J. Svenson and I. A. Nicholls, On the Thermal and Chemical Stability of Molecularly Imprinted Polymers, Anal. Chim. Acta, vol.435, issue.1, pp.19-24, 2001.

M. V. Polyakov, Adsorption Properties and Structure of Silica Gel, Zhur Fiz Khim, vol.2, pp.799-805, 1931.

F. H. Dickey, The Preparation of Specific Adsorbents, Proc. Natl. Acad. Sci. 1949, vol.35, pp.227-229

G. Wulff, The Use of Polymers with Enzyme-Analogous Structures for the Resolution of Racemates, Angrew Chem Intern. Ed, vol.11, issue.4, p.341, 1972.

T. Takagishi and I. M. Klotz, Macromolecule-Small Molecule Interactions

, Introduction of Additional Binding Sites in Polyethyleneimine by Disulfide Cross-Linkages, Biopolymers, vol.1972, issue.2, pp.483-491

B. Sellergren and L. Andersson, Molecular Recognition in Macroporous Polymers Prepared by a Substrate Analog Imprinting Strategy, J. Org. Chem, vol.55, issue.10, pp.3381-3383, 1990.

G. Wulff, W. Vesper, R. Grobe-einsler, and A. Sarhan, Enzyme-Analogue Built Polymers, 4. On the Synthesis of Polymers Containing Chiral Cavities and Their Use for the Resolution of Racemates, Macromol. Chem. Phys, vol.1977, issue.10, pp.2799-2816

H. Kempe and M. Kempe, Molecularly Imprinted Polymers

. Weinheim, , 2009.

M. J. Whitcombe, M. E. Rodriguez, and E. N. Vulfson, Polymeric Adsorbents for Cholesterol Prepared by Molecular Imprinting, vol.158, pp.565-565, 1994.

V. P. Joshi, S. K. Karode, M. G. Kulkarni, and R. A. Mashelkar, Novel Separation Strategies Based on Molecularly Imprinted Adsorbents, Chem. Eng. Sci, vol.53, issue.13, pp.2271-2284, 1998.

C. Cacho, E. Turiel, A. Martin-esteban, D. Ayala, and C. Perez-conde, SemiCovalent Imprinted Polymer Using Propazine Methacrylate as Template Molecule for the Clean-up of Triazines in Soil and Vegetable Samples, J. Chromatogr. A, issue.2, pp.255-262, 2006.

R. Arshady and K. Mosbach, Synthesis of Substrate-Selective Polymers by HostGuest Polymerization, Macromol. Chem. Phys, vol.182, issue.2, pp.687-692, 1981.

C. Alexander, H. Andersson, S. Andersson, L. I. Ansell, R. J. Kirsch et al., Molecular Imprinting Science and Technology: A Survey of the Literature for the Years up to and Including, J. Mol. Recognit, vol.19, issue.2, pp.106-180, 2003.

A. G. Mayes and M. J. Whitcombe, Synthetic Strategies for the Generation of Molecularly Imprinted Organic Polymers, Adv. Drug Deliv. Rev, vol.57, issue.12, pp.1742-1778, 2005.

A. Kugimiya and H. Takei, Preparation of Molecularly Imprinted Polymers with Thiourea Group for Phosphate, Anal. Chim. Acta, vol.564, issue.2, pp.179-183, 2006.

M. Cadinot, Nouveaux Procédés d'élaboration de Polymères à Empreintes Moléculaires, 2008.

S. Boulanouar, S. Mezzache, A. Combès, and V. Pichon, Molecularly Imprinted Polymers for the Determination of Organophosphorus Pesticides in Complex Samples, Talanta, vol.176, pp.465-478, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01585225

J. Hu, T. Feng, W. Li, H. Zhai, Y. Liu et al., Surface Molecularly Imprinted Polymers with Synthetic Dummy Template for Simultaneously Selective Recognition of Nine Phthalate Esters

, J. Chromatogr. A, vol.1330, pp.6-13, 2014.

F. Zhu, J. Wang, L. Zhu, L. Tan, G. Feng et al., Preparation of Molecularly Imprinted Polymers Using Theanine as Dummy Template and Its Application as SPE Sorbent for the Determination of Eighteen Amino Acids in Tobacco, Talanta, vol.150, pp.388-398, 2016.

H. Zhang, T. Song, W. Zhang, W. Hua, and C. Pan, Retention Behavior of Phenoxyacetic Herbicides on a Molecularly Imprinted Polymer with Phenoxyacetic Acid as a Dummy Template Molecule, Bioorg. Med. Chem, issue.18, pp.6089-6095, 2007.

X. Feás, J. A. Seijas, M. P. Vázquez-tato, P. Regal, A. Cepeda et al., Syntheses of Molecularly Imprinted Polymers: Molecular Recognition of Cyproheptadine Using Original Print Molecules and Azatadine as Dummy Templates, Anal. Chim. Acta, vol.631, issue.2, pp.237-244, 2009.

L. I. Andersson, E. Hardenborg, M. Sandberg-ställ, K. Möller, J. Henriksson et al., Development of a Molecularly Imprinted Polymer Based Solid-Phase Extraction of Local Anaesthetics from Human Plasma, Anal. Chim. Acta, vol.526, issue.2, pp.147-154, 2004.

D. A. Spivak and K. J. Shea, Binding of Nucleotide Bases by Imprinted Polymers, Macromolecules, issue.7, pp.2160-2165, 1998.

B. Claude, Intérêt Des Polymères à Empreintes Moléculaires Pour La Préparation d'échantillons Par Extraction Solide-Liquide, Applications Aux Triterpènes Dans Les Plantes et Aux Dopants Dans Les Urines, 2007.

J. Matsui, O. Doblhoff-dier, and T. Takeuchi, 2-(Trifluoromethyl) Acrylic Acid: A Novel Functional Monomer in Non-Covalent Molecular Imprinting

. Chim and . Acta, , vol.343, pp.1-4, 1997.

A. G. Strikovsky, D. Kasper, M. Grün, B. S. Green, J. Hradil et al., Catalytic Molecularly Imprinted Polymers Using Conventional Bulk Polymerization or Suspension Polymerization: Selective Hydrolysis of

D. Carbonate and D. Carbamate, J. Am. Chem. Soc, vol.122, issue.26, pp.6295-6296, 2000.

C. Yu and K. Mosbach, Molecular Imprinting Utilizing an Amide Functional Group for Hydrogen Bonding Leading to Highly Efficient Polymers, J. Org

. Chem, , vol.62, pp.4057-4064, 1997.

J. Xie, L. Zhu, H. Luo, L. Zhou, C. Li et al., Direct Extraction of Specific Pharmacophoric Flavonoids from Gingko Leaves Using a Molecularly Imprinted Polymer for Quercetin, J. Chromatogr. A, vol.934, issue.1, pp.1-11, 2001.

L. I. Andersson, A. Miyabayashi, D. J. O'shannessy, and K. Mosbach, Enantiomeric Resolution of Amino Acid Derivatives on Molecularly Imprinted Polymers as Monitored by Potentiometric Measurements, J. Chromatogr. A, vol.516, issue.2, pp.323-331, 1990.

L. Andersson, B. Sellergren, and K. Mosbach, Imprinting of Amino Acid Derivatives in Macroporous Polymers, Tetrahedron Lett, issue.45, pp.5211-5214, 1984.

A. Strikovsky, J. Hradil, and G. Wulff, Catalytically Active, Molecularly Imprinted Polymers in Bead Form, React. Funct. Polym, vol.54, issue.1, pp.49-61, 2003.

J. Lin and M. Yamada, Chemiluminescent Flow-through Sensor for 1, 10-Phenanthroline Based on the Combination of Molecular Imprinting and Chemiluminescence, Analyst, vol.126, issue.6, pp.810-815, 2001.

P. Turkewitsch, B. Wandelt, G. D. Darling, and W. S. Powell, Fluorescent Functional Recognition Sites through Molecular Imprinting. A Polymer-Based Fluorescent Chemosensor for Aqueous CAMP, Anal. Chem, issue.10, pp.2025-2030, 1998.

A. Lasagabáster-latorre, M. C. Cela-pérez, S. Fernández-fernández, J. M. López-vilariño, M. V. González-rodríguez et al., Insight into BPA-4-Vinylpyridine Interactions in Molecularly Imprinted Polymers Using Complementary Spectroscopy Techniques, Mater. Chem. Phys, vol.2013, issue.1, pp.461-476

D. Spivak and K. J. Shea, Molecular Imprinting of Carboxylic Acids Employing Novel Functional Macroporous Polymers, J. Org. Chem, vol.64, issue.13, pp.4627-4634, 1999.

M. Kempe and K. Mosbach, Receptor Binding Mimetics: A Novel Molecularly Imprinted Polymer, Tetrahedron Lett, issue.20, pp.3563-3566, 1995.

J. Xie, L. Chen, C. Li, and X. Xu, Selective Extraction of Functional Components Derived from Herb in Plasma by Using a Molecularly Imprinted Polymer Based on 2, 2-Bis (Hydroxymethyl) Butanol Trimethacrylate, J. Chromatogr. B, vol.788, issue.2, pp.233-242, 2003.

E. Caro, R. M. Marcé, P. A. Cormack, D. C. Sherrington, and F. Borrull, Novel Enrofloxacin Imprinted Polymer Applied to the Solid-Phase Extraction of Fluorinated Quinolones from Urine and Tissue Samples, Anal. Chim. Acta, vol.562, issue.2, pp.145-151, 2006.

V. Pichon, Selective Sample Treatment Using Molecularly Imprinted Polymers, J. Chromatogr. A, pp.41-53, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00261614

G. Wulff and A. Sarhan, Über Die Anwendung von Enzymanalog Gebauten Polymeren Zur Racemattrennung, Angew. Chem, vol.84, issue.8, pp.364-364, 1972.

K. J. Shea and D. Y. Sasaki, On the Control of Microenvironment Shape of Functionalized Network Polymers Prepared by Template Polymerization, J. Am. Chem. Soc, vol.111, issue.9, pp.3442-3444, 1989.

H. Kempe and M. Kempe, Development and Evaluation of Spherical Molecularly Imprinted Polymer Beads, Anal. Chem, vol.78, issue.11, pp.3659-3666, 2006.

T. Shahar, N. Tal, and D. Mandler, Molecularly Imprinted Polymer Particles: Formation, Characterization and Application

. Eng and . Asp, , vol.495, pp.11-19, 2016.

L. Ye, P. A. Cormack, and K. Mosbach, Molecularly Imprinted Monodisperse Microspheres for Competitive Radioassay, Anal. Commun, vol.36, issue.2, pp.35-38, 1999.

C. Liu, L. Shang, H. Yoshioka, B. Chen, and K. Hayashi, Preparation of Molecularly Imprinted Polymer Nanobeads for Selective Sensing of Carboxylic Acid Vapors, Anal. Chim. Acta, vol.1010, pp.1-10, 2018.

C. Dai, X. Zhou, Y. Zhang, S. Liu, and J. Zhang, Synthesis by Precipitation Polymerization of Molecularly Imprinted Polymer for the Selective Extraction of Diclofenac from Water Samples, J. Hazard. Mater, vol.198, pp.175-181, 2011.

A. G. Mayes and K. Mosbach, Molecularly Imprinted Polymer Beads: Suspension Polymerization Using a Liquid Perfluorocarbon as the Dispersing Phase, Anal. Chem, issue.21, pp.3769-3774, 1996.

K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata, T. Araki et al., Molecularly Imprinted Uniform-Size Polymer-Based Stationary Phase for High-Performance Liquid Chromatography Structural Contribution of Cross-Linked Polymer Network on Specific Molecular Recognition, J. Chromatogr. A, vol.728, issue.1-2, pp.139-147, 1996.

J. Haginaka, H. Takehira, K. Hosoya, and N. Tanaka, Uniform-Sized Molecularly Imprinted Polymer for (S)-Naproxen Selectively Modified with Hydrophilic External Layer, J. Chromatogr. A, vol.849, issue.2, pp.331-339, 1999.

A. Poma, A. P. Turner, and S. A. Piletsky, Advances in the Manufacture of MIP Nanoparticles, Trends Biotechnol, issue.12, pp.629-637, 2010.

N. Pérez, M. J. Whitcombe, and E. N. Vulfson, Molecularly Imprinted Nanoparticles Prepared by Core-Shell Emulsion Polymerization, J. Appl

. Polym and . Sci, , vol.77, pp.1851-1859, 2000.

M. Dabrowski, P. Lach, M. Cieplak, and W. Kutner, Nanostructured Molecularly Imprinted Polymers for Protein Chemosensing, Biosens. Bioelectron, vol.102, pp.17-26, 2018.

M. M. Titirici, A. J. Hall, and B. Sellergren, Hierarchically Imprinted Stationary Phases: Mesoporous Polymer Beads Containing Surface-Confined Binding Sites for Adenine, Chem. Mater, vol.14, issue.1, pp.21-23, 2002.

E. Yilmaz, O. Ramström, P. Möller, D. Sanchez, and K. Mosbach, A Facile Method for Preparing Molecularly Imprinted Polymer Spheres Using Spherical Silica Templates, J. Mater. Chem, vol.12, issue.5, pp.1577-1581, 2002.

O. Norrlöw, M. Glad, and K. Mosbach, Acrylic Polymer Preparations Containing Recognition Sites Obtained by Imprinting with Substrates, J. Chromatogr. A, vol.299, pp.29-41, 1984.

T. Otsu, K. Yamashita, and K. Tsuda, Synthesis, Reactivity, and Role of 4-Vinylbenzyl N, N-Diethyldithiocarbamate as a Monomer-Iniferter in Radical Polymerization, Macromolecules, vol.19, issue.2, pp.287-290, 1986.

B. Rückert, A. J. Hall, and B. Sellergren, Molecularly Imprinted Composite Materials via Iniferter-Modified Supports, J. Mater. Chem, vol.12, issue.8, pp.2275-2280, 2002.

M. Rutkowska, J. P?otka-wasylka, C. Morrison, P. P. Wieczorek, J. Namie?nik et al., Application of Molecularly Imprinted Polymers in Analytical Chiral Separations and Analysis, TrAC Trends Anal. Chem, vol.102, pp.91-102, 2018.

R. J. Ansell, J. K. Kuah, D. Wang, C. E. Jackson, K. D. Bartle et al., Imprinted Polymers for Chiral Resolution of (±)-Ephedrine, 4: Packed Column Supercritical Fluid Chromatography Using Molecularly Imprinted Chiral Stationary Phases, J. Chromatogr. A, vol.1264, pp.117-123, 2012.

B. Hebert, D. S. Meador, and D. A. Spivak, Scalemic and Racemic Imprinting with a Chiral Crosslinker, Anal. Chim. Acta, vol.890, pp.157-164, 2015.

R. Gutierrez-climente, A. Gomez-caballero, A. Guerreiro, D. Garcia-mutio, N. Unceta et al., Molecularly Imprinted Nanoparticles Grafted to Porous Silica as Chiral Selectors in Liquid Chromatography, J. Chromatogr. A, pp.53-64, 1508.

D. J. O'shannessy, B. Ekberg, L. I. Andersson, and K. Mosbach, Recent Advances in the Preparation and Use of Molecularly Imprinted Polymers for Enantiomeric Resolution of Amino Acid Derivatives, J. Chromatogr. A, vol.470, issue.2, pp.391-399, 1989.

B. Sellergren, Moleclar Imprinting by Noncovalent Interactions: Tailor-Made Chiral Stationary Phases of High Selectivity and Sample Load Capacity, Chirality, vol.1989, issue.1, pp.63-68

C. Kulsing, R. Knob, M. Macka, P. Junor, R. I. Boysen et al., Molecular Imprinted Polymeric Porous Layers in Open Tubular Capillaries for Chiral Separations, J. Chromatogr. A, vol.1354, pp.85-91, 2014.

V. Pichon and F. Chapuis-hugon, Role of Molecularly Imprinted Polymers for Selective Determination of Environmental Pollutants-a Review, Anal. Chim. Acta, vol.622, issue.1-2, pp.48-61, 2008.

A. Speltini, A. Scalabrini, F. Maraschi, M. Sturini, and A. Profumo, Newest Applications of Molecularly Imprinted Polymers for Extraction of Contaminants from Environmental and Food Matrices: A Review, Anal. Chim. Acta, vol.974, pp.1-26, 2017.

L. M. Madikizela, N. T. Tavengwa, and L. Chimuka, Applications of Molecularly Imprinted Polymers for Solid-Phase Extraction of Non-Steroidal AntiInflammatory Drugs and Analgesics from Environmental Waters and Biological Samples, J. Pharm. Biomed. Anal, vol.147, pp.624-633, 2018.

Y. Yang, J. Yu, J. Yin, B. Shao, and J. Zhang, Molecularly Imprinted Solid-Phase Extraction for Selective Extraction of Bisphenol Analogues in Beverages and Canned Food, J. Agric. Food Chem, issue.46, pp.11130-11137, 2014.

S. Khan, T. Bhatia, P. Trivedi, G. N. Satyanarayana, K. Mandrah et al., Selective Solid-Phase Extraction Using Molecularly Imprinted Polymer as a Sorbent for the Analysis of Fenarimol in Food Samples, Food Chem, vol.199, pp.870-875, 2016.

C. Yang, T. Lv, H. Yan, G. Wu, and H. Li, Glyoxal-Urea-Formaldehyde Molecularly Imprinted Resin as Pipette Tip Solid-Phase Extraction Adsorbent for Selective Screening of Organochlorine Pesticides in Spinach, J. Agric. Food Chem, vol.63, issue.43, pp.9650-9656, 2015.

Y. Shi, J. Zhang, D. Shi, M. Jiang, Y. Zhu et al., Selective Solid-Phase Extraction of Cholesterol Using Molecularly Imprinted Polymers and Its Application in Different Biological Samples, J. Pharm. Biomed. Anal, vol.42, issue.5, pp.549-555, 2006.

G. Theodoridis, A. Kantifes, P. Manesiotis, N. Raikos, and H. Tsoukalipapadopoulou, Preparation of a Molecularly Imprinted Polymer for the Solid-Phase Extraction of Scopolamine with Hyoscyamine as a Dummy Template Molecule, J. Chromatogr. A, vol.987, issue.1, pp.103-109, 2003.

G. Theodoridis and P. Manesiotis, Selective Solid-Phase Extraction Sorbent for Caffeine Made by Molecular Imprinting, J. Chromatogr. A, vol.948, issue.1, pp.163-169, 2002.

D. Schmaljohann, Thermo-and PH-Responsive Polymers in Drug Delivery

, Adv. Drug Deliv. Rev, vol.58, issue.15, pp.1655-1670, 2006.

F. Puoci, G. Cirillo, M. Curcio, F. Iemma, O. I. Parisi et al., Molecularly Imprinted Polymers (MIPs) in Biomedical Applications, Biopolymers, vol.28, pp.547-574, 2010.

K. Haupt and K. Mosbach, Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors, Chem. Rev, vol.100, issue.7, pp.2495-2504, 2000.

F. Puoci, G. Cirillo, M. Curcio, F. Iemma, O. I. Parisi et al., Molecularly Imprinted Polymers (PIMs) in Biomedical Applications, In Biopolymers, 2010.

S. J. Updike and G. P. Hicks, The Enzyme Electrode Nature V. 214. I, vol.967, pp.986-988, 1967.

Q. Yang, J. Li, X. Wang, H. Peng, H. Xiong et al., Strategies of Molecular Imprinting-Based Fluorescence Sensors for Chemical and Biological Analysis, Biosens. Bioelectron, vol.112, pp.54-71, 2018.

F. L. Dickert, H. Besenböck, and M. Tortschanoff, Molecular Imprinting through van Der Waals Interactions: Fluorescence Detection of PAHs in Water

. Mater, , vol.10, pp.149-151, 1998.

F. L. Dickert, M. Tortschanoff, W. E. Bulst, and G. Fischerauer, Molecularly Imprinted Sensor Layers for the Detection of Polycyclic Aromatic Hydrocarbons in Water, Anal. Chem, issue.20, pp.4559-4563, 1999.

M. F. Lulka, J. P. Chambers, E. R. Valdes, R. G. Thompson, and J. J. Valdes, Molecular Imprinting of Small Molecules with Organic Silanes: Fluorescence Detection, Anal. Lett, vol.30, issue.13, pp.2301-2313, 1997.

J. L. Su-rez-rodr-guez and M. E. ;-d-az-garc-a, Flavonol Fluorescent Flowthrough Sensing Based on a Molecular Imprinted Polymer, Anal. Chim. Acta, vol.405, issue.1-2, pp.67-76, 2000.

D. Kriz, O. Ramstroem, A. Svensson, and K. Mosbach, A Biomimetic Sensor Based on a Molecularly Imprinted Polymer as a Recognition Element Combined with Fiber-Optic Detection, Anal. Chem, issue.13, pp.2142-2144, 1995.

J. L. Su-rez-rodr-guez, Fluorescent Competitive Flowthrough Assay for Chloramphenicol Using Molecularly Imprinted Polymers

, Biosens. Bioelectron, vol.16, issue.9, pp.955-961, 2001.

R. Levi, S. Mcniven, S. A. Piletsky, S. Cheong, K. Yano et al., Optical Detection of Chloramphenicol Using Molecularly Imprinted Polymers, Anal. Chem, vol.69, issue.11, pp.2017-2021, 1997.

A. Rachkov, S. Mcniven, A. El'skaya, K. Yano, and I. Karube, Fluorescence Detection of -Estradiol Using a Molecularly Imprinted Polymer, Anal. Chim. Acta, vol.405, issue.1, pp.23-29, 2000.

S. A. Piletsky, E. V. Piletskaya, A. V. El'skaya, R. Levi, K. Yano et al., Optical Detection System for Triazine Based on Molecularly-Imprinted Polymers, Synth. React. Inorg. Met.-Org. Chem, vol.30, issue.3, pp.445-455, 1997.

M. E. Cooper, B. P. Hoag, and D. L. Gin, Design and Synthesis of Novel Fluorescent Chemosensors for Biologically Active Molecules. In Abstracts of papers of the american chemical society, vol.213, p.115, 1997.

Y. Liao, W. Wang, and B. Wang, Building Fluorescent Sensors by Template Polymerization: The Preparation of a Fluorescent Sensor for L-Tryptophan

B. Chem, , vol.27, pp.463-476, 1999.

S. B. Borah, T. Bora, S. Baruah, and J. Dutta, Heavy Metal Ion Sensing in Water Using Surface Plasmon Resonance of Metallic Nanostructures

, Groundw. Sustain. Dev, vol.2015, issue.1, pp.1-11

E. P. Lai, A. Fafara, V. A. Vandernoot, M. Kono, and B. Polsky, Surface Plasmon Resonance Sensors Using Molecularly Imprinted Polymers for Sorbent Assay of Theophylline, Caffeine, and Xanthine, Can. J. Chem, vol.76, issue.3, pp.265-273, 1998.

Q. Luo, N. Yu, C. Shi, X. Wang, and J. Wu, Surface Plasmon Resonance Sensor for Antibiotics Detection Based on Photo-Initiated Polymerization Molecularly Imprinted Array, Talanta, vol.161, pp.797-803, 2016.

P. Li, Y. Huang, J. Hu, C. Yuan, and B. Lin, Surface Plasmon Resonance Studies on Molecular Imprinting, Sensors, vol.2, issue.1, pp.35-40, 2002.

A. Kugimiya and T. Takeuchi, Surface Plasmon Resonance Sensor Using Molecularly Imprinted Polymer for Detection of Sialic Acid

. Bioelectron, , vol.16, pp.1059-1062, 2001.

A. G. Sar-kaya, B. Osman, T. Çam, and A. Denizli, Molecularly Imprinted Surface Plasmon Resonance (SPR) Sensor for Uric Acid Determination

B. Actuators and . Chem, , pp.763-772, 2017.

Y. Tan, L. Jing, Y. Ding, and T. Wei, A Novel Double-Layer Molecularly Imprinted Polymer Film Based Surface Plasmon Resonance for Determination of Testosterone in Aqueous Media, Appl. Surf. Sci, vol.342, pp.84-91, 2015.

J. R. Guerreiro, N. Teixeira, V. D. Freitas, M. G. Sales, and D. S. Sutherland, A Saliva Molecular Imprinted Localized Surface Plasmon Resonance Biosensor for Wine Astringency Estimation, vol.233, pp.457-466, 2017.

W. Liu, Y. Guo, J. Luo, J. Kou, H. Zheng et al., A Molecularly Imprinted Polymer Based a Lab-on-Paper Chemiluminescence Device for the Detection of Dichlorvos, Spectrochim. Acta. A. Mol. Biomol. Spectrosc, vol.141, pp.51-57, 2015.

H. Duan, L. Li, X. Wang, Y. Wang, J. Li et al., A Sensitive and Selective Chemiluminescence Sensor for the Determination of Dopamine Based on Silanized Magnetic Graphene Oxide-Molecularly Imprinted Polymer

, Spectrochim. Acta. A. Mol. Biomol. Spectrosc, vol.139, pp.374-379, 2015.

X. H. Lin, S. X. Aik, J. Angkasa, Q. Le, K. S. Chooi et al., Selective and Sensitive Sensors Based on Molecularly Imprinted Poly(Vinylidene Fluoride) for Determination of Pesticides and Chemical Threat Agent Simulants, Sens. Actuators B Chem, vol.258, pp.228-237, 2018.

S. Wang, L. Ge, L. Li, M. Yan, S. Ge et al., Molecularly Imprinted Polymer Grafted Paper-Based Multi-Disk Micro-Disk Plate for Chemiluminescence Detection of Pesticide, Biosens. Bioelectron, vol.50, pp.262-268, 2013.

W. Cao, Y. Chao, L. Liu, Q. Liu, and M. Pei, Flow Injection Chemiluminescence Sensor Based on Magnetic Oil-Based Surface Molecularly Imprinted Nanoparticles for Determination of Bisphenol A, Sens. Actuators B Chem, vol.204, pp.704-709, 2014.

G. Fang, H. Wang, Y. Yang, G. Liu, and S. Wang, Development and Application of a Quartz Crystal Microbalance Sensor Based on Molecularly Imprinted SolGel Polymer for Rapid Detection of Patulin in Foods, Sens. Actuators B Chem, vol.237, pp.239-246, 2016.

G. Fang, Y. Yang, H. Zhu, Y. Qi, J. Liu et al., Development and Application of Molecularly Imprinted Quartz Crystal Microbalance Sensor for Rapid Detection of Metolcarb in Foods, Sens. Actuators B Chem, vol.2017, pp.720-728

G. Fang, G. Liu, Y. Yang, and S. Wang, Quartz Crystal Microbalance Sensor Based on Molecularly Imprinted Polymer Membrane and Three-Dimensional Au Nanoparticles@mesoporous Carbon CMK-3 Functional Composite for Ultrasensitive and Specific Determination of Citrinin, Sens. Actuators B Chem, vol.230, pp.272-280, 2016.

A. G. Ayankojo, J. Reut, R. Boroznjak, A. Öpik, and V. Syritski, Molecularly Imprinted Poly(Meta-Phenylenediamine) Based {QCM} Sensor for Detecting Amoxicillin, Sens. Actuators B Chem, 2017.

V. Ratautaite, D. Plausinaitis, I. Baleviciute, L. Mikoliunaite, A. Ramanaviciene et al., Characterization of Caffeine-Imprinted Polypyrrole by a Quartz Crystal Microbalance and Electrochemical Impedance Spectroscopy, Sens. Actuators B Chem, vol.212, pp.63-71, 2015.

L. Rayleigh, On Waves Propagated along the Plane Surface of an Elastic Solid, Proc. Lond. Math. Soc, vol.1885, issue.1, pp.4-11

H. Wohltjen and R. Dessy, Surface Acoustic Wave Probe for Chemical Analysis. I. Introduction and Instrument Description, Anal. Chem, vol.51, issue.9, pp.1458-1464, 1979.

A. Afzal, N. Iqbal, A. Mujahid, and R. Schirhagl, Advanced Vapor Recognition Materials for Selective and Fast Responsive Surface Acoustic Wave Sensors: A Review, Anal. Chim. Acta, vol.787, pp.36-49, 2013.

A. Tretjakov, V. Syritski, J. Reut, R. Boroznjak, and A. Öpik, Molecularly Imprinted Polymer Film Interfaced with Surface Acoustic Wave Technology as a Sensing Platform for Label-Free Protein Detection, Anal. Chim. Acta, vol.902, pp.182-188, 2016.

N. Kirsch, K. C. Honeychurch, J. P. Hart, and M. J. Whitcombe, Voltammetric Determination of Urinary 1-Hydroxypyrene Using Molecularly Imprinted Polymer-Modified Screen-Printed Carbon Electrodes, Electroanalysis, vol.17, issue.7, pp.571-578, 2005.

D. Kriz and K. Mosbach, Competitive Amperometric Morphine Sensor Based on an Agarose Immobilised Molecularly Imprinted Polymer, Anal. Chim. Acta, vol.300, issue.1-3, pp.71-75, 1995.

P. Andrea and M. Stanislav, A Solid Binding Matrix/Molecularly Imprinted Polymer-Based Sensor System for the Determination of Clenbuterol in Bovine 192

, Liver Using Differential-Pulse Voltammetry, Sens. Actuators B Chem, vol.76, issue.1, pp.286-294, 2001.

K. Sode, Y. Takahashi, S. Ohta, W. Tsugawa, and T. Yamazaki, A New Concept for the Construction of an Artificial Dehydrogenase for Fructosylamine Compounds and Its Application for an Amperometric Fructosylamine Sensor, Anal. Chim. Acta, vol.435, issue.1, pp.151-156, 2001.

K. Sode, S. Ohta, Y. Yanai, and T. Yamazaki, Construction of a Molecular Imprinting Catalyst Using Target Analogue Template and Its Application for an Amperometric Fructosylamine Sensor, Biosens. Bioelectron, vol.18, issue.12, pp.1485-1490, 2003.

V. Suryanarayanan, C. Wu, and K. Ho, Molecularly Imprinted Electrochemical Sensors, Electroanalysis, vol.2010, issue.16, pp.1795-1811

E. Hedborg, F. Winquist, I. Lundström, L. I. Andersson, and K. Mosbach, Some Studies of Molecularly-Imprinted Polymer Membranes in Combination with Field-Effect Devices, Sens. Actuators Phys, vol.37, pp.796-799, 1993.

S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano, I. Karube et al., Atrazine Sensing by Molecularly Imprinted Membranes, Biosens. Bioelectron, vol.10, issue.9, pp.959-964, 1995.

E. Mazzotta, A. Turco, I. Chianella, A. Guerreiro, S. A. Piletsky et al., Solid-Phase Synthesis of Electroactive Nanoparticles of Molecularly Imprinted Polymers. A Novel Platform for Indirect Electrochemical Sensing Applications, Sens. Actuators B Chem, vol.229, pp.174-180, 2016.

S. A. Piletsky, Y. Ge, and S. Li, Molecularly Imprinted Sensors: Overview and Applications

M. F. Frasco, L. A. Truta, M. G. Sales, and F. T. Moreira, Imprinting Technology in Electrochemical Biomimetic Sensors, Sensors, vol.2017, issue.3, p.523

E. Pardieu, H. Cheap, C. Vedrine, M. Lazerges, Y. Lattach et al., Molecularly Imprinted Conducting Polymer Based Electrochemical Sensor for Detection of Atrazine, Anal. Chim. Acta, vol.649, issue.2, pp.236-245, 2009.

F. T. Moreira, M. J. Ferreira, J. R. Puga, and M. G. Sales, Screen-Printed Electrode Produced by Printed-Circuit Board Technology. Application to Cancer Biomarker Detection by Means of Plastic Antibody as Sensing Material, Sens. Actuators B Chem, vol.223, pp.927-935, 2016.

B. Si and E. Song, Molecularly Imprinted Polymers for the Selective Detection of Multi-Analyte Neurotransmitters, Microelectron. Eng, pp.58-65, 2018.

A. K. Roy, C. Dhand, and B. D. Malhotra, Molecularly Imprinted Polyaniline Film for Ascorbic Acid Detection, J. Mol. Recognit, vol.24, issue.4, pp.700-706, 2011.

Y. Peng, Z. Wu, and Z. Liu, An Electrochemical Sensor for Paracetamol Based on an Electropolymerized Molecularly Imprinted O-Phenylenediamine Film on a Multi-Walled Carbon Nanotube Modified Glassy Carbon Electrode, Anal. Methods, vol.6, issue.15, pp.5673-5681, 2014.

N. Karimian, A. P. Turner, and A. Tiwari, Electrochemical Evaluation of Troponin T Imprinted Polymer Receptor, Biosens. Bioelectron, vol.59, pp.160-165, 2014.

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang et al.,

, Ultrasensitive Detection of Proteins, Nat. Nanotechnol, vol.2010, issue.8, pp.597-601

L. M. Kindschy and E. C. Alocilja, A Molecularly Imprinted Polymer on Indium Tin Oxide and Silicon, Biosens. Bioelectron, vol.20, issue.10, pp.2163-2167, 2005.

H. H. Weetall, D. W. Hatchett, and K. R. Rogers, Electrochemically Deposited Polymer-Coated Gold Electrodes Selective for 2, 4-Dichlorophenoxyacetic Acid, Electroanalysis, vol.17, issue.19, pp.1789-1794, 2005.

W. Yeh and K. Ho, Amperometric Morphine Sensing Using a Molecularly Imprinted Polymer-Modified Electrode, Anal. Chim. Acta, vol.542, issue.1, pp.76-82, 2005.

Y. Lattach, N. Fourati, C. Zerrouki, J. Fougnion, F. Garnier et al., Molecularly Imprinted Surface Acoustic Wave Sensors: The Synergy of Electrochemical and Gravimetric Transductions in Chemical Recognition Processes, Electrochimica Acta, vol.73, pp.36-44, 2012.

C. Branger, H. Brisset, and D. Udomsap, Polymer and Method for Preparing the Same, 2015.

D. Udomsap, Développement de Polymères à Empreintes Moléculaires Électrochimiques Pour La Surveillance En Micropolluants Organiques Des Eaux Dans Les Ouvrages Du Canal de Provence, 2014.

D. Udomsap, C. Branger, G. Culioli, P. Dollet, and H. Brisset, A Versatile Electrochemical Sensing Receptor Based on a Molecularly Imprinted Polymer
URL : https://hal.archives-ouvertes.fr/hal-01364365

, Chem. Commun, vol.50, issue.56, pp.7488-7491, 2014.

A. P. Dianin, Condensation of Ketones with Phenols Zhurnal Russkago Fiziko-Khimicheskago Obshchestva, J. Russ. Phys. Chem. Soc. St Petersburg, vol.23, 1891.

P. Makvandi, R. Jamaledin, M. Jabbari, N. Nikfarjam, and A. Borzacchiello, Antibacterial Quaternary Ammonium Compounds in Dental Materials: A Systematic Review, Dent. Mater, vol.34, issue.6, pp.851-867, 2018.

P. V. Reddy, K. Kim, B. Kavitha, V. Kumar, N. Raza et al., Photocatalytic Degradation of Bisphenol A in Aqueous Media: A Review, J. Environ. Manage, vol.213, pp.189-205, 2018.

N. Bemrah, J. Jean, G. Rivière, M. Sanaa, S. Leconte et al., Assessment of Dietary Exposure to Bisphenol A in the French Population with a Special Focus on Risk Characterisation for Pregnant French Women, Food Chem
URL : https://hal.archives-ouvertes.fr/hal-01173907

. Toxicol, , vol.72, pp.90-97, 2014.

T. Do, E. R. Baral, and J. G. Kim, Dec-5-Ene Catalyzed Alcoholysis for Highly Efficient Bisphenol A and Organic Carbonate Recovery, Polymer, vol.5, issue.1, pp.106-114, 2018.

J. Micha?owicz, Bisphenol A -Sources, Toxicity and Biotransformation, Environ. Toxicol. Pharmacol, vol.37, issue.2, pp.738-758, 2014.

T. Colborn, F. S. Vom-saal, and A. M. Soto, Developmental Effects of EndocrineDisrupting Chemicals in Wildlife and Humans, Environ. Health Perspect, vol.101, issue.5, pp.378-384, 1993.

S. C. Nagel, F. S. Saal, and W. V. Welshons, Developmental Effects of Estrogenic Chemicals Are Predicted by an in Vitro Assay Incorporating Modification of Cell Uptake by Serum, J. Steroid Biochem. Mol. Biol, vol.69, issue.1, pp.343-357, 1999.

F. Sun, L. Kang, X. Xiang, H. Li, X. Luo et al., Recent Advances and Progress in the Detection of Bisphenol A, Anal. Bioanal. Chem, issue.25, pp.6913-6927, 2016.

K. K. Selvaraj, G. Shanmugam, S. Sampath, D. G. Joakim-larsson, and B. R. Ramaswamy, GC-MS Determination of Bisphenol A and Alkylphenol Ethoxylates in River Water from India and Their Ecotoxicological Risk Assessment, Ecotoxicol. Environ. Saf, vol.99, pp.13-20, 2014.

E. Herrero-hernández, R. Carabias-martínez, and E. Rodríguez-gonzalo, Use of a Bisphenol-A Imprinted Polymer as a Selective Sorbent for the Determination of Phenols and Phenoxyacids in Honey by Liquid Chromatography with Diode Array and Tandem Mass Spectrometric Detection, Anal. Chim. Acta, vol.650, issue.2, pp.195-201, 2009.

M. C. Cela-pérez, M. M. Castro-lópez, A. Lasagabáster-latorre, J. M. López-vilariño, M. V. González-rodríguez et al., Synthesis and Characterization of Bisphenol-A Imprinted Polymer as a Selective Recognition Receptor, Anal. Chim. Acta, vol.706, issue.2, pp.275-284, 2011.

Y. Wu, Y. Liu, X. Gao, K. Gao, H. Xia et al., Monitoring Bisphenol A and Its Biodegradation in Water Using a Fluorescent Molecularly Imprinted Chemosensor, Chemosphere, vol.119, pp.515-523, 2015.

Y. Wu, Y. Zhang, M. Zhang, F. Liu, Y. Wan et al., Selective and Simultaneous Determination of Trace Bisphenol A and Tebuconazole in Vegetable and Juice Samples by Membrane-Based Molecularly Imprinted Solid-Phase Extraction and HPLC, Food Chem, vol.164, pp.527-535, 2014.

Y. Xie, H. Li, L. Wang, Q. Liu, Y. Shi et al.,

, Bisphenol A by Acclimated Activated Sludge. Water Res, vol.45, issue.3, pp.1189-1198, 2011.

Y. Wang, Y. Ding, F. Rong, and D. Fu, A Study of the Precipitation Polymerization of Bisphenol A-Imprinted Polymer Microspheres and Their Application in Solid-Phase Extraction, Polym. Bull, vol.2012, issue.5, pp.1255-1270

M. Jiang, Y. Shi, R. Zhang, C. Shi, Y. Peng et al., Selective Molecularly Imprinted Stationary Phases for Bisphenol A Analysis Prepared by Modified Precipitation Polymerization, J. Sep. Sci, vol.32, issue.19, pp.3265-3273, 2009.

S. Mei, D. Wu, M. Jiang, B. Lu, J. Lim et al., Determination of Trace Bisphenol A in Complex Samples Using Selective Molecularly Imprinted Solid-Phase Extraction Coupled with Capillary Electrophoresis, Microchem. J, vol.98, issue.1, pp.150-155, 2011.

C. Nantasenamat, C. Isarankura-na-ayudhya, L. Bülow, L. Ye, and V. Prachayasittikul, Silico Design for Synthesis of Molecularly Imprinted Microspheres Specific towards Bisphenol A by Precipitation Polymerization, 2006.

Y. Wang, Q. Liu, F. Rong, and D. Fu, A Facile Method for Grafting of Bisphenol A Imprinted Polymer Shells onto Poly(Divinylbenzene) Microspheres through Precipitation Polymerization, Appl. Surf. Sci, vol.257, issue.15, pp.6704-6710, 2011.

S. Shahaidah, C. K. Faizal, and M. S. Shareena, Characterization of Bisphenol a MIP (BPA-MIP) Synthesizing, J. Appl. Sci, vol.14, issue.13, pp.1455-1459, 2014.

J. Wang, P. A. Cormack, D. C. Sherrington, E. Khoshdel, and . Monodisperse, Molecularly Imprinted Polymer Microspheres Prepared by Precipitation Polymerization for Affinity Separation Applications, Angew. Chem. Int. Ed, vol.42, issue.43, pp.5336-5338, 2003.

D. Garcia-mutio, A. Gomez-caballero, A. Guerreiro, S. Piletsky, M. A. Goicolea et al., Solid-Phase Synthesis of Imprinted Nanoparticles Grafted on Gold Substrates for Voltammetric Sensing of 4-Ethylphenol

B. Actuators and . Chem, , vol.236, pp.839-848, 2016.

R. W. Nguema-edzang, Synthèse et Caractérisation de Polymères à Propriétés Rédox Pour Un Contrôle Des Propriétés d'adhésion Bactérienne, 2016.

K. S. Sing, D. H. Everett, L. Moscou, R. A. Pierrotti, J. Roquerol et al., Pure Appl. Chem, vol.57, pp.603-619, 1985.

F. Rouquerol, L. Luciani, P. Llewellyn, R. Denoyel, and J. Rouquerol, Texture Des Matériaux Pulvérulents Ou Poreux, Tech. Ing. Anal. Caractér, vol.2, pp.1050-1051, 1050.

O. ?kay, Macroporous Copolymer Networks/O. Okay, Prog Polym Sci, vol.25, pp.711-779, 2000.

W. Meouche, K. Laatikainen, A. Margaillan, T. Silvonen, H. Siren et al., Effect of Porogen Solvent on the Properties of Nickel Ion Imprinted Polymer Materials Prepared by Inverse Suspension Polymerization, Eur. Polym. J, vol.87, pp.124-135, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01878471

G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts

E. M. Malone, C. T. Elliott, D. G. Kennedy, and L. Regan, Rapid Confirmatory Method for the Determination of Sixteen Synthetic Growth Promoters and Bisphenol A in Bovine Milk Using Dispersive Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry, J. Chromatogr. B, vol.2010, pp.1077-1084

N. V. Salim, N. Hameed, and Q. Guo, Competitive Hydrogen Bonding and Self-assembly in Poly(2-vinyl Pyridine

). Methacrylate and . Poly, Hydroxyether of Bisphenol A) Blends. J. Polym. Sci. Part B Polym. Phys, issue.19, pp.1894-1905, 2009.

W. Lee, J. Chang, and S. Ju, Hydrogen-Bond Structure at the Interfaces between Water/Poly (Methyl Methacrylate), Water/Poly (Methacrylic Acid), and Water/Poly (2-Aminoethylmethacrylamide), pp.12640-12647, 2010.

D. Cortés-arriagada, L. Sanhueza, and M. Santander-nelli, Modeling the Physisorption of Bisphenol A on Graphene and Graphene Oxide, J. Mol. Model, vol.19, issue.9, pp.3569-3580, 2013.

D. Fatta-kassinos, S. Meric, and A. Nikolaou, Pharmaceutical Residues in Environmental Waters and Wastewater: Current State of Knowledge and Future Research, Anal. Bioanal. Chem, vol.399, issue.1, pp.251-275, 2011.

E. Laviron, Voltammetric Methods for the Study of Adsorbed Species, Electroanal. Chem, vol.12, pp.53-157, 1982.

F. Bedioui and S. Griveau, Voltampérométrie Sur Électrode Solide Diverses Géométries d'électrode, p.1, 2009.

P. Laszlo and R. Hoffmann, Ferrocene: Ironclad History or Rashomon Tale?, Angew. Chem. Int. Ed, vol.39, issue.1, pp.123-124, 2000.

M. E. Rice, Z. Galus, and R. N. Adams, Graphite Paste Electrodes: Effects of Paste Composition and Surface States on Electron-Transfer Rates, J. Electroanal

, Chem. Interfacial Electrochem, vol.143, issue.1-2, pp.89-102, 1983.

I. ?vancara and K. Schachl, Testing of Unmodified Carbon Paste Electrodes, Chem Listy, vol.93, pp.490-499, 1999.

L. S. Bean, L. Y. Heng, B. M. Yamin, and M. Ahmad, The Electrochemical Behaviour of Ferrocene in a Photocurable Poly

, Bioelectrochemistry, vol.65, issue.2, pp.157-162, 2005.

J. E. Lilienfeld, Method and Apparatus for Controlling Electric Currents. US1745175 (A), 1930.

Y. Didane and . Fonctionnalisation-du-distyryl-bithiophène, Impact Sur La Structure Moléculaire Sur Les Performances Électriques Des Transistors à Effet de Champ, 2009.

Z. A. Kösemen, A. Kösemen, S. Öztürk, B. Canimkurbey, S. E. San et al., Effect of Intrinsic Polymer Properties on the Photo Sensitive Organic Field-Effect Transistors (Photo-OFETs), Microelectron. Eng, vol.161, pp.36-42, 2016.

S. Schmid, S. Koser, C. Melzer, E. Mankel, and U. H. Bunz, Investigating the Contact Material Influence on Didodecyloxy-PPE OFETs, Synth. Met, vol.240, pp.52-58, 2018.

M. Chen, Y. Zhu, C. Yao, D. Zhang, X. Zeng et al., Intrinsic Charge Carrier Mobility in Single-Crystal OFET by, Fast Trapping vs. Slow Detrapping" Model. Org. Electron, vol.54, pp.237-244, 2018.

S. Caras and J. Janata, Field Effect Transistor Sensitive to Penicillin, Anal. Chem, vol.52, issue.12, pp.1935-1937, 1980.

S. Collins and J. Janata, A Critical Evaluation of the Mechanism of Potential Response of Antigen Polymer Membranes to the Corresponding Antiserum, Anal. Chim. Acta, vol.136, pp.93-99, 1982.

P. Temple-boyer, A. Benyahia, W. Sant, M. L. Pourciel-gouzy, J. Launay et al., Modelling of Urea-EnFETs for Haemodialysis Applications
URL : https://hal.archives-ouvertes.fr/hal-01687855

B. Actuators and . Chem, , vol.131, pp.525-532, 2008.

K. Sarma, M. Sharma, P. Chandra-dutta, and J. , Modelling of Potassium-Doped Polypyrrole/Carbon Nanotube-Based Enzyme Field Effect Transistor for Cholesterol Detection. Mater, Today Proc, vol.2017, pp.10346-10350

D. Stock, G. M. Müntze, S. Figge, and M. Eickhoff, Ion Sensitive AlGaN/GaN Field-Effect Transistors with Monolithically Integrated Wheatstone Bridge for 199

, Temperature-and Drift Compensation in Enzymatic Biosensors

B. Actuators and . Chem, , vol.263, pp.20-26, 2018.

I. Humenyuk, P. Temple-boyer, and G. Sarrabayrouse, The Effect ofSterilization on the PH-ChemFET Behaviour, Sens. Actuators Phys, vol.147, issue.1, pp.165-168, 2008.

F. Larramendy, F. Mathieu, S. Charlot, L. Nicu, and P. Temple-boyer, Parallel Detection in Liquid Phase of N-Channel MOSFET/ChemFET Microdevices Using Saturation Mode, Sens. Actuators B Chem, vol.176, pp.379-385, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01508106

H. S. White, G. P. Kittlesen, and M. S. Wrighton, Chemical Derivatization of an Array of Three Gold Microelectrodes with Polypyrrole: Fabrication of a Molecule-Based Transistor, J. Am. Chem. Soc, vol.106, issue.18, pp.5375-5377, 1984.

Z. Iskierko, M. Sosnowska, P. S. Sharma, T. Benincori, F. Souza et al., Extended-Gate Field-Effect Transistor (EG-FET) with Molecularly Imprinted Polymer (MIP) Film for Selective Inosine Determination, Biosens. Bioelectron, vol.74, pp.526-533, 2015.

R. N. Adams, Carbon Paste Electrodes, Anal. Chem, vol.30, issue.9, pp.1576-1576, 1958.

I. Svancara, K. Kalcher, A. Walcarius, and K. Vytras, Electroanalysis with Carbon Paste Electrodes, 2012.

I. Svancara, K. Vytras, A. Bobrowski, and K. Kalcher, Determination of Arsenic at a Gold-Plated Carbon Paste Electrode Using Constant Current Stripping Analysis, Talanta, vol.58, issue.1, pp.45-55, 2002.

A. Hayat and J. L. Marty, Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring, Sensors, vol.14, issue.6, pp.10432-10453, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01166428

M. Li, Y. Li, D. Li, and Y. Long, Recent Developments and Applications of Screen-Printed Electrodes in Environmental Assays-A Review, Anal. Chim. Acta, vol.734, pp.31-44, 2012.

W. Su, S. Wang, and S. Cheng, Electrochemically Pretreated ScreenPrinted Carbon Electrodes for the Simultaneous Determination of

, Aminophenol Isomers. J. Electroanal. Chem, vol.651, issue.2, pp.166-172, 2011.

R. Fernández-cori, J. C. Gomero, B. C. Huayhuas-chipana, M. Sotomayor, P. T. Montoya et al., Nanostructured Sensors for Determination of 3-(3, 4-Dichlorophenyl)-1, 1-Dimethylurea Based in Molecularly Imprinted Polymers (MIPs) Deposited in Screen Printed Carbon Nanotubes, ECS Trans, vol.66, issue.37, pp.33-41, 2015.

S. Klangphukhiew, R. Srichana, and R. Patramanon, Cortisol Stress Biosensor Based on Molecular Imprinted Polymer, Multidisciplinary Digital Publishing Institute Proceedings, vol.1, p.538, 2017.

A. Heller and B. Feldman, Electrochemical Glucose Sensors and Their Applications in Diabetes Management, Chem. Rev, vol.108, issue.7, pp.2482-2505, 2008.

J. D. Newman and A. P. Turner, Home Blood Glucose Biosensors: A Commercial Perspective, Biosens. Bioelectron, vol.20, issue.12, pp.2435-2453, 2005.

R. Wilson and A. P. Turner, Glucose Oxidase: An Ideal Enzyme, Biosens. Bioelectron, vol.7, issue.3, pp.165-185, 1992.

L. Jiang, H. Liu, J. Liu, Q. Yang, and X. Cai, A Sensitive Biosensor Based on OsComplex Mediator and Glucose Oxidase for Low Concentration Glucose Determination, J. Electroanal. Chem, vol.619, pp.11-16, 2008.

G. Hughes, K. Westmacott, K. C. Honeychurch, A. Crew, R. M. Pemberton et al., Recent Advances in the Fabrication and Application of ScreenPrinted Electrochemical (Bio) Sensors Based on Carbon Materials for Biomedical, Agri-Food and Environmental Analyses, Biosensors, vol.6, issue.4, p.50, 2016.

A. L. Hart, W. A. Collier, and D. Janssen, The Response of Screen-Printed Enzyme Electrodes Containing Cholinesterases to Organo-Phosphates in Solution and from Commercial Formulations, Biosens. Bioelectron, vol.12, issue.7, pp.645-654, 1997.

N. Huang, M. Liu, H. Li, Y. Zhang, and S. Yao, Synergetic Signal Amplification Based on Electrochemical Reduced Graphene Oxide-Ferrocene Derivative Hybrid and Gold Nanoparticles as an Ultra-Sensitive Detection Platform for Bisphenol A, Anal. Chim. Acta, vol.853, pp.249-257, 2015.

D. J. Anderson, E. M. Brozek, K. J. Cox, C. A. Porucznik, and D. G. Wilkins, Biomonitoring Method for Bisphenol A in Human Urine by Ultra-HighPerformance Liquid Chromatography-Tandem Mass Spectrometry, J. Chromatogr. B, pp.53-61, 2014.

Y. Sanchis, C. Coscollà, M. Roca, and V. Yusà, Analysis of Primary Aromatic Amines Combined with a Comprehensive Screening of Migrating Substances in Kitchen Utensils by Liquid Chromatography-High Resolution Mass Spectrometry, Talanta, vol.138, pp.290-297, 0201.

T. Vega-morales, Z. Sosa-ferrera, and J. J. Santana-rodríguez, Determination of Alkylphenol Polyethoxylates, Bisphenol-A, 17?-Ethynylestradiol and 17 -Estradiol and Its Metabolites in Sewage Samples by SPE and LC/MS/MS, J. Hazard. Mater, vol.183, issue.1-3, pp.701-711, 2010.

B. Shao, H. Han, J. Hu, J. Zhao, G. Wu et al., Determination of Alkylphenol and Bisphenol A in Beverages Using Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. Anal

. Chim and . Acta, , vol.530, pp.245-252, 2005.

H. Gallart-ayala, E. Moyano, and M. T. Galceran, Analysis of Bisphenols in Soft Drinks by On-Line Solid Phase Extraction Fast Liquid ChromatographyTandem Mass Spectrometry, Anal. Chim. Acta, vol.683, issue.2, pp.227-233, 2011.

M. Chen, L. Tao, E. M. Collins, C. Austin, and C. Lu, Simultaneous Determination of Multiple Phthalate Metabolites and Bisphenol-A in Human Urine by Liquid Chromatography-Tandem Mass Spectrometry, J. Chromatogr. B, vol.904, pp.73-80, 2012.

A. Cariot, A. Dupuis, M. Albouy-llaty, B. Legube, S. Rabouan et al., Reliable Quantification of Bisphenol A and Its Chlorinated Derivatives in Human Breast Milk Using UPLC-MS/MS Method, Talanta, vol.100, pp.175-182, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00834208

N. C. Maragou, E. N. Lampi, N. S. Thomaidis, and M. A. Koupparis, Determination of Bisphenol A in Milk by Solid Phase Extraction and Liquid Chromatography-Mass Spectrometry, J. Chromatogr. A, issue.2, pp.165-173, 2006.

K. Inouea, A. Yamaguohia, M. Wadaa, Y. Yoshimuraa, T. Makinob et al., Quantitative Detection of Bisphenol A and Bisphenol A Diglycidyl Ether Metabolites in Human Plasma by Liquid Chromatography, J. Chromatogr. B, vol.765, pp.121-126, 2001.

S. Andreescu, T. Noguer, V. Magearu, and J. Marty, Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents, Talanta, vol.57, pp.169-176, 2002.

A. Avramescu, T. Noguer, V. Magearu, and J. Marty, Chronoamperometric determination of d-lactate using screen-printed enzyme electrodes, Anal. Chim. Acta, vol.433, pp.81-88, 2001.

M. C. Blanco-lópez, M. J. Lobo-castañón, A. J. Miranda-ordieres, and P. Tuñón-blanco, Electrochemical sensors based on molecularly imprinted polymers, TrAC Trends Anal. Chem, vol.23, pp.36-48, 2004.

J. Corrales, L. A. Kristofco, W. B. Steele, B. S. Yates, C. S. Breed et al., Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation, Dose-Response, vol.13, pp.1-29, 2015.

Z. Fan, J. Hu, W. An, and M. Yang, Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China: comparison to the parent compounds, Environ. Sci. Technol, vol.47, pp.10841-10850, 2013.

A. L. Hart, W. A. Collier, and D. Janssen, The response of screen-printed enzyme electrodes containing cholinesterases to organo-phosphates in solution and from commercial formulations, Biosens. Bioelectron, vol.12, pp.645-654, 1997.

K. Haupt and K. Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors, Chem. Rev, vol.100, pp.2495-2504, 2000.

E. Herrero-hernández, R. Carabias-martínez, and E. Rodríguez-gonzalo, Application for selective solid-phase extraction from water and urine samples, Int. J. Mol. Sci, vol.12, pp.3322-3339, 2011.

N. Huang, M. Liu, H. Li, Y. Zhang, and S. Yao, Synergetic signal amplification based on electrochemical reduced graphene oxide-ferrocene derivative hybrid and gold nanoparticles as an ultra-sensitive detection platform for bisphenol A, Anal. Chim. Acta, vol.853, pp.249-257, 2015.

S. M. Khor, G. Liu, C. Fairman, S. G. Iyengar, and J. J. Gooding, The importance of interfacial design for the sensitivity of a label-free electrochemical immuno-biosensor for small organic molecules, Biosens. Bioelectron, vol.26, pp.2038-2044, 2011.

S. Koide and K. Yokoyama, Electrochemical characterization of an enzyme electrode based on a ferrocene-containing redox polymer, J. Electroanal. Chem, vol.468, pp.193-201, 1999.

J. Kulys and E. J. D'costa, Printed electrochemical sensor for ascorbic acid determination, Anal. Chim. Acta, vol.243, pp.173-178, 1991.

K. Laatikainen, M. Bryjak, M. Laatikainen, and H. Sirén, Molecularly imprinted polystyrene-divinylbenzene adsorbents for removal of bisphenol A, Desalin. Water Treat, vol.52, pp.1885-1894, 2014.

C. Malitesta, E. Mazzotta, R. A. Picca, A. Poma, I. Chianella et al., MIP sensors -the electrochemical approach, Anal. Bioanal. Chem, vol.402, pp.1827-1846, 2011.

E. Mazzotta, A. Turco, I. Chianella, A. Guerreiro, S. A. Piletsky et al., Solid-phase synthesis of electroactive nanoparticles of molecularly imprinted polymers. A novel platform for indirect electrochemical sensing applications, Sens. Actuators B Chem, vol.229, pp.174-180, 2016.

W. Meouche, K. Laatikainen, A. Margaillan, T. Silvonen, H. Siren et al., Effect of porogen solvent on the properties of nickel ion imprinted polymer materials prepared by inverse suspension polymerization, Eur. Polym. J, vol.87, pp.124-135, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01878471

M. S. Muhamad, M. R. Salim, W. J. Lau, Z. Yusop, and T. Hadibarata, The removal of bisphenol A in water treatment plant using ultrafiltration membrane system, Water Air Soil Pollut, vol.227, p.250, 2016.

O. Okay, Macroporous copolymer networks, Prog. Polym. Sci, vol.25, pp.711-779, 2000.

J. O'mahony, M. Moloney, M. Mccormack, I. A. Nicholls, B. Mizaikoff et al., Design and implementation of an imprinted material for the extraction of the endocrine disruptor bisphenol A from milk, J. Chromatogr. B, vol.931, pp.164-169, 2013.

L. Padhye, H. Yao, F. T. Kung'u, and C. Huang, Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant, Water Res, vol.51, pp.266-276, 2013.

S. A. Piletsky and A. P. Turner, Electrochemical sensors based on molecularly imprinted polymers, Electroanalysis, vol.14, pp.317-323, 2002.

M. Radulescu, M. Bucur, B. Bucur, and G. L. Radu, Biosensor based on inhibition of monoamine oxidases A and B for detection of ?-carbolines, Talanta, vol.137, pp.94-99, 2015.

K. V. Ragavan, N. K. Rastogi, and M. S. Thakur, Sensors and biosensors for analysis of bisphenol-A, TrAC Trends Anal. Chem, vol.52, pp.248-260, 2013.

P. S. Sharma, A. Pietrzyk-le, F. Souza, and W. Kutner, Electrochemically synthesized polymers in molecular imprinting for chemical sensing, Anal. Bioanal. Chem, vol.402, pp.3177-3204, 2012.

P. S. Sharma, A. Wojnarowicz, M. Sosnowska, T. Benincori, K. Noworyta et al., Potentiometric chemosensor for neopterin, a cancer biomarker, using an electrochemically synthesized molecularly imprinted polymer as the recognition unit, Biosens. Bioelectron, vol.77, pp.565-572, 2016.

V. K. Sharma, G. A. Anquandah, R. A. Yngard, H. Kim, J. Fekete et al., Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment, J. Environ. Sci. Health Part A, vol.44, pp.423-442, 2009.

G. Socrates, Infrared and Raman Characteristic Group Frequencies -Tables and Charts, Third, 2001.

I. Svancara, K. Kalcher, A. Walcarius, and K. Vyt?as, Electroanalysis with carbon paste electrodes, Analytical Chemistry Series, 2012.

D. Udomsap, C. Branger, G. Culioli, P. Dollet, and H. Brisset, A versatile electrochemical sensing receptor based on a molecularly imprinted polymer, Chem. Commun, vol.50, pp.7488-7491, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01364365

L. Uzun and A. P. Turner, Molecularly-imprinted polymer sensors: realising their potential, Biosens. Bioelectron, vol.76, pp.131-144, 2016.

G. Vlatakis, L. I. Andersson, R. Müller, and K. Mosbach, Drug assay using antibody mimics made by molecular imprinting, Nature, vol.361, pp.645-647, 1993.

J. Wang, P. A. Cormack, D. C. Sherrington, and E. Khoshdel, Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications, Angew. Chem. Int. Ed, vol.42, pp.5336-5338, 2003.

L. Ye and K. Haupt, Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery, Anal. Bioanal. Chem, vol.378, pp.1887-1897, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00080317

C. Zhang, Y. Li, C. Wang, L. Niu, and W. Cai, Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: a review, Crit. Rev. Environ. Sci. Technol, vol.46, pp.1-59, 2016.

V. M. Ekomo,