparticles, Polymer (Guildf), vol.48, issue.20, pp.6029-6040, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00372813

E. A. Guggenheim, The Principle of Corresponding States, J. Chem. Phys, vol.13, issue.7, pp.253-261, 1945.

J. Feng, C. Chan, and J. Li, A method to control the dispersion of carbon black in an immiscible polymer blend, Polym. Eng. Sci, vol.43, issue.5, pp.1058-1063, 2003.

P. Zhou, W. Yu, C. Zhou, F. Liu, L. Hou et al., Morphology and electrical properties of carbon black filled LLDPE/EMA composites, J. Appl. Polym. Sci, vol.103, issue.1, pp.487-492, 2007.

I. Labaume, J. Huitric, P. Médéric, and T. Aubry, Structural and rheological properties of different polyamide/polyethylene blends filled with clay nanoparticles: A comparative study, Polymer (Guildf), vol.54, issue.14, pp.3671-3679, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00986904

M. Nofar, M. Heuzey, P. J. Carreau, and M. R. Kamal, Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow, Polymer (Guildf), vol.98, pp.353-364, 2016.

M. E. Mackay, A. Tuteja, P. M. Duxbury, C. J. Hawker, B. Van-horn et al., General Strategies for Nanoparticle Dispersion, Science (80-. ), vol.311, issue.5768, pp.1740-1743, 2006.

T. Kwon, T. Kim, F. Ali, D. J. Kang, M. Yoo et al., Size-Controlled Polymer-Coated Nanoparticles as Efficient Compatibilizers for Polymer Blends, Macromolecules, vol.44, issue.24, pp.9852-9862, 2011.

A. Göldel, G. Kasaliwal, and P. Pötschke, Selective Localization and Migration of Multiwalled Carbon Nanotubes in Blends of Polycarbonate and Poly(styrene-acrylonitrile), Macromol. Rapid Commun, vol.30, issue.6, pp.423-429, 2009.

A. Göldel, A. Marmur, G. R. Kasaliwal, P. Pötschke, and G. Heinrich, Shape-Dependent Localization of Carbon Nanotubes and Carbon Black in an Immiscible Polymer Blend during Melt Mixing, Macromolecules, vol.44, issue.15, pp.6094-6102, 2011.

A. Göldel, G. R. Kasaliwal, P. Pötschke, and G. Heinrich, The kinetics of CNT transfer between immiscible blend phases during melt mixing, Polymer (Guildf), vol.53, issue.2, pp.411-421, 2012.

Z. Fang, C. Harrats, N. Moussaif, and G. Groeninckx, Location of a nanoclay at the interface in an immiscible poly(?-caprolactone)/poly(ethylene oxide) blend and its effect on the compatibility of the components, J. Appl. Polym. Sci, vol.106, issue.5, pp.3125-3135, 2007.

W. Zhang, M. Lin, A. Winesett, O. Dhez, A. L. Kilcoyne et al., The use of functionalized nanoparticles as non-specific compatibilizers for polymer blends, Polym. Adv. Technol, vol.22, issue.1, pp.65-71, 2011.

. Iso, ISO_527-2_2012.pdf

. Iso/astm, NF EN ISO/ASTM 52900' Fabrication additive -Principes généraux -Terminologie, 2017.

C. W. Hull, APPARATUS FOR PRODUCTION OF THREE-DIMENSIONAL OBJECTS BY STEREOLITHOGRAPHY, 1986.

C. Astolfi, E. Constantin, and A. Moulet, Fabrication additive Mobiliser les forces françaises. 216AD

B. Wendel, D. Rietzel, F. Kühnlein, R. Feulner, G. Hülder et al., Additive processing of polymers, Macromol. Mater. Eng, vol.293, issue.10, pp.799-809, 2008.

R. , D. Farahani, and M. Dubé, Printing Polymer Nanocomposites and Composites in Three Dimensions, Adv. Eng. Mater, vol.20, issue.2, pp.1-9, 2018.

C. R. Rocha, A. R. Perez, D. A. Roberson, C. M. Shemelya, E. Macdonald et al., Novel ABS-based binary and ternary polymer blends for material extrusion 3D printing, J. Mater. Res, vol.29, issue.17, pp.1859-1866, 2014.

D. Roberson, C. M. Shemelya, E. Macdonald, and R. Wicker, Expanding the applicability of FDMtype technologies through materials development, Rapid Prototyp. J, vol.21, issue.2, pp.137-143, 2015.

C. Kuo, L. Liu, W. Teng, H. Chang, F. Chien et al., Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications, Compos. Part B Eng, vol.86, pp.36-39, 2016.

T. Patrício, M. Domingos, A. Gloria, U. D'amora, J. F. Coelho et al., Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering, Rapid Prototyp. J, vol.20, issue.2, pp.145-156, 2014.

T. Serra, M. Ortiz-hernandez, E. Engel, J. A. Planell, and M. Navarro, Relevance of PEG in PLAbased blends for tissue engineering 3D-printed scaffolds, Mater. Sci. Eng. C, vol.38, pp.55-62, 2014.

Q. Chen, J. D. Mangadlao, J. Wallat, A. Leon, J. K. Pokorski et al., 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties, ACS Appl. Mater. Interfaces, vol.9, issue.4, pp.4015-4023, 2017.

A. Balogová, R. Hudák, T. Tóth, M. Schnitzer, J. Feranc et al., Determination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitution, J. Biotechnol, vol.284, pp.123-130, 2018.

V. Garcia, J. Cailloux, O. Santana, M. Sanchez-soto, F. Carrasco et al., Tailoring PLA/PA bioblends for 3D printing applications via the manufacturing of in situ microfibrillar composite filaments, 2018.

J. Gonzalez-ausejo, J. Rydz, M. Musio?, W. Sikorska, H. Janeczek et al., Three-dimensional printing of PLA and PLA/PHA dumbbellshaped specimens of crisscross and transverse patterns as promising materials in emerging application areas: Prediction study, Polym. Degrad. Stab, vol.156, pp.100-110, 2018.

G. Cicala, G. Ognibene, S. Portuesi, I. Blanco, M. Rapisarda et al., Comparison of Ultem 9085 used in fused deposition modelling (FDM) with polytherimide blends, Materials (Basel), vol.11, issue.2, 2018.

, Simplify 3D

S. Lyu, T. D. Jones, F. S. Bates, and C. W. Macosko, Role of Block Copolymers on Suppression of Droplet Coalescence, Macromolecules, vol.35, issue.20, pp.7845-7855, 2002.

J. Takahashi and H. Suito, Evaluation of the Accuracy of the Three-Dimensional Size, Metall. Mater. Trans. A, vol.34, issue.1, pp.171-181, 2003.

G. Kister, G. Cassanas, and M. Vert, Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s, Polymer (Guildf), vol.39, issue.2, pp.267-273, 1998.

E. Meaurio, N. López-rodríguez, and J. R. Sarasua, Infrared spectrum of poly(L-lacticde): application to crystallinity studies, Macromolecules, vol.39, issue.26, pp.9291-9301, 2006.

E. Domingos, T. M. Pereira, E. V. De-castro, W. Romão, G. L. Sena et al., Monitorando a degradação da poliamida 11 (PA-11) via espectroscopia na região do infravermelho médio com transformada de fourier (FTIR), Polímeros, vol.23, pp.37-41, 2013.

E. W. Fischer, H. J. Sterzel, and G. Wegner, Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions, Kolloid-Zeitschrift Zeitschrift für Polym, vol.251, issue.11, pp.980-990, 1973.

Z. Qingxin, M. Zhishen, L. Siyang, and H. Zhang, Influence of Annealing on Structure of Nylon, vol.11, issue.16, pp.5999-6005, 2000.

C. Hugget, Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurement, Fire Mater, vol.4, issue.2, p.61, 1980.

D. Vrsaljko, D. Macut, and V. Kova?evi?, Potential role of nanofillers as compatibilizers in immiscible PLA/LDPE Blends, J. Appl. Polym. Sci, vol.132, issue.6, 2015.

D. Rasselet, A. Ruellan, A. Guinault, G. Miquelard-garnier, C. Sollogoub et al., Oxidative degradation of polylactide (PLA) and its effects on physical and mechanical properties, Eur. Polym. J, vol.50, pp.109-116, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00977105

S. Yan, J. Yin, Y. Yang, Z. Dai, J. Ma et al., Surface-grafted silica linked with l-lactic acid oligomer: A novel nanofiller to improve the performance of biodegradable poly(l-lactide), Polymer (Guildf), vol.48, issue.6, pp.1688-1694, 2007.

L. Wu, D. Cao, Y. Huang, and B. Li, Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: Preparation and characterization, Polymer (Guildf), vol.49, issue.3, pp.742-748, 2008.

E. Jalali-dil and B. D. Favis, Localization of micro-and nano-silica particles in heterophase poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends, Polymer (Guildf), vol.76, pp.295-306, 2015.

J. Plattier, L. Benyahia, M. Dorget, F. Niepceron, and J. F. Tassin, Viscosity-induced filler localisation in immiscible polymer blends, Polymer (Guildf), vol.59, pp.260-269, 2015.

E. Jalali-dil, N. Virgilio, and B. D. Favis, The effect of the interfacial assembly of nano-silica in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends on morphology, rheology and mechanical properties, Eur. Polym. J, vol.85, pp.635-646, 2016.

Z. M. Zou, Z. Y. Sun, and L. J. An, Effect of fumed silica nanoparticles on the morphology and rheology of immiscible polymer blends, Rheol. Acta, vol.53, issue.1, pp.43-53, 2014.

P. Thareja and S. Velankar, Particle-induced bridging in immiscible polymer blends, Rheol. Acta, vol.46, issue.3, pp.405-412, 2007.

P. Thareja and S. Velankar, Rheology of immiscible blends with particle-induced drop clusters, Rheol. Acta, vol.47, issue.2, pp.189-200, 2008.

S. P. Nagarkar and S. S. Velankar, Morphology and rheology of ternary fluid-fluid-solid systems, Soft Matter, vol.8, issue.32, pp.8464-8477, 2012.

L. Bai, J. H. Fruehwirth, X. Cheng, and C. W. Macosko, Dynamics and rheology of nonpolar bijels, Soft Matter, vol.11, issue.26, pp.5282-5293, 2015.

M. E. Cates and P. S. Clegg, Bijels: a new class of soft materials, Soft Matter, vol.4, issue.11, pp.2132-2138, 2008.

F. Laoutid, D. François, Y. Paint, L. Bonnaud, and P. Dubois, Using Nanosilica to Fine-Tune Morphology and Properties of Polyamide 6/Poly(propylene) Blends, Macromol. Mater. Eng, vol.298, issue.3, pp.328-338, 2013.

P. Cassagnau and F. Mélis, Non-linear viscoelastic behaviour and modulus recovery in silica filled polymers, Polymer (Guildf), vol.44, issue.21, pp.6607-6615, 2003.

H. Münstedt, T. Köppl, and C. Triebel, Viscous and elastic properties of poly(methyl methacrylate) melts filled with silica nanoparticles, Polymer (Guildf), vol.51, issue.1, pp.185-191, 2010.

Y. Li, C. Han, J. Bian, L. Han, L. Dong et al., Rheology and biodegradation of polylactide/silica nanocomposites, Polym. Compos, vol.33, issue.10, pp.1719-1727, 2012.

T. Parpaite, Synthèse de nanoparticules hybrides asymétriques et étude de leur effet compatibilisant dans des mélanges de polymères, 2014.

R. De-bruijn, Deformation and break-up of drops in simple shear flows, 1991.

R. Al-itry, K. Lamnawar, and A. Maazouz, Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy, Polym. Degrad. Stab, vol.97, issue.10, pp.1898-1914, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00728886

K. Lamnawar and A. Maazouz, Rheology and morphology of multilayer reactive polymers: Effect of interfacial area in interdiffusion/reaction phenomena, Rheol. Acta, vol.47, issue.4, pp.383-397, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00632041

F. Carrasco, J. Cailloux, P. E. Sánchez-jiménez, and M. L. Maspoch, Improvement of the thermal stability of branched poly(lactic acid) obtained by reactive extrusion, Polym. Degrad. Stab, vol.104, issue.1, pp.40-49, 2014.

J. Cailloux, R. N. Hakim, O. O. Santana, J. Bou, T. Abt et al., Reactive extrusion: A useful process to manufacture structurally modified PLA/o-MMT composites, Compos. Part A Appl. Sci. Manuf, vol.88, pp.106-115, 2016.

V. Ojijo and S. S. Ray, Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization, Polym. (United Kingdom), vol.80, pp.1-17, 2015.

S. M. Aharoni, C. E. Forbes, W. B. Hammond, D. M. Hindenlang, F. Mares et al., High-temperature reactions of hydroxyl and carboxyl PET chain end groups in the presence of aromatic phosphite, J. Polym. Sci. Part A Polym. Chem, vol.24, issue.6, pp.1281-1296, 1986.

R. Al-itry, Mélanges de polymères à base de Poly (acide lactique): Relation Structure/rhéologie/procédés de mise en forme, 2012.

Y. Wang, C. Fu, Y. Luo, C. Ruan, Y. Zhang et al., Melt synthesis and characterization of poly(Llactic acid) chain linked by multifunctional epoxy compound, J. Wuhan Univ. Technol. Sci. Ed, vol.25, issue.5, pp.774-779, 2010.

D. N. Bikiaris and G. P. Karayannidis, Chain Extension of Polyesters PET and PBT with Two New Diimidodiepoxides. II, J. Polym. Sci. Part A Polym. Chem, vol.34, pp.1337-1342, 1996.

N. Najafi, M. C. Heuzey, P. J. Carreau, and P. M. Wood-adams, Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders, Polym. Degrad. Stab, vol.97, issue.4, pp.554-565, 2012.

N. Najafi, M. C. Heuzey, and P. J. Carreau, Crystallization behavior and morphology of polylactide and PLA/clay nanocomposites in the presence of chain extenders, Polym. Eng. Sci, vol.53, issue.5, pp.1053-1064, 2013.

A. Mirzadeh, H. Ghasemi, F. Mahrous, and M. R. Kamal, Reactive extrusion effects on rheological and mechanical properties of poly(lactic acid)/poly[(butylene succinate)-co-adipate]/epoxy chain extender blends and clay nanocomposites, J. Appl. Polym. Sci, vol.132, issue.48, pp.42664-42674, 2015.

L. C. Arruda, M. Magaton, R. E. Bretas, and M. M. Ueki, Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends, Polym. Test, vol.43, pp.27-37, 2015.

Z. Cao, Y. Lu, C. Zhang, Q. Zhang, A. Zhou et al., Effects of the chain-extender content on the structure and performance of poly(lactic acid)-poly(butylene succinate)-microcrystalline cellulose composites, J. Appl. Polym. Sci, vol.134, issue.22, 2017.

R. Khankrua, S. Pivsa-art, H. Hiroyuki, and S. Suttiruengwong, Effect of chain extenders on thermal and mechanical properties of poly(lactic acid) at high processing temperatures: Potential application in PLA/Polyamide 6 blend, Polym. Degrad. Stab, vol.108, pp.232-240, 2014.

A. S. Elhassan, H. A. Saeed, Y. A. Eltahir, Y. M. Xia, and Y. P. Wang, Modification of PLA with Chain Extender, Appl. Mech. Mater, pp.44-47, 2014.

K. Lamnawar, A. Baudouin, and A. Maazouz, Interdiffusion/reaction at the polymer/polymer interface in multilayer systems probed by linear viscoelasticity coupled to FTIR and NMR measurements, Eur. Polym. J, vol.46, issue.7, pp.1604-1622, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00534583

, Micromeritics

B. Schartel and T. R. Hull, Development of fire-retarded materials-Interpretation of cone calorimeter data, Fire Mater, vol.31, issue.5, pp.327-354, 2007.

L. Dumazert, D. Rasselet, B. Pang, B. Gallard, S. Kennouche et al., Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives, Polym. Adv. Technol, 2017.

J. M. Lopez-cuesta and F. Laoutid, Multicomponent FR systems, Fire retardancy of polymeric materials, 2010.

Y. Tang, Y. Hu, L. Song, R. Zong, Z. Gui et al., Preparation and combustion properties of flame retarded polypropylene-polyamide-6 alloys, Polym. Degrad. Stab, vol.91, issue.2, pp.234-241, 2006.

N. Cinausero, Etude de la dégradation thermique et de la réaction au feu de nanocomposites à matrice PMMA et PS, Annexes, vol.2, 2008.

, Exemples de composants intervenant dans l'intumescence [229], (b) Modes d'action des nanoparticules sur le, Annexes Annexe, vol.1

, Observations MEB des nanocomposites polymère pur/silice préparés : (a) PLA-Si5, (b) PA11-Si5, (c) PLA-SiR5, vol.2

, Essais de vieillissement des polymères purs et des mélanges étudiés, Annexe, vol.3

, Courbes PCFC obtenues pour les PLA-Jx (a), les PA11-Jx (b) et le Joncryl (c), vol.4

, Diamètre moyen des nodules de PA11 extraits des mélanges PLA80-Jx, vol.5

, Données caractéristiques des propriétés thermiques, vol.6

, Courbes des tests de linéarité (a) et de stabilité thermique (b) des PLA80-Jx-V2, Annexe, vol.7

, Observations MEB en coupe transversale des éprouvettes haltères préparées par injection pour les mélanges PLA80-Jx-V2, vol.8

, Observations MEB en contraste de phase des nanocomposites ignifugés avec de la sépiolite, vol.9, p.276

, Observations MEB en contraste de phase des nanocomposites ignifugés avec de la cloisite 30B ou de la silice, vol.10

, Observations MEB en contraste de phase des nanocomposites ignifugés avec des nanoparticules de phyllosilicates et, vol.11