
HAL Id: tel-02273026
https://theses.hal.science/tel-02273026

Submitted on 28 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of a simplified model for phase change in
presence of natural convection and radiation :
application to a novel heat storage translucent

superinsulated wall
Farah Souayfane

To cite this version:
Farah Souayfane. Development of a simplified model for phase change in presence of natural convection
and radiation : application to a novel heat storage translucent superinsulated wall. Mechanics of
materials [physics.class-ph]. COMUE Université Côte d’Azur (2015 - 2019); Université Libanaise,
2018. English. �NNT : 2018AZUR4043�. �tel-02273026�

https://theses.hal.science/tel-02273026
https://hal.archives-ouvertes.fr


 
 

   

 

 

 

 

 

 
 

 

Modèle simplifié de changement de phase en présence de convection 

et rayonnement : Application à un mur translucide associant 

superisolation et stockage d'énergie thermiques 

 

Development of a simplified model for phase change in presence of 

natural convection and radiation: Application to a novel heat storage 

translucent superinsulated wall 

 
 

Farah SOUAYFANE  
Laboratoire Jean Alexandre Dieudonné LJAD 

 

Présentée en vue de l’obtention  

du grade de docteur en Science pour 

l’ingénieur 

de l’Université côte d’Azur 

et de l’Université Libanaise 

Dirigée par : Pascal Henry Biwole / Farouk 

Fardoun  

Soutenue le : 26 Novembre 2018 

 

 

Devant le jury, composé de :  

Farouk Fardoun, Professeur, Université 

Libanaise 

Hassane Naji, Professeur, Université d'Artois 

Luisa Cabeza, Professeur, Université de Lleida 

Pascal Henry Biwole, Professeur, Université 

Clermont Auvergne 

Patrick Achard, Directeur de recherche, Mines-

ParisTech 

Richard Pasquetti, Directeur de recherche, CNRS 

 



 
 

 

 

 

 

 

 

 
 

 

 

 

 



 
 

 

 

 

 

 

Modèle simplifié de changement de phase en présence de 

convection et rayonnement : Application à un mur translucide 

associant superisolation et stockage d'énergie thermiques 

 

 

Development of a simplified model for phase change in presence 

of natural convection and radiation: Application to a novel heat 

storage translucent superinsulated wall 

 

 

Jury : 

Rapporteurs 

Hassane Naji, Professeur, Université d'Artois 

Luisa Cabeza, Professeur, Université de Lleida 

Examinateurs 

Patrick Achard, Directeur de recherche, Mines-ParisTech 

Richard Pasquetti, Directeur de recherche, CNRS 

Directeurs de thèse 

Farouk Fardoun, Professeur, Université Libanaise 

Pascal Henry Biwole, Professeur, Université Clermont Auvergne 

 



 
 

 



 

5 
 

Modèle simplifié de changement de phase en présence de convection et 

rayonnement : Application à un mur translucide associant superisolation 

et stockage d'énergie thermiques 

Résumé 
 

Au Liban comme en France, la consommation énergétique des bâtiments représente plus de 40% de 

l’énergie finale totale. Une proportion significative de la consommation d'énergie dans les bâtiments 

est utilisée pour le refroidissement et le chauffage. Une alternative pour atteindre l'objectif de 

réduction de la consommation d'énergie dans le bâtiment est d'améliorer la performance énergétique 

de son enveloppe en intégrant des matériaux à changement de phase (MCP). De plus, une partie 

importante de la conception du bâtiment consiste à utiliser au mieux les ressources externes et en 

particulier l'exploitation du rayonnement solaire. La fusion des MCP s’accompagne de différents 

phénomènes, à savoir, la convection naturelle et l’absorption ou transmission du rayonnement. Dans 

les bâtiments, où une évaluation thermique annuelle est nécessaire, la plupart des études sur les 

façades translucides intégrant du MCP ont négligé l'effet de la convection naturelle pendant la fusion 

et ont supposé des transferts unidimensionnels par conduction et rayonnement. Parce que cette 

hypothèse n’est pas toujours adéquate, le développement d’un modèle numérique simplifié prenant 

en compte la convection naturelle et le rayonnement lors du changement de phase, adapté à une 

évaluation thermique annuelle, est nécessaire. Ainsi, dans cette thèse, un modèle numérique simplifié 

bidimensionnel a été développé, en premier temps, dans le but de modéliser la convection naturelle 

pendant le processus de fusion d’un matériau à changement de phase. Une validation du modèle est 

faite à l’aide d’un modèle CFD précédemment développé, et des résultats numériques et 

expérimentaux trouvés dans la littérature pour le cas : fusion d’Octadécane dans une cavité carrée. 

Ensuite, un modèle numérique simplifié en 2D pour la fusion du MCP en présence de la convection 

naturelle et du rayonnement courte longueur d’onde (CLO) a été développé. Le modèle a été validé à 

l’aide d’une méthode de Boltzmann sur réseau couplé avec la méthode des ordonnées discrètes 

(LBM-DOM) trouvée dans la littérature pour le cas : fusion d’acide gras dans une cavité rectangulaire. 

En outre, dans le contexte d’efficacité énergétique et d’exploitation optimale des ressources 

environnementales, le projet INERTRANS a proposé le développement d'une façade solaire 

translucide innovante. Cette façade fournit un éclairage naturel et est composé d’une couche d’aérogel 

de silice assurant une isolation thermique et acoustique importante, et d’un matériau à changement 

de phase (MCP). Ce dernier est contenu dans des briques de verre et assure l’absorption, le stockage 

et la restitution de la chaleur. Ce mur a été caractérisé expérimentalement en ambiance contrôlée et 

in-situ sur un bâtiment à dimensions réelles et localisé au sein du centre PERSEE à Sophia Antipolis. 
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Son impact sur le bâtiment en termes de contribution aux apports énergétiques et lumineux a été mis 

en évidence. Il a été remarqué que la performance thermique du mur est très élevée en hiver, tandis 

qu’un problème de surchauffe a été rencontré en été lorsque le MCP reste à l’état liquide et n’arrive 

plus à dissiper la chaleur stockée. Pour optimiser la performance du mur MCP-aérogels en été, un 

modèle numérique simplifié décrivant les mécanismes de transfert de chaleur à travers le mur a été 

développé sous MATLAB basé sur les deux modèles validés précédents. Ce modèle est trouvé simple 

à mettre en œuvre et assez rapide pour être couplé à TRNSYS afin d’évaluer la performance 

thermique de l'ensemble du bâtiment. Le modèle couplé MATLAB-TRNSYS a été validé 

expérimentalement en été et en hiver à l’aide de la cellule expérimentale du centre PERSEE. Le 

comportement thermique du mur est testé sous différentes conditions climatiques, et des solutions 

passives sont proposées pour assurer le confort thermique en été. Les résultats ont montré que même 

si le MCP ne cycle pas en été, le confort thermique peut être assuré à l'aide des dispositifs d'ombrage. 

Enfin, le modèle validé a permis d'étudier le comportement thermique annuel d’un bâtiment intégrant 

un mur MCP- aérogel dans son enveloppe, et ceci dans six climats différents. De plus, une étude 

économique a été réalisée. Ces études ont confirmé l'intérêt du mur vis-à-vis de l'amélioration des 

performances énergétiques du bâtiment. La faisabilité économique de l'application du mur MCP-

aérogel dépend principalement des conditions climatiques, des coûts de l’énergie, ainsi que de la 

situation économique du pays et du coût d'investissement. 

 

Mots clés : mur MCP-aérogel, matériau à changement de phase, modélisation, validation 

expérimentale, convection naturelle, rayonnement, étude économique. 
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Development of a simplified model for phase change in presence of 

natural convection and radiation: Application to a novel heat storage 

translucent superinsulated wall 

Abstract 
 

In Lebanon as in France, the building sector is the largest consumer of energy and accounts for about 

40% of the total energy consumption. A significant proportion of the energy consumption in buildings 

is used for cooling and heating applications. One way to reduce energy consumption and improve 

thermal comfort in the building is by integrating phase change materials (PCM) in its envelope. In 

addition, an important part of the building design is to make the best use of external resources and 

particularly the optimal exploitation of solar radiation. During phase change process, different 

phenomena occur, namely, natural convection in the liquid phase and radiation absorption or 

transmission. In building applications, where yearly thermal evaluation is needed, most studies on 

translucent facades with integrated PCM have neglected the natural convection effect during melting 

and have assumed one-dimensional transfers by conduction and radiation. Because this assumption 

is not always adequate, the development of a validated simplified numerical model coupling natural 

convection and radiation during phase change, suitable for annual thermal assessment, is needed. 

Thus, in this thesis, a two-dimensional simplified numerical model for PCM melting in presence of 

natural convection is first developed and coded on MATLAB. The model is validated using a CFD 

model, in addition to experimental and numerical benchmark solutions for a test case: melting of 

Octadecane in a square cavity. Then, a 2D simplified numerical model for PCM melting in presence 

of both natural convection and radiation is developed. The model is validated against LBM-DOM 

method found in the literature for a test case: melting of Fatty acids in rectangular cavity. Moreover, 

in the context of energy efficiency and exploiting environmental resources, the INERTRANS project 

has proposed the development of an innovative translucent solar façade. This wall is composed of 

glazing, silica aerogel used as a transparent insulation material (TIM) and glass bricks filled with a 

fatty acids mixture. The wall provides, concurrently, storage and restitution of heat, super thermal-

acoustic insulation and daylighting to the interior environment. The thermal performance of the TIM-

PCM wall was tested in a full-sized test cell located in Sophia Antipolis, Southern France, within the 

center for Processes, Renewable Energies and Energy Systems (PERSEE) of Mines ParisTech 

graduate school. In winter season, particularly in sunny cold days, the PCM absorbs solar radiation, 

melts, and then releases the stored heat to the building at night by solidifying. However, during the 

summer, an overheating problem is encountered mainly due to solar gains, the PCM remaining in its 

liquid state and is unable to release the stored heat at night. To enhance the energy performance of 
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the wall in summertime, a numerical model describing the heat transfer mechanisms occurring in the 

PCM layer in combination with the other transparent wall layers is developed on MATLAB based on 

the two previous validated models. The developed model was found simple to implement and fast 

enough to be linked to TRNSYS software to assess the thermal performance of the whole building. 

The MATLAB-TRNSYS model is validated experimentally using PERSEE test cell and a good 

agreement is shown when comparing the simulated values with the measured data for seven 

consecutive days in summer and winter. The thermal behavior of the wall is tested under different 

climatic conditions, and passive solutions are proposed to ensure thermal comfort in summer. The 

results showed that even if the PCM does not cycle in summertime, thermal comfort can be ensured 

using shading devices. Also, the use of a glazing with special optical characteristics (Prisma solar 

glass) instead of the ordinary glass in the TIM-PCM wall composition is shown to be an effective 

technology solving the encountered overheating problem in summer, while preserving the TIM-PCM 

advantages during winter. Finally, the validated model is used to study the annual thermal behavior 

of a building integrating TIM-PCM wall in its envelope under six different climates. In addition, an 

economic study is conducted. These studies confirmed the interest of the wall vis-à-vis the 

improvement of energy performance of the building. The economic feasibility of applying the TIM-

PCM wall depends mainly on climatic conditions, energy costs, as well as the economic situation of 

the country and the cost of investment. 

 

Keywords: TIM-PCM wall, phase change materials, numerical model, experimental validation, 

natural convection, radiation, economic analysis. 
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Nomenclature 

ACH Air change per hour  

averfl Average fraction of liquid in the PCM layer  

B(T) Numerical step function, Eq.2-22  

C Numerical constant kg/ (m3.s) 

c1, c2, c3 dimensionless coefficient (Eq. 3-37)  

CFD Computational fluid dynamics  

COP Coefficient of performance  

Cp Specific heat capacity (J/kg∙K) 

CSTB Scientific and technical center for building research  

d optical thickness  

D(T) Numerical Gaussian function, Eq.2-28  

DOM Discrete Ordinate Method  

EC Energy cost ($) 

ei Experimental value   

EN European norm  

ESC Energy savings cost ($) 

fl Liquid fraction   

Fo Fourier number 
𝜶𝒕

𝑯𝟐
  

G Gravitational acceleration (m/s2) 

Gr Grashof number  

H Height of enclosure (m) 

H Height of the vertical surface (Eq. 3-21) (m) 

hin Indoor convective coefficient  (W/ m2K) 

hout Outdoor convective coefficient (W/ m2K) 

HVAC Heating, ventilation and air conditioning  

IC Initial cost ($) 

k Thermal conductivity  (W/m∙K) 

L Length of enclosure (m) 

LBM Lattice Boltzmann Method  

LCC Life cycle cost ($) 
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LH Latent heat of fusion (J/kg) 

N Total number of nodes  

N Total number of nodes in each layer (chapter 2)  

N Lifetime (chapter 4) (years) 

N-S Navier Stokes equations  

NuH Nusselt number function of H, Table 2-1  

NuL Nusselt number function of L, Table 2-1  

Nuz Nusselt number function of z, Table 2-5  

Nx Nodes number in horizontal direction  

Ny Nodes number in vertical direction  

OP Overhang projection  (m) 

P Pressure (Pa) 

PCM Phase change materials   

PERSEE center for processes, renewable energies and energy 

systems 

 

PP Payback period (years) 

Pr Prandtl number  

PRMSE Percentage root mean square error   

PWF Present worth factor  

q Numerical constant (chapter 2)  

Qsol Total incident solar radiation (W/m2) 

Qsol-ref Reflected solar radiation (W/m2) 

Qsol-total Total incident solar radiation (W/m2) 

Qsol-trans Transmitted solar radiation  (W/m2) 

R Thermal resistance (m2K/W) 

r Discount rate  

R2 R-squared  

RaH Rayleigh number function of H, Eq.2-15   

RaL Rayleigh number function of L, Table 2-1  

Raz Rayleigh number function of z, Eq.2-17  

RIM Radiosity irradiosity method   
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RMSE Root mean square error  

RTE Radiative transfer equation  

s Position of the melting front, Eq.2-14 (m) 

S Physical thickness, Eq.2-33 (m) 

si Simulated value  

Ste Stefan number   

STIME Simulation time  

t Time (s) 

T Temperature (K) 

T0 Initial temperature  (K) 

Tair Outdoor air temperature  (⁰C) 

Tc Cold temperature (K) 

Th Hot temperature (K) 

TIM Transparent insulation material  

Tm Melting temperature (K), (⁰C) 

u Velocity vector (m/s) 

v Wind velocity  (m/s) 

x,y Coordinates (m) 

z Height of convective zone (m) 

Greek letters  

∅LW,in Radiative heat exchange with the indoor environment (W/m2) 

∅LW,out Radiative heat exchange with the outdoor environment (W/m2) 

∅𝑐𝑜𝑛𝑑 Conductive heat flux (W/m2) 

∅𝑠𝑜𝑙 Radiative source term (W/m2) 

µ Dynamic viscosity (Pa.s) 

α Thermal diffusivity (Table 3-1) (m2/s) 

α Solar absorptivity coefficient   

αPCM Solar absorption coefficient, Eq.2-34  

β Thermal expansion coefficient (1/K) 

δ Average position of melting front in  

Table 2-2 
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δ Overall fractional change in transmittance, Eq.2-30  

Δt Time increment (s) 

ΔT Temperature difference between walls Th- Tc  (K) 

ε Surface emissivity  

η Adjustment constant of order 1 (chapter 2)  

η Kinematic viscosity (m2/s) 

η Boiler efficiency  (%) 

θ Dimensionless time  

ρ Solar reflectivity coefficient  

ρ Density (Table 3-1)  (kg/m3) 

ρ Solar reflectivity coefficient   

σ Extinction coefficient (m-1) 

τ Solar transmissivity coefficient  

τPCM Solar transmittance coefficient, Eq.2-32  

Subscripts and superscripts 

0 Previous time step 

av Average 

c Cooling  

conv Conventional 

e Electricity  

enh Enhanced  

enh,p Enhanced at node p 

h Heating  

in Indoor  

l Liquid 

ng Natural gas 

Pc Phase change 

s Solid 

sol Solar 

surf Surface  
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W, E, P, S, N West, east, center, south and north node 

w, e, s, n West, east, south and north interface 
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General Introduction 
 

There is global concern related to energy consumption in the built environment as one of the major 

contributors to greenhouse gas emissions responsible for causing climate change and its associated 

impacts. A significant proportion of the energy consumption in buildings is used for cooling and 

heating application. In Lebanon, as in France, the energy consumption of buildings represents more 

than 40% of total final energy and almost 25% of greenhouse gas emissions [1]. 

An alternative to achieve the goal of reducing energy consumption in the building is to improve the 

energy performance of its envelope. This envelope acts as a filter, it reduces heat exchange between 

the outside and the indoor environment, and protects the occupants from wind, rain, and other 

conditions, contributing to thermal and visual comfort. To achieve these purposes, combining 

insulation with latent heat storage materials is shown as an effective way. In addition, an important 

part of the building design is to make the best use of external resources and particularly the 

exploitation of solar radiation that is considered as an important resource in some areas. 

Numerous studies have shown that the integration of phase change materials (PCM) in the building 

envelope can significantly improve the energy performance of the building and save up to 80% of 

heating energy in winter, as the material captures the heat of the sun, melts, then restitutes the heat to 

the building by re-solidifying. However, one of the encountered problems is the high risk of summer 

overheating when the material can no longer destock the stored heat and remains in its the liquid state. 

However, the possibility, feasibility, thermal performance and economic analysis of using PCM call 

a series of theoretical and experiential investigations. The experimental approaches offer a better 

indication of the actual PCM behavior and performance in comparison to theoretical analysis. 

However, the experiments are unachievable in some cases, such as the large scale or unsteady around 

environment, are time and cost consuming. In addition, there are still some unavoidable testing errors. 

However, the theoretical methods can avoid these weaknesses and predicate the PCM performance 

suitably. The major advantage of the theoretical/numerical approaches is that various conditions can 

be carried out by changing the variables in a numerical model, the main drawback being the accuracy 

of the model used. Therefore, more and more investigators prefer to study the phase change problems 

by mathematical solutions and numerical simulations.  

Usually, when modeling phase change, numerical studies have some assumptions in their 

mathematical modeling [2] e.g. neglecting convective heat transfer within PCM [3] or neglecting 

radiative heat transfer [4], whereas the impact of those assumptions on simulation results are poorly 

discussed in the literature. However, recent researches have demonstrated that natural convection 
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plays an important role in latent heat thermal energy systems, especially during the melting process 

and conduction-only models may incur an unacceptable loss of accuracy. 

Basically, the modeling of natural convection in liquid PCM could be classified in two major 

categories. The first category includes the simplified methods including the enhanced conductivity 

approach using dimensionless numbers. These approaches normally oversimplify the process. On the 

other hand, detailed computational fluid dynamics (CFD) methods, which require long computational 

time, are greatly complicated and complex, and might be limited to the investigated case. In addition, 

CFD simulations are rarely appropriate for the initial design stages especially for long period thermal 

assessment. However, between these two extremes, a model offering a good compromise between 

simplicity and accuracy is needed, which will be the first purpose of the current thesis. 

On the other hand, most studies on translucent facades with integrated PCM have assumed one-

dimensional transfers by conduction and radiation neglecting convection [5]–[7] and numerical 

models were specifically developed to take the interaction of PCM with solar radiation into account 

[8]–[11]. However, very few studies were found in the literature for the melting of PCM in presence 

of both natural convection and radiation. This will be our second research question.  

The ANR INERTRANS project [12] proposed the development of an innovative wall that addresses 

the issue of energy efficiency and optimal use of environmental resources. This wall provides, 

concurrently, storage and restitution of heat, super thermal-acoustic insulation and daylighting to the 

interior environment. It allows exploiting the solar radiation during cold periods to heat the interior 

of the building. To do this, it combines new generation materials, such as silica aerogel for thermal 

insulation and phase change materials (PCM) for absorption and storage of heat. The quasi-constant 

restitution of the heat by convection and long wave radiation contributes to the increase of the 

sensation of thermal comfort of the inhabitant. An acronym for this wall is proposed: TIM-PCM wall 

which stands for “Translucent Insulating Material – Phase Change Material wall”.  

The establishment of such facade in the building is conditioned by the knowledge of its behavior, its 

performance and its energy impact. However, this knowledge on many case studies is accessible only 

through numerical modeling. It is, therefore, necessary to ensure the availability and reliability of a 

numerical model representing the physics of such wall. Particularly, during the melting and 

solidification of the PCM, the latter can be subjected to different modes of heat transfer depending 

on the presence or not of sunshine and thus significantly change the kinetics of the phase change. The 

development of this numerical model will be our third aim. 

The wall has been characterized experimentally in a full-scale test cell located in Sophia Antipolis, 

Southern France, within the center for Processes, Renewable Energies and Energy Systems 

(PERSEE) of Mines ParisTech graduate school [13]. In their experimental study, Berthou et al [13] 
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found that, in the winter season, particularly in sunny cold days, the thermal performance of the wall 

is very effective. While during the summer, an overheating problem is encountered mainly due to 

solar gains, the PCM remains in its liquid state and it is unable to release the stored heat at night. 

Thus, the optimization of the wall thermal performance in summer is needed and solutions for 

overheating and PCM cycling must be proposed.  

Consequently, two research issues were identified in this thesis. The first one is scientific: simplified 

models using a modified heat diffusion equation to consider energy storage (enthalpy method [14], 

[15], equivalent heat capacity method [16] , [17], source term method [18]) do not consider the natural 

convection during the melting which can nevertheless become predominant when the PCM container 

is of sufficiently large dimensions. On the other hand, sophisticated models using numerical solution 

of Navier-Stokes equations (enthalpy-porosity method [19]–[26], temperature transformation model 

[27]–[30], modified heat capacity method [31], lattice Boltzmann method (LBM) [32]–[35]are 

computationally time-consuming and are not at all adapted to perform yearly energy performance 

evaluation of the building. The second one is technological: in the summer season, the PCM 

integrated in the TIM-PCM wall can no longer solidify at night and remains in its liquid state, causing 

summer overheating. 

Broadly speaking, the present thesis proposes at first to perform the modeling of the phenomena 

involved in the translucent TIM-PCM wall to understand the influence and the interaction of the 

different modes of heat transfer. This includes the development of a simplified model for phase 

change, in presence of both natural convection and radiation, that offers a good compromise between 

simplicity and accuracy. And then to develop a mathematical model representing the physics of the 

wall to be coupled with energy simulation tool for yearly performance evaluation. The aim is to 

produce an easy and simplified calculation tool that may help in bridging the gap between the research 

products and concepts (as the TIM-PCM wall) and their development and implementation into the 

built environment.  

The manuscript is composed of four chapters: 

- The first chapter presents a state of the art of the heat transfer mechanisms that occurs during the 

phase change process, and the different numerical models of phase change considering natural 

convection in liquid PCM. In addition, a literature review of PCM applications within translucent 

facades and Trombe walls is presented. The TIM-PCM wall system is described and a history related 

to studies conducted in the framework of the INERTRANS project is presented. Based on the 

limitations of the previous works, the problematic and the objectives of the present thesis are 

determined. 
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- The second chapter presents the development of a simplified numerical model for melting of PCM 

in presence of natural convection and radiation. The mathematical model is coded on MATLAB using 

two-dimensional implicit finite volume method. The results are then validated using a complete CFD 

model created on COMSOL Multiphysics, as well as experimental and numerical benchmark 

solutions for a test case found in the literature. 

- In the third chapter, a numerical model describing the heat transfer mechanisms through the wall is 

developed on MATLAB and then coupled with TRNSYS to evaluate the thermal performance of the 

whole building. The numerical model is experimentally validated in summer and winter seasons using 

the experimental cell located in the PERSEE center. The developed numerical model aims to provide 

an easy tool to use and fast enough to be adopted as a design tool, to investigate the potentials and 

disadvantages of the novel TIM-PCM wall under different operative conditions and different climates 

and to propose solutions to optimize its performance in summer, without the need of performing 

extensive and expensive experimental analysis. 

- The fourth chapter presents an annual assessment of the energy performance of the solar wall 

integrated into a typical office building envelope under different climatic conditions. The optimal 

surface of the TIM-PCM wall is economically evaluated for each climate through a life-cycle cost 

analysis (LCC) as well as the evaluation of the payback period (PP). 

- Finally, since the cooling demand is significantly increasing worldwide, we have extended our 

bibliographical study to PCM applications for cooling purposes, as detailed in Annex A. This aims 

to get a comprehensive vision of PCM applications for cooling in buildings and problems encountered 

in these applications. Difficulties in selecting these materials and the factors affecting the success and 

the effective use of the PCM are also discussed.  

 

Noting that this thesis is presented as a series of journal papers. Consequently, chapters 2,3, 4 and 

Annex A can be read independently; and some overlap may be found between We have the copyright 

permission from the editor to reproduce the published articles. 

The articles are first-authored by the PhD candidate and co-authored by the thesis supervisors Pascal 

henry Biwole and Farouk Fardoun, and are published or submitted as separate articles in international 

peer-reviewed scientific journals as: 

- Chapter 2: Farah Souayfane, Pascal Henry Biwole, Farouk Fardoun. “Melting of a phase change 

material in presence of natural convection and radiation: A simplified model”. Published in Applied 

Thermal Engineering, Elsevier, 2018, 130, pp.660 – 671. 

- Chapter 3: Farah Souayfane, Pascal Henry Biwole, Farouk Fardoun. “Thermal behavior of a 

translucent superinsulated latent heat energy storage wall in summertime”. Published in Applied 

Energy, 2018, 217, pp. 390-408. 
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- Chapter 4: Farah Souayfane, Farouk Fardoun, Pascal Henry Biwole. “Energy Performance and 

Economic Analysis of a TIM-PCM Wall Under Different Climates”. Submitted to Energy, revision 

requested, 2018. 

- Annex A: Farah Souayfane, Farouk Fardoun, Pascal Henry Biwole. “Phase Change Materials 

(PCM) for cooling applications in buildings: A review”. Published in Energy and Buildings, Elsevier, 

2016, 129, pp.396-431. 

 

These articles comprise my own original work except where otherwise stated and all the work is done 

by the PhD candidate under the supervision of thesis directors. 

All published journal papers and international conference papers during this thesis are listed in Annex 

C. 
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Introduction Générale 

 

Il y a une préoccupation mondiale relative à la consommation d'énergie dans l'environnement bâti. 

Celui-ci est en effet l'un des principaux contributeurs aux émissions de gaz à effet de serre 

responsables du changement climatique et de ses impacts associés. Une proportion significative de la 

consommation d'énergie dans les bâtiments est utilisée pour le refroidissement et le chauffage. Au 

Liban comme en France, la consommation énergétique des bâtiments représente plus de 40% de 

l’énergie finale totale et près de 25% des émissions de gaz à effet de serre [1]. 

Une alternative pour atteindre l'objectif de réduction de la consommation d'énergie dans le bâtiment 

est d'améliorer la performance énergétique de son enveloppe. Cette enveloppe agit comme un filtre 

qui réduit les échanges thermiques entre l'extérieur et l'intérieur et protège les occupants contre le 

vent, la pluie et d'autres conditions, contribuant ainsi au confort thermique, acoustique et visuel. Pour 

mieux satisfaire ces fonctions, la combinaison de l'isolation avec des matériaux de stockage de chaleur 

latente est montrée comme un moyen efficace. En outre, une partie importante de la conception du 

bâtiment consiste à utiliser au mieux les ressources externes et en particulier l'exploitation du 

rayonnement solaire. 

De nombreuses études ont montré que l’utilisation des matériaux à changement de phase (MCP) en 

paroi de bâtiment permet d’améliorer remarquablement la performance énergétique du bâtiment et 

d’économiser jusqu’à 80% d’énergie de chauffage l’hiver, dans la mesure où le matériau capte la 

chaleur du soleil, fond, puis redonne cette chaleur au bâtiment en se re-solidifiant. Mais l’un des 

problèmes rencontrés lors de l’utilisation de MCP dans les parois de bâtiment est le fort risque de la 

surchauffe estival lorsque le matériau n’arrive plus à déstocker la chaleur emmagasinée et reste à 

l’état liquide. Un cyclage du matériau y compris l’été lui permettrait de jouer pleinement son rôle de 

barrière thermique ou de puits de chaleur en diminuant le besoin de froid.  

Cependant, la possibilité, la faisabilité, la performance thermique et l’analyse économique de 

l’utilisation des MCP appellent une série d’études théoriques et expérimentales. Les approches 

expérimentales offrent une meilleure indication du comportement et de la performance réels des MCP 

par rapport à l'analyse théorique. Cependant, les expériences sont irréalisables dans certains cas, tels 

que la grande échelle ou l'instabilité autour de l'environnement, sont coûteuses en temps et en argent, 

en plus, il existe des erreurs de test inévitables. Cependant, les méthodes théoriques peuvent éviter 

ces faiblesses et prédire d’une manière appropriée la performance des MCP. 

Le principal avantage des approches théoriques / numériques est que différentes conditions peuvent 

être réalisées en modifiant les variables dans le modèle numérique. Par conséquent, de plus en plus 
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de chercheurs préfèrent étudier les problèmes de changement de phase par des solutions 

mathématiques et des simulations numériques. 

Habituellement, lors de la modélisation du changement de phase, les études numériques ont des 

hypothèses dans leur modélisation mathématique [2]. Par exemple, en négligeant le transfert de 

chaleur par convection dans le MCP liquide [3] ou en négligeant le transfert de chaleur radiatif [4], 

alors que l'impact de ces hypothèses sur les résultats de la simulation est peu discuté dans la littérature. 

Cependant, des recherches récentes ont démontré que la convection naturelle joue un rôle important 

pendant le processus de fusion et que les modèles à conduction seule peuvent entraîner une perte de 

précision inacceptable. 

Fondamentalement, la modélisation de la convection naturelle dans les MCP liquides peuvent être 

classée en deux grandes catégories. La première catégorie comprend les méthodes simplifiées, y 

compris l'approche de conductivité thermique efficace utilisant les nombres adimensionnels. Ces 

approches normalement simplifier le processus. En revanche, les méthodes détaillées de la dynamique 

des fluides (CFD), qui exigent un temps de calcul long, sont grandement compliqué et complexe et 

peuvent être limités au cas étudié. En outre, les simulations CFD sont rarement appropriées pour les 

étapes de la conception initiale en particulier pour une évaluation thermique longue durée. Toutefois, 

entre ces deux extrêmes, un modèle qui offre un bon compromis entre simplicité et précision est 

nécessaire, qui sera le premier objectif de la thèse actuelle. 

D'autre part, la plupart des études sur les façades translucides intégrant des MCP ont supposé des 

transferts unidimensionnels par conduction et par radiation sans convection [5]–[7], et les modèles 

numériques ont été spécifiquement développés pour prendre en compte l'interaction des MCP avec le 

rayonnement solaire [8]–[11]. Cependant, très peu d'études ont été trouvées dans la littérature sur la 

fusion des MCP en présence de la convection naturelle et de rayonnement. Ce sera notre deuxième 

question de recherche. 

Le projet INTERTRANS [12] a proposé le développement d’un mur solaire passif translucide 

innovant intégré dans l’enveloppe du bâtiment s’inscrivant directement dans la problématique 

d’efficacité énergétique et d’exploitation optimale des ressources environnementale. Ce mur solaire 

assure, simultanément, stockage et restitution de la chaleur, super isolation thermo-acoustique et 

éclairage naturel contribuant au confort visuel. Il permet d’exploiter le rayonnement solaire lors des 

périodes froides pour chauffer l’intérieur du bâtiment. Pour ce faire, le mur associe des matériaux de 

nouvelle génération, tel que l’aérogel de silice pour l’isolation thermique et les matériaux à 

changement de phase (MCP) pour l’absorption et le stockage de la chaleur issue du rayonnement 

solaire. La restitution quasi constante de la chaleur par convection et rayonnement grande longueur 

contribue à l’augmentation de la sensation de confort thermique de l’habitant. 
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La mise en place d’une telle façade dans le bâtiment est conditionnée par la connaissance de son 

comportement, de sa performance et de son impact énergétique. Or, cette connaissance sur un nombre 

important de cas d’études n’est accessible que par la modélisation numérique. Il est donc nécessaire 

de s’assurer de la disponibilité et de la fiabilité d’un modèle numérique susceptible de représenter la 

physique d’une telle paroi. En particulier lors de la fusion et de la solidification du MCP, ce dernier 

peut être soumis à différents modes de transferts de chaleur en fonction de la présence ou non 

d’ensoleillement et ainsi modifier considérablement la cinétique du changement d’état. Le 

développement de ce modèle numérique sera notre troisième objectif. 

Ce mur a été caractérisé expérimentalement en ambiance contrôlée et in situ sur un bâtiment grandeur 

nature situé au sein du laboratoire PERSEE de l’Ecole des Mines de Paris à Sophia Antipolis, dans le 

sud de la France [13]. Dans leur étude expérimentale, Berthou et al [13] ont constaté que la 

performance thermique du mur est très élevée en hiver, tandis qu'en été les gains de chaleur à travers 

le mur provoquent un problème de surchauffe et le MCP n’arrive pas à se solidifier. Ainsi, 

l'optimisation de la performance thermique de cette paroi en été est nécessaire et des solutions pour 

la surchauffe et le cyclage du MCP doivent être proposées. 

Deux verrous ont été alors identifiés dans cette étude. Le premier est scientifique : les modèles 

simplifiés utilisant une modification de l’équation de diffusion de la chaleur pour tenir compte du 

stockage de chaleur (méthode enthalpique [14], [15], méthode de la capacité thermique équivalente 

[16] , [17], méthode du terme source [18]) ne prennent pas en compte la convection naturelle lors de 

la fusion qui peut pourtant devenir prédominante lorsque le contenant du MCP est de dimensions 

suffisamment grandes. D’autre part, les modèles sophistiqués utilisant une résolution numérique des 

équations de Navier Stokes (méthode d’enthalpie-porosité [19]–[26], modèle de transformation de la 

température [27]–[30], méthode de la capacité calorifique modifiée [31], méthode de Boltzmann sur 

réseau (LBM) [32]–[35]) sont eux gourmands en temps de calcul et ne sont pas du tout adaptés aux 

échelles de temps et d’espace caractéristiques de la simulation thermique annuelle du bâtiment. Le 

deuxième verrou est technologique : en été le MCP n’arrive plus à se resolidifier la nuit, provoquant 

ainsi une surchauffe estivale.  

En gros, cette thèse propose dans un premier temps de réaliser la modélisation des phénomènes mis 

en jeu au sein du mur translucide MCP-aérogels afin de comprendre l'influence et l'interaction des 

différents modes de transfert de chaleur. Cela inclut le développement d'un modèle simplifié pour le 

changement de phase, en présence de convection naturelle et de rayonnement, qui offre un bon 

compromis entre simplicité et précision. Et ensuite, développer un modèle mathématique représentant 

la physique du mur afin de le coupler avec un outil de simulation énergétique pour effectuer une 

évaluation thermique annuelle. L'objectif est de produire un outil de calcul simple et simplifié pouvant 
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aider à combler le fossé entre les produits et les concepts de recherche (comme le mur MCP-aérogels) 

et leur développement et leur mise en œuvre dans l'environnement bâti. 

 

Le présent manuscrit est articulé en quatre chapitres : 

-Le premier chapitre présente l’état de l’art des mécanismes de transfert de chaleur qui se produisent 

pendant le processus de changement de phase, ainsi que les différents modèles numériques de 

changement de phase prenant en compte la convection naturelle dans le MCP liquide. En plus, une 

revue sur les applications des façades translucides et du mur Trombe intégrant des matériaux à 

changement de phase est présenté. Le système du mur MCP-aérogel est décrit et un historique lié aux 

études menées dans le cadre du projet INERTRANS est présenté. Sur la base des limitations des 

travaux précédents, la problématique et les objectifs de la présente thèse sont déterminés. 

- Le deuxième chapitre présente le développement d’un modèle numérique simplifié pour modéliser 

la convection naturelle et le rayonnement courte longueur d’onde pendant le processus de fusion d’un 

matériau à changement de phase. Le modèle mathématique est codé sous MATLAB en utilisant la 

méthode des volumes finis en deux dimensions. Les résultats sont ensuite comparés à ceux d’un 

modèle CFD complet créé dans COMSOL Multiphysics, et aux résultats numériques et 

expérimentaux des benchmarks trouvés dans la littérature.  

- Dans le troisième chapitre, le modèle numérique décrivant les mécanismes de transfert de chaleur à 

travers le mur est développé sur MATLAB et ensuite couplé à TRNSYS pour évaluer la performance 

thermique de l'ensemble du bâtiment. Le modèle numérique est validé expérimentalement en été et 

en hiver par l’utilisation de la cellule expérimentale présente au sein du laboratoire PERSEE. Ce 

modèle validé vise à fournir un outil facile à utiliser et assez rapide pour étudier le potentiel ainsi que 

les inconvénients du mur solaire dans différentes conditions opératoires et dans différents climats, et 

pour proposer des solutions pour optimiser sa performance en été.  

- Le quatrième chapitre, présente une évaluation annuelle de la performance énergétique du mur 

solaire intégré dans l’enveloppe d’un immeuble de bureaux typique sous différentes conditions 

climatiques. La surface optimale du mur MCP-aérogel est enfin évaluée économiquement pour 

chaque climat grâce à une analyse en coût global basé sur le coût durant le cycle de vie des matériaux 

(CCV) et par l’évaluation du temps de retour sur investissement (TRI). 

- Finalement, comme la demande de refroidissement augmente de manière significative dans le 

monde entier, nous avons étendu notre recherche bibliographique aux applications de MCP pour le 

refroidissement (voir Annexe A). Ceci a pour objectif d’avoir une vision globale de l’emploi des 

MCP dans les bâtiments dans un contexte de refroidissement, ainsi que problèmes pouvant être 
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rencontrés dans ces applications. Les difficultés liées à la sélection de ces matériaux et les facteurs 

affectant l'utilisation réussie et efficace des MCP sont également discutés.  

 

Notant que cette thèse est présentée comme une série d'articles de revues. Par conséquent, les 

chapitres 2, 3 et 4 et l'annexe A peuvent être lus indépendamment, et un certain chevauchement peut 

être trouvé entre eux. L’autorisation préalable des éditeurs a été obtenue pour la diffusion des articles 

publiés dans le cadre de ce manuscrit. 

La doctorante est la première auteure de ces articles, les co-auteurs sont les directeurs de thèse Pascal 

Henry Biwole et Farouk Fardoun. Pendant la thèse, quatre articles sont publiés et un article est soumis 

dans des journaux internationaux de rang A à comité de lecture : 

- Chapitre 2: Farah Souayfane, Pascal Henry Biwole, Farouk Fardoun. “Melting of a phase change 

material in presence of natural convection and radiation: A simplified model”. Published in Applied 

Thermal Engineering, Elsevier, 2018, 130, pp.660 – 671. 

- Chapitre 3: Farah Souayfane, Pascal Henry Biwole, Farouk Fardoun. “Thermal behavior of a 

translucent superinsulated latent heat energy storage wall in summertime”. Published in Applied 

Energy, 2018, 217, pp. 390-408. 

- Chapitre 4: Farah Souayfane, Farouk Fardoun, Pascal Henry Biwole. “Energy Performance and 

Economic Analysis of a TIM-PCM Wall Under Different Climates”. Submitted to Energy, revision 

requested, 2018. 

- Annexe A: Farah Souayfane, Farouk Fardoun, Pascal Henry Biwole. “Phase Change Materials 

(PCM) for cooling applications in buildings: A review”. Published in Energy and Buildings, Elsevier, 

2016, 129, pp.396-431. 

 

Ces articles comprennent mon propre travail, sauf indication contraire, et tout le travail est effectué 

par la doctorante sous la supervision des directeurs de thèse. 

Tous les articles de revues publiés et les publications dans des conférences internationales au cours 

de cette thèse sont énumérés dans l'annexe C. 
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Chapter 1. State of the art and thesis problematic 

 

Résumé du chapitre en français : 

Etat de l’art et problématique  

D’abord, ce chapitre présente les mécanismes de transfert de chaleur qui se produisent pendant le 

processus de changement de phase. Les différents modèles numériques de changement de phase 

prenant en compte la convection naturelle dans le MCP liquide sont présentés et le phénomène 

physique mise en jeu est expliqué. Ces modèles numériques comprennent les modèles CFD et les 

approches simplifiées. Ensuite, l’état de l'art des différentes études considérant la convection naturelle 

pendant la fusion des MCP dans des enceintes est présenté. Sur la base de ce qui précède, Il a été 

constaté que : - la convection naturelle doit être prise en compte dans la phase liquide du MCP pendant 

la fusion ; - les modèles ‘CFD’ sophistiqués utilisés pour modéliser la convection naturelle pendant 

la fusion, nécessitent la résolution numérique des équations de Navier Stokes (méthode d’enthalpie-

porosité, modèle de transformation de la température, méthode de la capacité calorifique modifiée, 

méthode de Boltzmann sur réseau (LBM)) sont eux gourmands en temps de calcul et ne sont pas du 

tout adaptés aux échelles de temps et d’espace caractéristiques de la simulation thermique annuelle 

du bâtiment. L'approche de conductivité thermique efficace, largement utilisée, est rapide et simple, 

mais elle présente plusieurs lacunes, en particulier elle est incapable de montrer les caractéristiques 

du changement de phase et ne peut pas fournir d’informations sur la position du front de fusion ; - le 

processus de fusion comprend principalement trois régimes : régime dominé par la conduction, 

régime mixte de conduction et de convection et régime dominé par la convection. Ces régimes sont 

reflétés par la courbe du nombre de Nusselt en fonction du temps. Cependant, aucun consensus n'a 

été trouvé dans la littérature sur lequel est le mécanisme de transfert de chaleur dominant, lequel peut 

être ignoré et comment combiner ces deux mécanismes pendant la modélisation du changement de 

phase ; - le nombre de Nusselt est un paramètre clé dans les problèmes dominés par la convection. ; 

- à ce jour, de nombreuses corrélations de nombre de Nusselt développées dans la littérature ne 

conviennent que pour une géométrie et / ou un PCM spécifiques. 

De plus, dans le cadre de l’amélioration de l’enveloppe des bâtiments et de l’exploitation optimale 

des ressources environnementales pour diminuer la consommation de l’énergie, une étude 

bibliographique concernant l’application des façades translucides et du mur Trombe intégrant des 

matériaux à changement de phase est présentée. En se basant sur cette étude bibliographique, il a été 

constaté que : - l’intégration des MCP dans les façades translucides augmente le confort thermique 
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intérieur du bâtiment et par conséquent la satisfaction des occupants ; - la plupart des travaux 

antérieurs sur les façades transparentes intégrant des MCP ont été principalement développés pour la 

saison de chauffage et leurs avantages en termes d'efficacité énergétique sont peu quantifiés en été. - 

la plupart des études sur les façades translucides ont supposé des transferts unidimensionnels par 

conduction et par rayonnement sans prise en compte de la convection ; l’interaction de la convection 

et du rayonnement a rarement été étudiée dans la littérature. 

Dans le même contexte, le mur solaire innovant issu du projet ANR INERTRANS (2008-2011) est 

présenté. Le mur est composé d'un lit d’aérogel de silice pour l’isolation thermique-acoustique 

permettant la transmission du rayonnement solaire, et de briques de verre remplies d'un matériau à 

changement de phase eutectique à base d’acides gras pour le stockage et la restitution de la chaleur. 

Le mur entier est translucide et a été mise en place à Sophia Antipolis, au sein du centre PERSEE 

(Procédés, Énergies Renouvelables et Systèmes Énergétiques) de Mines ParisTech dans le but 

d'étudier son comportement thermique sous climat réel, et dans la cellule climatique MINIBAT du 

Centre d’Energétique et de Thermique de Lyon dans le but de déterminer le comportement du mur 

MCP-aérogel pour des scénarios climatiques imposés et répétables. 

Plusieurs études ont été menées dans le cadre du projet INTERTRANS et sont citées ci-après. 

Le mur a été caractérisé expérimentalement par Berthou et al. [121], en ambiance contrôlée et in-situ 

sur un bâtiment grandeur nature situé au sein du laboratoire PERSEE. Les résultats expérimentaux 

ont montré que la performance thermique du mur est très élevée en hiver, alors que durant l’été, les 

gains de chaleur à travers le mur provoquent un problème de surchauffe et le MCP n’arrive pas à se 

solidifier. Ainsi, la performance du mur doit être optimisée, et des solutions pour surmonter la 

surchauffe estivale et le cyclage du MCP doivent être proposées. Le modèle numérique du mur issu 

de ce travail présente de fortes différences avec les mesures expérimentales. Ceci est 

vraisemblablement dû au fait que la convection naturelle n'a pas été correctement prise en compte 

dans le modèle. Ainsi, la question d'un modèle numérique validé expérimentalement et qui permette 

l'optimisation d'une telle paroi sous différentes conditions est toujours ouverte. 

Fuentes et al. [85] ont développé un modèle de Lattice Boltzmann sur gaz réseau couplé à la méthode 

des ordonnées discrètes (LBM-DOM) dans le but d’étudier la fusion d’un acide gras contenu dans les 

briques de verre du mur innovant en présence de convection naturelle et de rayonnement. Ils ont 

souligné l'importance de considérer la convection naturelle dans le MCP liquide. Cependant, le 

modèle développé nécessite un temps de calcul très élevé. Ainsi, il ne peut pas être utilisé pour 

effectuer une évaluation annuelle de la performance énergétique de bâtiments intégrant un tel mur. 

Un modèle plus simplifié de rayonnement et de convection naturelle pendant la fusion est toujours 

une question ouverte. 
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Gong et al. [122] ont concentré leurs travaux expérimentaux et numériques, sur la question importante 

du processus de fusion d’un MCP à l'intérieur d’une brique de verre. Le rayonnement dans la brique 

n'a pas été pris en compte, et le modèle développé n’était pas adapté pour être couplé avec TRNSYS 

ou Energy Plus, afin d’évaluer la performance thermique annuelle de l'ensemble du bâtiment. 

Il résulte des points évoqués ci-dessus que des travaux supplémentaires restent à faire dans le cadre 

du projet INERTRANS, et principalement la mise en place d'un modèle numérique simplifié pouvant 

convenablement représenter la physique du mur MCP-aérogel, tout en tenant compte de la convection 

naturelle et du rayonnement lors de la fusion du MCP. Le modèle doit être suffisamment rapide pour 

être couplé avec un outil de simulation énergétique globale (tel que TRNSYS), afin d’évaluer la 

performance thermique annuelle de l'ensemble du bâtiment intégrant un tel mur. Une fois le modèle 

validé expérimentalement, il doit servir à l'optimisation de la performance de la paroi MCP-aérogel 

sous différentes conditions climatiques et configurations. 

 

Dans ce chapitre, le mur MCP-aérogel est décrit ainsi que la problématique de la thèse. Dans le 

chapitre suivant, un modèle simplifié prenant en compte la convection naturelle et le rayonnement 

lors du changement de phase sera développé. Les équations régissant ces phénomènes ainsi que leurs 

hypothèses simplificatrices et les méthodes numériques adaptées à leur résolution seront présentées. 
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1. Introduction 

By 2035 it is expected that the energy consumption in the building sector increases 29%, which 

represents an average annual rate of 1% [1]. The European Union EU has introduced some policies 

and goals to improve the energy efficiency of the building sector, such as [2]–[4]: 

1. The Energy Service Directive and Renewables Directive propose respectively a 9% of energy 

savings by 2016 and 20% of all energies should be prevenient from renewable energy sources by 

2020;  

2. All new buildings by 2020 must be nearly-zero energy buildings (NZEBs) and after 2018 new 

public buildings should be NZEBs; 

 3. The Energy strategy of the European Union added targets to 2020, known as “20-20-20” that have 

the objective of 20% reduction of the greenhouse gas emissions, comparatively to the 1990 levels, 

increase of 20% of energy production from renewable energy sources; 

 4. Besides of the Energy Strategy, the EU added individual rules and directives for each state 

members for the use of renewable sources and to improve the energy efficiency until 2020. 

5. In France, the Climate Plan adopted in 2005 aims at dividing by 4 the amount of greenhouse gases 

emissions by 2050, compared to the 1990 baseline. About 24% of the country’s greenhouse gases 

emissions are due to building heating [refer to the document I have sent]. Reducing energy demand 

and increasing the share of renewable energy in the built environment are key steps to reach this 

objective. 

The incorporation of phase change materials (PCM) into building elements is a growing trend for 

improving the thermal energy storage capacity in the latent form. PCM represent a good option to 

enhance the building’s ability to smooth the peak loads and to reduce the thermal energy needs. The 

working principle of the PCM is to exploit the considerable capacity of these materials of 

accumulating heat when they subdue a phase transition. Therefore, compared with the most common 

strategy, less material is necessary to store the same amount of thermal energy. Currently, the external 

envelope, mainly in offices and commercial spaces, is systematically composed by large glazed areas 

that lead to the increase of energy consumption of the building [5]–[7]. These areas are crucial 

because these are the areas where high energy transfer occurs between the indoor and outdoor spaces, 

that can lead to thermal and visual discomfort conditions [7]–[11]. Therefore, solutions resourcing to 

the use of phase change materials to improve the energy efficiency of the glazing areas and 

transparent/translucent areas have been carried out in the last 20– 25 years with promising results 

[12]. Some examples of research activities in this field can be found in the literature [13]–[16]. The 

first concepts of PCM glazing systems were developed mainly for cold climates, but more recent 
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analysis [17] showed that the adoption of PCM glazing systems may have a positive effect in warmer 

climates too. The general aim of this technology is to reduce the energy fluctuations along the time, 

by acting as thermal energy storage device that is charged, mainly, by solar energy. Today, transparent 

insulation materials with excellent optical and thermal properties are commercially available. Thus, 

the combination of these improved materials with PCM in transparent building facades may result a 

better thermal performance.  

However, to fully investigate PCM potentials and drawbacks, the availability of robust and reliable 

numerical tools is fundamental. Thanks to these tools it would be possible to test different 

configurations of PCM integrated in glazing or transparent systems (e.g. with various PCM, layered-

structures) under different operative conditions without the need of performing extensive and 

expensive experimental analysis. It would also be possible to assess the effectiveness of this 

technology in different climates and for different building types.  

The major challenge of the mathematical modeling of phase change process is to properly represent 

the moving boundary of the solid–liquid interface and the associated thermophysical property change. 

The solid–liquid phase change is characterized by a moving melting/freezing front, accompanied with 

latent heat absorption/release and sharp variations of thermophysical properties, including thermal 

conductivity, specific heat, viscosity and density. In addition, most of the real applications of solid–

liquid phase change occurs in multidimensional configurations, and natural convection in the liquid 

phase often plays an important role in controlling heat transfer, which substantially complicates the 

problem and makes analytical solutions impossible.  

In fact, during the phase transformation especially melting process, the temperature and concentration 

gradients in the liquid phase of PCM keep varying, which results in the movement of the liquid PCM, 

named convection occurring under the action of buoyancy forces due to the density gradients. In the 

previous numerical investigations, the convection heat flow in the liquid phase received less attention 

than conduction owing to the limited computational capabilities of computer and the mathematical 

complexities to formulate the convection heat transfer during the phase transformation. However, 

recent researches have demonstrated that natural convection plays an important role in latent heat 

thermal energy systems, especially during the melting process and should not be ignored. In addition, 

the radiative heat transfer in the case of PCM integrated in translucent facades should be considered 

in combination with both conduction and convection heat transfers during phase change. 

Therefore, this chapter discusses, in section 2, the heat transfer mechanisms that occur during the 

charging and discharging periods of the phase change materials (PCM) and defines the Stephan and 

Neumann problems. Section 3 deals with the phase change process considering natural convection in 

liquid PCM. The physical phenomenon is explained in section 3.1 and the numerical methods 
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including CFD models and simplified approaches to model natural convection during melting process 

are presented in section 3.2. In section 3.3 we present the state of the art of different studies on phase 

change with natural convection in enclosures. A literature review of PCM applications within 

translucent facades considering radiation heat transfer during phase change is presented in Section 4. 

Section 5 presents a literature review of PCM applications within Trombe walls and definition of 

transparent insulation materials. In section 6 we present an innovative wall, proposed by the 

INERTRANS project, composed of transparent insulation material layer, silica aerogels, and a PCM 

layer. This wall provides heat storage and insulation while allowing daylighting at the same time. The 

description of the system and the physical phenomena involved are presented in 6.1 and 6.2. A history 

related to studies conducted in the framework of the INERTRANS project are presented in section 

6.3. In section 7, the previous works and their limitations are discussed, and consequently the 

problematic and the objectives of the thesis are identified. 

2. Heat transfer mechanisms during the phase change  

2.1.Conduction and convection heat transfer 

The possible heat transfer mechanisms during melting and solidification of phase change materials 

are conduction, convection or a combination of both. Therefore, the simulation methods in the 

literature are based on the considered heat transfer mechanism: the pure conduction model and the 

combined conduction and natural convection model. The pure conduction model is a hypothetical 

model, which assumes that conduction is the sole heat transfer mechanism during melting.  

In 1831, Lamé and Clapeyron [18] conducted the first study on phase change problem by considering 

only the conduction heat transfer and the effect of natural convection has received less attention. 

However, in the last two decades, convection dominated phase change problems have become the 

subject of numerous studies, and some researchers persist that natural convection is a more significant 

mechanism in the liquid PCM region whenever convection motion has enough room to develop. In 

fact, due to the variations of density gradients, the convection in the liquid PCM occurs under the 

action of buoyancy forces during the melting process. 

Modeling phase change taking into account the natural convection in the liquid PCM was firstly 

considered by Sparrow et al. [19] in 1977, they concluded that the effect of natural convection should 

not be ignored. In 1978 they conducted another study [20] showing that the natural convection must 

be accounted for and that it is first order important in phase change problems. In 1980, Yao and Chen 

[21] investigated the influence of natural convection using an approximate solution; they found that 

it highly depends on Rayleigh number. Some researchers [22] [23] [24], between 1978 and 1985, 

have stated that the convection influences the melting rate and the resulting distribution of the liquid 
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phase of the PCM in a multi-component system. Later, in 1988 Buddhi et al. [25] explained the 

phenomena that causes the convection in the liquid PCM by the density differences that induce the 

buoyancy forces. In 1990, Farid et al [26] accounted for the natural convection during melting process 

using an effective thermal conductivity method (𝑘𝑒𝑓𝑓/𝑘𝑙 = 𝑐𝑅𝑎
𝑛). In 1994, Hasan [27] concluded 

that the melting process cannot be described correctly if the heat transfer by conduction only is 

considered. Later, in 1998, Lacroix et al [28] also found that during the melting process, natural 

convection is the key heat transfer mechanism. In 1999, Zhang and Yi [29] believed that the 

convection is the dominant heat transfer mechanism due to the continuous increase of the PCM 

volume during melting. In the same year, Velraj and Seeniraj [30] concluded that during melting, 

convection occurs in the liquid PCM leading to an increase in the heat transfer rate, compared with 

the solidification process. In 2001, Sari et al. [31] found that the natural convection had a large effect 

on the heat transferred from a heat exchanger to a stearic acid PCM. After that, in 2004, Lamberg et 

al. [32] studied the impact of the natural convection on the melting and solidification procedures. 

They showed that, compared with the experimental results, unsatisfactory numerical results were 

obtained when the effect of natural convection is absent during the melting process, whilst good 

estimation during the solidification process were showed. Figure 1-1 shows the difference between 

the predicted temperature, with and without convection, during the melting of a fatty acid eutectic of 

melting temperature 21⁰C. It turns out that the differences are negligible for thicknesses less than 1 

cm, while beyond that, the difference between the predicted temperature with and without convection 

can reach up to 18 °C [33]. 

 

Figure 1-1: Influence of natural convection on the temperature function of PCM thickness [33] 

For the melting process, the PCM changes its phase from solid to a mushy state, and then liquid, 

which is reversible during the solidification process. Therefore, it is possible during the phase 
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transformation process that more than one kind of heat transfer mechanisms acting at work, but how 

to weight the percentages of conduction and convection heat transfer in each stage has been the main 

challenge for the researchers currently. Section 3 will review the most common methods used to 

model the convection heat transfer during phase change. 

2.2.Stefan problem and Neuman problem 

The simplest of the Stefan problems, or moving boundary problems, is the one-phase Stefan problem 

since only one-phase involved. The term of ‘one-phase’ designates only the liquid phases active in 

the transformation and the solid phase stay at its melting temperature. Stefan's solution with constant 

thermophysical properties shows that the rate of melting or solidification in a semi-infinite region is 

governed by a dimensionless number, known as the Stefan number (Ste), 

𝑆𝑡𝑒 =
𝐶𝑙(𝑇𝑙 − 𝑇𝑚)

𝐿
 Eq. 1-1 

where, 𝐶𝑙 is the heat capacity of the liquid PCM, L is the latent heat of fusion, and 𝑇𝑙 and 𝑇𝑚 are the 

surrounding and melting temperatures, respectively. 

With the heat transfer continuing, the interface boundary is constantly moving as the liquid and solid 

phases shrinking and growing, which disable the prediction of the boundary location [34]. Because 

of that the solid– liquid interface is not fixed, but moving with time, the heat transfer mechanisms 

during a PCM phase transformation process are complex. Therefore, the phase change transition is 

difficult to analyze owing to the three reasons: the solid–liquid interface is moving; the interface 

location is nonlinear; it consists of thermal conduction and natural convection heat transfer 

mechanisms. Due to these three factors, the non-linearity of the governing equations is introduced to 

the moving boundary, and the precise analytical solutions are only possible for a limited number of 

scenarios 

The Stefan problem was extended to the two-phase problem, the so-called Neumann problem which 

is more realistic [35]. In Neumann problem, the initial state of the PCM is assumed to be solid, during 

the melting process, its initial temperature does not equal to the phase change temperature, and the 

melting temperature does not maintain at a constant value. Consider that the melting happens in a 

semi-infinite slab (0 < 𝑥 < ∞), the solid PCM is initially at a uniform temperature 𝑇𝑠 < 𝑇𝑚 and a 

constant temperature 𝑇0 is imposed on the slab surface x=0, with the assumptions of constant thermo-

physical properties of the PCM, the heat conduction in solid and liquid region and the heat fluxes 

transferring from the liquid phase to the solid–liquid interface are given as shown in Figure 1-2. 

Where ρ is the density, C is the specific heat, k is the thermal conductivity, t and x are the time and 

space coordinates respectively and L is latent heat of fusion. 

Neumann analytical solution can be written as: 
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Position of the solid–liquid interface (melting front)  

𝛿(𝑡) = 2𝜆√𝜇𝑙𝑡 Eq. 1-2 

Temperature of the liquid phase: 

𝑇(𝑥, 𝑡) = 𝑇𝑙 − (𝑇𝑙 − 𝑇𝑚)
erf (𝑥/2√𝜇𝑙𝑡)

erf (𝜆)
 Eq. 1-3 

Temperature of the solid phase: 

𝑇(𝑥, 𝑡) = 𝑇𝑠 + (𝑇𝑚 − 𝑇𝑠)
erfc (𝑥/2√𝜇𝑠𝑡)

erfc(𝜆√𝜇𝑙/𝜇𝑠)
 Eq. 1-4 

where, 𝑇𝑠 ,𝑇𝑙 and 𝑇𝑚 the initial temperature of solid and liquid PCM (K) and melting temperature 

respectively. λ is the solution to the transcendental equation [18] and 𝜇 is the thermal diffusivity of PCM 

(m2/s). 

However, the Neumann's solution is applicable only for moving boundary problems in the rectangular 

coordinate system and needs an existing initial liquid layer. 

 

Figure 1-2 : Schematic illustration of the two-phase Stefan problem 

Furthermore, there are several other issues with the use of a theoretical approach in the study of PCM. 

There were many mechanisms involved during a PCM phase transition, such like a change in volume, 

density, thermal conductivity, specific heat capacity, super-cooling, etc [36]. Another major issue 

with PCM is that they act as self-insulating materials. When PCM solidification occurs from the top 

of the heat surface, solid insulating layer will be developed which moves inward during the whole 

solidification process. With the increase in the size and thickness of the solid layer, the heat transfer 

rate from the liquid PCM to the heat exchanger surface decreases until it becomes so small that will 

not be possible to maintain at an acceptable heat transfer rate.  
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Logical heat transfer mechanisms during the charging and discharging periods of the PCM are the 

essential elements to develop any accurate mathematical model. However, there are quite a few issues 

to properly describe the heat transfer mechanisms: conduction and natural convention during the 

phase change process. In the next section, physical phenomenon and mathematical solutions of phase 

change with natural convection will be presented. 

3. Melting with natural convection 

Melting in the presence of significant natural convection is an important phenomenon in the field of 

thermal energy storage in phase-change materials. Considerable empirical and theoretical work has 

been devoted already to this phenomenon, and one conclusion was that this phenomenon is quite 

complicated [37]. The complications stem from the strong coupling that exists between the flow of 

the liquid phase and the melting rate of the solid. It is this coupling that determines the instantaneous 

shape of the two-phase interface, which constitutes one of the unknowns in each problem. It should 

be noted that according to many authors [38] [39], convection heat transfer is less important than 

conduction during solidification process. 

3.1.Physical phenomenon 

The evolution of the process is as follows. At first, when a small layer of liquid forms, heat transfer 

is dominated by conduction and the melting front moves parallel to the left heated wall (see Figure 

1-3 (a)). Then, because of the variation in density, the hot fluid rises and brings the heat to the solid 

via the interface between the two. This causes a non-uniform distribution of heat, and therefore a 

slight deformation of the melting front. At this time, the heat transfer is mixed combining transfer by 

convection in the superior part of the enclosure and conduction in the lower part (see Figure 1-3 (b)). 

As the temperatures rise, the fluid motion is more important, the liquid gives more heat to the interface 

and it cools coming down, therefore, the heat transfer is larger at the top than the bottom of the 

interface, leading to an irregular shape of the latter. The deformation of the melt front is more 

important and dominated by the convective heat transfer (see Figure 1-3 (c)). The process continues 

until the arrival of the melt front to the cold wall.  
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Figure 1-3: Regimes for melting in the presence of significant natural convection when the phase-change 

material is being heated from the side [40] 

3.2.Mathematical solutions 

The main challenge of the mathematical modeling of phase change process is to properly represent 

the moving melting front. The numerical modeling of solid–liquid phase change problems can be 

divided into two main groups: fixed grid methods and deforming grid methods. 

In fixed grid schemes, the melting front is not tracked explicitly, but instead is determined by the 

temperature/enthalpy distribution, and the mathematical calculations become much simpler with 

reasonable accuracy. The most widely used fixed grid methods to formulate the energy conservation 

of the phase change process are the equivalent heat capacity method proposed by Morgan, 1981 [41] 

and Hsiao, 1984 [42] and the enthalpy method first introduced by Eyres et al., 1946, then reformulated 

for fixed grids by Voller et al., 1987 [43] and Binet and Lacroix, 2000 [44]. Cao and Faghri (1990) 

[45] proposed an enhanced temperature-based equivalent heat capacity method named the 

temperature transforming model (TTM), an enhanced temperature-based equivalent heat capacity 

method, in which the enthalpy-based energy equation is converted into a nonlinear equation with a 

single dependent variable. But this method suffered from inconsistency [46][47]. On the other hand, 

the enthalpy method treats both isothermal and mushy phase-change problems, but it suffered from 

temperature oscillation. 

On the other hand, in deforming grid methods or front-tracking methods the mesh moves to track the 

phase interface which complicate the mathematical operations and transformed coordinate systems 

must be used. At each time step, the location of the moving boundary is calculated on a grid, which 

can lead to high computational costs. 

When natural convection in the liquid phase is taken into account, the problem becomes more 

complicated and analytical solutions cannot be used [46]. In addition to the moving boundary issue, 

these problems are strongly non-linear, and the Navier-Stokes equations i.e, the coupled energy 

equations in the solid and liquid phases, together with the continuity and momentum equations in the 

liquid, must be solved.  
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Numerically, various methods are currently explored and used to model phase change accounting for 

natural convection, mainly the enthalpy-porosity approach [48][49][50][51][52][53][54][55], the 

temperature transforming model (TTM) [46][56][57][58], the equivalent thermal capacity method 

[41], the modified heat capacity method [59], in addition to the integral method, the boundary fixing 

method, the unstructured finite-element method, and the coordinate transformation method [18]. If 

no simplification is made, one must consider at least: the conservation of mass, equations of 

momentum and energy equation. In addition, Lattice Boltzmann Method (LBM) [60][61][62] can be 

used to model the fluid flow during phase change.  

The solution of these equations can be done using finite volume methods (FVM) like the commercial 

software FLUENT or finite element method (FEM) using COMSOL Multiphysics software.  

3.2.1. Temperature transforming model (TTM) 

The temperature transforming model TTM was suggested by Cao and Faghri (1990) [45] to model 

phase-change problems with the effect of natural convection. In this method, continuity and 

momentum equations are used same as fluid flow problems, while the energy equation is different 

from the enthalpy-based energy equations.  

Continuity equation 

𝜕(𝜌𝑢)

𝜕𝑥
+
𝜕(𝜌𝑣)

𝜕𝑦
= 0 

Eq. 1-5 

Momentum equations: 

𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕(𝜌𝑢𝑢)

𝜕𝑥
+
𝜕(𝜌𝑣𝑢)

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+
𝜕

𝜕𝑥
(𝜇
𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇
𝜕𝑢

𝜕𝑦
) 

Eq. 1-6 

𝜕(𝜌𝑣)

𝜕𝑡
+
𝜕(𝜌𝑢𝑣)

𝜕𝑥
+
𝜕(𝜌𝑣𝑣)

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+
𝜕

𝜕𝑥
(𝜇
𝜕𝑣

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇
𝜕𝑣

𝜕𝑦
) + 𝜌𝑔[𝛽(𝑇 − 𝑇𝑚) − 1] 

Eq. 1-7 

Energy equation: 

𝜕(𝜌ℎ)

𝜕𝑡
+
𝜕(𝜌𝑢ℎ)

𝜕𝑥
+
𝜕(𝜌𝑣ℎ)

𝜕𝑦
=
𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘
𝜕𝑇

𝜕𝑦
) 

Eq. 1-8 

h is the total enthalpy including sensible and latent terms, u and v are the velocities in x and y 

directions (m/s), p is the pressure (Pa), k is the thermal conductivity (W/m. K).  

Scaled temperature T* = T-Tm is defined, and the enthalpy is expressed by the temperature 

transforming model: 

h =  c (T∗ +  s) Eq. 1-9 

{

𝑐 = 𝑐𝑠                             𝑖𝑓 T∗ < −𝛿𝑇

𝑐 =
(𝑐𝑠 + 𝑠𝑙)

2
+
ℎ𝑠𝑙

2𝛿𝑇
      𝑖𝑓 − 𝛿𝑇 ≤ T∗ ≤

𝑐 = 𝑐𝑙                         𝑖𝑓  T∗ > 𝛿𝑇

𝛿𝑇 

Eq. 1-10 
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{

𝑠 = 𝛿𝑇                                        𝑖𝑓 T∗ < −𝛿𝑇
𝑠 = 𝛿𝑇                            𝑖𝑓 − 𝛿𝑇 ≤ T∗ ≤ 𝛿𝑇

𝑠 = (
𝑐𝑠 

𝑐𝑙
)  𝛿𝑇 +

ℎ𝑠𝑙

𝑐𝑙
                  𝑖𝑓  T∗ > 𝛿𝑇

 

Eq. 1-11 

{

𝑘 = 𝑘𝑠                                          𝑖𝑓 T∗ < −𝛿𝑇

𝑘 = 𝑘𝑠 +
(𝑘𝑙 − 𝑘𝑠)(T∗ + 𝛿𝑇)

2𝛿𝑇
          𝑖𝑓 − 𝛿𝑇 ≤ T∗ ≤ 𝛿𝑇

𝑘 = 𝑘𝑙                                        𝑖𝑓  T∗ > 𝛿𝑇

 

Eq. 1-12 

where hsl is the latent heat (J/kg), δT is half width of mushy zone temperature range, cp is the specific 

heat (kJ/kg˚C). T*<-δT corresponds to the solid phase, -δT ≤T*≤δT to the mushy region, and T*>δT 

to the liquid phase. 

The energy equation becomes: 

𝜕
𝜌𝑐T∗

𝜕𝑡
+ 𝜕

𝜌𝑢𝑐T∗

𝜕𝑥
+ 𝜕

𝜌𝑣𝑐T∗

𝜕𝑦

=
𝜕

𝜕𝑥
(
𝑘𝜕T∗

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝑘𝜕T∗

𝜕𝑦
) −  𝜕

𝜌𝑐𝑠

𝜕𝑡
− 𝜕

𝜌𝑢𝑐𝑠

𝜕𝑥
−  𝜕

𝜌𝑣𝑐𝑠

𝜕𝑦
 

Eq. 1-13 

The TTM method was used by several authors[56][57][58] , Wang et al. [46] developed a 2D 

numerical model for melting including natural convection applied in a square cavity. They have used 

the TTM employing a new method for solid velocity correction, and the velocity–pressure coupling 

is solved by the CUT algorithm. Z. Ma and Y. Zhang [47] proposed numerous solid correction 

schemes to ensure zero velocity in the solid phase namely switch-off, ramped switch-off , Darcy 

source term, ramped source term and variable viscosity. 

3.2.2. Enthalpy-Porosity method 

The enthalpy-porosity approach is the most widely used method to model phase change including the 

natural convection [14]. Using enthalpy-porosity method, the liquid fraction is calculated at each 

iteration. The region where the liquid fraction is between 0 and 1 is called the mushy zone. This zone 

is considered as a quasi-porous medium, as the material melts the porosity increases from 0 to 1 and 

decreases to zero for the solid region and therefore the velocities also vanish [55]. 

The energy equation can be expressed in the form: 

𝜕
𝜌ℎ

𝜕𝑡
+ 𝜕

𝜌𝑢ℎ

𝜕𝑥
+ 𝜕

𝜌𝑣ℎ

𝜕𝑦
=
𝜕

𝜕𝑥
(𝛼
𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝛼
𝜕ℎ

𝜕𝑦
) − 𝑆ℎ          

Eq. 1-14 

where h is the sensible enthalpy, α=k/cp and Sh is the source term. 

Total enthalpy: 

𝐻 = ℎ + 𝛥𝐻 Eq. 1-15 
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The latent heat in the enthalpy-porosity approach is accounted for by a source term in the energy 

equation expressed by: 

𝑆ℎ = 𝜕 (𝜌𝛥𝐻)/𝜕𝑡 + 𝜕 (𝜌𝛥𝐻)/𝜕𝑥 + 𝜕 (𝜌𝛥𝐻)/𝜕𝑦 Eq. 1-16 

𝛥𝐻 = 𝑓𝑙. 𝐿  Eq. 1-17 

where fl is the liquid fraction (equal to 1 for liquid state and 0 for solid state) and L is the latent heat 

(J/kg). 

𝜌 =  𝜌𝑙 𝑓𝑙 + (1 − 𝑓𝑙) 𝜌𝑠 

𝜆 =  𝜆𝑙 𝑓𝑙 + (1 − 𝑓𝑙) 𝜆𝑠 

𝑐𝑝 =  𝑐𝑝𝑙 𝑓𝑙 + (1 − 𝑓𝑙) 𝑐𝑝𝑠 

Eq. 1-18 

where ρ is the density (kg/m3), λ is the thermal conductivity (W/m˚C) and Cp is the specific heat 

(kJ/kg˚C). 

Momentum equations: 

𝜕
𝜌𝑢

𝜕𝑡
+ 𝜕

𝜌𝑢𝑢

𝜕𝑥
+ 𝜕

𝜌𝑣𝑢

𝜕𝑦
=  −

𝜕𝑝

𝜕𝑥
+
𝜕

𝜕𝑥
(µ
𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(µ
𝜕𝑢

𝜕𝑦
) + 𝐴𝑢 

Eq. 1-19 

𝜕
𝜌𝑣

𝜕𝑡
+ 𝜕

𝜌𝑢𝑣

𝜕𝑥
+ 𝜕

𝜌𝑣𝑣

𝜕𝑦
=  −

𝜕𝑝

𝜕𝑦
+
𝜕

𝜕𝑥
(µ
𝜕𝑣

𝜕𝑥
) +

𝜕

𝜕𝑦
(µ
𝜕𝑣

𝜕𝑦
) +  𝐴𝑣 +  𝑆𝑏 

Eq. 1-20 

𝑆𝑏 = 𝜌𝑟𝑒𝑓𝑔𝛽 (ℎ − ℎ𝑟𝑒𝑓)/𝐶𝑝 Eq. 1-21 

where href and ρref are reference values of enthalpy and density respectively, β is a thermal expansion 

coefficient (1/K) and Au and Av are the Darcy terms ensuring zero velocity in the solid control 

volumes.  

The porosity function (A) defined in momentum equations reduces velocities gradually in the solid 

phase until it vanishes. A is given as: 

𝐴 =  −𝜂 (1 − 𝑓𝑙) 2 / (𝑓𝑙3 + 𝑏) Eq. 1-22 

where b is a small number (0.001) to avoid division by zero and η is a very large number (109). 

3.2.3. Enthalpy based -Lattice Boltzmann Method 

Natural convection during melting of PCM can also be studied through Lattice Boltzmann Method 

(LBM)[60][61][62]. The LBM offers an important alternative method for simulation of phase change 

including fluid flow. the main advantages of LBM are the numerical stability, ability to set up, in 

complex geometries, no-slip boundary conditions, accuracy, and the high parallel implementation of 

the algorithm [63]. The enthalpy approach is used to model phase change, while lattice Boltzmann 

method is used to solve fluid flow equations. 

3.2.4. Enhanced conductivity approach - simplified method 
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Usually in thermal engineering applications, the phase change problem is simplified, and building 

models with integrated PCM ignore the convection effect in the liquid region, due to the complexity 

of CFD models and the high computational time. Therefore, the convective term in the transport 

equations is neglected and hence only the unsteady heat conduction term in the energy equation is 

considered [64]. However, because the assumption of conduction alone is not always adequate, and 

the inclusion of the convective phenomena is costly in terms of computation time when modeled 

numerically using CFD methods, the buoyancy effect during the melting process was accounted using 

the common effective thermal conductivity (kenh = Nu̅̅ ̅̅ . kl ;  kenh = c𝑅𝑎𝑛) [26][65][66][67][68][69]. 

Nevertheless, this approach has many disadvantages, mainly it cannot provide information about the 

melting front location since it is essentially a conduction model, the determination of an appropriate 

value of the modified conductivity function of dimensionless number is not a trivial task, a constant 

value cannot be designated to the effective thermal conductivity of a fluid with varying temperature 

[70] and the four regimes during melting process cannot be expressed. The average Nusselt number 

is considered as a main parameter in this approach, since it defines the convection heat transfer 

coefficient, and strongly affects the dynamics of the process [71]. Thus, several authors, have 

presented correlations of the average Nusselt number during the melting process based on the aspect 

ratio, Ra and Pr number restrictions. These correlations are based on experimental or numerical 

observations. Therefore, their validity will always be restricted to the specific range, geometry 

configurations, thermal boundary conditions and variables the studies were performed for [71]. It is 

worthy also to mention that the choice of the characteristic length in the Ra and Nu formulas is very 

critical. Either the height of the enclosure (H) or the average thickness of the liquid zone (sav) could 

be used as the characteristic length scale [40]. Moreover, Webb and Viskanta [72] concluded that 

caution is advised when using correlations in the literature for design purposes or as quantitative 

comparisons with independent investigators, and that the proper characteristic length in 

melting/solidification problems needs more research attention. 

3.3.Literature review on melting with natural convection in enclosures 

Conduction and convection-dominated melting along a heated isothermal wall in a rectangular or 

square enclosure has received great attention due to its wide-ranging technological and engineering 

applications in such fields as casting, metallurgy and thermal energy storage. This phenomenon was 

investigated using both experimental and numerical/theoretical approaches. Even though the 

experimental studies show more accurately the real behavior of PCM, researchers prefer to study the 

phase change problems by mathematical solutions and numerical simulations due to the fact that that 

numerous conditions can be carried out by changing the variables in a numerical model [18].  
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Beckermann and Viskanta [73] investigated experimentally and numerically the melting of a pure 

metal (gallium) inside a vertical rectangular enclosure, with natural convection heat transfer in the 

liquid region and conduction in the solid one. The numerical results were validated through 

comparisons with a number of experiments. It was found that the melting process consisted of four 

regimes: a conduction-dominated regime, a mixed conduction-convection regime characterized by 

convection in the upper part of the enclosure and conduction in the lower part, a convection-

dominated regime, and a regime where melting process is extremely influenced by heat extraction by 

cold wall (the melting process approached to the steady-state condition). It was also concluded that 

additional research is needed to arrive at general correlations for the dependence of the average 

Nusselt numbers on the governing dimensionless parameters (Ra and Pr). Brent et al. [74] also 

conducted a numerical investigation of the melting of pure gallium in a rectangular cavity, the 

temperature at the left wall was maintained at 38⁰C while the right wall boundary was at an initial 

temperature of 28.3⁰C, and the other walls at the top and the bottom were adiabatic. They modeled 

combined convection-diffusion phase change using the enthalpy-porosity approach. The results 

showed an excellent agreement between the numerical predictions and experimental findings 

available in literature. They also indicated different features of the enthalpy-porosity method such as, 

convergence speed, applicability and the ability to predict accurately the position of the melting front 

at different times. 

Wang et al. [75] investigated experimentally the thermal characteristics of the melting process in a 

rectangular enclosure heated from a vertical wall using a flat plate heat pipe to provide a uniform 

temperature. Based on the experimental results, they developed correlations for the melted volume 

fraction and the time-averaged Nusselt number as a function of different parametric dimensionless 

variables (Ra, Ste, Pr and Fo). The results showed that during the melting procedure the temporal 

variation of the Nusselt number reflects the existence of three different regimes: conduction regime, 

transition regime (mixed conduction-convection), and convection-dominated regime. Gong et al. [76] 

studied numerically the melting of a phase change material in a rectangular cavity with an 

isothermally-heated vertical wall. The enthalpy-porosity approach was used to model the evolution 

of the flow at the solid/liquid interface. They found that inverting the container at an appropriate stage 

during the melting process is an effective way to enhance the effect of natural convection. 

Younsi et al. [77] investigated numerically the thermal characteristics of the melting process of 

hydrated salt in a rectangular enclosure heated from a vertical wall, using an enthalpy-based 

mathematical model. The finite volume method (FVM) was used to solve the governing equations. 

The convection dominated melting in a rectangular cavity was also investigated numerically using 

the commercial code FLUENT 6. It was shown an excellent agreement between the numerical 
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methods (2D FVM and FLUENT code) and the experimental results. Wang et al. [46] developed a 

comprehensive model based on the finite volume method and temperature transforming model for 

solving the problem of 2D melting with natural convection in a square cavity for four different cases. 

The consistent update technique (CUT) algorithm was used to solve the velocity–pressure coupling. 

The results showed that the used algorithm is much more efficient, in terms of CPU time, than the 

SIMPLE algorithm for solving melting problems. Besides, a new solid velocity correction scheme 

that does not introduce large numbers to vanish velocity in the solid was used. This scheme eliminated 

effectively the inconsistencies found in earlier studies and was able to accelerate the convergence 

significantly. The results showed a reasonable agreement between the numerical model compared to 

previous theoretical and experimental results. 

Murray and Groulx [78] modeled natural convection during melting of Octadecane in a square 

enclosure using the COMSOL Multiphysics package (versions 4.0a and 4.1). The left vertical wall 

was heated to a temperature of 313 K, while the right wall was maintained at initial temperature Tm 

of 303 K. The influence of the temperature range ΔT was established in the simulation. In addition, 

the authors discussed the impact of the numerical definition of viscosity on the onset and strength of 

natural convection, and the resulting melting front position. The results showed that the variation in 

PCM properties such as thermal conductivity and viscosity affects the shape of the melting interface 

and the amount of melted PCM. Finally, it was pointed to the importance of accounting for natural 

convection during melting in a PCM. 

Yanxia et al. [79] investigated experimentally the melting process of ethanolamine–water binary 

mixture used as PCM in a rectangular enclosure heated from its vertical side. They studied the effect 

of natural convection in terms of liquid fraction and the position of the melting front. Moreover, 

empirical correlations of time-averaged Nusselt number and liquid fraction were developed in 

convection-dominated melting regime. The results showed that pure conduction regime only occurs 

at the early stage of the melting process and that natural convection improves the rate of melting 

compared with the pure conduction model. Finally, a conduction– convection model is essential for 

predicting melting process accurately. 

Ho and Viskanta [80] investigated experimentally the melting of n-octadecane from an isothermal 

vertical wall of a rectangular cavity. Initially, the PCM was solid with a uniform temperature that was 

either preselected amount below or very close to the melting temperature. Heat transfer coefficients 

at the heat source surface and the solid-liquid interface were recorded photographically. The 

experimental results showed that the rates of heat transfer and melting were significantly influenced 

by the buoyancy driven convection in the liquid region, except in the earlier stage of the melting 

process. 
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Yao and Cherney [81] studied the effect of the natural convection on the melting of a solid PCM 

around a hot horizontal cylinder by using the integral method. The results demonstrated that the 

integral solution had surprising accuracy when it was compared with the quasi-steady solution when 

Stefan number was small. Rieger et al.[82] investigated numerically the melting process of a PCM 

inside a heated horizontal circular cylinder. Both heat conduction and convection have been taken 

into account to treat this moving boundary problem, and the complex structure of the timewise 

changing physical domain (melt region) have been successfully overcome by applying body fitted 

coordinate technique. Ismail and Silva [83] developed a 2D mathematical model to study the melting 

of a PCM around a horizontal circular cylinder considering the presence of the natural convection in 

the melt region. A coordinate transformation technique was used to fix the 

moving front. The numerical predictions were compared with available results to establish the validity 

of the model, and a satisfactory agreement was found. They concluded that the numerical model was 

adequate to represent the physical situation of the proposed system. Furzerland [84] investigated the 

enthalpy method and the coordinate transformation method through the comparison of the solutions 

of specific problems of one dimensional heat transfer by considering pure convection. One of his 

conclusions was that the enthalpy method is very attractive owing to these: it is easy to program and 

there are no computational overheads associated with tracking the moving interface within a specific 

range of fusion temperatures. 

Concerning the computational time, it can be quite large, depending on the used method, the 

simulated problem and the spatial and temporal discretization [85]. The melting of Tin, filled in a 

square enclosure of height 0.1m, in presence of natural convection has been studied by different 

authors [85] [86] [87]. The computational time for the melting of Tin was found 450 hours for a total 

simulation time of 700 seconds with a mesh size of 400 × 400 in [86]; the simulations were conducted 

using a Compaq Alpha ES40 machine. While the computational time using the LBM in [85], for a 

simulation time of 1000 seconds is found 76 hours with a mesh size of 400 × 400, the simulations 

were conducted using an Intel Xeon X5472. Moreover, Hannoun et al. [87] reported 2400 hours of 

CPU to simulate 2500 seconds of the melting of Tin with a mesh size of 200 × 200, using Compaq 

Alpha ev67 machine. In addition, the simulation of 5000 seconds of the melting of Octadecane, filled 

in square enclosure of height 0.1m, with natural convection took 34 hours with a mesh size of 225 × 

225 [85]. 

4. Literature review of phase change with radiation 

Transparent envelope components are key elements in buildings, especially in offices and commercial 

buildings, that affect the energy performance and daylighting [88]–[90]. 
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To accomplish its energy storage function, and at the same time to allow the transmission of light into 

the indoor environment, some researchers [13] [91] [16] have been interested in transparent PCM. 

The integration of PCM in a transparent element of the building envelope enhances the ability for 

energy storage, since the PCM will be directly exposed to the solar radiation. This technology aims 

to smooth the indoor temperature and decrease the energy fluctuations, providing daylighting at the 

same time. 

Numerous experimental and numerical work of heat storage solutions for transparent envelope 

containing PCM have been developed, especially for double glazed unit, which has been attracted 

much more attention as a valid method for reducing building energy consumption. Phase change 

materials were integrated within double [92] [93] or triple glazing units [94], within more complex 

glazing components [95] and within translucent solar walls [13]. The performance of glazing with 

integrated PCM was investigated both experimentally [92]–[94], [96], [97] and numerically [98]–

[100]. A literature review of the use of PCM in transparent and translucent building envelope 

components can be found in [101]. 

Buddhi and Sharma [91], measured the transmittance of stearic acid, transparent PCM, as a function 

of temperature and thickness. At 60 ⁰C (melting temperature Tm = 64.6⁰C) they found an average 

transmittance of 99% for a thickness of 1 cm, and 81% for a thickness of 5 cm. 

Manz et al. [13] studied a translucent wall for solar heating and daylighting composed of glass pan, 

air gap, a translucent PCM and a transparent insulation material (TIM). They investigated 

experimentally the optical PCM properties and a prototype of the TIM-PCM wall was constructed in 

1994 in Swiss. Also, a one-dimensional numerical model (side effects were neglected) was developed 

considering only heat transfer by conduction and the optical properties were simulated using a Monte 

Carlo technique. The results show that the thermal and optical performance of the wall is very 

promising and that the chosen PCM in solid state reduces the heat and light gains. Thus, they proposed 

considering another PCM with a melting temperature of 21⁰C instead of 26.5⁰C. Weinläder et al. [16] 

investigated experimentally the thermal behavior of three glazing systems incorporated with a plastic 

container filled with different PCM. However, in both studies, the behavior of the system was not 

investigated in detail in the hot season and inferences on thermal comfort were not evaluated 

according to standards. 

To improve the poor thermal inertia of conventional glazing systems, Goa et al. [12] studied the 

implementation of a PCM layer in combination with glass panes. They developed a one-dimensional 

numerical model for heat and shortwave wave transmission. The numerical model is divided in two 

sub-models: to solve the heat transfer process and to calculate the solar irradiance transmitted and 
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absorbed. The energy balance of the radiative heat fluxes for each layer (node) is solved iteratively 

using the following equation: 

𝑞𝑠𝑜𝑙,𝑛 = (𝐼𝑛−1→𝑛 + 𝐼𝑛+1→𝑛) − (𝐼𝑛→𝑛+1 + 𝐼𝑛→𝑛−1) Eq. 1-23 

where 𝑞𝑠𝑜𝑙,𝑛 is the absorbed solar radiation in the nth layer [W/m2] and the 𝐼𝑥→𝑦 variables are the 

short-wave radiative fluxes [W/m2] that enter/leave the nth layer. the first step of the calculation 

procedure is aimed at assessing the component that is reflected by the layer. The second step 

calculates the amount of shortwave radiation that is absorbed by the layer. The amount of shortwave 

energy that is eventually transmitted by the layer is then obtained by difference between the total 

impinging radiation and the reflected and absorbed parts. The enthalpy method in one dimension was 

used to model phase change. The model was validated experimentally using a PCM glazing prototype 

(1.4 m x 1.15 m) composed by two layers of glass (6 mm and 8 mm) and one PCM layer (paraffin, 

15 mm thick with melting temperature of 35 °C). They found that the numerical tool represents a 

good base for simulations on different configurations of PCM glazing systems.  

Liu et al [97] investigated numerically the thermal performance of a PCM-filled double glazing roof 

with different thickness of PCM in the cold area of Northeast China. They also studied the effect of 

the semi-transparent property of the glazing roof and zenith angle on the thermal performance. The 

heat transfer through the glazing unit is simplified to one dimensional unsteady heat transfer process 

and the convection within the PCM layer (when in liquid state) is neglected. The phase change is 

modeled using enthalpy formulation and the radiation is accounted for by adding a radiative source 

term to the energy equation. The one-dimensional unsteady energy equation for PCM regions is given 

as: 

𝜌
𝜕ℎ

𝜕𝜏
= 𝑘

𝜕2𝑇

𝜕𝑥2
+ ∅ Eq. 1-24 

where, h is the specific enthalpy of PCM (J/kg). ρ and k are the density (kg/m3) and the thermal 

conductivity (W/mK) of PCM, respectively. The radiative source term ∅ is calculated for each layer, 

for example when the calculation node is in the phase 2 of PCM layer as shown in Figure 1-4: 

∅ =
𝑇𝑔1𝑇𝑝1𝐴𝑝2𝐼𝑠𝑜𝑙𝑐𝑜𝑠𝜃

𝐿𝑝2
 Eq. 1-25 

where, 𝐼𝑠𝑜𝑙 is the solar radiation (W/m2), 𝑇𝑔1, 𝑇𝑝1 are the solar transmittance of glass 1 layer and phase 

1 layer respectively. 𝐴𝑝2 is the solar absorptance of phase 2 layer. 𝐿𝑝2 is the thickness (m) of phase 

2 layer and glass 2 layer. The results showed that when the PCM thickness increases, the temperature 

time lag increases. When the extinction coefficients of PCM increase, PCM thickness effect on 

thermal performance parameters turns bigger except for the temperature time lag. 
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Figure 1-4: layout of double glazed roof filled with PCM 

Ismail et al. [15] investigated the thermal and optical properties of double-glazed units filled with 

PCM, through numerical and experimental analysis. For the numerical model, a one-dimensional 

formulation was developed, and a moving grid procedure was used within the PCM layer. They found 

that the PCM filled glass window system was practical and thermally effective. 

Ismail et al. [14] developed a numerical model of two concepts of glass windows, that is, double glass 

window filled with infrared absorbing gases and the other one is filled with phase change materials. 

For the PCM glass system, the concept is as follow: the external glass receives the solar radiation, 

where part of it is absorbed, another part is reflected, and the rest is transmitted to the PCM, which 

absorbs part of the energy received. At the interface between the external glass sheet and PCM, the 

radiation absorbed by the PCM and the heat conducted by the glass surface raise the PCM temperature 

until reaching its fusion temperature and converts a layer of the PCM to a liquid. To model the double 

glass window filled with a PCM a relative simple and effective radiation conduction one dimensional 

formulation is used and convection in the liquid phase of the PCM is neglected. The double glass 

window filled with an absorbing gas mixture and using reflective glass is more efficient and has a 

coefficient of heat gain F factor, in the range of 0.55–0.65. The double glass window filled with PCM 

has F factor in the range of 0.65–0.80. 

Diaz and Viskanta [102] studied the melting process using one-dimensional radiation and conduction 

model. They solved the energy equation with the temperature formulation, and Stefan's condition at 

the interface. For this case of conduction and radiation, this formulation has the advantage of allowing 

the explicit introduction of the radiative flux at the interface. 

Zhong et al. [99] established a numerical model and an experimental setup in order to determine the 

effects of PCM thermophysical parameters on the dynamic heat transfer progress of PCM-filled glass 
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window (PCMW). The heat transfer process of the PCMW is shown in Figure 1-5. The heat transfer 

through the window is simplified to one-dimensional unsteady heat transfer process in double-glazed 

window and the convective process is neglected in the PCM. Results showed that when PCM 

(paraffin MG29) is used, the thermal insulation of PCMW and peak cooling load shifting effects were 

remarkable in the hot summer and cold winter area of China, and the heat entered the building through 

the PCMW is reduced by 18.3% in the typical sunny summer day. 

 

 

Figure 1-5: Heat transfer process of the PCM-filled glass window (PCMW) 

Although the inclusion of PCM in glazing systems can have a positive effect on thermal comfort and 

contributes to improvements in the energy performance of buildings [96], the introduction of PCM, 

instead of gas or vacuum, in a double-glazing unit, results in a reduced thermal resistance, negatively 

affecting the thermal performance of the system. In addition, due to the complete melting of the PCM 

within the double-glazing unit during summer, the internal surface temperature of the glazing may 

increase to a level that may negatively affect thermal comfort [96]. 

Additionally, we present in Table 1-1 five common radiation models to solve the RTE found in the 

literature. In fact, within the medium, radiative heat transfer is described by the general radiative heat 

transfer equation (RTE) [103] that accounts for the variation of the intensity radiation field, and it is 

usually divided into three additive terms: absorption, emission and scattering. 

Table 1-1 Common radiation models to solve the radiative heat transfer equation (RTE) 

Radiation model Advantages Limitations 

Discrete ordinates model 

(DOM) 

– Solution method similar to that for the 

other conservation equations. 

– Conservative method leads to heat balance 

for coarse discretization. 

Solving a problem with a large 

number of ordinates is CPU-

intensive 
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– Accuracy can be increased by using a finer 

discretization. 

– Accounts for scattering, semi-transparent 

media, specular surfaces. 

– Banded-gray option for wavelength-

dependent transmission. 

Discrete transfer 

radiation model (DTRM) 

 

– Relatively simple model. 

– Can increase accuracy by increasing 

number of rays. 

– Applies to wide range of optical 

thicknesses. 

– Assumes all surfaces are 

diffuse (isotropic reflection). 

– Effect of scattering not 

included. 

– Solving a problem with a 

large number of rays is CPU-

intensive. 

P-1 model 

 

– Radiative transfer equation easy to solve 

with little CPU demand. 

– Works reasonably well for combustion 

applications where optical thickness is large. 

– Easily applied to complicated geometries 

with curvilinear coordinates. 

– Effects of particles, droplets, and soot can 

be included. 

– Assumes all surfaces are 

diffuse. 

– May result in loss of 

accuracy, depending on 

complexity of geometry, if 

optical thickness is small. 

– Tends to overpredict radiative 

fluxes from localized heat 

sources or sinks. 

Rosseland model Does not require any boundary conditions 

since surfaces are treated as black 

(Emissivity = 1.0) 

–Only valid for optically thick 

and linearly anisotropic 

material (thickness/depth 

greater than 10) 

–Not valid near walls 

The Monte Carlo Model 

 

– Very general-purpose method - allows you 

to do gray/non-gray, scattering, emission and 

absorption 

– It is the recommended choice for a 

transparent media radiation calculation 

– Computationally intensive: 

Samples and ray traces the 

domain every solution step. 

– always contains statistical 

error   1/N 

5. Trombe wall with integrated PCM 

Trombe wall integrating phase change materials (PCM) is a particular passive solar technique that 

has shown great potentialities and can reduce effectively the building energy consumption. Basically, 

traditional Trombe walls [104]–[108] consist of an external glazing, an air channel, and a high heat 

capacitance wall in contact with the indoor environment (Figure 1-6) . The solar radiation heats the 

air channel between the glazing and the wall and the heat is absorbed by the outer surface of the wall. 

Then, the heat is transmitted inwards, by conduction within the wall, by convection and by radiation 

towards the room. This type of walls can reduce the energy bill by 20 to 30% virtually in all climates 

especially when the air gap is vented [107]. 

Among disadvantages often cited for Trombe wall, are the cost, the delicate design and operation for 

the air gap and vents, the absence of light transmission through the wall, the problem of overheating 

in summer and the large thermal losses in winter when there is little sunshine. To improve the Trombe 

wall heat storage performance, phase change materials were implemented in the wall composition 

and this technique has been investigated by numerous researchers [109]–[114]. During the day, this 
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wall is heated due to the incident solar radiation, melting the PCM. At night, when the outdoor 

temperature falls below the phase change temperature, the heat stored by the PCM is released, 

warming the building. 

 

Figure 1-6: schematic of TROMBE wall [115] 

Fiorito (2012) [110] conducted a parametric study on the use of PCM in Trombe walls by varying the 

PCM position and the melting point temperature for five different climates. They found enhanced 

performances for the modified Trombe wall.  

Zalewski et al. [111] studied experimentally a Trombe wall with PCM components filled in the air 

channel and an insulating board replacing the high capacitance wall. They found that the heat storage 

capacity of the wall was increased. 

Also, an experimental Trombe wall (ventilated façade) with PCM was studied by De Gracia et al. 

[112] during winter season. They found that the use of the ventilated facade with PCM improves 

significantly the thermal behavior of the whole building. 

Kara and Kurnuç [116] investigated a PCM Trombe wall with a novel triple glass (NTG) to improve 

the performance of the conventional Trombe wall system and overcome its main disadvantage: the 

overheating during the summer. However, in all these applications, the light transmission was still 

absent. 

Transparent insulation 

Insulation materials are used to reduce the transmission of heat through conduction, convection and 

radiation in walls [117]. Usually, These materials are opaque, however, many studies were interested 

in transparent insulation materials (TIM) [117] [118] which, in addition to insulation, allow light to 

pass through. This is especially important in winter when, in addition to insulation, it is needed to 

increase solar gains. Such gains can reach 50 W/m2 during a sunny week in January [118]. On the 
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other hand, these gains may become a problem during the summer, causing overheating. TIM are 

classified into four different types in accordance with the geometrical layout of the materials. Each 

type has a unique pattern of solar transmission and physical behavior as illustrated in Figure 1-7, 

where the bold line represents the absorbing surface (a wall with PCM for example): Absorber-

parallel structures (Figure 1-7,a) are constructed from several layers parallel to the absorber surface. 

The degree of insulation can be increased, by adding more layers, resulting in an increase in optical 

reflection and solar gain reduction. Such systems do not meet the criteria of high transmission and 

low heat loss. Absorber-perpendicular structures (Figure 1-7,b) have low optical reflection losses and 

reflect and transmit the incoming beam radiation effectively towards the absorber. The cavity 

structures (Figure 1-7,c) are combination of both absorber-parallel and absorber-perpendicular 

structures. Finally, quasi-homogeneous structures (Figure 1-7,d) that include TIM made of glass fiber 

or aerogel, are similar to porous materials. Here, the incident rays pass through the TIM, always 

undergoing multiple reflections at the surfaces of the pores and the effect is then the diffusion of the 

radiation.  

 
Figure 1-7: Classification of transparent insulation materials [118] 

For decades, a number of investigations have been carried out to improve the properties of transparent 

insulations. A great deal of research work has been done to improve the honeycomb structures used 

as transparent insulation material (TIM). The application of these improved TIM on external walls as 

a passive solar heating element similar to the Trombe wall was proposed and experimentally 

investigated by Goetzberger et al.[119]. In addition, over the past 30 years, different types of 

materials, such as plastics, glass, and aerogels, have been used to produce TIM [118]. 
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6. INERTRANS wall  

6.1.System description  

The ANR INERTRANS project (2018-2011) [120] proposed the development of an innovative wall 

that addresses the issue of energy efficiency and optimal use of environmental resources. The wall is 

composed of a silica aerogels bed for high insulation and solar radiation transmission and of glass 

bricks filled with a eutectic phase change material (fatty acids) for heat storage and restitution. The 

whole wall is translucent. The best conditioning of these elements has been studied, retaining as a 

solution, the assembly of a single glazing exterior side, followed by a space filled with insulation, and 

then glass bricks filled with PCM on the inside (Figure 1-8). An acronym for this wall is proposed: 

TIM-PCM wall which stands for “Translucent Insulating Material – Phase Change Material wall". 

Many features, that are not found in a conventional Trombe wall, are combined by such wall: it 

provides heat gains from solar radiation, high thermal insulation, heat storage and release, natural 

daylighting and visual communication to the outside world.  

 

 

Figure 1-8: Schematic of the TIM-PCM wall 

The wall has been set up in Sophia Antipolis, Southern France, within the center for Processes, 

Renewable Energies and Energy Systems (PERSEE) of Mines Paristech graduate school in the aim 

of studying its thermal behavior (Figure 1-9). Also, a TIM-PCM wall was constructed in the 

MINIBAT climatic chamber of the CETHIL (Centre d’Energétique et de Thermique de Lyon) in 
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Lyon, with the aim of determining the behavior of the wall for imposed and repeatable climate 

scenarios (Figure 1-10). 

 

Figure 1-9: (a) TIM-PCM wall from the outside, (b) PCM in solid phase (left) and liquid phase (right), from the 

inside (PERSEE center in Sophia Antipolis) 

 

Figure 1-10: Interior and exterior photo of the TIM-PCM wall of CETHIL 

6.2.Physical phenomena 

The thermal study of the wall requires the knowledge of the different heat transfer mechanisms that 

take place, especially the melting of fatty acids filled in glass bricks with combined natural convection 

and radiation. The natural convection is developed in the liquid PCM and could dramatically impact 

the heat transfer. The evolution of the melting process in presence of natural convection is explained 

in section 3.1.  

In addition, during the day, the solid PCM absorbs the solar radiation, thus increasing its temperature 

until the melting, and at that moment, a small layer of liquid begins to form and the liquid PCM 

transmits solar radiation. Thus, the radiation through the PCM must be coupled to the natural 

convection phenomena during melting process. Noting that the TIM-PCM wall is supposed to be 

opaque for the longwave radiation due to the presence of the silica aerogel layer. 
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6.3.Previous works related to the INERTRANS project 

Some studies have already been conducted within the framework of the INERTRANS project. 

The TIM-PCM wall was studied experimentally by Berthou et al [121] in-situ, under real life 

conditions, in the full-sized test cell located in Sophia Antipolis in PERSEE center (Figure 1-11). 

Besides, experimentations were carried out at the French Scientific and Technical Center for Building 

research (CSTB) to characterize thermal and optical properties of the materials used. The outer (TIM) 

layer is composed of a 0.8 cm large glass pane while the inner layer is composed of glass bricks of 

dimension 19 cm x19 cm x 5 cm filled with PCM. There is a 4-cm gap between the outer and inner 

layer, which is filled with silica aerogel granulates. The test room is equipped with 4.41 m2 of TIM–

PCM wall facing south. 

 

Figure 1-11: Schematic presentation of the full-scale test cell 

Experimental results obtained by Berthou et al. [69] have shown that the heat losses through the wall 

are very low while the heat and light gains are high. In addition, it was shown that the tested wall is 

very effective in winter and shoulder season, particularly for cold sunny climates (the recorded indoor 

air temperature varied from 17 to 20 ⁰C), but when the solar radiation is very low, the wall does not 

bring any additional heat. In summer, the PCM does not cycle and stays in liquid state, causing 

overheating, the indoor air temperature in the test cell reaching up to 40⁰C (Figure 1-12).  
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Figure 1-12: Solar radiation and air temperatures for three days in December2009 and August 2011 

Numerically, Berthou developed a 1D numerical model considering natural convection and short-

wave radiation during melting of PCM. He assumed that the wall is opaque for longwave radiation. 

The radiation was modeled using the equation of Beer-Lambert, this relation defines in a simple way 

the evolution of the radiative short-wave flow in the semitransparent medium and it is given as: 

∅(𝑥) = 𝑘∅0𝑒
−𝑘𝑥 Eq. 1-26 

where ∅(𝑥) is shortwave wave radiation entering the vertical PCM layer of abscissa x and k is the 

linear attenuation coefficient of the medium. 

The natural convection was accounted for using dimensionless numbers and thermal transfers in the 

liquid PCM were calculated by Newton's law: 

∅𝑐𝑜𝑛𝑣 = ℎ(𝑇)𝑆(𝑇𝑓 − 𝑇𝑠) Eq. 1-27 

where 𝑇𝑓 is the melting temperature, 𝑇𝑠 is the surface temperature and the convective coefficient h(T) 

is given by: 

ℎ(𝑇) =
𝜆𝑁𝑢

𝐿𝑐
 

Eq. 1-28 

where Lc is the characteristic length of the phase change, λ is the PCM conductivity and Nu is the 

Nusselt number given by the following correlation: 

𝑁𝑢 = 0.35𝑅𝑎0.25 Eq. 1-29 

where Ra is the Rayleigh number. 

In this work, the model has not been reasonably experimentally validated. In Figure 1-13, the yellow 

and the red curves represent respectively the internal surface temperature of the wall for the model 

with and without natural convection respectively. The results of the model without natural convection 

are found closer to the experimental results as in the square 1. Moreover, during the melting, there is 
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a difference up to 5°C between the numerical model with convection and the experiment (square 1). 

The reason may be that the natural convection was not correctly introduced in the numerical model. 

As future work, they insisted that the performance of the wall needed to be optimized in summer and 

solutions for overheating and PCM cycling must be proposed. 

 

Figure 1-13: Comparison simulation / experimentation of the internal surface temperature of the wall for the 

model with and without natural convection  

Regarding the part of the INERTRANS project executed in Lyon, Fuentes et al. [85] studied the 

melting of fatty acids filled in glass bricks of the INERTRANS wall in presence of natural convection 

and radiation. First, they developed a lattice Boltzmann Model (LBM) to study the melting of 

Octadecane and Tin in presence of natural convection in a square cavity (Figure 1-14,a). For the phase 

change problem, the enthalpy formulation used is given as: 

ℎ = 𝑐𝑝𝑇 + 𝑓𝑙𝐿ℎ Eq. 1-30 

where h is the enthalpy, Cp is the specific heat capacity, Lh is the latent heat of fusion and fl is the 

liquid fraction:  

𝑓𝑙 =

{
 
 

 
 0                𝑖𝑓 ℎ ≤ ℎ𝑠
ℎ − ℎ𝑠
ℎ𝑙 − ℎ𝑠

     𝑖𝑓 ℎ𝑠 < ℎ < ℎ𝑙 

1                 𝑖𝑓 ℎ ≥ ℎ𝑙

 
Eq. 1-31 

The energy equation, including convection and radiation, is expressed as: 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢. ∇𝑇) = ∇. (𝑘∇𝑇) − 𝐿ℎ

𝜕𝑓𝑙
𝜕𝑡
− ∇. 𝑞𝑟⃗⃗⃗⃗  

Eq. 1-32 

where 𝑞𝑟⃗⃗⃗⃗  is the radiation heat flux (W/m2) 
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The energy equation is solved by finite differences, whereas fluid flow equations are solved by the 

lattice Boltzmann method. The LBM equation is expressed by: 

𝑓𝑖(𝑥 + 𝑐𝑖,⃗⃗  ⃗ , 𝑡 + 1) − 𝑓𝑖(𝑥 , 𝑡) = 𝛺𝑖  
Eq. 1-33 

where 𝑓𝑖 is the particle distribution function, which is the probability of finding a particle in position 

x, time t and velocity ci (i =0, ….. , q - 1), and 𝛺𝑖 is the collision operator, giving the relaxation 

towards an equilibrium state. 

The developed LBM was validated using numerical Benchmark solutions found in the literature. 

Later, they modeled the radiation using the Discrete Ordinates Method (DOM), and radiation flux is 

added into the energy equation. The Discrete Ordinate Method (DOM) is then used to solve 

numerically the angular integrals leading to a weighted sum: 

𝑞𝑟⃗⃗⃗⃗ = ∫ 𝐼(𝑟 ,
4𝜋

𝑠̂)𝑠̂𝑑𝜴 ≈ ∑ 𝑰𝒎𝑷𝑠̂𝑤𝑚

𝑴

𝒎=𝟏

 Eq. 1-34 

𝑇(𝑟 , 𝑠̂) standing for the radiation intensity in the direction 𝑠̂. 

The combined LBM-DOM model was used to study the melting of fatty acids filled in glass bricks 

of the INERTRANS wall in presence of both natural convection and radiation for a total simulation 

time of 24 minutes (Figure 1-14, b). Figure 1-14 shows the geometry and boundary conditions for the 

studied cases: (a) melting of octadecane (high Prandtl) and Tin (low Prandtl) in presence of natural 

convection in square cavity and (b) melting of fatty acids in presence of natural convection and 

radiation in a rectangular brick. 

The results showed that natural convection plays an important role in the transitional behavior of the 

global heat transfer process and should not be neglected. The long wave radiation has limited impact 

on the melting process while the shortwave radiation increases heat transfer, however, this increase 

is not as important as that produced by convection for this kind of materials. Figure 1-15 shows that 

natural convection doubles the liquid fraction present in the enclosure whereas long wave radiation 

has marginal effects (<3%). In addition the consideration of shortwave radiation enhances the liquid 

fraction by 10% compared to the convection model. 

Concerning the computational time, it was found 6 hours 21 minutes for LBM model, and 130 hours 

20 minutes for the LBM-DOM model (20 times larger considering radiation). Finally, they stated that 

computional times are very high and simpler model for radiation should be used. 
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Figure 1-14: Thermal boundary conditions on the cavity for each case [63] 

 

  

Figure 1-15: Melted fraction of the case of melting with convection and (a) long wave radiation, and (b) 

shortwave radiation   

In the same context, another work was performed by Gong et al. [122]. They studied the melting of 

PCM (n-Octadecane) inside the rectangular transparent brick by both experimental and numerical 

approaches. This transparent brick, shown in Figure 1-16,a, was the same used to construct the TIM-

PCM Trombe wall at the CETHIL’s MINIBAT test cell. A non-intrusive experimental method was 

proposed (Figure 1-16, b). The two vertical surfaces of the enclosure were maintained with different 

but constant temperatures, the upper and front sides were kept available to record the inner process 

by a camera, and the bottom and back sides were insulated and kept adiabatic. 
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Figure 1-16: (a) Transparent brick filled with PCM, (b) experimental enclosure [122]  

The experiments allowed to get enough data of the real physical melting process and showed that the 

heat transfer during melting process can be described as three stages: at the beginning, the pure 

conduction is the only form, then there is the competitive period of conduction and convection, and 

at the end, the convection prevails. In addition, the existence of natural convection dramatically 

influences the melting process. Numerically, the LBM with multiple-relaxation-time was used to 

solve the flow and the energy equation was used to solve the temperature distribution by finite 

difference scheme. Additionally, the enthalpy method was used to simulate the melting phase change. 

The simulation was specially designed to run on a CUDA enabled GPU to reduce the computational 

time. The simulation results demonstrated a good agreement with the experimental results (Figure 

1-17). 

 

Figure 1-17: Comparison of Nusselt number of the 2D developed numerical model with the experimental results 

and Benchmark solution (Jany and Bejan) 
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However, for the computation efficiency, if was found that the performance decreases in three-

dimensional simulation, and the CUDA programming pattern can’t achieve ideal performance if there 

are many code divergences. Consequently, in the future, a more sophisticated approach should be 

devised in order to do this logic judgements in the code and to modify the solver to adapt to different 

or even more complex enclosures. 

7. Discussion: Main limitations and thesis problematic and objectives 

According to sections 2 and 3, we can state the following: 

 

• Despite its importance, the effect of natural convection during melting process has been 

neglected in many studies. However, it is not sufficient to assume only conduction, and 

convection in the liquid phase should be taken into account. 

• Convection heat transfer is less important than conduction during solidification process. 

• The methods based on CFD, introducing Navier Stokes equations, and LBM models simulate 

the natural convection effect with more complexity and more realistic behavior. But these 

methods are time consuming and might require intensive computational power, even for a 

simple convection dominated phase change problem. 

• The widely used enhanced conductivity approach, is fast and simple, however it has several 

shortages especially that it is unable to show the characteristics of phase change and cannot 

provide information about the melting front location. In addition, it is not recommended for 

high accuracy results. 

• All numerical models for melting with natural convection collected have their own limitations, 

as the practical phase transformations in different applications are complicated, and the 

thermal conditions are not ideal. Various assumptions were set up for each numerical solution 

according to different numerical simulation purposes [18].  

• The melting process consists mainly of three regimes: conduction-dominated regime, mixed 

conduction-convection regime and convection-dominated regime. These regimes are reflected 

by the average Nusselt number curve function of time. However, no consensuses were found 

on which one is the dominant heat transfer mechanism, which one can be ignored and how to 

combine these two transfer mechanisms in each modeling. 

• The average Nusselt number is a key parameter in the convection dominated problem. To 

date, many correlations that have been developed in the literature are only suitable for a 

specific geometry and/or PCM. 

 

According to section 4, we can state the follow: 
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• The integration of PCM in translucent facades increases the indoor thermal comfort of the 

building and consequently of occupant’s satisfaction. It reduces the maximum indoor air 

temperature and increases the minimum indoor air temperature. It also increases the time lag 

between the imposed conditions and the internal conditions. 

• Most previous works studying PCM-enhanced transparent components have been mainly 

developed for the heating season, and there is little quantification of their real advantages in 

terms of energy efficiency and indoor environmental comfort in summer season. 

• Most studies on translucent facades have assumed one-dimensional transfers by conduction 

and radiation neglecting convection [98]–[100] and numerical models were specifically 

developed to take the interaction of PCM with solar radiation into account [12], [15], [123], 

[124]. 

• The interaction of convection and radiation has rarely been studied in the literature. 

• In such walls as the INERTRANS wall, solidification is more likely to happen at night, in 

absence of solar radiation. Thus, the convection and radiation heat transfers are more 

important during melting process. 

According to section 6, we can state the follow: 

 

• The experimentations performed by Berthou et al. [121] showed that the performance of the 

TIM-PCM wall should be optimized, and solutions to overcome summer overheating and 

PCM cycling should be proposed. In their work, they were not able to properly present an 

experimentally validated numerical model to study the annual energy performance of the 

whole building, the reason is probably that the natural convection was not properly considered 

in the model. And thus, the question of an experimentally validated numerical model allowing 

the optimization of such a wall under different conditions is still open. 

• Fuentes et al. [85] developed a LBM-DOM model to study the melting of fatty acids filled in 

glass bricks in presence of natural convection and radiation. The coupling of these phenomena 

was still not sufficiently studied in scientific literature. They emphasized on the importance 

of considering natural convection in the liquid PCM filled in glass bricks. However, the 

developed model requires a high computational time for a relatively small simulation time. 

Thus, it can’t be used for yearly energy evaluation. Simpler model for radiation and natural 

convection during melting is still an open question. 

• Gong et al. [122] focused in their work on the important issue of the melting process inside 

the brick. The radiation in the brick was not taken into account and the developed sophisticate 

model was not shown to be linkeable to energy simulation tool such as TRNSYS or Energy 

Plus for annual basis assessment. 
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Consequently, a lot of work needs to be done in the context of INERTRANS project, and principally 

the establishment of a numerical model that can represent the physics of the TIM-PCM wall, 

considering natural convection and radiation during PCM melting process. The model needs to be 

fast enough to be coupled with global energy simulation tool (such as TRNSYS) to perform annual 

energy assessment of a whole building integrating such a wall. Once the needed model is created and 

experimentally validated, the optimization of the TIM-PCM wall performance might be done under 

different conditions and configurations. 

The objectives of this thesis can thus be written as follows: 

1. To develop a 2D simplified numerical model for phase change in presence of natural convection 

(without recurring to the full solution of the Navier Stokes equations). In this work, the phase change 

is modelled using a fixed grid enthalpy method, the natural convection in the liquid PCM is accounted 

for using Bejan’s scaling theory approach coupled with the enhanced conductivity method. 

The simplified enhanced conductivity approach, used by many authors [26], [65], [67]–[69], [66], 

considers that the convection effect is prevalent in the whole liquid PCM, which is not true. The 

scaling theory proposed by Bejan [40] [37] allows to get a clear understanding of the role of natural 

convection in the liquid PCM through the sequence of mainly three regimes (pure conduction, mixed 

(transition) and convection regimes) and to adequately presenting the convection effect during 

melting process, especially the shape and the position of the melting front. That is why in this work 

these two approaches will be coupled. The equations are discretized using 2D implicit finite volume 

method and the code is written in MATLAB. 

The model will be then validated using numerical and experimental benchmark solutions found in 

literature, in addition to a CFD model previously created in COMSOL for a test case: melting of 

Octadecane in square cavity; the computational simulations time are compared. Details and results 

are presented in chapter 2. 

2. To develop a 2D simplified numerical model for phase change of fatty acids filled in glass bricks 

in presence of natural convection and shortwave radiation in the dynamic regime. The nodal 

absorptivity and transmissivity in the PCM are evaluated function of the liquid fraction, and the 

absorbed shortwave radiation is added to the energy equation as source term.  

The model will be validated using the results of Fuentes et.al [85] of the LBM-DOM method (the 

only reference found in scientific literature for phase change in presence of natural convection and 

radiation). Details and results are presented in chapter 2. 
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3. To properly model the heat transfer through the TIM-PCM wall and then to couple the model with 

a global building energy simulation tool, TRNSYS, in order to study the energy performance of the 

whole building. The transmission of solar radiation through the wall layer is evaluated using Seigel 

equations. All details about the developed heat transfer model and the link MATLAB-TRNSYS are 

presented in chapter 3. To validate the coupled model, we have used the experimental cell present in 

PERSEE center of Mines ParisTech graduate school located in Sophia Antipolis. The experimental 

cell already exists and in the current thesis, we have just collected the data for summer and winter 

2017 (see chapter 3). 

4. Using the experimentally validated model, to propose passive solutions to optimize the wall 

behavior in summer conditions (see end of chapter 3). 

5. To study the thermal behavior of an office building with integrated TIM-PCM wall under different 

climatic conditions and its impact on the indoor thermal comfort in summer conditions (more details 

in chapter 3), to compare its performance to that of the same building using a conventional double 

glazing, and to perform an economic analysis of the application of the wall. Details and results are 

presented in chapter 4. 

 

In the above chapter, heat transfer mechanisms during the phase change were discussed. A literature 

review of the numerical models of phase change considering natural convection, as well as a state of 

the art of PCM integrated in transparent systems were presented. The TIM-PCM wall was described, 

in addition the problematic and the objectives of the thesis were identified. In the next chapter, a 

simplified model taking into account natural convection and radiation during phase change will be 

developed. The equations governing these phenomena as well as their simplifying assumptions, and 

the numerical methods adapted to their solution are presented. 
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Chapter 2. Melting of a Phase Change Material in Presence of Natural 

Convection and Radiation: A Simplified Model 

 

Résumé du chapitre en français :  

Fusion d'un matériau à changement de phase en présence de convection naturelle et de 

rayonnement : un modèle simplifié 

Un modèle simplifié pour modéliser la convection naturelle et le rayonnement courte longueur d’onde 

(CLO) pendant le processus de fusion d’un matériau à changement de phase est présenté dans ce 

chapitre. Pour modéliser le changement de phase, une méthode « enthalpique » modifiée a été utilisée. 

La convection naturelle qui apparaît dans le MCP liquide est prise en compte en utilisant l'approche 

de conductivité thermique efficace couplée avec la théorie d’échelle sans la résolution complète des 

équations de Navier-Stokes (N-S), tandis que le flux de rayonnement CLO absorbé est ajouté à 

l'équation d'énergie en tant que terme source en utilisant un algorithme simplifié. Le modèle 

mathématique est codé sous MATLAB en utilisant une méthode de volumes finis implicite en deux 

dimensions.  

Ensuite, un modèle CFD complet est créé et mis en œuvre dans COMSOL Multiphysics en adoptant 

la méthode de capacité thermique modifiée. En particulier, une corrélation du nombre de Nusselt 

correspondant à notre cas d’étude est trouvée, sur la base du modèle CFD, et est ensuite implémentée 

dans le modèle simplifié pour calculer la conductivité efficace. Les résultats du modèle simplifié sont 

comparés à ceux du modèle CFD créé dans COMSOL, et aux résultats numériques et expérimentaux 

des benchmarks trouvés dans la littérature. Les résultats montrent que, pour un temps de calcul 45 

fois plus court que celui de la CFD, les valeurs de fraction liquide moyenne, de la position du front 

de fusion à quatre instants différents, et de la position moyenne du front de fusion en fonction de 

temps sont acceptables avec des différences inférieures à 6%, 14% et 13% respectivement. D’autre 

part, les résultats du modèle simplifié montrent un très bon accord avec ceux des solutions des 

benchmarks. De plus, la modélisation de la convection naturelle pendant la fusion, modifie la fraction 

liquide moyenne d'environ 40% et la position du front de fusion d'environ 55% à l’instant 

adimensionnel SteFo = 0.01 par rapport à un modèle à conduction seule. 

Puis, le modèle développé couplant la convection naturelle et le rayonnement courte longueur d’onde 

lors de la fusion est appliqué pour modéliser la fusion de l'acide gras intégré dans les briques de verre 

de la paroi INERTRANS. Les résultats obtenus sont en très bon accord avec les résultats d’un modèle 

de Boltzmann sur réseau et la méthode des ordonnées discrètes (LBM-DOM) trouvés dans la 

littérature, en termes de la fraction liquide moyenne. Il a été constaté que la convection naturelle fait 
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augmenter la fraction liquide d'environ 35% par rapport au modèle à conduction seule, tandis que le 

rayonnement CLO fait augmenter la fraction liquide d'environ 20% par rapport au modèle incluant la 

convection. En ce qui concerne le temps du calcul, les simulations du modèle simplifié sont beaucoup 

plus rapides par rapport au modèle LBM-DOM. 

Le modèle proposé considérant à la fois la convection naturelle et le rayonnement pendant le 

processus de fusion est simple à mettre en œuvre et peut gérer efficacement les problèmes de 

changement de phase dominés par convection sans la résolution complète de l’écoulement dans un 

temps de calcul relativement court. Cependant, ce modèle simplifié est une représentation 

conceptuelle de la réalité, et il a été développé pour les applications pratiques de l'ingénierie 

thermique, où on cherche une évaluation annuelle de la performance énergétique. Dans le chapitre 

suivant, le modèle simplifié est utilisé pour simuler le comportement thermique de l'ensemble du mur 

INERTRANS sur une base annuelle, le processus de solidification étant également pris en compte. 

Le modèle simplifié pourrait également être intégré dans un outil de simulation d'énergie (par 

exemple TRNSYS ou EnergyPlus) pour évaluer le comportement thermique annuel d'un bâtiment. 

 

 

Dans le chapitre suivant, le modèle simplifié sera utilisé pour simuler le comportement thermique du 

mur INERTRANS. Ensuite, il sera couplé à un outil de simulation énergétique globale (TRNSYS) 

pour évaluer le comportement thermique annuel de l'ensemble du bâtiment. 

  



Chapter 2 

 

91 
 

Abstract 

In this chapter, a simplified model for melting of a phase change material (PCM) in presence of 

natural convection and radiation is presented. A modified enthalpy method is adopted to solve the 

phase change problem, the natural convection occurring in the liquid PCM is accounted for using 

the enhanced thermal conductivity approach coupled with the scaling theory, and the absorbed 

shortwave radiation flux is added into the energy equation as a source term using a simplified 

solution algorithm. Two-dimensional implicit finite volume method is used to solve the energy 

equation. First, the simplified model for melting with natural convection is validated using a CFD 

model, in addition to experimental and numerical benchmark solutions for a test case. Then, the 

simplified model for melting with combined natural convection and radiation is applied to the melting 

of a fatty acid eutectic filled in glass bricks, which will be used later to model the annual thermal 

behavior of a special translucent façade. This complete model is validated against the lattice 

Boltzmann-discrete ordinate method LBM-DOM. It was shown that (1) the proposed simplified model 

is simple to implement, and its simulations run significantly faster than those of CFD models and 

LBM-DOM model. Consequently, it can be easily integrated into an energy simulation tool for yearly 

performance evaluation, (2) during PCM melting process, natural convection has a noteworthy role 

as it enhances the average fraction of liquid and the position of the melting front, (3) shortwave 

radiation enhances the average liquid fraction.  

Keywords: Phase Change Materials, natural convection, shortwave radiation, computational time, 

enhanced thermal conductivity, scaling theory, CFD. 

Highlights: 

• Simplified model for melting with natural convection and radiation. 

• Enhanced thermal conductivity approach coupled with the scaling theory. 

• During PCM melting, natural convection has a notable role. 

• The simplified model runs much faster than CFD and LBM models. 

• The model can be integrated into energy simulation tool for annual evaluation. 
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1. Introduction  

A new kind of translucent storage wall has been proposed, in the French INERTRANS(1) project, 

composed of glass layer, a translucent insulation (silica aerogel) and fatty acid eutectic mixture filled 

in glass bricks [1], [2]. The solid PCM absorbs the solar radiation, thus increasing its temperature 

until the complete melting, while in liquid phase, the PCM transmits solar radiation. Then, the heat 

transfer is conducted by conduction, natural convection and radiation during the phase change. To 

optimize the energy performance of this type of storage walls, numerical modeling of the heat transfer 

mechanisms in the wall materials is required and especially the melting with combined natural 

convection and radiation. 

In the last twenty years, convection dominated phase change problems have become the subject of 

numerous studies [3]–[11] and the natural convection was shown as a significant mechanism during 

melting process, whenever convection motion has enough space to develop [12]. This phenomenon 

was investigated using both experimental [13]–[16] and numerical approaches [17]–[20]. Even 

though the experimental studies show more accurately the real behavior of PCM, researchers prefer 

to study the phase change problems by mathematical solutions and numerical simulations due to the 

fact that numerous conditions can be carried out by changing the variables in a numerical model [21]. 

Numerically, various methods are currently explored and used to model phase change of a PCM 

accounting for natural convection, mainly the enthalpy-porosity approach [22]–[29], the temperature 

transforming model (TTM) [30]–[33], the equivalent thermal capacity method [34], the modified heat 

capacity method [35], in addition to the integral method, the boundary fixing method, the unstructured 

finite-element method, and the coordinate transformation method [21]. In these methods, the Navier-

Stokes equations i.e. the energy equations in the solid and liquid phases coupled with the continuity 

and momentum equations in the liquid must be solved, hence the problem becomes strongly non-

linear. In addition, Lattice Boltzmann Method (LBM) [2], [36]–[38] is used as well to model the fluid 

flow during phase change. 

The computational time can be quite large, depending on the used method, the simulated problem and 

the spatial and temporal discretization [39]. The melting of Tin, filled in a square enclosure of height 

0.1m, in presence of natural convection has been studied by different authors [39] [40] [41]. The 

computational time for the melting of Tin was found 450 hours for a total simulation time of 700 

seconds with a mesh size of 400 × 400 in [40]; the simulations were conducted using a Compaq Alpha 

ES40 machine. While the computational time using the LBM in [39], for a simulation time of 1000 

seconds is found 76 hours with a mesh size of 400 × 400, the simulations were conducted using an 

Intel Xeon X5472. Moreover, Hannoun et al. [41] reported 2400 hours of CPU to simulate 2500 

seconds of the melting of Tin with a mesh size of 200 × 200, using Compaq Alpha ev67 machine. In 
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addition, the simulation of 5000 seconds of the melting of Octadecane, filled in square enclosure of 

height 0.1m, with natural convection took 34 hours with a mesh size of 225 × 225 [39]. 

Usually in thermal engineering applications, where yearly energy performance evaluation is sought, 

the building models with integrated PCM ignore the convection effect in the liquid region, due to the 

complexity of CFD models and the required high computational time. Therefore, the transient heat 

conduction term is only considered in the energy equation [42]. Because the assumption of conduction 

alone is not always adequate, a simplified model considering the effect of natural convection without 

the complete solution of the Navier–Stokes equations is needed. The natural convection effect could 

be accounted model using the enhanced thermal conductivity approach [5], [43]–[47]. Here, the 

average Nusselt number is considered as a main parameter, because it describes the convective heat 

transfer coefficient, and influences the procedure dynamics [48]. In this approach, the convection 

effect is considered in the whole liquid PCM. The scaling theory proposed by Bejan [49] [50] allows 

to get a clear understanding of the role of natural convection in the liquid PCM through the sequence 

of mainly three regimes (pure conduction, mixed (transition) and convection regimes) and to 

adequately presenting the convection effect during melting process, especially the shape and the 

position of the melting front. 

In this chapter, we develop a simplified model for convection and radiation during PCM melting 

(section 2). Natural convection in the liquid PCM is modeled based on the enhanced thermal 

conductivity approach and the scaling theory (section 3.1). This model is validated using the results 

of a CFD model developed in COMSOL Multiphysics solver (section 3.2), in addition to numerical 

and experimental benchmark solutions from the literature for a test case: melting of Octadecane in a 

square enclosure heated from its left vertical wall (sections 3.3-3.5). Based on the numerical CFD 

results, a correlation for the Nusselt number is proposed (section 3.4). Then, the short-wave radiation 

is modeled in the PCM using a simplified solution algorithm (section 4). Later on, a simplified method 

coupling the natural convection and the shortwave radiation during melting is applied to the fatty acid 

filled in glass bricks used in the INERTRANS wall. The results are compared and validated against a 

lattice Boltzmann method coupled with Discrete Ordinate Method (DOM) to model natural 

convection and radiation respectively, during the melting of a fatty acid eutectic mixture (section 5). 

In this paper, only melting is modeled for three reasons: (i) the experimental and numerical 

benchmarking data on melting to compare our simplified model with, is abundant in the literature, 

(ii) according to many authors [51] [52], convection heat transfer is less important than conduction 

during solidification process (iii) in such walls as the INERTRANS wall solidification is more likely 

to happen at night, in absence of solar radiation. 
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 (1) INERTRANS is acronym of Translucent Inertia, project funded by the French National Research 

Agency, PREBAT 2007). 

2. Numerical methodology 

The main challenge of the mathematical modeling of melting process is to properly represent the 

moving melting front. There are two approaches to solve this problem: fixed grid methods where the 

melting front is determined implicitly by the temperature/enthalpy distribution, and the deforming 

grid methods where the energy equation is formulated for each state, and then coupled by energy 

balance at the solid-liquid boundary (Stefan’s condition), the mesh moves to track the phase interface 

position. 

In this study, a fixed-grid modified “enthalpy” method is used, inspired by the work of Zivkovic et 

al. [53] which allows a separate calculation of the temperature and the liquid fraction. This method 

was previously used in several studies for different applications [54] [55] [56]. The main advantages 

of this method are that the moving melting front does not necessitate to be treated explicitly, the 

energy equation is analogous to the single-phase equation and a mushy region is allowed between the 

two phases. The energy equation, with natural convection and radiation, is given as: 

𝜌
𝜕𝐻

𝜕𝑡
= 𝑑𝑖𝑣(𝑘𝑔𝑟𝑎𝑑 𝑇) + ∅𝑠𝑜𝑙   Eq. 2-1 

Where H is the total enthalpy: 

𝐻 = ℎ + 𝐿𝐻𝑓𝑙 Eq. 2-2 

and h is the sensible heat 

ℎ = ∫ 𝐶𝑝 𝑑𝑇 
𝑇

𝑇𝑚

 
Eq. 2-3 

The fraction of the liquid is defined as: 

𝑓𝑙 = 0 , 𝑖𝑓 𝑇 < 𝑇𝑚 (𝑠𝑜𝑙𝑖𝑑) 

𝑓𝑙 = ]0,1[ ,   𝑖𝑓 𝑇 = 𝑇𝑚 (𝑚𝑢𝑠ℎ𝑦 𝑟𝑒𝑔𝑖𝑜𝑛) 

𝑓𝑙 = 1 , 𝑖𝑓 𝑇 > 𝑇𝑚 (𝑙𝑖𝑞𝑢𝑖𝑑) 
Eq. 2-4 

The thermal conductivity is defined as: 

𝑘 = 𝑘𝑠 , 𝑖𝑓 𝑇 < 𝑇𝑚  

𝑘 = 𝑘𝑒𝑛ℎ𝑓𝑙 + 𝑘𝑠(1 − 𝑓𝑙) , 𝑖𝑓 𝑇 = 𝑇𝑚  

𝑘 = 𝑘𝑒𝑛ℎ , 𝑖𝑓 𝑇 > 𝑇𝑚  
Eq. 2-5 
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The thermal conductivity is enhanced in the liquid phase using the enhanced conductivity method 

coupled with the scaling theory approach explained in section 3.1. 

In the convective zone, 

 𝑘𝑒𝑛ℎ~𝑘𝑙(1 + 𝑁𝑢𝑧) Eq. 2-6 

Otherwise  

𝑘𝑒𝑛ℎ = 𝑘𝑙 Eq. 2-7 

𝑁𝑢𝑧 is the Nusselt number defined function of z, the height of the convective zone. 

And ∅𝑠𝑜𝑙   is the radiative source term; the shortwave radiation through the PCM is modeled by means 

of a solution procedure proposed by Gowreesunker [57] detailed in section 4. 

The two-dimensional Eq. 2-8, obtained from Eq. 2-1 is then used: 

𝜌𝐶𝑝
𝜕ℎ

𝜕𝑡
=
𝜕

𝜕𝑥
(𝑘 

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘
𝜕𝑇

𝜕𝑦
) − 𝜌𝐿𝐻

𝜕𝑓𝑙
𝜕𝑡
+ ∅𝑠𝑜𝑙      

                                       Eq. 2-8 

To solve the two-dimensional 2D phase change problem, the implicit finite volume method by 

Patankar 1980 [58] is used. The computational domain is divided into rectangular control volumes 

(CV) and the code is written in Matlab®. 

The finite volume equations are derived by integrating Eq. 2-8 over a typical control volume. It is 

also necessary, in time-dependent problems, to integrate with respect to time t over a small interval 

Δt from t to t + Δt. After integration, we obtain the discretization equation as follows: 

𝑎𝑃𝑇𝑃
𝑡+∆𝑡 = 𝑎𝑊𝑇𝑊

𝑡+∆𝑡 + 𝑎𝐸𝑇𝐸
𝑡+∆𝑡 + 𝑎𝑆𝑇𝑆

𝑡+∆𝑡 + 𝑎𝑁𝑇𝑁
𝑡+∆𝑡 + 𝑏                                  Eq. 2-9 

Where, 

𝑎𝑊 = 𝑘𝑤
𝛥𝑦

(∆𝑥)𝑤
, 𝑎𝐸 = 𝑘𝑒

𝛥𝑦

(∆𝑥)𝑒
, 𝑎𝑆 = 𝑘𝑠

𝛥𝑥

(∆𝑦)𝑠
, 𝑎𝑁 = 𝑘𝑛

𝛥𝑥

(∆𝑦)𝑛
  

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + 𝑎𝑆 + 𝑎𝑁 + 𝑎𝑃
0  

𝑎𝑃
0 =

𝜌𝐶𝑝∆𝑥𝛥𝑦

∆𝑡
 

𝑏 = 𝑎𝑃
0𝑇𝑃

0 + ∅𝑠𝑜𝑙       Eq. 2-10 

Where, the product 𝛥𝑥𝛥𝑦 defines the volume of each control volume, and the index “0” designates 

the previous time step. Note that for the boundary nodes, the boundary conditions will be included in 

the vector 𝑏. Deriving the discretization equation for each CV, we form a system of linear equations 

that is written in a matrix form as: 

𝐴 ∗ 𝑇 = 𝐵 Eq. 2-11 
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When phase change occurs in the control volume P, the liquid fraction is calculated using Eq. 2-13 

and it is strictly in the range ]0,1[ while the temperature is fixed to the melting temperature. 

𝑇𝑃 ≡ 𝑇𝑚 Eq. 2-12 

𝑓𝑙𝑃 = 𝑓𝑙𝑃
0 +

𝑘𝑒∆𝑡

𝜌𝐿𝐻∆𝑥
2
(𝑇𝐸 − 𝑇𝑚) −

𝑘𝑤∆𝑡

𝜌𝐿𝐻∆𝑥
2
(𝑇𝑚 − 𝑇𝑊) +

𝑘𝑛∆𝑡

𝜌𝐿𝐻∆𝑦
2
(𝑇𝑁 − 𝑇𝑚) −

𝑘𝑠∆𝑡

𝜌𝐿𝐻∆𝑦
2
(𝑇𝑚 − 𝑇𝑆) +

∅𝑠𝑜𝑙

𝜌𝐿𝐻
  Eq. 2-13 

3. Melting with natural convection 

3.1. Simplified model 

The natural convection during melting process, is accounted for using the approach of scaling theory 

[49] [50] together with the enhanced conductivity method [59]. At first, the PCM melting is ruled by 

conduction, the convection effect starts in the melt when the criterion of distinct thermal boundary 

layers [47] [49] [50] [60] is respected: 

(
s

𝐻
)
4

𝑅𝑎𝐻 ≥ 1 
Eq. 2-14 

Where s is the position of the melting front, H is the height of the enclosure and 𝑅𝑎𝐻 is given by: 

𝑅𝑎𝐻 =
𝑔𝛽𝐻3(𝑇ℎ − 𝑇𝑚)

𝛼𝜈
 Eq. 2-15 

Hence, the PCM liquid thermal conductivity is enhanced (Eq. 2-6) and the enhancement is performed 

in a square shaped convective zone of surface (z x z) situated in the left superior corner of the 

enclosure. The height z of the convective zone is assumed to be equal to sh, the thickness of the liquid 

zone assessed at the top of the enclosure [47]. 

𝑧 = 𝑠ℎ Eq. 2-16 

At each time-step, the value of the enhanced conductivity kenh that depends on z, must be updated. 

Here, Rayleigh number is calculated in function of z: 

𝑅𝑎𝑧 =
𝑔𝛽𝑧3(𝑇ℎ − 𝑇𝑚)

𝛼𝜈
 Eq. 2-17 

and the Nusselt number 𝑁𝑢𝑧 is calculated function of the Rayleigh number. Many general Nusselt 

number correlations for the natural convection inside an enclosure are found in the literature based 

on the aspect ratio, Ra and Pr number restrictions. Some of them are listed in Table 2-1. Several 

authors have presented Nusselt number correlations during melting process as summarized in  

Table 2-2. Noting that, these correlations are based on numerical or experimental observations. 

Therefore, they are valid under some restrictions such as the geometry configurations, PCM used, 

thermal boundary conditions and variables under which the studies were performed [48]. It is also 
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worthy to mention that the selection of the characteristic length in the formulas of Ra and Nu is very 

critical; the average position of the melting front (sav) or either the height of the enclosure (H) could 

be used [49][61].  

Table 2-1: General Nusselt number correlations for natural convection problem in an enclosure 

Ref. 
Characteristic 

length 
Correlations Restrictions 

Berkovsky and 

Polevikov [62] 

 

Width L 

NuL = 0.22 (
Pr

0.2 + Pr
RaL)

0.28

(
H

L
)
−0.25

 

2 ≤ H/L ≤ 10 

Pr ≤ 105 

103  < RaL < 1010 

NuL = 0.18 (
Pr

0.2 + Pr
RaL)

0.29

 

1 ≤ H/L < 2 

10−3  ≤  Pr ≤ 105 

Pr

0.2 + pr
RaL > 10

3 

Berkovsky and 

Polevikov [50] 

 

Height H 

NuH

= 0.18 (
Pr

0.2 + Pr
RaH)

0.29

(
L

H
)
−0.13

 

1 ≤ H/L < 2 

10−3  <  Pr < 105 

Pr

0.2 + pr
RaH (

L

H
)
3

> 103 

 

NuH = 0.22 (
Pr

0.2 + Pr
RaH)

0.28

(
L

H
)
0.09

 

2 ≤ H/L < 10 

Pr < 105 

RaH < 1013 

 

Seki et al. [63] Height H NuH = 0.36 RaH
0.25Pr0.051 (

H

L
)
−0.11

 

5 < H/L < 47.5 

3 <  Pr < 40000 

107 < RaH < 4 × 10
9 

Macgregor and 

Emery [64] 
Width L 

NuL = 0.42 RaL
0.25Pr0.012 (

H

L
)
−0.3

 

104  < RaL < 107 

10 ≤ H/L ≤ 40 

1 ≤  Pr ≤ 2 × 104 

 

NuL = 0.046 RaL
1/3

 

106  < RaL < 109 

1 < H/L < 40 

1 <  Pr < 20 

Markatos and 

Pericleous [65] 
Width L 

NuL = 0.143 RaL
0.299 

H/L = 1 

103  < RaL < 106 

 

NuL = 0.082 RaL
0.329 

H/L = 1 

106  < RaL < 1012 

 

Table 2-2: Nusselt number correlations for different phase change materials with natural convection during 

melting process 

Ref. PCM / geometry Correlations Restrictions 

Wang et al.[14] 

-Polyethylene glycol 

900 

-Rectangular cavity 

heated from the side 

𝑁𝑢̅̅ ̅̅

= 0.0219 𝑅𝑎0.387𝑃𝑟0.019 (
𝐻

𝛿
)
0.0625

 

2.02x106 ≤ Ra ≤ 2.61 ×

107 𝑆𝑡𝑒. 𝐹𝑜 = 0.001 −

0.125 

𝑃𝑟 = 804 − 1055 



Chapter 2 

 

98 
 

Yanxia et al. 

[39] 

 

- Ethanolamine–water 

binary mixture 

- Rectangular 

enclosure heated from 

its vertical wall 

𝑁𝑢̅̅ ̅̅ = 0.198 𝑆𝑡𝑒−0.122 𝑅𝑎0.258𝑃𝑟0.018 

The valid range of the 

correlation is 0.04Nu 

value. 

Ho and Viskanta 

[66] 

 

- n-Octadecane 

- Rectangular cavity 

with conducting 

vertical walls. 

𝑁𝑢̅̅ ̅̅ = 0.189 𝑅𝑎0.319 103 ≤ Ra ≤ 4.1 × 105 

Gau and Viskanta 

[67] 

- Gallium 

- Rectangular test cell 
Nu̅̅ ̅̅ = 0.0631 (

Ra

Ste
)
0.274

 

Valid for conduction, 

mixed and convection 

regimes. 

Pal and Joshi 

[68] 

 

-n-triacontane 

- A side heated tall 

enclosure under 

constant heat flux 

boundary conditions 

Nu̅̅ ̅̅ = 0.01559 (
Ra

1
5⁄

Ste. Fo
)

0.4

 
𝑅𝑎

1
5⁄

𝑆𝑡𝑒. 𝐹𝑜
< 0.0003 

Bejan 

[49] 
- 

𝑁𝑢 = (2θ)−
1

2 + [0.35𝑅𝑎
1

4 −

(2θ)−
1

2] [1 + (0.0175𝑅𝑎
3

4𝜃
3

2)
−2

]
−
1

2

  

0 ≤ Ra ≤ 108 

0 ≤ Ste. Fo ≤ 0.2 

Pr=50 

H
L⁄ = 1 

𝜃 = 𝑆𝑡𝑒. 𝐹𝑜 

Nu∞ = 0.35Ra1/4 

At later times Nusselt 

number has an asymptotic 

shape Pr>1 

Lim and Bejan 

[69] 
- 𝑁𝑢̅̅ ̅̅ =

0.35 𝑅𝑎1/4

[1 + (0.143/𝑃𝑟)9/16]4/9
 

covering small and large Pr 

numbers RaH 

 

Therefore, at each time step, the start of natural convection effect is tested, the height of the convective 

zone z is evaluated, Raz and Nuz  numbers are calculated and the thermal conductivity of liquid PCM 

is enhanced in the convective zone. So as a condition, when the ordinate of the PCM node y is greater 

than H-z (the PCM node is in the upper region), the enhanced conductivity method is applied. This 

enhancement scheme of the thermal conductivity is presented in Figure 2-1. 

Noting that the calculations in the present work are done in the mixed regime, i.e., the bottom part of 

the enclosure is always ruled by conduction. 
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 3.2. CFD model  

In this study, a CFD model is created and implemented in COMSOL Multiphysics 4.4 solver. The 

modified heat capacity method is employed. This method is well adapted for commercial finite 

If < 1 

Calculation of 

(
𝑠

𝐻
)
4

𝑅𝑎𝐻 If ≥1 

Advance time 
step 

Evaluation of s  

Liquid PCM 

kenh = 𝑘𝑙 

If 𝑇 >
 𝑇𝑚 

Convection starts in 

liquid PCM 

𝑧 = 𝑠ℎ 

If y > H-z 

kenh~kl(1+Nuz) 

No 

Yes 

Figure 2-1: strategy retained to enhance the liquid thermal conductivity in the enclosure  

 

 

 

 

T> STIME 

Start time  

Yes 

No 

End  



Chapter 2 

 

100 
 

element solvers [70], and has been validated both numerically [71] and experimentally [72]. The heat 

diffusion equation is given as: 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
+ ∇(−𝑘∇𝑇) + 𝜌𝐶𝑝𝑢⃗ ∇𝑇 = 0 

Eq. 2-18 

The natural convection in the liquid PCM is taken into account for by means of the momentum 

equation as follows: 

𝜌
𝜕𝑢⃗ 

𝜕𝑡
+ 𝜌(𝑢⃗ ∇)𝑢⃗ = −∇𝑃 + 𝜇𝑙∇

2𝑢⃗ + 𝐹 𝑏 + 𝐹 𝑎 
Eq. 2-19 

Where 𝐹 𝑏 is the buoyancy force given by the Boussinesq approximation: 

𝐹 𝑏 = −𝜌𝑙(1 − 𝛽(𝑇 − 𝑇𝑚))𝑔  
Eq. 2-20 

And 𝐹 𝑎 is the Darcy damping term [73]  

𝐹 𝑎 = −𝐴(𝑇). 𝑢⃗  Eq. 2-21 

The parameter A(T), defined in the momentum equation to ensure zero velocities in solid region 

(Carman–Koseny relation), is given as: 

𝐴(𝑇) =
𝐶(1 − 𝐵1(𝑇))

2

𝐵1(𝑇)3 + 𝑞
 

Eq. 2-22 

Where C is a very large number and q is a very small number to evade the division by zero. Our 

model used the values C = 1.6e+06 kg/ (m3. s) and q = 1e-03. 

The function B1(T) is the continuous and twice-derivable liquid fraction function defined from 

function B0(T):  

𝐵0(𝑇) = {

0  𝑇 < (𝑇𝑚 − ∆𝑇/2)                  
𝑇−𝑇𝑚+∆𝑇/2

∆𝑇
 (𝑇𝑚 −

∆𝑇

2
) < 𝑇 < (𝑇𝑚 +

∆𝑇

2
)

1  𝑇 > (𝑇𝑚 + ∆𝑇/2)                   

  

Eq. 2-23 

The changing in the PCM thermo-physical properties are given function of temperature using the 

following equations: 

𝜇(𝑇) = 𝜇𝑙 (1 +
C(1 − B1(T))

2

𝐶0(B1(T)3 + q)
) 

Eq. 2-24 

𝜌(𝑇) = 𝜌𝑠 + (𝜌𝑙 − 𝜌𝑠)B1(T) Eq. 2-25 

𝑘(𝑇) = 𝑘𝑠 + (𝑘𝑙 − 𝑘𝑠)B1(T) Eq. 2-26 
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Where 𝜇 is the dynamic viscosity, ρ is the density and k the thermal conductivity of the PCM, for 

both the liquid and solid phase of the PCM and 𝐶0=1 kg/ (m3. s). 

The modified heat capacity is given as: 

𝐶𝑝(𝑇) = 𝐶𝑝𝑠 + (𝐶𝑝𝑠 − 𝐶𝑝𝑙)B1(T) + 𝐿𝐻𝐷(𝑇) 
Eq. 2-27 

Where 

𝐷(𝑇) =
𝑒

−(𝑇−𝑇𝑚)
2

(∆𝑇 4⁄ )
2

√𝜋. (∆𝑇 4⁄ )
2
 

Eq. 2-28 

The use of a Gaussian function for D(T) ensures that the latent heat is conserved through the process 

since the integral of such function over the entire range melting temperature interval ΔT is always 

equal to 1 and 𝐶0. For this study, a ΔT = 1 K is used. 

3.3. Test case of melting with natural convection 

Natural convection during the melting of Octadecane filled in a 2D square cavity of height H =0.1m 

is investigated. The initial temperature is equal to the melting temperature T0=Tm=303.15K, and the 

PCM is initially at solid state. The left heated vertical wall temperature is Th=313.15K, while the 

horizontal walls are adiabatic. The cold right wall temperature is Tc=T0. When natural convection 

begins developing in the liquid PCM, a non-uniform displacement of the melting front is obtained as 

well as a non-uniform distribution of the heat flux at the solid-liquid interface. Table 2-3 summarizes 

the thermo-physical properties of Octadecane. Approximate values of the thermo-physical properties 

of Octadecane were used to estimate the governing parameters [74]. 

 

Figure 2-2: Schematic of the test case cavity filled with PCM. 
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Table 2-3: Thermo-physical properties of Octadecane [74] 

Property value 

k (W/mK) 

Cps= Cpl (J/kgK) 

ρs= ρl (kg/m3) 

0.2 

1250 

800 

α (m2/s) 

ν (m2/s) 

2.10-7 

10-5 

𝐿𝐻(J/kg) 

Tm (K) 

ΔT (K) 

1.25.105 

303.15 

10 

β (1/K) 

g (m/s2) 

2.10-3 

10 

 

The problem is characterized by the following dimensionless numbers: 

Stefan number of 𝑆𝑡𝑒 =
𝐶𝑝(𝑇ℎ−𝑇𝑚)

𝐿𝐻
= 0.1 

Rayleigh number of 𝑅𝑎𝐻 = 108  

Prandtl number of pr =
ν

α
= 50  

To simplify the numerical model, we assume the follow: 1) the PCM is isotropic and homogenous, 

2) the thermo-physical properties of the PCM are constant, 3) the Boussinesq approximation is 

applicable, 4) the density change, and hence the volume change, of the PCM during melting is 

neglected; 5) the flow in the liquid PCM is incompressible, laminar and Newtonian, 6) radiation and 

viscous dissipation are neglected.  

3.4. Comparison between simplified model and CFD model simulations 

The simulations for a time range of 5000s (θ = SteFo = 0.01) for both CFD model and simplified 

model are performed on a Dell Precision Tower 5810 using an Intel Xeon CPU E5-1650 v3 of speed 

3.5 GHz, six cores (12 CPUs) and 16 GB of RAM. 

A grid sensitivity analysis was performed to investigate the exactitude of the calculations. For the 

simplified model, the simulations in Matlab are lastly executed with a grid size containing 225 control 

volumes. The dimensionless time step is taken ∆θ =2x10-5 for a total simulation dimensionless time 

of θ = SteFo = 0.01. While for the CFD model, the simulations in COMSOL are finally performed 

with 15268 triangular elements of maximum size 1.3e-3m and minimum size 1.5e-5m. The computer 

simulations of the simplified model run much faster than those of the CFD model (at least 45 times 

faster). The computation time for different mesh sizes is presented in Table 2-4. 
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Table 2-4: Comparison of the computation time between CFD and simplified models for different mesh sizes 

COMSOL Matlab 

Mesh type Number of Triangular 

elements 

Computation 

time (s) 

Number of control 

volumes 

Computation 

time (s) 

Normal 1284 184 25 2 

Fine 2244 510 100 10 

Finer 6626 1438 225 70 

User defined 15268 3200 400 405 

Extra fine 15866 3600 625 1906 

According to the average Nusselt number curve at the left heated wall derived from the CFD model, 

a correlation for the average Nusselt number is proposed in Eq. 2-29. The correlation is found for a 

specific case (Ra=108, Ste=0.1 and Pr=50), the aim is to demonstrate the compatibility between both 

models. Least square fitting is used to correlate NuH (R2=0.99): 

NuH = 23.073 RaH
0.0175 (

sav
H
)
0.0525

 Eq. 2-29 

Cases for different Nusselt number correlation and enhanced conductivity configurations are 

presented in Table 2-5. 

Table 2-5: Cases to be conducted in the simplified model 

cases Nusselt number correlation Enhanced conductivity 

1 𝑁𝑢𝑧 = 1 (conduction only) 𝑘𝑒𝑛ℎ = 𝑘𝑙 

2 𝑁𝑢𝑧 = 0.18 (
𝑃𝑟

0.2+𝑃𝑟
𝑅𝑎𝑧)

0.29

[50] 𝑘𝑒𝑛ℎ~𝑘𝑙(1 + 𝑁𝑢𝑧̅̅ ̅̅ ̅) 

3 Correlation from CFD 𝑘𝑒𝑛ℎ~𝑘𝑙(1 + 𝑁𝑢𝑧̅̅ ̅̅ ̅) 

3.5. Validation of the simplified model for convection during melting  

To test the numerical solutions conducted on Matlab using the simplified method, the transient 

average value of the liquid fraction, the average position and the form of the melting front at four 

distinct times were compared to the CFD model results in addition to numerical and experimental 

results obtained by other researchers.  

The first validation has been done by comparing the results of the average fraction of liquid function 

of the dimensionless time (Figure 2-3) from the simplified model, to those of the CFD model and the 

numerical benchmark on convective melting by Bertrand et al. [74]. The comparison with numerical 

benchmark results was addressed by two participants: Lacroix and Le Quere. Different methods were 
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used in these works to model the convection effect during melting. To execute the simulations for the 

melting process of n-octadecane, an Eulerian-Lagrangian method was used by Lacroix, with a non-

dimensional time step of 2x10-5 and a grid size comprising 25 x 35 non-uniformly distributed nodes. 

On the same benchmark, Le Quere solved the continuity and momentum equations written in velocity 

pressure formulation using the enthalpy formulation in the energy equation. 

 

 

Figure 2-3: The average liquid fraction in function of dimensionless time from the model and the numerical 

benchmark [74] 

Figure 2-3 shows a very good agreement between the proposed simplified model and the CFD model 

in terms of the average liquid fraction, the average difference found being less than 6%; the simplified 

model underestimates the value of the average liquid fraction compared to the CFD model. The results 

of case 2 and case 3 are very close; this shows the compatibility between the proposed correlation for 

Nusselt number extracted from the CFD model and the general correlation proposed by Berkovsky 

and Polevikov [50], so the model can be generalized using a general Nusselt number correlation. The 

results of the simplified model are then compared to those of Lacroix, the average difference is found 

about 5%, and an average dispersion is found about 10% comparing with the results of Le Quere. The 

results of the conduction-only model (case 1) show the importance of taking into account the 

convection effect during melting, where the average fraction of liquid is enhanced by about 40%. 

Another validation for the simplified model can be carried out by the examination, at four different 

dimensionless times, of the melting front position (Figure 2-4 (a-d)). 
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Figure 2-4: Comparison of melting front positions from the model and the numerical benchmark [74] at a) SteFo 

= 0.0005. b) SteFo = 0.002. c) SteFo = 0.006. d) SteFo = 0.01 

Examination of the melting front positions (Figure 2-4 (a-d)) shows that the results of the enhanced 

conductivity model are close to those of the CFD model and are in good agreement for the overall 

shape of the melting front. At SteFo = 0.0005, the position of the melting front for all cases is almost 
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the same and is parallel to the left heated wall; here, heat transfer is dominated by conduction. At 

SteFo = 0.002, the average difference between the simplified model and the CFD model is within 1-

5% range. In addition, the average differences are within 5-9% and 2-3.5% range compared with the 

results of Lacroix and Le Quere respectively. At SteFo = 0.006, the dispersions at the bottom half of 

the cavity are within 5-9% while at the top they are around 15% comparing the present model with 

the CFD model. The average difference is found about 8% and 14% compared with the results of 

Lacroix and Le Quere respectively. At SteFo = 0.01 the dispersions at the bottom half of the cavity 

are within 3-4%, while at the top half of the enclosure are within 8-11% range compared to CFD 

model. One can notice that the melting front extends faster to the right at the top of the cavity in the 

CFD model compared to the simplified one, the PCM melts quicker. Also, the differences, at the 

bottom half of the enclosure, are within 3-4% and 1-2% range while at the top half of the enclosure 

are within 6-8% and 7-11% range compared with the results of Lacroix and Le Quere respectively. 

Noting that the enhanced conductivity approach does not apply at the bottom of the enclosure, a 

difference in the shape of melting front can be observed at all times. The melting front corresponding 

to the conduction-only model moves parallel to the heated left wall because of the constant liquid 

thermal conductivity at the whole height of the enclosure; considering convection during melting 

enhances the average melting front position by about at 40% at SteFo = 0.006 and about 55% at SteFo 

= 0.01. 

Figure 2-5 shows the results of the average position of the solid-liquid interface in the relatively short-

time interval 0 < SteFo < 0.006. Here, the comparison is made between the proposed model and the 

CFD model on the one hand, and experimental benchmark solutions found in the reference [49] on 

the other hand. The figure displays a good agreement between the results of the simplified model and 

those of CFD; the average difference is found around 13%, also the value of the average position of 

the melting front is underestimated compared to CFD model. In addition, the experimental results 

obtained by Bareiss and Beer [75] and Ho and Viskanta [16] are fairly close to those of the present 

model, the average difference is found about 9%. The average position of the melting front is 

enhanced by about 40% taking the convection effect into consideration. 

 

 



Chapter 2 

 

107 
 

 

 
 

 
 

4. Shortwave radiation through PCM  

 

Phase change materials have variable optical characteristics that depends on their physical state, thus 

investigating the short-wave radiation within the PCM is not quite simple. Gowreesunker [57] 

evaluated the nodal optical properties such as the transmissivity and absorptivity in function of the 

transient liquid fraction 𝑓𝑙. 

When PCM changes from the fully solid to fully liquid, the fractional change in PCM transmittance 

is given as: 

𝛿 =
𝜏𝑙 − 𝜏𝑠
1 − 𝜏𝑠

 Eq. 2-30 

The relation between the extinction coefficient 𝜎 and the liquid fraction is written as: 

𝜎 = 𝑓𝑙𝜎𝑙 + (1 − 𝑓𝑙)𝜎𝑠 Eq. 2-31 

The advantage of this relation is that, during phase change, the extinction coefficient can be easily 

found from the liquid fraction and the liquid and solid extinction coefficients. 

The transmittance of the PCM is: 

𝜏𝑃𝐶𝑀 = 10
−𝑑 Eq. 2-32 

Where d is the optical thickness: 
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Figure 2-5: Comparison of the average position of the melting front  
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𝑑 = 𝜎. 𝑆 Eq. 2-33 

Where S stands for the physical thickness 

The absorptivity of the PCM evaluated at each node is given as: 

𝛼𝑃𝐶𝑀 = [𝛿𝑓𝑙 + (1 − 𝑑)](1 − 𝜏𝑃𝐶𝑀) Eq. 2-34 

To model combined phase change and radiation problems, the previous equations can be used. In 

addition, according to Elarga et al. [76], the absorption solar radiation is divided equally between the 

nodes representing each layer. Considering N=NxxNy nodes in the PCM cavity, the absorbed solar 

radiation to be added as a source term to the energy equation at the node P is then given as: 

∅𝑠𝑜𝑙 =
𝑄𝑠𝑜𝑙 𝛼𝑃𝐶𝑀

𝑁
 

Eq. 2-35 

Where 𝛼𝑃𝐶𝑀 is calculated using Eq. 2-34. 

One can notice that modeling of the longwave radiation is neglected, because it has a marginal effect 

on the melting process [77]. 

5. Application to the melting of fatty acid with natural convection and radiation  

In this section, the simplified models for natural convection during melting process and for short 

wave radiation presented in the above sections are applied to the fatty acid eutectic filling the glass 

brick of the INERTRANS wall of total thickness 9.6 cm (Figure 2-6). The brick containing the PCM 

is 32 mm wide and 191 mm height (aspect ratio H/L≈6). The temperature of the left heated vertical 

wall is Th=40⁰C, whereas the horizontal walls are adiabatic. The cold right wall temperature is equal 

to the initial temperature Tc=T0=10⁰C (Figure 2-7). The problem is characterized by the following 

dimensionless numbers: Ste=0.257, RaH=3.72.109 and Pr=111.67. The PCM thermo-physical and 

optical properties are summarized in Table 2-6 and  

Table 2-7 respectively. The total incident solar radiation flux is assumed Qsol=500 W/m2 and the 

material is considered to be absorbent and non-diffusing. The extinction coefficient for solid and 

liquid PCM are σs = 200 (1/m) and σl = 2 (1/m) respectively [78]. Here, only the fatty acid layer 

is considered and the heat transfer in the glass and other wall layers is not modeled. 
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Figure 2-6: (a) Layout of the INERTRANS wall, (b) PCM filled in glass bricks [1] 

 

Table 2-6: Thermo-physical properties of the fatty acid eutectic [1] 

Property value 

ks (W/mK) 0.182 (at 5.4 °C) 

kl (W/mK) 0.182 (at 39 °C) 

LH (J/kg) 152000 

Cps (J/kgK) 1670 

Cpl (J/kgK) 2090 

ρs (kg/m3) 960 (at 35 °C) 

ρl (kg/m3) 884 (at 13 °C) 

Tm (°C) 21.3 

α (m2/s) 9,85.10-8  

ν (m2/s) 11.10-6 

β (1/K) 3.1.10-3 

 

Table 2-7: Optical properties of the fatty acid eutectic [1] 

  𝝉% 𝝆% 

Liquid state 
Energetic 90 5 

Optical 78 6 

Solid state 
Energetic ≈ 0 53 

Optical ≈ 0 56 
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Figure 2-7: Schematic of fatty acid filled in glass bricks. 

The accuracy of the calculations of the simplified model for combined natural convection and 

radiation during melting is investigated by performing grid sensitivity analysis. Simulations are done 

using 300 control volumes. To validate the model, the results are compared to those found by Fuentes 

et al. [77][78] for a total simulation time of 24 minutes. For melting problem, they have used the 

enthalpy method, to solve the radiative heat transfer they have used the discrete ordinate method 

(DOM) and the lattice Boltzmann method (LBM) was used to solve fluid flow equations. 

The results of the simplified model in terms of the average liquid fraction in Figure 2-8 are in very 

good agreement compared to those of LBM-DOM model. Moreover, the natural convection enhances 

the liquid fraction by around 35% compared to the conduction only model and the shortwave radiation 

raises the liquid fraction by around 20% compared to the convection model. 

Concerning the computational time, the simplified model simulations, performed on a Toshiba x64 

based Processor using an Intel (R) core (TM) CPU M330 of speed 2.13 GHz, three cores and 4 GB 

of RAM, run significantly faster (about five minutes) than those conducted using LBM-convection 

model (6 hours 21 minutes) for natural convection during melting, and LBM-DOM model (130 hours 

20 minutes) [78] for both natural convection and shortwave radiation during melting.  
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Figure 2-8: Comparison of the average liquid fraction  

 

6. Conclusion 

A simplified model for melting of a phase change material with combined natural convection and 

radiation is presented in this chapter. First, a simplified model for melting with natural convection is 

developed without the full solution of N-S equations. This model is based on the scaling theory and 

the enhanced thermal conductivity approach. Then, a full CFD model is created using COMSOL 

Multiphysics adopting the modified heat capacity method, and a correlation for the Nusselt number 

at the left heated wall is proposed based on CFD results, to calculate the enhanced conductivity. 

The simplified model for natural convection during melting is validated against the CFD model, as 

well as numerical and experimental benchmarks. Comparing the results to those of CFD model, the 

difference is found less than 6%, in terms of the average liquid fraction, less than 14% in terms of the 

position of the melting front at four different times, and around 13% in terms of the average position 

of the melting front. On the other hand, the results of the simplified model show very good agreement 

with those of the benchmark solutions. Accordingly, the results are enhanced by about 40% to 55% 

when taking the natural convection effect into consideration compared to a conduction only model. 

Then, a simplified method coupling the natural convection and the shortwave radiation during melting 

is applied to model the melting of the fatty acid filled in glass bricks of the INERTRANS wall. The 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 200 400 600 800 1000 1200 1400

Li
q

u
id

 f
ra

ct
io

n

Time (sec)



Chapter 2 

 

112 
 

obtained results are in very good agreement to LBM-DOM results, in terms of the average liquid 

fraction. It is found that natural convection increases the liquid fraction by about 35% compared to 

the conduction only model, while the radiation increases the liquid fraction by about 20% compared 

to the convection model. Concerning the computational time, the simplified model simulations run 

significantly faster than those using the LBM-DOM model. 

The simplified model considering both natural convection and radiation during melting process is 

simple to implement and can manage efficiently convection-controlled phase change problems 

without the full solution of the flow in a very small computational time. This simplified model is a 

conceptual representation of reality, and it is developed for practical thermal engineering applications, 

where yearly energy performance evaluation is sought, that cannot rely on highly computational time 

needed in CFD simulations. Accordingly, it is suitable to control a real-time phase change process 

that takes place in residential, commercial, and industrial latent heat thermal energy systems. As 

future work, the simplified model will be used to simulate the thermal behavior of the whole 

INERTRANS wall in a yearly basis where solidification process will have to be considered too. The 

simplified model could also be integrated in an energy simulation tool (e.g. TRNSYS or EnergyPlus) 

to evaluate the annual thermal behavior of a building 

 

 

In the next chapter, the simplified model will be used to simulate the thermal behavior of the whole 

INERTRANS wall. Then, it will be coupled with a global energy simulation tool (TRNSYS) to 

evaluate the annual thermal behavior of a building. 
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Complementary sections to chapter 2 

A) Nusselt number correlation 

Based on the average Nusselt number curve at the left heated wall derived from the CFD model, 

shown in Figure 1, a correlation was proposed in section 2.4. 

The average Nusselt number is defined as: 

𝑁𝑢 = ∫
𝜕𝑇

𝜕𝑥

1

0

𝑑𝑦 (1) 

where, T is the temperature (K), x and y are the coordinates. 

Or  

𝑁𝑢 =
ℎ.𝐻

𝑘𝑙
 (2) 

where H is the height of the cavity, 𝑘𝑙 is the thermal conductivity for the liquid PCM and h is the 

convective heat transfer calculated as: 

ℎ =
𝑄

∆𝑇
 (3) 

Q is the heat flux at the left heated wall (W/m2) found in COMSOL, ∆𝑇 = 𝑇ℎ − 𝑇𝑚 with Th (K) is 

the hot temperature at the left vertical wall and Tm (K) is the melting temperature  

The correlation is found for a specific case, the aim is to demonstrate the compatibility between both 

models: the simplified developed model and the CFD model. This correlation was used to calculate 

the enhanced conductivity implemented in the simplified model. 

 

Figure 1: Average value for Nusselt number at the left hot vertical wall from Comsol software 
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The results of the simplified model for two different Nusselt number correlations (case 2 and case 3 

in table 2-5), are found very close. This shows the compatibility between the proposed correlation for 

Nusselt number extracted from the CFD model and the general correlation proposed by Berkovsky 

and Polevikov [1]. So, the model can be generalized using a general Nusselt number correlation and 

the general correlation is used in the rest of our work. 

Noting that in chapter 2, we have modeled natural convection and radiation only during melting 

process. According to many authors [2] [3], convection heat transfer is less important than conduction 

during solidification process and  in such walls as the INERTRANS wall solidification is more likely 

to happen at night, in absence of solar radiation. 

B) General concept of scaling theory proposed by Bejan 

This section discusses the scaling laws adequate for two-dimensional natural convection in a 

rectangular enclosure filled with PCM, with two differentially heated sides and insulated top and 

bottom surfaces as illustrated in Figure 2. 

 

Figure 2: Two-dimensional natural convection in rectangular enclosure  

The natural convection melting process can be analyzed as a sequence of four regimes labeled (a)–

(d) in Figure 3. At first, when a small layer of liquid forms, the heat transfer is dominated by 

conduction and the melting front moves parallel to the left heated wall first regime (Figure 3-a). This 

regime is called the conduction limit regime, when the heat flux across the emerging vertical liquid 

film is balanced entirely by the enthalpy absorbed at the two-phase interface, 

𝑘
𝑇ℎ − 𝑇𝑚

𝑠
~𝜌𝐿𝐻

𝑑𝑠

𝑑𝑡
 

(1) 

In dimensionless terms, this yield 

𝑠

𝐻
~𝜃1/2 (2) 

where, 𝐿𝐻 is the latent heat of fusion; 𝜃 is the dimensionless time group 
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𝜃 =
𝑘(𝑇ℎ − 𝑇𝑚)

𝜌𝐿𝐻𝐻
2

𝑡 = 𝑆𝑡𝑒 𝐹𝑜 
(3) 

and Ste and Fo are the Stefan and Fourier numbers respectively, 

𝑆𝑡𝑒 =
𝐶𝑝(𝑇ℎ − 𝑇𝑚)

𝐿𝐻
 

(4) 

𝐹𝑜 =
𝛼𝑡

𝐻2
 

(5) 

The Nusselt number that corresponds to this conduction limit is 

𝑁𝑢 =
𝑄

𝑘(𝑇ℎ − 𝑇𝑚)
~
𝐻

𝑠
~𝜃−1/2 

(6) 

where, Q is the total heat transfer rate through the left wall of the enclosure, per unit length in the 

direction perpendicular to the plane. 

 

Figure 3: Regimes for melting in the presence of significant natural convection when the phase-change material 

is being heated from the side [4] 

Secondly, because of the variation in density, the hot fluid rises and brings the heat to the solid via 

the interface between the two. This causes a non-uniform distribution of heat, and therefore a slight 

deformation of the melting front. The conduction process is gradually replaced by convection (Figure 

3-b). This regime has been named the mixed regime (conduction + convection) and is characterized 

by an upper liquid region that has become wide enough to be ruled by convection (i.e., its lateral 

surfaces are lined by distinct boundary layers). Let the unknown dimension z be the height of this 

upper region. Heat transfer across the rest of the liquid space (height H-z) continues to be ruled by 

conduction. The convection in the upper region starts when the thermal boundary layer thickness δz 

becomes of the same order of magnitude as the thickness of the liquid layer s i.e., δz~s at the 

convection–conduction transition level: Considering that the liquid has a Prandtl number greater than 
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one, this yields to 𝛿𝑧~𝑧 𝑅𝑎𝑧
−1/4

 and the height z of the convective zone is then scaled as 𝑧~𝐻 𝑅𝑎𝐻𝜃
2. 

Where, RaZ is the Rayleigh number based on z  

𝑅𝑎𝑧 =
𝑔𝛽𝑧3(𝑇ℎ − 𝑇𝑚)

𝛼𝜈
 

(7) 

And 𝑅𝑎𝐻 is the Rayleigh number based on the enclosure height H 

As the time increases, the convective zone expands downward. As mentioned, the heat transfer 

mechanism is convection over the height z and conduction over (H- z); therefore, the total heat 

transfer rate through the heated wall, Q, is the sum:  

𝑄~𝑘𝑧
𝑇ℎ − 𝑇𝑚
δz

+ 𝑘(𝐻 − 𝑧)
𝑇ℎ − 𝑇𝑚

s
 

(8) 

Thus, the Nusselt number is made up of two contributions, one due to conduction and the other to 

convection: 

𝑁𝑢~𝜃−1/2 + 𝑅𝑎𝜃3/2 (9) 

In conclusion, this heat transfer scaling law holds starting with 𝜃 = 0 until the assumed convection 

zone (height z) extends all the way to the bottom of the liquid space, that is, until 𝑧~𝐻. Let 𝜃1 be the 

time scale that corresponds to 𝑧~𝐻, the mixed regime ends at a time of order: 𝜃1~𝑅𝑎
−1/2. The 

Nusselt number scaling law for this regime distinguishes itself through the theoretical prediction of a 

Nu minimum of order 𝑁𝑢~𝑅𝑎1/4 at 𝜃𝑚𝑖𝑛~𝑅𝑎
−1/2. 

In the convection regime (Figure 3-c), also named quasi-steady regime, the convection fills the entire 

liquid space of height H. The overall Nusselt number scale is 𝑁𝑢~𝑅𝑎1/4 and the average melting 

front location is 𝑠𝑎𝑣~𝐻𝑅𝑎
1/4𝜃. In a system of finite horizontal extent L, this scenario holds until the 

liquid-solid interface reaches the right wall, i.e.  sav~L. Let  𝜃2~
𝐿

𝐻
𝑅𝑎−1/4 be the time scale associated 

with this event, the convection regime exists only if θ2 > θ1, that is if 𝑅𝑎1/4 >
𝐻

𝐿
. When this criterion 

is not satisfied (i.e., when 𝜃2 < 𝜃1), the mixed conduction plus convection regime ends at a time of 

order 𝜃2, that is, before the Nu (𝜃) curve has had time to reveal its minimum. 

Finally, what happens after the melting front reaches the right wall constitutes a distinct heat transfer 

regime, the main features of which are sketched in Figure 3-d.  

The Nusselt number curve function of time Nu (𝜃) has the features predicted by the scale analysis: 

first, the pure conduction (𝜃 ≪ 𝜃1) decay of order 𝜃−1/2, here Nu (𝜃) starts with a maximum at the 

heated wall then decreases, followed by the mixed regime (𝜃~𝜃1) with its Nu minimum, and finally, 

the pure convection regime ( 𝜃1 < 𝜃 <  𝜃2), Nu is time independent and plateau of order 𝑅𝑎1/4. In 

fact, the convection aids in increasing the Nusselt number that eventually decays to an asymptotic 

value. 
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C) Enthalpy method for phase change problem in details 

The enthalpy formulation is one of the most attractive and popular fixed-grid methods for solving the 

Stefan problem [5]. The main advantages of this method are that it does not require an explicit 

treatment of the moving solid-liquid interface [6], the governing equation is similar to the single phase 

equation and the enthalpy formulation allows a mushy zone between the two phases. As described by 

Voller [5], the equation of heat transfer for the phase change controlled by the conduction can be 

written as follows: 

𝜕𝐻

𝜕𝑡
= 𝑑𝑖𝑣 (

𝑘

𝜌
𝑔𝑟𝑎𝑑 𝑇) 

(1) 

Where the total enthalpy H is the sum of sensible and latent heat: 

𝐻 = ℎ + 𝐿𝐻𝑓𝑙 (2) 

Where 

ℎ = ∫ 𝐶𝑝 𝑑𝑇 
𝑇

𝑇𝑚

 
 (3) 

Tm is the melting temperature of the PCM. In case of isothermal phase change, the fraction of the 

liquid is defined as: 

fl = {

0             if T < Tm (solid)
0 − 1     if T = Tm (mushy)
1            if T > Tm (liquid)

 

(4) 

Substituting equation (2) into equation (1) we get: 

𝜕ℎ

𝜕𝑡
= 𝑑𝑖𝑣 (

𝑘

𝜌
𝑔𝑟𝑎𝑑 𝑇) − 𝐿𝐻

𝜕𝑓𝑙
𝜕𝑡

 
(5) 

Equation (5) combined with equations (3) and (4) together with the appropriate initial and boundary 

conditions constitute the mathematical model of conduction-controlled phase change. The two-

dimensional equation (6), obtained directly from equation (5) is then used: 

𝜕ℎ

𝜕𝑡
=
𝜕

𝜕𝑥
(
𝑘

𝜌
 
𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝑘

𝜌

𝜕𝑇

𝜕𝑦
) − 𝐿𝐻

𝜕𝑓𝑙
𝜕𝑡
       

(6) 

the key feature of the used method [7] is to totally separate the calculation of the temperature of that 

of the liquid fraction. Thus, when a control volume reaches the melting temperature, its temperature 

is fixed and the energy that it gives or receives from its neighbors is considered through the liquid 

fraction. 

At first, consider the case of control volume “i,j” which is fully solid or fully liquid. In this case, 

according to the definition of the sensible enthalpy (equation (3)) and the liquid fraction (equation 

(4)) it follows that: 
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𝜕ℎ𝑖,𝑗

𝜕𝑡
= 𝐶𝑝 

𝜕𝑇𝑖,𝑗

𝜕𝑡
 

(7) 

And 

𝜕𝑓𝑙
𝜕𝑡

≡ 0           
(8) 

𝐶𝑝 represents the specific heat of the solid or liquid phase, depending on the phase of the considered 

control volume. Therefore equation (6) becomes: 

𝜌𝐶𝑝 
𝜕𝑇

𝜕𝑡
=
𝜕

𝜕𝑥
(𝑘 

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘 

𝜕𝑇

𝜕𝑦
) 

(9) 

  

To solve the two-dimensional 2D phase change problem, the implicit finite volume method (Patankar 

1980 [8]) is used, and the code is written in MATLAB®. The domain is divided into rectangular 

control volumes CV (see Figure 4).  

 

Figure 4: Typical control volume for the 2D situation 

The finite volume equations are derived by integrating equation (9) over a typical control volume. It 

is also necessary, in time-dependent problems, to integrate with respect to time t over a small interval 

Δt from, say, t until t + Δt as following: 

𝜌𝐶𝑝∫ ∫ ∫
𝜕𝑇

𝜕𝑡

𝑛

𝑠

𝑒

𝑤

𝑡+∆𝑡

𝑡
𝑑𝑥𝑑𝑦𝑑𝑡 = ∫ ∫ ∫

𝜕

𝜕𝑥
(𝑘 

𝜕𝑇

𝜕𝑥
)

𝑛

𝑠

𝑒

𝑤

𝑡+∆𝑡

𝑡
𝑑𝑥𝑑𝑦𝑑𝑡 + ∫ ∫ ∫

𝜕

𝜕𝑦
(𝑘 

𝜕𝑇

𝜕𝑦
)

𝑛

𝑠

𝑒

𝑤

𝑡+∆𝑡

𝑡
𝑑𝑥𝑑𝑦𝑑𝑡  (10) 

After integration, we obtain the discretization equation as following: 

𝑎𝑃𝑇𝑃
𝑡+∆𝑡 = 𝑎𝑊𝑇𝑊

𝑡+∆𝑡 + 𝑎𝐸𝑇𝐸
𝑡+∆𝑡 + 𝑎𝑆𝑇𝑆

𝑡+∆𝑡 + 𝑎𝑁𝑇𝑁
𝑡+∆𝑡 + 𝑏  (11) 

Or 

𝑎𝑖,𝑗𝑇𝑖,𝑗
𝑡+∆𝑡 = 𝑎𝑖−1,𝑗𝑇𝑖−1,𝑗

𝑡+∆𝑡 + 𝑎𝑖+1,𝑗𝑇𝑖+1,𝑗
𝑡+∆𝑡 + 𝑎𝑖,𝑗−1𝑇𝑖,𝑗−1

𝑡+∆𝑡 + 𝑎𝑖,𝑗+1𝑇𝑖,𝑗+1
𝑡+∆𝑡 + 𝑏  (12) 

where, 

𝑎𝑊 = 𝑎𝑖−1,𝑗 = 𝑘𝑤
𝛥𝑦

(∆𝑥)𝑤
 

(13) 
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𝑎𝐸 = 𝑎𝑖+1,𝑗 = 𝑘𝑒
𝛥𝑦

(∆𝑥)𝑒
 

𝑎𝑆 = 𝑎𝑖,𝑗−1 = 𝑘𝑠
𝛥𝑥

(∆𝑦)𝑠
 

𝑎𝑁 = 𝑎𝑖,𝑗+1 = 𝑘𝑛
𝛥𝑥

(∆𝑦)𝑛
 

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + 𝑎𝑆 + 𝑎𝑁 + 𝑎𝑃
0  

𝑎𝑃
0 =

𝜌𝐶𝑝∆𝑥𝛥𝑦

∆𝑡
 

𝑏 = 𝑎𝑃
0𝑇𝑃

0 

where, the product 𝛥𝑥𝛥𝑦 is the volume of control volume, and the index “0” designates the previous 

time step. Note that for the boundary nodes, the boundary conditions will be included in the vector 𝑏 

. Deriving the discretization equation for each control volume, we form a system of linear algebraic 

equations that is written in a matrix form as: 

𝐴 ∗ 𝑇 = 𝑏 (14) 

In the control volume adjacent to the volume control where phase change occurs, a discontinuity in 

the thermal properties occurs; a thermal conductivity at the interface must be used. The latter reflects 

this discontinuity and it is calculated as the harmonic average of thermal conductivities of neighboring 

control volumes. 

The thermal conductivity of the control volume where the phase change occurs is approximated from 

the liquid fraction: 

𝑘𝑝𝑐 = 𝑘𝑙𝑓𝑙 + 𝑘𝑠(1 − 𝑓𝑙) (15) 

where, the index “pc” represents the control volume control where phase change occurs, indices l and 

s denote respectively the liquid and solid phases. Thus, for example, to calculate the thermal 

conductivity at the interface "north" of a control volume P directly to the "south" of the control 

volume N which changes phase, we use the following equation:  

𝑘𝑒 =
2𝑘𝑃𝑘𝑁
𝑘𝑃 + 𝑘𝑁

 
(16) 

Where, in this case:  

𝑘𝑁 = 𝑘𝑝𝑐 (17) 

Since the control volume N (i.e., located above the considered control volume P) undergoes a phase 

change. A similar calculation is performed if the control volume undergoing phase change is below, 

before or after the considered control volume. 

Secondly, the case of a node “i” where phase change occurs is considered. Therefore, the liquid 

fraction for this node is strictly in the range [0, 1] and the temperature for this node is equal to the 

melting temperature: 
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𝑇𝑖 ≡ 𝑇𝑚 (18) 

From equation (3) we get: 

𝜕ℎ

𝜕𝑡
≡ 0 

(19) 

Equation (6) becomes: 

𝐿𝐻
𝜕𝑓𝑙
𝜕𝑡

=
𝜕

𝜕𝑥
(
𝑘

𝜌
 
𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝑘

𝜌

𝜕𝑇

𝜕𝑦
) 

(20) 

Integrating the above equation over a typical control volume and simultaneously averaging over a 

finite increment of time Δt we get: 

𝑓𝑙𝑖,𝑗 = 𝑓𝑙𝑖,𝑗
0 +

𝑘𝑒∆𝑡

𝜌𝐿∆𝑥2
(𝑇𝐸 − 𝑇𝑚) −

𝑘𝑤∆𝑡

𝜌𝐿∆𝑥2
(𝑇𝑚 − 𝑇𝑊) +

𝑘𝑛∆𝑡

𝜌𝐿∆𝑦2
(𝑇𝑁 − 𝑇𝑚) −

𝑘𝑠∆𝑡

𝜌𝐿∆𝑦2
(𝑇𝑚 − 𝑇𝑆)  (21) 

This equation is used to adjust the liquid fraction in the control volume where the phase change 

occurs. It should be noted that when the material doesn’t have the same density for the liquid and 

solid phases, an average density should be used in equation (21). The liquid fraction is calculated 

depending on the temperature distribution unlike other studies [5] [9] where the latter is adjusted 

depending on the enthalpy field. To the control volume undergoing a change phase, the coefficients 

of equation (11) take the following values:  

aW = aE = aS = aN = aP
0 = 0 

aP = 1 

b = Tm (22) 

These coefficients allow isolating the CV where the phase change occurs fixing its temperature to the 

melting point and considering that the energy will be supplied or given to the neighboring CV through 

the variation of its liquid fraction. Thus, according to equation (21), all the heat supplied to the control 

volume which undergoes a phase change is used to change the amount of latent heat. 

The implementation of the computational model can be described as follows: 

1.  The coefficients "a" of the equation (11) are formed depending on the properties of each node. 

If a node (or volume control) undergoes a phase change, coefficients (13) should be replaced 

by those of (22). 

2.  The temperature field is calculated solving the sets of equations (11). 

3. The liquid fractions are updated from the temperature field using equation (21). 

4. Check for the "beginning" and the "end" of melting is performed. If a node ends or starts phase 

change, some coefficients must be adjusted and the steps 1-3 must be repeated for the current 

time step.  

• Check the beginning of melting 
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For a given time step, if 𝑇𝑖,𝑗 ≥ 𝑇𝑚 and  𝑇𝑖,𝑗
0 < 𝑇𝑚 it indicates that the melting just started in the control 

volume. In this case, the node temperature 𝑇𝑖,𝑗 is fixed to the melting temperature Tm, and the 

coefficients (13) must be replaced by coefficients (22). However, if the value 𝑇𝑖,𝑗 is simply modified 

and set equal to Tm, a quantity of energy necessary for this CV to reach Tm is not considered. 

Therefore, equation (21) takes the following form: 

𝑓𝑙𝑖,𝑗 = 𝑓𝑙𝑖,𝑗
0 +

𝑘𝑒∆𝑡

𝜌𝐿𝐻∆𝑥2
(𝑇𝐸 − 𝑇𝑚) −

𝑘𝑤∆𝑡

𝜌𝐿𝐻∆𝑥2
(𝑇𝑚 − 𝑇𝑊) +

𝑘𝑛∆𝑡

𝜌𝐿𝐻∆𝑦2
(𝑇𝑁 − 𝑇𝑚) −

𝑘𝑠∆𝑡

𝜌𝐿𝐻∆𝑦2
(𝑇𝑚 − 𝑇𝑆) −

𝐶𝑝𝑠

𝐿𝐻
(𝑇𝑚 − 𝑇𝑖,𝑗

0 )  

(23) 

 

 

The last term on the right-hand side of equation (23) represents the amount of sensible heat that is 

needed to raise the temperature of the control volume from the temperature in the previous time 𝑇𝑖,𝑗
0  to 

the melting temperature 𝑇𝑚. Consequently, that amount of heat cannot be used for melting the PCM. 

• Check the end of melting 

For a given time step, if  𝑓
𝑙𝑖,𝑗
≥ 1 and 𝑓𝑙𝑖,𝑗

0 < 1  it indicates that within this time step, the control 

volume in question has melted completely. In this case,   𝑓𝑙𝑖,𝑗 is set to 1, and the coefficients (22) in 

equation (11) are replaced by the coefficients (13) and the calculation is repeated for this time step. 

In the time step in which the phase change boundary moves from the control volume in question to 

the next one, the temperature of the volume control at the previous time is modified as follows: 

𝑇𝑖,𝑗 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
0 = 𝑇𝑖,𝑗 

0 −
𝐿𝐻
𝐶𝑝𝑙

(1 − 𝑓𝑙𝑖,𝑗
0 ) 

(24) 

This modified temperature for the previous time is used to recalculate the temperature distribution in 

the PCM. 

Where the last term on the right-hand side can be described as the amount of heat needed to 

completely melt the control volume in question within the time step and which consequently cannot 

be used to raise the temperature of the PCM.  

D)  CFD model numerical and experimental validation 

In this study, the CFD model (chapter 2, section 3.2.) used to validate the proposed simplified model 

is based on the modified heat capacity method. This method is well adapted for commercial finite 

element solvers [10], and has been already validated both numerically in the references [11] [12] and 

experimentally in [8] [13]. 

P.H. Biwole et al. [13] proposed a detailed mathematical and numerical modeling of heat and mass 

transfers in coupled solar panel/phase change material architectures. A volume force was added to 

the buoyancy term in the Navier–Stokes’ momentum conservation equation in order to force the 
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velocity field to be zero when the PCM is solid. In order to simulate both conduction and convection, 

the transient heat transfer diffusion equation was numerically solved simultaneously with the Navier–

Stokes equations using a finite elements method. To validate the model, the experimental and 

simulated moving solid–liquid boundary was compared as well as the velocity field inside the PCM 

container through a PIV apparatus. 

 

Figure 5: Transient comparison of the simulated and actual liquid–solid moving boundary location. 

The transient comparison of the simulated and actual liquid–solid moving boundary location was 

carried out. On this first experiment, a fixed temperature of 40 ⁰C was imposed on the left side of the 

PCM tank and 20 ⁰C was imposed on the right side. A photograph of the boundary was taken every 

20 min. This comparison showed a good agreement between simulation and measurement except on 

the top of the PCM domain as visible in Figure 5. The difference here is probably due to the air layer 

which was not simulated.  
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E) Thermal expansion  

 

Experimentally, to prevent breaking from thermal expansion of the PCM, the bricks were initially 

filled with the PCM at a temperature of 50 ⁰C and an air gap of 2 cm was left on top of the liquid 

surface inside each brick. 

Numerically, the geometry deformation due to volume expansion of the PCM was not modeled. This 

may cause a numerical loss of mass. However, the lower density of the liquid phase of the Fatty Acids 

(about 7.9 % lower than the solid density) means that a lower percentage of the mass in the system 

may numerically disappear between the initial fully solid phase and the final fully liquid one. This in 

turn may affect energy in the system, specifically the sensible energy. 

In the numerical model, the ratio of sensible heat to latent heat is given by the Stefan number:  

𝑆𝑡𝑒 =
𝐶𝑝(𝑇ℎ−𝑇𝑚)

𝐿𝐻
= 0.257  

Thus, sensible energy represents about 20.44 % of the total energy stored, latent energy being the 

rest, which is not affected by the density change since it enters the system at melting. Therefore, the 

numerical loss of mass, and resulting energy difference in sensible heat represents approximately 7.9 

% of the sensible amount, i.e. about 1.6 % of the total energy, which is an acceptable trade-off 

between precision and easy implementation for engineering applications. 

For octadecane there is no problem since ρs=ρl. 

  

https://en.wikipedia.org/wiki/Latent_heat
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Chapter 3. Thermal Behavior of a Translucent Superinsulated Latent 

Heat Energy Storage Wall in Summertime 

 

Résumé du chapitre en français 

Comportement thermique estival d'un mur de stockage d'énergie translucide et super-isolé  

Ce chapitre étudie le comportement thermique d'un mur solaire passif super isolant et translucide 

composé d’un vitrage, d'aérogel de silice (matériau d'isolation transparent), et du MCP (acide gras) 

contenu dans des briques de verre. L'objectif du mur MCP-Aérogel est de fournir stockage et 

restitution d'énergie, éclairage naturel et super isolation thermique / acoustique. Ce mur a été 

caractérisé expérimentalement en ambiance contrôlée et in situ sur un bâtiment grandeur nature situé 

au sein du laboratoire PERSEE de l’Ecole des Mines de Paris à Sophia Antipolis, dans le sud de la 

France. Les résultats expérimentaux ont montré que la performance thermique du mur est très élevée 

en hiver, tandis qu'en été les gains de chaleur à travers le mur provoquent un problème de surchauffe 

et le MCP n’arrive pas à se solidifier. Pour optimiser la performance du mur en été, un modèle 

numérique simplifié décrivant les mécanismes de transfert de chaleur à travers le mur en tenant 

compte de la convection naturelle dans le MCP liquide et de l'absorption et transmission du 

rayonnement courte longueur d’onde a été développé sous MATLAB. Le modèle numérique structuré 

est simple à mettre en œuvre et assez rapide pour être couplé avec TRNSYS afin d’évaluer la 

performance thermique annuelle de l'ensemble du bâtiment. 

Le modèle MATLAB-TRSNYS est ensuite validé en utilisant des résultats expérimentaux pendant 

sept jours consécutifs en été et en hiver ; un bon accord est obtenu entre la température de surface 

interne du mur simulée et mesurée expérimentalement, ainsi qu’en comparant la température de l'air 

intérieur. L’erreur quadratique moyenne (EQM) et le pourcentage de l’erreur quadratique moyenne 

(PEQM) correspondants sont calculés et se situent entre 0,57 ⁰C - 1,43 ⁰C et 1,87% - 6,99% 

respectivement. La température dans la couche MCP calculée est également validée 

expérimentalement en été et les EQM et PEQM trouvés sont respectivement de 1,92 ° C et de 5,33%. 

Des solutions pour le problème de la surchauffe estivale parmi lesquelles des dispositifs d'ombrage, 

la ventilation naturelle nocturne et l’utilisation d’un type de verre spécial qui présente des propriétés 

de rayonnement solaire sélectif en fonction de la saison (Prisma Solar glass) ont été proposées. 

Ensuite, le mur a été appliqué dans des différentes conditions climatiques et le confort thermique ainsi 

que le cyclage du MCP ont été étudiés. 
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Les conclusions suivantes peuvent être tirées de ce chapitre : (1) le modèle numérique développé 

représente un bon point de départ pour des simulations sur différentes configurations du mur et permet 

d'étudier pleinement ses capacités et ses inconvénients sous différentes conditions opératoires, 

orientations, géométries et différents climats sans avoir besoin d'effectuer des analyses 

expérimentales coûteuses ; (2) pour être plus réaliste, la convection naturelle dans le MCP liquide ne 

doit pas être négligée lors de la modélisation du changement de phase ; (3) l'utilisation du vitrage 

Prisma Solar glass à la place du verre ordinaire dans la composition de la paroi étudiée s'avère être 

une technologie efficace pour résoudre le problème de surchauffe rencontré en été, tout en préservant 

les avantages du mur pendant l'hiver ; (4) le confort thermique ainsi que le cyclage de MCP en été 

dépendent des conditions climatiques. Dans le climat méditerranéen (classification Koppen Geiger 

Csa), les stores vénitiens à lattes tournées à 45 degrés combinés avec un surplomb de 1 m de 

projection peuvent assurer le confort thermique. Dans les climats océaniques (Cfb) et continentaux 

humides (Dfb), le confort thermique peut être assuré par l'utilisation exclusive d'un surplomb de 

projection 1 m et des stores vénitiens respectivement. Dans le climat subarctique (Dfc), le MCP 

réalise un cycle diurne complet et le confort thermique peut être atteint en fournissant une ventilation 

naturelle nocturne. 

 

 

Dans le chapitre suivant, le coût global durant le cycle de vie (CCV) et du temps de retour sur 

investissement (TRI) et l'optimisation du mur MCP-aérogel dans différentes conditions climatiques 

seront étudiées en utilisant le modèle numérique validé. 
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Abstract 

This paper investigates the thermal performance of a translucent solar wall providing, concurrently, 

storage and restitution of heat, super thermal-acoustic insulation and daylighting to the interior 

environment. The wall is composed of glazing, silica aerogel used as a transparent insulation 

material (TIM) and glass bricks filled with fatty acid, a eutectic phase change material (PCM). To 

assess the TIM–PCM wall thermal behavior, experimentations were conducted in-situ in a full-sized 

test cell located in Sophia Antipolis, southern France. Experimental data shows that the tested wall 

is more effective in winter and might cause overheating during the summer mainly due to solar gains 

and un-cycling behavior of PCM which remains in liquid state. To enhance the energy performance 

of the wall in summertime, a numerical model describing the heat transfer mechanisms occurring in 

the PCM layer in combination with the other transparent wall layers is developed. Then, the model 

of the wall is linked to TRNSYS software to assess the thermal performance of the whole building. 

The numerical model is validated experimentally, and a good agreement is shown comparing the 

simulated values with the measured data for seven consecutive days in summer and winter. The 

importance of considering the natural convection effect in the liquid PCM is also demonstrated. 

Moreover, it was shown that shading devices can effectively reduce overheating while natural night 

ventilation decreases the indoor temperature without affecting the PCM performance since the 

outdoor temperature is always higher than the phase change temperature. The use of a glass with 

selective solar reflection properties depending on the season instead of the ordinary glazing is shown 

also to be very effective way to overcome the overheating problem. Finally, the TIM-PCM wall is 

tested under different climate conditions and passive solutions are given to ensure thermal comfort 

in summer season.  

Keywords: TIM-PCM wall, natural convection, radiation, experimental validation, overheating, 

thermal comfort. 

Highlights: 

• TIM-PCM wall provides heat storage/release, heat/sound insulation, and daylighting. 

• Experimentations in-situ carried out in Sophia Antipolis, France. 

• Numerical model of the heat transfer through the wall is developed. 

• The model of the wall linked to TRNSYS is validated experimentally. 

• Shading devices and nocturnal ventilation reduces overheating and discomfort. 
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1. Introduction 

Buildings account for almost 41% of the world’s energy consumption, which contributes to 30% of 

the annual greenhouse gas emissions [1]. Trombe wall integrating phase change materials (PCM) is 

a particular passive solar technique that has shown great potentialities and can reduce effectively the 

building energy consumption. Basically, traditional Trombe walls [2]–[6] consist of an external 

glazing, an air channel, and a high heat capacitance wall in contact with the indoor environment. To 

improve the Trombe wall heat storage performance, phase change materials were implemented in the 

wall composition and this technique has been investigated by numerous researchers [7]–[12]. During 

the day, this wall is heated due to the incident solar radiation, melting the PCM. While at night, when 

the outdoor temperature falls below the phase change temperature, the heat stored by the PCM is 

released warming the building. Fiorito (2012) [8] conducted a parametric study on the use of PCM in 

Trombe walls by varying the PCM position and the melting point temperature for five different 

climates. they found enhanced performances for the modified Trombe wall. Zalewski et al. [9] studied 

experimentally a Trombe wall with PCM components filled in the air channel and an insulating board 

replacing the high capacitance wall. They found that the heat storage capacity of the wall is increased. 

Also, an experimental Trombe wall (ventilated façade) with PCM was studied by De Gracia et al. 

[10] during winter season. They found that the use of the ventilated facade with PCM improves 

significantly the thermal behavior of the whole building. Kara and Kurnuç [13] investigated a PCM 

Trombe wall with a novel triple glass (NTG) to improve the performance of conventional Trombe 

wall system and overcome its main disadvantage: the overheating during the summer. However, in 

all these applications, the light transmission was still absent. 

On the other hand, transparent envelope components are key elements in buildings, especially in 

offices and commercial buildings, that affect the energy performance and daylighting [14]–[16].  

The integration of PCM in a transparent element of the building envelope enhances the ability of 

energy storage, since the PCM will be directly exposed to the solar radiation. This technology aims 

to smooth the indoor temperature, and decrease the energy fluctuations, providing daylighting at the 

same time.  

Phase change materials were integrated within double [17] [18] or triple glazing units [19], within 

more complex glazing components [20] and within translucent solar walls [21]. The performance of 

glazing with integrated PCM was investigated both experimentally [17]–[19], [22], [23] and 

numerically [24]–[26]. Numerical models were specifically developed to take the interaction of PCM 

with solar radiation into account [27]–[30]. All numerical models developed in these studies 

neglected effect of natural convection in the liquid PCM. A literature review of the use of PCM in 

transparent and translucent building envelope components can be found in [31]. 
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Manz et al. [21] studied a translucent wall for solar heating and daylighting composed of glass pan, 

air gap, a translucent PCM and a transparent insulation material (TIM). They investigated 

experimentally the optical PCM properties and a prototype of the TIM-PCM wall was constructed in 

1994 in Swiss. Also, a one-dimensional numerical model (side effects were neglected) was developed 

considering only heat transfer by conduction and the optical properties were simulated using a Monte 

Carlo technique. The results show that the thermal and optical performance of the wall is very 

promising and that the chosen PCM in solid state reduces the heat and light gains, thus they proposed 

considering another PCM with a melting temperature of 21⁰C instead of 26.5⁰C. Weinläder et al. [32] 

investigated experimentally the thermal behaviour of three glazing systems incorporated with a 

plastic container filled with different PCM. However, in both studies the behavior of the system was 

not investigated in detail in the hot season and inferences on thermal comfort were not evaluated 

according to standards. To improve the poor thermal inertia of conventional glazing systems, Goa et 

al. [27] studied the implementation of a PCM layer in combination with glass panes. They developed 

a one-dimensional numerical model for heat and shortwave wave transmission, and the model was 

validated experimentally. They found that the numerical tool represents a good base for simulations 

on different configurations of PCM glazing systems.  

Ismail et al. [28] investigated the thermal and optical properties of double-glazed units filled with 

PCM, through numerical and experimental analysis. For the numerical model, a one-dimensional 

formulation is developed, and a moving grid procedure is used within the PCM layer. They found 

that the PCM filled glass window system is practical and thermally effective.  

Although the inclusion of PCM in glazing systems can have a positive effect on thermal comfort and 

contributes to improvements in the energy performance of buildings [22], the introduction of PCM 

in a double-glazing unit results in a reduced thermal resistance negatively affecting the thermal 

performance of the system. In addition, due to the complete melting of the PCM within the double-

glazing unit during summer, the internal surface temperature of the glazing may increase to a level 

that may negatively affect thermal comfort [22]. 

In this chapter, a new kind of translucent storage wall proposed by the ANR INERTRANS (1) project 

is studied. It is composed of glazing, granular Silica Aerogel and PCM filled in glass bricks [33]. 

Many features, that are not found in a conventional Trombe wall, are combined by such wall: it 

provides heat gains from solar radiation, high thermal insulation, heat storage and release, natural 

daylighting and visual communication to the outside world. 

The thermal performance of the TIM-PCM wall is tested in a full-sized test cell located in Sophia 

Antipolis, Southern France, within the center for Processes, Renewable Energies and Energy Systems 

(PERSEE) of Mines Paristech graduate school. In winter season, particularly in sunny cold days, the 
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PCM absorbs solar radiation, melts, and then releases the stored heat to the building at night by 

solidifying. While during the summer, an overheating problem is encountered mainly due to solar 

gains, the PCM remains in its liquid state and it is unable to release the stored heat at night [34]. Thus, 

to enhance the energy performance of the wall, numerical modeling of the heat transfer mechanisms 

in the wall materials is required and especially the melting with combined natural convection and 

radiation. Usually, the building models with integrated PCM ignore the convection effect in the liquid 

region, due to the complexity of CFD models and the required high computational time. It was proven 

that this assumption is not always adequate and convection effect must be considered in liquid PCM 

[35]–[43] [44].  

Most previous works studying PCM-enhanced transparent components have been mainly developed 

for the heating season, and there is little quantification of their real advantages in terms of energy 

efficiency and indoor environmental comfort in summer season. Thus, the present paper focuses on 

the analysis of the summer performance of the innovative translucent TIM-PCM wall and on its effect 

on thermal comfort. The numerical model developed in this study aims to provide an easy tool to use 

and fast enough to be adopted as a design tool, to investigate the potentials and disadvantages of the 

novel TIM-PCM wall under different operative conditions and different climates and to propose 

solutions to optimize its performance in summer, without the need of performing extensive and 

expensive experimental analysis.  

In this chapter, the TIM-PCM wall system is described in section 2, experimental data analysis is 

presented in section 3. A numerical model of the heat transfer mechanisms through the wall including 

natural convection and radiation during phase change is detailed in section 4, the code is written on 

MATLAB. The TIM-PCM wall model is linked to TRNSYS software to simulate the thermal 

behavior of the whole experimental cell in section 5. The MATLAB - TRNSYS model is validated 

in summer and winter season against the experimental results and the importance of considering 

natural convection in liquid PCM is demonstrated in section 6. Solutions for the overheating problem 

including shading devices and nocturnal natural ventilation are proposed in section 7. A special type 

of glass, Prisma solar glass, is used instead of the ordinary glazing in the TIM-PCM wall composition 

in section 7.2. The thermal behavior of the wall is tested using another PCM with higher melting 

temperature of 28⁰C in section 7.4. Finally, the model is exploited, and the thermal comfort range is 

examined for three months in summer season under different climates conditions using ASHRAE 

Standard 55-2010 in section 8 and section 9.  
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2. System description 

The TIM–PCM wall, proposed in the French INERTRANS (1) project, is shown in Figure 3-1 and 

Figure 3-2. It is composed, from outside to inside, of a glass pane having a thickness of 0.8 cm, a 4cm 

thick bed of granular silica aerogel (transparent insulation material), and eutectic of fatty acids as 

PCM filled in glass bricks of dimension 19cm × 19cm × 5cm. The Silica aerogel granulate bed 

provides super heat insulation, meaning that it has a thermal conductivity lower than that of still air 

(0.018 w/ (m K) for aerogel, 0.026 w/ (m K) for still air). The wall also provides sound insulation and 

solar and light transmission. This particular silica aerogel is chosen to meet the TIM–PCM wall 

transparency and insulation principles. The chosen PCM has a comfortable phase change temperature 

with long term stability. It provides solar absorption, energy storage and restitution, in addition to 

light transmission. It absorbs the solar radiation when being in solid state, thus increasing its 

temperature until the complete melting is achieved and transmits solar radiation when being in liquid 

phase. 

 

Figure 3-1: Schematic of the TIM–PCM wall. 
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Figure 3-2: (a) TIM-PCM wall from the outside, (b) PCM in solid phase (left) and liquid phase (right), from the 

inside 

The thermo-physical and optical properties of the used PCM, the silica aerogel and the glass are 

summarized in Table 3-1 to Table 3-4. Initially, at a temperature of 50⁰C, the glass bricks are filled 

with the fatty acid and an air gap of 2 cm was left at the top of the liquid surface in each brick in order 

to avert breaking due to thermal expansion of the PCM [34] and the system is maintained by means 

of a wooden frame. 

Table 3-1 Thermo-physical properties of the fatty acid eutectic [34] 

Property value 

ks (W/m.K) 0.182 

kl (W/m.K) 0.182 

LH (J/kg) 152000 

Cps (J/kg.K) 1670 

Cpl (J/kg.K) 2090 

ρs (kg/m3) 960 

ρl (kg/m3) 884 

Tm (°C) 21.3 

α (m2/s) 9,85.10-8  

ν (m2/s) 11.10-6 

β (1/K) 3.1.10-3 

 

Table 3-2: Optical properties of the fatty acid eutectic CSTB [34] 

  𝝉% 𝝆% 

Liquid state 
Energetic 90 5 

Optical 78 6 

Solid state 
Energetic ≈ 0 53 

Optical ≈ 0 56 
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Table 3-3: Thermo-physical and optical properties of glass and Silica aerogel 

properties/Materials glass Silica aerogel 

Thickness (cm) 0.8 4 

k (W/m.K) 1 0.018(at 25⁰C) 

Cp (J/kg.K) 840 1500 

ρ (kg/m3) 2700 100 

𝜏% 80 57 

𝛼% 12 10 

 

Table 3-4: Physical properties of the transparent insulation material silica aerogel (manufacturer’ data) 

Property Value 

Particle size 0.5-4.0 mm 

Pore diameter 20 nm 

Porosity > 90% 

Surface area 600-800 m2g-1 

(1) INERTRANS is acronym of Translucent Inertia, project funded by the French National Research 

Agency (ANR), PREBAT program 2007). 

3. Experimental data 

To test the TIM–PCM wall behavior, experiments were conducted in situ in a full-sized test cell 

located in Sophia Antipolis, Alpes-Maritimes, southern France of latitude 43.61°, longitude 7.05° and 

elevation 164.23 meters. 

The experimentations allow studying the influence of the TIM–PCM wall on the energy balance of 

the building in real conditions. The test cell is very well insulated with R-value varying from 4.7 to 

6.8 (K.m²/W) depending on the PCM state and it is composed of three rooms (Figure 3-3). A reference 

room and a test room (9.29 m2 floor area each), having the same walls properties except of their south-

facing walls. The third room is used for data acquisition purpose (18.8 m2). The south wall of the 

reference room (7.15 m2) is opaque with high capacitance, composed from inside to outside, of 

plaster, glass wool thermal insulation, concrete and a 4cm layer of aerogel-based coating. The south 

wall of the test room (7.25 m2) contains the translucent TIM–PCM of surface 4.41 m2, this wall being 

an inset wall of 20 cm depth. The south-facing wall was isolated from the thermal effects of the test-

cell other walls, i.e. the west wall of the test room, the partition walls, the ground and the roof are 

highly insulated. The walls construction materials in the test cell and the thermo-physical properties 

are summarized in Table 3-5 and Table 3-6 respectively. 
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. 

Figure 3-3 : Schematic presentation of the full-scale test cell. 

 

Table 3-5: Test cell walls construction 

Element Area (m2) Construction Thickness (m) 

Test south wall 2.84 

plasterboard 0.013 

Glass wool 0.16 

concrete 0.25 

Reference south wall 7.15 

plasterboard 0.013 

Glass wool 0.16 

concrete 0.25 

aerogel-based coating 0.04 

Reference/test North 

wall 

 

7.05/7.18 

plasterboard 0.013 

Glass wool 0.16 

concrete 0.25 

Mousse phenol-formol 0.077 

Reference west/ test east 

wall (partition) 
11.7 

plasterboard 0.013 

Glass wool 0.16 

plaster 0.013 

Reference east/ test west 

wall 
11.7 

plasterboard 0.013 

Glass wool 0.16 

Wooden plate 0.019 

Expanded polystyrene 0.08 

Reference/test floor 9.17/9.29 

tiles 0.015 

concrete 0.15 

Expanded polystyrene 0.08 

Reference/test south roof 

(slope 60⁰) 
1.62/1.64 

plasterboard 0.013 

Glass wool 0.16 

Wooden plate 0.018 

Reference/test north roof 

(slope 12⁰) 
8.27/8.38 

plasterboard 0.013 

Glass wool 0.16 

Wooden plate 0.012 

Mousse phenol-formol 0.06 

Wooden plate 0.012 

Acquisition room walls  Wooden plate 0.012 
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Table 3-6: Thermo-physical properties of the test room materials  

Materials/properties Thermal conductivity (W/m. K) Specific heat (J/kg.K) Density (kg/m3) 

plasterboard 0.32 800 790 

Glass wool 0.041 840 12 

concrete 2.1 800 2400 

Aerogel-based coating 0.0268 990 156 

Mousse phenol-formol 0.032 1255 32 

Wooden plate 0.18 1700 780 

Expanded polystyrene 0.04 1380 25 

tiles 1 1000 2400 

 

To measure the necessary data, a specific instrumentation is used: 

- All-in one sensors (Prosensor HYGR0018 THAC, with added radiation protection) are used to 

measure the outdoor and the indoor air temperature (precision ±0.4 ⁰C) and relative humidity 

(precision ±3%). 

- PT100 sensors, Prosensor Pt 100 DIN IEC 751 class B, are used to measure the surface temperatures 

with precision of ±0.4⁰C. And, PT100 sensors Prosensor SLM 250 PVC are used to measure the 

temperatures inside the TIM–PCM wall. 

- A pyranometer (Littoclime 13S374, 320–1060 nm) of precision ±7%, located at the east right-side 

of the TIM-PCM wall is used to measure the total radiation on the southern vertical plane, while a 

second pyranometer (Pulsonic, 400–1100 nm) of precision ±4% is used to measure the total radiation 

on the horizontal plane. 

- A wind vane and an anemometer (Pulsonic Aliza 147) of precision ±0.5 m/s are used to measure 

the wind direction and velocity. 

- Two sensors immersed in the PCM glass bricks are used to measure the temperature of the PCM.  

The experimental cell is left in free floating mode, i.e. no mechanical HVAC system is installed, and 

no internal heat gains have been considered. The reference room is equipped with a cooling/heating 

system maintaining the room air temperature at 23°C in summer and winter. 

The measured exterior and interior air temperatures and the incident solar radiation on the vertical 

plane for seven consecutive days in summer are shown in Figure 3-4. The average and maximum 

radiation on the south vertical plane, the maximum, minimum and average outdoor air temperature 

and the average indoor temperature from experimental data are summarized in Table 3-7. 
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Table 3-7: Summary of some experimental data measured for seven consecutive days in summer and winter 

season 

 

Average daily 

radiation on 

south vertical 

plane (W.m-2) 

Max 

radiation on 

vertical plane 

(W.m-2) 

Max outdoor 

temperature 

(⁰C) 

Min outdoor 

Temperature 

(⁰C) 

Average 

outdoor 

temperature 

(⁰C) 

Average 

indoor 

temperature 

(⁰C) 

30 July -5 

August 2017 
100.14 452.78 35.30 21.32 27.81 30.82 

27 Januray-2 

February 2017 
41.63 719.26 16.63 5.22 10.65 18.38 

 

 

Figure 3-4: Temperatures and solar radiation for seven consecutive days in summer (30 July-5 August 2017)  

The seven consecutive days in summer season (30 July-5 August 2017) are characterized by an 

outdoor air temperature varying from 21.32 ⁰C to 35.30 ⁰C, and a high solar radiation up to 452.78 

W.m-2 on the southern vertical plane. The high ambient temperature together with the solar radiation 

transmitted through the TIM-PCM wall, strongly increase the PCM temperature during the day 

(higher than 50⁰C) and thus forbid even a partial solidification of the PCM at night (the PCM 

minimum temperature recorded at night is about 28⁰C). This causes an overheating of the test room 

with an indoor air temperature going from 28.05 ⁰C to 34.73 ⁰C as shown in Figure 3-4. To avert this 

problem, and therefore attaining the thermal comfort range, shading devices (overhangs, blinds, 

shutters) or ventilation systems (natural night ventilation, mechanical ventilation) should be used. 
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The seven consecutive days in winter season (27January- 2 February) are characterized by a low 

outdoor temperature varying from 5.22 ⁰C to 16.63 ⁰C, with low (70.82 W.m-2) and high (719.2 W.m-

2) solar radiation on the southern vertical plane. On January 27 and 28, the PCM does not melt staying 

in its solid state (PCM temperature lower than 21⁰C) and the test room air temperature is about 17⁰C. 

On January 29 and 30 and on February first, due the high incident solar radiation, the PCM melts 

during the day (PCM temperature up to 62⁰C) and solidifies at night and the indoor temperature 

reaches more than 20⁰C. The TIM-PCM wall is therefore very effective in the winter season (the 

average room air temperature is almost constant at18.38 ⁰C), keeping warm the indoor environment 

especially in sunny days. The measured PCM temperatures for seven consecutive days in winter and 

summer seasons respectively are shown in Figure 3-5. 

 

Figure 3-5: Measured PCM temperatures for seven consecutive days in summer (30 July-5 August 2017) and 

winter (27 January-2 February 2017). 

 

4. Numerical model 

The thermal study of a building and the validation of the associated numerical model require the 

knowledge of the different heat transfer mechanisms that take place: radiation, convection and 

conduction. To save computational time, most building energy simulation tools do not model the heat 

transfer in walls as two and three dimensional but rather consider it as one-dimensional approach. 
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Many researchers have conducted and experimentally validated one-dimensional transient numerical 

model for heat transfer in building envelopes integrating phase change materials [21], [27], [29], 

[45]–[48]. However, it was shown that the thermal bridge effects should not be neglected [49], and 

that the calculation of a thermal resistance of a wall, adopting the one-dimensional approach and 

neglecting the thermal bridge effects, could lead to an overestimation greater than 44% [50]. In 

addition, according to the French Scientific and Technical Center for Building Research (CSTB), 

thermal bridges can increase the thermal load of a house by 20% (CSTB, Réglementation thermique 

2000). 

The effective part of the TIM-PCM wall (without the frame) has only one element that causes a 

thermal bridge: the joints of the bricks. Modeling a portion of wall using software HEAT2, the 

conductive heat flux passing through the joints was estimated, and thus the thermal transmittance of 

the joints was found Cj=1/Rj =16.54 W/(m2K). The flow through the joints and the edges of the bricks 

is calculated as the difference between the flow through the glass bricks wall with the joints and the 

flow through a monoblock of glass brick. 

In this study, a one-dimensional numerical model is developed considering the effect of thermal 

bridges caused by the joints of the bricks. Figure 3-6 shows the different modes of the heat transfer 

through the TIM-PCM wall and the representation of the node grid.  

Mesh sensitivity analysis was carried out for the numerical model to make sure that the results are 

independent of the numerical domain. The number of nodes in each layer was increased and the 

solution was assumed grid independent when the difference between the calculated average indoor 

air temperatures for each grid size was less than 2%. The number of nodes in the PCM layer was 

augmented and a difference of about 1.2 % was found between the calculated average indoor 

temperatures for 5 nodes and 10 nodes. 

Finally, a total of 16 nodes have been used, 2 for the glazing layer, 5 for the silica aerogel, 5 for PCM 

layer and 2 nodes for each glass brick. The chosen discretized scheme shows good accuracy within a 

satisfactory computational time, and it is well-matched with other works evaluating the annual 

thermal performance of PCM applications in facades [51]–[53]. 

The unsteady energy equation is written for each node and solved numerically (sections 4.1 to 4.6). 

The developed TIM-PCM wall model computes the temperature field and the solar radiation 

transmitted to the test cell through the wall at each time step, these outputs are then linked to TRNSYS 

to simulate the energy performance of the whole building. 



Chapter 3 

 

145 
 

4.1. Shortwave radiation 

The shortwave solar radiation strongly affects the behavior of the translucent TIM-PCM wall, where 

the thermal energy storage in the PCM layer occurs mostly by dint of the interaction between the 

PCM and the solar radiation [51]. Phase change materials have variable optical characteristics that 

depend on their physical state; in the solid state, the PCM absorbs the solar radiation, thus increasing 

its temperature until the complete melting, while in liquid phase, the PCM transmits solar radiation, 

here the energetic and optical transmittance of TIM-PCM wall is significantly higher than that when 

PCM is in solid state [34]. The optical properties (transmission, reflection, and absorption 

coefficients) of the fatty acids eutectic are measured experimentally by the French scientific and 

technical center for building research CSTB (Table 3-2). The shortwave radiation through the PCM 

layer is modeled by means of a solution procedure proposed by Gowreesunker [18], where the nodal 

optical properties such as the transmissivity and absorptivity are evaluated in function of the transient 

liquid fraction fl. 

The solar radiation effect through a translucent wall can be accounted for using the radiative transfer 

equation (RTE). This equation can be solved using different methods such as Discrete Ordinates 

Model, Monte Carlo Model, Rosseland Model, Discrete Transfer Method, etc.; however, these 

methods are computationally expensive. On the other hand, the radiation can be taken into account 

without recurring to the full solution of the RTE, using the Radiosity - Irradiosity Method (RIM) [54]. 

In this paper, a simplified method proposed by Elarga et al. [55] is used, where the absorbed solar 

radiation is considered to be divided equally between the nodes representing each layer of the wall 

and the absorbed shortwave solar radiation flux is added into the energy equation as a source term. 

Considering for example N nodes in the PCM layer, the absorbed solar radiation to be added to the 

energy equation at a node p is then given as: 

∅𝑠𝑜𝑙 =
𝑄𝑠𝑜𝑙−𝑡𝑟𝑎𝑛𝑠 𝛼𝑃

𝑁
 

Eq. 3-1 

where, ∅𝑠𝑜𝑙 is the radiative source term, 𝑄𝑠𝑜𝑙−𝑡𝑟𝑎𝑛𝑠 is the transmitted solar radiation to the PCM layer 

(Eq. 3-10), αP is the PCM absorption coefficient at the node p calculated using the equations proposed 

by Gowreesunker to model combined phase change and radiation problems [18].  

The nodal optical properties such as the transmissivity and absorptivity in function of the transient 

liquid fraction 𝑓𝑙. When the PCM goes from the fully solid to fully liquid, the fractional change in 

PCM transmittance is given as: 

𝛿 =
𝜏𝑙 − 𝜏𝑠
1 − 𝜏𝑠

 Eq. 3-2 

The relation between the extinction coefficient 𝜎 and the liquid fraction is written as: 
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𝜎 = 𝑓𝑙𝜎𝑙 + (1 − 𝑓𝑙)𝜎𝑠 Eq. 3-3 

The transmittance of the PCM is: 

𝜏𝑃 = 10−𝑑 Eq. 3-4 

where d is the optical thickness: 

𝑑 = 𝜎. 𝑆 Eq. 3-5 

where S stands for the physical thickness 

The absorptivity of the PCM evaluated at each node is given as: 

𝛼𝑃 = [𝛿𝑓𝑙 + (1 − 𝑑)](1 − 𝜏𝑃𝐶𝑀) Eq. 3-6 

Moreover, the overall transmitted solar radiation through N=n+k layers is calculated using the 

following equations given by Siegel [56]: 

𝜏𝑠
(𝑛+𝑘)

=
𝜏𝑠
(𝑛)
𝜏𝑠
(𝑘)

1 − 𝜌𝑠2
(𝑛)
𝜌𝑠1
(𝑘)

 Eq. 3-7 

𝜌𝑠1
(𝑛+𝑘)

= 𝜌𝑠1
(𝑛)
+ 𝜏𝑠

(𝑛)2 𝜌𝑠1
(𝑘)

1 − 𝜌𝑠2
(𝑛)
𝜌𝑠1
(𝑘)

 Eq. 3-8 

𝜌𝑠2
(𝑛+𝑘)

= 𝜌𝑠2
(𝑘)
+ 𝜏𝑠

(𝑘)2 𝜌𝑠2
(𝑛)

1 − 𝜌𝑠1
(𝑘)
𝜌𝑠2
(𝑛)

 Eq. 3-9 

where, 𝜏𝑠
(𝑛+𝑘)

 is the transmittance for the entire system, 𝜏𝑠
(𝑛)

 and 𝜏𝑠
(𝑘)

 are the transmittances for n and 

k layers system respectively. 𝜌𝑠1
(𝑘)

 is the overall reflectance for a system of k layers for energy incident 

on the first (upper) surface of that entire system and 𝜌𝑠2
(𝑛)

 is the reflectance for a system of n layers 

for energy incident on the second (lower) surface of that entire n layer system. 

The general characteristics of one layer are used to develop the overall behavior of a two-layer system, 

this procedure can be sustained and the behavior for one layer and two layers can be combined to 

build up the behavior for three layers, and so on. 

For example, the transmitted solar radiation to the PCM layer is found using Eq. 3-7 to Eq. 3-9 as 

follow: 

𝑄𝑠𝑜𝑙−𝑡𝑟𝑎𝑛𝑠 =
𝜏1𝜏2𝜏3

(1−𝜌2𝜌1)(1−𝜌2𝜌3)−𝜏2
2𝜌3𝜌1

. 𝑄𝑠𝑜𝑙−𝑡𝑜𝑡𝑎𝑙   Eq. 3-10 

where, 𝜏1, 𝜏2, 𝜏3 are the solar transmission coefficients and 𝜌1, 𝜌2 , 𝜌3 are the solar reflection coefficients of 

the glazing, silica aerogel and glass brick respectively. 

The overall transmission of the solar radiation through the whole TIM-PCM wall calculated from Eq. 

3-7 to Eq. 3-9 is found 27.36% in summer conditions when the PCM remains in liquid its state. 
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4.2. Longwave radiation exchange 

Longwave radiative exchange takes place between the external surface of the wall and the outside 

environment, and among the internal surface of the wall and the indoor environment. The TIM-PCM 

wall is supposed to be opaque for the longwave radiation due to the presence of the silica aerogel 

layer. 

The outdoor radiative heat exchange (W/m2) is given as: 

∅LW,out = εσFgrd(Tgrd
4 − Tsurf

4 ) + εσFskyβ(Tsky
4 − Tsurf

4 ) + εσFsky(1 − β)(Tair
4 − Tsurf

4 )  Eq. 3-11 

where, ε is the long-wave emittance of the surface and σ is the Stefan Boltzmann constant. The 

temperature of the ground surface is approximated to the ambient air temperature. 

Fgrd is the view factor of wall surface to ground surface temperature  

Fgrd = (1 − cosδ)/2 Eq. 3-12 

Fsky is the view factor of wall surface to the sky  

Fsky = (1 + cosδ)/2 Eq. 3-13 

The view factor to the sky is divided between sky and air radiation by: 

β = √((1 + cosδ)/2) Eq. 3-14 

where δ is the tilt angle of the surface, for vertical surface δ = 90°. 

The sum of the view factors to the ground, air, and sky is equal to 1. The view factor to the air will 

be often smaller than 0.15, since most surfaces lie somewhere between vertical and horizontal. So, 

air-surface interactions are not significant, so it will be neglected, the radiative heat exchange is 

linearized as follow: 

∅LW,out = hr,grdFgrd(Tgrd − Tsurf) + hr,skyFsky(Tsky − Tsurf) 
Eq. 3-15 

The sky temperature Tsky is given by Swinbank [57] function of the air temperature as follow, 

assuming a clear sky: 

Tsky = 0.0552Tair
1.5 Eq. 3-16 

For a vertical wall, Fgrd and Fsky are equal to 0.5. For usual sky and surface temperatures, the 

coefficients hr,sky and hr,grd vary around the values of 4.7 W/m2. K and 5.7 W/m2. K for buildings 

located in temperate regions. 

The radiative flux received by the interior surface of the wall and emitted by other N surfaces of the 

test room, resulting from the linearization of the radiative transfers if all interior surfaces are black 

bodies (ρ = τ = 0, ε = 1), is expressed by: 

∅𝐿𝑊,𝑖𝑛 =∑𝐹𝑖𝑠ℎ𝑖𝑠(𝑇𝑖 − 𝑇𝑠urf)

𝑁

𝑖=1

 
Eq. 3-17 
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where,  F is the view factor, ℎ𝑖𝑠 is the radiative coefficient, 𝑇𝑠urf is the internal surface temperature 

of the TIM-PCM wall and  𝑇𝑖 is the temperature of each other surface of the room. The calculation of 

the indoor radiative exchange is complicated, since the computation of the view factors between the 

interior surface of the TIM-PCM wall and the other surfaces needs a specific detailed method [54]. 

For simplification, the temperatures of the other surfaces of the room are supposed to be equal to the 

indoor test room air temperature. Thus, the resulting radiative exchange (W/m2) becomes: 

∅𝐿𝑊,𝑖𝑛 = his(Tin − Tsurf) Eq. 3-18 

where his is the internal longwave radiative exchange coefficient, for standard building temperatures 

it varies very little around the value of 5 W/m2. K 

4.3. Convective heat exchange 

The convective heat exchange occurs between the external surface of the TIM-PCM wall and the 

outside air, and between the internal surface of the wall and the inside air. 

The general formulation of the convective heat flux (W/m2) is given by: 

∅𝑐𝑜𝑛𝑣 = ℎ𝑐𝑜𝑛𝑣 ∆𝑇 Eq. 3-19 

Where, ∆T is the temperature difference between the surface and the surrounding air. 

The Convective exchange with the external environment is generally calculated using a linear 

correlation function of the wind speed. The correlation in (W/ m2K) used here is established by 

Sturrock [58]: 

ℎ𝑜𝑢𝑡 = 5.7𝑣 + 11.4 (Windward) 

ℎ𝑜𝑢𝑡 = 5.7𝑣 (Leeward) 

Eq. 3-20 

Where, v is the wind velocity (m/s) 

The internal convection coefficient used to evaluate the convection heat transfer for the TIM-PCM 

wall with the interior is the one developed by Alamdari for vertical surfaces [51]: 

ℎ𝑖𝑛 = {[1.5(
|∆𝑇|

𝐻
)

1/4

]

6

+ [1.23(|∆𝑇|)1/3]6}

1/6

 Eq. 3-21 

where ∆T is the temperature difference between the internal wall surface and the indoor air, and H 

is the height of the vertical surface. 

4.4. Governing equations and boundary conditions 

For the TIM-PCM wall, the heat transfer includes different regions, which are the outer glazing, 

insulation silica aerogel and the PCM filled in glass brick. A one-dimensional unsteady energy 

equation for glazing and insulation layer is given as  
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𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
+ ∅𝑠𝑜𝑙 Eq. 3-22 

where 𝜌 is the density (kg/m3), 𝐶𝑝 is the specific heat capacity (J/kg. K) and k is the thermal 

conductivity (W/m. K). 

In the PCM layer, the heat transfer during phase change procedure is done by conduction, natural 

convection in the liquid phase and shortwave radiation. The unsteady energy equation for PCM 

regions is given as: 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
=
𝜕

𝜕𝑥
(𝑘 

𝜕𝑇

𝜕𝑥
)− 𝜌𝐿𝐻

𝜕𝑓
𝑙

𝜕𝑡
+ ∅𝑠𝑜𝑙 

Eq. 3-23 

where ∅sol (W/m2) is the absorbed solar radiation in the layer (section 4.1), 𝐿𝐻 is the latent heat of 

fusion (J/kg) and 𝑓𝑙 is the liquid fraction. 

To solve the phase change problem a fixed-grid modified “enthalpy” method is used, inspired by the 

work of Zivkovic et al. [59]. The convection in the liquid PCM is accounted for using the enhanced 

thermal conductivity approach together with the scaling theory [60] [61] [62]. The convection effect 

is only considered in the upper part of the PCM layer of height z1 and width z2, while the zone 

(z2. H) − (z1. z2) is controlled by conduction. Therefore, an average enhanced conductivity for liquid 

nodes is used in the one-dimensional model expressed by: 

𝑘𝑒𝑛ℎ,𝑝 =
𝑘𝑙[(z2. 𝐻) − (𝑧1. 𝑧2)] + 𝑘𝑙 . 𝑁𝑢𝑧1(𝑧1. 𝑧2).

z2. 𝐻
 Eq. 3-24 

where 𝑘𝑒𝑛ℎ,𝑝 is the liquid enhanced conductivity for the liquid PCM node p, H is the height of the 

glass brick filled with PCM and Nuz is the Nusselt number correlation given by Berkovsky and 

Polevikov [63]. More details can be found in the reference [64]. 

4.5. Heat balance on a surface in contact with the external environment 

The heat balance on the outside surface is given by: 

𝜌𝑐𝑝
∆𝑥

2

𝜕𝑇

𝜕𝑡
= ∅𝑐𝑜𝑛𝑑(𝑡) + ∅LW,out(𝑡) + ∅𝑐𝑜𝑛𝑣,𝑜𝑢𝑡(𝑡) + ∅𝑠𝑜𝑙(𝑡)  

Eq. 3-25 

Where,  ∅𝑐𝑜𝑛𝑑(𝑡) is the conductive heat flux in (𝑊/𝑚2) is given as: 

∅𝑐𝑜𝑛𝑑(𝑡) =
𝑘

∆𝑥
(𝑇𝑠+∆𝑥 − 𝑇𝑠𝑢𝑟𝑓)  

Eq. 3-26 

 

and ∅𝑠𝑜𝑙  (𝑊/𝑚
2) is the solar absorption flux at the surface expressed by: 

∅𝑠𝑜𝑙(𝑡) = 𝛼𝑄𝑠𝑜𝑙−𝑡𝑜𝑡𝑎𝑙    Eq. 3-27 

∅LW,out(𝑡) and ∅𝑐𝑜𝑛𝑣,𝑜𝑢𝑡(𝑡) are the radiative heat exchange (W/m2) with the outdoor environment and 

the convective heat flux with the outside given in Eq. 3-15, Eq. 3-19 and Eq. 3-20 respectively. 
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4.6. Heat balance on a surface in contact with the internal environment 

The heat balance on the internal surface is given by: 

𝜌𝑐𝑝
∆𝑥

2

𝜕𝑇

𝜕𝑡
= ∅𝑐𝑜𝑛𝑑(𝑡) + ∅LW,in(𝑡) + ∅𝑐𝑜𝑛𝑣,𝑖𝑛(𝑡) + ∅𝑠𝑜𝑙(𝑡) 

Eq. 3-28 

Conduction flux through the wall (𝑊/𝑚2) is given as: 

∅𝑐𝑜𝑛𝑑(𝑡) =
𝑘

∆𝑥
(𝑇𝑠−∆𝑥 − 𝑇𝑠𝑢𝑟𝑓)  

Eq. 3-29 

The transmitted solar radiation flux absorbed at the internal wall surface reads: 

∅𝑠𝑜𝑙(𝑡) = 𝛼𝑄𝑠𝑜𝑙−𝑡𝑟𝑎𝑛𝑠    Eq. 3-30 

where ∅LW,in(𝑡) and ∅𝑐𝑜𝑛𝑣,𝑖𝑛(𝑡) are the net longwave radiant exchange flux between zone surfaces 

(W/m2) and the convective heat flux with the indoor air given in Eq. 3-18, Eq. 3-19 and Eq. 3-21, 

respectively. 

A one dimensional implicit finite volume method established by Patankar 1980 [65] is used to 

estimate the heat transfer mechanism through the TIM-PCM wall. The computational domain is 

divided into control volumes, the discretized equation over a typical control volume is written as 

follow: 

𝑎𝑃𝑇𝑃
𝑡+∆𝑡 = 𝑎𝑊𝑇𝑊

𝑡+∆𝑡 + 𝑎𝐸𝑇𝐸
𝑡+∆𝑡 + 𝑏  Eq. 3-31 

where, 

𝑎𝑊 = 𝑘𝑤
𝛥𝑦

(∆𝑥)𝑤
, 𝑎𝐸 = 𝑘𝑒

𝛥𝑦

(∆𝑥)𝑒
  

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + 𝑎𝑃
𝑡  

𝑎𝑃
𝑡 =

𝜌𝐶𝑝∆𝑥

∆𝑡
 

𝑏 = 𝑎𝑃
𝑡 𝑇𝑃

𝑡 + ∅𝑠𝑜𝑙 
Eq. 3-32 

The superscript t indicates the values at the previous time step, 𝑡 + ∆𝑡 indicates the values at the 

current time step. 𝑘𝑤 and 𝑘𝑒 are the thermal conductivities calculated at the interface. 

A system of linear equations is formed from the discretized equations and can be written in a matrix 

form as: 

𝐴 ∗ 𝑇 = 𝐵  Eq. 3-33 (11) 

where A is the matrix of coefficients (tri-diagonal sparse matrix), T is the vector of unknown 

temperatures and B is the vector of known terms including the values at the previous time step. The 

current temperature values 𝑇𝑃
𝑡+∆𝑡 are obtained from the previously solved time step temperatures 

values 𝑇𝑃
𝑡. The system is solved using a direct non-iterative method, the Gaussian elimination 

algorithm, which produces the solution without explicitly forming the inverse. The Gaussian 
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elimination algorithm is a sequential process of removing unknowns from equations using forward 

elimination followed by back substitution [66]. This function is built in MATLAB. 

5. MATLAB-TRNSYS link  

The model of the heat transfer through the TIM-PCM wall is linked to TRNSYS via Type 155, whose 

function is to enable the use of MATLAB program in TRNSYS (Figure 3-6). This link enables to 

simulate the thermal performance of the test cell. 

The inputs for Type 155 are: the outdoor air temperature, the sky temperature (Eq. 3-16 and Eq. 3-11), 

the incident solar radiation on vertical plan and the wind velocity from experimental data, in addition 

to the indoor air temperature, calculated at each time step, from Type 56 (TRNbuild), also the thermo-

physical and optical properties of PCM, glass and silica aerogel (Table 3-1 to Table 3-4). 

In TRNbuild Type 56 we define the building geometry, the wall constructions, the materials 

properties and the zones regimes (cooling, heating, infiltration, ventilation…). The solar radiation is 

processed to the building using Type 16 that needs the incident radiation on horizontal plan as input, 

while the outdoor air temperature and the outdoor relative humidity are linked to the building using 

Type 9 from experimental measured data. A part of the radiation is reflected from the ground, the 

reflectance of the ground above which the surface is located, concrete in our case, is taken 0.22. 

Type 155 provides as output data the internal surface temperature. This boundary temperature is taken 

as an input to the Type 56, and the shortwave solar radiation transmitted into the test room through 

the translucent wall is defined as internal radiative heat gain. Type 75 is used to calculate the 

infiltration rate (ACH). The inputs for this type are: wind speed, outdoor and indoor air temperatures, 

outdoor and indoor relative humidity, outdoor and indoor air pressures and the leakage area (the 

leakage area was estimated 100 cm2). And, the ground temperature is approximated to the ambient 

temperature. In addition, the internal convection coefficient used for horizontal surfaces are those 

developed by Glück [67]. 

For Type 155, A non-iterative component is called at the end of each time step, the outputs are 

calculated for one-time step based on the converged values of previous time step. 
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Figure 3-6: Integration mechanism of the TIM-PCM wall in TRNSYS and different heat transfer phenomena 

through the TIM-PCM wall and the computational grid  

 

6. Model validation 

To validate the numerical model, the hourly profile of the measured data and simulated results of the 

internal surface temperature and the indoor test room air temperature are compared for seven 

consecutive days in summer and winter seasons. The agreement between experimental data and 

simulated results is estimated using the root mean square error (RMSE) and the percentage root mean 

square error (PRMSE) shown in Eq. 3-34 and Eq. 3-35 respectively. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑠𝑖 − 𝑒𝑖)2
𝑛

𝑖=1

 
Eq. 3-34 

𝑃𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(

𝑠𝑖 − 𝑒𝑖
𝑒𝑖

)
2

𝑛

𝑖=1

 
Eq. 3-35 

The comparison between the measured and the simulated internal surface temperature of the TIM-

PCM wall and the indoor test room air temperature in summer season is shown in Figure 3-7. The 

effect of natural convection in liquid PCM is also studied in summer and winter and the comparison 

is done between the experimental data and the simulated values from the model with and without 

natural convection in the liquid PCM. The PCM temperature filled in glass bricks is also compared 

in summer season, as shown in Figure 3-8. 
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Concerning the internal surface temperature of the TIM-PCM wall, it was measured experimentally 

using seven sensors (section 3). The simulated results are compared with a temperature measured at 

the middle of the left side of the wall. This measured temperature is very close to the average 

temperature of all the measured temperatures (maximum dispersion 1.1˚C, average difference 0.9 

˚C). 

Despite the assumptions that have been made, the numerical model is found to be able to simulate the 

heat transfer phenomena through the TIM-PCM wall. A good agreement is observed comparing the 

experimental measured data and the simulated results. The model predicts properly the minimum and 

maximum peak values of the internal surface temperature, the indoor air temperature and the PCM 

temperature especially in the summer season, with a slight over-estimation of the uppermost values 

in summer and an underestimation of the lowermost values in winter. 

The model, considering natural convection effect, estimates the internal surface temperature of the 

TIM-PCM wall in summer better than winter, where a maximum difference of 2.9 ⁰C is observed 

when the temperature in the PCM layer is inferior to the phase change temperature in February first 

after 6 p.m., while a very good agreement is observed when the PCM is in its solid state in January 

27 and 28. The peak values in all days are in good agreement. The little over-estimation of the surface 

temperature of the TIM-PCM during summer is observed when the temperature of the PCM layer is 

relatively high, and the slight underestimation of the indoor temperatures occurs at night. In addition, 

the PRMSE and RSME demonstrate the good agreement between the experimental and the simulated 

results. The PRMSE of the indoor air temperature is 1.87% in summer and 4.05% in winter, and that 

of the internal surface temperature is 3.28 % in summer and increases to 6.99% when the winter 

season is examined as summarized in Table 3-8. While the RMSE is 0.76 ⁰C and 1.43 ⁰C for the indoor 

air temperature and the internal surface temperature respectively in winter season. 

It was also shown that without natural convection, the model underestimates the temperature values 

compared to experimental results especially the highest peak values. If the natural convection effect 

is not considered in the summer season, the RSME of the PCM temperature increases from 1.92 ⁰C 

to 4.07 ⁰C and the PRMSE reaches 9.94 %, the difference between the maximum peaks reaches up to 

11 ⁰C (Figure 3-8). For the surface temperature, the RMSE is 1.47 ⁰C and the PRMSE attains 4.12 % 

while a maximum difference of about 4.5 ⁰C is observed at the peaks. For the indoor air temperature, 

the RMSE is 0.84 ⁰C compared to 0.57 ⁰C considering the natural convection effect. Same for winter 

season, the values of RMSE and PRMSE increase when natural convection in liquid PCM is not 

considered (Table 3-8). Therefore, to get a good agreement between simulation results and 

experimental data, it is not always adequate to assume only conduction heat transfer inside the PCM 

and the natural convection effect must be considered in the liquid PCM. 
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Figure 3-7: Simulated and measured a) internal surface temperature of the TIM-PCM wall and b) indoor test 

room air temperature for seven consecutive days in summer (30 July - 5 August 2017). 
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Figure 3-8: Simulated and measured PCM temperature for seven consecutive days in summer (30 July-5 August 

2017). 

 

Table 3-8: RMSE and PRMSE for the hourly profile of the surface and indoor temperature in summer and 

winter season  

Season Physical quantity Model RMSE PRMSE 

Winter 

Surface temperature 
With convection 1.43⁰C 6.99% 

Without convection 1.50⁰C 7.11% 

Indoor air temperature 
With convection 0.76⁰C 4.05% 

Without convection 0.93⁰C 4.91% 

Summer 

Surface temperature 
with convection 1.13 ⁰C 3.28 % 

without convection 1.47 ⁰C 4.12 % 

Indoor air temperature 
with convection 0.57 ⁰C 1.87 % 

without convection 0.84 ⁰C 2.74 % 

 

7. Proposed solutions for the PCM cycling and the overheating 

As mentioned in section 3, the PCM in summer season remains in its liquid state and is unable to 

solidify by releasing the stored heat, which causes an overheating in the test cell. In this section, many 

solutions will be proposed to obtain, if it is possible, cycling of the PCM and to avoid the overheating 

problem. First, passive systems are suggested, such as the use of shading devices or natural night 

ventilation that offers cold from the outside. These applications are easy to implement, do not use 

active mechanical equipment and thus no extra energy is required. Then, the thermal behavior of the 

TIM-PCM is tested using another PCM having a higher phase change temperature. 
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7.1. Shading devices 

Overheating due to solar radiation transmitted to the test cell through the translucent TIM-PCM wall 

can be reduced using shading devices. The most important motive of the use of shading devices is to 

prevent the direct solar radiation to enter into the building in summer season, and to allow the solar 

gains to enter the building when it is needed in the cold season [68], [69]. Shading devices can be 

either interior or exterior; the exterior devices are more effective than the interior ones, since more 

significant amount of solar radiation can be rejected to the outdoor environment. They include 

overhangs, awnings, louvers, venetian blinds and roller shades. Numerous studies have been done on 

shading devices showing their importance in reducing the cooling loads especially in hot climates 

[70]. 

7.1.1. Overhangs 

The overhangs at the southern façade are a widely used method that provides external shading. 

Overhangs need to be designed properly to block the solar radiation during summer and permit its 

penetration during winter. In TRNSYS, overhangs can be defined using Type 34 and Type 67 is used 

to consider shading from far away objects. The defined dimensions of the overhang are mainly the 

overhang gap fixed at 20cm, the overhang extensions limited to 30 cm at each side and the overhang 

projection which value is increased from 0.5m to 2.5m.  

The use of overhang decreases the maximum room air temperature by about 6⁰C from 35.30⁰C to 

29.29 ⁰C for a projection of 1 m, and the minimum air temperature is decreased from 28.80 ⁰C to 

25.84⁰C at night. Increasing the overhang projection above 1 m has a minor effect on the maximum 

and minimum indoor air temperature as shown in Table 3-9. 

Table 3-9: Values of maximum, minimum and average indoor test room air temperature for different overhang 

projections 

Projection of the overhang (OP) Base case 0.5m 1m 1.5m 2m 2.5m 

Maximum indoor air temperature 35.30 30.56 29.29 29.11 29.06 28.91 

Minimum indoor air temperature 28.80 26.61 25.84 25.68 25.80 25.56 

Average indoor air temperature 31.34 28.09 27.27 27.15 27.11 27.06 

7.1.2. Venetian blinds  

Exterior venetian blinds are installed on the outside of the TIM-PCM wall; these blinds offer a high 

level of protection against solar radiation due to the reduction of light and heat. They consist of 

separate, equally-spaced horizontal slats. The venetian blinds have various thermal and optical 

properties which depend on the slat characteristics (rotation angle, shape, size, and colors) and the 

angle of incidence of solar radiation. The used blinds in this section are products from ISOTRA 
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[71][72], the solar and light transmittances are determined according to the standard CSN EN 13363-

1+A1 [73] for the selected products of ISOTRA. The blinds slat angles were determined by two 

angles 45⁰ (slats half closed) with solar reduction factor of 0.25 and 0⁰ (totally closed, i.e. opaque) 

with solar reduction factor of 0.069. Different cases listed in Table 3-10 are studied to find an optimal 

solution for the overheating problem. Figure 3-9 shows the transmitted solar radiation through the 

TIM-PCM wall for each case, it is obvious that the use of venetian blinds reduces significantly the 

transmitted solar radiation into the test room cell, especially the opaque ones. Noting that, the blinds 

are down and set to their utilization angle when the total incident radiation is significant, i.e. from 9 

a.m. till 5 p.m.  

Table 3-10: Different cases to be tested to choose the best solution 

Cases Shading scenario 

Case 1 No overhang and no external blinds (base case) 

Case 2 Overhang of projection 1 m (type 34 TRNSYS, section 7.1.1) 

Case 3 
Venetian External Blinds with rotatable slat and a slat angle of 45 degrees /reduction 

factor 0.25 ( according to DIN 4108, EN 4108 [74]) 

Case 4 
Exterior Venetian Blinds with rotatable slat at 0-degree, silver color, reduction factor 

0.069 (according to EN 13363-1+A1) 

Case 5 Overhang 1 m + blind 45⁰ (case 2 + case3) 

Case 6 Overhang 1 m + blind 0⁰ (case 2 + case 4) 

 

 

Figure 3-9: transmitted solar radiation through the TIM-PCM wall for the different cases in summer season (3, 

4, 5 August) 
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Table 3-11: Values of minimum and maximum indoor test room air temperature for the different cases 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Maximum temperature 35.30 29.29 28.11 26.57 26.94 26.27 

Minimum temperature 28.80 25.84 25.20 24.68 24.79 24.62 

Table 3-12: Values of maximum and minimum PCM temperature for the different cases 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Maximum PCM temperature  51.41 35.34 32.22 28.34 29.11 27.54 

Minimum PCM temperature  28.25 25.21 24.51 24.21 24.29 24.06 

 

 

Figure 3-10: a) Indoor test room air temperature and b) PCM temperature for the different cases in summer 

season (3, 4, 5 August) 

Figure 3-10 shows the indoor test room air temperature for the different cases. The venetian blinds 

with rotatable slat angle of 45° (case 3) reduce the maximum temperature from 35.30 ⁰C to 28.11⁰C, 

while the opaque ones (case 4) reduce the peak temperature to 26.57 ⁰C with a minimum temperature 

of 24.68 ⁰C, solving the overheating problem. When combining the overhang with the venetian blinds 

of 45 degrees slat rotatable angle (case 5), the maximum indoor temperature reduces to 26.94 ⁰C and 

the minimum indoor temperature decreases to 24.79 ⁰C, in this case the light is fairly transmitted 

through the wall. When combining the overhang with the opaque blinds (case 6), the results are not 

significantly modified compared to case 4 as summarized in Table 3-11. The blinds can reduce the 
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peak temperature during the day more than 8 ⁰C and the minimum temperature at night up to 4 ⁰C. 

To benefit from the translucency of the TIM-PCM wall, case 5 can be considered as an optimal 

solution. 

Figure 3-10 shows the temperature of the PCM layer for the different cases. Despite the significant 

reduction of the maximum PCM temperature, up to 23⁰C, during the day for all cases, the PCM 

temperature at night does not drop below the phase change temperature (minimum temperature 

reached is 24.06 ⁰C, Table 3-12). Thus, the PCM will not be able to solidify and lower temperatures 

must be attained to solidify the PCM periodically in each diurnal cycle. 

7.2. Prisma solar glass 

Prisma solar glass is a special glazing developed by Lamberts Company which features selective solar 

radiation properties depending on the season. Due to its precisely-determined prismatic structure, it 

is possible for a large amount of the solar radiation in winter, having a lower angle of incidence, to 

pass through the glazing into the indoor environment. whereas, in summer season a large amount of 

the solar radiation, having a higher angle of incidence, is reflected to the outside. This type of glass 

is already applied in the construction of an office center in Fürstenfeldbruck, Germany. 

Kara et al [13] have studied the performance of a coupled novel triple glass unit (TGU) and PCM 

wall, the mid layer of glass in the TGU being the Prisma solar glass. They have found that the solar 

transmittance of the TGU is reduced by 100% in summer (0.2 to 0.25) compared to winter (0.45 to 

0.55) and no overheating for the PCM wall has been encountered in summer season.  

The Prisma solar glass can be used instead of the ordinary glass in the external glazing of the TIM-

PCM wall composition. As a result, most of the incident radiation on the wall is transmitted in winter 

and reflected in summer. Therefore, the heat storage in the PCM is maximal in winter and 

insignificant in summer, and therefore the overheating problem can be avoided. The Prisma solar 

glass was modeled by assuming a transmission and a reflection coefficient of value 10% and 78% 

respectively, for the external TIM-PCM glazing in summer season. 

Figure 3-11 shows the indoor test room air temperature, and the PCM temperature for both glazing 

types for three consecutive days (3, 4, 5 August) in summer season. The results show that the lower 

solar transmittance during summer due to the use of Prisma solar glass can prevent the overheating 

problem. The peak indoor temperature is decreased by about 6.5 °C reaching a maximum value of 

28.7 °C compared to 35.3°C using ordinary glazing. In addition, the maximum PCM temperatures 

are reduced up to 19 °C, while during the night the PCM temperature is still higher than the phase 

change temperature and the PCM remains in its liquid state. As a conclusion, the Prisma solar glass 

is shown to be an effective solution for the encountered overheating problem in summer. 
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Figure 3-11: a) Indoor test room air temperature, and b) PCM temperature for both glazing type in summer 

season (3, 4, 5 August) 

 

7.3. Natural night ventilation 

Nocturnal ventilation is a passive cooling technique that uses the outdoor air at night to cool the 

building; the airflow is driven due to the temperature difference and the wind. The natural ventilation 

is considered in the aim of evacuating the extra heat at night, and to show its effect on the PCM 

performance and on the indoor air temperature during night and day. 

A window of 1 m2 located at the west wall is considered and scheduled to be open from 8 p.m. till 8 

a.m. and closed during the day with opaque blinds to prevent the solar radiation from entering the 

room. The natural ventilation rate is calculated using the equations of Ghiaus and Roulet [75]. The 

flow rate (m3/s) through the opening is calculated as: 

𝑉̇ = 0.5𝐴𝑤𝑣𝑒𝑓𝑓 Eq. 3-36 

where Aw is the effective area of the open window and veff is found using an empirical model: 

veff = (c1vr
2 + c2H. ∆T + c3)

1/2 
Eq. 3-37 

where c1 is a dimensionless coefficient depending upon window opening (c1 ~ 0.001), c2, c3 are 

buoyancy and wind constant (c2 ~ 0.0035, c3 = 0.01), vr (m/s) is the mean wind speed for the site, H 

is the height of the opening, and ΔT is the mean temperature difference between outdoor and indoor 

environment. 

The flow in air changes per hour is given as follow: 

ACH =
3600

V
V̇ 

Eq. 3-38 
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where V is the volume of the room. 

A flow rate between 6 ACH and 7 ACH is found for an opening area of 1 m2, when the difference 

between outdoor and indoor air temperature is minimal and the mean wind velocity is about 0.1 m/s. 

A parametric study on the effect of different ventilation rates (otherwise different window opening 

proportion) is carried out. The recommended minimum ventilation rate by ASHRAE is 0.36 ACH 

[76]. For a ventilation rate of 2 ACH, the peak indoor temperature is reduced by 1⁰C, above this ACH 

value the results are tardily changing where a ventilation rate of 6 ACH decreases the peak 

temperature by 1.5⁰ C. The minimum temperature is reduced by about 2 ⁰C and 3.6⁰C for a ventilation 

rate of 2 ACH and 6 ACH respectively, showing a higher effect of the natural ventilation at night. 

The natural night ventilation has almost (49.29°C  48.16°C ~ 1 °C) no effect on the maximum PCM 

temperature, while at night this temperature is reduced by about 2.5 °C for 6 ACH. The nocturnal 

ventilation cannot improve the performance of PCM since the outdoor air temperature at night is 

relatively high in summer conditions. 

Figure 3-12 shows that the natural night ventilation has insignificant effect on the indoor air 

temperature when blinds at 45° rotatable slat angle are used, and a ventilation rate of 2 ACH is 

sufficient in this case. As a conclusion, natural night ventilation alone cannot solve the overheating 

problem, and must be combined to shading devices. 

 

Figure 3-12: Indoor air temperature for different cases after applying natural night ventilation in summer 

season (3, 4, 5 August) 
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7.4. PCM RT28HC  

It was noted that despite a better indoor temperature, due to shading devices and night ventilation, the 

PCM never solidifies in summer, due to its low melting temperature. 

In this section another PCM, with a higher phase change temperature (chosen nearby the thermal 

comfort range [77]) is considered to be filled in the glass bricks instead of the fatty acid eutectic 21.3. 

The PCM is RT28HC, RUBITHERM® RT, a pure material, having similar optical properties of the 

fatty acid eutectic i.e. transparent in the liquid state and opaque in the solid state with phase change 

temperature of 28˚C. the thermo-physical properties can be found in [78].  

 

Figure 3-13: Average fraction of liquid and temperature in the PCM layer for both PCM in summer season (3, 4, 

5 August) 

Figure 3-13 shows the average liquid fraction of each PCM, the PCM having a phase change 

temperature of 21.3 ⁰C remains always in its liquid state during the whole day and night, while the 

other PCM with a phase change temperature of 28 ⁰C undergoes a partial freezing at night starting 

from 1 am solidifying by about 20% (fraction of liquid attains about 0.8) and then returns to its fully 

liquid state at 8 am with fraction of liquid equal to 1. During this partial solidification, a marginal 

portion of the stored heat during the day is released decreasing very slightly the maximum PCM 

temperature. Regarding the indoor air temperature, the difference is trivial using both PCM. Complete 
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cycling of the PCM28 can’t be achieved in this summer conditions and the previous solutions (7.1.1, 

7.1.2, 7.3) are recommended to avoid the overheating. 

8. Thermal comfort evaluation 

Considering that the test room cell of 9.29 m2 is an office room, with working hours from 9 a.m. till 

5 p.m. A schedule for people occupancy and equipment use defining a real case has been modeled. 

One person is considered in the office with load taken as 100 W, and a computer is considered of load 

20 W [76]. Daylight is provided to the inner environment by the translucent TIM–PCM wall. The 

simulations are conducted for three months of the hot season (June 1 till August 31); the weather data 

file is extracted from TRNSYS Meteonorm library since the measured weather data in Sophia are not 

available for all this period. 

An adaptive comfort model based on ASHRAE standard 55-2010 [79] is used to examine the thermal 

comfort. The indoor comfort temperature is related to the mean monthly outdoor air temperature. It 

defines two acceptability ranges (80% and 90%) that correspond to the satisfaction of the occupants. 

The office is considered as uncomfortable when the operative temperature falls out of the comfort 

ranges in the case where the office is occupied. 

The comfort temperature, and the 90% and 80% acceptability limits are calculated respectively using 

the following equations: 

𝑇𝑜𝑝 = 0.31 ∗ 𝑇𝑎(𝑜𝑢𝑡) +  17.8   Eq. 3-39 

𝑇𝑜𝑝 = 0.31 ∗ 𝑇𝑎(𝑜𝑢𝑡) +  17.8 ± 2.5  Eq. 3-40 

𝑇𝑜𝑝 = 0.31 ∗ 𝑇𝑎(𝑜𝑢𝑡) +  17.8 ± 3.5  Eq. 3-41 

where: 

𝑇𝑜𝑝 is the operative temperature (°C) and 𝑇𝑎(𝑜𝑢𝑡) is the monthly mean outdoor air temperature (°C) 

calculated as the arithmetic average of the mean monthly minimum and maximum daily air 

temperatures for the considered month. 

Figure 3-14 shows the indoor operative temperature in summer season for different cases, the dashed 

lines representing the comfort temperature and the 80% acceptability limits. For the base case, the 

indoor operative temperature is above the comfort level most of time, showing the overheating 

problem. The use of shading devices, especially the blinds, with or without nocturnal ventilation can 

bring the operative temperature closer to the comfort range. 

Figure 3-15 shows the percentage of occupied time when overheating will possibly occur according 

to ASHRAE 55 adaptive comfort model for two different levels of satisfaction. It is shown that the 

office without shading devices or nocturnal natural ventilation has a discomfort time percentage of 

90.22 % and 84.02 % for 90% and 80% satisfaction level respectively. The natural night ventilation 
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of 6 ACH reduces the discomfort time percentage to 69.75 % and 57.25 % for 90% and 80% 

acceptability range respectively. Adding an overhang of 1 m projection decreases the discomfort time 

to approximately 53.62 % for 80% satisfaction level. Applying the natural night ventilation in 

presence of the overhang decreases the overheating time percentage to 40.58% and 19.56% for 2 

ACH and 6 ACH respectively for 80% satisfaction level. For 90% satisfaction level, the discomfort 

is decreased to 58.33% and 34.24% for 2 ACH and 6 ACH respectively. Moreover, with Venetian 

blinds of slats rotated at 45 degrees, there is not so much risk of overheating where the discomfort 

percentage does not exceed 6 % for 80% satisfaction level. Combining natural night ventilation with 

blinds decreases the percentage of overheating time to 2.89% and 1.99% for 2 ACH and 6 ACH 

respectively for 80% acceptability range. No overheating is observed when Venetian blind are 

combined with overhangs for 80% acceptability range while 3.44% of overheating time is found for 

90% acceptability level. 
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Figure 3-14: Indoor operative temperature in summer season for different cases  
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Figure 3-15: The percentage of occupied time where overheating occurs according to ASHRAE 55 adaptive 

comfort model for different levels of satisfaction 

 

9. Application of the TIM-PCM wall under different climate conditions 
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continental climate (Dfb) the use of venetian blinds is sufficient to eliminate the discomfort time 

percentage. Providing natural ventilation decreases the discomfort time percentage. For the subarctic 

climate (Dfc), the percentage of occupied time where thermal comfort is not met does not exceed 

16% for 80% of occupants satisfied and no overheating is observed during the occupied hours using 

overhang of 1m projection or providing natural night ventilation of 6 ACH for both 80% and 90% of 

occupants satisfied.  

 

Figure 3-16: Percentage of occupied time where overheating occurs according to ASHRAE 55 adaptive comfort 

model for different levels of satisfaction for different climate conditions in summer season  
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10. Conclusion  

This paper investigates the thermal behavior of a novel special translucent superinsulated storage wall 

composed of glazing, silica aerogel and PCM filled in glass bricks. The aim of such wall is to provide 

energy storage and restitution, daylighting, and thermal/acoustic insulation. The TIM-PCM wall was 

tested in-situ in a full-sized test cell located at Sophia Antipolis, southern France. The experimental 

results showed that the wall is very efficient in winter season, while in summer the heat gains through 

the TIM-PCM wall cause an overheating problem and the PCM does not solidify. To optimize the 

wall’s performance, a simplified numerical model for heat transfer through this composite wall 

considering natural convection in liquid PCM and short-wave radiation absorption and transmission 

has been developed. The structured numerical model is simple to implement and fast enough to be 

coupled with TRNSYS. The MATLAB-TRSNYS model is then validated using experimental results; 

a good agreement is obtained between the simulated and the experimentally measured internal surface 

temperature of the TIM-PCM wall and the indoor air temperature for seven consecutive days in 

summer and winter. Finally, the TIM-PCM wall has been applied in different cities under different 

climates in summertime and the thermal comfort and PCM cycling have been studied. The following 

general conclusions can be drawn:  

• The developed numerical model represents a starting point for simulations on different 

configurations of the novel TIM-PCM wall and allows to fully investigate its abilities and 

drawbacks under different operative conditions, orientations, geometries and different 

climates without the need of performing expensive experimental analysis. 

• To be more realistic, natural convection in the liquid PCM should not be neglected when 

modeling phase change in the wall. 

• The use of Prisma solar glass instead of the ordinary glass in the TIM-PCM wall composition 

is shown to be an effective technology solving the encountered overheating problem in 

summer, while preserving the TIM-PCM advantages during winter. 

• Thermal comfort and cycling of PCM in summertime depends on the climate conditions. In 

the hot-summer Mediterranean climate, Venetian blinds of slats rotated at 45 degrees 

combined with an overhang of 1 m projection can ensure thermal comfort with the TIM-PCM 

wall. In oceanic and warm-summer humid continental climates, thermal comfort can be 

ensured by the sole use of an overhang of 1 m projection and Venetian blinds respectively. In 

subarctic climate the PCM achieves complete diurnal cycling and thermal comfort can be 

attained providing natural night ventilation. 

As future work, life cycle cost analysis, payback periods and optimization of TIM-PCM wall 

configuration under different climates conditions will be studied using the validated numerical model.
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Complementary sections to chapter 3 

A) Graphs for model validation in winter season 

In summer season, the PCM remains in its liquid state and the model was validated for seven 

consecutive days (30 July-5 August 2017) comparing the simulated and the measured values for the 

internal surface temperature of the TIM-PCM wall, the indoor test room air temperature and the PCM 

temperature in section 6. The comparisons showed a very good agreement and that the natural 

convection in liquid PCM must be considered. In this section we will show the validation curves, for 

internal surface temperature and indoor temperature, for seven consecutive days in winter season (27 

January-2 February 2017). In this period, phase change occurs, and the PCM melts during the day 

and solidifies at night. 

 

Figure 1: Temperatures and solar radiation for seven consecutive days in winter (27 January-2 February 2017). 

The seven consecutive days in winter season (27January- 2 February) are characterized by a low 

outdoor temperature varying from 5.22 ⁰C to 16.63 ⁰C, with low (70.82 W.m-2) and high (719.2 W.m-

2) solar radiation on the southern vertical plane (Figure 1). On January 27 and 28, the PCM does not 

melt staying in its solid state (PCM temperature lower than 21⁰C) and the test room air temperature 

is about 17⁰C. On January 29 and 30 and on February first, due the high incident solar radiation, the 

PCM melts during the day (PCM temperature up to 62⁰C) and solidifies at night and the indoor 

temperature reaches more than 20⁰C. The TIM-PCM wall is therefore very effective in the winter 

season (the average room air temperature is almost constant at18.38 ⁰C), keeping warm the indoor 
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environment especially in sunny days. The measured PCM temperatures for seven consecutive days 

in winter season are shown in Figure 2. 

Figure 2: Measured PCM temperatures for seven consecutive days in winter (27 January-2 February 2017). 

Noting that during solidification process, the convection heat transfer is less important than 

conduction [1,2]. In addition, in such walls as the INERTRANS wall solidification is more likely to 

happen at night, in absence of solar radiation. Thus, the equation of heat transfer for the phase change 

controlled by the conduction only is used to model solidification process (see Enthalpy method). 
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Figure 3: Simulated and measured a) internal surface temperature of the TIM-PCM wall and b) indoor test 

room air temperature for seven consecutive days in days in winter (27 January- 2 February 2017). 

Figure 3 shows the simulated and measured internal surface temperature of the TIM-PCM wall and 

indoor test room air temperature for seven consecutive days in days in winter (27 January- 2 February 

2017). The numerical model is found to be able to simulate the heat transfer phenomena through the 

TIM-PCM wall in winter. The model predicts properly the maximum and minimum peak values of 
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the hourly profile of the internal surface temperature and the indoor air temperature with a slight 

underestimation of the lowest values. The peak values in all days are in good agreement. For the 

indoor temperature a maximum difference between the simulated and experimental values is 1.3⁰C. 

The PCM undergoes complete cycles in January 29, 30 and February first while the PCM is remains 

in its solid state in 27 and 28 January where a good agreement is found between experimental and 

simulated values.  

In addition, the PRMSE and RSME demonstrate the good agreement between the experimental and 

the simulated results. The PRMSE of the indoor air temperature is 4.05%, and that of the internal 

surface temperature is 6.9 %. While the RMSE is 0.76⁰C and 1.43⁰C for the indoor air temperature 

and the internal surface temperature respectively. Here, the model considers convection during 

melting process. 

These results are relatively acceptable, the model is validated in summer (when PCM is always in its 

liquid state) and in winter (when phase change occurs). Thus, the model can be used for annual 

thermal assessment. 

B)  Wind velocity and outdoor relative humidity in winter and summer seasons 

The wind velocity is used to find the external convection heat transfer (correlation of Sturrock): 

ℎ𝑜𝑢𝑡 = 5.7𝑣 + 11.4 (Windward) 

ℎ𝑜𝑢𝑡 = 5.7𝑣 (Leeward)) 

And, the outdoor relative humidity is linked to the building model (in TRNSYS). 

 

0

0,2

0,4

0,6

0,8

1

0

20

40

60

80

100

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168

W
in

d
 v

e
lo

ci
ty

 (
m

/s
)

R
e

la
ti

ve
 h

u
m

id
it

y 
%

Time (hours)

Summer

Relative outdoor humidity Wind velocity



Chapter 3 

 

177 
 

 

Figure 4:  Measured wind velocity and outdoor relative humidity for seven consecutive days in summer (30 July-

5 August 2017) and winter (27 January-2 February 2017). 

 

References 

[1] M. Lacroix and M. Benmadda, “Numerical simulation of natural convectiondominated melting and 

solidification from a finned vertical wall,” Numer. Heat Transfer, no. Part A Appl. 31, pp. 71–86, 1997. 

[2] R. Velraj, R. seeniraj, B. Hafner, C. Faber, and K. Schwarzer, “HEAT TRANSFER ENHANCEMENT 

IN A LATENT HEAT STORAGE SYSTEM,” Solar Energy, vol. 65, no. No. 3, pp. 171–180, 1999. 
 

0

0,2

0,4

0,6

0,8

1

0

20

40

60

80

100

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168

W
in

d
 v

e
lo

ci
ty

 (
m

/s
)

R
e

la
ti

ve
 h

u
m

id
it

y 
%

Time (hours)

Winter

Relative outdoor humidity Wind velocity



 

 
 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

ENERGY PERFORMANCE AND ECONOMIC ANALYSIS 

OF A TIM-PCM WALL UNDER DIFFERENT CLIMATES 

 

 

 

 

 



 

 
 



Chapter 4 

 

181 
 

Chapter 4. Energy Performance and Economic Analysis of a TIM-PCM 

wall Under Different Climates 

Résumé du chapitre en français  

 

Performance énergétique et analyse économique liées à l'application du mur MCP-Aérogel sous 

différents climats 

Dans un premier temps, ce chapitre étudie la performance énergétique d’un bureau typique suite à 

l'incorporation du mur MCP-aérogel dans son enveloppe, dans six climats différents considérés selon 

la classification de Köppen-Geiger. Le processus de simulation est réalisé pour une année entière à 

l'aide du modèle numérique TRNSY-MATLAB validé expérimentalement. Les charges énergétiques 

annuelles de chauffage et de refroidissement sont déterminées pour un bureau conventionnel équipé 

d'une fenêtre double vitrage, puis comparées à celles du bureau équipé d'un mur MCP-aérogel orienté 

sud. Les économies d'énergie dues à l'utilisation du mur MCP-aérogel sont aussi évaluées. La surface 

du double vitrage isolé et du mur MCP-aérogel varie de 0 m2 à 7.532 m2.  

Dans tous les climats étudiés, la performance énergétique du bureau, en termes d'économies de 

chauffage et de refroidissement, est significativement améliorée avec l'incorporation de la paroi 

MCP-aérogel au lieu d'une fenêtre à double vitrage. De plus, les charges totales diminuent avec 

l'augmentation de la surface du mur sauf en climat méditerranéen (Csa). Ainsi, dans les villes ayant 

une saison estivale chaude, la surface du mur MCP-aérogel doit être limitée à une certaine valeur de 

manière à fournir des économies de chauffage significatives en hiver et des charges de 

refroidissement acceptables en été. Dans ce cas, la surface optimale du mur fournissant des charges 

énergétiques totales minimales est de 2,61 m2 à Sacramento, USA (Csa). Cependant, les dispositifs 

d'ombrage peuvent être utilisés en été pour empêcher le problème de surchauffe et réduire les charges 

de refroidissement. Dans les autres climats étudiés, la surface de la paroi MCP-aérogel montrant la 

meilleure performance énergétique est de l’ordre de 7.5 m2. 

Dans un deuxième temps, la surface optimale du mur MCP-aérogel a été évaluée économiquement 

pour chaque climat grâce à une analyse portant sur le coût global durant le cycle de vie (CCV) et le 

temps de retour sur investissement (TRI). Deux critères ont été évalués : la surface optimale est celle 

qui assure le CCV minimal ou le TRI minimal. Il a été trouvé que lorsque le climat devient plus froid, 

la surface optimale du mur MCP-aérogel augmente. Dans les climats polaire (ET) et subarctique 

(Dfc), l'application de la paroi MCP-aérogel est trouvé économiquement faisable. Les économies de 

chauffage pour l'immeuble de bureaux situé à Dras, en Inde (Dsb, climat continental) ne sont pas 

suffisantes pour récupérer l'investissement en raison des faibles prix de l'énergie et du taux 

d'actualisation (discount rate) élevé. A Paris, France (Cfb, climats océanique), l'utilisation du mur 
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MCP-aérogel s'avère plus rentable que l'utilisation de la fenêtre double vitrage en termes de coût 

minimal du cycle de vie et de temps de retour sur investissement. A Sacramento, Usa (Csa, climat 

méditerranéen) et Toronto, Canada (Dfa, climat humide continental), l’application du mur n'est pas 

rentable aux prix actuels de l'énergie et de l'investissement. Les meilleurs candidats pour l'application 

du mur MCP-aérogel se trouvent là où le prix du gaz naturel est relativement élevé, rendant le coût 

d'investissement initial relativement insignifiant comparé aux économies de chauffage. La viabilité 

économique de l'application du mur MCP-aérogel dépend donc de différents facteurs : conditions 

climatiques, économies d'énergie, coûts énergétiques (prix du gaz naturel, prix de l'électricité ...), 

situation économique du pays (taux d'actualisation et facteur de valeur actuelle) et couts 

d’investissement.  
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Abstract 

The application of an innovative translucent superinsulated latent heat storage wall, combining 

transparent insulation material and phase change materials (TIM-PCM wall), on the envelope of a 

typical office under different climates is evaluated. Energy and economic analysis related to this 

application are presented. The simulation process is carried out using an experimentally validated 

numerical model. The results show that the incorporation of the TIM-PCM wall, on the south 

orientation, is more efficient than the use of a double-glazed in all considered climates. Besides, 

increasing the TIM-PCM wall area increases the total energy savings in all climates except in the 

Mediterranean climate. The optimum TIM-PCM wall area is then evaluated economically through 

life-cycle cost and payback period analysis. The purpose is to ensure an effective performance of the 

wall in each climate and at the same time to ensure an economic viability. The results show that, in 

polar and subarctic climates, the application of the TIM-PCM wall has a high economic value and 

the investment appears to be attractive, the payback period being 10.5 years and 7.8 years 

respectively. In Paris (Oceanic climate), the use of the TIM-PCM wall is found more cost-effective 

than the use of double-glazed window showing lower total life-cycle cost and payback period. 

However, In Dras (continental climate), the use of the wall is found infeasible economically due to 

low energy prices and high discount rates. At current prices, the TIM-PCM wall investment in 

Sacramento (Mediterranean climate) and Toronto (Humid continental) does not offer economic 

benefits. 

Keywords: TIM-PCM wall, energy performance, climatic zones, economic analysis, office building 

envelope. 

Highlights: 

• Application of the TIM-PCM wall under different climates. 

• Energy and economic analysis related to the application of the TIM-PCM wall. 

• Evaluation of the optimum TIM-PCM wall area in each climatic condition. 

• Economic viability depends on climatic conditions, energy price and investment cost. 

  

https://www.britannica.com/science/marine-west-coast-climate
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1. Introduction 

Nowadays, reducing the total energy demand of the world is a crucial challenge, due to global 

warming, climate change effects, energy crisis, and environmental issues. Building sector contributes 

to a great part of the world’s energy consumption [1], mainly due to the heating and cooling demands. 

Thus, one of the most important ways of reducing the total global energy consumption is to decrease 

the energy used in HVAC systems in buildings. One promising solution is the integration of latent 

thermal energy storage systems based on phase change materials in the building envelope. Phase 

change materials can store (during melting) and release (during solidification) large amounts of 

energy at an almost constant temperature. Consequently, they can enhance building energy 

performance, decrease building energy use, reduce peak heating and cooling loads and improve 

thermal comfort [2]–[6]. However, the workability of passive PCM application in buildings depends 

on the diurnal temperature variations that ensure the PCM cycling. Thus, an effective use of PCM in 

buildings requires an appropriate selection of thermo-physical properties, quantity, and position of 

the PCM. Many studies were conducted to find optimum PCM thickness, melting temperature, and 

location under different climate conditions [7]–[9]. However, in addition to energy-saving and 

thermally efficient materials, the ever-growing construction industries worldwide require 

environmentally friendly and inexpensive materials [10]. 

Trombe walls with integrated phase change materials are a passive solar technique that has shown 

great potentialities [11]–[15]. During the day, this wall is heated due to the incident solar radiation, 

melting the PCM. At night, when the outdoor temperature falls below the phase change temperature, 

the heat stored by the PCM is released, warming the building. However, this technique induces a loss 

of visual daylight comfort because it is opaque. Many studies focus on the integration of PCM into a 

transparent component [16] [17] [18] [19] [20] [21] so that the PCM is directly exposed to the solar 

radiation which improves the PCM charge process, providing daylighting at the same time. Although 

the integration of PCM in transparent or opaque building envelope has shown a positive impact on 

annual cooling and heating loads and indoor thermal comfort in various climate zones, there are still 

technical, environmental, and economic barriers to be addressed. 

Kyriaki et al. [22] analyzed the state of the art of the existing research on the environmental and 

economic performance of the application of PCM in buildings by using life cycle analysis (LCA) and 

life cycle cost analysis (LCCA) methodologies. It was concluded that to minimize the overall 

environmental impact, the use of PCM and the useful life of the building should be maximized. In 

addition, they concluded that very few studies are found about the economic assessment of PCM, 

based on life-cycle cost analysis. And that the application of PCM does not seem to be economically 

viable because of their high initial investment cost. Baniassadi et al. [23] conducted an economic 
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optimization of the thickness of the insulation and the PCM layer of a residential building for different 

climatic regions of Iran using life-cycle cost analysis (LCCA). The results showed that with the 

current economic situation of the country and current energy prices, insulation layers are more cost-

effective than phase change materials. This is due to the relatively high price of the BioPCM material 

which makes its use not economically viable. Akeiber et al. [10] evaluated the thermal performance 

and economy of a newly developed PCM extracted from Iraqi crude petroleum waste product. 

Experiments showed that the room without PCM encapsulation consumes higher energy to maintain 

the indoor temperature at 24⁰C. The energy economy of the PCM incorporated room is simply 

evaluated by comparing the estimated electricity cost with the building that contains the traditional 

air conditioning system. They found that PCM encapsulation leads to a great amount of electrical 

energy saving and maintains better thermal comfort in hot and dry climate condition. Panayiotou et 

al. [24] evaluated the application of macroencapsulated PCM on the envelope of a typical dwelling 

in the Mediterranean region. The optimum case, achieving maximum energy savings, was combining 

the PCM with a common thermal insulation. The results showed that the maximum yearly energy 

savings obtained by the combined case are 66.2%. The results were also economically evaluated using 

life-cycle cost (LCC) analysis. It was shown that the use of PCM alone is not a very attractive solution 

in financial terms. This is due to the combination of high initial cost and low annual saving cost which 

results in a long payback time of 14 ½ years. When the PCM is combined with thermal insulation, 

the payback period is reduced to 7 ½ years. Kosny et al. [25] investigated a cost analysis of simple 

PCM-enhanced building envelopes in southern U.S. climates. They found that dispersed PCM in wall 

and attic applications can be cost-effective and payback periods for their building applications can be 

less than 10 years. Also, the best candidates for these applications are found where electricity cost is 

higher than $0.20/kWh and in U.S. locations with cooling degree days CDDs higher than 30000. 

Bland et al. [26] showed in their study the breakdown of the financial viability of installing a PCM 

system into a UK home. They found that an ideal PCM system installed into a residential building 

will need a service life of at least 25 years to make it viable. The PCM systems must provide 

significant energy savings before they become attractive to commercial purchasers. Chan [27] 

evaluated the thermal and the energy performance of a typical residential building with PCM 

integrated external walls in Hong Kong. They found that the building integrated with PCM is 

economically infeasible in Hong Kong, mainly due to the expensive capital cost of PCM wallboard 

with a payback period of 91 years. For economic analysis, Mi et al. [28] used the static and the 

dynamic payback period approach to evaluate the application of PCM in a typical office building in 

five different climates in China. They found that the energy savings resulting from PCM application 

were the best for the office building located in a severely cold climate, followed by cold region. From 
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the economic analysis, the application of PCM in cities having severe or cold winter showed high 

economic value and the investment appeared to be attractive. However, at current prices, the PCM 

investment in cities having a mild and warm climate, cannot be recovered and do not offer economic 

benefits. Wahid et al [29] highlighted the feasibility of PCM utilization in the households. They found 

that PCM could be extensively used in building structures to reduce the electricity demand. Sun et al. 

[30] presented an energy and economic analysis related to the application of phase change materials 

boards (PCMBs) in building enclosures during the cooling season. Following a simple payback period 

evaluation, they found that the use of PCMBs can be possibly cost-effective in occupied buildings 

for moderate temperature climates. Chaiyat [31] concluded that integration of PCM balls within the 

evaporator of the air-conditioner was more beneficial than the normal air-conditioner based on energy 

efficiency and economic results.  

From all the above mentioned, it can be stated that: (1) the studies on economic analysis of building 

integrated with PCM are not comprehensive and more studies should be conducted to evaluate the 

economic performance of the use of PCM in buildings, (2) economic analyses related to the 

application of PCM in buildings are conducted based on a life-cycle cost evaluation or based on a 

payback period evaluation (3) the PCM systems must provide significant energy savings before they 

become attractive to commercial purchase, (4) the economic feasibility of PCM depends on climatic 

conditions, energy costs, country economic situation, (5) most previous studies found that the 

application of PCM is not economically viable mainly due to the expensive investment costs 

compared to the expected energy savings. 

The present paper investigates an innovative passive solar wall, referred to as TIM-PCM wall, 

providing at the same time very high insulation, latent heat storage, and daylighting. The wall is 

composed of a glazing facing the outside, a gap filled with high insulation silica aerogels materials 

(transparent insulation material-TIM), and glass bricks filled with a eutectic PCM on the inside. The 

whole wall is translucent. The energy and economic performance of the incorporation of the TIM-

PCM wall in an office room envelope are investigated under different climates via an experimentally 

validated numerical model for a whole year. The annual heating and cooling energy loads are 

determined for a conventional office room equipped with an insulated double-glazed window and 

then compared with those of the correspondent office room equipped with a TIM-PCM wall at the 

south orientation. Energy savings due to the use of TIM-PCM are evaluated. Then, the optimum TIM-

PCM wall area is assessed economically for each climate through life-cycle cost and payback period 

analysis. The aim is to ensure a good functioning of the TIM-PCM wall in each climate and at the 

same time ensure economic feasibility. Noting that, The TIM-PCM wall is an innovative solar wall, 

its impact on the building thermal behavior has never been studied numerically under different 
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climates for an annual basis. Also, the feasibility of the wall application from an economic point of 

view has never been studied. The wall area was also optimized depending on the climate for the first 

time. In addition, in the literature, there is a lack of studies that evaluate the economic performance 

of the use of PCM in buildings. The effective PCM system, in terms of reducing heating or cooling 

loads, does not necessarily mean that this system can be applicable to real life constructions, it must 

provide significant energy savings before it becomes attractive to commercial purchase. The current 

study represents a starting point and should be continued in future, the purpose is not only to ensure 

an effective performance of the PCM application but also to ensure an economic viability.  

2. Methodology 

2.1. Description of simulated building 

The energy performance of a single-story office building equipped with TIM-PCM wall is studied 

(Figure 4-1). The office has a height of 2.8 m and a total floor area of 32 m2 with a slab-on-grade 

foundation. The ground floor is highly insulated assuming a small heat exchange occurring between 

the office room and the ground. The walls construction composition and the thermo-physical 

properties of used materials are summarized in Table 4-1 and Table 4-2. The conventional office 

room is equipped with an insulated double-glazed window on the south wall of a total area of 11.2 

m2. The double glazing with krypton insulation of thickness 4/16/4 has a U value of 0.86 W/ m2K 

and a g value of 0.598. The annual heating and cooling loads are determined for the conventional 

office room for different climate conditions and then compared through simulation with those of the 

correspondent PCM-enhanced office room, equipped with a TIM-PCM wall at the south orientation. 

The TIM-PCM wall shown in Figure 4-2 is composed, from outside to inside, of a glass pane having 

a thickness of 0.8 cm, a 4cm thick bed of granular silica aerogel, and a eutectic of fatty acids as PCM, 

filled in glass bricks of dimension 19cm × 19cm × 5cm. More details about the TIM-PCM wall can 

be found in [32], [33]. The thermo-physical and optical properties of the used PCM, the silica aerogel, 

and the glass are summarized in Table 4-1 to Table 4-5. In the simulation, the area of the insulated 

double-glazed window and the TIM-PCM wall is varied from 0 m2 to 7.532 m2. Otherwise, the ratio 

of the double-glazing area over the total south wall area varies between 0 % and 67 %, same for the 

TIM-PCM wall (Table 4-6). 
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Figure 4-1: Typical plan of a simple office room. 

 

 

Figure 4-2: TIM-PCM wall from the outside and Schematic of the TIM–PCM wall composition 
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Table 4-1: office room walls construction 

Element Construction (inside to outside) Thickness (m) U value (W/m2K) 

External walls 

plasterboard 0.015  

Glass wool 0.085 0.419 

concrete 0.20  

Partitions 

plaster 0.013  

Glass wool 0.16 0.241 

plaster 0.013  

Roof 

plasterboard 0.013 

0.163 

Glass wool 0.16 

Wooden plate 0.012 

Mousse phenol-formol 0.06 

Wooden plate 0.012 

Floor 

tiles 0.015 

0.189 concrete 0.15 

Expanded polystyrene 0.08 

Table 4-2: Thermo-physical properties of the test room materials 

Materials/properties 
Thermal conductivity 

(W/m.K) 

Specific heat 

(J/kg.K) 
Density (kg/m3) 

plasterboard 0.32 800 790 

Glass wool 0.041 840 12 

concrete 2.1 800 2400 

Mousse phenol-formol 0.032 1255 32 

Wooden plate 0.18 1700 780 

Expanded polystyrene 0.04 1380 25 

tiles 1 1000 2400 

Table 4-3: Thermo-physical properties of the fatty acids eutectic [32] 

Property value 

ks (W/m.K) 0.182 

kl (W/m.K) 0.182 

LH (J/kg) 152000 

Cps (J/kg.K) 1670 

Cpl (J/kg.K) 2090 

ρs (kg/m3) 960 

ρl (kg/m3) 884 

Tm (°C) 21.3 

α (m2/s) 9.85x10-8 

ν (m2/s) 11x10-6 

β (1/K) 3.1x10-3 
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Table 4-4: Optical properties of the fatty acids eutectic [32] 

  𝜏% 𝜌% 

Liquid state 
Energetic (0.1μm< λ <100μm) 90 5 

Optical (0.38μm<λ<0.78μm) 78 6 

Solid state 
Energetic (0.1μm< λ <100μm) ≈ 0 53 

Optical (0.38μm<λ<0.78μm) ≈ 0 56 

Table 4-5: Thermo-physical and optical properties of glass and Silica aerogel 

properties/Materials glass Silica aerogel 

Thickness (cm) 0.8 4 

k (W/m.K) 1 0.018(at 25⁰C) 

Cp (J/kg.K) 840 1500 

ρ (kg/m3) 2700 100 

𝜏% 80 57 

𝛼% 12 10 

Table 4-6: Different dimensions of the TIM-PCM wall to be studied 

Bricks number TIM-PCM wall area (m2) PCM volume (m3) 
Rest of wall area 

(m2) 

(TIM-PCM wall 

area / total wall 

area) (%) 

0 0 0 11.2 0 

40 1.5064 0.041344 8.65 13.5% 

90 3.3894 0.093024 6.77 30% 

140 5.2724 0.144704 4.89 47% 

200 7.532 0.20672 2.63 67% 

Regarding internal heat gains (Table 4-7), the office room is occupied by three persons in light work 

office activity with a constant metabolic rate of 115 W/person. To simulate a real-lifestyle, the office 

is considered occupied during the weekdays from 8 a.m. till 12 p.m. and from 2 p.m. till 6 p.m. and 

unoccupied during weekends.  

The following scenario is adopted: 

• The heating system is always available to maintain the indoor air temperature at a pre-defined 

setpoint level. The heating set-point schedule is the same as that of the French thermal 

regulations ‘‘RT 2012”, heating set-point is set at 19°C for occupied time and at 16°C for 

unoccupied times [34]. 

• The cooling set-point is set at 26°C for occupied time and off for unoccupied times. 

• The infiltration rate is taken 0.4 ACH (ASHRAE Fundamentals Handbook [35]) 

• The European Lighting Standard EN12464-1 [36], requires an illuminance of 500 lux in 

working areas. The artificial lighting is not always ON since the TIM-PCM wall allows 

daylighting.  
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Table 4-7: Internal heat gains in the office room (ASHRAE Fundamentals Handbook (SI) [35]) 

Gains Value 

3 persons 115 W of which 45 W radiative 70 W convective 

3 Computers 20 W of which 15% radiant and 85% convective 

One printer 35 W of which 20% radiant and 80% convective 

3 Phones / faxes 15 W of which 30% radiant and 65% convective 

Microwave oven 28 L 400 W of convective gain 

Small refrigerator 310 W of convective gain 

2.2. Investigated climates 

The main objective of this work is to evaluate the energy performance of the TIM-PCM wall and to 

find the optimum wall configuration in different places around the world. Therefore, six climates for 

different cities were considered according to the Köppen–Geiger classification [37]. Table 4-8 shows 

the description of the different selected climates for this study as well as the latitude, the longitude 

and the elevation for each city. Since the main purpose of the solar TIM-PCM wall is to provide 

heating to the indoor environment, most of the climates are chosen with mild, cold or severe winter 

season and the climate classifications A (tropical) and B (arid) are excluded from the study. The 

weather data files are extracted from TRNSYS Meteonorm library. Table 4-9 presents some major 

weather characteristics for each climate. 

Table 4-8: Selected locations and climate characteristics according to Köppen-Geiger classification [37] 

City Climate Latitude Longitude Elevation (m) 

Sacramento, California, 

(USA) 
Mediterranean climate (Csa) 38.5816° N 121.4944° W 9.1 

Paris (France) Oceanic climate (Cfb) 48.8566° N 2.3522° E 36 

Toronto (Canada) Humid Continental (Dfa) 43.6532° N 79.3832° W 76 

Dras (India) Continental (Dsb) 34.4330° N 75.7670° E 3066 

Kiruna (Sweden) Continental subarctic  (Dfc) 67.8558° N, 20.2253° E 530 

Barentsburg (Norway) Polar climate (ET) 78.0648° N 14.2335° E 15 

Table 4-9: Some main weather characteristics for each climate 

City Sacramento Paris Toronto Dras Kiruna Barentsburg 

Climate Csa Cfb Dfa Dsb Dfc ET 

Max outdoor temperature (°C) 39.7 31.25 31.05 29.3 23.6 12.2 

Min outdoor temperature (°C) -0.8 -7.75 -21.75 -23.4 -32.75 -29.3 

Max incident solar radiation on southern 

vertical plane (W/m2 ) 
833.08 844.97 881.84 963.86 837.01 890.74 

Total yearly solar radiation on southern 

vertical plane (Kwh/m2/ year ) 
1148.54 751.48 946.92 1044.83 686.27 601.23 

https://en.wikipedia.org/wiki/Sacramento,_California
https://www.britannica.com/science/Mediterranean-climate
https://www.britannica.com/science/marine-west-coast-climate
https://www.britannica.com/science/continental-subarctic-climate
https://www.britannica.com/science/tundra-climate
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In general, in cooling dominant climates (Köppen-Geiger classifications A and B) the optimum PCM 

melting temperature is closer to the maximum of 26ºC (melting range of 24ºC-28ºC), whereas in 

heating dominant climates (C and D) the optimum PCM melting is closer to the minimum of 20ºC 

(melting range of 18ºC-22ºC) [9]. The eutectic fatty acids integrated into the glass bricks of the TIM-

PCM wall having a phase change temperature of 21.3˚C is appropriate for the chosen climates. 

2.3. Numerical model 

In this work, a one-dimensional numerical model is developed considering the effect of thermal 

bridges caused by the joints of the bricks. Mesh sensitivity analysis was carried out for the numerical 

model to make sure that the results are independent of the numerical domain. Finally, a total of 16 

nodes were used, 2 for the glazing layer, 5 for the silica aerogel, 5 for PCM layer and 2 nodes for 

each glass brick. The chosen discretized scheme shows good accuracy within a satisfactory 

computational time, and it is well-matched with other works evaluating the annual thermal 

performance of PCM applications in facades [38]–[40]. The unsteady energy equation is written for 

each node and solved numerically. The developed TIM-PCM wall model computes the temperature 

field and the solar radiation transmitted to the test cell through the wall at each time step, these outputs 

are then linked to TRNSYS to simulate the energy performance of the whole building. More details 

about the development of the numerical model can be found in [41]. 

For the TIM-PCM wall, the heat transfer includes different regions, which are the outer glazing, the 

silica aerogel insulation and the PCM filled in glass brick. The one-dimensional unsteady energy 

equation for glazing and insulation layer is given as  

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
+ ∅𝑠𝑜𝑙 

Eq. 4-1 

where 𝜌 is the density (kg/m3), 𝐶𝑝 is the specific heat (J/kg. K), k is the thermal conductivity (W/m. 

K) and ∅sol (W/m2) is the absorbed solar radiation at the surface of the layer. 

In the PCM layer, the heat transfer during phase change is done by conduction, natural convection in 

the liquid phase and shortwave radiation. The unsteady energy equation for PCM regions is given as 

[42]: 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
=
𝜕

𝜕𝑥
(𝑘 

𝜕𝑇

𝜕𝑥
)− 𝜌𝐿𝐻

𝜕𝑓
𝑙

𝜕𝑡
+ ∅𝑠𝑜𝑙 

Eq. 4-2 

where ∅sol (W/m2) is the absorbed solar radiation, in the layer, 𝐿𝐻 is the latent heat of fusion (J/kg) 

and 𝑓𝑙 is the liquid fraction. 

The absorbed solar radiation ∅sol ,at a node p in the PCM layer, is then given as [17]: 
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∅𝑠𝑜𝑙 =
𝑄𝑠𝑜𝑙−𝑡𝑟𝑎𝑛𝑠 𝛼𝑃

𝑁
 Eq. 4-3 

𝑄𝑠𝑜𝑙−𝑡𝑟𝑎𝑛𝑠 is the transmitted solar radiation to the PCM layer calculated using equations given by 

Siegel [43], αP is the PCM absorption coefficient at the node p calculated using the equations 

proposed by Gowreesunker et al. to model combined phase change and radiation problems [17].  

To solve the phase change problem, a fixed-grid modified “enthalpy” method is used, inspired by the 

work of Zivkovic et al. [44]. The convection in the liquid PCM is accounted for using the enhanced 

thermal conductivity approach together with the scaling theory [45] [46] [47]. The convection effect 

is only considered in the upper part of the PCM layer of height z1 and width z2, while the zone 

(z2. Hb) − (z1. z2) is controlled by conduction. Therefore, an average enhanced conductivity for 

liquid nodes is used in the one-dimensional model expressed by: 

𝑘𝑒𝑛ℎ,𝑝 =
𝑘𝑙[(z2. Hb) − (𝑧1. 𝑧2)] + 𝑘𝑙 . 𝑁𝑢𝑧1(𝑧1. 𝑧2).

z2. Hb
 Eq. 4-4 

where 𝑘𝑒𝑛ℎ,𝑝 is the liquid enhanced conductivity for the liquid PCM node p, Hb is the height of the 

glass brick filled with PCM and Nuz is the Nusselt number correlation given by Berkovsky and 

Polevikov [48]. More details can be found in the reference [33]. 

The heat balance on the outside surface is given by [49]: 

𝜌𝑐𝑝
∆𝑥

2

𝜕𝑇

𝜕𝑡
= ∅𝑐𝑜𝑛𝑑(𝑡) + ∅LW,out(𝑡) + ∅𝑐𝑜𝑛𝑣,𝑜𝑢𝑡(𝑡) + ∅𝑠𝑜𝑙(𝑡)  

Eq. 4-5 

where,  ∅𝑐𝑜𝑛𝑑(𝑡) is the conductive heat flux in (𝑊/𝑚2) is given as: 

∅𝑐𝑜𝑛𝑑(𝑡) =
𝑘

∆𝑥
(𝑇𝑠+∆𝑥 − 𝑇𝑠𝑢𝑟𝑓)  

Eq. 4-6 

and ∅𝑠𝑜𝑙  (𝑊/𝑚
2) is the solar absorption flux at the surface expressed by: 

∅𝑠𝑜𝑙(𝑡) = 𝛼𝑄𝑠𝑜𝑙−𝑡𝑜𝑡𝑎𝑙    Eq. 4-7 

∅LW,out(𝑡) and ∅𝑐𝑜𝑛𝑣,𝑜𝑢𝑡(𝑡) are respectively the radiative heat exchange (W/m2) with the outdoor 

environment and the convective heat flux with the outside. 

the radiative heat exchange with the outdoor environment is given as follow: 

∅LW,out = hr,grdFgrd(Tgrd − Tsurf) + hr,skyFsky(Tsky − Tsurf) 
Eq. 4-8 

The sky temperature Tsky is given by Swinbank [50], function of the air temperature as follow, 

assuming a clear sky: 

Tsky = 0.0552Tair
1.5 Eq. 4-9 
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For a vertical wall, Fgrd and Fsky are equal to 0.5. For the usual sky and surface temperatures, the 

coefficients hr,sky and hr,grd range from 4.7 W/m2. K to 5.7 W/m2. K for buildings located in 

temperate regions. 

The convective exchange with the external environment is generally calculated using a linear 

correlation function of the wind speed. The correlation in (W/ m2K) used here is the one established 

by Sturrock [51]: 

ℎ𝑜𝑢𝑡 = 5.7𝑣 + 11.4 (Windward) 

ℎ𝑜𝑢𝑡 = 5.7𝑣 (Leeward) 

Eq. 4-10 

Where v is the wind velocity (m/s) 

The heat balance on the internal surface is given by: 

𝜌𝑐𝑝
∆𝑥

2

𝜕𝑇

𝜕𝑡
= ∅𝑐𝑜𝑛𝑑(𝑡) + ∅LW,in(𝑡) + ∅𝑐𝑜𝑛𝑣,𝑖𝑛(𝑡) + ∅𝑠𝑜𝑙(𝑡) 

Eq. 4-11 

Conduction flux through the wall (𝑊/𝑚2) is given as: 

∅𝑐𝑜𝑛𝑑(𝑡) =
𝑘

∆𝑥
(𝑇𝑠−∆𝑥 − 𝑇𝑠𝑢𝑟𝑓)  

Eq. 4-12 

The transmitted solar radiation flux absorbed at the internal wall surface reads: 

∅𝑠𝑜𝑙(𝑡) = 𝛼𝑄𝑠𝑜𝑙−𝑡𝑟𝑎𝑛𝑠    Eq. 4-13 

where ∅LW,in(𝑡) and ∅𝑐𝑜𝑛𝑣,𝑖𝑛(𝑡) are the net longwave radiant exchange flux between zone surfaces 

(W/m2) and the convective heat flux with the indoor air. 

The net longwave radiant exchange flux between zone surfaces is given by 

∅𝐿𝑊,𝑖𝑛 = his(Tin − Tsurf) Eq. 4-14 

where his is the internal longwave radiative exchange coefficient, for standard building temperatures 

it varies very little around the value 5 W/m2. K 

The internal convection coefficient used to evaluate the convection heat transfer for the TIM-PCM 

wall with the interior is the one developed by Alamdari for vertical surfaces [38]: 

ℎ𝑖𝑛 = {[1.5(
|∆𝑇|

𝐻
)

1/4

]

6

+ [1.23(|∆𝑇|)1/3]6}

1/6

 Eq. 4-15 

where ∆T is the temperature difference between the internal wall surface and the indoor air, and H is 

the height of the vertical surface. 

A one-dimensional implicit finite volume method established by Patankar 1980 [52] is used to 

estimate the heat transfer mechanism through the TIM-PCM wall. The computational domain is 

divided into control volumes, the discretized equation over a typical control volume being written as 

follow: 
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𝑎𝑃𝑇𝑃
𝑡+∆𝑡 = 𝑎𝑊𝑇𝑊

𝑡+∆𝑡 + 𝑎𝐸𝑇𝐸
𝑡+∆𝑡 + 𝑏  Eq. 4-16 

where, 

𝑎𝑊 = 𝑘𝑤
𝛥𝑦

(∆𝑥)𝑤
, 𝑎𝐸 = 𝑘𝑒

𝛥𝑦

(∆𝑥)𝑒
  

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + 𝑎𝑃
𝑡  

𝑎𝑃
𝑡 =

𝜌𝐶𝑝∆𝑥

∆𝑡
 

𝑏 = 𝑎𝑃
𝑡 𝑇𝑃

𝑡 + ∅𝑠𝑜𝑙 
Eq. 4-17 

The superscript t indicates the values at the previous time step, 𝑡 + ∆𝑡 indicates the values at the 

current time step. 𝑘𝑤 and 𝑘𝑒 are the thermal conductivities calculated at the interface. 

A system of linear equations is formed from the discretized equations and can be written in a matrix 

form as: 

𝐴 ∗ 𝑇 = 𝐵  Eq. 4-18  

where A is the matrix of coefficients (tri-diagonal sparse matrix), T is the vector of unknown 

temperatures and B is the vector of known terms including the values at the previous time step. The 

current temperature values 𝑇𝑃
𝑡+∆𝑡 are obtained from the previously solved time step temperatures 

values 𝑇𝑃
𝑡. The system is solved using a direct non-iterative method, the Gaussian elimination 

algorithm, which produces the solution without explicitly forming the inverse. This function is built 

in MATLAB. 

The model of the heat transfer through the TIM-PCM wall is then linked to TRNSYS via Type 155, 

whose function is to enable the use of MATLAB program in TRNSYS. This link enables to simulate 

the thermal performance of the test cell. The MATLAB-TRSNYS model is then validated using 

experimental results of a full-sized test cell located at Sophia Antipolis within the center for 

Processes, Renewable Energies and Energy Systems (PERSEE) of Mines Paris Tech graduate school 

[32]. A good agreement is obtained between the simulated and the experimentally measured internal 

surface temperature of the TIM-PCM wall and the indoor air temperature for seven consecutive days 

in summer and winter. Table 4-10 shows the root mean square error 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑠𝑖 − 𝑒𝑖)2
𝑛
𝑖=1  and 

the percentage of root mean square error 𝑃𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (

𝑠𝑖−𝑒𝑖

𝑒𝑖
)
2

𝑛
𝑖=1  (where ei and si are the 

experimental and the simulated values respectively) for the hourly profile of the surface and indoor 

temperature in summer and winter season. The validated numerical model allows to completely 

investigate the abilities and the drawbacks of the novel TIM-PCM wall under different conditions. 

More details on the model validation can be found in [41]. 
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Table 4-10: RMSE and PRMSE for the hourly profile of the surface and indoor temperature in summer and 

winter season 

Season Physical quantity RMSE PRMSE 

Winter 
Surface temperature 1.43⁰C 6.99% 

Indoor air temperature 0.76⁰C 4.05% 

Summer 
Surface temperature 1.13 ⁰C 3.28 % 

Indoor air temperature 0.57 ⁰C 1.87 % 

3. Energy Performance Analysis 

In this section, the results of the annual heating and cooling loads are presented for (1) an office with 

an opaque wall at the south orientation, (2) conventional office equipped with double glazing with 

different areas on the south wall, and (3) an office equipped with TIM-PCM wall with different 

dimensions (shown in Table 4-6) at the south orientation. The energy savings due to the use of the 

TIM-PCM wall are evaluated compared to the two cases: office with opaque wall and office with of 

double-glazing on the south wall. 

Figure 4-3 and Table 4-11 show the annual heating loads in kWh/m2(floor area)/year in each climate, 

for different surface areas of the double-glazed window and the TIM-PCM wall (from 0 m2 (opaque 

wall) to 7.532 m2). The results show that, in all climates, the use of TIM-PCM wall at the south 

orientation instead of an opaque wall is very effective. In fact, the heating loads decrease with the 

increase of the area of the TIM-PCM wall (blue curve). This is due to the transmission of solar heat 

gains to the indoor environment (transmission of 90% when the PCM is liquid), the storage of the 

heat during the day and releasing it during the night (when the PCM works perfectly assuring diurnal 

cycling) and the superinsulation silica aerogel that prohibits the heat losses. 

The first point on the curve (value at 0 m2) designates the heating loads of the office with an opaque 

wall at the south orientation of U value 0.416 W/ m2K. The integration of TIM-PCM wall of area 

7.53 m2 in the south wall instead of the opaque wall reduces the annual heating loads by 36.52% 

(from 228.54 kWh/m2/year to 145.07 kWh/m2/year) in Barentsburg (ET), by 38.90% (from 182.35 

kWh/m2/year to 111.44 kWh/m2/year) in Kiruna (Dfc), by 51.69% (from 144.07 kWh/m2/year to 

69.60 kWh/m2/year) in Dras (Dsb), by 54.12% (from 96.53 kWh/m2/year to 44.29 kWh/m2/year) in 

Toronto (Dfa), by 62.24% (from 61.54 kWh/m2/year to 23.24 kWh/m2/year) in Paris (Cfb) and by 

90.04% (from 24.49 kWh/m2/year to 2.44 kWh/m2/year) in Sacramento ( Csa). This means that when 

the climate gets warmer, the percentage of heating savings increase, and the passive solar wall can 

provide heating needs to the building. 

Concerning the conventional office equipped with double glazing, although the insulation 

performance of the double glazing (U value 0.86 W/ m2K) is inferior to that of the opaque external 



Chapter 4 

 

197 
 

wall (0.416 W/ m2K), the heating loads decrease with the increase of the area of the double-glazing 

(orange curve). This reduction is due mainly to the solar heat gains provided by the transparent double 

glazing. However, the continuous reduction in heating loads is not always true especially in colder 

climates (Barentsburg (ET) and Kiruna (Dfc)), where the increase of the double-glazing area is not 

beneficial exceeding a certain area. The heating loads started to increase again using a double glazing 

of an area larger than 5.27 m2. In this case, the impact of the U value reduction of the wall is more 

influential than the effect of solar heat gains. 

The percentage of heating loads reduction due to the increase of glazing area depends mainly on the 

climate and the amount of the incident solar radiation, and this reduction is found less significant than 

that when the TIM-PCM wall is used. The integration of double glazing of area 7.53 m2 in the south 

wall reduces the annual heating loads by 26.59% (from 144.07 kWh/m2/year to 105.76 kWh/m2/year) 

in Dras (Dsb), by 28.29% (from 96.53 kWh/m2/year to 69.22 kWh/m2/year) in Toronto (Dfa), by 

32.43% (from 61.54 kWh/m2/year to 41.58 kWh/m2/year) in Paris (Cfb) and by 79.95% (from 24.49 

kWh/m2/year to 4.91 kWh/m2/year) in Sacramento ( Csa). Also, when the climate gets warmer, the 

percentage of heating reduction increase. 

Table 4-11: Annual heating loads (kWh/m2/year) for each city (climate) for an office equipped with double 

glazing and PCM enhanced office for different double glazing or TIM-PCM wall surfaces 

Annual heating loads (kWh/m2/year) 

 
Office with 

opaque 

south wall 

Office with double glazing (U 

value=0.86 W/ m2K) on the south 

wall 

Office with TIM-PCM wall at the 

south orientation 

Area of double 

glazing or TIM-

PCM wall (m2) 

0 1.51 3.39 5.27 7.53 1.51 3.39 5.27 7.53 

Barentsburg (ET) 228.54 225.71 222.94 221.52 221.87 213.41 188.84 167.31 145.07 

Kiruna (Dfc) 182.35 177.39 173.77 172.28 172.38 167.16 146.47 129.23 111.44 

Dras (Dsb) 144.07 133.92 122.86 113.88 105.76 127.34 105.22 87.18 69.60 

Toronto (Dfa) 96.53 88.67 80.72 74.58 69.22 84.18 68.63 56.21 44.29 

Paris(Cfb) 61.54 55.04 49.27 45.15 41.58 51.61 40.16 31.29 23.24 

Sacramento (Csa) 24.49 16.81 10.83 7.23 4.91 16.03 8.48 4.73 2.44 
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Figure 4-3: Annual heating load for (a) Dsb, Dfc, ET climates and (b) Csa, Cfb, Dfa climates function of the TIM-

PCM wall or the double glazing (U value=0.86 W/ m2K) area. 
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Now, comparing the heating loads of the office with double glazing with those of the office with 

integrated TIM-PCM wall (comparing the orange curve with the blue curve at each area). 

The energy performance of the office, in term of heating loads, can be significantly improved in all 

climates following the incorporation of the TIM-PCM wall instead of a conventional double glazing, 

especially for larger areas. This can be clearly shown in Figure 4-3 and Table 4-11, where the heating 

loads of PCM-enhanced office are always lower than those of the conventional office with double-

glazing. For example, the integration of the TIM-PCM wall of 7.53m2 instead of the double glazing 

of the same area decreases the heating loads from 221.87 kWh/m2/year to 145.07 kWh/m2/year in 

Barenstburg (ET) and from 105.76 kWh/m2/year to 69.60 kWh/m2/year in Dras (Dsb). This is mainly 

due to the energy storage provided by the PCM and the superinsulation of the silica aerogel that 

prohibits the heat losses, especially at night. 

The annual heating savings in kWh/m2/year and their associated percentages due to the integration of 

TIM-PCM wall instead of double glazing of different areas are shown in Table 4-12 and Figure 4-4. 

These heating savings always increase with the increase of the TIM-PCM wall area. For example, in 

Toronto, heating savings increase from 5.06% using a TIM-PCM wall of area 1.51 m2 to 36.01% 

using a TIM-PCM wall of area 7.53 m2. In all climates, the maximum heating savings following the 

integration of the TIM-PCM wall instead of the double glazing are reached when the surface area of 

the TIM-PCM wall is 7.53 m2, and are found 34.62% (76.80 kWh/m2/year) in Barentsburg, 35.35% 

(60.94 kWh/m2/year) in Kiruna (Dfc), 34.18% (36.15 kWh/m2/year) in Dras (Dsb), 36.01% (24.93 

kWh/m2/year) in Toronto (Dfa), 44.11% (18.33 kWh/m2/year) in Paris (Cfb) and 50.32% (2.47 

kWh/m2/year) in Sacramento (Csa). We note that, although the PCM works better in Dras, the heating 

savings in Barentsburg are found higher (Table 4-12). This can be explained by the fact the 

performance of the office with double glazing is better in Dras due to higher solar heat gains, while 

in Braentsburg the heating loads of the office with double glazing barely decrease with the increase 

of its area. In addition, the percentage of heating savings is found more significant for warmer 

climates Csa and Cfb. The heating demand can be almost entirely met by the solar energy alone in 

Sacramento (Csa) using the TIM-PCM wall. 
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Table 4-12: Annual heating savings in (kWh/m2/year) by using TIM-PCM wall instead of double-glazed window 

(U value=0.86 W/ m2K) at south orientation 

Area of double 

glazing or TIM-PCM 

wall (m2) 

1.51 3.39 5.27 7.53 

Heating Savings 
ΔHL 

kWh/m2 
% 

ΔHL 

kWh/m2 
% 

ΔHL 

kWh/m2 
% 

ΔHL 

kWh/m2 
% 

Barentsburg (ET) 12.30 5.45% 34.09 15.29% 54.21 24.47% 76.80 34.62% 

Kiruna (Dfc) 10.22 5.76% 27.29 15.71% 43.04 24.98% 60.94 35.35% 

Dras (Dsb) 6.58 4.91% 17.64 14.36% 26.70 23.44% 36.15 34.18% 

Toronto (Dfa) 4.48 0.1% 12.08 14.97% 18.37 24.64% 24.93 36.01% 

Paris(Cfb) 3.42 6.22% 9.11 18.49% 13.85 30.68% 18.33 44.11% 

Sacramento (Csa) 0.78 4.64% 2.35 21.70% 2.49 34.51% 2.47 50.32% 

 

 

Figure 4-4: Percentage of annual heating savings with respect to conventional office with insulated double-glazed 

window (U value=0.86 W/ m2K) at south orientation 

Figure 4-5 and Table 4-13 show the annual cooling loads in kWh/m2/year for each climate for 

different surface areas of the TIM-PCM wall or the double-glazed window (from 0 m2 to 7.532m2). 
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Table 4-13: Annual cooling loads (kWh/m2/year) for each city (climate) for conventional office and PCM enhanced 

office for different surfaces 

Cooling loads (Kwh/m2/year) 

 
Office with 

Opaque wall 

Office with double glazing U value 

0.86 
Office with TIM-PCM wall 

Area of window or 

TIM-PCM wall (m2) 
0 1.51 3.39 5.27 7.53 1.51 3.39 5.27 7.53 

Barentsburg (ET) 0 0 0 0.034 0.58 0 0 0 0.17 

Kiruna (Dfc) 0 0 0 0.44 2.27 0 0 0.21 1.28 

Dras (Dsb) 0 0.18 1.21 3.20 6.93 0.22 1.34 3.13 6.53 

Toronto (Dfa) 0.82 3.45 7.14 11.86 19.08 3.24 6.51 10.40 15.82 

Paris(Cfb) 0 0.54 2.39 5.58 11.44 0.46 2.13 4.65 8.87 

Sacramento (Csa) 4.23 8.62 16.72 27.18 43.38 8.53 15.86 24.61 36.84 

 

 

Figure 4-5: Annual cooling load for each city (climate) function of the TIM-PCM wall or the conventional 

glazing (U value=0.86 W/ m2K) surface 

In polar climate and Continental subarctic climate, no cooling loads are found. In all other climates, 

the cooling loads increase for larger areas, this increase is more significant for the conventional office 

equipped with double glazing. For both cases, the increase of cooling loads in the hot summer season 

is due to higher solar heat gains. The maximum cooling savings following the integration of TIM-

PCM wall instead of double glazing reach 17.07 % (3.26 kWh/m2/year) in Toronto (Dfa), 22.47 % 

(2.57 kWh/m2/year) in Paris (Cfb) and 15% (6.53 kWh/m2/year) in Sacramento (Csa) when the 

surface area of the TIM-PCM wall is 7.53 m2. These results show that in a region with mild to hot 
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summer, the TIM-PCM wall is a better choice than a conventional double-glazed window to maintain 

a cool indoor temperature. In Dras (Dsb) the cooling savings are not significant as shown in Table 

4-14 and no cooling savings are found when the area of the TIM-PCM wall is 1.51 m2 and 3.39 m2. 

However, the use of shading devices in summer can decrease the cooling loads. The use of Venetian 

blinds with rotatable slats of 45 degrees, allowing daylighting, reduce the cooling loads by 32% in 

Sacramento (Csa). The use Overhang of 1 m projection combined with the Venetian blinds can reduce 

this cooling loads by 38%. In Toronto (Dfa) the use of same blinds decreases the cooling loads by 

about 64%. This can be explained by the fact that the cooling loads in Sacramento (Csa) are not due 

only to the transmitted solar radiation but also to the high outdoor ambient temperature, reaching 40 

˚C, while in Toronto (Dfa) cooling loads are mainly due to the high solar radiation transmitted to the 

interior with a maximum outdoor temperature of 31˚C. The use of Venetian blinds in Paris (Cfb) and 

Dras (Dsb) reduces the cooling loads by about 71% and 78% respectively. 

Table 4-14: Annual cooling savings in (KWh/m2/year) by using TIM-PCM wall instead of double-glazed window 

(U value=0.86 W/ m2K) at south orientation 

Area of window or 

TIM-PCM wall (m2) 
1.51 3.39 5.27 7.53 

Heating Savings 
ΔCL 

Kwh/m2 
% 

ΔCL 

Kwh/m2 
% 

ΔCL 

Kwh/m2 
% 

ΔCL 

Kwh/m2 
% 

Barentsburg (ET) 0 0% 0 0% 0.034 - 0.41 - 

Kiruna (Dfc) 0 0% 0 0% 0.22 - 0.99 -% 

Dras (Dsb) -0.05 -28.3% -0.14 -11.5% 0.07 2.14% 0.40 5.77% 

Toronto (Dfa) 0.20 5.91% 0.63 8.79% 1.46 12.31% 3.26 17.07% 

Paris(Cfb) 0.07 13.91% 0.26 10.83% 0.94 16.77% 2.57 22.47% 

Sacramento (Csa) 0.08 0.94% 0.85 5.09% 2.57 9.45% 6.53 15% 

Figure 4-6 shows the annual total energy loads for three different climates (Csa, Cfb, Dfa). 

Concerning other climates, the total energy loads are very close to the heating loads due to the 

respectively insignificant cooling loads. 

In all considered climates, the total energy loads of the conventional office with double glazing and 

the PCM-enhanced office decrease with the increase of the area except in Sacramento (Csa) (because 

of high cooling loads). But still, the TIM-PCM wall performs better than the double glazing. The use 

TIM-PCM wall is more efficient than the use of a conventional insulated double-glazed window in 

terms of total energy loads in all considered climates, especially for larger areas where maximum 

total energy savings are reached. The total energy savings in kWh/m2/year due to the integration of 

TIM-PCM wall instead of double glazing on the south orientation are shown in Figure 4-7-a. 
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On the other hand, comparing the results of total energy savings of the office with opaque wall at the 

south orientation with those of the office with integrated TIM-PCM wall shows that increasing the 

TIM-PCM wall area increases the total energy savings in all studied climates except in Mediterranean 

climate (Csa) where the maximum energy savings are reached at an area of 2.61 m2 (Figure 4-7-b). 

The total energy savings following the integration of TIM-PCM wall instead of an opaque wall in 

kWh/m2/year are shown in Figure 4-7-b.  

 

Figure 4-6: Annual total load for three different climates function of the TIM-PCM wall or the conventional 

glazing (U value=0.86 W/ m2K) surface 
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Figure 4-7: Annual total savings for each city (climate) as function of TIM-PCM wall surface with respect to a) 

conventional office with insulated double-glazed window and b) office with opaque wall at the south orientation 
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4. Economic Analysis 

In addition to the investigation of the thermal and energy performance of the innovative TIM-PCM 

wall, an economic assessment is carried out for the applicability of this wall in buildings. In previous 

studies, economic analyses related to the application of PCM in buildings were conducted based on 

a life-cycle cost analysis [23] [24] or based on a payback period evaluation [28] [30]. The economic 

study in this work is based on the same concept of previous studies [23][24][53], and both life cycle 

cost analysis and payback period evaluation are conducted. Noting that the environmental impact of 

PCM incorporated in building envelopes can be assessed by employing a Life Cycle Assessment 

(LCA) approach. Many studies [54] have found that the PCM is more environmental friendly 

compared to other conventional thermal insulating material. 

The life-cycle cost analysis involves the analysis of the costs of a system or a component over its 

entire lifetime. The optimum TIM-PCM wall area (otherwise PCM volume) corresponds to the value 

that provides a minimum total life-cycle cost. It depends mainly on the yearly heating and cooling 

loads, the costs of natural gas and electricity, the building lifetime, and the discount rate. The life 

cycle cost or LCC is defined by:  

𝐿𝐶𝐶 = 𝐼𝐶 + PWF. 𝐸𝐶 Eq. 4-19 

where IC is the initial cost for implementing the considered wall (materials prices + installation + 

labor cost), EC is the annual energy cost required to maintain indoor comfort within the office 

building for the selected design and operating features and PWF is the present worth factor. The 

heating and cooling costs over the lifetime of the building are evaluated as: 

𝐸𝐶ℎ =
𝑄ℎ
𝜂
∗ 𝑐𝑛𝑔 

Eq. 4-20 

𝐸𝐶𝑐 =
𝑄𝑐
𝐶𝑂𝑃

∗ 𝑐𝑒 
Eq. 4-21 

Where, 𝐸𝐶ℎ and 𝐸𝐶𝑐 are the heating and cooling costs over the lifetime of the building. 𝑄ℎ, 𝑄𝑐, 𝑐𝑛𝑔, 

𝑐𝑒 , 𝜂 , COP respectively stand for the annual heating load, annual cooling load, natural gas cost, cost 

of electricity, heating system efficiency and the coefficient of performance of the cooling system. 

The present worth factor PWF converts future recurrent expenses to present costs regarding the 

economic outlook of the country and depends on the discount rate ‘r’ and on the lifetime N. The 

discount rate is the general interest rate of the country. Therefore, when evaluating the present value 

of a certain investment via PWF, the discount rate should be considered in the formulation. The PWF 

is given by [55]: 
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𝑃𝑊𝐹 =
1 − (1 + 𝑟)−𝑁

𝑟
 

Eq. 4-22 

In addition, the simple payback period PP for the TIM-PCM wall integrated into the building 

envelope is calculated by dividing the total initial cost by the energy savings cost [53]: 

𝑃𝑃 = 𝐼𝐶/𝐸𝑆𝐶 Eq. 4-23 

where 𝑃𝑃, 𝐼𝐶, and 𝐸𝑆𝐶 are respectively the payback period, the initial cost and the cost of energy 

savings including annual lighting savings cost in cities where its value is influential. 

The initial investment cost was calculated considering only the material and installation costs 

(including labor cost) related to the building envelope (TIM-PCM wall). The installation cost of the 

HVAC systems and other design costs were not considered since their value was assumed to be the 

same for all the cases in the same location. For the same reason, only the energy costs were considered 

as annual costs. To evaluate the final value, the lifetime of the building is assumed to be 30 years. 

In each country different electricity costs, natural gas prices, and different labor costs are considered. 

In most projects, labor costs represent approximately 25 to 35% of the total project costs [56]. The 

labor cost is estimated in each country between these two values (lower income countries have lower 

labor cost). Although the prices change according to the location, the material costs were assumed to 

be unvaried but later multiplied by the labor cost. The heating system is a natural gas boiler with an 

efficiency of 90% and the cooling system is an electrical vapor-compression heat pump of COP 2.9. 

The cost of electricity and the natural gas, the discount rate and the PWF are found for each country 

as summarized in Table 4-15. 

Table 4-15: Cost of electricity, natural gas price and discount rate for each country 

City 
Electricity price 

$ per kWh [57], [58] 

Natural Gas price 

$ per kWh [59]–[61] 

Discount rate % 

[62], [63] 
PWF 

Barents burg (Norway) 0.1786 0.078 0.5 27.79 

Kiruna (Sweden) 0.22 0.121 -0.5 32.45 

Dras (India) 0.08 0.02 6 13.76 

Toronto (Canada) 0.16 0.0113 1 25.81 

Paris (France) 0.2 0.064 0.05 29.76 

Sacramento (USA) 0.21 0.011 1.25 24.88 

Table 4-16: Prices of materials 

Materials Prices 

Concrete 100 $ / m3 [64] 

Plasterboard 15$ to 20$ / m2  [65] 

Glass wool 60-100 $ / m3.[66] 

Fatty acid PCM product 3.23 $ /kg [67] 

Silica aerogel 550$/m3 [53] 

Single clear glazing 29.97$/m2 [55] 

Insulated double glazing 102$/m2[55] 
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The prices of the used materials are summarized in Table 4-16. The price of PCM varies widely, 

according to their type, melting temperature and purity [25]. Unfortunately, it is impossible to take 

these factors into account to accurately estimate the price of PCM. Cascone et al. [68] estimated the 

price of PCM at about 40 €/m2 for each cm of thickness. An additional 20% was considered for 

macroencapsulation [25]. The total estimated price of PCM was hence 48 €/ m2 /cm, plus 4.36 €/m2 

for installation [69]. Baniassadi et al.[23] considered that finding an exact price for the PCM is a 

challenging task. They considered an average price of 22.53 (US $/m2) for the purchase, transport, 

and installation of BioPCM with an equivalent thickness of 2.01 cm. Saffari et al. [69] considered 

that the PCM cost is 0.62 €/kg based on previous purchase and the cost of the installation of PCM is 

approximated as 4.36 €/m2. The cost of purchasing and installing PCM was estimated at USD 2/m2 

for a 10-mm thick layer of PCM in [27] and [28]. Table 4-17 summarizes the price of some PCM 

reported in the literature. 

Table 4-17: Cost of some phase change materials (data source [25], [26], [68] ) 

Material Cost (US$/kg) 

Paraffin Wax (organic) 1.88-2.00 

Eicosane-technical grade (organic) 7.04 

Eicosane-pure laboratory grade (organic) 53.9 

Rubitherm (RT20) 16.31 

Rubitherm (RT 23,25,27) 0.68 

Stearic acid (fatty acid) 1.43-1.56 

Palmitic acid (fatty acid) 1.61-1.72 

Oleic acid (fatty acid) 1.67-1.76 

Crude Glycerin (fatty acid) 0.22-0.29 

M-27 (commercially available fatty acid) 14.26 

M-51 (commercially available fatty acid) 11.13 

Calcium chloride (inorganic-salt haydrates) 0.20 

LatestTM29T (commercially availabl²e salt hydrates) 4.95 

BioPCM 1.30 

In this study, following a discussion with ‘PCM products Ltd’ company [67], the price of the fatty 

acid product is approximated as 3.23 $/kg. An additional 60% was considered for the integration of 

PCM in the glass bricks and for the installation, and 25-35% of the total cost is added for labor cost. 

The average total PCM cost is thus about 54 $/m2/cm in the investigated cities. 

The lighting price is accounted for within the total life-cycle cost, when the artificial lighting is 

needed, and when its value is significant compared to heating and cooling loads prices. The European 

Lighting Standard EN12464-1 [36], requires an illuminance of 500 lux in working areas. In addition, 

according to IESNA Lighting Handbook [70] the recommended lighting level in offices is between 

300 and 500 lux. Using a LED lamp, the illuminance of 300 - 500 lux corresponds to the power of 

3.333 W/m2 – 5.555 W/m2 respectively, i.e. 90 - 150 W for the considered office. Accordingly, the 

https://www.ies.org/handbook/
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calculated total annual lighting load is 6.9 kWh/m2/year to 11 kWh/m2/year. The TIM-PCM wall 

provides at a certain time useful daylighting without the need for the artificial lighting, thus the annual 

lighting load decreases with the increase of the TIM-PCM wall area. The illuminance provided by 

the wall is approximated by the transmitted solar radiation and verified based on experimental 

measurements. For each climate, the number of occupied hours, where the daylighting is not sufficient 

(illuminance <500 Lux), is evaluated for each TIM-PCM wall surface area, and the cost of the needed 

artificial lighting is then calculated. 

The life cycle cost and the payback period are evaluated for both cases, TIM-PCM wall and 

conventional insulated double-glazed window, and the recommendation for each climate from an 

economic point of view will be discussed. In section 3, the optimum TIM-PCM wall area showing 

the best energy performance in each climate was determined as 7.53 m2 except in Sacramento (Csa). 

It’s also necessary to find the optimum TIM-PCM wall area corresponding to minimum life cycle 

cost or minimum payback period in each climate. Figure 4-8 to Figure 4-12 show the initial cost, the 

heating and cooling consumption cost, the total cost, the energy savings cost, and the payback period 

for both cases for the different climates. From these figures, it can be noticed that the heating costs 

decrease, and cooling costs increase as the area of the TIM-PCM wall or the double-glazed window 

area increases. The initial cost varies almost linearly with the area. The total cost and payback period 

decrease to a certain minimum then start to increase in some cases. The optimum area is the one that 

ensures this minimum of the total cost or minimum payback period. For each climate, the optimum 

areas are presented in Table 4-18 and Table 4-19. 

In colder climates (Figure 4-8 and Figure 4-9), Barentsburg (ET) and Kiruna (Dfc), the use of TIM-

PCM wall is more cost-effective than the use of the double-glazed window, the optimum TIM-PCM 

wall area providing minimum LCC and minimum PP being 7.532 m2. Due to the high heating loads 

in these climates and the relatively high natural gas prices and PWF, the total cost depends mainly on 

the heating costs and there is larger potential to reduce energy consumption costs through enlarging 

the TIM-PCM wall area. The minimum payback periods found are 10.5 years and 7.8 years in 

Barentsburg (ET) and Kiruna (Dfc) respectively, showing that the application of TIM-PCM wall is 

economically viable in these climates. In these cities, the cost of lighting is neglected since it is 

marginal compared to heating costs. 
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Figure 4-8: a) Life cycle cost and b) payback period for both cases for Barentsburg (ET) 

 

Figure 4-9: a) Life cycle cost and b) payback period for both cases for Kiruna (Dfc) 

In Dras (Dsb), in spite of the high heating loads and energy savings due to the use of the TIM-PCM 

wall, the double-glazed window proves to be more cost-effective than the TIM-PCM wall (Figure 

4-10-a). The initial cost controls the total life-cycle cost due to the very low energy prices (2 

cents/kWh for natural gas) and relatively low PWF (high discount rate). The optimum TIM-PCM 

wall area is found 1.51 m2 with a minimum LCC of 2002$ while the optimum double-glazed window 

area is 2.45 m2 with a minimum LCC of 1892$ (Table 4-18). Concerning the minimum payback 

period, it is found about 35 years for an optimum TIM-PCM wall area of 4.57 m2 (Table 4-19). The 

PP is relatively high because the cost of energy savings is insignificant compared to the initial cost, 

which makes the use of TIM-PCM wall infeasible economically. Higher natural gas prices and lower 

PCM investment costs are required in Dras (India). 
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Figure 4-10: a) Life cycle cost and b) payback period for both cases for Dras (Dsb) 

In Paris (Cfb), the use of TIM-PCM wall is more cost-effective than the use of the double-glazed 

window, giving lower LCC and PP (Figure 4-11). The optimum TIM-PCM wall area is found 5 m2 

with minimum LCC of 4145 $ (Table 4-18). Concerning the payback period, the minimum value is 

found 22 years corresponding to 3.87 m2 (Table 4-19). To be more economically feasible, the 

reduction of the initial cost of the TIM-PCM wall is needed in Paris (France). 

 

Figure 4-11: a) Life cycle cost and b) payback period for both cases for Paris (Cfb) 

In Sacramento (Csa) and Toronto (Dfa) having a hot summer season (Figure 4-12), the use of double-

glazed window is more efficient economically than the use of the TIM-PCM wall. In Sacramento 

(Csa), the optimum TIM-PCM wall area is found 1.4 m2 with a minimum LCC of 1762$ while the 

optimum double-glazed window area is found 1.41 m2 with a minimum LCC of 1610 $ (Table 4-18). 

In Toronto (Dfa), the heating savings cost is low due to the low natural gas prices in Canada (1.1 
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cents/ kWh), which makes the total cost depending mainly on the initial cost. The optimum TIM-

PCM wall area is found 1.65 m2 with a minimum LCC of 2143$ while the optimum double-glazed 

window area is 2.19 m2 with a minimum LCC of 1999 $ (Table 4-18). Concerning the minimum 

payback period, the investment cost of the TIM-PCM wall can be recovered in Sacramento after 43 

years and in Toronto after 51 years (Table 4-19) which makes the application of such a wall 

economically unviable. 

 

Figure 4-12: Life cycle cost for a) Toronto (Dfa) and b) Sacramento (Csa) 

Table 4-18: Minimum life cycle cost and optimum area of the TIM-PCM wall and the double-glazed window in 

each climate 

 Double-glazed window TIM-PCM wall 

 Minimum LCC ($) Optimum area (m2) Minimum LCC ($) Optimum area (m2) 

Barentsburg (ET) 15384 3.28 11494 7.532 

Kiruna (Dfc) 21317 4.22 15240 7.532 

Dras (Dsb) 1892 2.45 2002 1.51 

Toronto (Dfa) 1999 2.19 2143 1.65 

Paris(Cfb) 4357 3.48 4145 5 

Sacramento (Csa) 1610 1.41 1762 1.4 

Table 4-19: Minimum payback period and optimum area of the TIM-PCM wall and the double-glazed window 

in each climate 

 Double-glazed window TIM-PCM wall 

 
Minimum PP 

(years) 

Optimum area 

(m2) 
Minimum PP (years) Optimum area (m2) 

Barentsburg (ET) 61.72 4.63 10.51 7.532 

Kiruna (Dfc) 27.11 4.34 7.87 7.532 

Dras (Dsb) 35.95 4.75 35 4.57 

Toronto (Dfa) 48.66 1.51 51.1 1.51 

Paris(Cfb) 22.69 3.88 22 3.87 

Sacramento (Csa) 31.3 1.51 43.26 1.51 
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Moreover, in Toronto (Dfa) and Sacramento (Csa), the use of external Venetian blinds with an 

estimated price of 40$/m2 [71], [72] added to the initial cost, has no effect on the life cycle cost and 

slightly decreases the minimum payback period. In Sacramento (Csa), the use of double-glazed 

window still more cost-effective than the use of the TIM-PCM wall and do not offer economic 

benefits in such a climate.  

5. Conclusion 

In this work, energy and economic analysis of the application of a TIM-PCM wall on a typical office 

building envelope was investigated under different climates for a whole year. The results showed 

that, in all studied climates, the energy performance of the office, in terms of heating and cooling 

savings, can be significantly improved with the incorporation of the TIM-PCM wall instead of a 

conventional insulated double-glazed window. In addition, the total loads decrease with the increase 

of the area of the TIM-PCM wall except in Mediterranean climate. From an economic point of view, 

the following conclusions can be drawn:  

• In ET and Dfc climates, the application of TIM-PCM wall is economically feasible. 

• In general, when the climate gets colder, the optimum TIM-PCM wall area increases. 

• The heating savings for the office building located in Dras (Dsb) are not sufficient to recover 

the investment, due to the low energy prices and high discount rates. 

• In Paris (Cfb), the use of the TIM-PCM wall is found more cost effective than the use of 

double-glazed window in terms of minimum life-cycle cost and payback period. 

• In Csa and Dfa climates, the TIM-PCM wall is not cost-effective at current energy and 

investment prices. 

• The best candidates for the TIM-PCM wall application are found where energy prices for 

heating (natural gas in our study) are relatively high, making the initial capital cost relatively 

insignificant compared to the heating savings cost. 

• The economic viability of the application of the TIM-PCM wall depends on different factors, 

mainly climatic conditions, energy savings, energy costs (natural gas prices, electricity prices, 

etc.), the economic situation of the country (discount rate) and investment costs. 

Finally, further research should focus on the development of industrially scalable low-cost PCM, to 

decrease investment costs for buildings integrating such walls and as result make them economically 

viable. 
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Complementary sections to chapter 4 

A) Transient liquid fraction in each climate 

The transient liquid fraction of the PCM during the simulated year can be found at each time step by 

the numerical model. The liquid fraction provides information about the state of the PCM: if fl = 0 

the PCM is solid, if fl =1 the PCM is liquid, and if 0 < fl < 1 the PCM is changing phase. Also, the 

hourly profile of the liquid fraction can show if the PCM assure diurnal cycling in winter and summer 

seasons. The average liquid fraction in the PCM filled in glass bricks for a TIM-PCM wall of 7.532 

m2 function of the time is shown in the following figures. Noting that the year is 8760 hours, January 

starts from 0 to 744 hours, February from 744 to 1416 hours …. December from 8016 to 8760. June, 

July and August are from 3624 to 5832 hours. 

Figure 1: PCM liquid fraction function of time in a) Sacramento (Csa) and b) Toronto (Dfa) 

Figure 1 shows that the PCM remains liquid almost all the summer in Sacramento (fl=1). This is due 

to the hot summer conditions and high solar gains during the day in addition to high external 

temperature during the night which prohibits PCM solidification. In winter, the PCM assure some 
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complete or partial diurnal cycles. In Toronto, the PCM seems to work better, where the PCM melts 

and solidifies for longer periods except in the period between 4000 hours and 6000 hours, here the 

PCM remains liquid with some partial solidifications. 

Figure 2: PCM liquid fraction function of time in a) Dras (Dsb) and b) Paris (Cfb) 

The PCM assure partial and complete melting and solidification processes in Dras and Paris all the 

year (Figure 2). In winter season, the PCM can totally melt in Dras (liquid fraction reaches 1) more 

than Paris due to the higher solar radiation. In summer, the PCM is unable to completely solidify in 

hot periods. 

Figure 3 shows that the PCM remains in solid state in Barentsburg for almost five months without 

melting (January, February, part of March, part of October, November, December). This is due to 

very low external temperatures and low incident solar radiation. In warm season, the PCM achieves 

complete diurnal cycling. In Kiruna the PCM can also achieves diurnal cycling except in the very 

cold months where it remains in its solid state (between 0 and 750 hours and 7710 and 8760 hours). 
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Figure 3: PCM liquid fraction function of time in a) Kiruna (Dfc) and b) Barentsburg (ET) 

Figure 4 shows the percentage of time where the PCM is in solid state, liquid state or changing phase 

in each climate for different TIM-PCM wall areas. These graphs were found based on the hourly 

transient liquid fraction values calculated in the numerical model. When fl = 0, the PCM is solid, the 

number of hours where fl is equal to zero are counted and the percentage of time in the year is found, 

same for fl =1 (liquid PCM) and 0 < fl < 1 (PCM changing phase). For example, in Baretsburng, 

using a TIM-PCM wall of an area 7.532 m2 (200 bricks filled with Fatty acids) the PCM remains 

solid 85% of the time. While in Dras the PCM is solid 52% of the time, liquid 37% of the time and 

changing phase the rest of the time. This means that in Dras the PCM works better and can assure 

cycling. In Sacramento, the PCM remains liquid about 65% of the time, due to the hot summer season 

where the PCM is unable to solidify. 

It can be concluded that in the regions having a hot summer (Toronto and Sacramento) the PCM 

remains liquid in summer for long periods and can barely solidify, while in winter it can achieve 

diurnal complete or partial cycling. In climates having a warm summer season (Dras and Paris), the 

PCM works better in summer. In regions having a cold (continental or polar) winter, the PCM remains 
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solid for months without melting due to very low external temperature, while in the rest of the year, 

it can achieve diurnal cycling. 

 

 

 

 Figure 4: Percentage of time where the PCM is in solid state, liquid state or changing phase in each climate for 

different TIM-PCM wall dimensions. 
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B) Note 

In this chapter, same construction of the building was assumed regardless of the climate. This was 

done in order to have a criterion of similarity between all the locations simulated, and to focus on the 

impact of the TIM-PCM wall on the building compared to a based case. 
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General Conclusion 

1. Overview of the achievements 

During this thesis, we have developed a simplified model for melting with natural convection at first, 

and with both convection and short-wave radiation afterward. The simplified model for PCM melting 

with natural convection is based on the enhanced thermal conductivity approach coupled with the 

scaling theory. A modified enthalpy method is adopted to solve the phase change problem. Two-

dimensional implicit finite volume method is used to solve the energy equation and the code is written 

on MATLAB. The results of the simplified model are validated using a complete CFD model, in 

addition to experimental and numerical benchmark solutions for a test case: melting of Octadecane 

in a square cavity. A correlation for the Nusselt number at the left heated wall is proposed based on 

CFD results, to calculate the enhanced conductivity. The shortwave radiation through the PCM is 

modeled by means of a simplified solution procedure and the radiative heat flux is added as a source 

term to the energy equation. A nodal evaluation of the PCM optical properties function of the liquid 

fraction was made. The absorbed solar radiation was equally divided between the nodes forming the 

PCM layer. The model was also developed on MATLAB using two-dimensional implicit finite 

volume method. It was validated against a LBM-DOM model found in the literature for the case of 

melting of Fatty acid filled in rectangular enclosure. Then, based on the two previous models, we 

have developed a numerical model describing the heat transfer mechanisms through the TIM-PCM 

wall. The latter is an innovative translucent passive solar wall proposed by INERTRANS project 

composed of glazing, silica aerogel for thermal insulation and PCM for absorption and storage of 

heat. The wall was experimentally tested in a full-scale test cell located in Sophia Antipolis, Southern 

France, within the PERSEE center of Mines ParisTech graduate school. The wall model was coupled 

with TRNSYS to evaluate the thermal performance of the entire building. The coupled MATLAB-

TRNSYS model has been experimentally validated using the experimental cell located within the 

PERSEE center for seven consecutive days in summer and winter. Then, we have used the validated 

numerical model to optimize the thermal performance of the wall in summer season under different 

climatic conditions, in terms of thermal comfort. Finally, we have studied the annual energy 

performance of a typical office following the incorporation of the TIM-PCM wall into its south-facing 

envelope, under six different climates. The optimum TIM-PCM wall area is then evaluated 

economically for each climate through life-cycle cost (LCC) and payback period (PP) analysis. 

The main conclusions issued from this work are: 
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• The developed simplified model for convection during phase change requires a computational 

time much shorter than that of the CFD model. The values of the average liquid fraction, the 

position of the melting front for four different instants, and the average position of the melting 

front function of time from the simplified model are found in good agreement with those of 

CFD model and Benchmark solutions.  

• The modeling of natural convection during melting of Octadecane in square cavity enhances 

the position of the melting front by about 55% at dimensionless time SteFo = 0.01 and the 

average liquid fraction by about 40% compared to a conduction only model. 

• Natural convection increases the liquid fraction by about 35% compared to the conduction 

only model, while the radiation increases the liquid fraction by about 20% compared to the 

convection model for the case of melting of Fatty acid filled in a rectangular enclosure.  

• Concerning the computational time, the simplified model for both natural convection and 

radiation during melting run significantly faster than the LBM-DOM model. 

• The developed simplified model considering both natural convection and radiation during 

melting process is simple to implement and can manage efficiently convection-controlled 

phase change problems without the full solution of the flow in a very small computational 

time. It is developed for practical thermal engineering applications, where yearly energy 

performance evaluation is sought, that cannot rely on highly computational time needed in 

CFD simulations. 

• The coupled MATLAB-TRNSYS model, experimentally validated, represents a starting point 

for simulations on different configurations of the novel TIM-PCM wall and allows to fully 

investigate its abilities and drawbacks under different operative conditions, orientations, 

geometries and different climates without the need of performing expensive experimental 

analysis. 

• To be more realistic, natural convection in the liquid PCM should not be neglected when 

modeling phase change in the wall.  

• The use of Prisma solar glass instead of the ordinary glass in the TIM-PCM wall composition 

is shown to be an effective technology solving the encountered overheating problem in 

summer, while preserving the TIM-PCM advantages during winter. 

• Cycling is not reached in summer conditions in most climates except in the subarctic climate 

(Dfc) where the PCM achieves complete diurnal cycles. 

• Even if the PCM does not cycle in summertime, indoor thermal comfort can be ensured using 

shading devices. 
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• In all considered climates in chapter 4, the energy performance of the office, in terms of 

heating and cooling savings, can be significantly improved with the incorporation of the TIM-

PCM wall instead of a double-glazed window. 

• In regions having a hot summer (Toronto and Sacramento), the PCM remains liquid in 

summer for long periods and can barely partially solidify, while in winter it can achieve 

complete or partial diurnal cycling. In climates having a warm summer (Dras and Paris), the 

PCM works better in summer with more partial PCM solidifications. In regions having a cold 

(continental or polar) winter, the PCM remains solid for months without melting, while in the 

rest of the year, it can achieve diurnal cycling. 

• From an economic point of view, we have found that when the climate gets colder, the optimal 

surface of the wall increases. 

•  In polar (ET) and subarctic (Dfc) climates, the application of the TIM-PCM wall is found 

economically feasible. In Mediterranean (Csa) and continental humid (Dfa) climates, the wall 

application is unprofitable at current energy and investment prices.  

• The best candidates for TIM-PCM wall application are cities where the price of natural gas is 

relatively high, making the initial investment cost relatively insignificant compared to heating 

savings.  

• The economic viability of applying the TIM-PCM wall depends mainly on climatic 

conditions, energy savings, energy costs, the country's economic situation and the investment 

cost. 

• A Graphical User Interface GUI is created on MATLAB to model the phase change problem 

in rectangular cavity in presence of both natural convection and radiation. 

2. Limitations and perspectives 

Although this research has reached its aims, there were some limitations that may consist a starting 

point for future work. In the 2D numerical model for natural convection during melting process, the 

convective zone dimension was approximated to be equal to the position of the melting front at the 

top of the cavity. This assumption is not always accurate, and more research should be done 

concerning a better approximation of this zone. Moreover, the effect of thermal expansion in the 

cavity was neglected to simply the numerical model. In future works, this should be considered. The 

developed Nusselt number correlation was for a very specific case (specific PCM, geometry…). 

Although this developed correlation has not been used in the rest of the work (a general correlation 

of Berkovsky and Polikov has been used in the rest of numerical modeling, see chapter 2) more efforts 
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should be done to provide correlations that are appropriate for a wide range of realistic geometries 

and parameters. 

In addition, in our work, we have not modified the construction of the TIM-PCM wall depending on 

each climate. As a future work the constructive solution can be changed, and a multidimensional 

optimization study can be performed by combining TRNSYS with an optimization tool such as 

GenOpt or Mobo. It would be a question to study the impact of various PCM (modification of the 

melting temperature, latent heat, thickness), and to vary the width of the silica aerogel bed as well as 

its optical characteristics in order to find an optimal solution suitable for each climate. It is also 

necessary to change the construction of the building depending on the climate zone. A ventilated air 

gap can be also added to the wall composition to ensure crystallization of the PCM at night. This 

could be the subject of a full-fledged study based on the modification of the TIM-PCM wall model.  

In addition, the available components for modeling PCM (Type 1270, Type 260...) in TRNSYS only 

consider conduction heat transfer, so we suggest, as perspective, creating a new component for PCM 

considering all heat transfer modes occurring during phase change and in 2D if possible. 

Moreover, concerning the economic study, there were some difficulties in estimating the prices of 

materials in each country, especially the PCM cost used in the TIM-PCM wall construction. To 

improve this study, exact prices of PCM product, installation, transport, encapsulation must be 

provided by the manufacturer. 

Finally, although the incorporation of phase change materials into buildings seems to be very 

beneficial, it seems necessary that new studies are devoted to understanding the behavior of PCM and 

especially the study of supercooling, crystallization kinetics, phase segregation, containment as well 

as health and safety aspects, cost and lifespan of these materials. Such realistic features of PCM were 

not taken into account in our numerical model. 
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Conclusion Générale  

1. Aperçu des réalisations 

Au cours de cette thèse, nous avons développé un modèle simplifié pour la simulation de la fusion, 

avec convection naturelle dans un premier temps, et avec convection et rayonnement courte longueur 

d’onde (CLO) dans un deuxième temps. Le modèle simplifié pour la prise en compte de la convection 

naturelle lors de fusion du MCP utilise l’approche de la conductivité efficace et la théorie d’échelle. 

La méthode enthalpique a été utilisée pour modéliser le changement de phase. Le modèle 

mathématique est codé sous MATLAB en utilisant la méthode de volumes finis implicite en deux 

dimensions. Les résultats du modèle simplifié sont ensuite validés en utilisant un modèle CFD 

complet précédemment développé dans COMSOL Multiphysics, et des résultats numériques et 

expérimentaux des benchmarks trouvés dans la littérature pour le cas de fusion de l’Octadecane dans 

une enceinte carrée. En particulier, une corrélation du nombre de Nusselt correspondant à notre cas 

d’étude a été trouvée, sur la base du modèle CFD, et est ensuite implémentée dans le modèle simplifié. 

Le modèle simplifié de la fusion avec convection et rayonnement courte longueur d’onde utilise un 

algorithme simplifié pour trouver le flux de rayonnement CLO absorbé par le MCP. Ce flux est 

ensuite ajouté à l'équation d'énergie en tant que terme source. Une évaluation nodale des propriétés 

optiques du MCP en fonction de la fraction de liquide a été faite. De même, le rayonnement solaire 

absorbé a été divisé entre les nœuds formant le couche MCP. Le modèle mathématique est codé à 

nouveau sous MATLAB en utilisant la méthode des volumes finis en deux dimensions. Les résultats 

obtenus sont en très bon accord avec les résultats d’un modèle de Boltzmann sur réseau et la méthode 

des ordonnées discrètes (LBM-DOM) trouvés dans la littérature, en termes de la fraction liquide 

moyenne pour le cas de fusion de l’acide gras contenu dans une enceinte rectangulaire. Ensuite, se 

basant sur les deux modèles précédents, nous avons développé un modèle numérique décrivant les 

mécanismes de transfert de chaleur à travers le mur MCP-aérogel. Ce dernier est un mur solaire passif 

translucide innovant proposé par le projet INTERTRANS et composé d’un vitrage, de l’aérogel de 

silice pour l’isolation thermique et des matériaux à changement de phase (MCP) pour l’absorption et 

le stockage de la chaleur issue du rayonnement solaire. Ce mur a été caractérisé expérimentalement 

en ambiance contrôlée et in situ sur un bâtiment grandeur nature présent au sein du centre du centre 

Procédés, Energies Renouvelables et Systèmes Energétique (PERSEE) situé à l’Ecole des Mines à 

Sophia Antipolis. Le modèle du mur a été couplé au logiciel de simulation dynamique des systèmes 

thermiques TRNSYS, pour évaluer la performance thermique de l'ensemble du bâtiment. Ce modèle 

a été validé expérimentalement à l’aide de la cellule expérimentale du centre PERSEE pendant sept 

jours consécutifs en été et en hiver. Ensuite, nous avons utilisé le modèle validé pour optimiser la 

performance thermique du mur en été sous différentes conditions climatiques, en termes du confort 
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thermique. Enfin, nous avons conduit une évaluation énergétique annuelle ainsi qu’une étude 

économique pour l’application du mur MCP-aérogel dans l’enveloppe d’un bâtiment dans différents 

climats. 

Les principales conclusions de ce travail sont : 

• Le modèle simplifié développé pour la convection pendant le changement de phase nécessite 

un temps de calcul beaucoup plus court que celui du modèle CFD. Les valeurs de fraction 

liquide moyenne, de la position du front de fusion pour quatre instants différents, et de la 

position moyenne du front de fusion au cours du temps sont en bon accord avec celles du 

modèle CFD et des solutions Benchmark. 

• La modélisation de la convection naturelle pendant la fusion de l’Octadécane dans une cavité 

carrée modifie la position du front de fusion d'environ 55% à l'instant SteFo = 0.01 et la 

fraction liquide moyenne d'environ 40% en comparaison avec un modèle à conduction seule. 

• La convection naturelle fait augmenter la fraction liquide d'environ 35% par rapport au modèle 

à conduction seule, tandis que le rayonnement CLO fait augmenter la fraction liquide 

d'environ 20% par rapport au modèle tenant compte de la convection pour le cas de la fusion 

de l'acide gras contenu dans une enceinte rectangulaire. 

• En ce qui concerne le temps du calcul, les simulations du modèle simplifié, tenant en compte 

la convection naturelle et le rayonnement CLO, sont beaucoup plus rapides que celles utilisant 

le modèle LBM-DOM. 

• Le modèle proposé considérant à la fois la convection naturelle et le rayonnement pendant le 

processus de fusion est simple à mettre en œuvre et peut gérer efficacement les problèmes de 

changement de phase dominés par convection sans la résolution complète de l’écoulement 

dans un temps de calcul relativement court. Il a été développé pour les applications pratiques 

de l'ingénierie thermique, où on cherche une évaluation annuelle de la performance 

énergétique. 

• Le modèle MATLAB-TRSNYS validé expérimentalement représente un bon point de départ 

pour des simulations sur différentes configurations du mur et permet d'étudier pleinement ses 

capacités et ses inconvénients sous différentes conditions opératoires, et dans différents 

climats. 

• Pour être plus réaliste, la convection naturelle dans le MCP liquide ne doit pas être négligée 

lors de la modélisation du changement de phase. 
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•  L'utilisation d’un type de verre spécial (Prisma Solar glass) au lieu du verre ordinaire dans la 

composition de la paroi MCP-aérogels se révèle être une technologie efficace pour résoudre 

le problème de surchauffe rencontré en été, tout en préservant les avantages du mur en hiver. 

• Le confort thermique ainsi que le cyclage du MCP en été dépendent des conditions 

climatiques. 

• Le cyclage n’est pas atteint l’été dans la plupart des climats sauf dans le climat subarctique 

(Dfc). 

• Dans tous les climats étudiés, dans le chapitre 4, la performance énergétique du bureau, en 

termes d'économies de chauffage et de refroidissement, peut être significativement améliorée 

avec l'incorporation de la paroi MCP-aérogel à la place d'une fenêtre à double vitrage. 

• Dans les régions ayant un été chaud (Toronto et Sacramento), le MCP reste liquide en été 

pendant de longues périodes et peut difficilement se solidifier même partiellement, tandis 

qu'en hiver, il peut effectuer un cycle diurne complet ou partiel. Dans les climats ayant un été 

tiède (Dras et Paris), le MCP fonctionne mieux en été réalisant des solidifications partielles. 

Dans les régions ayant un hiver froid (continental ou polaire), le MCP reste solide pendant 

des mois sans se fondre, tandis que pendant le reste de l’année, il est possible de faire des 

cycles diurnes. 

•  D’un point de vue économique, nous avons trouvé que lorsque le climat devient plus froid, 

la surface optimale du mur augmente. 

•  Dans les climats polaire (ET) et subarctique (Dfc), l'application de la paroi MCP-aérogel est 

économiquement faisable. Dans les climats méditerranéens (Csa) et humides continentaux 

(Dfa), l’application du mur n'est pas rentable aux prix actuels de l'énergie et de 

l'investissement.  

• Les meilleurs candidats pour l'application du mur MCP-aérogel se trouvent là où le prix du 

gaz naturel est relativement élevé, rendant le coût d'investissement initial relativement 

insignifiant comparé aux économies de chauffage.  

• La viabilité économique de l'application du mur MCP- aérogel dépend principalement des 

conditions climatiques, des économies d'énergie, des coûts de l’énergie, de la situation 

économique du pays et du coût d'investissement. 

• Une interface graphique GUI est créée sur MATLAB pour modéliser le problème de 

changement de phase dans une cavité rectangulaire en présence de convection naturelle et de 

rayonnement. 
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2. Limitations et perspectives 

Bien que cette recherche ait atteint ses objectifs, certaines limitations peuvent constituer un point de 

départ pour des travaux futurs. Dans le modèle numérique bidimensionnel pour la convection 

naturelle pendant la fusion, la dimension de la zone convective était approximativement considérée 

égale à la position du front de fusion au sommet de la cavité. Cette hypothèse n'est pas toujours exacte, 

et des recherches supplémentaires devraient être effectuées concernant une meilleure approximation 

de cette zone. De plus, l'effet de la dilatation thermique dans la cavité a été négligé pour simplifier le 

modèle numérique. Dans les travaux futurs, ceci doit être considéré. Au cours de cette thèse, la 

corrélation de nombre de Nusselt a été développée pour un cas très spécifique. Malgré que cette 

corrélation développée n'ait pas été utilisée dans le reste du travail (une corrélation générale de 

Berkovsky et Polikov a été utilisée dans le reste de la modélisation numérique, voir chapitre 2), des 

efforts supplémentaires devraient être déployés pour fournir des corrélations appropriées à une large 

gamme des géométries et des paramètres. 

De plus, dans notre travail, nous n'avons pas modifié la construction du mur MCP-aérogel en fonction 

de chaque climat. Comme travail futur, la solution constructive peut être modifiée, et une étude 

d'optimisation multidimensionnelle peut être réalisée en combinant TRNSYS avec un outil 

d’optimisation tels que GenOpt ou Mobo. Il s'agirait d'étudier l'impact de divers MCP (modification 

de la température de fusion, de l'enthalpie, de l’épaisseur), de faire varier l’épaisseur du lit d'aérogel 

de silice et ses caractéristiques optiques afin de trouver une solution optimale convenable à chaque 

climat. Il est également nécessaire de modifier la construction du bâtiment en fonction de la zone 

climatique. En plus, une lame d’air ventilée peut être ajoutée à la composition du mur afin d’assurer 

la cristallisation du MCP la nuit. Cela pourrait faire l'objet d'une étude à part entière basée sur la 

modification du modèle de mur MCP-aérogel.  

Les composants disponibles pour modéliser les MCP (Type 1270, Type 260 ...) dans TRNSYS ne 

prennent en compte que le transfert de chaleur par conduction. Nous proposons donc de créer un 

nouveau composant pour les MCP prenant en compte tous les modes de transfert de chaleur pendant 

le changement de phase et en 2D si possible. 

En outre, bien que l’incorporation des matériaux à changement de phase dans les bâtiments semble 

être très bénéfique, il semble nécessaire que de nouvelles études se consacrent à la compréhension du 

comportement du MCP et notamment à l’étude de la surfusion, la cinétique de cristallisation, la 

ségrégation des phases, le confinement ainsi que les aspects sanitaires, sécuritaires, le coût et la durée 

de vie de ces matériaux. Ces caractéristiques réalistes des MCP n’ont pas été prises en compte dans 

notre modèle numérique. 

 

https://simulationresearch.lbl.gov/GO/
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Annex A: Phase Change Materials (PCM) for Cooling Applications in Buildings: 

A Review 

 

Abstract: 

Cooling demand in the building sector is growing rapidly; thermal energy storage systems using 

phase change materials (PCM) can be a very useful way to improve the building thermal 

performance. The right use of PCM in the envelope can minimize peak cooling loads, allow the use 

of smaller HVAC technical equipment for cooling, and has the capability to keep the indoor 

temperature within the comfort range due to smaller indoor temperature fluctuations. This article 

presents an overview of different PCM applications in buildings for reducing cooling loads under 

different climate conditions, and the factors affecting the successful and the effective use of the PCM. 

Many drawbacks have been found in PCM applications, mainly the intense impact of summer weather 

conditions over the PCM performance, which prohibits its complete solidification during night, and 

thus, limiting its effectiveness during the day. Proposed solutions are reviewed in this article. Finally, 

a topology diagram is presented to summarize the steps leading to an effective use of PCM in building 

applications. 

Keywords: Phase Change Materials, cooling applications, active systems, passive systems, PCM 

effectiveness, melting temperature. 

Highlights: 

• PCM for cooling applications (active and passive systems). 

• Factors affecting PCM effectiveness. 

• Topology diagram summarizing PCM application. 

 

Nomenclature    

Cp specific heat  (J/kg∙K) 

Edaily Average daily cooling load (KW) 

Hf Latent heat of fusion (J/kg) 

kl thermal conductivity at liquid state (W/m∙K) 

ks thermal conductivity at solid state (W/m∙K) 

Qcool Cooling load (kW) 
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Tm Melting temperature (C) 

Ts Solidification temperature (C) 

ρ PCM  Density of PCM  (kg/m3) 

Acronyms   

AC Air conditioning 

ACH  Air change per hour 

AHU Air handling unit 

ASEAN Association of Southeast Asian Nations  

CC Cooled-ceiling 

COP Coefficient of performance 

DRSS Distributed Responsive System of Skins 

E Energy storage effectiveness 

E* Modified energy storage effectiveness 

EIA Ecodesign Impact Accounting (study) 

EJ Exajoules 

HTF heat transfer fluid 

HVAC heating, ventilating, and air conditioning 

LHS Latent heat storage 

LHTES Latent heat thermal energy storage 

Mtoe Million Tonnes of Oil Equivalent 

MVS Mechanical ventilation system 

PCM Phase change materials 

RT Rubitherm GmbH 

SEER Seasonal Energy Efficiency Ratio 

SIP Structural Insulation Panels 

SPP Simple payback period 

SSPCM Shape stabilized PCM 

TES Thermal energy storage 

VDSF Ventilated double skin facade 
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VF  Ventilated facade 

WHS Water heat storage 

 

1. Introduction 

An ever-increasing world population combined with a large increasing in energy demand has led to 

an important environmental crisis that already shows its clear beginning. The primary energy 

production, according to the International Energy Agency (IEA), has increased 49% and CO2 

emissions 43% over the past 20 years [1]. Research findings have specified that buildings account for 

almost 41% of the world’s energy consumption, which constitutes 30% of the annual greenhouse gas 

emissions [2]. It is expected that the energy demand in the building sector will rise by about 50% in 

2050, and the space cooling demand will triple between 2010 and 2050. Hence, the building envelope 

should be optimized in order to minimize cooling loads in hot climates. In highly efficient-energy 

applications for cooling, the energy savings potential is estimated to be between 10% and 40% [3]. 

In the European Union (EU), the building sector is the main energy consumer and constitutes about 

40% of the total energy usage; considerable parts of this energy usage are directly related to the 

heating and cooling of buildings [4]. In 2010, according to the EIA forecasts, the space cooling 

demand in the EU reached 220 TWh, and it is expected to increase to 305 TWh (+38%) in 2020 and 

379 TWh (+72%) in 2030 [5].  

Another study conducted by the European Technology Platform on Renewable Heating and Cooling 

(RHC) [6] showed that the cooling demand in the EU is expected to rise in both residential and service 

sectors as shown in Figure 0-1. 

 

Figure 0-1: Predicted evolution of cooling demand in EU for residential and service sectors [6] 
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Additionally, in 2006 the building sector in the USA accounts for 38.9% of the total primary energy 

consumption; 18% for commercial buildings while 20.9% for residential buildings [7]. In 2009–2010, 

the energy consumption of residential building in Australia was around 25% of total energy 

consumptions [8]. Present predictions show that the energy use by nations with rising economies 

(Middle East ,Southeast Asia, South America and Africa) will increase to an average annual rate of 

3.2% and will exceed by 2020 that for the developed countries (Western Europe, Japan, North 

America, New Zealand  and Australia) at an average growing rate of 1.1% [9]. According to IEA 

[10], the cooling demand is expected to increase swiftly in areas where urbanization is promptly 

growing as shown in Figure 0-2. 

 

Figure 0-2: Predicted evolution of cooling demand (Exa-joule "EJ") in four different regions [10] 

Since the energy consumption of heating and air conditioning systems is still rising with the 

increasing demand for thermal comfort, therefore there is large potential to ameliorate the building 

energy efficiency in the areas of heating and cooling technologies.  

One of the interesting ways to reduce the energy demands is the use of thermal energy storage (TES). 

Depending on environmental circumstances, TES materials can absorb heat, store it and release it; 

improving the gap between energy supply and energy consumption [11]. The energy can be stored 

by TES materials in three ways namely sensible heat, latent heat or chemical reactions. The latent 

heat thermal energy storage (LHTES) is an attractive way and has taken much attention over the last 

decades for heating and cooling purposes in buildings. In residential buildings, a large variety of 

studies proved that the application of thermal mass in well-insulated structures provides cooling and 

heating energy savings between 5 and 30% [12]. 

Recently, Phase change materials (PCM), that utilize the principle of LHTES, have received a great 

interest and forms a promising technology. PCM have large thermal energy storage capacity in a 

temperature range near to their switch point and present a nearly isothermal behavior during the 
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charging and discharging process [13]. The right use of PCM can minimize the peak heating and 

cooling loads, and has the capability to keep the indoor temperature within the comfort range due to 

smaller temperature fluctuations. Consequently, reduce the dimensions and energy consumption of 

the corresponding technical equipment. The main advantage of the use of PCM is that it enhances the 

thermal storage potential with a minimum change of the existing building design [12] 

Many studies have investigated the use of PCM in buildings and showed that PCM can remarkably 

improve the building energy performance. But a lot of difficulties were encountered especially 

concerning the efficient use of PCM and its practical application. 

Al-Saadi and Zhai [14], Baetens et al. [15], Cabeza et al.[16], Khudhair and Farid [17], Kuznik et al 

[18] and others, have conducted several reviews on the use of PCM in buildings for thermal energy 

storage and indoor climate comfort purposes, clearly showing that the interest for PCM is increasing 

worldwide. It has been also proved by several authors that PCM provide energy benefits in the heating 

period while limited benefits were found during the cooling season. 

This study presents an overview of different PCM applications in buildings for reducing mainly the 

cooling loads under different climate conditions. The difficulties related to the material selection and 

the factors affecting the successful and the effective use of the PCM are also discussed.  

2. Phase change materials (PCM) 

2.1. General 

PCM can be used to store energy or to control the temperature swings within a specific range. 

Therefore, applications for heating and cooling in buildings are expected to have great potential for 

PCM use. When the temperature rises, PCM absorb heat in an endothermic process and changes phase 

from solid to liquid. As the temperature drops, PCM release heat in an exothermic process, and return 

to its solid phase.  

Certain types of PCM do not satisfy the desired criteria for an appropriate storage medium. The PCM 

to be used for thermal energy storage purposes should meet desirable thermo-physical, kinetic and 

chemical requirements shown in Table 0-1[7] . 

Table 0-1 thermo-physical, kinetic, chemical, economic and environmental requirements of PCM [7] 

Thermo-physical 

Requirements 
Kinetic Requirements 

Chemical 

Requirements 

Economic and 

environmental 

requirements 

- Appropriate melting 

temperature in the required 

operating temperature 

range. 

- High latent heat of fusion. 

-High nucleation rate to avoid 

super cooling of the liquid 

phase. 

- High rate of crystallization 

to satisfy demands of heat 

- Long term chemical 

stability of the PCM. 

- No degradation after 

freeze/melt cycles. 

- Low price and cost 

effective. 

- availability 

-Nonpolluting. 
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- High specific heat. 

- High thermal conductivity 

of solid and liquid phases. 

-High density. 

- Congruent melting of the 

PCM. 

-cycling stability. 

- Small vapor pressure. 

- Small volume changes. 

- Little or no sub-cooling 

during freezing. 

-no segregation. 

recovery from the storage 

system. 

 

- Complete reversible 

freeze/melt cycle. 

- No corrosiveness. 

-non-flammable, Non-

toxic and non-explosive 

materials for safety. 

- Low 

environmental 

impact. 

- Good 

recyclability. 

- Low embodied 

energy. 

-  Facility of 

separation from 

other materials. 

 

2.2. PCM classification 

A considerable number of PCM is available in any desired temperature range. According to their 

chemical composition, PCM can be categorized as organic compounds, inorganic compounds and 

eutectic mixtures. Each group has its typical range of melting temperature and its range of melting 

enthalpy. The paraffin waxes, salt hydrates, fatty acids and eutectic organic /non-organic compounds 

are the most used since last 30 years. The relationship between the melting enthalpy (kJ/l) and the 

temperature of PCM is shown in Figure 0-3. These characteristics are considered very important 

especially for their application in building envelopes (i.e. PCM incorporated into finish materials, 

thermal insulation or structural components) [12].  

 

Figure 0-3: Relationship between PCM melting enthalpy and temperature for the different groups of PCM [15] 

For a specific application, PCM for thermal energy storage in buildings do not meet all the above 

stated requirements and performance properties. Each material has its own specific poor 

characteristics, which can be enhanced by proposing different solutions. For example, using metallic 

fins can increase the thermal conductivity of PCM, introducing a nucleating agent may suppress 
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super-cooling and the use of suitable PCM thickness can prevent incongruent melting [7]. A 

classification of PCM is given Figure 0-4. 

 

Figure 0-4: PCM classification [19] 

 

2.2.1. Organic materials 

Organic phase change materials are paraffin and non-paraffin, the latter including fatty acids, ester, 

alcohols, glycols, etc... They have some characteristics making them beneficial to latent heat storage 

in buildings. Generally, organic PCM are available in large temperature range, they are chemically 

stable, non-corrosive and non-toxic, they freeze with little or without super cooling, they present no 

segregation, and they have a high latent heat of fusion and good nucleation rate. However,  Most of 

the organic PCM are not stable in higher temperatures due to covalent bonds [7] . Also, their density 

is low (usually less than 103 kg/m3), which is below the density of inorganic materials such as water 

and salt hydrates.  

Paraffin are available in a large range of melting points from about 20C up to 70 C, however they 

have a low thermal conductivity (about 0.2W/ (m.K)) limiting their applications[17]. During the 

freezing cycle, when high heat transfer rates are desired, Paraffin present a problem. Moreover, they 

have a large volume change during the phase change [20]. In addition, they are available from many 

manufacturers, but they are expensive comparing to salt hydrates. Paraffin wax is the most used 

commercial organic PCM.  

Fatty acids that are generally presented by the chemical formula CH3 (CH2)2nCOOH, have similar 

characteristics to paraffin and they are stable at cycling. The combination of different fatty acids to 

get melting temperatures range of 20–30°C with a precision of ± 0.5 °C can be promising [7]. 
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2.2.2. Inorganic materials 

Inorganic materials are salt hydrates and metallic. They have respectively good thermal conductivity 

and high latent heat of fusion; they are not expensive and non-flammable. Their main drawback is 

compatibility with metals, since in some combinations of PCM with metals corrosion can be 

developed [7]. They require containment; hence, they are inadequate for impregnation into porous 

building materials. 

The most attractive and important TES materials are salt Hydrates, due to their relative high storage 

density of about 240 kJ/kg, their small volume change during phase transition, and their relative high 

thermal conductivity of about 0.5W/ (m.K). Salt hydrates have some disadvantages such as super-

cooling, segregation, and corrosion [7]. Concerning Metallic PCMs, they are not within the desired 

temperature range for building applications. 

2.2.3. Eutectics 

Eutectics are a mixture of proportions of many solids, in order to get more desired properties mainly 

a higher latent heat and a more specific melting point. They almost melt and solidify without 

segregation, preventing the separation of components. Eutectics are divided into 3 groups according 

to their consisting materials: organic–organic, inorganic–organic and inorganic–inorganic eutectics.  

3. PCM for cooling applications 

Recently, it has been noticed that the cooling demand of the building sector is increasing rapidly, 

especially in developing countries, due to: 1) the high need of comfort of building occupants, 2) the 

rise of the internal heat gains of buildings, 3) the impact of urban heat island felt in overcrowded 

cities and 4) the reduced cost of cooling equipment [21][22][23]. Thus, Passive or efficient-energy 

solutions for space cooling have received much attention. 

In space cooling, the objective is to keep a space cold, more precisely to avoid the temperature 

increasing above a certain level, which can be carried out in three ways: the reduction of heat input, 

the reduction of temperature fluctuations, and the improvement of heat rejection [7]. 

To meet the cooling requirements, PCM can be installed into the building in passive or active systems. 

Passive systems do not use active mechanical equipment and no additional energy is required i.e. the 

heat is charged or discharged only due to temperature fluctuations when the air temperature rises or 

falls beyond the PCM melting point and only natural ventilation provides cold from outside. Passive 

applications are easily implemented and can be integrated into the building envelope (walls, roofs, 

and floors). 
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On the contrary, Active systems need the help of mechanical equipment to achieve the PCM thermal 

energy charging or discharging. In this case PCM can be installed in storage units, in HVAC systems 

or it can be used as heat-cold storage tank in solar cooling technique. 

Different PCM cooling system classifications have been suggested in different studies [24] [25]. In 

the current study the PCM cooling systems are divided into five categories: free cooling, solar 

cooling, air conditioning systems, evaporative and radiative cooling and PCM in building envelope. 

Active and passive cooling systems could be found together or each alone in these categories. Many 

PCM used for cooling applications is listed in Table 0-2. 

Table 0-2: PCM used for cooling applications 

Name of PCM Melting point (C) Latent heat(KJ/Kg) Reference  

Emerest 2325 (butyl stearate + butyl 

palmitate 49/48) 
17-21 138-140 

[24] 

Hexadecane 18 236 [26] 

Heptadecane 18 214 [26] 

KF, 4H2O 18.5 231 [24] 

Butyl stearate 19 140 [29] 

Paraffin C16–C18 20-22 152 [32] 

Paraffin RT20 20-22 172 [34] 

Paraffin FMC 20-23 130 [33] 

Dimethyl sebacate 21 120-135 [32] 

Eutectic E21 21 150 [34] 

Capric-lauric 45/55 21 143 [27] 

Salt hydrates Na2SO4,10H2O 21 198 [33] 

ClimSel C 21 21 122 [34] 

Octadecane 22 244 [26] 

Capric-palmitate 75.2/24.8 22.1 153 [30] 

Paraffin RT25 24 164 [33] 

CaCl2·6H2O 24-29 192 [31] 

45% Ca(NO3)2_6H2O + 55% 

Zn(NO3)2_6H2O 
25 130 

[32] 

66.6% CaCl2_6H2O + 33.3% 

Mgcl2_6H2O 
25 127 

[32] 

Mn(NO3)2,6H2O 25.8 125.9 [28] 

Paraffin R27 26–28 179 [32] 
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SP27 27 180 [33] 

Eutectic E23 29 155 [34] 

3.1. Free cooling 

In free cooling technique, a separate storage unit is utilized in order to provide the cold into the room 

whenever it is required by circulating room air through the storage unit. The difference between the 

natural night ventilation and free cooling is that fans or other mechanical equipment (extra power) 

are used to charge or discharge the heat from the storage unit which improves the cooling potential, 

unlike the night ventilation where building envelope such as walls are used for thermal storage. The 

effectiveness of PCM-based free cooling application depends on the diurnal temperature range that 

should be between 12C and 15C [35]. If the air temperature swing between day and night is 

relatively small, then other parameters should be accurately considered in the design of free cooling 

system coupled with PCM i.e. selection of an appropriate PCM with suitable encapsulation [36]. 

The principle of a free cooling system with PCM, shown in Figure 0-5, consists of two operation 

modes:  

- Solidification of PCM: occurs at night when the ambient temperature is lower than the indoor 

temperature. The outdoor cool air flows across the storage unit, by means of a fan, absorbing heat 

from PCM, which leads to the beginning of solidification process, which lasts until the outdoor 

temperature became nearly equal to the PCM solidification temperature. 

- Melting of PCM: occurs during the day when the indoor temperature increases above the comfort 

range. Hot air of the room passes through the storage unit and the heat is absorbed by the solid PCM 

which leads to the beginning of melting process. Consequently, the room air temperature is reduced, 

and the cooled air is delivered to the interior of the building.  

 

Figure 0-5: Principal function of PCM ‘‘free cooling system’’[25] 

Many Parameters affect the thermal performance of a free cooling system during charging and 

discharging such as the air flow rate, the outlet air temperature and the inlet air temperature of the 

storage unit, in addition to the thermo-physical properties and encapsulation thickness of PCM, which 
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all affect the melting and the solidification processes. Moreover, PCM melting temperature is an 

important factor in the design of a free cooling system. The cooled air temperature in the room after 

the discharging of PCM should be within the comfort range (23–27C), therefore the PCM melting 

temperature should be taken between 19C and 24C [34]. 

It is found that commercially available PCM having melting point between 20C and 27C, are often 

used in the application of free cooling system. In addition, most of the studies have used paraffin as 

PCM in the storage unit since they do not react with the encapsulated material (no leakage) and 

without sub cooling in contrast to salt hydrates which are rarely used.  

Many Studies had discussed the efficiency of free cooling system in alleviating the building cooling 

loads during hot periods. An experimental installation was designed by Zalba et al. [36] to investigate 

the performance of PCM in free cooling system. The principal parameters affecting the melting and 

solidification processes were discussed. They concluded that the designed installation is technically 

and economically beneficial, considering further enhancements such as increasing the heat transfer 

coefficient and the use of more appropriate PCM. Mosaffa et al [37] studied numerically, using heat 

capacity method, the performance of multiple PCM TES unit for free cooling shown in Figure 0-6. 

They investigated the impact of some parameters mainly the thickness and the length of PCM slabs, 

and the thickness of air channels using energy-based optimization method. Another optimization 

method, based on energy storage effectiveness, was proposed by same authors [38] to enhance the 

performance of multiple PCM free cooling system (Figure 0-7), They concluded that the suggested 

method is not appropriate for free cooling system optimization, but the model may be advantageous 

to design an optimum free cooling system at different climates. Anisur et al. [39] aimed to validate 

experimentally a previous analytical work concerning a shell LHS system (Figure 0-8); they 

concluded that this method is beneficial to design an air cooling system forecasting different 

parameters. 

 

Figure 0-6: Schematic diagram of the TES unit [37] 
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Figure 0-7: Installation of thermal storage for free cooling [38] 

 

 

Figure 0-8:Schematic diagram of LHS System for air cooling through cylindrical tube [39] 

Rouault et al [40] investigated numerically the effect of the geometry (shapes and arrangements), of 

rectangular tubes filled with PCM (Figure 0-9), on the LHTES  unit performance. They finally 

suggested a future design support system principally considering the PCM solidification stage. 

Osterman et al [41] examined numerically, using Fluent software, and experimentally the 

performance of a proposed TES system (Figure 0-11) on a yearly basis, and they discussed its viability 

for space cooling and space heating. They concluded that the maximum quantity of cold is 

accumulated in August and July, due to larger diurnal temperature fluctuations. Darzi et al [42] 

investigated the influence of PCM plate thickness, inlet air temperature and mass flow rate on the 

efficiency of plate PCM storage unit (Figure 0-10). They found a linear relation between the PCM-

plates thickness and the duration of melting process. Lazaro et al [43] tested experimentally two 

prototypes of PCM-air heat exchangers. They concluded that, for free cooling applications, the design 

of heat exchangers is more important than improving PCM thermal conductivity. 
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Figure 0-11: Conceptual design of a storage unit [41] 

Tan and Zhao [44] investigated the performance of PCM storage unit ( Figure 0-12) integrated in 

thermoelectric system using a mathematical model, and then validated it experimentally. They also 

recommended a guideline on the design of the combined system. They concluded that the selection 

of TEM depends significantly on three factors namely the COP, cost and cooling power. Yanbing et 

al. [45] investigated the performance of night Ventilation with PCM (NVP) storage system .They 

found that the NVP system is efficient and can decrease the room energy consumption. Takeda et al 

[46] investigated the potential of a PCM packed bed storage unit (positioned in the building 

ventilation system) in decreasing the ventilation load for different Japanese climates. They found that 

during discharging procedure, the outlet air temperature is always constant and in the range of phase 

change temperature. The use of PCM storage unit can decrease the building ventilation load up to 

62% in the different considered Japanese cities. Waqas and Kumar [47] investigated experimentally 

the performance of free cooling system in hot and dry climate; the storage unit is shown in Figure 

0-13. They found that a complete solidification of PCM can be achieved in short period when the air 

Figure 0-9: An energy storage unit and its airline 

connection [40] 

Figure 0-10: Schematic diagram of heat exchanger with 

plate-type PCM [42] 
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flow rate is higher and the outdoor temperatures are lower at night. Moreover, the potential of free 

cooling principle was also investigated using other different systems: two cylindrical LHTES filled 

with PCM spheres [48] as shown in Figure 0-14, cold storage composed of a metal box [49] built in 

a ceiling board, with aluminum fins in order to increase its thermal power, heat pipes embedded in 

PCM [50], PCM packed bed storage [51] integrated under the floor as shown in Figure 0-15 and a 

bulk PCM tank with a finned-pipe heat exchanger [52] (TRNSYS component type 842) as shown in 

Figure 0-16. The free cooling system applications are summarized in Table 0-3. 

 

Figure 0-12: Schematic diagram and cross-section of the PCM heat storage unit [44] 

 

 

Figure 0-13: The experimental PCM storage unit [47] 

 

 

Figure 0-14: cylindrical LHES filled with PCM spheres [48] 
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Figure 0-15: Concept of the PCM system packed bed storage integrated under the floor [51] 

 

Figure 0-16: Heat exchanger considered in TRNSYS [52] 

Table 0-3: PCM in active free cooling system applications 

Ref/Type* 
Location/ 

climate 

Used PCM 

properties 

Heat 

exchanger 
Results 

[36] 

E 

Laboratory 

experiment- 

Spain 

-encapsulated PCM 

RT25 

-Tm=25C 

- m total PCM = 3 kg 

flat plate heat 

exchanger 

 

Main parameters affecting solidification and 

melting processes: 

- Thickness of PCM encapsulation,  

-air flow, 

- inlet air temperature  

--interaction between temperature and 

thickness 

[37] 

E,S 
Tabriz, Iran 

-CaCl2_6H2O, 

Tm=29C 

-Paraffin C18, 

Tm=27.5C 

-RT25, Tm=26.6C 

Parallel 

rectangular air 

channels 

separated by 

PCM slabs 

COP=7 realized by: 

-combination of RT25& CaCl2_6H2O 

- air channel thickness= 3.2 mm 

- PCM slab length= 1.3 m and thickness= 10 

mm 

[38] 

E,S 

Eindhoven, 

south of 

Netherlands 

-Climsel C24, 

Tm=24C 

-KF4H2O, 

Tm=18.5C 

 

Layers of flat 

PCM slabs 

with HTF 

channels in 

between 

- COP= 7.63 & Qcool=4.38 kW  

- Air channel thickness=3.2 mm, length=1.3 

mm, slab thickness= 9 mm.& maximum flow 

rate ̴1200 m3/h  Toutlet < 20 C for 8 h & 

power consumption =4.6 kWh 

-Air flow rate<700 m3/h optimum E*= 

0.66  COP<5.76 & Qcool=2.96KW 

-Air channel thickness ↘↘  E*= 0.54  

COP=6.22 & power consumption=5.8 kWh. 
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[39] 

E 

Kuala 

Lumpur, 

Malaysia 

-Heptadecane 

 -Tm =22.33C 

shell and tube 

LHS filled with 

PCM 

- T inlet air ↗↗ Better (COP). 

- T inlet air= 34.5C , tube inner radius=5.35 

mm and 1 mm thickness COP=4.16 

[40] 

E,S 
- 

-RT28 HC paraffin 

-Tm=28C 

 

bundle of 

rectangular 

tubes filled 

with PCM 

-Vertical flat plates marginally more effective 

than horizontal ones. 

- Improvement of heat exchange between 

tubes & air are required.  

[41]E,S 
Ljubljana, 

Slovenia 

-paraffin RT22HC 

- m PCM in the plate = 

1003 g 

 

30 CSM Plates 

filled with 

PCM & Air 

gap between 

plates=0.8 cm. 

-Reduction of annual energy consumption 

=142 kWh. 

- In July and august: complete TES cycles & 

stored energy rises. 

-TES cost = 2*cost of a conventional system. 

-TES cost in the operation period is lower. 

[42] 

S 

different 

indoor 

temperature 

conditions 

-PCM salt SP22A17 

-Tm=22-24C 

PCM plates 

type storage  

- Mass flow rate ↗↗  cooling power ↗↗ 

- Stefan number↗↗ cooling power & Toutlet 

↗↗ 

-Lower mass flow rate & lower Stefan 

number  more efficient heat exchanger. 

[43] 

E 

Zaragoza, 

Spain 

-inorganic PCM: 

Ks=0.7w/m.k 

Stored 

energy=31.584KJ 

-organic PCM: 

Ks=0.16w/m.k 

Stored 

energy=24.395KJ 

2 prototypes: 

-aluminum 

pouches filled 

with inorganic 

PCM 

- aluminum 

panels 

filled with 

organic PCM 

- Lower Ks and lower stored energy  

cooling power↗↗ & shorter melting period  

-Prototype 2 more practical for free-cooling. 

 

[44] 

E,S 

Denver, 

Colorado, 

USA 

-organic paraffin 

RT22 

-Tm=19-23C(main 

peak=22C) 

- m total PCM=15.4 

kg. 

Shell and tube 

PCM storage 

unit 

incorporated in 

thermoelectric 

cooling system 

- PCM integration COP ↗↗ from 0.5 to 

0.78 

- determining PCM volume depends on 

system accumulated heat dissipation.  

- Necessity to evaluate the weather condition 

to ensure fully discharging of PCM at night. 

[45] 

E,S 

 

Beijing-

China 

-2000 capsules 

containing fatty acid  

- Tm = 22 C - 26C, 

- m total PCM=150 

kg. 

PCM Packed 

Bed Storage 

(NVP) 

-NVP reduces the room temperature and 

increase thermal comfort level.  

-during day, PCM discharged 300 w cold to 

the room  

-COP overall (Qdis/P fan) = 80. 

[46] 

E,S 

8 Japanese 

cities 

-PCM granules (65% 

ceramic and 35% 

paraffinic 

hydrocarbon),  

-Tm =22.5-25C 

- m total PCM 

bed=4.59 kg  

PCM packed 

bed fixed 

vertically in a 

supply air duct. 

 

- Selection of PCM depends on climatic data 

particularly on the diurnal temperature 

variation. 

- Significant reduction in ventilation load in 

all cities, especially in Kyoto by about 

62.8%. 

 

[47] 

E 

Islamabad-

Pakistan/ 

dry and hot 

climate 

-SP29 encapsulated 

in containers of 

galvanized steel  

-Tm =27-29C 

- m total PCM =13 kg  

PCM storage 

unit: open air 

circuit type 

(flat plate heat 

exchanger) 

- decreasing Tcharging from 22C to 20C 

33% less time required to fully solidify the 

PCM 

- increasing Tcharging from 22C to 24C 

52% more time required to fully solidify 

the PCM. 
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- Increasing air flow rate from 4 m3/hr to 5 

m3/hr  16% reduction of solidification time 

period. 

-Tm of PCM affects the storage unit 

performance more than the air flow rates.   

[48] 

E,S 

Ljubljana- 

Slovenia/ 

latitude 

=46C 

- RT20 paraffin  

-Tm=20 C  

2 cylindrical 

LHTES units 

filled with 

PCM spheres, 

integrated into 

MVS  

- Optimum PCM mass in both LHTES units: 

6.75 kg/m2 (heavyweight bldg.) and 13.5 

kg/m2 (lightweight bldg.)  

- mechanical ventilation size is reduced 

-more favorable temperatures are provided. 

[49] 

E 

Lab scale 

experiment 

Ljubljana-

Slovenia 

 

- RT 20 paraffin  

-Tm = 22 C  

- m total PCM =3.6 kg  

metal box with 

external and 

internal fins 

filled with 

PCM 

- Toutlet air (when airflow =1.5 m s-1) < Toutlet air 

(when airflow = 2.4 m s-1). 

-proper selection of PCM type depends on 

local climate conditions. 

- Inlet air temperature=26C and airflow=1.5 

m s-1
 greater air cooling time by the buffer 

compared to other regimes 

[50] 

E,S 

Typical UK 

summer 

conditions 

-Salt hydrate 

(Na2SO4 ,10H2O)  

-Tm =21 C. 

heat pipes 

embedded in 

PCM storage 

unit 

- T = Tm – Tcharging ↗↗ Better 

solidification: 

- higher air flow rates (  full solidification 

-free cooling  prevents overheating in 

summer, and reduces CO2 emissions. 

- T between air and PCM ̴15C PCM 

melting and solidification in practical time 

(7±10h).  

- Heat transfer <40 W when temperature 

difference is 5C (more reasonable) and flow 

rates 0.18 m3/s. 

[51] 

E,S 
Japan 

PCM granules with 

diameter of some 

micrometers 

containing paraffin. 

PCM packed 

bed storage 

Each night, 89% of daily Qcool is stored 

using 30 mm thick packed bed of granular 

PCM. 

[52] 

 S 

Stockholm/ 

Swedish 

climate 

excessive 

overheating 

in summer 

-Commercially 

available salt based 

PCM  

-Tm ̴ 17 C (close to 

the average summer 

temperature in 

Stockholm) 

 bulk PCM 

tank with a 

finned-pipe in 

an aluminum 

based heat 

exchanger 

-Active free cooling keep the room 

temperature within indoor comfort range.  

- 75% of the cooling demands are met at half 

of electricity consumption. 

-free cooling is an economically and 

environmentally proper solution for a passive 

building. 

*(E: experimental, S: simulation) 

It could be noticed that the main component in the free cooling system is the PCM storage unit; 

moreover, suitable PCM with appropriate melting temperature should be carefully selected. PCM free 

cooling system technology is not yet commercialized and its initial cost is higher by about 10% than 

a traditional air-conditioner; keeping this cost competitive with other traditional cooling technologies 

requires more PCM commercialization [33]. However, it was shown that PCM solidification during 

the limited period at night is slow due to the low thermal conductivity of PCM; heat transfer 

improvements are needed. It is also found that free cooling systems are investigated numerically in 
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many studies, and barely any free cooling system was applied in experimental real case for building 

[25]. Also, the majority of studies investigated the PCM free cooling performance in summer 

conditions in European climates, however there is a need to evaluate the potential of PCM free cooling 

system for the desert climate with high diurnal temperature ranges [25]. 

3.2. Solar cooling systems with PCM 

Solar cooling systems including adsorption and absorption cooling have been examined in the last 

few years, and it can be considered as alternatives to traditional air conditioning systems. Moreover, 

solar powered absorption cooling system can realize summer comfort conditions in buildings at low 

primary energy consumption. Solar cooling systems can reduce the cooling needs in buildings under 

hot climate [53]; they can also decrease the peak demand for electricity and consequently reduce the 

environmental pollution.  

The use of PCM with solar absorption cooling, help significantly to meet cooling demand when the 

solar energy is not available. 

Helm et al. [54] examined a solar-driven absorption cooling system coupled with PCM and a dry air 

cooler instead of a traditional wet cooling tower as shown in Figure 0-17. They concluded that by 

integrating PCM in heat rejection circuit of the chiller, a quantity of required power could be shifted 

to the off-peak hours with minor rise in total electric consumption of the absorption cooling system. 

A novel concept for a solar cooling system including dry cooler with PCM had been investigated [55] 

in order to improve the system efficiency. The operating costs and maintenance for the new developed 

system are lower, compared to the wet cooling tower. On hot days, PCM support the dry cooler to 

assure a low cooling water return temperature to the absorption chiller. At the University of Lleida, 

Gil et al.[56][57][58] developed a TES system for solar cooling application shown in Figure 0-18 

(pilot plant at the laboratory), in order to be used later in real installation for cooling purposes on the 

roof of a building in Seville [58]. The storage tank implemented in real solar cooling installation is 

shown in Figure 0-19. In the experiment, a dry cooler was used to remove heat instead of the 

absorption chiller and an electrical boiler was used to provide heat instead of the solar collector. They 

also tested two PCM storage tanks (shell-and-tubes heat exchanger) one with fins and the other 

without fins [57]. They concluded that in the design of a real PCM storage tank, the dead PCM 

volumes must be avoided. 

Belmonte et al [59] investigated the performance and the feasibility of an alternative solar cooling 

system where the open wet tower is replaced by a dry cooler combined with PCM TES system (Figure 

0-20). Then, conventional and alternative configurations were simulated and compared for different 

climate conditions. They concluded that the conventional system is more efficient, at all locations, in 

terms of chiller’s COP and produced cooling energy, but in terms of overall system COP, the system 
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efficiency is improved by 50% in the alternative configuration. Furthermore, Agyenim et al. [60] 

designed a tube heat exchanger with PCM in order to improve the COP of LiBr/H2O absorption 

cooling system. It has been found that the chosen PCM was appropriate to improve the COP of the 

solar cooling system. The solar cooling systems combined with PCM applications are summarized in 

Table 0-4. 

 

Figure 0-17: solar heating and cooling system with absorption chiller and latent heat storage in cooling mode 

[54] 

 

 

Figure 0-18: Location of PCM storage tank in the solar cooling application [58] 

 

 

Figure 0-19: Storage tank implemented in a real solar cooling installation at the University of Sevilla (Spain) [58] 
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Figure 0-20: solar cooling system with dry coolers and a TES PCM [59] 

 

Table 0-4: PCM combined with Solar cooling system applications 

Ref/ 

Type* 

Location/ 

climate 

Used PCM 

properties 
PCM-solar system Results 

[54] 

E 

 

Munich, 

Germany 

-calcium chloride 

hexahydrate 

(CaCl2,6H2O)  

-Tm= 27–29C  

-PCM & dry air 

cooler in solar-

driven absorption 

system 

-PCM support heat 

rejection of 

absorption chiller 

-PCM instead of conventional 

WHSVolumetric storage density 10 times 

higher. 

-Reduction of over-sizing of the solar 

collector 

 

[55]E, 

S 

8 European 

climatic 

conditions  

 

-Calcium chloride 

hexahydrate 

-Tm=29C 

-PCM with dry re-

cooled sorption 

chiller -LHS 

module with inner 

heat exchanger 

containing 1 m³ of 

PCM  

-In situ measurementpositive effect on 

SEER for cooling by 11.4.  

- Simulation efficiency ↗↗ up to 64% 

compared to system with only dry re-

cooling (without PCM) 

[58] 

E 

Lleida & 

Seville, 

Spain 

- PCM : 

Hydroquinone  

-Tm= 166 C-173C 

PCM storage tank 

with absorption 

chiller and Fresnel 

collectors 

-Tank with finsshorter 

melting/solidification time, PCM 

conductivity↗↗, heat transfer rates↗↗, 

energy stored faster  

- fins money &time investment↗↗, PCM 

quantity& stored energy ↘↘  rejection of 

using fins in real applications. 

[59] 

S 

52 provinces 

of 

Spain  

- hydrated salts. 

-Tm=30C 

PCM in the heat 

rejection loops of 

absorption chillers 

Alternative system with PCM TES: 

-In temperate & humid summers COPsys 

improved by one unit. 

- Reduction of total cooling energy in 

evaporator (21–38%) 

-worsening of mean performance coefficient 

of chiller (between 7&13%). 

[60] 

E 

Cardiff, 

Wales. 

-Erythritol  

-Tm=117.7°C 

PCM at the hot side 

of absorption 

chiller with solar 

collector 

Erythritol suitable for the application, 

provide ̴4.4 hours of cooling at peak load  

*(E: experimental, S: simulation) 
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3.3. PCM-air conditioning systems 

Air conditioning systems control several changes such as weather conditions, residential, commercial 

and industrial activities. Thus, during the day, the electrical consumption varies considerably and 

reaches peak values. Integrating PCM in AC system could significantly reduce the cooling load, 

where AC with smaller power size could be used. Fang et al. [61] tested the performance of an AC 

system incorporated with PCM spherical capsules packed bed. They investigated different parameters 

mainly the cool storage rate and capacity, the condensation and the evaporation pressures of the 

refrigeration system, the COP of the system, the inlet and outlet coolant temperatures during charging 

and discharging periods and others. They concluded that the AC system incorporated with PCM 

showed better performances. Figure 0-21 shows their investigated experimental system. Chaiyat [62] 

installed a PCM bed in the return duct of an AC system (Figure 0-22) in order to reduce the air 

temperature that enters the evaporating coil and thus improving the cooling efficiency of the AC.  

A tube-in-tank off-peak PCM storage system shown in  

Figure 0-23 , incorporated in a domestic chiller, was modelled and simulated by Bruno et al [63] using 

ε-NTU technique (effectiveness-number of transfer units) to determine the instantaneous heat 

transfer. Zhao and Tan [64]  aimed to increase the cooling COP of a conventional AC by integrating 

a shell-and-tube PCM thermal storage unit that uses water (for charging loop) and air (for discharging 

loop) as a HTF. Figure 0-24 shows the AC integrated with PCM and a cross-section of PCM thermal 

storage unit. They investigated the impact of HTF mass flow rate, inlet temperature and fin height on 

PCM system performance. Results showed that optimization should be carried out, depending on the 

cooling load profile, in order to design HTF mass flow rate and fin height. The air-conditioning 

systems combined with PCM applications are summarized in Table 0-5. 

 

Figure 0-21: Schematic diagram of the AC experimental system with PCM [61] 
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Figure 0-22: prototype of the air-conditioner integrated with the PCM bed [62] 

 

 

Figure 0-23: schematic diagram of domestic cooling system with PCM storage unit [63] 

 

 

Figure 0-24: (a) Schematic diagram of AC integrated with PCM thermal storage, (b) cross-section of the PCM 

thermal storage unit, (c) photo of PCM thermal storage unit during heat charging process [64] 
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Table 0-5: PCM-air conditioning system applications 

Ref./ 

Type* 
Location/climate Used PCM PCM-AC system Results 

[61] 

E 

Lab experiment 

in china 

Water used as 

PCM (183 

spherical 

capsules) 

 

cold storage AC 

system with 

spherical PCM 

capsules packed 

bed, consisting of 

refrigeration & 

charging and 

discharging 

circulation systems 

- In case of charging: cold storage rate ↘↘ 

from 12.3 kW to 2.2 kW & cold storage 

capacity= 59.7 MJ  

- In case of discharging: cold discharge rate 

↘↘ from 8.5 kW to 3.4 kW & cold storage 

capacity = 45 MJ  

- Outlet air temperatures remained between 

20.7 C & 24.4C. 

[62] 

E,S 

Chiang Mai, 

Thailand  

 

-RT20 

- Tm ̴ 19–22C  

 

-PCM in group of 

plastic balls kept in 

packed bed with 

thickness 40cm. 

 

- Use of packed ball bed of PCM  

significant reduction in energy consumption 

of air-conditioner for air cooling. 

- Electrical power of PCM-air conditioner 

system could be saved ̴ 9%. 

- The payback period of PCM  ̴4.12 y. 

- PCM ball integrated with air-conditioner 

seemed beneficial &highly effective. 

[63] 

S 

Adelaide, 

Australia / semi 

Mediterranean 

climate 

-Hf= 220 kJ/kg, 

 ρ= 1200 kg/m3 , 

ks= 1.5 W/m K. 

& kl= 1.2 W/m 

K 

-Different Tm = 

0,4,7,10C 

PCM thermal 

storage unit coupled 

to chiller with an 

inverter driven 

scroll compressor  

- 85% of energy consumption for cooling 

shifted to off-peak period. 

-Tm & Ts ↗↗  energy consumption ↘↘ 

- PCM with Tm= 4C possibility to attain 

an energy saving for cooling. 

- PCM with Tm=10C  energy savings ̴ 

13.5% 

-Energy usage ↗↗ with a more efficient PCM 

storage system. 

- Optimal charging during coldest time at 

night  energy consumption ↘↘  

- kl ↗↗  amount of discharging at daytime 

↗↗ & significant load shifting  

[64] 

E,S 

Laramie, 

Wyoming, USA 

- PCM RT22 

-Tm=19–23C 

(main peak: 22) 

- m total PCM ̴ 

6.3 kg  

-AC integrated with 

shell-and-tube PCM 

thermal storage 

system 

- Function of PCM: 

heat sink to the AC 

during day cooling 

period.  

- In heat charging process: Tinlet HTF (water), 

mass flow rate & fin height ↗↗ PCM heat 

charging rate↗↗ & total charging time is 

shorter. 

- In heat charging process: HTF (air) mass 

flow rate↘↘  save fan energy consumption. 

- Effectiveness of PCM storage system > 0.5. 

- PCM storage system instead of conventional 

cooling tower for a water-cooled AC  COP 

↗↗ by 25.6%. 
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*(E: experimental, S: simulation) 

3.4. Evaporative and radiative cooling systems 

Direct Evaporative cooling strategy is a way to cool the air by evaporation of water. More precisely, 

evaporation of water allows the absorption of the heat and thus the air is cooled. After evaporation, 

the water vapor transfers the absorbed heat to the air as latent heat. Thus the humidification of air 

occurs and the total enthalpy of air barely changes. The cooled and the humidified air are therefore 

used for cooling purposes in building especially under dry and hot climates. Indirect evaporative 

cooling is more suitable for humid climates, due to the humidity added to the air by separating air and 

water. The evaporative cooling system is investigated in the Darmstadt house (2009) [66]. Other 

attractive cooling strategy is the night radiative cooling (losing heat by thermal radiation), suggested 

by the Technical University of Madrid in 2007 and used by Hegger et al.[67] [66] in the Darmstadt 

house (2007). Moreover, Zhang and Niu [68] investigated a hybrid system (Figure 0-25) which is a 

combination of a nocturnal radiative cooling coupled with microencapsulated PCM slurry storage 

tank (Tm=18C) in order to evaluate its cooling performance in buildings. The investigations were 

carried out under different climatic conditions in five cities in China (from north to south: Urumqi, 

Beijing, Lanzhou, Shanghai and Hong Kong). The results showed that the energy savings in Lanzhou 

and Urumqi are up to 77% and 62% for low-rise buildings respectively, and Hong Kong under hot 

and humid climate showed the weakest performance. Authors recommended using this hybrid system 

in cities where the temperature is low at night and the weather is dry (north and central china). 

 

Figure 0-25: (a) Construction of the nocturnal sky radiator, (b) Schematic diagram of the hybrid system [68] 

[65] 

S 
Nagoya- Japan 

PCM mixtures 

of paraffin 

waxes  

 

Air distribution 

system (AC) 

equipped with a 

PCM storage tank 

for peak shaving 

-In Nagoya, 400 kg of PCM for 73.8 m2 of 

room surface (5.4 kg/m2) are optimum values 

to maintain a constant room temperature 

without the need of cold source operation. 

- Appropriate PCM melting temperature was 

about 19C. 

http://en.wikipedia.org/wiki/Thermal_radiation
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Ansuini et al. [69] developed radiant floor panels with granulated PCM showed in Figure 0-26 

(Ts=24C and Tm =29C) with incorporated pipes for heating and cooling. The primary results 

showed that the PCM panels could be useful in summer but their performance was unhelpful in 

winter. The increased resistance between pipes and the melted granulated PCM is the cause of the 

bad performance of PCM panels during the heating season. With the aim to decrease the thermal 

resistance of granulated PCM, a special steel matrix (act as thermal diffuser) was designed to optimize 

the internal structure of the radiant floor. A numerical simulation was carried out after this 

optimization in winter, mid-season and summer season. It was concluded that in summer season, the 

quantity of cooling water to keep the temperature in comfort range was reduced by 25%, however in 

winter season there is no effect. In the mid-season, the floor temperature peak was reduced by about 

3.5C. This system is effectively beneficial to maintain the room temperature comfortable without 

any extra energy source. 

 

Figure 0-26: (a) metal container with pipes and supporting metal net, (b) specimen filled with the granular PCM 

(c) optimized specimen with the steel matrix [69] 

Wang et al. [70] proposed a hybrid system consisting of cooled ceiling , microencapsulated PCM 

slurry storage (hexadecane C16H34 particles and pure water, Tm=18.1C) and evaporative cooling 

technique shown in Figure 0-27. They evaluated the system in five cities in China under different 

climatic conditions. The cooling energy produced by the evaporative cooling system is stored by the 

MPCM slurry storage. The results showed that energy savings reached 80% under northwestern 

Chinese climate (Urumqi), about 10% under southeastern Chinese climate (Hong Kong) and between 

these two values for the other three cities (Shanghai, Beijing, Lanzhou). This hybrid system is suitable 

for cities under dry climate with high diurnal temperature difference. 



Annexes 

 

260 
 

 

Figure 0-27: Schematic diagram of the hybrid system [70] 

 

3.5. PCM in building envelope 

The previous sections presented PCM used as separate storage unit installed with other mechanical 

equipment which were considered mostly as active systems. The installation of such systems needs a 

specific place in the building, which is considered an important disadvantage for the designers and 

users. As a solution for this drawback, PCM can be integrated into building envelopes i.e. walls, 

roofs, and floors as part of building structure or as building component and can be installed whether 

in passive or active system. The PCM integration into the building envelopes has attracted a great 

interest in the last 10 years. 

3.5.1. PCM passive system applications in the building envelope 

Some authors [7][66] classified passive system applications in the building envelope into two main 

categories: 

- PCM “integrated” into building materials: when they are incorporated to a building construction 

material such as plaster with microencapsulated paraffin, gypsum plasterboards with 

microencapsulated paraffin, concrete with microencapsulated paraffin, panels with shape-stabilized 

paraffin [7], and blending PCM with thermal insulations. The main benefit of PCM-enhanced 

insulation is their capability to reduce and shift significantly the peak hour thermal loads of the 

building envelopes [12]. The team of Germany (2009), in a group work [67], have used 

microencapsulated PCM integrated into drywall panels as the interior finishing of a German house 

for cooling periods. These panels contain Micronal microscopic polymer spheres filled with paraffin 

wax developed by BASF Company. The selected PCM (Tm=26C) starts to absorb heat when the 
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room temperature rises above PCM melting temperature, reducing overheating, where excess heat is 

stored in the walls. At night the heat is discharged, since the air temperature drops below the PCM 

switch temperature thanks to night ventilation. As a result, a more regular space temperature is 

provided, since temperature peaks are cut off, and thus the need of a mechanical conditioning system 

is minimized [66].  

- PCM as “component”: The main difference between building components equipped with PCM and 

PCM integrated into building materials is that a component can be manufactured before the building 

being constructed and have a particular design. Blinds with integrated PCM are considered as an 

example for PCM component. In fact, solar gains through windows are considered one of the major 

sources of heat input into a building. Thus, to avoid direct solar radiation, blinds equipped with PCM 

(Figure 0-28) can be used, it can be fixed inside the building or outside in front of the window. 

Integration of PCM into the internal blinds can reduce and delay the temperature rise of the blinds, 

and then the heat release into the room is delayed. The notion of internal blinds with integrated PCM 

is shown in Figure 0-29. The company ZAE Bayern and Warema (project “Innovative PCM-

technology”) [7], have tested a room under realistic conditions to investigate the reduction and the 

delay of the temperature rise of the blinds by integrating PCM. Compared to the conventional blinds, 

the room air temperature was around 2 K less; the temperature-rise of the blinds decreased 

approximately 10 K, and was delayed by about 3 hours. The numerical simulation showed that the 

operative temperature of the room decreased approximately 3 K and the thermal comfort in the room 

improved largely. 

 

 

Figure 0-28: Internal blinds with integrated PCM [7] 
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Figure 0-29: Internal blinds absorb solar radiation in order to cool the space by reducing the solar heat input [7] 

Suspended ceilings with PCM are considered as an example for PCM component; salt hydrates are 

used and are encapsulated in plastic containers, in bags or in metal containers. The company Dörken 

sells a full range of PCM under the brand name DELTA®COOL system and it can be installed in 

ceilings or floors [7]. A system was designed by Ontario team [66] using the commercial PCM 

product DELTA-COOL 24 shown in Figure 0-30 which consists of salt hydrates encapsulated in 15 

mm polypropylene panels with a melting temperature of 24 C, and a solidification temperature of 

22C. A gross area of 62.1 m2 of PCM panels was installed; each panel had a heat storage capacity of 

62.6 kWh, with a melt enthalpy of 158 kJ/ kg. The team used “DRSS” concept to develop a house 

envelope, where exterior shades are one of the basic components that respond to the change of 

external conditions. The shades change their angles between perpendicular and parallel to the sun’s 

rays as required, keeping the indoor temperature comfort. During the day, when cool is needed, the 

shades eliminate undesirable solar gains by preventing the solar radiation to reach the glazing, PCM 

remove the excess heat and then reduce the cooling peak. During the night, the PCM release the stored 

heat into the cool night air due to the activation of an air force night ventilation system.  
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Figure 0-30: Delta Cool 24, upper face of PCM panel [7] 

Moreover, Kalnæs et al. [71] presented many examples of integration of phase change materials for 

passive systems, exploring possible areas and materials where PCM can be usefully incorporated. 

And they divided these examples to five different categories according to the location of integration 

of PCM: in walls, floors, roofs, windows/shutters, concrete, thermal insulation materials and 

furniture. Moreover, Pomianowski et al. [72] presented various construction materials of the building 

(gypsum and wallboards, concrete, bricks) which were blended or combined with PCM in passive 

systems. Zhue et al. [73] presented an extensive list of PCM passive systems investigated 

experimentally with important results. Different possibilities of the use of PCM and their application 

in the American Solar Decathlon, including the descriptions of the systems and the factors that affect 

their performance, as well as results of simulations and experimentation were presented by Ubinas et 

al.[66]. Soares et al [74] also explored PCM application in passive systems, and investigated the effect 

of these systems on the energy performance of buildings. Some examples of passive system 

applications are presented in the following, according to the location of PCM integration: 

- PCM in wall/wallboard: Installation of PCM wallboards in the inner side of the building envelope 

is the most general and suitable solution for implementing PCM into buildings. Figure 0-31 shows 

PCM gypsum board. During the last years, many studies (numerical/simulation, experimental or both) 

investigated a large variety of this type of materials. Scalat et al. [75] believed that the human comfort 

can be maintained for longer periods using PCM wallboard, after the heating or cooling system was 

stopped. Kuznik et al. [76] investigated a renovation project in the south of Lyon-France using PCM 

wallboards. By testing a room in the same building that was renovated without PCM and then 

comparing it to the room with PCM, they concluded that the PCM increased the indoor thermal 

comfort, but it appeared unable to use its latent heat storage capacity for a number of durations due 

to the incomplete discharge overnight. Athienitis et al. [77] investigated the thermal performance of 

PCM gypsum board in a direct-gain outdoor test room. The results showed a reduction of the room 

temperature by a maximum 4C during the daytime. Neeper [78] investigated the thermal dynamics 
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of room with fatty acid and paraffin waxes gypsum wallboard. The results showed that the maximum 

diurnal energy storage is occurred when the melting temperature of PCM was chosen close to the 

average room temperature. 

 

Figure 0-31: PCM enhanced gypsum board [12] 

-PCM in floors, roofs and ceilings: Incorporation of PCM in floors that are in direct contact with 

solar radiation could be an effective solution for thermal energy storage. Xu et al. [79] investigated 

the thermal performance of PCM floor system in passive solar buildings. This performance is affected 

by several factors such as the choice of covering material, thickness of PCM layer, PCM melting 

temperature, its thermal conductivity and heat of fusion, and the air gap between the PCM and 

covering material. The results showed that the thickness of PCM should not be greater than 20 mm 

and the heat of fusion and thermal conductivity of PCM should respectively exceed 120 kJ/ kg and 

0.5 W/m K.  

 Incorporation of PCM into roof systems has not gotten too much attention, Pasupathy [80] 

investigated the performance of a double layer of PCM incorporated into roof in Chennai, India. 

Inorganic eutectic of hydrated salts used as PCM was incorporated into roof panels of a room and 

then it was compared experimentally to a room without the PCM panel. The results showed that the 

indoor air temperature swings can be narrowed due to the PCM roof panel, and that this system can 

be suitable all seasons when the upper PCM layer had a melting temperature 6–7C greater than the 

ambient temperature during summer and the lower PCM layer had a melting temperature close to the 

indoor temperature. A naturally ventilated roof with a photovoltaic (PV) module with PCM in Oak 

Ridge, Tennessee was developed by Kosny et al. [81]. Reducing heating loads and cooling loads 

during winter and summer respectively was the main objective of this system, in winter PCM absorb 

heat during the day and release it at night while in summer PCM absorb excess heat. The results 

showed that heating loads and cooling loads were reduced by 30% and 55% during winter and 
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summer respectively; additionally, it was observed that peak daytime roof heat fluxes were reduced 

by about 90%. 

-Windows and shutters: In cold climates great parts of energy are lost due to glazed facades, which 

increase the need for heating while in warm climates excessive solar heat gain increase the need for 

cooling, Figure 0-32 shows PCM filled window. Ismail et al. [82] investigated a glass window in a 

hot climate (Brazil) with incorporated PCM. After comparing PCM window with another glass 

window filled with absorbing gas, it was shown that the amount of heat penetrating into the room was 

reduced while PCM melts, even though the U-value of windows was increased due to addition of 

PCM. Goia et al. [83] studied the effect of PCM incorporated into glazing on the thermal comfort in 

three different seasons. After comparing the PCM prototype to a traditional double glazing, it was 

shown a significant improvement in thermal comfort conditions during all periods of the year except 

on cloudy days. Additionally, the authors emphasized the importance of the correct selection of PCM 

melting temperature. Weinläder et al. [84] investigated a solar shading system with integrated salt 

hydrate PCM having a melting range between 26C and 30 C in office rooms. After comparing 

rooms with PCM blinds to rooms with traditional blinds, it was shown that the air temperature is 

lower by about 1-2K in the PCM blinds room in summer while in winter PCM blinds do not affect 

the heating power. It was found that the main problem of PCM blinds is their renovation at night. The 

use of mechanical or natural ventilation was useful to fully regenerate the PCM at night.  

 

Figure 0-32:Illustration of a PCM filled window [71] 

-PCM in Concrete: The general objective of incorporating PCM in concrete materials is to increase 

heat storage of heavy construction materials in buildings. A number of studies have been carried out 

on PCM incorporated into concrete and have shown positive results such as reducing indoor 

temperatures in warm climates. Entrop et al. [85] investigated experimentally the performance of 

PCM incorporated into concrete floors. Two rooms with PCM concrete floor as well as two rooms 

with regular concrete floor were constructed. The results showed that this application leads to 
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decrease the temperature fluctuations in the room. Cabeza et al. [86] presented a similar research, 

where two identical cubicles made of concrete were tested experimentally.  The first one was built of 

traditional concrete and the other one of new concrete with microencapsulated PCM. The results 

showed a reduction in temperature fluctuation in the room with PCM. Arce et al. [87] continued the 

work presented in [86]. One of the most important obstacles found in [86] was the strong effect of 

solar radiation and high outdoor temperature peaks on PCM effectiveness during the summer, which 

leads to incomplete solidification during the night. The principal aim of this application was to rise 

the PCM’s operation time in order to resolve the PCM cycling problem. Results showed a slight 

reduction in temperatures. The PCM stayed active for at least 4% more time and the problem of high 

temperatures was not completely solved. Royon et al. [88] tested the potential of filling hollow 

concrete floor with paraffin PCM having a melting temperature of 27.5C. In summer, the results 

showed that the temperature was lower in the hollow concrete building which allows using such 

system as a passive thermal conditioner. Other passive system applications for cooling purposes [89-

107] are presented in Table 0-6. 

Table 0-6: PCM Passive system applications in the building envelope for cooling purposes 

Ref./ 

Type* 

Location/ 

climate 

Used PCM 

properties 
Installation/Strategies Results/Conclusions 

[7] 

S 

Austin, USA / 

humid 

subtropical 

(hot summers 

and mild 

winters) 

-PCM/graphite 

composite: 

Tm=21°C, Ts=19°C  

-paraffin wax: 

Tm=21.7°C, 

Ts=18.7°C  

-encapsulated 

organic material: 

Tm= 23°C, Ts=22°C  

-Encapsulated 

octadecane: Tm= 

25.3C, Ts=26.3C 

- Layer of PCM 

plasterboard located in 3 

different placements with 

different thicknesses. 

- Set-point temperature 

schedule is created (the 

charging cycle of PCM is 

controlled). 

- Use of Encapsulated octadecane 

lowest required cooling loads. 

- Surface area ↗↗& thickness of 

PCM↘↘  more effective.  

- Cooling demand depends on 

charging cycle and peak load varies 

depending on set point temperature 

schedule. 

- Adding natural ventilation does 

not have an important effect in 

reducing energy consumption. 

[87] 

E 
Lleida – Spain 

Microencapsulated 

PCM (Micronal® 

from BASF), Tm = 

26C & Hf = 110 

kJ/kg 

 

-PCM integrated into 

concrete walls Figure 

0-33 (concrete contain 

about 5% in weight of 

PCM).  

- Awnings added to 

provide solar protection, 

reduce high wall 

temperatures and allow 

PCM solidification 

overnight 

- Two operation modes: 

free-cooling (windows 

opened only at night) and 

- Using awnings  reduction of 

temperature peak = 6% (3–4 C), 

increasing of active hours ̴ 4–10%, 

& increasing in comfort time ̴10–

21%. 

- Delay of peak hours increased 

36% in case of free-cooling while in 

case of open windows it decreased 

14%  

- PCM phase change cycles still 

incomplete. 
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open windows (all the 

time). 

[89] 

E, S 

Tianjin-china / 

warm temperate 

semi-humid 

continental with 

cold winters 

and hot dry 

summers 

-Capric acid (CA), 

Tm=303.35K. 

 -Capric acid and 

dodecanol (CADE), 

Tm=299.65K. 

-Cp and K varies 

with temperature. 

-2 operation mode: 

 free cooling &opening 

window at night (natural 

ventilation) 

- CA panels on the 

outside surface of walls 

and roofs (PCMOW) 

-CADE panels on the 

inside surface of walls 

and roofs (PCMIW) 

Figure 0-34 

- Inside surface temperatures of 

walls and roofs in PCMOW & 

PCMIW rooms < than that in room 

without PCM. 

- Performance of PCMIW is better 

than PCMOW especially with the 

condition of natural ventilation. 

- When PCM room temperature > 

comfort temperature (26C) 

active cooling should be operated. 

- Heat that should be removed 

(ROH) is lower in case of natural 

ventilation than the free cooling 

condition. 

- Reduction of ROH for PCMIW up 

to 80%. 

[90] 

S 

Kuwait / hot 

climate 

- n-Octadecane, 

Tm=27C 

-n-Eicosane , 

Tm=37C 

-P116, Tm=47C. 

- Different 

geometries of PCM 

container. 

- Roof-PCM system: 

concrete slab with cone 

frustum holes filled with 

PCM Figure 0-35. 

-Reducing heat flow 

from outdoor to indoor 

space by absorbing heat 

gain in the PCM before it 

reaches the indoor space. 

- Significant reduction in heat gains. 

-heat flux reduction at the indoor 

space ̴ 39%. 

- N-Eicosane performed better than 

other tested PCMs. 

-Regarding thermal effectiveness 

conical geometry is the best as a 

PCM container. 

 

[91] 

S 

-Shenyang/ 

severe cold 

-

Zhengzhou/cold 

-Changsha/ Hot 

summer and 

cold winter 

-Kunming/mild 

-Hong Kong/ 

Hot summer 

and warm 

winter 

octadecane paraffin 

with different Tm= 

23,24,25C  

- PCM board (PCMB) 

integrated into interior 

surface of an external 

wall.  

- Natural cold source 

- reducing the utilization 

of AC system leading to 

electricity savings.  

- PCM phase transition 

temperatures↗↗  energy savings 

↗↗ 

- Use of PCMB did not provide 

economic benefit from reduced AC 

utilization. 

- Mean electricity savings ratio 

=13.1%. 

- Optimal Tm > mean outdoor air 

temperature + 3C  acceptable 

SPP 

- Colder regions  lower Tm are 

required 

- Hotter regionshigher Tm are 

required 

 

[92] 

S 

Kuwait/ hot 

climate 

-n-Octadecane, Tm = 

27C, 

 -n-Eicosane, Tm = 

37C, 

-P116, Tm = 47 ◦C,  

-thickness of PCM 

shutter varied 

between 0.01& 

0.03 m. 

-window shutter filled 

with PCM 

-Reducing solar heat gain 

in building through 

windows by absorbing it 

before it reaches indoor 

space.  

-PCM with highest Tm = 47C 

(close to upper temperature limit of 

windows)  best thermal 

performance. 

- P116 shutter  heat gain 

reduction= 23.29% with thickness 

=0.03 m to absorb large quantity of 

heat during the daytime.  
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[93] 

S 
Beijing, China 

-Different Tm, Hf, K 

& thickness of 

SSPCM  

-Different ACH at 

night and day. 

-SSPCM plates as inner 

linings of 4 walls & 

ceiling.  

-SSPCM plates 

combined with night 

ventilation without active 

AC 

-Natural ventilation in 

the day and mechanical 

ventilation at night. 

- Reduction of daily maximum 

temperature by 2C  

-Indoor comfort improved 

especially in early summer days.  

- Optimum values for Tm, Hf, K & 

thickness of SSPCM are: 26C, 

160kJ/kg, 0.5w/m. C & 20 mm 

respectively. 

- ACH at night should be at the 

highest possible level but ACH at 

daytime should be controlled.  

- SSPCM plates useful for free 

cooling application in summer. 

[94] 

S 

Hong Kong 

Subtropical 

(Hot humid 

summer-short 

mild winter) 

Energain®  

-PCM wallboard 

composed of 60% 

microencapsulated 

paraffin, Tm=21.7C 

5mm PCM layer 

wallboard incorporated 

into external walls in 

different orientations. 

- PCM integrated in eastern & 

western walls  better 

performance. 

- Temperature of interior surface of 

PCM wall stays above 28C > Tm. 

- Higher Tm of 28C-30C should 

be investigated in subtropical Hong 

Kong climate. 

[95] 

S 

London, UK/ 

summer 

months. 

- PCM with different 

Tm = 23, 25,27◦C, & 

with thicknesses of 

12, 24, 36, 48 and 60 

mm  

- wide air gaps =15, 

20, 25, 30 and 35 

mm  

- PCM installed in the 

inner side of wall 

construction system 

Figure 0-36. 

- Integrating PCM with 

naturally ventilated air 

gaps in building 

envelope 

 - Air gap is similar to 

ventilated façade & 

provides extra insulation 

and airflow. 

-In terms of annual energy 

consumption (KWh/m2) : the 

optimum values for Tm, PCM 

thickness and air gap width are 

25C, 48mm and 25 mm 

respectively. 

 - Application of PCM in building 

reduces overheating problems & 

improves indoor temperature in hot 

periods. 

- Effectiveness of PCM becomes 

higher as temperature rise to year 

2080 levels. 

[96] 

E 

Lawrence, KS, 

USA/ cooling 

seasons under 

full climatic 

conditions. 

- Hydrated salt-based 

PCM,  

Tm range=18–38C, 

peak Tm= 31.36 C, 

starting Tm= 

24.79C  

- m total PCM =1.5 

kg/m2 

 

- PCM contained in thin 

polymer pouches, 

arranged in sheets 

laminated with aluminum 

foil Figure 0-37. 

-PCM thermal shield 

(PCMTS) integrated as 

thin layers at five 

locations at different 

depths between 

insulation boards & 

wallboard in the west & 

south walls  

- Optimum location of PCMTS is at 

1.27& 2.54cm from the wallboard 

in west & south wall respectively. 

- Peak heat flux reduction is 51.3% 

for south wall and 29.7% for west 

wall. 

- Peak heat flux time delayed by 6.3 

h in south wall when PCMTS is 

next to wallboard & 2.3 h in west 

wall when PCMTS at 1.27cm from 

wallboard. 

 - Daily heat transfer reduction= 

27.1% in south wall (PCMTS at 

2.54 cm from wallboard) & 3.6% in 

west wall (PCMTS at 5.08 cm from 

wallboard). 

[97] 

E,S 

Weimar, 

Germany 

Microencapsulated 

paraffin with 

Paraffin-modified 

gypsum plaster (with salt 

- Peak temperature reduction ̴ 4 K.  

- PCM loses its storage capacity if it 

cannot be discharged at night after 
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diameter =5 µm, Tm 

range= 25- 28C. 

mixture) applied on 

surrounding walls. 

sequential hot days hence night 

ventilation should be used. 

[98] 

S 

Three US 

climate: 

Minneapolis, 

MN, Louisville, 

KY, and 

Miami, FL 

-PCM wallboard 

containing paraffin 

with active 

temperature range 

of 25 C to 27.5 C  

- Volume fraction of 

PCM to gypsum is 

25%. 

PCM composite 

wallboard integrated in 

walls and roof in three 

different locations 

(exterior, center, and 

interior) of the multi-

layered envelope 

surfaces 

- Optimal PCM location exists 

depending on resistance values 

between external boundary 

conditions & PCM layer. 

-PCM wallboard in the middle of 

multilayered wall  best 

performance. 

- Use of PCM wallboard shift peak 

electricity load & decrease energy 

consumption in summer. 

[99] 

E 

Experimental 

room in china  

Capric acid (CA) & 

lauric acid (LA) 

mixture, Tm= 20.4C 

& Ts= 19.1C. 

PCM wallboards 

integrated in an ordinary 

wall (26% PCM by 

weight into gypsum 

wallboards) 

PCM wallboard has high latent heat 

storage capacity & energy 

consumption in peak load shifted to 

off-peak load period. 

[100] 

E 
Hong Kong 

Paraffin macro-

encapsulated in 

stainless steel box  

 k= 21.712 W/m K, 

Tm= 20.78C,  

Hf =147.4 J/g, 

Ts=25.09C, and 

Hs=146.9 J/g. 

PCM incorporated in 

concrete walls in 

different positions: 

internally bonded, 

laminated within and 

externally bonded Figure 

0-38. 

- PCM in concrete walls regulates 

indoor temperature. 

- Effectiveness of PCM highly 

depends on its placement in 

concrete walls. 

- PCM laminated within concrete 

walls best temperature control: 

maximum temperature reduction ̴ 

4C.  

- PCM internally bonded best 

humidity control  

- Reduction of relative humidity 

providing indoor comfort. 

- Payback period of PCM 

application ̴11 years in public house 

in Hong Kong. 

[101] 

E 

Full-scale test 

room/ summer 

conditions 

(CETHIL-

INSA de Lyon, 

France) 

product from DuPont 

constituted of 60% 

of microencapsulated 

PCM with 

Tm=22C. 

PCM integrated in 

internal partition wall. 

- overheating effect ↘↘ 

- Temperatures of wall surfaces ↘↘ 

improving thermal comfort 

conditions by radiative effects. 

[102] 

E 

Puigverd de 

Lleida –Spain 

 

macro encapsulated 

PCM RT-27 

paraffin, Tm =28C 

& SP-25A8 hydrate 

salt, Tm= 26C 

-CSM PCM panels 

located between 

perforated bricks and 

polyurethane in western 

& southern walls and in 

roof Figure 0-39. 

-domestic heat pump as a 

cooling system. 

- Peak temperatures reduction= 1C, 

& daily temperature fluctuations 

were smoothed out.  

- In case of PCM cubicle (RT27 + 

PU) consumption of electricity 

reduction = 15% & CO2 emissions 

reduction ̴ 1–1.5 kg/year/m2. 

-In case of PCM cubicle (SP25 + 

Alveolar) energy savings = 17% 

(2.7 kW h/m2/year). 

[103] 

E 

Solar house 

“Magic 

ACUAL 20 PCM : 

multi-component 

mixture of 

-PCM integrated in floor 

tiles Figure 0-40. 

-the tile basically consist 

of 4 pieces of pure clay 

-PCM tiles placed in the floor are 

useful in summer season at night. 

- Tm↗↗  the system work more 

efficiently as a heat sink. 
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Box” located in 

the IES 

(“Instituto 

de Energía 

Solar” of 

Technical 

University of 

Madrid) 

 

hydrocarbons of 

paraffinic 

composition with 

unsaturated 

additives, dyes and 

preservatives  

-Tm = 20C 

&Ts=13.5C 

stoneware 20mm thick 

and a metal container 

(32mm thick) containing 

4.8 l of paraffinic 

mixture. 

- Higher effectiveness can be 

achieved in the sunny tiles. 

[104] 

S 
China 

PCM mixture of 

Mn(NO3)2,6H2O 

and MnCl2,4H2O 

-brick wall with 

Sierpinski carpet filled 

with PCM. 

- Thermal response of 

PCM brick wall is based 

on the enthalpy-porosity 

technique. 

- Use of PCM in brick walls is 

useful for thermal comfort. 

- filling amount of PCM ↗↗  

temperature fluctuations ↘↘ 

- This model is verified 

experimentally. 

[105] 

S 

Periodic 

variations 

of temperatures 

Salt PCM held in 

stasis by a perlite 

matrix. 

-installed within the wall 

or ceiling insulation. 

- Delay peak AC request 

times until the evening. 

- 3 values of operative 

temperature were 

considered. 

- With PCM, peak cooling loads 

reduction= 11–25%. 

- In case of ‘‘insulation only’’ peak 

reductions ̴ 19-57% 

[106] 

E, S 

Warsaw- 

Poland 

Marseille –

France 

Cairo –Egypt / 

summer hot 

period 

Bio-based PCM with 

properties 

determined by heat 

flow meter apparatus 

(HFMA). 

Fiber insulations 

containing 

microencapsulated PCM 

integrated in the 

southern-oriented wood-

framed wall. 

Indoor set temperature = 24C 

peak-hour heat gains ↘↘ for 

Marseille by 23–37% & 21–25% for 

Cairo; but no positive effects were 

observed in Warsaw.  

[107] 

E, S 

Chambery – 

France 

Catania – Italia 

Paraffin (Micronal 

T23 BASF), Tm = 

22C & Ts = 28.5C. 

 

Wallboards made of 

aluminum honeycomb 

matrix contain 60% of 

micro-encapsulated 

paraffin installed in the 

partition walls of an 

office building. 

- In hottest months, PCM average 

storage efficiency in Chambery and 

Catania is 50% & 39% respectively  

 - PCM is liquid for approximately 

60% of summer time. 

- PCM utilized only 45% of its 

latent heat. 

- Quantity & type of PCM depend 

on the season that one aim to 

improve. 

*(E: experimental, S: simulation) 
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Figure 0-33: concrete cubicles with awnings (outer view and top view) [87] 

 

Figure 0-34: schematic of building envelope for PCM-OW(left) and PCM-IW (right) [89] 

 

 

Figure 0-35: Schematic of the roof with holes filled with PCM [90] 
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Figure 0-36: PCM installation in the wall with ventilation gap [95] 

 

 

Figure 0-37: sheet of PCM thermal shield PCMTS (left) and wall section showing the PCMTS location (right) 

[96] 

 

 

Figure 0-38: PCM layer: (a) Externally bond with concrete wall, (b) Laminated within concrete wall and (c) 

Internally bonded with concrete wall [100] 
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Figure 0-39: CSM panel containing PCM [102] 

 

 

Figure 0-40: schematic of the floor with PCM integrated in tiles [103] 

3.5.2. PCM active system applications in the building envelope 

In contrast to passive systems for PCM integrated into building materials, PCM active systems lead 

to a better heat transfer coefficient by replacing the free convection by forced convection. The 

solidification of PCM actively can be accomplished with a minimum of energy with the help of small 

fans. 

3.5.2.1. Active systems using air as heat transfer fluid: 

• Systems integrated into the ceiling: 

Providing a small fan into suspended ceilings to effectively discharge the absorbed heat, make it an 

active system [7]. A two-dimensional channel that directs the air flow is built in the ceiling 

construction. PCM located in this channel can be considered as heat storage. Cold night-air circulates 

in the channel, cools down the PCM and discharges the stored heat to the outside of the building. 

During the day, warm air from the room is compelled to move through the PCM, it is cooled and then 

provided to the room [108]. Figure 0-41 shows the general concept for cooling with PCM integrated 

into the ceiling. 
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The Swedish company Climator developed a system called “CoolDeck” shown in Figure 0-42. This 

system has been installed as part of a project in the town hall of Stevenage in England. The Cool 

Deck consists of the PCM C24, a salt hydrate encapsulated in bags with a melting temperature of 

about 24C, a metallic channel to direct the air and a fan [109]. 

 

Figure 0-41: The general concept for cooling with PCM integrated into the ceiling [108] 

 

Figure 0-42: Cool Deck C24 developed by "Climator" [7] 

An active thermal storage unit in the ceiling was developed by the Team Germany (2009) [66].The 

application is composed of four insulated channels, with polycarbonate profiles filled with salt-

hydrate PCM with a melting temperature of 26C, the PCM system used is Delta Cool 28 by Dorken 

[67]. The team equips the channels with ventilation fans, grills, operable flaps, and temperature 

sensors. Depending on weather conditions, the COP of the system varies from 9 to 15. During the 

day, in cooling mode, the air in the room circulates through the ceiling and decreases its temperature. 

The cool air from outside, at night, blows across the ceiling and discharges the PCM.  

• Systems integrated into the wall: 

Since wall systems have been used for a longer time than other applications, the same concept is 

followed as for the ceiling in a wall construction. The system consists of bags filled with PCM, at the 

bottom a fan is used in order to transfer the air, openings at the top and the bottom allowing the intake 

and the exit of air from the room. However, it should be assured that the volume flow rate of air at 
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the exit does not lead to uncomfortable air velocities. An extra intake at the outside of the wall can 

be used optionally for direct absorption of cold night air [108].  

• Systems integrated into the floor: 

It is possible to integrate the same system as for the ceiling and for wall into the floor. The PCM can 

be directly located under the floorboards. Figure 0-43 shows the general concept for cooling with 

PCM integrated into the floor. During the day, the warm air from the room is taken away; it is cooled 

during the melting of PCM and then the cooled air is supplied back to the room providing cooling.  

At night, cold air circulates under the floor, cooling the PCM and discarding the stored heat [7].  

 

Figure 0-43: General concept for cooling with PCM integrated into the floor [7] 

3.5.2.2. Active systems using a liquid as heat transfer fluid 

Active systems with air thermal exchange used to reject the stored heat means that the cold night air 

is used as cold source.  Regarding the energy consumption, it seems a very effective method, but it is 

not completely trusted that the night-air temperature drops to a temperature low enough to reject all 

the heat stored during the day [108]. It is possible to integrate systems with liquid-air thermal 

exchange to solve this problem, and to attach it to a cold source with a liquid heat transfer fluid.  

• PCM-plaster with capillary sheets: 

The capillary sheets can be fixed at the surface of the concrete wall and then cover it by a plaster layer 

with PCM. Integration of capillary sheets as heat exchanger into the wall is a general approach for 

the thermal activation of concrete walls [108].  

• Cooling ceiling with PCM plasterboard: 

Panels suspended from the ceiling are an example of this application; a plate for dry construction used 

as a wall or ceiling element, was developed by the Company ILKATHERM, which is made up of a 

pure-foam as an insulating layer located between two coatings made of plaster board, metal, plastics, 

or others [7] [108]. In this application, the coating can be PCM plasterboard. The construction and 

the installation of the PCM plasterboard are shown in Figure 0-44 and Figure 0-45. 
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Figure 0-44: Installation of ILKATHERM PCM board [108] 

 
 

Figure 0-45: PCM board from ILKATHERM; 1) sheet metal coating, 2) PU rigid foam, 3) capillary tube mats, 4) 

Micronal PCM smartboard gypsum construction panel [108] 

Incorporation of PCM in ceiling boards to act as air conditioning systems seems effective to shift 

peak loads. Kondo [110] developed a PCM ceiling board with micro capsulated PCM for an office 

building.  At night, the cold air from the AHU flows into the ceiling and cool down the PCM ceiling 

board. During cooling time, the cool air from the AHU flows immediately into the room. During the 

peak load time, the warm air from the room circulates through the PCM ceiling board, where it is 

precooled before returning to the AHU. The results showed a reduction of the peak loads; however, 

an improvement of ceiling board is needed. Various numerical studies were also achieved on the 

thermal performance of this system [111][112]. Jin et al. [113] investigated an activated floor with 

two layers of PCM for cooling and heating. Their main objective was to find the optimal melting 

temperature for each PCM layer. The results showed a reduction of the floor surface temperatures 

fluctuations. The reduction of the fluctuations is caused not only by the latent heat capacity of PCM, 

but also by the implementation of additional high resistance of two layers of PCM with low thermal 

conductivity. Moreover, it was found that the optimal PCM melting temperature for heating and 

cooling were respectively 38C and 18C and the energy release during the peak period was increased 

by 41% and 38% for heating and cooling respectively. Other active system applications are presented 

in Table 0-7. 

3.5.3. Ventilated facades principle and applications 

To reduce the energy demand of a building, the careful design of its façade is considered as the most 

important method. Ventilated facades (VF) have been recently used in buildings and have attracted 
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great attention of architects and engineers, in order to fit the energy restrictions recommended by the 

European Directive (2010/31/EU) [114]. PCM can be introduced into the external layer of VF [115] 

or in its air cavity  [116] [117]. During cooling season, VF with PCM can act as a free cooling system 

in order to avoid overheating and therefore minimize the HVAC energy consumption. VF or VDSF 

are considered as a special kind of envelopes, where in front of an ordinary building façade, a second 

skin is placed, and consequently an air cavity (channel) is created. In order to ameliorate the energy 

or thermal performance of the building, the air in the cavity can be naturally or mechanically 

ventilated [118]. Ventilated façades (VF) have the potential to ameliorate the energy efficiency of 

buildings, and it can be used in both new and refurbished buildings.  

During the cooling period, the working principle of VF-PCM is to use the low temperatures at night 

to fully solidify the PCM, while during the day time, supply cold when it is needed by removing heat 

through melting of PCM. Figure 0-46 shows how a ventilated façade works: 

(a) PCM solidification: occurs at night when the outdoor temperature is lower than the PCM phase 

change temperature, the air from outside enters to the channel leading to PCM solidification. To 

ensure the full PCM solidification, fans operating under various power rates can be used (mechanical 

ventilation instead of natural ventilation) increasing the convective heat exchange.  

(b) PCM melting: during the day, PCM absorbs heat from the indoor air to provide cooling effect. 

(c) Overheating prevention: after the PCM melting, due to the buoyancy forces, the air flows from 

outdoors to outdoors preventing the overheating in the air channel by natural convection. 

(d) Free cooling: occurs at night when the outdoor temperature is lower than the indoor set point 

temperature. 

 

 

Figure 0-46: modes of operation of VF. (a) solidification  process, (b) melting process, (c) overheating prevention, 

and (d) free cooling [116]  

Ventilated facades with PCM were studied by many authors during heating period (winter season) 

[115][119]. However, Gracia et al. [116] investigated experimentally the efficiency of PCM-VDSF 
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in different cities under Mediterranean-continental climates in order to reduce cooling energy 

consumption; the used PCM is SP-22 with melting temperature of 21.5C and solidification 

temperature of 18C, 112 PCM panels were incorporated in the south wall and the air channel 

thickness was 15 cm. furthermore, natural or mechanical ventilation conditions were tested and three 

fans were used in the system in case of mechanical ventilation. They concluded that three possible 

benefits can be offered by the VDSF: free cooling, cold storage, and solar radiation protection. Free 

cooling can be provided for cities under “warm temperate” and “snow” main climates where the 

temperature swings are considered as high. The cold storage effectiveness depends highly on heat 

gains and the solar irradiance. The cooling supply during the day provided by the cold storage [116] 

strategy was about 12MJ/day; while it reaches 150 MJ/day in case of free cooling. Further, in order 

to optimize the charging process, a control strategy based on artificial intelligence algorithms can be 

used. Other VF system applications [117] [120]  are presented in Table 0-7. 

Table 0-7: PCM active system applications in building envelope including active VF 

Ref 

Type* 

Location/ 

climate 
Used PCM Installation/Strategies Results/conclusions 

[26] 

E, S 

 

Lab scale 

experiment / 

Periodic 

variations of the 

temperature 

 

Microencapsulated 

paraffin in gypsum 

(Heptadecane), Tm = 

22C & m total 

PCM=13.3 kg/m2 

-ceiling panel with 

PCM incorporated in 

retrofitted buildings. 

-thermal storage 

controlled by an 

integrated water 

capillary tube system. 

-5 cm layer of microencapsulated 

PCM are sufficient to keep the 

office temperature within the 

comfort range. 

-this system can be used in 

lightweight structures due to its 

benefits. 

- Fire resistance could be ensured 

by micro-encapsulated PCM in 

gypsum covered in a sheet steel 

tray. 

[117] 

E 

Puigverd de 

Lleida (Spain)/ 

Continental 

Mediterranean 

with severe or 

mild summer 

- macro-encapsulated 

panels of salt hydrate 

SP-22, Tm=22C & 

Ts=18C 

- 112 PCM panels (1.4 

kg of SP-22 each) 

distributed throughout 

the facade making 14 

air flow channels. 

-VF in south wall 

consisting of 3 fans & 

Six automatized gates 

in order to control the 

operational mode 

Figure 0-47. 

-the system used as a 

cold storage unit (an 

overheating protection) 

& as a night free 

cooling application. 

- Night free cooling operation 

mode reduces cooling loads. 

- Cold storage sequence presents 

low energy storage efficiency due 

to significant heat gains through 

the outer skin. 

-. The system prevents effectively 

the overheating effect. 

- Effective use of VF for cooling 

purposes weather conditions & 

cooling demand of final users 

should be taken into account. 

[120] 

E, S 

Madrid 

Seville 

- RT22 in containers, 

located inside an air 

chamber. 

-Tm=23C 

 

-Ventilated facade with 

fins filled with PCM. 

-PCM cylinders in 

hollow core slabs 

Figure 0-49. 

-increasing contact area 

between PCM & air. 

- PCM located inside 

mechanically ventilated air layers 

 convective heat transfer 

coefficients↗↗ & control 

strategies used to match cooling 

needs of building. 
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-increasing convective 

heat transfer coefficient 

& improving utilization 

factor. 

- Use of encapsulation shapes 

such as fins, cylinder and sphere 

increase convective heat transfer 

coefficients & improve the use of 

considerable amounts of PCM. 

[121] 

S 

Catania 

(Southern 

Italy)/ hot 

Mediterranean 

climate 

Wallboard panels 

consisting of aluminum 

honeycomb matrix 

containing 60% of 

microencapsulated 

paraffin 

- PCM placed at a 

certain distance from 

the partition walls. 

- Narrow ventilated 

cavity between PCM 

wallboards & partition 

wall Figure 0-48. 

- Fresh air circulates 

according to suitable 

control logics. 

- Ventilation occurs at night  

PCM storage efficiency↗↗. 

- Average room operative 

temperature is reduced ̴ 0.4C & 

indoor conditions are maintained 

for longer time in a comfortable 

range. 

- At night, heat stored by PCM is 

rejected to the air flowing into the 

cavity, rather than being released 

to room air. 

[122] 

S 

Tübingen/ 

Germany 

PCM plates, 

Tm=26-28C 

- PCM in gypsum 

boards of top floor 

ceiling and wall. 

-Daytime mechanical 

ventilation with air 

precooling through a 

horizontal brine soil 

heat exchanger. 

- mechanical night 

ventilation 

- PCM gypsum boards in ceiling 

and wall was not effective enough 

to control the room temperature 

level. 

-The problem is that during the 

night, the heat flux for discharging 

PCM was low with limited air 

exchange rates. 

 

[123] 

E 

Central 

Poland/daily 

ambient 

temperature 

oscillates in 

high range 

Gypsum-mortar 

composite containing ̴ 

27% microencapsulated 

PCM Figure 0-50 

(Micronal DS-5008X, by 

BASF).), Tm= 22.8C 

-Ceiling in shape of 

thick board with 

parallel internal 

ventilation channels to 

improve night 

ventilation system - 

PCM based heat 

exchangers located in 

air ducts. 

- Daily fluctuations of air 

temperature are eliminated & the 

room temperature within the 

comfort range. 

- Entire amount of PCM does not 

undergo complete melting & 

solidification. 

-this study needs some 

optimization in terms of thickness 

of channels and distribution of 

PCM in construction materials. 

-Numerical modeling & results of 

simulations of heat transfer in 

ceiling panel can be found in 

[124]. 

[125] 

S 

Linköping, 

Sweden/ 

Excessive 

temperatures 

occur 

summertime. 

-Ttransition= 19C 

CPCM, solid (T < 17) =2 

kJ/(kg K) 

CPCM, liquid (T > 21) = 2 

kJ/(kg K) 

-different m total PCM = 

50, 100, 200, 400 kg 

-External PCM night 

cool storage. 

-PCM air heat 

exchanger placed in an 

insulated box on the 

outside of the wall 

Figure 0-51. 

- Indoor temperature reduction ̴ 

0.5C to 2C (depending on PCM 

amount) in the warmest 10 days of 

summer season. 

- PCM cool storage does not 

provide enough cooling when the 

indoor temperature > 28 C. 

-22–36% of the degree hours with 

excessive temperatures could be 

removed. 
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[126] 

S 
Hong Kong 

-PCM Hexadecane 

(C16H34) 

- Tm =18C & 

Hf = 224 kJ/Kg 

AC system: 

combination of cooled 

ceiling (CC) & MPCM 

slurry storage tank 

- Tank with volume = 0.52 m3 was 

sufficient to keep the indoor 

temperature within comfort level. 

- Electricity demand reduction ̴ 

33%. 

- Annual energy consumption 

reduction= 1157Kwh. 

*(E: experimental, S: simulation) 

 

 

Figure 0-47: ventilated façade with the distribution of fans and automatized gates [117] 

 

 

Figure 0-48: location and operation of the ventilated cavity [121] 
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Figure 0-49: (a) Ventilated façade with fins filled with PCM, (b) PCM cylinders in hollow cores, (c) position of 

VF and hollow cores [120] 

 

Figure 0-50: ceiling panel made of gypsum-PCM composite [123] 

 

 

Figure 0-51: schematic of PCM heat exchanger placed in an insulated box on the outside wall [125] 
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4. Discussion 

In building applications, PCM can be incorporated in passive or active systems. Passive systems do 

not require additional energy, are easy to install with integrated low consumption devices. They 

depend completely on the outdoor temperature and the variable weather conditions. Thereby if night 

temperatures do not drop considerably below the PCM phase change temperature, the PCM will not 

fully solidify which hinders the pursuit of its operation. In addition, among day-night cycles the heat 

transfer between the air and the wall limits the maximum capacity of storage which restricts the 

application of passive systems [46]. Furthermore, the required rate of heat exchange between the air 

and the PCM is not always attained. During summer season, Schossig et al. [127] proposed to increase 

air-change rate at night; even though natural ventilation could provide cold from outside but it may 

be insufficient; thus mechanical ventilation must be applied, which is considered as an active system, 

leading to a better heat transfer coefficient. Improving the heat transfer rates using electrical fans 

requires adding their energy consumption in the economic study. Active systems seem to be more 

efficient than the passive ones, the charge/discharge process is fully controlled, and its execution 

depends on several parameters besides the outdoor temperature, moreover the thermal energy storage 

can be obtained when it is required. On the other hand, active applications are regarded as complicated 

and complex systems requiring mechanical elements such as pumps and fans, in addition to a control 

system. In terms of the use of PCM for building applications, PCM integrated materials and PCM 

components are more and more easily implemented. Recently, PCM mats and boards have become 

available in the market which facilitates the integration of latent heat storage in lightweight 

construction. Originally, PCM boards were used only in passive systems, but later on it was used also 

for active applications [67] [66]. For space heating, the solar direct gain is the most significant strategy 

and the appropriate selection of the finishing material characteristics is very important in this case. 

Thun et al. [66] used this strategy for the PCM floor application; however this application is affected 

essentially by the type and the color of chosen floor finishing material since the PCM is not 

immediately subjected to solar radiation [66]. The heat transfer rate is reduced and delayed when the 

PCM is not directly in contact with solar radiation, neither with the room air. For space cooling, night 

ventilation and solar protection are the most important strategies. Night ventilation is advantageous 

in regions with large temperature swings between day and night; it can improve thermal comfort 

conditions and it can be achieved through window or door openings, ceiling fans and others [128]. 

Cooling strategies and PCM applications with active and passive systems are summarized in the 

synthetic diagram shown in Figure 0-52. 
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Figure 0-52: A synthetic diagram of PCM cooling applications 

 

4.1. Factors affecting PCM selection 

The integration of PCM in buildings leads to an increase in their thermal energy storage which 

subsequently minimizes the indoor temperature fluctuation, providing indoor thermal comfort and 

therefore reducing the energy consumption.  Osterman et al. [24] confirmed that the use of PCM 

highly improves the energy performance of buildings in summer season. The efficiency of PCM 

strongly depends on several factors: 1) outdoor climatic conditions, 2) type of PCM, its melting 

temperature range and its thermo-physical properties, 3) PCM encapsulation method, 4) quantity of 



Annexes 

 

284 
 

PCM (effective volume and PCM layer thickness), 5) location and installation of PCM in the building 

, 6) purpose of PCM application; 7) way of PCM is charged/discharged (active or passive systems), 

8) characteristics and orientation of the building, 9) real life conditions including heating and cooling 

set points, air infiltration rates, internal gains from occupancy (i.e. people (person/m2), metabolic rate 

(Writing, seating, standing Cooking, cleaning… (W/person)), Lighting (W/m2) and Electric 

equipment (W/m2)) schedules), 10) solar gains, 11) orientation and reflectivity of the surfaces (solar 

absorbance coefficient ()), 12) and finally investment cost and tariff structure should be taken into 

account. 

The aim of this section is to investigate the possibility to find an optimum solution (appropriate PCM 

configuration) for each climate and application, in order to reduce cooling demands in hot/warm 

climates. It was found that the combination of building energy simulation tools and optimization tools 

can lead to optimize the design of buildings and HVAC systems [129][130][131][132]. Moreover, 

both mass of PCM and typology of PCM must be carefully designed.  

 4.2. Climatic conditions 

As it was formerly stated, climatic conditions are one of the main factors affecting the efficiency of 

PCM in building applications, since the system performance is principally influenced by the outdoor 

weather conditions. The climate of a specified location is influenced by its latitude; terrain, ice or 

snow lids, and altitude, in addition to close water bodies. It can be defined as the average weather 

over a long period and it is categorized according to the average and the typical ranges of temperature 

and precipitation. Cooling and heating needs for buildings in each climatic zone can be determined 

according to the climatic zone conditions, and other conditions such as the kind use of building 

(residential, or non-residential) and internal gains from occupancy.  

 

Figure 0-53: climate classification according to the Köppen–Geiger [133] 
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One of the most popular climate classification systems is Köppen- Geiger, Figure 0-53, it divides the 

main climate in five zones namely, A: equatorial, B: arid, C: warm temperate, D: snow and E: polar. 

Furthermore, it determines the level of precipitation W: desert, S: steppe, f: fully humid, s: summer 

dry, w: winter dry, m: monsoonal. Lastly, it gives details about temperature as h: hot arid, k: cold 

arid, a: hot summer, b: warm summer, c: cool summer, d: extremely continental, F: polar frost. For 

example, in Seville-Spain, the climate is considered as Csa: a Mediterranean climate with dry hot 

summer and mild winter while in Paris-France the climate is Cfb: Marine west coastal with warm 

summer, mild winter and rain all the year. In general, each climate zone has clearly different 

construction and design requirements. Table 0-8 shows cooling and heating requirements for each 

climate condition. 

Table 0-8: Usual cooling & heating strategies as a function of the climate conditions [134] 

climates Cooling & heating requirements 

Hot humid summer / warm 

winter 

- Design strategies that reduce cooling energy consumption. 

- Orientate the building to take advantage of cooling breezes. 

- Shading all windows & walls. 

- Use low solar heat gain coefficient glazing. 

- Encourage natural air flow. 

- Use ceiling fans & other mechanical cooling equipment. 

Warm and humid summer / 

mild winter 

-. Auxiliary heating is not necessary. 

- Ceiling fans & high energy rated cooling appliances are required. 

Hot dry summer / Warm winter Evaporative cooling & passive solar heating are required 

Hot dry summer / Cool winter 
-. Evaporative cooling, ceiling fans. & night cooling 

- Passive & active solar heating. 

Warm temperate climates 
-. No auxiliary heating or cooling is required 

- Just may include ceiling fans. 

Cool temperate climates 

-. Cooling is unnecessary. 

- Significant level of passive / active solar heating strongly desirable if available. 

- Other heating systems are also needed. 

Many studies were conducted in order to investigate the performance of PCM under different climates 

[116][135][136][137] [138]. It can be observed that the integrated PCM does not give the same 

advantages for all Mediterranean climates during all months of cooling season, the PCM wallboards 

appearing more suitable for semi-arid climate than for hot/subtropical Mediterranean climates [137]. 

However, Soares et al. [135] concluded that the total energy savings due to the integration of PCM-

drywalls are more significant  for the warmer climates, it reach  62% and 42% for Coimbra (Csb-

Mediterranean climate with dry warm summer and mild winter) and Seville (Csa-Mediterranean 

climate with dry hot summer and mild winter) respectively. Moreover, it is observed that PCM-

drywalls reduce the heating energy demand not only the cooling energy demand in warmer climates. 

For colder climates in Warsaw (Dfb-Moist continental with warm summer and cold winter) and 

Kiruna (Dfc- Subarctic with cool summer and severe winter), PCM-drywalls can reduce the heating 

energy demand significantly but are not attractive in terms of total energy savings due to the increase 

https://en.wikipedia.org/wiki/Climate_classification
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in summer cooling loads. Finally, it was shown that the optimization of PCM-drywalls incorporation 

is very important and can be achieved in an annual evaluation basis instead of in a seasonal basis. 

Furthermore, Alam et al. [136] investigated the effect of PCM in Australian cities under different 

climates; they concluded that PCM can reduce the energy consumption of buildings in cities under 

cold, mild and warm temperate climates. However, the integration of PCM in buildings under hot and 

humid climate has very limited impact on the energy consumption. Usón et al. [138] considered five 

different climatic zones in Spain to evaluate three different commercial PCM installed on tiles. They 

concluded that PCM can minimize the total energy consumption and the environmental impacts. 

Moreover, the effective performance of PCM is heavily influenced by the climate conditions and the 

type of PCM introduced. Borderon et al. [139] investigated a PCM/air ventilation system storing 

latent heat in order to improve summer comfort conditions in four French cities (Lyon, Nice, 

Carpentras and Trappes) under different climates, where Carpentras is the warmest climate and 

Trappes is the coldest one. It was shown that the performance of the system is mainly affected by the 

daily amplitude of the exterior air temperature. In addition, the diurnal temperature range, which is 

the amplitude of the outdoor air temperature swing, is a critical factor of the applicability of PCM to 

reduce cooling loads [140]. Thus, when the diurnal temperature range is between 12C and 15C the 

free cooling system with incorporated PCM can be applied showing an effective performance [35]. 

From the above literatures, it is obvious that the effective performance of PCM is extremely related 

to climate conditions; therefore, it is important to choose a suitable PCM melting temperature that it 

is strongly conditioned by the surrounding climate.  

 4.3. Melting temperature of PCM 

The most significant criterion for PCM selection is the required melting temperature, it is considered 

as the greatest influent parameter. It is very important to select the right type of PCM because, for a 

specific climate conditions, if the melting temperature is too low, it is difficult to maintain the indoor 

air temperature at a comfortable level during the night; furthermore, if the melting temperature is too 

high, the quantity of solar radiation heat stored by the PCM will be reduced in the daytime [141]. 

Additionally, the selection of a low melting temperature leads to insufficient use of PCM in the hottest 

months. On the other hand, a melting temperature too high could lead to a marginal feasibility during 

the intermediate seasons. Most of the PCM that can be applied in buildings have melting points 

between 18C and 28C, close to the human comfort temperature range. A phase change temperature 

outside of the operating temperature range of the storage could make the application totally useless. 

Partial solidification and melting of PCM can lead to insufficient thermal storage [11]. 
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The selection of different melting temperatures depends on the main purpose of the application, which 

could be to save heating energy or to prevent overheating [127]. The PCM that has a good 

performance in the heating periods will have an insignificant impact or no effect at all in cooling 

periods and vice versa. Barreneche et al. [142] created a new database (software CES Selector) that 

helps selecting the most suitable PCM depending on the application, using data collected by Cabeza 

et al. [16]. They found that, for cooling applications in buildings, PCM should have melting 

temperatures up to 21C. Moreover, PCM used to control the indoor comfort temperature, should 

have a temperature range between 20 and 30C and this PCM are commonly used in passive systems. 

Furthermore, for domestic hot water application, PCM should have temperature range between 29C 

and 60C. Other authors reported that in the air conditioning applications PCM that melt below 15C 

are used to store coldness, while for absorption refrigeration, the used PCM melt above 90C and all 

other PCM that melt between 15C and 90C can be used for solar heating applications [11]. Heim 

and Clarke [143] showed that the optimal PCM solidification temperature is 2C above the heating 

set point for the room. Peippo et al. [144] indicates that the optimal diurnal heat storage happens with 

a PCM melting temperature of 1–3C above the average room temperature. Moreover, Neeper 

[78]tested the thermal performance of fatty acids and paraffin waxes gypsum wallboard; they found 

that, with a PCM melting temperature near to the average comfort room temperature, the maximum 

diurnal energy storage can be occurred. Additionally, for wallboard installed on external wall, the 

optimum value of the melting temperature depends on the outdoor temperature and the thermal 

resistance of the wall. Ascione et al.[137] analyzed the monthly energy improvement that can be 

achieved in different cities under various climates by changing the melting temperature in the range 

26–29C. They found that the most appropriate melting temperature for Ankara under semi-arid 

climate is 29C leading to significant cooling energy savings in the cooling season. Otherwise, for 

Seville climate that has the hottest European summer, although the phase change is considerably 

activated, the PCM is not able to take full advantage of its storage potential. Therefore, it can be 

shown that it is not possible to determine an optimal melting temperature for the whole cooling period 

where the worst results for each melting temperature were found in August, most likely because of 

the incomplete solidification of PCM. Finally, it was reported that, for the Mediterranean climate the 

optimal range of melting temperature in the winter period is between 18C and 22C, while, in 

summer, appropriate melting temperature range is between 25 and 30C. Usón et al [138] have 

analyzed three commercial PCM with melting temperatures selected within the comfort range (21–

24 °C). They concluded that salt hydrates PCM with a melting temperature of 21C can reduce the 

total energy consumption in the five different climate severities in Spain. Moreover, simulations have 

been carried out by Alam et al. [136], using BioPCM with six different melting ranges from 20PCM 
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(18–22C) to 25PCM (23–27C) in order to find the optimum PCM melting range for each climatic 

zone. They concluded that an optimum PCM melting range that leads to the lowest energy 

consumption in every month of the year can’t be unique, and PCM with melting point outside the 

comfort or thermostat range cannot be effective and lead to decrease energy savings. Furthermore, it 

was found that PCM with higher melting point were more efficient during summer as well as in warm 

temperate climate areas, while PCM with lower melting point were most efficient during winter and 

perform better in cold temperate climate area. Other simulations [145] showed that a phase change 

temperature of 22°C, which is the mid-point of the chosen comfort range (20-24C), was the best for 

the studied case. In commercial buildings, peak temperatures can be reduced by about 3-4C, and day 

hours where the temperature is above 24C can be reduced by 80%. Moreover, Fiorito [146] found 

that for a considered climatic zone, the PCM melting point should be selected in order to be 

compatible with the average maximum outdoor temperatures. Accordingly, for a free cooling system 

design, the PCM melting temperature is considered as a decisive factor [48], and it should be taken 

between 19C and 24C [34] [45] which intersect the range of the human comfort 23–27C in summer 

conditions. Waqas and Kumar [147] have found that the performance of free cooling system in hot 

dry climates is better with a PCM melting temperature selected within the comfort range of the hottest 

month. In order to find the optimal PCM melting temperature, a new method was presented by Jiang 

et al. [148] for a passive solar house. They found that the optimal PCM melting point depends on the 

minimal limit of the indoor thermal comfort band, and its value, in china under different climates, 

should be taken from 1.1C to 3.3C greater than the minimum thermal comfort range. Soares et al. 

[135] investigated the impact of six different melting temperatures; they found that the optimum PCM 

melting temperature is higher for the warmer climates (between 22 and 26C), and lower for colder 

climates (between 18 and 24C). For better PCM performance, Farid [149] suggested to utilize in the 

same storage unit, more than one PCM with various melting temperatures. In order to get an effective 

performance all the time under different weather conditions, two layers of PCM with different melting 

temperature incorporated into the rooftop of the building were used [80]. Moreover, systems with 

different PCM having different melting temperatures are considered as an important future research, 

and should be developed in order to improve the building performance in both cooling and heating 

seasons. 

From the above literatures, it can be concluded that there are different criteria to select an appropriate 

melting temperature whether for heating or cooling applications or both. Knowing that, the same 

phase change material does not provide the same advantages referring to both heating and cooling 

energy demands, and none of the PCM is equally effective over the year. The selection of melting 

temperature should be based reasonably on local thermostat set points along with the climatic 
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conditions. Some authors agree that high PCM melting temperatures seemed more effective for 

warmer climates, while low PCM melting temperature could be more efficient in colder climates, and 

others emphasized on the importance of selecting PCM melting temperature within the comfort range. 

To choose the most suitable PCM melting temperature for an application under considered climatic 

zone, the optimization method by testing different melting temperatures seemed the most appropriate. 

 4.4. Location of application: Effect of PCM surface area and thickness 

In the previous section, the effectiveness of PCM was investigated in terms of selecting a suitable 

PCM melting temperature for a considered application. In this part, the effect of position, surface area 

and thickness of PCM integrated in building on energy savings will be investigated. As mentioned 

previously, PCM can be incorporated into wallboards, roof, underfloor, concrete, plaster, furniture, 

and insulation of buildings, glazing and others [66] [17][150][18][15][151]. The location of PCM, 

essentially in passive systems, depends on its objective and functioning [11], unlike the PCM storage 

units that have more options and liberty in terms of their location. Passive PCM application at the 

floor seems to be the best location for the heating periods; this is due to the fact that in the floor it is 

possible to benefit from each of the indoor air temperature and direct solar gains via the glazing. 

However, PCM drywalls (plasterboards, wallboards or gypsum boards) seemed more appropriate as 

passive systems for cooling purposes. Knowing that, night ventilation together with PCM is a very 

effective strategy that leads to decrease the cooling demand of buildings. Ingenious solutions [106] 

for reducing the cooling demand of buildings such as ventilated facade with fins filled with PCM and 

PCM cylinders in hollow core slabs, were created in order to increase the convective heat transfer 

coefficient. Therefore, they allow the use of large quantities of PCM, and improve the utilization 

factor of cold stored. Ceilings present considerable areas for passive heat transfer and have less risk 

of spillage of the macro-encapsulated PCM by drilling; however, they have lower convective heat 

transfer coefficients compared to walls and floor. Moreover, it was found that a PCM layer 

incorporated in the roof structure seemed inappropriate to improve the building energy performances 

[80], actually rooftop temperature increases when the PCM becomes liquid. For the purpose of 

reducing cooling demand and improving thermal comfort, Ascione et al. [137] installed gypsum 

wallboard PCM on the inner faces of the external building envelope. The results showed that the 

application of the PCM plaster on the whole vertical envelope leads to the highest energy savings in 

different climatic zones. In addition, it has been found that the cooling demand is reduced with the 

increment of the thickness of PCM plaster; however, authors investigated until a maximum thickness 

of 3 cm of PCM plaster because additional increment of PCM thickness cannot provide considerable 

improvements of the indoor temperature. Soares et al. [135] replaced the inner plasterboard layers of 

the exterior walls, partition wall and roof by a PCM-drywall layer. In all studied cases, they found 
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that the optimum thickness of the PCM-drywalls was equal to 4cm. Moreover, in terms of surfaces 

solar absorbance, lower values ( = 0.3) are better for warmer climates while higher values (= 0.9) 

are better for colder climates.  Alam et al.[136] investigated energy savings for different locations of 

PCM (east wall, North wall, West wall, South wall, North wall and roof, West wall and roof, South 

wall and roof, east wall and roof, all walls, all walls and roof) where the thickness of PCM layer was 

calculated by dividing the PCM volume by the surface area of the applied location. For a specified 

amount of PCM, it was shown that energy savings and therefore effectiveness of PCM increase with 

the decrease of the thickness of PCM layer and the increase of surface area until an optimum level. 

 During a phase change daily cycle, the PCM volume must be chosen so that PCM mass could be 

melted and solidified entirely. During the cooling season, if the PCM volume is very high, the 

solidification process time may be longer than the time of low temperatures at night. Similarly, in 

winter, if the PCM volume is very high, the PCM cannot be completely melted because the sunshine 

time could be shorter than the time required for the heat penetration in the PCM. Furthermore, 

increasing the surface area of the applied location of PCM, leads to an increase of the heat transfer 

rate between this area and the PCM. At a constant PCM volume, the thickness of PCM layer is thinner 

when the surface area increases. Therefore, melting and solidification processes become more 

effective.  

The total energy exchanged due to the enthalpy content in the PCM (i.e. the overall latent heat storage 

capability) can be calculated using Eq. 0-1 [138]: 

𝐸𝑙𝑎𝑡𝑒𝑛𝑡 = 𝑛.𝑚.𝐻𝑓 Eq. 0-1 

Where, m is the mass of the PCM, n is the number of phase changes that occur during a specified 

period of time and Hf is the PCM latent heat. 

For a better evaluation of the impact of PCM position and thickness, Konstantinidis [7] calculated the 

total amount of PCM necessary to absorb the surplus heat for cooling periods. The average daily 

cooling load Edaily was determined. Therefore, the diurnal energy stored in the PCM is given by Eq. 

0-2: 

𝐸𝑑𝑎𝑖𝑙𝑦 = 𝑚𝑐𝑝. 𝐻𝑓 Eq. 0-2 

Where, mcp is the specific mass of PCM and Hf is the latent enthalpy of the material. 

Therefore, the required mass of PCM is calculated and subsequently the required PCM volume is 

given by Eq. 0-3: 

𝑃𝐶𝑀 𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑚(𝑃𝐶𝑀)/𝜌(𝑃𝐶𝑀)  Eq. 0-3 

4.5. HVAC controls 

According to the indoor microclimate, two types of study can be carried out: 
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- Without including the HVAC system (naturally ventilated building): to find out the effect of PCM 

on the temperature fluctuations in the considered indoor space, where the temperature is free-running, 

and the potential of PCM in reducing peaks. In this case the hourly temperature data must be given. 

- Including the HVAC system (air-conditioned building): to calculate the energy consumptions, and 

thus the energy savings. In this case, the indoor temperature is controlled and a schedule of set points 

must be made.  

5. Conclusion 

A review of PCM applications for cooling purposes, and factors affecting the effectiveness of PCM 

were discussed in this article. Many experimental and modeling-simulation studies have been 

presented, showing the effect of PCM on the buildings thermal performance. The use of PCM in 

buildings seems to be very beneficial; PCM can decrease energy consumption, shift the peak loads 

of cooling energy demand, decrease temperature fluctuations providing a thermally comfortable 

environment, and reduce the electricity consumption. Free cooling applications are effective when 

the diurnal temperature variations are large (up to15C). When HVAC system is used, PCM act as a 

cold storage unit, shifting the peak loads to low electricity rate periods. Integrating PCM in the 

building envelope prevents the raise of the indoor temperature improving the thermal comfort. 

However, many drawbacks have been found in PCM applications, mainly the non-use of considerable 

portions of employed PCM due to the low convective heat transfer coefficients, incomplete 

solidification of PCM at night and the limited contact area between the air and PCM.  

Several solutions have been proposed, such as the use of proper control strategy, forced ventilation 

to increase the convective heat transfer, and adequate design of the heat exchangers. Moreover, using 

fins, cylinders, and spheres to encapsulate the PCM could improve the use of considerable amounts 

of PCM and increase the convective heat transfer coefficients. Paraffin was mostly used in cooling 

applications; however, salt hydrates and fatty acids were used in some cases. Selecting the most 

suitable PCM for a specific climate and a specific application was discussed. The melting temperature 

is the most influential parameter, some authors approve that high PCM melting temperatures seemed 

more effective for warmer climates, while low PCM melting temperature could be more efficient in 

colder climates, and others emphasized on the importance of selecting PCM melting temperature 

within the comfort range then an optimization method by testing different melting temperatures is 

required. Moreover, systems with different PCM having different melting temperatures are 

considered as an important future research and should be developed in order to improve the building 

performance in both cooling and heating seasons. Moreover, for a specified amount of PCM, it was 

shown that energy savings and therefore effectiveness of PCM increase with the decrease of the 
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thickness of PCM layer and the increase of surface area until a certain optimum level. The selection 

of an appropriate amount of PCM needed for thermal storage still requires also further research. A 

general topology diagram summarizing the PCM application in buildings is presented in Figure 0-54. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 0-54: A typology diagram of PCM in building applications 
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6. Résumé en français 
 

Matériaux à changement de phase (MCP) pour les applications de refroidissement 

dans les bâtiments : une revue 

Une revue des applications de matériaux à changement de phase (MCP) pour le refroidissement des 

bâtiments, et les facteurs affectant l'efficacité de MCP ont été discutés dans ce chapitre. De 

nombreuses études expérimentales et numériques ont été présentées, montrant l'effet de MCP sur la 

performance thermique des bâtiments. L'utilisation de MCP dans les bâtiments dans des systèmes 

passifs ou actifs semble être très bénéfique ; les matériaux à changement de phase peuvent réduire la 

consommation d'énergie, déplacer les pointes de charge de la demande énergétique de 

refroidissement, diminuer les fluctuations de la température, fournir un environnement 

thermiquement confortable et réduire la consommation d'électricité. Les applications de 

refroidissement naturel (free-cooling) sont efficaces lorsque les variations de température diurnes 

sont importantes (jusqu'à 15°C). Lorsque le système de chauffage, de ventilation et de climatisation 

(HVAC) est utilisé, les MCP agissent comme une unité de stockage de froid, déplaçant les pointes de 

charge à des périodes où l’électricité est bon marché. L'intégration de MCP dans l'enveloppe du 

bâtiment empêche l'augmentation de la température intérieure en été et améliore à son tour le confort 

thermique. 

Cependant, de nombreux inconvénients ont été trouvés dans les applications de MCP, principalement 

la non-utilisation de portions considérables du MCP en raison des faibles coefficients de transfert de 

chaleur par convection, la solidification incomplète du MCP la nuit et la zone de contact limitée entre 

l'air et le MCP. Plusieurs solutions ont été proposées, telles que l'utilisation d'une stratégie de contrôle 

appropriée, la ventilation forcée pour augmenter le transfert de chaleur par convection et la conception 

adéquate des échangeurs de chaleur. De plus, l'utilisation d'ailettes, de cylindres et de sphères pour 

encapsuler les MCP pourrait augmenter la quantité de MCP utilisée ainsi que les coefficients de 

transfert de chaleur par convection. La paraffine est principalement utilisée dans les applications de 

refroidissement ; cependant, les hydrates de sel et les acides gras ont été utilisés dans certains cas. 

La sélection des MCP les plus appropriés pour un climat spécifique et pour une application spécifique 

a été aussi discutée. La température de fusion est le paramètre le plus influent, certains auteurs 

admettent que des températures de fusion élevées semblent plus efficaces pour les climats plus 

chauds, tandis que les températures de fusion basses peuvent être plus efficace dans les climats froids. 

D’autres ont insisté sur l'importance de choisir la température de fusion de MCP dans la plage de 

confort, puis d’effectuer une optimisation en testant différentes températures de fusion au sein de la 

plage de confort. En plus, les systèmes avec plusieurs MCP ayant des températures de fusion 
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différentes sont considérés comme une recherche future importante, et devraient être développés afin 

d'améliorer la performance du bâtiment dans les deux saisons de refroidissement et de chauffage. Par 

ailleurs, pour une quantité précisée du MCP, il a été montré que les économies d'énergie et donc 

l'efficacité du MCP augmentent avec la diminution de l'épaisseur de la couche du MCP et 

l'augmentation de la surface d’échange jusqu'à un certain niveau optimal. La sélection d'une quantité 

appropriée de MCP pour le stockage thermique nécessite également d'autres recherches 

complémentaires. Finalement, un diagramme topologique résumant les méthodes de choix des MCP 

dans les bâtiments est présenté. 
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Annex B: Graphical user interface GUI 

GUIs, also known as graphical user interfaces or UIs, provide point-and-click control of software 

applications, eliminating the need to learn a language or type commands to run the application. The 

image processing toolbox needs to be installed. 

A GUI is created to model the phase change problem in rectangular cavity in presence of natural 

convection and radiation. The inputs need to be inserted: thermo-physical and optical PCM properties, 

geometry of the PCM container, mesh size, boundary and initial conditions, in addition to time step 

and number of time steps. Two commands are used to define these inputs: ‘edit text’ and ‘static text’ 

and the values are tagged in the main program (.m file). 

 

 

 

As outputs the GUI provides the average liquid fraction, the average position of the melting front 

and the position of melting front at different instants for both cases (phase change with natural 

convection and phase change e with natural convection radiation). Three commands are used to 

show the results: ‘push bottom’, ‘axes’ and ‘pop up menu’.  
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