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Goal-oriented metric-based mesh adaptation for unsteady CFD simulations

involving moving geometries

Abstract When dealing with CFD problems, mesh adaptation is interesting for its ability
to approach the asymptotic convergence and to obtain an accurate prediction for complex
flows at a lower cost. Anisotropic mesh adaptation method reduces the number of degrees
of freedom required to reach a given solution accuracy, thus impact favorably the CPU time.
Moreover, it reduces the numerical scheme dissipation by automatically taking into account
the anisotropy of the physical phenomena inside the mesh. Two main approaches exist in the
literature. Feature-based mesh adaptation which is mainly deduced from an interpolation error
estimate using the Hessian of the chosen sensor controls the interpolation error of the sensor
over the whole computational domain. Such approach is easy to set-up and has a wide range of
application, but it does not take into account the considered PDE used to solve the problem.
On the other hand, goal-oriented mesh adaptation, which focuses on a scalar output function,
takes into consideration both the solution and the PDE in the error estimation thanks to the
adjoint state. But, the design of such error estimate is much more complicated. This thesis
presents the results obtained with different CFD methods : the Arbitrary Lagrangian Eulerian
(ALE) flow solvers with explicit and implicit schemes are presented and coupled to the moving
mesh process, the feature-based unsteady mesh adaptation for moving geometries takes into
account the changes of connectivites during the whole simulation, the adjoint state is extended
to moving geometries problems and goal-oriented unsteady mesh adaptation for moving meshes
is derived from an a priori error estimate. Several numerical examples are considered in the

aeronautics sector and the field of civil security.

Keywords Metric-based mesh adaptation, anisotropy, adjoint, unsteady simulations, mov-
ing mesh, ALE







Adaptation de maillage orientée fonctionnelle et basée sur une métrique pour des

simulations aérodynamiques en géométrie variable

Résumé En ce qui concerne les problemes de Dynamique des Fluides Numériques,
I'adaptation du maillage est intéressante pour sa capacité a aborder la convergence asympto-
tique et & obtenir une prévision précise pour des flux complexes & moindre cout. La méthode
d’adaptation de maillage anisotrope réduit le nombre de degrés de liberté nécessaires pour
atteindre la précision d’une solution donnée, ce qui a un impact positif sur le temps de calcul.
De plus, il réduit la dissipation du schéma numérique en tenant compte automatiquement
de l'anisotropie des phénomenes physiques a l'intérieur du maillage. Deux approches prin-
cipales existent dans la littérature. L’adaptation du maillage basée sur les caractéristiques
géométriques, qui est principalement déduite d’une estimation de ’erreur d’interpolation util-
isant la hessienne du senseur choisi, controle 'erreur d’interpolation du capteur sur ’ensemble
du domaine de calcul. Une telle approche est facile & mettre en place et a un large éventail
d’applications, mais elle ne prend pas en compte 'EDP considérée utilisée pour résoudre le
probleme. D’autre part, ’adaptation de maillage orientée fonctionnelle, qui se concentre sur
une fonctionnelle scalaire, prend en compte a la fois la solution et 'EDP dans l'estimation
d’erreur grace a l’état adjoint. Mais, la conception de cette estimation d’erreur est beaucoup
plus compliquée. Cette these présente les résultats obtenus avec différentes méthodes de
Dynamique des Fluides Numériques: les solveurs de flux arbitrairement lagrangiens-eulériens
(ALE) avec schémas explicites et implicites sont présentés et couplés au mouvement de
maillage, 'adaptation de maillage feature-based instationnaire pour les géométries mobiles
prend en compte les changements des connectivités de maillage durant toute la simulation,
I’état adjoint est étendu aux problemes de géométries mobiles et ’adaptation de maillage
instationnaire orientée fonctionnelle pour les maillages mobiles est déduite d’une estimation
d’erreur a priori. Plusieurs exemples numériques issus du secteur aéronautique et du domaine

de sécurité civile sont considérés.

Mots-Clés Adaptation de maillage basée métrique, anisotropie,

adjoint, simulations instationnaires, mouvement de maillage, ALE







”If you're offered a seat on a rocket ship,
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Convention

Simplicial mesh

Let n be the dimension of the physical space and let 2 C R" be the non-discretized physical
domain. € is an affine space. The canonical basis of its vectorial space is noted (e, es,...,€,)
in general, but notations (e, e,) and (e, ey, e,) can also be used in two and three dimensions.
Vectors of R™ are noted in bold font. The coordinate vector of a point of €2 is generally noted

X = (21, ..., Tp).

The boundary of 2, noted 012, is discretized using simplicial elements the vertices of which
are located on 0€2. In two dimensions, 0f2 is discretized with segments while in three dimensions,
boundary surfaces 9€) are represented by triangles. The discretized boundary is noted 02 and

Qy, denotes the sub-domain of R™ having d€) as boundary.

Building a mesh of 2 consists in finding a set of simplicial elements - triangles in two

dimensions, tetrahedra in three dimensions - noted H, satisfying the following properties:

Non-degenerescence: Each simplicial element K of H is non-degenerated (no flat elements

of null area or volume),

o Covering: Qp = U K,
KeH
e Non-overlapping: The intersection of the interior of two different elements of H is empty:

Kiﬂﬁj:Q,VKi, K; € H,i#£].

Conformity: The intersection of two elements is either a vertex, an edge or a face (in three

dimensions) or is empty.

The conformity hypothesis is adopted here, because the meshes will be used with a Finite-
Volume solver which requires the enforcement of this constraint. Besides, it facilitates the
handling of data structures on the solver side and also enables to save a consequent amount of
CPU time.

Finally, a mesh is said to be uniform if all its elements are almost regular (equilateral) and have

the same size h.



Notations and orientation conventions

The following notations will be used in this thesis: K is an element of the mesh H, F; is the
vertex of H having 7 as global index, e;; is the edge linking P; to P;. The number of elements,

vertices and edges are noted Ny, N, and N., respectively.

The vertices and the edges of an element K are also numbered locally. Vertex numbering
inside each element is done in a counter-clockwise (or trigonometric) manner, which enables
to compute edges/faces outward normals in a systematic way. This numbering, as well as
unit outward normals n and edges/faces orientations are shown for triangles and tetrahedra in

Figure 1. Non-normalized normals will be noted 7.

Py

P P
o
€ep m
(531
Py Py Py
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Figure 1: Conventions in a simplicial element K in two (top) and three (bottom) dimensions.

Conventions for vertex numbering, edge numbering and orientation (left), unit normal number-

ing and orientation (middle) and face(s) orientation (right).



Introduction

This manuscript proposes a synthesis of my research during my years of PhD at Inria in
Gamma8 and Ecuador teams in the field of anisotropic mesh adaptation applied to unsteady

stmulations involving moving computational domains.

Often considered as a substitute for modelling systems for which simple closed from analytic
solutions are not possible, computer simulations’ big advantage is the real ability to generate
representive scenarios for which a realisation of all possible states would be prohibitive or im-
possible in practice. Consequently, numerical simulation has become an integral part of the
design process in science and engineering. In sixty years, numerical simulation has come a long
way, in conjunction with the development of computing resources. As it became possible to
model and simulate more complex problems, industry started to take advantage of its poten-
tiality. However, as the simulation capabilities grow, so do the requirements of both industries
and researchers, and a whole set of problems have arisen. In the field of computational fluid
dynamics (CFD), the numerical simulations have to deal with ever increasing geometrical and
physical complexities. However being able to predict numerically all the features of complex
flows around complex geometries remains an unachieved goal. In this sense, scientists and en-
gineers have developed several techniques to make predictions with the maximum of accuracy
while mastering the computational efforts in term of CPU time.

In this sense, mesh adaptation methods have been developed to reduce the complexity of the
simulations while keeping the same high level of precision. Notably, the increase in compu-
tational power allows scientists to not content themselves with steady approximations of the

physical phenomena, and to study the effects of time-dependent parameters.

Mesh adaptation for CFD

The computational pipeline for fluid dynamic simulations illustrated by Figure 2 can be sum-

marized as :
CAD — MESH — SOLVER — VISUALIZATION/ ANALYSIS

The mesh is one of the first step of the computation and as the topological base frame, its
role may be crucial. Anisotropic mesh adaptation method reduces the number of degrees of
freedom required to reach a given solution accuracy and thus impacts favorably the CPU time.
Moreover, it reduces the numerical scheme dissipation by automatically taking into account the

anisotropy of the physical phenomena inside the mesh. That’s why this technique is nowadays
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Figure 2: Under the visualization of the numerical solutions of Euler flux solution of f117 in
flight on the Left, the mesh of the computational volume around which enables to compute the

solution on the Right

a great deal of interest. Two main approaches exist in the literature. The first one is the
feature-based mesh adaptation which is mainly deduced from an interpolation error estimate
using the Hessian of the chosen sensor. It controls the error on the sensor over the whole com-
putational domain. Such approach is easy to set-up and has a wide range of application, but it
does not take into account the considered PDE used to solve the problem. The second approach
is the goal-oriented mesh adaptation. It focus on a scalar output function and takes into

consideration both the solution and the PDE in the error estimation thanks to the adjoint state.

In this thesis, we focus on Computational Fluid Dynamics (CFD), and its applications to
vorticity in aeronautic and blast mitigations, although the results presented can be used in a

vast field of research and industry. The next section presents its numerical context in details.

Numerical context

The present work was conducted in Gammad and Ecuador research groups at Inria. Most
numerical choices naturally stem from those made in the group, to benefit from both the con-

siderable experience and the valuable software of its members.

- We consider unstructured meshes made up of triangles (in 2D) or tetrahedra (in 3D). This
geometrical choice is initially due to the fact that it is easier to mesh complex geometries

with simplexes.

- We consider metric-based mesh adaptation. The theory derives from the classical Rie-
mannian geometry theory and underlies on accurate feature-based or adjoint based error

estimates.



- We consider anisotropic mesh-adaptation to fit the natural physical phenomena properties

inside the mesh in order to improve their representation.

- Regarding moving-boundary meshes, the body-fitted approach has been preferred in

comparison to other methods for its accurate treatment of boundaries.

- From the aspect of solver, the Arbitrary-Lagrangian-Eulerian (ALE) framework has
been chosen for its ability to describe physical equations on a mesh moving with an imposed

or an abitrary movement.

- Finally, only two-dimensional or three dimensional mono-fluid problems modelled

by the inviscid compressible Euler equations are considered in this thesis.

Main contributions

During this thesis, I extend goal-oriented mesh adaptation to time-dependent simula-
tions on moving computational domains.
My work follows the previous works of [Olivier 2011a, Belme 2011, Barral 2015].

e [ contributed to the development and implementation of implicit schemes in ALE formulation
for unsteady Euler equation involving moving mesh problems and compared it to the explicit

time integration simulations.

I updated the unsteady feature-based ALE metric to handle mesh optimizations during the

computational loop with the error analysis from [N. Barral 2017].

I extended the adjoint solver of unsteady Euler flows for ALE formulation in two-dimensional

(validated) in three-dimensional (partially implemented)

I added the backward moving mesh to the code.

I added a new error estimation for goal-oriented mesh adaptation for moving mesh simula-

tions

Organisation and content of thesis

The present thesis is built around two main topics :

e The understanding and improvements of the fluid solver in the ALE framework and the

hessian-based mesh adaptation for moving mesh geometries.



e A goal-oriented based anisotropic mesh adaptation for unsteady problems involving moving

mesh geometries.

The first three chapters of this work refer to the first point. The remaining parts concen-

trates on the ALE adjoint solver and the set up of the goal-oriented mesh adaptation.

Chapter 1 The theorical and numerical prerequisites of the next chapters.

Chapter 2 The definition, the implementation and the validation of implicit time integration

scheme for the ALE flow solver.

Chapter 3 The completion with respect to several steps for the unsteady mesh adaptation for mov-
ing geometries which complement thesis [Barral 2015]. In particular, the importance
to update the ALE metric in the flow solver to govern the mesh optimizations during

the moving mesh algorithm.

Chapter 4 The development of the unsteady adjoint solver in the ALE framework which requires

a backward in time moving mesh algorithm consistent with the forward in time one.

Chapter 5 The time accurate goal-oriented mesh adaptation for moving geometries and its asso-

ciated error estimate.
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CHAPTER 1

State of the art of previous works

The proposed works in this thesis have been built on three existing theories referred in this
chapter. It is quite dense because it corresponds to four thesis : the theoretical foundation have
been established in [Loseille 2008] and the three mesh adaptation theories on which this thesis
relies have been introduced in [Olivier 2011a] for unsteady feature-based mesh adaptation, in
[Belme 2011] for unsteady goal-oriented mesh adaptation and in [Barral 2015] for time-accurate

mesh adaptation involving moving geometries.

1.1 Continuous mesh framework

Generating an adapted mesh means optimizing the accuracy of some parts of the simulation
domain while de-emphazing other parts we don’t need precision. To give rise to this type of
mesh we must establish a generator for this assignment. And this assignment must be quasi
unique depending on the current localization. At first thought and as it comes to geometry,
let’s look at the available geometrical tools. Considering a triangle of side 1 in an Euclidian
affine space of R?, its area (i.e. the dot product of one of its pair of vectors) or the angle
between these are the same whatever the considered triangle of the space. But generating an
unstructured, anisotropic mesh means assigning privileged sizes and local orientations for the
elements (triangles or tetrahedra) at each point of the domain. We will see that the use of
Riemannian metric spaces is an elegant and efficient way to achieve this goal.

This section is organized as follows. We first succinctly recall the metric-based mesh generation
in Sections 1.1.1, 1.1.2, then the Section 1.1.3 gives the theoretical framework of anisotropic

mesh adaptation based on the continuous mesh concept.

1.1.1 Duality between discrete and continuous element : notion of unit ele-

ment

In differential geometry, a metric tensor takes as input a pair of tangent vectors at a point
of a surface (or any differentiable manifold) and produces a real scalar number in a way that

generalizes many of the familiar properties of the dot product of vectors in Euclidian space.



This continuous point of view enables a practical mathematical representation, and the use of
powerful tools of differential geometry.

In the same way as a dot product, metric tensors are used to define the length of and angle
between tangent vectors. Let’s explain the duality between triangle/tetrahedron and metric

tensor, in other terms between discrete and continuous element.

Euclidian space

Let us begin by studying this duality in the Euclidian space.

We consider the vector space R”, typically n = 2 or 3 in our case. A scalar product is
a Symmetric Positive Definite (SPD) form. This form can be represented by a SPD matrix
M = (m4j), <ij<n’ which is called a metric tensor or simply metric. The scalar product is then

written:
(-,-)M: R* x R* — Rt

(u,v) — (4, V) = ' Mv = szijuwﬂ"

j=1i=1

(1.1)

In the simple case where M = Z with Z the identity matrix, the scalar product is the canonical
Euclidian dot product. A real vector space with the scalar product is called an Fuclidian space.

The scalar product is useful to compute lengths and angles in the Euclidian space. We can
define:

e a distance:
dy: R xR?P — RT

(1.2)
(P, Q) — du(P,Q) =\/PGTMPG,

which induces a metric space structure on the vector space,

e and a norm:
- lm: R* — RF

u +— |Juljm = vul Mu.

From these distance and norm, we deduce the classic geometrical quantities:

(1.3)

e the length of an edge e is given by:

v (e) = Vel Me, (1.4)

e the angle between two vectors u; and uz is the unique real number 6 € [0, 7] such that:

(U]_, UZ)M (1 5)
||| g [[uz]

cosf =



e the volume of element K is:

|K|m = Vdet M |K| where |K| = |K]|z. (1.6)

A very useful result on metrics is that M is diagonalizable in an orthonormal basis:

M=RART,
A =diag(A1, ..., \n) is the diagonal matrix made of the eigenvalues of M ,
where
R = (vi|va|...|vn)? is the unitary matrix (i.e. RT R = I)
made of the eigenvectors of M .

(1.7)
We will very often use the geometric representation of a metric tensor. In the vicinity

V(P) of point P, the set of points that are at distance ¢ of P, is given by:

Ppm(e) ={Q e V(P) [ dm(Q, P) = ¢} (1.8)

This relation defines an ellipsoid of center a and whose axes are aligned with the eigen directions
1
v; of M. The set ® (1) is called the unit ball of M, and the sizes of its axes are h; = A, °.

This unit ball is depicted in Figure 1.1 in two and three dimensions.

Figure 1.1: Unit balls associated with metric M = RART in two and three dimensions.

A metric tensor M provides another useful information: the application that maps the

unit ball associated with Z to the unit ball associated with M. The application Az R where
1

A3 = diag(A\?) defines the mapping from the physical space (R",Z) to the Euclidean metric



space (R™, M):
A2R: (R3,Z) +— (R3, M)
x — (A% R) X .

This natural mapping corresponds to the change of basis from the canonical basis to the

orthonormal diagonalization basis of M and is depicted in Figure 1.2.

IRA:
(R%,Z,) (R2, M)

Figure 1.2: Natural mapping A3 R associated with metric M in two dimensions. It sends the
unit ball of Iy onto the unit ball of M.

The key notion of the discrete-continuous duality is the notion of unit element.
A tetrahedron K, defined by its list of edges (e;)i=1.6, is said to be an unit element with respect

to a metric tensor M if the length of all its edges is unit in metric M:
Vi=1,..,6, lyp(e;) =1 with lr(e;) = Vel Me;. (1.9)

If K is composed only of unit length edges then its volume |K |, in M is constant equal to:

2 2
K= Y2 and (x| = Y2
12 12

N|=

(det(M)) "2, (1.10)

where | K| is its Euclidean volume. It is actually used to define classes of equivalence of discrete
elements: let M be a metric tensor, there exists a non-empty infinite set of unit elements with
respect to M. Conversely, given an element K such that |K| # 0, then there is a unique metric
tensor M for which element K is unit with respect to M.

Consequently, a discrete element can be viewed as a discrete representative of an equivalence
class formed by all the unit elements with respect to a metric M. Figure 1.3 depicts some unit
elements with respect to a metric tensor, which is geometrically represented by its unit-ball.
M denotes the class of equivalence of all the elements which are unit with respect to M and is
called continuous element.

All the discrete representatives of a continuous element M share some common properties,

called invariants, which justify the use of this equivalence relation. They connect the geometric



Figure 1.3: Several unit elements with respect to a metric tensor in 3D.

properties of the discrete elements to the algebraic properties of metric M. The two main

invariants are:
e the edges e; of any unit element K with respect to metric M are unit in M:

Vi=1,..6, el Me; =1, (1.11)

e conservation of the Euclidean volume for any unit element K with respect to metric M

V3 . V2

|K| = R det(M™2)in 2D and |K|= 50} det(./\/f%) in 3D. (1.12)

Many other invariants are given in [Loseille 2008].

Riemannian metric space

We’ve just seen the link between a metric tensor and an unit element. This idea is the starting
point to understand how to create a metric-based adapted mesh. This theory, initially intro-
duced in [George 1991], is based on an unit mesh generation in a prescribed Riemannian metric
space.

In fact, working in an Euclidian space is no longer sufficient. This is because the scalar
product of Euclidian spaces is the same on the whole space, which means that the distance
definition is the same for each point of the space (the unit ball is the same everywhere). However,
when used to generate adapted meshes with different element sizes in the domain, it is convenient
to have a distance that depends on the position of the space. Thus, we now consider a set of
SPD tensors M = (M(P))pcq, also called metric tensor field, defined on the whole domain
Q C R™. Locally at point P, M(P) induces a scalar product on R™ x R™. The vector space,
with this new structure, is called a Riemannian metric space. In this thesis, we will use
the same notation M to speak of the metric field and of the metric tensor at a given point.

Notation M will only be used if the distinction is necessary for pedagogical purposes.



Remark 1. Unlike usual Riemannian spaces, there is no notion of manifold in Riemannian
metric spaces. However, Riemannian metric spaces can be assimilated to functions representing
Cartesian surfaces, and the metric tensor defined for a point of the space is a scalar product on
the tangent plane for that point. Figure 1.4 gives an example of a Cartesian surface associated
with a Riemannian metric space. This Riemannian metric space is pictured by drawing the unit
ball of the metric at some points of the domain. A link with differential geometry is proposed
in [Alauzet 2011a).

&

Figure 1.4: Left, example of a Cartesian surface embedded in R3. Right, geometric visualization
of a Riemannian metric space (M(X))xejo1]x[0,1] associated with this surface. At some points

x of the domain, the unit ball of M(x) represented by ellipses is drawn.

There is no global notion of scalar product in a Riemannian metric space, thus no global
distance or norm. However, we can extend the notions of length, angle and volume from the
Euclidian space case. To do so, we have to consider the variation of the metric in space. The

following geometrical quantities are defined:

e the length of edge e = ]@ parametrized by v : ¢t € [0,1] — P + t@ is computed with

the following formula:

1 1
ta) = [IN Ol at= [ VP M+ PG PGa, (11s)
0 0

— .

e the angle between two vectors uy = PQ7 and ug = PQ2 is the unique real § € [0, 7] such
that:

(ul, u2)M(P)

cosf = ,
[az||mpy [zl amp)

(1.14)

e the volume of element K with respect to M is more difficult to apprehend. Indeed, due to

metric variations, element K, as seen with respect to metric field M is generally curved: it



is not a simplex anymore and normally, its volume should be computed with an integration
formula:
1K | amq :/\/de. (1.15)
K
However, this volume can be approximated at first order:

|K|pm ~ | K|z \/det M(Gk), where G is the barycenter of K. (1.16)

1.1.2 Duality between discrete and continuous mesh : notion of unit mesh

This local relation of equivalence concerns elements, and needs to be somehow extended to
whole meshes. Intuitively, the notion of Riemann metric space is going to play that role. The
main difficulty is to take into account the variation of the function x — M (x). The analysis
can be simplified if M is rewritten as follows, separating its local and global properties. A

Riemannian metric space M = (M(x))xeq is locally written :

™ s (x)

¥x € Q, M(x)=di(x)R(x) ry 3 (x) RT (%), (1.17)

where

D=

e density d is equal to: d = (A1 A2A3)2 = (hlhghg)_l, with ); the eigenvalues of M

e anisotropic quotients r; are equal to: 7; = hf’ (hy hghg)il

e R is the eigenvectors matrix of M representing the orientation.

The density d controls only the local level of accuracy of M: (increasing or decreasing it
does not change the anisotropic properties or the orientation), while the anisotropy is given by
the anisotropic quotients and the orientation by matrix R. The notion of complexity C of M

can also be defined:
C(M):/Qd(x)dx:/ﬂx/det(/\/t(x))dx. (1.18)

This quantifies the global level of accuracy of (M (x))xeq-

From this formulation of a Riemannian metric field arises a duality between meshes and
Riemannian metric spaces. This duality is justified by the strict analogy between the following
discrete and continuous notions: orientation vs. R, stretching vs. 7;, size vs. d and number
of elements vs. C(M). However, the class of discrete meshes represented by M is complex to
describe.

If the notion of unit element in the previous section was quite immediate, things are more

complicated when it comes to define an unit mesh. Stricto sensu, an unit mesh is a mesh



whose all edges are unit with respect to the prescribed metric field. However, the existence of
a mesh made of unit elements is not assured. For example, in R3, let’s take the simplest case
of M(P) = Z(P) for each point P, i.e. the canonical Euclidian space. It is well known that
R3 cannot be filled with regular tetrahedra (that are unit with respect to the identity metric).
So the constraint on the sizes of the edges has to be relaxed. But this can lead to meshes with
very bad quality elements (flat elements). So we have to add a constraint on the volume of the
elements, through a quality function.

For this reason, we have to introduce the notion of quasi unit element. A tetrahedron
is said to be quasi unit with respect to a metric field M if its edges are close to unit, i.e.
Vi, Lrp(e;) € [, v/2]. To avoid elements with a null volume (see [Loseille 2011a]), we have to

\/5 I
add a constraint on the volume, which is achieved through a quality function:

3

s (Eh Bule)”
216 1K | m

Qm(K) € [1,400]. (1.19)

For the regular tetrahedron, the quality function is equal to 1, whereas it tends to +oo for a
null volume tetrahedron. So an element close to a perfectly unit element has a quality close to
1. This leads to the following definition. A tetrahedron K defined by its list of edges (€j)i=1..6

is said quasi-unit for Riemannian metric space (M(x))xeq if

Vi€ [1,6], fla(e;) € [\}5

The definition of unit mesh consequently becomes : a unit mesh with respect to a Riemannian

\/5] and Qum(K) €[1,a] with a>1. (1.20)

metric space (M(x))xeq is a mesh made of quasi-unit elements.

In practice, it is this definition that is used in meshing software. For any kind of desired
mesh (uniform, adapted isotropic, adapted anisotropic), the mesh generator will generate
a mesh that is unit with respect to the prescribed Riemannian metric space. Thus
the resulting mesh is uniform and isotropic in the Riemannian metric space while it is adapted
and anisotropic in the canonical Euclidian space. This is illustrated in Figure 1.5. This idea

has turned out to be a huge breakthrough in the generation of anisotropic adapted meshes.

1.1.3 Duality between discrete and continuous interpolation error: notion of

continuous linear interpolate

The model that we have just defined is used to obtain an analytic expression of the optimal mesh.
The purpose now in this section is to obtain a still valid equivalence between a continuous error
estimate for any function on any continuous mesh and a discrete error estimate on a discrete

mesh.
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Figure 1.5:  Metric-based mesh generation. Left, specified Riemannian metric space. Right,
unit mesh in the prescribed Riemannian metric space which becomes adapted anisotropic in the

Fuclidean space.

In mathematical terms, let (M(x))xeq be a continuous mesh of a domain 2 and let u be
a smooth representation This function u is a non-linear function which is assumed to be twice
continuously differentiable.

We define the following approximation space from the standard Py FEM approximation
space. Let H'(f2) be the Sobolev space defined as the set of applications of L?(f2) such that

their first weak derivative exists and also belongs to L?(12).
HY(Q) = {ucL3(Q) | DucL*(Q)}.
Let us introduce the following approximation space :
Vi, ={p € HY(Q) | ok is affine VK € H}.

The usual P'-projector IIj, is defined such as II,u is exact on each vertex of the element K :

M, : HY(Q) — V;, | Muu(x) = p(x), Vx vertex of H

In this section, we want to seek a well-posed definition of the continuous linear interpola-
tion error |lu — mapul/p1() related to a continuous mesh (M(x))xeq which also implies a
well-posed definition of a linear continuous interpolate maqu. And obviously, we would like

the continuous linear interpolation error to be a reliable mathematical model of ||u—TITxul| 1 (q,)-



In this sense, the interpolation error is first derived locally (on an element) for a quadratic

function, then is extended to a global definition (for any point of the domain).

Local continuous interpolate

Let us first consider a quadratic function u defined on a domain 2 C R", and a continuous
element M. For all unit discrete elements K with respect to M, the interpolation error of u in
L' norm does not depend on the element shape and is only a function of the Hessian H,, of u

and of continuous element M. For more details see [Loseille 2011a).

e In 3D, for all unit elements K for M, the following equality holds:

2
lu — Tpull gy = 2\4[0 det(./\/l_%) trace(/\/l_% Hu./\/l_%) (1.21)

e In 2D, for all unit elements K for M, the following equality holds:

V3 1 1 1
|u = Tl Ly gy = r det(M™2) trace(M ™2 H, M~ 2).
For all the discrete elements that are unit with respect to M, the interpolation error is the
same, and is only based on continuous quantities (metric and Hessian<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>