M. Almén, K. J. Nordström, R. Fredriksson, and H. B. Schiöth, Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin, BMC Biol, vol.7, 2009.

A. Karplus and P. , Hydrophobicity regained: Hydrophobicity regained, Protein Sci, vol.6, pp.1302-1307, 1997.

A. M. Anniss, J. Apostolopoulos, S. Dworkin, L. E. Purton, and R. L. Sparrow, An oxysterolbinding protein family identified in the mouse, DNA Cell Biol, vol.21, pp.571-580, 2002.

B. Antonny, J. Bigay, and B. Mesmin, The Oxysterol-Binding Protein Cycle: Burning Off PI(4)P to Transport Cholesterol, Annu. Rev. Biochem, vol.87, pp.809-837, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02109453

L. Asp, F. Kartberg, J. Fernandez-rodriguez, M. Smedh, M. Elsner et al., Early Stages of Golgi Vesicle and Tubule Formation Require Diacylglycerol, Mol. Biol. Cell, vol.20, pp.780-790, 2009.

J. L. Avalos, I. Celic, S. Muhammad, M. S. Cosgrove, J. D. Boeke et al., Structure of a Sir2 Enzyme Bound to an Acetylated p53 Peptide, Mol. Cell, vol.13

M. L. Avantaggiati, V. Ogryzko, K. Gardner, A. Giordano, A. S. Levine et al., Recruitment of p300/CBP in p53-Dependent Signal Pathways, Cell, vol.89, pp.80304-80313, 1997.

M. M. Babu, The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease, Biochem. Soc. Trans, vol.44, pp.1185-1200, 2016.

A. Bah, R. M. Vernon, Z. Siddiqui, M. Krzeminski, R. Muhandiram et al., Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch, Nature, vol.519, pp.106-109, 2015.

T. Balla, Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation, Physiol. Rev, vol.93, pp.1019-1137, 2013.

S. Banerji, M. Ngo, C. F. Lane, C. Robinson, S. Minogue et al., Oxysterol Binding Protein-dependent Activation of Sphingomyelin Synthesis in the Golgi Apparatus Requires Phosphatidylinositol 4-Kinase II?, Mol. Biol. Cell, vol.21, p.10, 2010.

C. L. Baron and V. Malhotra, Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane, Science, vol.295, pp.325-328, 2002.

C. T. Beh, L. Cool, J. Phillips, and J. Rine, Overlapping functions of the yeast oxysterol-binding protein homologues, Genetics, vol.157, pp.1117-1140, 2001.

C. T. Beh and J. Rine, A role for yeast oxysterol-binding protein homologs in endocytosis and in the maintenance of intracellular sterol-lipid distribution, J. Cell Sci, vol.117, pp.2983-2996, 2004.

M. J. Berridge and R. F. Irvine, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature, vol.312, pp.315-321, 1984.

J. Bigay and B. Antonny, Curvature, Lipid Packing, and Electrostatics of Membrane Organelles: Defining Cellular Territories in Determining Specificity, Dev. Cell, vol.23, pp.886-895, 2012.

J. Bigay, J. Casella, G. Drin, B. Mesmin, and B. Antonny, ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif, EMBO J, vol.24, pp.2244-2253, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00090227

B. Bloj and D. B. Zilversmit, Complete exchangeability of cholesterol in phosphatidylcholine/cholesterol vesicles of different degrees of unsaturation, Biochemistry, vol.16, pp.3943-3948, 1977.

E. E. Boczek and S. Alberti, Phase changes in neurotransmission, Science, vol.361, pp.548-549, 2018.

C. Boesch, A. Bundi, M. Oppliger, and K. Wuthrich, 1H Nuclear-Magnetic-Resonance Studies of the Molecular Conformation of Monomeric Glucagon in Aqueous Solution, Eur. J. Biochem, vol.91, pp.209-214, 1978.

J. S. Bonifacino and E. C. Dell'angelica, Molecular Bases for the Recognition of Tyrosine-based Sorting Signals: Figure 1, J. Cell Biol, vol.145, pp.923-926, 1999.

J. S. Bonifacino and B. S. Glick, The Mechanisms of Vesicle Budding and Fusion, Cell, vol.116, issue.03, pp.1079-1080, 2004.

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky et al., Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin, PLOS ONE, vol.11, 2016.

Z. Bozoky, M. Krzeminski, R. Muhandiram, J. R. Birtley, A. Al-zahrani et al., Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra-and intermolecular interactions, Proc. Natl. Acad. Sci, vol.110, pp.4427-4436, 2013.

M. S. Bretscher, Membrane Structure: Some General Principles, Science, vol.181, pp.622-629, 1973.

M. S. Brown and J. L. Goldstein, The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor, Cell, vol.89, pp.331-340, 1997.

A. W. Burgett, T. B. Poulsen, K. Wangkanont, D. R. Anderson, C. Kikuchi et al., Natural products reveal cancer cell dependence on oxysterol-binding proteins, Nat. Chem. Biol, vol.7, pp.639-647, 2011.

M. Charman, T. R. Colbourne, A. Pietrangelo, L. Kreplak, and N. D. Ridgway, Oxysterol-binding Protein (OSBP)-related Protein 4 (ORP4) Is Essential for Cell Proliferation and Survival, J. Biol. Chem, vol.289, pp.15705-15717, 2014.

A. Chiapparino, K. Maeda, D. Turei, J. Saez-rodriguez, and A. Gavin, The orchestra of lipidtransfer proteins at the crossroads between metabolism and signaling, Prog. Lipid Res, vol.61, pp.30-39, 2016.

S. Chidambaram, N. Müllers, K. Wiederhold, V. Haucke, and G. F. Von-mollard, Specific Interaction between SNAREs and Epsin N-terminal Homology (ENTH) Domains of Epsin-related Proteins in trans -Golgi Network to Endosome Transport, J. Biol. Chem, vol.279, pp.4175-4179, 2004.

J. Chung, F. Torta, K. Masai, L. Lucast, H. Czapla et al., PI4P/phosphatidylserine countertransport at ORP5-and ORP8-mediated ER-plasma membrane contacts, Science, vol.349, pp.428-432, 2015.

C. Combet, C. Blanchet, C. Geourjon, and G. Deléage, NPS@: network protein sequence analysis, Trends Biochem. Sci, vol.25, pp.147-150, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00313012

D. E. Copeland and A. J. Dalton, An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost, J. Biophys. Biochem. Cytol, vol.5, pp.393-396, 1959.

A. ?opi?, S. Antoine-bally, M. Giménez-andrés, . La-torre, C. Garay et al., A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets, Nat. Commun, vol.9, 2018.

K. C. Courtney, W. Pezeshkian, R. Raghupathy, C. Zhang, A. Darbyson et al., C24 Sphingolipids Govern the Transbilayer Asymmetry of Cholesterol and Lateral Organization of Model and Live-Cell Plasma Membranes, Cell Rep, vol.24, pp.1037-1049, 2018.

M. D. Crabtree, C. A. Mendonça, Q. R. Bubb, and J. Clarke, Folding and binding pathways of BH3-only proteins are encoded within their intrinsically disordered sequence, not templated by partner proteins, J. Biol. Chem, vol.293, pp.9718-9723, 2018.

G. D'angelo, E. Polishchuk, G. Di-tullio, M. Santoro, A. Di-campli et al., Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide, Nature, vol.449, pp.62-67, 2007.

A. J. Daniels, R. J. Williams, and P. E. Wright, The character of the stored molecules in chromaffin granules of the adrenal medulla: A nuclear magnetic resonance study, Neuroscience, vol.3, pp.573-585, 1978.

A. L. Darling, Y. Liu, C. J. Oldfield, and V. N. Uversky, Intrinsically Disordered Proteome of Human Membrane-Less Organelles, PROTEOMICS, vol.18, p.1700193, 2018.

R. K. Das and R. V. Pappu, Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues, Proc. Natl. Acad. Sci, vol.110, pp.13392-13397, 2013.

R. K. Das, K. M. Ruff, and R. V. Pappu, Relating sequence encoded information to form and function of intrinsically disordered proteins, Curr. Opin. Struct. Biol, vol.32, pp.102-112, 2015.

P. A. Dawson, N. D. Ridgway, C. A. Slaughter, M. S. Brown, and J. L. Goldstein, cDNA cloning and expression of oxysterol-binding protein, an oligomer with a potential leucine zipper, J. Biol. Chem, vol.264, pp.16798-16803, 1989.

P. A. Dawson, D. R. Van-der-westhuyzen, J. L. Goldstein, and M. S. Brown, Purification of oxysterol binding protein from hamster liver cytosol, J. Biol. Chem, vol.264, pp.9046-9052, 1989.

O. M. De-brito and L. Scorrano, Mitofusin 2 tethers endoplasmic reticulum to mitochondria, Nature, vol.456, pp.605-610, 2008.

M. De-saint-jean, V. Delfosse, D. Douguet, G. Chicanne, B. Payrastre et al., Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers, J. Cell Biol, vol.195, pp.965-978, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00724253

A. De-simone, C. Kitchen, A. H. Kwan, M. Sunde, C. M. Dobson et al., Intrinsic disorder modulates protein self-assembly and aggregation, Proc. Natl. Acad. Sci, vol.109, pp.6951-6956, 2012.

R. A. Debose-boyd, Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase, Cell Res, vol.18, pp.609-621, 2008.

S. J. Demarest, M. Martinez-yamout, J. Chung, H. Chen, W. Xu et al., Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators, Nature, vol.415, pp.549-553, 2002.

Y. Deng, F. E. Rivera-molina, D. K. Toomre, and C. G. Burd, Sphingomyelin is sorted at the trans Golgi network into a distinct class of secretory vesicle, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.6677-6682, 2016.

A. Dereeper, V. Guignon, G. Blanc, S. Audic, S. Buffet et al., Phylogeny.fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Res, vol.36, pp.465-469, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324099

C. Dietrich, B. Yang, T. Fujiwara, A. Kusumi, and K. Jacobson, Relationship of Lipid Rafts to Transient Confinement Zones Detected by Single Particle Tracking, Biophys. J, vol.82, pp.75393-75402, 2002.

H. C. Dippold, M. M. Ng, S. E. Farber-katz, S. Lee, M. L. Kerr et al., GOLPH3 Bridges Phosphatidylinositol-4-Phosphate and Actomyosin to Stretch and Shape the Golgi to Promote Budding, Cell, vol.139, pp.337-351, 2009.

J. A. Dix and A. S. Verkman, Crowding Effects on Diffusion in Solutions and Cells, Annu. Rev. Biophys, vol.37, pp.247-263, 2008.

J. Doma?ski, S. J. Marrink, and L. V. Schäfer, Transmembrane helices can induce domain formation in crowded model membranes, Biochim. Biophys. Acta BBA -Biomembr, vol.1818, pp.984-994, 2012.

R. Dong, Y. Saheki, S. Swarup, L. Lucast, J. W. Harper et al., Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P, Cell, vol.166, pp.408-423, 2016.

Z. Dosztányi, J. Chen, A. K. Dunker, I. Simon, and P. Tompa, Disorder and Sequence Repeats in Hub Proteins and Their Implications for Network Evolution, J. Proteome Res, vol.5, pp.2985-2995, 2006.

G. Drin, Topological Regulation of Lipid Balance in Cells, Annu. Rev. Biochem, vol.83, pp.51-77, 2014.

G. Drin and B. Antonny, Amphipathic helices and membrane curvature, FEBS Lett, vol.584, pp.1840-1847, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00497640

X. Du, J. Kumar, C. Ferguson, T. A. Schulz, Y. S. Ong et al., A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking, J. Cell Biol, vol.192, pp.121-135, 2011.

X. Du, A. Zadoorian, I. E. Lukmantara, Y. Qi, A. J. Brown et al., Oxysterol-binding protein-related protein 5 (ORP5) promotes cell proliferation by activation of mTORC1 signaling, J. Biol. Chem, vol.293, pp.3806-3818, 2018.

E. J. Dufourc, Sterols and membrane dynamics, J. Chem. Biol, vol.1, pp.63-77, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02124211

M. H. Dunlop, A. M. Ernst, L. K. Schroeder, D. K. Toomre, G. Lavieu et al., Landlocked mammalian Golgi reveals cargo transport between stable cisternae, Nat. Commun, vol.8, p.432, 2017.

W. G. Dunphy and J. E. Rothman, Compartmental organization of the Golgi stack, Cell, vol.42, pp.13-21, 1985.

A. D. Dupuy and D. M. Engelman, Protein area occupancy at the center of the red blood cell membrane, Proc. Natl. Acad. Sci. 105, pp.2848-2852, 2008.

S. Dutta and D. Bhattacharyya, Size of Unfolded and Dissociated Subunits versus that of Native Multimeric Proteins, J. Biol. Phys, vol.27, pp.59-71, 2001.

H. J. Dyson and P. E. Wright, Intrinsically unstructured proteins and their functions, Nat. Rev. Mol. Cell Biol, vol.6, pp.197-208, 2005.

S. Elbaum-garfinkle, Y. Kim, K. Szczepaniak, C. Chen, C. R. Eckmann et al., The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics, Proc. Natl. Acad. Sci, vol.112, pp.7189-7194, 2015.

P. Evans, Endocytosis and vesicle trafficking, Curr. Opin. Struct. Biol, vol.12, pp.814-821, 2002.

A. Fabiato, Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum, Am. J. Physiol, vol.245, pp.1-14, 1983.

V. A. Fadok, D. R. Voelker, P. A. Campbell, J. J. Cohen, and P. M. Henson, Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages, p.11

F. Faulhammer, S. Kanjilal-kolar, A. Knödler, J. Lo, Y. Lee et al., Growth control of Golgi phosphoinositides by reciprocal localization of sac1 lipid phosphatase and pik1 4-kinase, Traffic Cph. Den, vol.8, pp.1554-1567, 2007.

M. A. Fischer, K. Temmerman, E. Ercan, W. Nickel, and M. Seedorf, Binding of plasma membrane lipids recruits the yeast integral membrane protein Ist2 to the cortical ER, Traffic Cph. Den, vol.10, pp.1084-1097, 2009.

M. Foti, A. Audhya, and S. D. Emr, Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology, Mol. Biol. Cell, vol.12, pp.2396-2411, 2001.

M. V. Fournier, F. Guimarães-da-costa, M. E. Paschoal, L. V. Ronco, M. G. Carvalho et al., Identification of a gene encoding a human oxysterol-binding protein-homologue: a potential general molecular marker for blood dissemination of solid tumors, Cancer Res, vol.59, pp.3748-3753, 1999.

M. Franco, P. Chardin, M. Chabre, and S. Paris, Myristoylation of ADP-ribosylation Factor 1 Facilitates Nucleotide Exchange at Physiological Mg Levels, J. Biol. Chem, vol.270, pp.1337-1341, 1995.

J. R. Friedman, L. L. Lackner, M. West, J. R. Dibenedetto, J. Nunnari et al., ER tubules mark sites of mitochondrial division, Science, vol.334, pp.358-362, 2011.

J. R. Friedman and J. Nunnari, Mitochondrial form and function, Nature, vol.505, pp.335-343, 2014.

K. Furuita, J. Jee, H. Fukada, M. Mishima, and C. Kojima, Electrostatic Interaction between Oxysterol-binding Protein and VAMP-associated Protein A Revealed by NMR and Mutagenesis Studies, J. Biol. Chem, vol.285, pp.12961-12970, 2010.

A. H. Futerman and H. Riezman, The ins and outs of sphingolipid synthesis, Trends Cell Biol, vol.15, pp.312-318, 2005.

M. Fuxreiter, Fuzziness: linking regulation to protein dynamics, Mol BioSyst, vol.8, pp.168-177, 2012.

R. Galmes, A. Houcine, A. R. Van-vliet, P. Agostinis, C. L. Jackson et al., ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function, EMBO Rep, vol.17, pp.800-810, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01401452

Y. Gambin, R. Lopez-esparza, M. Reffay, E. Sierecki, N. S. Gov et al., Lateral mobility of proteins in liquid membranes revisited, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.2098-2102, 2006.

K. Gast, H. Damaschun, K. Eckert, K. Schulze-forster, H. R. Maurer et al., Prothymosin .alpha.: A Biologically Active Protein with Random Coil Conformation, Biochemistry, vol.34, pp.13211-13218, 1995.

E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins et al., Protein Identification and, The Proteomics Protocols Handbook, pp.571-607, 2005.

A. T. Gatta, L. H. Wong, Y. Y. Sere, D. M. Calderón-noreña, S. Cockcroft et al., A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport, 2015.

R. Ghai, X. Du, H. Wang, J. Dong, C. Ferguson et al., ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane, Nat. Commun, vol.8, 2017.

W. Gibson-wood, U. Igbavboa, W. E. Müller, and G. P. Eckert, Cholesterol asymmetry in synaptic plasma membranes: Brain membrane cholesterol asymmetry, J. Neurochem, vol.116, pp.684-689, 2011.

M. Giménez-andrés, A. ?opi?, and B. Antonny, The Many Faces of Amphipathic Helices, Biomolecules, vol.8, p.45, 2018.

A. Godi, A. D. Campli, A. Konstantakopoulos, G. D. Tullio, D. R. Alessi et al., FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat, Cell Biol, vol.6, pp.393-404, 2004.

L. E. Goldfinger, C. Ptak, E. D. Jeffery, J. Shabanowitz, J. Han et al., An experimentally derived database of candidate Rasinteracting proteins, J. Proteome Res, vol.6, pp.1806-1811, 2007.

J. E. Goose and M. S. Sansom, Reduced Lateral Mobility of Lipids and Proteins in Crowded Membranes, PLoS Comput. Biol, vol.9, 2013.

J. Gsponer and M. Madan-babu, The rules of disorder or why disorder rules, Prog. Biophys. Mol. Biol, vol.99, pp.94-103, 2009.

G. Guigas and M. Weiss, Influence of hydrophobic mismatching on membrane protein diffusion, Biophys. J, vol.95, pp.25-27, 2008.

X. Guo, L. Zhang, Y. Fan, D. Zhang, L. Qin et al., Oxysterol-Binding ProteinRelated Protein 8 Inhibits Gastric Cancer Growth Through Induction of ER Stress, Inhibition of Wnt Signaling, and Activation of Apoptosis, Oncol. Res, vol.25, pp.799-808, 2017.

K. Hanada, Lipid-transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites 69, 2018.

K. Hanada, K. Kumagai, S. Yasuda, Y. Miura, M. Kawano et al., Molecular machinery for non-vesicular trafficking of ceramide, Nature, vol.426, pp.803-809, 2003.

H. M. Hankins, R. D. Baldridge, P. Xu, and T. R. Graham, Role of Flippases, Scramblases and Transfer Proteins in Phosphatidylserine Subcellular Distribution, Traffic, vol.16, pp.35-47, 2015.

T. Harayama and H. Riezman, Understanding the diversity of membrane lipid composition, Nat. Rev. Mol. Cell Biol, vol.19, pp.281-296, 2018.

J. E. Harlan, P. J. Hajduk, H. S. Yoon, and S. W. Fesik, Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate, Nature, vol.371, pp.168-170, 1994.

B. He, K. Wang, Y. Liu, B. Xue, V. N. Uversky et al., Predicting intrinsic disorder in proteins: an overview, Cell Res, vol.19, pp.929-949, 2009.

C. Herdman and T. Moss, Extended-Synaptotagmins (E-Syts); the extended story, Pharmacol. Res, vol.107, pp.48-56, 2016.

V. Hinard, A. Britan, J. S. Rougier, A. Bairoch, H. Abriel et al., ICEPO: the ion channel electrophysiology ontology, 2016.

Y. Hirata, M. Brotto, N. Weisleder, Y. Chu, P. Lin et al., Uncoupling store-operated Ca2+ entry and altered Ca2+ release from sarcoplasmic reticulum through silencing of junctophilin genes, Biophys. J, vol.90, pp.4418-4427, 2006.

T. Hoshi, W. Zagotta, and R. Aldrich, Biophysical and molecular mechanisms of Shaker potassium channel inactivation, Science, vol.250, pp.533-538, 1990.

M. J. Hoyer, P. J. Chitwood, C. C. Ebmeier, J. F. Striepen, R. Z. Qi et al., A Novel Class of ER Membrane Proteins Regulates ER-Associated Endosome Fission, Cell, vol.175, pp.254-265, 2018.

R. Huber and W. S. Bennett, Functional significance of flexibility in proteins, Biopolymers, vol.22, pp.261-279, 1983.

R. Hynynen, M. Suchanek, J. Spandl, N. Bäck, C. Thiele et al., OSBP-related protein 2 is a sterol receptor on lipid droplets that regulates the metabolism of neutral lipids, J. Lipid Res, vol.50, pp.1305-1315, 2009.

E. Ikonen, Cellular cholesterol trafficking and compartmentalization, Nat. Rev. Mol. Cell Biol, vol.9, pp.125-138, 2008.

Y. J. Im, S. Raychaudhuri, W. A. Prinz, and J. H. Hurley, Structural mechanism for sterol sensing and transport by OSBP-related proteins, Nature, vol.437, pp.154-158, 2005.

K. Ishikawa-sasaki, S. Nagashima, K. Taniguchi, and J. Sasaki, Model of OSBP-Mediated Cholesterol Supply to Aichi Virus RNA Replication Sites Involving Protein-Protein Interactions among Viral Proteins, ACBD3, OSBP, VAP-A/B, and SAC1, J. Virol, vol.92, 2018.

A. Jain and J. C. Holthuis, Membrane contact sites, ancient and central hubs of cellular lipid logistics, Biochim. Biophys. Acta BBA -Mol. Cell Res, vol.1864, pp.1450-1458, 2017.

M. Javanainen, H. Hammaren, L. Monticelli, J. Jeon, M. S. Miettinen et al., Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes, Faraday Discuss, vol.161, pp.397-417, 2013.

M. Javanainen, H. Martinez-seara, R. Metzler, and I. Vattulainen, Diffusion of Proteins and Lipids in Protein-Rich Membranes, Biophys. J, vol.114, 2018.

M. S. Jensen, S. R. Costa, A. S. Duelli, P. A. Andersen, L. R. Poulsen et al., Phospholipid flipping involves a central cavity in P4 ATPases, Sci. Rep, vol.7, 2017.

J. Jeon, M. Javanainen, H. Martinez-seara, R. Metzler, and I. Vattulainen, Protein Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous Lateral Diffusion of Phospholipids and Proteins, Phys. Rev. X, vol.6, 2016.

B. Jiang, J. L. Brown, J. Sheraton, N. Fortin, and H. Bussey, A new family of yeast genes implicated in ergosterol synthesis is related to the human oxysterol binding protein, Yeast, vol.10, pp.341-353, 1994.

M. Johansson, V. Bocher, M. Lehto, G. Chinetti, E. Kuismanen et al., The two variants of oxysterol binding protein-related protein-1 display different tissue expression patterns, have different intracellular localization, and are functionally distinct, Mol. Biol. Cell, vol.14, pp.903-915, 2003.

M. Johansson, M. Lehto, K. Tanhuanpää, T. L. Cover, and V. M. Olkkonen, The oxysterolbinding protein homologue ORP1L interacts with Rab7 and alters functional properties of late endocytic compartments, Mol. Biol. Cell, vol.16, pp.5480-5492, 2005.

M. Johansson, N. Rocha, W. Zwart, I. Jordens, L. Janssen et al., Activation of endosomal dynein motors by stepwise assembly of, 2007.

, Glued , ORP1L, and the receptor ?lll spectrin, J. Cell Biol, vol.176, pp.459-471

H. Jousset, M. Frieden, and N. Demaurex, STIM1 Knockdown Reveals That Store-operated Ca 2+ Channels Located Close to Sarco/Endoplasmic Ca 2+ ATPases (SERCA) Pumps Silently Refill the Endoplasmic Reticulum, J. Biol. Chem, vol.282, pp.11456-11464, 2007.

S. E. Kaiser, J. H. Brickner, A. R. Reilein, T. D. Fenn, P. Walter et al., Structural Basis of FFAT Motif-Mediated ER Targeting, Structure, vol.13, pp.1035-1045, 2005.

C. Kalthoff, J. Alves, C. Urbanke, R. Knorr, and E. J. Ungewickell, Unusual Structural Organization of the Endocytic Proteins AP180 and Epsin 1, J. Biol. Chem, vol.277, pp.8209-8216, 2002.

A. A. Kandutsch and H. W. Chen, Inhibition of cholesterol synthesis by oxygenated sterols, Lipids, vol.13, pp.704-707, 1978.

A. A. Kandutsch and E. P. Shown, Assay of oxysterol-binding protein in a mouse fibroblast, cell-free system. Dissociation constant and other properties of the system, J. Biol. Chem, vol.256, pp.13068-13073, 1981.

A. A. Kandutsch and E. B. Thompson, Cytosolic proteins that bind oxygenated sterols. Cellular distribution, specificity, and some properties, J. Biol. Chem, vol.255, pp.10813-10821, 1980.

M. Kannan, S. Lahiri, L. Liu, V. Choudhary, and W. A. Prinz, Phosphatidylserine synthesis at membrane contact sites promotes its transport out of the ER, J. Lipid Res, vol.58, pp.553-562, 2017.

M. Kawano, K. Kumagai, M. Nishijima, and K. Hanada, Efficient Trafficking of Ceramide from the Endoplasmic Reticulum to the Golgi Apparatus Requires a VAMP-associated Proteininteracting FFAT Motif of CERT, J. Biol. Chem, vol.281, pp.30279-30288, 2006.

T. Kawasaki, I. Lange, and S. Feske, A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels, Biochem. Biophys. Res. Commun, vol.385, pp.49-54, 2009.

B. G. Kearns, T. P. Mcgee, P. Mayinger, A. Gedvilaite, S. E. Phillips et al., Essential role for diacylglycerol in protein transport from the yeast Golgi complex, Nature, vol.387, pp.101-105, 1997.

H. Kentala, A. Koponen, A. M. Kivelä, R. Andrews, C. Li et al., Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.32, pp.1281-1295, 2018.

H. Kentala, A. Koponen, H. Vihinen, J. Pirhonen, G. Liebisch et al., OSBP-related protein-2 (ORP2): a novel Akt effector that controls cellular energy metabolism, Cell. Mol. Life Sci, vol.75, pp.4041-4057, 2018.

S. Kim, A. Kedan, M. Marom, N. Gavert, O. Keinan et al., The phosphatidylinositol-transfer protein Nir2 binds phosphatidic acid and positively regulates phosphoinositide signalling, EMBO Rep, vol.14, pp.891-899, 2013.

Y. J. Kim, M. L. Guzman-hernandez, E. Wisniewski, N. Echeverria, and T. Balla, Phosphatidylinositol and phosphatidic acid transport between the ER and plasma membrane during PLC activation requires the Nir2 protein, Biochem. Soc. Trans, vol.44, pp.197-201, 2016.

R. W. Klemm, C. S. Ejsing, M. A. Surma, H. Kaiser, M. J. Gerl et al., Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network, J. Cell Biol, vol.185, pp.601-612, 2009.

M. C. Konopka, I. A. Shkel, S. Cayley, M. T. Record, and J. C. Weisshaar, Crowding and Confinement Effects on Protein Diffusion In Vivo, J. Bacteriol, vol.188, pp.6115-6123, 2006.

H. Koriyama, H. Nakagami, T. Katsuya, H. Akasaka, S. Saitoh et al., Variation in OSBPL10 is associated with dyslipidemia, Hypertens. Res. Off. J. Jpn. Soc. Hypertens, vol.33, pp.511-514, 2010.

F. Korobova, V. Ramabhadran, and H. N. Higgs, An Actin-Dependent Step in Mitochondrial Fission Mediated by the ER-Associated Formin INF2, Science, vol.339, pp.464-467, 2013.

P. Kozik, R. W. Francis, M. N. Seaman, and M. S. Robinson, A Screen for Endocytic Motifs, Traffic, vol.11, pp.843-855, 2010.

M. Krau? and V. Haucke, Directing lipid transport at membrane contact sites, Nat. Cell Biol, vol.18, pp.461-463, 2016.

N. A. Kulak, G. Pichler, I. Paron, N. Nagaraj, and M. Mann, Minimal, encapsulated proteomicsample processing applied to copy-number estimation in eukaryotic cells, Nat. Methods, vol.11, pp.319-324, 2014.

T. A. Lagace, D. M. Byers, H. W. Cook, and N. D. Ridgway, Altered regulation of cholesterol and cholesteryl ester synthesis in Chinese-hamster ovary cells overexpressing the oxysterolbinding protein is dependent on the pleckstrin homology domain, Biochem. J, vol.326, pp.205-213, 1997.

S. Laitinen, M. Lehto, S. Lehtonen, K. Hyvärinen, S. Heino et al., ORP2, a homolog of oxysterol binding protein, regulates cellular cholesterol metabolism, J. Lipid Res, vol.43, pp.245-255, 2002.

S. Laitinen, V. M. Olkkonen, C. Ehnholm, and E. Ikonen, Family of human oxysterol binding protein (OSBP) homologues. A novel member implicated in brain sterol metabolism, J. Lipid Res, vol.40, pp.2204-2211, 1999.

M. Lee and G. D. Fairn, Both the PH domain and N-terminal region of oxysterol-binding protein related protein 8S are required for localization to PM-ER contact sites, Biochem. Biophys. Res. Commun, vol.496, pp.1088-1094, 2018.

S. Lee, P. Wang, Y. Jeong, D. J. Mangelsdorf, R. G. Anderson et al., Steroldependent nuclear import of ORP1S promotes LXR regulated trans-activation of apoE, Exp. Cell Res, vol.318, pp.2128-2142, 2012.

M. Lehto, R. Hynynen, K. Karjalainen, E. Kuismanen, K. Hyvärinen et al., Targeting of OSBP-related protein 3 (ORP3) to endoplasmic reticulum and plasma membrane is controlled by multiple determinants, Exp. Cell Res, vol.310, pp.445-462, 2005.

M. Lehto, S. Laitinen, G. Chinetti, M. Johansson, C. Ehnholm et al., The OSBP-related protein family in humans, J. Lipid Res, vol.42, pp.1203-1213, 2001.

M. Lehto, M. I. Mayranpaa, T. Pellinen, P. Ihalmo, S. Lehtonen et al., The R-Ras interaction partner ORP3 regulates cell adhesion, J. Cell Sci, vol.121, pp.695-705, 2008.

M. Lehto, J. Tienari, S. Lehtonen, E. Lehtonen, and V. M. Olkkonen, Subfamily III of mammalian oxysterol-binding protein (OSBP) homologues: the expression and intracellular localization of ORP3, ORP6, and ORP7, Cell Tissue Res, vol.315, pp.39-57, 2004.

M. A. Lemmon and K. M. Ferguson, Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides, Biochem. Soc. Trans, vol.29, pp.377-384, 2001.

G. Lenoir, P. Williamson, C. F. Puts, and J. C. Holthuis, Cdc50p Plays a Vital Role in the ATPase Reaction Cycle of the Putative Aminophospholipid Transporter Drs2p, J. Biol. Chem, vol.284, pp.17956-17967, 2009.

S. Lev, Non-vesicular lipid transport by lipid-transfer proteins and beyond, Nat. Rev. Mol. Cell Biol, vol.11, pp.739-750, 2010.

D. Levanon, C. Hsieh, U. Francke, P. A. Dawson, N. D. Ridgway et al., cDNA cloning of human oxysterol-binding protein and localization of the gene to human chromosome 11 and mouse chromosome 19, Genomics, vol.7, pp.65-74, 1990.

A. J. Levine, J. Momand, and C. A. Finlay, The p53 tumour suppressor gene, Nature, vol.351, pp.453-456, 1991.

T. P. Levine and S. Munro, Targeting of Golgi-Specific Pleckstrin Homology Domains Involves Both PtdIns 4-Kinase-Dependent and -Independent Components, Curr. Biol, vol.12, pp.695-704, 2002.

T. P. Levine and S. Munro, Dual Targeting of Osh1p, a Yeast Homologue of Oxysterol-binding Protein, to both the Golgi and the Nucleus-Vacuole Junction, Mol. Biol. Cell, vol.12, pp.1633-1644, 2001.

T. P. Levine and S. Munro, The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes, Curr. Biol, vol.8, pp.70296-70305, 1998.

D. Li, E. B. Dammer, N. C. Lucki, and M. B. Sewer, cAMP-stimulated phosphorylation of diaphanous 1 regulates protein stability and interaction with binding partners in adrenocortical cells, Mol. Biol. Cell, vol.24, pp.848-857, 2013.

J. Li, Y. Feng, X. Wang, . Li, . Jing et al., An Overview of Predictors for Intrinsically Disordered Proteins over 2010-2014, Int. J. Mol. Sci, vol.16, pp.23446-23462, 2015.

J. Li, Y. Xiao, C. Lai, N. Lou, H. Ma et al., Oxysterol-binding protein-related protein 4L promotes cell proliferation by sustaining intracellular Ca2+ homeostasis in cervical carcinoma cell lines, Oncotarget, vol.7, pp.65849-65861, 2016.

P. Li, S. Banjade, H. Cheng, S. Kim, B. Chen et al., Phase transitions in the assembly of multivalent signalling proteins, Nature, vol.483, pp.336-340, 2012.

R. Linding, L. J. Jensen, F. Diella, P. Bork, T. J. Gibson et al., Protein Disorder Prediction, Structure, vol.11, pp.1453-1459, 2003.

J. Lippincott-schwartz, E. Snapp, and A. Kenworthy, Studying protein dynamics in living cells, Nat. Rev. Mol. Cell Biol, vol.2, pp.444-456, 2001.

V. Litvak, N. Dahan, S. Ramachandran, H. Sabanay, and S. Lev, Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function, Nat. Cell Biol, vol.7, pp.225-234, 2005.

G. Liu, A. N. Coyne, F. Pei, S. Vaughan, M. Chaung et al., Endocytosis regulates TDP-43 toxicity and turnover, Nat. Commun, vol.8, 2017.

S. Liu, R. Sheng, J. H. Jung, L. Wang, E. Stec et al., Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol, Nat. Chem. Biol, vol.13, pp.268-274, 2017.

X. Liu and N. D. Ridgway, Characterization of the Sterol and Phosphatidylinositol 4-Phosphate Binding Properties of Golgi-Associated OSBP-Related Protein 9 (ORP9), PLoS ONE, vol.9, 2014.

Y. Liu, R. A. Kahn, and J. H. Prestegard, Interaction of Fapp1 with Arf1 and PI4P at a membrane surface: an example of coincidence detection, Struct. Lond. Engl, vol.22, pp.421-430, 1993.

C. J. Loewen and T. P. Levine, A Highly Conserved Binding Site in Vesicle-associated Membrane Protein-associated Protein (VAP) for the FFAT Motif of Lipid-binding Proteins, J. Biol. Chem, vol.280, pp.14097-14104, 2005.

C. J. Loewen, A. Roy, and T. P. Levine, A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP, EMBO J, vol.22, pp.2025-2035, 2003.

R. L. Lopez-marques, L. Theorin, M. G. Palmgren, and T. G. Pomorski, P4-ATPases: lipid flippases in cell membranes. Pflüg. Arch. -Eur, J. Physiol, vol.466, pp.1227-1240, 2014.

E. Losev, C. A. Reinke, J. Jellen, D. E. Strongin, B. J. Bevis et al., Golgi maturation visualized in living yeast, Nature, vol.441, pp.1002-1006, 2006.

E. D. Lowe, I. Tews, K. Y. Cheng, N. R. Brown, S. Gul et al., Specificity Determinants of Recruitment Peptides Bound to Phospho-CDK2/Cyclin A ? , ?, Biochemistry, vol.41, pp.15625-15634, 2002.

D. Lu, H. Sun, H. Wang, B. Barylko, Y. Fukata et al., Phosphatidylinositol 4-Kinase II? Is Palmitoylated by Golgi-localized Palmitoyltransferases in Cholesterol-dependent Manner, J. Biol. Chem, vol.287, pp.21856-21865, 2012.

K. Luby-phelps, The physical chemistry of cytoplasm and its influence on cell function: an update, Mol. Biol. Cell, vol.24, pp.2593-2596, 2013.

W. Luu, L. J. Sharpe, I. Capell-hattam, I. C. Gelissen, and A. J. Brown, Oxysterols: Old Tale, New Twists, Annu. Rev. Pharmacol. Toxicol, vol.56, pp.447-467, 2016.

E. Macia, S. Paris, and M. Chabre, Binding of the PH and Polybasic C-Terminal Domains of ARNO to Phosphoinositides and to Acidic Lipids, Biochemistry, vol.39, pp.5893-5901, 2000.

K. Maeda, K. Anand, A. Chiapparino, A. Kumar, M. Poletto et al., Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins, Nature, vol.501, pp.257-261, 2013.

M. Magdeleine, R. Gautier, P. Gounon, H. Barelli, S. Vanni et al., A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition, 2016.

A. G. Manford, C. J. Stefan, H. L. Yuan, J. A. Macgurn, and S. D. Emr, ER-to-Plasma Membrane Tethering Proteins Regulate Cell Signaling and ER Morphology, Dev. Cell, vol.23, pp.1129-1140, 2012.

I. M. Manjarrés, M. T. Alonso, and J. García-sancho, Calcium entry-calcium refilling (CECR) coupling between store-operated Ca2+ entry and sarco/endoplasmic reticulum Ca2+-ATPase, Cell Calcium, vol.49, pp.153-161, 2011.

A. H. Mao, S. L. Crick, A. Vitalis, C. L. Chicoine, and R. V. Pappu, Net charge per residue modulates conformational ensembles of intrinsically disordered proteins, Proc. Natl. Acad. Sci, vol.107, pp.8183-8188, 2010.

S. J. Martin, Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl, J. Exp. Med, vol.182, pp.1545-1556, 1995.

H. Matsuo, Role of LBPA and Alix in Multivesicular Liposome Formation and Endosome Organization, Science, vol.303, pp.531-534, 2004.

F. R. Maxfield and G. Van-meer, Cholesterol, the central lipid of mammalian cells, Curr. Opin. Cell Biol, vol.22, pp.422-429, 2010.

P. Mayinger, Phosphoinositides and vesicular membrane traffic, Biochim. Biophys. Acta BBA -Mol. Cell Biol. Lipids, vol.1821, pp.1104-1113, 2012.

S. R. Mcguffee and A. H. Elcock, Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm, PLoS Comput. Biol, vol.6, 2010.

H. T. Mcmahon and J. L. Gallop, Membrane curvature and mechanisms of dynamic cell membrane remodelling, Nature, vol.438, pp.590-596, 2005.

B. Mesmin, J. Bigay, J. Moser-von-filseck, S. Lacas-gervais, G. Drin et al., A FourStep Cycle Driven by PI(4)P Hydrolysis Directs Sterol/PI(4)P Exchange by the ER-Golgi Tether OSBP, Cell, vol.155, pp.830-843, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02109031

B. Mesmin, J. Bigay, J. Polidori, D. Jamecna, S. Lacas-gervais et al., Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP, EMBO J, vol.36, pp.3156-3174, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01617401

R. Metzler, J. Jeon, and A. G. Cherstvy, Non-Brownian diffusion in lipid membranes: Experiments and simulations, Biochim. Biophys. Acta BBA -Biomembr, vol.1858, pp.2451-2467, 2016.

F. Meutiawati, B. Bezemer, J. R. Strating, G. J. Overheul, E. ?usinaite et al., Posaconazole inhibits dengue virus replication by targeting oxysterol-binding protein, Antiviral Res, vol.157, pp.68-79, 2018.

K. Meyer, M. Kirchner, B. Uyar, J. Cheng, G. Russo et al., Mutations in Disordered Regions Can Cause Disease by Creating Dileucine Motifs, Cell, vol.175, pp.239-253, 2018.

D. Milovanovic and P. De-camilli, Synaptic Vesicle Clusters at Synapses: A Distinct Liquid Phase?, Neuron, vol.93, pp.995-1002, 2017.

D. Milovanovic, Y. Wu, X. Bian, and P. De-camilli, A liquid phase of synapsin and lipid vesicles, Science, vol.361, pp.604-607, 2018.

S. Mochizuki, H. Miki, R. Zhou, Y. Kido, W. Nishimura et al., Oxysterolbinding protein-related protein (ORP) 6 localizes to the ER and ER-plasma membrane contact sites and is involved in the turnover of PI4P in cerebellar granule neurons, Exp. Cell Res, vol.370, pp.601-612, 2018.

M. Mondal, B. Mesmin, S. Mukherjee, and F. R. Maxfield, Sterols are mainly in the cytoplasmic leaflet of the plasma membrane and the endocytic recycling compartment in CHO cells, 2009.

, Mol. Biol. Cell, vol.20, pp.581-588

P. Moreau, C. Cassagne, T. W. Keenan, and D. J. Morré, Ceramide excluded from cell-free vesicular lipid transfer from endoplasmic reticulum to Golgi apparatus. Evidence for lipid sorting, Biochim. Biophys. Acta BBA -Biomembr, vol.1146, pp.9-16, 1993.

D. J. Morré and L. Ovtracht, Dynamics of the Golgi apparatus: membrane differentiation and membrane flow, Int. Rev. Cytol, pp.61-188, 1977.

J. Moser-von-filseck, A. Opi, V. Delfosse, S. Vanni, C. L. Jackson et al., Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate, Science, vol.349, pp.432-436, 2015.

N. Muramatsu and A. P. Minton, Tracer diffusion of globular proteins in concentrated protein solutions, Proc. Natl. Acad. Sci. U. S. A, vol.85, pp.2984-2988, 1988.

S. Nachtergaele, L. K. Mydock, K. Krishnan, J. Rammohan, P. H. Schlesinger et al., Oxysterols are allosteric activators of the oncoprotein Smoothened, Nat. Chem. Biol, vol.8, pp.211-220, 2012.

A. Naji, A. J. Levine, and P. A. Pincus, Corrections to the Saffman-Delbruck mobility for membrane bound proteins, Biophys. J, vol.93, pp.49-51, 2007.

T. Nakada, T. Kashihara, M. Komatsu, K. Kojima, T. Takeshita et al., Physical interaction of junctophilin and the Ca V 1.1 C terminus is crucial for skeletal muscle contraction, Proc. Natl. Acad. Sci, vol.115, pp.4507-4512, 2018.

M. Nassa, P. Anand, A. Jain, A. Chhabra, A. Jaiswal et al., Analysis of human collagen sequences, Bioinformation, vol.8, pp.26-33, 2012.

M. Ngo and N. D. Ridgway, Oxysterol binding protein-related Protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function, Mol. Biol. Cell, vol.20, pp.1388-1399, 2009.

M. H. Ngo, T. R. Colbourne, and N. D. Ridgway, Functional implications of sterol transport by the oxysterol-binding protein gene family, Biochem. J, vol.429, pp.13-24, 2010.

J. D. Nickels, J. C. Smith, and X. Cheng, Lateral organization, bilayer asymmetry, and interleaflet coupling of biological membranes, Chem. Phys. Lipids, vol.192, pp.87-99, 2015.

T. Nishimura, T. Inoue, N. Shibata, A. Sekine, W. Takabe et al., Inhibition of cholesterol biosynthesis by 25-hydroxycholesterol is independent of OSBP, Genes Cells, vol.10, pp.793-801, 2005.

E. Nissilä, Y. Ohsaki, M. Weber-boyvat, J. Perttilä, E. Ikonen et al., ORP10, a cholesterol binding protein associated with microtubules, regulates apolipoprotein B-100 secretion, Biochim. Biophys. Acta, vol.1821, pp.1472-1484, 2012.

B. J. Noland, R. E. Arebalo, E. Hansbury, and T. J. Scallen, Purification and properties of sterol carrier protein2, J. Biol. Chem, vol.255, pp.4282-4289, 1980.

T. J. Nott, E. Petsalaki, P. Farber, D. Jervis, E. Fussner et al., Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles, Mol. Cell, vol.57, pp.936-947, 2015.

V. M. Olkkonen and T. P. Levine, Oxysterol binding proteins: in more than one place at one time?, Biochem. Cell Biol. Biochim. Biol. Cell, vol.82, pp.87-98, 2004.

V. M. Olkkonen and S. Li, Oxysterol-binding proteins: Sterol and phosphoinositide sensors coordinating transport, signaling and metabolism, Prog. Lipid Res, vol.52, pp.529-538, 2013.

M. Ouimet, E. J. Hennessy, C. Van-solingen, G. J. Koelwyn, M. A. Hussein et al., miRNA Targeting of Oxysterol-Binding Protein-Like 6 Regulates Cholesterol Trafficking and Efflux, Arterioscler. Thromb. Vasc. Biol, vol.36, pp.942-951, 2016.

D. J. Owen, Y. Vallis, M. E. Noble, J. B. Hunter, T. R. Dafforn et al., A structural explanation for the binding of multiple ligands by the alpha-adaptin appendage domain, Cell, vol.97, pp.805-815, 1999.

J. Pacheco, L. Dominguez, A. Bohórquez-hernández, A. Asanov, and L. Vaca, A cholesterolbinding domain in STIM1 modulates STIM1-Orai1 physical and functional interactions, Sci. Rep, vol.6, 2016.

D. Peretti, N. Dahan, E. Shimoni, K. Hirschberg, and S. Lev, Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport, Mol. Biol. Cell, vol.19, pp.3871-3884, 2008.

R. J. Perry and N. D. Ridgway, Oxysterol-binding Protein and Vesicle-associated Membrane Protein-associated Protein Are Required for Sterol-dependent Activation of the Ceramide Transport Protein?D, Mol. Biol. Cell, vol.17, p.13, 2006.

J. Perttilä, K. Merikanto, J. Naukkarinen, I. Surakka, N. W. Martin et al., OSBPL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism, J. Mol. Med. Berl. Ger, vol.87, pp.825-835, 2009.

R. Peters and R. J. Cherry, Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbruck equations, Proc. Natl. Acad. Sci, vol.79, pp.4317-4321, 1982.

G. J. Praefcke, M. G. Ford, E. M. Schmid, L. E. Olesen, J. L. Gallop et al., Evolving nature of the AP2 ?-appendage hub during clathrin-coated vesicle endocytosis, EMBO J, vol.23, pp.4371-4383, 2004.

W. A. Prinz, Bridging the gap: Membrane contact sites in signaling, metabolism, and organelle dynamics, J. Cell Biol, vol.205, pp.759-769, 2014.

T. J. Proszynski, R. W. Klemm, M. Gravert, P. P. Hsu, Y. Gloor et al., A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.17981-17986, 2005.

I. Pulli, T. Lassila, G. Pan, D. Yan, V. M. Olkkonen et al., Oxysterol-binding protein related-proteins (ORPs) 5 and 8 regulate calcium signaling at specific cell compartments, Cell Calcium, vol.72, pp.62-69, 2018.

A. Radhakrishnan, Y. Ikeda, H. J. Kwon, M. S. Brown, and J. L. Goldstein, Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Oxysterols block transport by binding to Insig, Proc. Natl. Acad. Sci, vol.104, pp.6511-6518, 2007.

S. Ramadurai, A. Holt, V. Krasnikov, G. Van-den-bogaart, J. A. Killian et al., Lateral Diffusion of Membrane Proteins, J. Am. Chem. Soc, vol.131, pp.12650-12656, 2009.

S. Raychaudhuri, Y. J. Im, J. H. Hurley, and W. A. Prinz, Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides, J. Cell Biol, vol.173, pp.107-119, 2006.

R. T. Rebbeck, Y. Karunasekara, E. M. Gallant, P. G. Board, N. A. Beard et al., The ?1a Subunit of the Skeletal DHPR Binds to Skeletal RyR1 and Activates the Channel via Its 35-Residue C-Terminal Tail, Biophys. J, vol.100, pp.922-930, 2011.

N. D. Ridgway, Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding, J. Cell Biol, vol.116, pp.307-319, 1992.

N. Rocha, C. Kuijl, R. Van-der-kant, L. Janssen, D. Houben et al., Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILPp150 Glued and late endosome positioning, J. Cell Biol, vol.185, pp.1209-1225, 2009.

G. R. Romeo and A. Kazlauskas, Oxysterol and diabetes activate STAT3 and control endothelial expression of profilin-1 via OSBP1, J. Biol. Chem, vol.283, pp.9595-9605, 2008.

P. Romero, Z. Obradovic, C. Kissinger, J. E. Villafranca, and A. K. Dunker, Identifying disordered regions in proteins from amino acid sequence, Presented at the International Conference on Neural Networks (ICNN'97), pp.90-95, 1997.

F. Roosen-runge, M. Hennig, F. Zhang, R. M. Jacobs, M. Sztucki et al., Protein self-diffusion in crowded solutions, Proc. Natl. Acad. Sci, vol.108, pp.11815-11820, 2011.

A. E. Rusiñol, Z. Cui, M. H. Chen, and J. E. Vance, A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins, J. Biol. Chem, vol.269, pp.27494-27502, 1994.

R. R. Rustandi, D. M. Baldisseri, and D. J. Weber, Structure of the negative regulatory domain of p53 bound to S100B(??), Nat. Struct. Biol, vol.7, p.5, 2000.

S. K. Sahu, S. N. Gummadi, N. Manoj, and G. K. Aradhyam, Phospholipid scramblases: An overview, Arch. Biochem. Biophys, vol.462, pp.103-114, 2007.

K. Sato, A. Norris, M. Sato, and B. D. Grant, C. elegans as a model for membrane traffic, WormBook Online Rev. C Elegans Biol. 1-47, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

E. M. Schmid, M. H. Bakalar, K. Choudhuri, J. Weichsel, H. S. Ann et al., Size-dependent protein segregation at membrane interfaces, Nat. Phys, vol.12, pp.704-711, 2016.

E. M. Schmid and H. T. Mcmahon, Integrating molecular and network biology to decode endocytosis, Nature, vol.448, pp.883-888, 2007.

R. Schneiter, B. Brügger, R. Sandhoff, G. Zellnig, A. Leber et al., Electrospray Ionization Tandem Mass Spectrometry (Esi-Ms/Ms) Analysis of the Lipid Molecular Species Composition of Yeast Subcellular Membranes Reveals Acyl Chain-Based Sorting/Remodeling of Distinct Molecular Species En Route to the Plasma Membrane, J. Cell Biol, vol.146, pp.741-754, 1999.

J. Seelig, Thermodynamics of lipid-peptide interactions, Biochim. Biophys. Acta BBABiomembr, vol.1666, pp.40-50, 2004.

R. Sharma, Z. Raduly, M. Miskei, and M. Fuxreiter, Fuzzy complexes: Specific binding without complete folding, FEBS Lett, vol.589, pp.2533-2542, 2015.

K. Simons and G. Van-meer, Lipid sorting in epithelial cells, Biochemistry, vol.27, pp.6197-6202, 1988.

A. Simonsen, A. E. Wurmser, S. D. Emr, and H. Stenmark,

S. J. Singer and G. L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science, vol.175, pp.720-731, 1972.

B. Sorre, A. Callan-jones, J. Manneville, P. Nassoy, J. Joanny et al., Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.5622-5626, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01002457

N. J. Spann and C. K. Glass, Sterols and oxysterols in immune cell function, Nat. Immunol, vol.14, pp.893-900, 2013.

C. J. Stefan, A. G. Manford, D. Baird, J. Yamada-hanff, Y. Mao et al., Osh Proteins Regulate Phosphoinositide Metabolism at ER-Plasma Membrane Contact Sites, Cell, vol.144, pp.389-401, 2011.

H. Stenmark, R. Aasland, B. H. Toh, and A. D'arrigo, Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger, J. Biol. Chem, vol.271, pp.24048-24054, 1996.

R. Stoica, K. J. De-vos, S. Paillusson, S. Mueller, R. M. Sancho et al., ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43, Nat. Commun, vol.5, 2014.

S. J. Stone and J. E. Vance, Phosphatidylserine Synthase-1 and -2 Are Localized to Mitochondria-associated Membranes, J. Biol. Chem, vol.275, pp.34534-34540, 2000.

J. R. Strating, L. Van-der-linden, L. Albulescu, J. Bigay, M. Arita et al., Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein, Cell Rep, vol.10, pp.600-615, 2015.

B. Suh, K. Leal, and B. Hille, Modulation of High-Voltage Activated Ca2+ Channels by Membrane Phosphatidylinositol 4,5-Bisphosphate, Neuron, vol.67, pp.224-238, 2010.

G. Szabadkai, K. Bianchi, P. Várnai, D. De-stefani, M. R. Wieckowski et al., Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca 2+ channels, J. Cell Biol, vol.175, pp.901-911, 2006.

F. G. Tafesse, K. Huitema, M. Hermansson, S. Van-der-poel, J. Van-den-dikkenberg et al., Both Sphingomyelin Synthases SMS1 and SMS2 Are Required for Sphingomyelin Homeostasis and Growth in Human HeLa Cells, J. Biol. Chem, vol.282, pp.17537-17547, 2007.

H. Takeshima, S. Komazaki, M. Nishi, M. Iino, and K. Kangawa, Junctophilins: a novel family of junctional membrane complex proteins, Mol. Cell, vol.6, pp.11-22, 2000.

F. R. Taylor and A. A. Kandutsch, Oxysterol binding protein, Chem. Phys. Lipids, vol.38, pp.187-194, 1985.

F. Theillet, L. Kalmar, P. Tompa, K. Han, P. Selenko et al., The alphabet of intrinsic disorder: I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins, Intrinsically Disord. Proteins, vol.1, 2013.

P. Tompa, Intrinsically disordered proteins: a 10-year recap, Trends Biochem. Sci, vol.37, pp.509-516, 2012.

P. Tompa, Intrinsically unstructured proteins 7, 2002.

P. Tompa and M. Fuxreiter, Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions, Trends Biochem. Sci, vol.33, issue.2-8, 2008.

P. Tompa, K. Han, M. Bokor, P. Kamasa, A. Tantos et al., Wide-line NMR and DSC studies on intrinsically disordered p53 transactivation domain and its helically pre-structured segment, BMB Rep, vol.49, pp.497-501, 2016.

J. Tong, M. K. Manik, and Y. J. Im, Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites, Proc. Natl. Acad. Sci, vol.115, pp.856-865, 2018.

J. Tong, M. K. Manik, H. Yang, and Y. J. Im, Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family, Biochim. Biophys. Acta BBA -Mol, 2016.

, Cell Biol. Lipids, vol.1861, pp.928-939

J. Tong, . Yang, . Huiseon, . Yang, . Hongyuan et al., Structure of Osh3 Reveals a Conserved Mode of Phosphoinositide Binding in Oxysterol-Binding Proteins, Structure, vol.21, pp.1203-1213, 2013.

A. Toulmay and W. A. Prinz, A conserved membrane-binding domain targets proteins to organelle contact sites, J. Cell Sci, vol.125, pp.49-58, 2012.

W. S. Trimble and S. Grinstein, Barriers to the free diffusion of proteins and lipids in the plasma membrane, J. Cell Biol, vol.208, pp.259-271, 2015.

O. Udagawa, C. Ito, N. Ogonuki, H. Sato, S. Lee et al., Oligo-asthenoteratozoospermia in mice lacking ORP4, a sterol-binding protein in the OSBP-related protein family, Genes Cells, vol.19, pp.13-27, 2014.

V. Uversky, p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure-Function Continuum Concept, Int. J. Mol. Sci, vol.17, 1874.

V. N. Uversky, The intrinsic disorder alphabet. III. Dual personality of serine, Intrinsically Disord. Proteins, vol.3, 2015.

V. N. Uversky, The alphabet of intrinsic disorder: II. Various roles of glutamic acid in ordered and intrinsically disordered proteins, Intrinsically Disord. Proteins, vol.1, 2013.

V. N. Uversky, Disorder in the lifetime of a protein, Intrinsically Disord. Proteins, vol.1, 2013.

V. N. Uversky and D. Eliezer, Biophysics of Parkinson's disease: structure and aggregation of alpha-synuclein, Curr. Protein Pept. Sci, vol.10, pp.483-499, 2009.

G. Van-meer, E. H. Stelzer, R. W. Wijnaendts-van-resandt, and K. Simons, Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells, J. Cell Biol, vol.105, pp.1623-1635, 1987.

G. Van-meer, D. R. Voelker, and G. W. Feigenson, Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol, vol.9, pp.112-124, 2008.

J. Vance and R. Steenbergen, Metabolism and functions of phosphatidylserine, Prog. Lipid Res, vol.44, pp.207-234, 2005.

J. E. Vance, Phospholipid synthesis in a membrane fraction associated with mitochondria, J. Biol. Chem, vol.265, pp.7248-7256, 1990.

T. Vihervaara, R. Uronen, G. Wohlfahrt, I. Björkhem, E. Ikonen et al., A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes, Cell. Mol. Life Sci. CMLS, vol.68, pp.537-551, 2011.

I. Vonkova, A. Saliba, S. Deghou, K. Anand, S. Ceschia et al., Lipid Cooperativity as a General Membrane-Recruitment Principle for PH Domains, Cell Rep, vol.12, pp.1519-1530, 2015.

C. Wang, L. Jebailey, and N. D. Ridgway, Oxysterol-binding-protein (OSBP)-related protein 4 binds 25-hydroxycholesterol and interacts with vimentin intermediate filaments 12, 2002.

J. Wang, Y. Bian, X. Cao, and N. Zhao, Understanding diffusion of intrinsically disordered proteins in polymer solutions: A disorder plus collapse model, AIP Adv, vol.7, 2017.

J. Wang, H. Sun, E. Macia, T. Kirchhausen, H. Watson et al., PI4P Promotes the Recruitment of the GGA Adaptor Proteins to the Trans -Golgi Network and Regulates Their Recognition of the Ubiquitin Sorting Signal, Mol. Biol. Cell, vol.18, pp.2646-2655, 2007.

P. Wang, OSBP Is a Cholesterol-Regulated Scaffolding Protein in Control of ERK 1/2 Activation, Science, vol.307, pp.1472-1476, 2005.

Y. Wang, L. A. Benton, V. Singh, and G. J. Pielak, Disordered Protein Diffusion under Crowded Conditions, J. Phys. Chem. Lett, vol.3, pp.2703-2706, 2012.

Y. Wang, C. Li, and G. J. Pielak, Effects of proteins on protein diffusion, J. Am. Chem. Soc, vol.132, pp.9392-9397, 2010.

Y. J. Wang, J. Wang, H. Q. Sun, M. Martinez, Y. X. Sun et al., Phosphatidylinositol 4 Phosphate Regulates Targeting of Clathrin Adaptor AP-1 Complexes to the Golgi, Cell, vol.114, pp.299-310, 2003.

M. Weber-boyvat, H. Kentala, J. Lilja, T. Vihervaara, R. Hanninen et al., OSBP-related protein 3 (ORP3) coupling with VAMP-associated protein A regulates R-Ras activity, Exp. Cell Res, vol.331, pp.278-291, 2015.

K. Weiß, A. Neef, Q. Van, S. Kramer, I. Gregor et al., Quantifying the Diffusion of Membrane Proteins and Peptides in Black Lipid Membranes with 2-Focus Fluorescence Correlation Spectroscopy, Biophys. J, vol.105, pp.455-462, 2013.

M. West, N. Zurek, A. Hoenger, and G. K. Voeltz, A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature, J. Cell Biol, vol.193, pp.333-346, 2011.

D. K. Wilkins, S. B. Grimshaw, V. Receveur, C. M. Dobson, J. A. Jones et al., Hydrodynamic Radii of Native and Denatured Proteins Measured by Pulse Field Gradient NMR Techniques ?, Biochemistry, vol.38, pp.16424-16431, 1999.

K. W. Wirtz and D. B. Zilversmit, Exchange of phospholipids between liver mitochondria and microsomes in vitro, J. Biol. Chem, vol.243, pp.3596-3602, 1968.

K. W. Wirtz and D. B. Zilversmit, Participation of soluble liver proteins in the exchange of membrane phospholipids, Biochim. Biophys. Acta BBA -Biomembr, vol.193, pp.90063-90070, 1969.

P. E. Wright and H. J. Dyson, Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm, J. Mol. Biol, vol.293, pp.321-331, 1999.

L. Wu, C. S. Bauer, X. Zhen, C. Xie, and J. Yang, Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2, Nature, vol.419, pp.947-952, 2002.

J. P. Wyles, R. J. Perry, and N. D. Ridgway, Characterization of the sterol-binding domain of oxysterol-binding protein (OSBP)-related protein 4 reveals a novel role in vimentin organization, Exp. Cell Res, vol.313, pp.1426-1437, 2007.

J. P. Wyles and N. D. Ridgway, VAMP-associated protein-A regulates partitioning of oxysterolbinding protein-related protein-9 between the endoplasmic reticulum and Golgi apparatus, Exp. Cell Res, vol.297, pp.533-547, 2004.

J. Xie, B. Sun, J. Du, W. Yang, H. Chen et al., Phosphatidylinositol 4,5-bisphosphate (PIP2) controls magnesium gatekeeper TRPM6 activity, Sci. Rep, vol.1, 2011.

Y. Xu, L. Seet, B. Hanson, and W. Hong, The Phox homology (PX) domain, a new player in phosphoinositide signalling 18, 2001.

D. Yan, M. I. Mäyränpää, J. Wong, J. Perttilä, M. Lehto et al., OSBP-related Protein 8 (ORP8) Suppresses ABCA1 Expression and Cholesterol Efflux from Macrophages, J. Biol. Chem, vol.283, pp.332-340, 2008.

T. Yeung, G. E. Gilbert, J. Shi, J. Silvius, A. Kapus et al., Membrane Phosphatidylserine Regulates Surface Charge and Protein Localization, Science, vol.319, pp.210-213, 2008.

W. Zhong, S. Qin, B. Zhu, M. Pu, F. Liu et al., Oxysterol-binding protein-related protein 8 (ORP8) increases sensitivity of hepatocellular carcinoma cells to Fas-mediated apoptosis, J. Biol. Chem, vol.290, pp.8876-8887, 2015.

W. Zhong, Y. Zhou, S. Li, T. Zhou, H. Ma et al., OSBPrelated protein 7 interacts with GATE-16 and negatively regulates GS28 protein stability, Exp. Cell Res, vol.317, pp.2353-2363, 2011.

M. Zhou, J. H. Morais-cabral, S. Mann, and R. Mackinnon, Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors, Nature, vol.411, pp.657-661, 2001.

Y. Zhou, S. Li, M. I. Mäyränpää, W. Zhong, N. Bäck et al., OSBP-related protein 11 (ORP11) dimerizes with ORP9 and localizes at the Golgi-late endosome interface, Exp. Cell Res, vol.316, pp.3304-3316, 2010.

Y. Zhou, M. R. Robciuc, M. Wabitsch, A. Juuti, M. Leivonen et al., OSBP-Related Proteins (ORPs) in Human Adipose Depots and Cultured Adipocytes: Evidence for Impacts on the Adipocyte Phenotype, PLoS ONE, vol.7, 2012.

Y. Zhou, P. Srinivasan, S. Razavi, S. Seymour, P. Meraner et al., Initial activation of STIM1, the regulator of store-operated calcium entry, Nat. Struct. Mol. Biol, vol.20, pp.973-981, 2013.

Y. Zhou, G. Wohlfahrt, J. Paavola, and V. M. Olkkonen, A vertebrate model for the study of lipid binding/transfer protein function: Conservation of OSBP-related proteins between zebrafish and human, Biochem. Biophys. Res. Commun, vol.446, pp.675-680, 2014.

Y. Zhuo, U. Ilangovan, V. Schirf, B. Demeler, R. Sousa et al., Dynamic Interactions between Clathrin and Locally Structured Elements in a Disordered Protein Mediate Clathrin Lattice Assembly, J. Mol. Biol, vol.404, pp.274-290, 2010.

R. Zoncu, R. M. Perera, R. Sebastian, F. Nakatsu, H. Chen et al., Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate, Proc. Natl. Acad. Sci, vol.104, pp.3793-3798, 2007.

C. Zurzolo and K. Simons, Glycosylphosphatidylinositol-anchored proteins: Membrane organization and transport, Biochim. Biophys. Acta BBA -Biomembr, vol.1858, pp.632-639, 2016.

D. Jamecna, J. Polidori, B. Mesmin, J. Bigay, and B. Antonny, An intrinsically disordered region in OSBP acts as an entropic barrier to control protein dynamics and orientation at membrane contact sites
URL : https://hal.archives-ouvertes.fr/hal-02109441

B. Mesmin, J. Bigay, J. Polidori, D. Jamecna, S. Lacas-gervais et al., Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP, EMBO J, vol.36, issue.21, pp.3156-3174, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01617401

A. L. Cattin, J. J. Burden, L. Van-emmenis, F. E. Mackenzie, J. J. Hoving et al., MacrophageInduced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves, Cell, vol.162, issue.5, pp.1127-1166, 2015.

B. Antonny, J. Bigay, and B. Mesmin, The Oxysterol-Binding Protein Cycle: Burning Off PI(4)P 440 to Transport Cholesterol, Annu. Rev. Biochem, vol.87, pp.809-837, 2018.

G. Bell, Models for the specific adhesion of cells to cells, Science, vol.200, pp.618-627, 1978.

H. G. Brown and J. H. Hoh, Entropic exclusion by neurofilament sidearms: a mechanism for 445 maintaining interfilament spacing, Biochemistry, vol.36, pp.15035-15040, 1997.

J. Chung, F. Torta, K. Masai, L. Lucast, H. Czapla et al., , p.447

M. R. Nakatsu, F. De-camilli, and P. , , 2015.

, PI4P/phosphatidylserine countertransport at ORP5-and ORP8-mediated ER-plasma membrane 449 contacts, Science, vol.349, pp.428-432

M. De-saint-jean, V. Delfosse, D. Douguet, G. Chicanne, B. Payrastre et al., , p.451

G. Drin, Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid 452 bilayers, The Journal of Cell Biology, vol.195, pp.965-978, 2011.

J. S. Dittman and A. K. Menon, , 2017.

, Trends in Biochemical Sciences, vol.42, pp.90-97

S. Dutta and D. Bhattacharyya, Size of Unfolded and Dissociated Subunits versus that of Native 456, 2001.

, Multimeric Proteins, J Biol Phys, vol.27, pp.59-71

M. Frick, K. Schmidt, and B. J. Nichols, Modulation of lateral diffusion in the plasma membrane 458 by protein density, Current Biology, vol.17, pp.462-467, 2007.

K. Furuita, J. Jee, H. Fukada, M. Mishima, and C. Kojima, Electrostatic interaction between 460 oxysterol-binding protein and VAMP-associated protein A revealed by NMR and mutagenesis 461 studies, J. Biol. Chem, vol.285, pp.12961-12970, 2010.

A. T. Gatta, L. H. Wong, Y. Y. Sere, D. M. Calderón-noreña, S. Cockcroft et al., , p.463

T. P. , A new family of StART domain proteins at membrane contact sites has a role in ER-464 PM sterol transport, vol.4, p.400, 2015.

K. Hanada, K. Kumagai, S. Yasuda, Y. Miura, M. Kawano et al., 466 Molecular machinery for non-vesicular trafficking of ceramide, Nature, vol.426, pp.803-809, 2003.

R. Ho and C. Stroupe, The HOPS/class C Vps complex tethers membranes by binding to one Rab 469, 2015.

, GTPase in each apposed membrane, Mol. Biol. Cell, vol.26, pp.2655-2663

Y. J. Im, S. Raychaudhuri, W. A. Prinz2, and J. H. Hurley, Structural mechanism for sterol sensing 472 and transport by OSBP-related proteins, Nature, vol.437, pp.154-158, 2005.

M. Johansson, V. Bocher, M. Lehto, G. Chinetti, E. Kuismanen et al., , p.474

V. M. Olkkonen, The Two Variants of Oxysterol Binding Protein-related Protein-1 Display 475, 2003.

, Different Tissue Expression Patterns, Have Different Intracellular Localization, and Are 476 Functionally Distinct, Mol. Biol. Cell, vol.14, pp.903-915

S. E. Kaiser, J. H. Brickner, A. R. Reilein, T. D. Fenn, P. Walter et al., Structural 478 Basis of FFAT Motif-Mediated ER Targeting, Structure, vol.13, pp.1035-1045, 2005.

Y. J. Kim, M. L. Guzman-hernandez, E. Wisniewski, and T. Balla, , p.481, 2015.

, Phosphatidic Acid Exchange by Nir2 at ER-PM Contact Sites Maintains Phosphoinositide 482

, Signaling Competence, Developmental Cell, vol.33, pp.549-561

Y. J. Kim, M. G. Hernandez, and T. Balla, Inositol lipid regulation of lipid transfer in 484 specialized membrane domains, Trends in Cell Biology, vol.23, pp.270-278, 2013.

M. Lehto, S. Laitinen, G. Chinetti, M. Johansson, C. Ehnholm et al., , p.487

V. M. , The OSBP-related protein family in humans, The Journal of Lipid Research, vol.42, pp.1203-1213, 2001.

T. P. Levine, Short-range intracellular trafficking of small molecules across endoplasmic 490 reticulum junctions, Trends in Cell Biology, vol.14, pp.483-490, 2004.

C. J. Loewen, A. Roy, and T. P. Levine, A conserved ER targeting motif in three families of lipid 498 binding proteins and in Opi1p binds VAP, The EMBO Journal, vol.22, pp.2025-2035, 2003.

B. Mesmin, J. Bigay, J. Moser-von-filseck, S. Lacas-gervais, G. Drin et al., , p.501, 2013.

, Step Cycle Driven by PI(4)P Hydrolysis Directs Sterol/PI(4)P Exchange by the ER-Golgi Tether 502 OSBP, Cell, vol.155, pp.830-843

B. Mesmin, J. Bigay, J. Polidori, D. Jamecna, S. Lacas-gervais et al., Sterol transfer, 504 PI4P consumption, and control of membrane lipid order by endogenous OSBP, The EMBO 505 Journal, vol.36, pp.3156-3174, 2017.

J. Moser-von-filseck, A. ?opi?, V. Delfosse, S. Vanni, C. L. Jackson et al., INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is 508 driven by phosphatidylinositol 4-phosphate, Science, vol.507, pp.432-436

J. Moser-von-filseck, S. Vanni, B. Mesmin, B. Antonny, and G. Drin, A phosphatidylinositol-510 4-phosphate powered exchange mechanism to create a lipid gradient between membranes, Communications, vol.511, p.6671, 2015.

V. M. Olkkonen and S. Li, Oxysterol-binding proteins: sterol and phosphoinositide sensors 513 coordinating transport, signaling and metabolism, PROGRESS IN LIPID RESEARCH, vol.52, pp.529-514, 2013.

A. Pietrangelo and N. D. Ridgway, Bridging the molecular and biological functions of the 516 oxysterol-binding protein family, Cell. Mol. Life Sci, vol.510, pp.48-68, 2018.

S. Ramadurai, A. Holt, V. Krasnikov, G. Van-den-bogaart, J. A. Killian et al., Lateral 519 diffusion of membrane proteins, J. Am. Chem. Soc, vol.131, pp.12650-12656, 2009.

Y. Saheki, X. Bian, C. M. Schauder, Y. Sawaki, M. A. Surma et al., , p.521

P. De-camilli, Control of plasma membrane lipid homeostasis by the extended 522 synaptotagmins, Nat Cell Biol, 2016.

C. M. Schauder, X. Wu, Y. Saheki, P. Narayanaswamy, F. Torta et al., , p.524

K. M. Reinisch, Structure of a lipid-bound extended synaptotagmin indicates a role in lipid 525 transfer, Nature, vol.510, pp.552-555, 2014.

E. M. Schmid, M. H. Bakalar, K. Choudhuri, J. Weichsel, H. Ann et al., , p.527

D. A. Fletcher, Size-dependent protein segregation at membrane interfaces, Nat Phys, vol.12, pp.704-711, 2016.

C. J. Stefan, A. G. Manford, D. Baird, J. Yamada-hanff, Y. Mao et al., Osh proteins 530 regulate phosphoinositide metabolism at ER-plasma membrane contact sites, Cell, vol.144, pp.389-401, 2011.

F. Theillet, L. Kalmar, P. Tompa, K. Han, P. Selenko et al., , p.533

V. N. Uversky, The alphabet of intrinsic disorder: I. Act like a Pro: On the abundance and 534 roles of proline residues in intrinsically disordered proteins, Intrinsically Disord Proteins, vol.1, p.24360, 2013.

J. Tong, H. Yang, H. Yang, S. H. Eom, and Y. J. Im, Structure of Osh3 reveals a conserved mode 537 of phosphoinositide binding in oxysterol-binding proteins, Structure, vol.21, pp.1203-1213, 2013.

Y. Wang, L. A. Benton, V. Singh, and G. J. Pielak, Disordered Protein Diffusion under Crowded 540, 2012.

. Conditions, J Phys Chem Lett, vol.3, pp.2703-2706

J. Wu, Y. Fang, V. I. Zarnitsyna, T. P. Tolentino, M. L. Dustin et al., A coupled diffusion-542 kinetics model for analysis of contact-area FRAP experiment, Biophys. J, vol.95, pp.910-919, 2008.

S. Yadav, K. Garner, P. Georgiev, M. Li, E. Gomez-espinosa et al., , p.545

H. Cockcroft, S. Raghu, and P. , RDGB?, a PtdIns-PtdOH transfer protein, p.23, 2015.

, PtdIns(4,5)P2 signalling during Drosophila phototransduction, Journal of Cell 547 Science, vol.128, pp.3330-3344

J. P. Zewe, R. C. Wills, S. Sangappa, B. D. Goulden, and G. R. Hammond, SAC1 degrades its lipid, p.549, 2018.

, substrate PtdIns4P in the endoplasmic reticulum to maintain a steep chemical gradient with donor 550 membranes, vol.7, p.35588

, After 634 four hours, the suspension was visualized by confocal microscopy. Experiment was also 635 performed with inverse color combination with similar results. Bar = 5 µm. 636 (D-F) Analysis of heterotypic tethering 637 (D) 50 nM N-PH-?CC-FFAT or PH-?CC-FFAT labeled with Alexa568 (red) was mixed with 638 50 nM VAP-A-His labeled with Alexa488 (green). Golgi-like GUVs (2% PI(4)P, Atto390-639 DOPE) and ER-like GUVs (2% DGS-NTA-Ni, no color) were added and the sample was 640 very gently mixed. After 30 min, Alexa568 (red) were incubated with Golgi-like GUVs (2% PI(4)P, Atto390-DOPE)

, Photobleaching was performed on a circular area 644 (diameter 2 µm) in the middle of the GUV interface. Means ± SD of one representative 645 experiment is shown, Bar = 5 µm

, Same as in (E) but FRAP was conducted on VAP-A-His labelled with Alexa-488

, Predictor of Natural Disordered Regions (PONDR®) Molecular Kinetics

O. Clustal and . Sievers, , 1991.

C. Zeiss and S. ,

, RRID:AB_2676401)) and mouse monoclonal V9 Vimentin antibody (Sigma-Aldrich Cat# V6389, 661 RRID:AB_609914 ) were from Sigma-Aldrich. Secondary Alexa Fluor-conjugated antibody 662 (Thermo Fisher Scientific Cat# A32723, RRID:AB_2633275) were from Invitrogen and 663 secondary HRP-conjugated antibody were from Jackson ImmunoResearch (Jackson 664 ImmunoResearch Labs Cat#, Rabbit polyclonal antibody against OSBP (Atlas Antibodies Cat# HPA039227, vol.660

P. C. Egg, B. Ps, P. I. Pi-;-p,-liver, and P. E. Liver, dansyl-PE (1,2-dioleoyl-sn-glycero-3-666 phosphoethanolamine-N-(5-dimethylamino-1-naphthalenesulfonyl)), rhodamine-PE [1,2-667 dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)], and DGS-668 NTA(Ni), vol.1

, Methyl-?-cyclodextrin (MCD) and G418 were from 671, Cholesterol, dehydroergosterol (DHE)

. Sigma-aldrich,

, Texas Red-DHPE, Oregon Green-DHPE and Atto390-DHPE were from Invitrogen

, We used the following sequences of human ORPs (Uniprot access number): OSBP1 (P22059), p.676

, ORP9 678 (Q96SU4). Notably, our ORP4 sequence (gift from N. Ridgway) started at M39 (as referred to 679 UNIPROT Q969R2:ORP4-OSBP2 sequence), therefore, in all this study M1 corresponds to M39 680 of the UNIPROT reference sequence. Order/disorder composition of different ORPs was 681 determined with "Predictor of Natural Disordered Regions (PONDR®)" web server 682, OSBP2/ORP4 (Q969R2), ORP5 (Q9H0X9), ORP8L (Q9BZF1), ORP10 (Q9BXB5), ORP11 677 (Q9BXB4), ORP6 (Q9BZF3), ORP7 (Q9BZF2), ORP1 (Q9BXW6), ORP3 (Q9H4L5)

, For phylogenetic analysis, protein sequences of higher eukaryotes most similar to human OSBP 688 were obtained from the UniProt database. The phylogenetic tree was created using the

. Phylogeny and G. Dereeper, The sequences of each OSBP domain 690 were then aligned and compared to that of the corresponding human domain using Clustal 691, 2008.

(. Omega and . Sievers, A percent identity matrix was calculated for each domain, p.692, 2011.

. N-ter, sequences shorter than 20 amino acids were not included in the identity analysis. The (residues 1-408) and human ORP4 sequences

, PH-FFAT (residues 144-474)] were cloned into the BamHI site of 702 pmCherry-N1 vector using the GeneArt TM Seamless Cloning and Assembly Kit, PH-FFAT (residues 1-474)

, The siRNA-resistant OSBP constructs (full-length and ?N) were prepared by PCR using the 704 corresponding pmCherry-N1 plasmids as template with primers

A. Tct-tat, . Taa, R. Tgg-c, and . Caa-g,

, For protein expression, cells were transfected with Lipofectamine 2000 reagent (Invitrogen) or 707 by electroporation with Nucleofector Solution (Lonza) using the Amaxa Nucleofector device 708 (Lonza), pp.18-24

, Construction, expression and purification of OSBP and ?N-OSBP

. Mesmin, For??N-OSBP, the pFastBac TM HTA vector (Invitrogen) was 714 modified by successive mutations to allow the insertion of a PCR amplified sequence upstream 715 and in frame with the 6His tag, Full-length (1-807) human OSBP and ?N-OSBP (88-807) were purified from baculovirus-712 infected Sf9 cells, 2013.

C. Gaa, BamHI site into 2 stop codons (F oligo sequence

T. , OSBP ?N (88-807) + thrombin site] DNA 719 sequence was PCR amplified using the pENTR/D-(OSBP-FL-thrombin site) as matrix and cloned 720 into the BamHI-digested pFastBac HTA modified vector using the GeneArt TM Seamless Cloning 721 and Assembly Kit (Invitrogen), ) insertion of a new BamHI site upstream of the His tag (F oligo sequence: 718

E. Coli, Recombinant bacmides were selected as described in Bac to Bac R Expression System user 723 manual (Invitrogen) and used to produce recombinant Baculovirus

?. Full-length-osbp and . Mesmin, EDTA-free protease inhibitors and (Thermo Scientific), submitted to 3 washes with lysis buffer supplemented with 800, 550, and 730 300 mM NaCl, respectively, and then eluted with 250 mM imidazole-containing buffer. OSBP 731 fractions were pooled, concentrated on Amicon Ultra (cut-off 30 kDa), and submitted to 732 thrombin cleavage, Cell pellets were resuspended in lysis 726 buffer (20 mM Tris pH 7.5, 300 mM NaCl, 20 mM imidazole, 2013.

, All 734 steps were performed at 4°C. The purified protein fractions were pooled, concentrated, 735 supplemented with 10 % glycerol, flash-frozen in liquid nitrogen and stored at -80°C, HK16/70 column (GE Healthcare) using an AKTÄ chromatography system (GE Healthcare)

, Construction, expression and purification of OSBP and ORP4 fragments

N. and P. ,

, The corresponding constructs were prepared using pET.His6.StrepII.TEV.LIC (2HR-T, Addgene 740 plasmid # 29718) and pET.His10.TEV.LIC (2B-T-10

. Osbp-n-ph-ffat, -408) and OSBP PH-FFAT (76-408) fragments were first inserted into 744 pET.His6.StrepII.TEV.LIC vector, subcloned into pET16b, and then expressed as N-terminal 6His 745 tag

, =PH-FFAT] were PCR 747 amplified using the pmCherry-ORP4 FL as matrix. The host plasmid pET16b, ORP4 DNA sequences, vol.4, pp.128-475

. His6, . Strepii, . Tev, and . Lic-osbp, 76-408) by a His10.TEV.LIC fragment. In addition, the SspI site of 750 pET16b was mutated (AATATT into AATAGC). Last, the ORP4 N-PH-FFAT or PH-FFAT PCR 751 fragments were inserted into the SspI digested pET16b

, After protein expression, bacteria 753 were lysed with a French Press (SLM AMINCO) and incubated for 30 min on ice with DNAse, Seamless Cloning and Assembly Enzyme Mix (Invitrogen), p.754

, MgCl2 (5mM) before ultracentrifugation (125 000 g)

, Protein fractions were pooled and submitted to TEV 756 protease cleavage overnight at 4°C. Digested proteins were purified on a SourceQ HR 10/10 757 column (GE Healthcare) with a 0-1M NaCl, p.2

, Purified proteins were pooled, concentrated, supplemented with 10% glycerol, flash-760 frozen in liquid nitrogen and stored at -80°C

N. and P. , T1 (GE Healthcare) 762 plasmids expressing the OSBP (1-408) or (76-408) sequence. A NaeI restriction was introduced 763 by site directed mutagenesis to remove the coiled-coil (207-329) region by digestion / ligation 764 taking advantage of another NaeI site

. Mesmin, The preparation of NBD-PHFAPP1 and VAP-A have been described previously, p.772

. Kapust, The TEV protease plasmid, p.774, 2001.

, Minerva Biolabs) and were incubated at 37°C in a 779 5% CO2 humidified atmosphere. For hTERT-RPE1 cells (ATCC Cat# CRL-4000, 780 RRID:CVCL_4388); hereafter RPE1 cells), DMEM was replaced by DMEM/F12 (Gibco). RPE1 781 cells stably expressing EGFP-PHOSBP were selected using G418 (Sigma). Surviving colonies were 782 isolated using cloning cylinders, HeLa cells were cultured in DMEM medium with glutaMAX (Gibco) supplemented with 10% 778 fetal calf serum, 1% antibiotics, p.783

, For microscopy, cells were seeded at suitable 785 density to reach 50-90% confluence on the day of imaging. SF9 cells were cultured at 27°C in SF-786 900 II media supplemented with 1,5% FCS in absence of antibiotic. For protein expression SF9 787 cells were infected at 10 6 cells/ml and an MOI of 0.1 in 0.5 l CELLSPIN Spinner. After 72h, cells 788 were collected by centrifugation at 300xg for 15 mn, BD Biosciences). RPE1 cells stably expressing EGFP-PHOSBP, EGFP-P4MSidM were cultured in 784 medium supplemented with G418 (500 µg/ml)

, For endogenous OSBP silencing and simultaneous expression of siRNA resistant OSBP, RPE-1 792 cells stably expressing GFP-PH OSBP were electroporated with 90 pmol siRNA and 1 ?g siRNA-793 resistant OSBP plasmid using RNAiMAX (Invitrogen) and plated on 6-well plate or on µ-Dish 35mm 794 (Ibidi)

, NTA, p.875

F. P. Jasco, 8300 spectrofluorimeter using a cylindrical quartz cuvette (600 µl) equilibrated at 876 37°C and equipped with a magnetic bar for continuous stirring. The cuvette initially contained 877 NBD-PHFAPP1 (300 nM) and VAP-A-His (3 µM) in HKM buffer. NBD emission was measured at 878 510 nm (excitation 460 nm). Golgi liposomes (300 µM lipid supplemented with 4% PI(4)P and 879 2% rhodamine-PE)

, For sedimentation assays comparing the binding properties of N-PH-?CC-FFAT and PH-?CC

, 120 mM 888 potassium acetate, and 1 mM MgCl2 (HKM buffer) at room temperature for 30 min in a total 889 volume of 50 µL, FFAT, we used sucrose-loaded Golgi-like liposomes containing (mol%) egg PC (61), liver PE 885 (17), brain PS (5), cholesterol (10), vol.14, p.890

, The pellets resuspended in 50µl HKM buffer before analysis on 13% SDS-PAGE by Sypro

, Lipid 896 film was rehydrated at 1 mM in 50 mM Hepes pH 7, 120 mM K-acetate and liposomes were 897 formed by 2 minutes vortex. Liposomes were diluted at 30 ?M with 600 nM N-PH-FFAT or PH-898 FFAT. After 5 minutes incubation, a 5 µL drop of the solution was deposited on a glow 899 discharged lacey carbon electron microscopy grid, CHCl3 composed of Egg PC/brain PS/brain PI, p.901

. Germany, Image acquisition was 903 performed under low dose conditions of 10 e -/Å 2 at a magnification of 50,000 or 29, Samples were imaged using a Tecnai G2, vol.500

A. Dereeper, V. Guignon, G. Blanc, S. Audic, S. Buffet et al., , p.907

V. Lefort, M. Lescot, J. M. Claverie, and O. Gascuel, Phylogeny.fr: robust phylogenetic 908 analysis for the non-specialist, Nucleic Acids Res, vol.36, pp.465-474, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324099

M. De-saint-jean, V. Delfosse, D. Douguet, G. Chicanne, B. Payrastre et al., , p.911

B. Drin and G. , Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid 912 bilayers, The Journal of Cell Biology, vol.195, pp.965-978, 2011.

R. B. Kapust, J. Tözsér, J. D. Fox, D. E. Anderson, S. Cherry et al., , 2001.

, Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with 915 wild-type catalytic proficiency, Protein Eng, vol.14, pp.993-1000

A. Lupas, M. Van-dyke, and J. Stock, Predicting Coiled Coils from Protein Sequences, Science, vol.917, pp.1162-1164, 1991.

B. Mesmin, J. Bigay, J. Moser-von-filseck, S. Lacas-gervais, G. Drin et al., , p.919, 2013.

, Step Cycle Driven by PI(4)P Hydrolysis Directs Sterol/PI(4)P Exchange by the ER-Golgi Tether 920 OSBP, Cell, vol.155, pp.830-843

B. Mesmin, J. Bigay, J. Polidori, D. Jamecna, S. Lacas-gervais et al., Sterol transfer, 922 PI4P consumption, and control of membrane lipid order by endogenous OSBP, The EMBO 923 Journal, vol.36, pp.3156-3174, 2017.

F. Sievers, A. Wilm, D. G. Dineen, T. J. Gibson, K. Karplus et al., , p.925

M. Remmert, J. Söding, J. D. Thompson, and D. Higgins, Fast, scalable generation of high-926 quality protein multiple sequence alignments using Clustal Omega, Molecular Systems Biology, vol.7, p.539, 2011.

J. E. Tropea, S. Cherry, and D. S. Waugh, Expression and purification of soluble His(6)-tagged 929 TEV protease, Methods Mol Biol, vol.498, pp.297-307, 2009.

, After 30 min, an excess 1000 of PH-FFAT (Alexa568, red) and N-PH-FFAT (Alexa568, red) was added, Golgi-like GUVs (2% PI(4)P, labeled with Atto390-DOPE) were preincubated with 50nM 999 of N-PH-FFAT (Alexa488, green) or PH-FFAT (Alexa488, green)

, Confocal microscopy was performed after additional 30 min of incubation. Bar = 5 µm