J. C. Lasheras and E. J. Hopfinger, Liquid Jet Instability and Atomization in a Coaxial Gas Stream, Annual Review of Fluid Mechanics, vol.32, issue.1, pp.275-308, 2000.

P. Marmottant and E. Villermaux, On spray formation, Journal of Fluid Mechanics, vol.498, pp.73-111, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00014875

J. Matas, A. Delon, and A. Cartellier, Shear instability of an axisymmetric air-water coaxial jet, Journal of Fluid Mechanics, vol.843, pp.575-600, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744564

. Helices,

H. Bredmose, G. N. Bullock, and A. J. Hogg, Violent breaking wave impacts. Part 3. Effects of scale and aeration, Journal of Fluid Mechanics, vol.765, pp.82-113, 2015.

R. Saurel and R. Abgrall, A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows, Journal of Computational Physics, vol.150, issue.2, pp.425-467, 1999.

N. Moelans and &. Website, Research :: Phase Field Method

R. Abgrall, How to Prevent Pressure Oscillations in Multicomponent Flow Calculations: A Quasi Conservative Approach, Journal of Computational Physics, vol.125, issue.1, pp.150-160, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00074304

S. Karni, Multicomponent Flow Calculations by a Consistent Primitive Algorithm, Journal of Computational Physics, vol.112, issue.1, pp.31-43, 1994.

K. Shyue, An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems, Journal of Computational Physics, vol.142, issue.1, pp.208-242, 1998.

G. Allaire, S. Clerc, and S. Kokh, A Five-Equation Model for the Simulation of Interfaces between Compressible Fluids, Journal of Computational Physics, vol.181, issue.2, pp.577-616, 2002.

, RÉFÉRENCES

A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, vol.202, issue.2, pp.664-698, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00071808

K. Ratnesh, C. Shukla, J. B. Pantano, and . Freund, An interface capturing method for the simulation of multi-phase compressible flows, Journal of Computational Physics, vol.229, issue.19, pp.7411-7439, 2010.

A. Tiwari, J. B. Freund, and C. Pantano, A diffuse interface model with immiscibility preservation, Journal of Computational Physics, vol.252, pp.290-309, 2013.

M. Keh, F. Shyue, and . Xiao, An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach, Journal of Computational Physics, vol.268, pp.326-354, 2014.

F. Drui, A. Larat, S. Kokh, and M. Massot, A hierarchy of simple hyperbolic two-fluid models for bubbly flows, 2016.

R. Saurel and C. Pantano, Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows, Annual Review of Fluid Mechanics, vol.50, issue.1, pp.105-130, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01678264

G. Perigaud and R. Saurel, A compressible flow model with capillary effects, Journal of Computational Physics, vol.209, issue.1, pp.139-178, 2005.

A. Chiapolino, R. Saurel, and B. Nkonga, Sharpening diffuse interfaces with compressible fluids on unstructured meshes, Journal of Computational Physics, vol.340, pp.389-417, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01455167

N. Favrie, S. L. Gavrilyuk, and R. Saurel, Solid-fluid diffuse interface model in cases of extreme deformations, Journal of Computational Physics, vol.228, issue.16, pp.6037-6077, 2009.

F. Petitpas, J. Massoni, R. Saurel, E. Lapebie, and L. Munier, Diffuse interface model for high speed cavitating underwater systems, International Journal of Multiphase Flow, vol.35, issue.8, pp.747-759, 2009.

R. Saurel, P. Boivin, and O. L. Métayer, A general formulation for cavitating, boiling and evaporating flows, Computers & Fluids, vol.128, pp.53-64, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01277179

R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon Not R Astron Soc, vol.181, issue.3, pp.375-389, 1977.

L. B. Lucy, A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, vol.82, pp.1013-1024, 1977.

T. E. Kannan-suresh-kumar, F. Sparks, and . Liou, PARAMETER DE-TERMINATION AND EXPERIMENTAL VALIDATION OF A WIRE FEED ADDITIVE MANUFACTURING MODEL, p.25

R. Gingold and J. Monaghan, Kernel estimates as a basis for general particle methods in hydrodynamics, Journal of Computational Physics, vol.46, issue.3, pp.429-453, 1982.

J. J. Monaghan, Simulating Free Surface Flows with SPH, Journal of Computational Physics, vol.110, issue.2, pp.399-406, 1994.

J. Sharen, M. Cummins, and . Rudman, An SPH Projection Method, Journal of Computational Physics, vol.152, issue.2, pp.584-607, 1999.

X. Y. Hu and N. A. Adams, An incompressible multi-phase SPH method, Journal of Computational Physics, vol.227, issue.1, pp.264-278, 2007.

P. Nair and G. Tomar, Volume conservation issues in incompressible smoothed particle hydrodynamics, Journal of Computational Physics, vol.297, pp.689-699, 2015.

D. Violeau and A. Leroy, On the maximum time step in weakly compressible SPH, Journal of Computational Physics, vol.256, pp.388-415, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00946833

P. Nair and G. Tomar, Simulations of gas-liquid compressibleincompressible systems using SPH, Computers & Fluids, vol.179, pp.301-308, 2019.

J. R. Clausen, Entropically damped form of artificial compressibility for explicit simulation of incompressible flow, Physical Review E, vol.87, issue.1, 2013.

P. Ramachandran and K. Puri, Entropically damped artificial compressibility for SPH, Computers & Fluids, vol.179, pp.579-594, 2019.

A. Colagrossi and M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of Computational Physics, vol.191, issue.2, pp.448-475, 2003.

M. Landrini, A. Colagrossi, M. Greco, and M. P. Tulin, The fluid mechanics of splashing bow waves on ships: A hybrid BEM-SPH analysis, Ocean Engineering, vol.53, pp.111-127, 2012.

L. Chiron, M. De-leffe, G. Oger, and D. L. Touzé, Fast and accurate SPH modelling of 3d complex wall boundaries in viscous and non viscous flows, Computer Physics Communications, vol.234, pp.93-111, 2019.

S. Adami, X. Y. Hu, and N. A. Adams, A transport-velocity formulation for smoothed particle hydrodynamics, Journal of Computational Physics, vol.241, pp.292-307, 2013.

, RÉFÉRENCES

C. Zhang, Y. Xiangyu, N. A. Hu, and . Adams, A generalized transportvelocity formulation for smoothed particle hydrodynamics, Journal of Computational Physics, vol.337, pp.216-232, 2017.

V. Daru, P. L. Quéré, M. C. Duluc, and O. Le-maître, A numerical method for the simulation of low Mach number liquid-gas flows, Journal of Computational Physics, vol.229, issue.23, pp.8844-8867, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00517580

G. Salih-ozen-unverdi and . Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of Computational Physics, vol.100, issue.1, pp.25-37, 1992.

G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-rawahi et al., A Front-Tracking Method for the Computations of Multiphase Flow, Journal of Computational Physics, vol.169, issue.2, pp.708-759, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02146147

D. Juric and G. Tryggvason, Computations of boiling flows, International Journal of Multiphase Flow, vol.24, issue.3, pp.387-410, 1998.

G. Tryggvason and J. Lu, Direct Numerical Simulations of Flows with Phase Change, Procedia IUTAM, vol.15, pp.2-13, 2015.

R. Scardovelli and S. Zaleski, DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW, Annual Review of Fluid Mechanics, vol.31, issue.1, pp.567-603, 1999.

Y. Lin, G. R. Liu, and G. Wang, A particle-based free surface detection method and its application to the surface tension effects simulation in smoothed particle hydrodynamics (SPH), Journal of Computational Physics, vol.383, pp.196-206, 2019.

C. Hirt and B. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, vol.39, issue.1, pp.201-225, 1981.

W. F. Noh and P. Woodward, SLIC (Simple Line Interface Calculation), Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics, pp.330-340, 1976.

A. Chorin, Flame advection and propagation algorithms, Journal of Computational Physics, vol.35, issue.1, pp.1-11, 1980.

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Communications on Pure and Applied Mathematics, vol.18, issue.4, pp.697-715, 1965.

W. Rider and D. Kothe, Stretching and tearing interface tracking methods, 12th Computational Fluid Dynamics Conference, 1995.

R. B. Debar, Eulerian hydrodynamics code for compressible nonviscous flow of several fluids in two-dimensional (axially symmetric) region, 1974.

L. David and . Youngs, An interface tracking method for a 3d Eulerian hydrodynamics code, vol.44, p.35, 1984.

N. Ashgriz and J. Poo, FLAIR: Flux line-segment model for advection and interface reconstruction, Journal of Computational Physics, vol.93, issue.2, pp.449-468, 1991.

J. William, D. B. Rider, and . Kothe, Reconstructing Volume Tracking, Journal of Computational Physics, vol.141, issue.2, pp.112-152, 1998.

J. E. Pilliod and E. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, Journal of Computational Physics, vol.199, issue.2, pp.465-502, 2004.

G. Elbridge, A. S. Puckett, J. B. Almgren, D. L. Bell, W. J. Marcus et al., A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows, Journal of Computational Physics, vol.130, issue.2, pp.269-282, 1997.

E. Aulisa, S. Manservisi, R. Scardovelli, and S. Zaleski, Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, Journal of Computational Physics, vol.225, issue.2, pp.2301-2319, 2007.

B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti, Modelling Merging and Fragmentation in Multiphase Flows with SURFER, Journal of Computational Physics, vol.113, issue.1, pp.134-147, 1994.

D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski, Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows, Journal of Computational Physics, vol.152, issue.2, pp.423-456, 1999.

K. Yokoi, Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm, Journal of Computational Physics, vol.226, issue.2, pp.1985-2002, 2007.

S. Vincent, J. Caltagirone, P. Lubin, and T. Randrianarivelo, An adaptative augmented Lagrangian method for threedimensional multimaterial flows, Computers & Fluids, vol.33, issue.10, pp.1273-1289, 2004.

, RÉFÉRENCES

S. Vincent, A. Sarthou, J. Caltagirone, F. Sonilhac, P. Février et al., Augmented Lagrangian and penalty methods for the simulation of two-phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns, Journal of Computational Physics, vol.230, issue.4, pp.956-983, 2011.

G. Pianet, S. Vincent, J. Leboi, J. P. Caltagirone, and M. Anderhuber, Simulating compressible gas bubbles with a smooth volume tracking 1-Fluid method, International Journal of Multiphase Flow, vol.36, issue.4, pp.273-283, 2010.

G. Bornia, A. Cervone, S. Manservisi, R. Scardovelli, and S. Zaleski, On the properties and limitations of the height function method in two-dimensional Cartesian geometry, Journal of Computational Physics, vol.230, issue.4, pp.851-862, 2011.

J. Martinez, X. Chesneau, and B. Zeghmati, A new curvature technique calculation for surface tension contribution in PLIC-VOF method, Computational Mechanics, vol.37, issue.2, pp.182-193, 2006.

S. Osher, A. James, and . Sethian, Fronts propagating with curvaturedependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.

M. Sussman, P. Smereka, and S. Osher, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, vol.114, issue.1, pp.146-159, 1994.

, La méthode Level-Set

D. Adalsteinsson and J. A. Sethian, A Fast Level Set Method for Propagating Interfaces, Journal of Computational Physics, vol.118, issue.2, pp.269-277, 1995.

J. A. Sethian, Fast Marching Methods. SIAM Review, vol.41, issue.2, pp.199-235, 1999.

J. D-adalsteinsson and . Sethian, The Fast Construction of Extension Velocities in Level Set Methods, Journal of Computational Physics, vol.148, issue.1, pp.2-22, 1999.

F. Mut, G. C. Buscaglia, and E. A. Dari, New Mass-Conserving Algorithm for Level Set Redistancing on Unstructured Meshes, Journal of Applied Mechanics, vol.73, issue.6, p.1011, 2006.

E. Olsson and G. Kreiss, A conservative level set method for two phase flow, Journal of Computational Physics, vol.210, issue.1, pp.225-246, 2005.

E. Olsson, G. Kreiss, and S. Zahedi, A conservative level set method for two phase flow II, Journal of Computational Physics, vol.225, issue.1, pp.785-807, 2007.

O. Desjardins, V. Moureau, and H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, Journal of Computational Physics, vol.227, issue.18, pp.8395-8416, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01655351

M. Owkes and O. Desjardins, A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows, Journal of Computational Physics, vol.249, pp.275-302, 2013.

J. O. Mccaslin and O. Desjardins, A localized re-initialization equation for the conservative level set method, Journal of Computational Physics, vol.262, pp.408-426, 2014.

O. Desjardins, J. Mccaslin, M. Owkes, P. Brady, . Direct et al., Atomization and Sprays, vol.23, issue.11, pp.1001-1048, 2013.

D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, A Hybrid Particle Level Set Method for Improved Interface Capturing, Journal of Computational Physics, vol.183, issue.1, pp.83-116, 2002.

T. Ménard, Développement d'une méthode Level Set pour le suivi d'interface. Application de la rupture de jet liquide, 2007.

D. Enright, F. Losasso, and R. Fedkiw, A fast and accurate semiLagrangian particle level set method, Computers & Structures, vol.83, issue.6, pp.479-490, 2005.

D. Gaudlitz and N. A. Adams, On improving mass-conservation properties of the hybrid particle-level-set method, Computers & Fluids, vol.37, issue.10, pp.1320-1331, 2008.

Z. Wang, J. Yang, and F. Stern, An improved particle correction procedure for the particle level set method, Journal of Computational Physics, vol.228, issue.16, pp.5819-5837, 2009.

J. Philip, W. Archer, and . Bai, A new non-overlapping concept to improve the Hybrid Particle Level Set method in multi-phase fluid flows, Journal of Computational Physics, vol.282, pp.317-333, 2015.

S. Ianniello and A. D. Mascio, A self-adaptive oriented particles Level-Set method for tracking interfaces, Journal of Computational Physics, vol.229, issue.4, pp.1353-1380, 2010.

M. Vartdal and A. Bøckmann, An oriented particle level set method based on surface coordinates, Journal of Computational Physics, vol.251, pp.237-250, 2013.

, Romain Canu DNS diphasiques changement de phase, 2019.

, RÉFÉRENCES

P. Trontin, S. Vincent, J. L. Estivalezes, and J. P. Caltagirone, A subgrid computation of the curvature by a particle/level-set method. Application to a front-tracking/ghost-fluid method for incompressible flows, Journal of Computational Physics, vol.231, issue.20, pp.6990-7010, 2012.

M. Sussman and E. Puckett, A Coupled Level Set and Volume-ofFluid Method for Computing 3d and Axisymmetric Incompressible Two-Phase Flows, Journal of Computational Physics, vol.162, issue.2, pp.301-337, 2000.

T. Ménard, S. Tanguy, and A. Berlemont, Coupling level set/VOF/ghost fluid methods: Validation and application to 3d simulation of the primary break-up of a liquid jet, International Journal of Multiphase Flow, vol.33, issue.5, pp.510-524, 2007.

X. Yang, A. J. James, J. Lowengrub, X. Zheng, and V. Cristini, An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids, Journal of Computational Physics, vol.217, issue.2, pp.364-394, 2006.

B. M. Ningegowda and B. Premachandran, A Coupled Level Set and Volume of Fluid method with multi-directional advection algorithms for two-phase flows with and without phase change, International Journal of Heat and Mass Transfer, vol.79, pp.532-550, 2014.

N. Kumar-singh and B. Premachandran, A coupled level set and volume of fluid method on unstructured grids for the direct numerical simulations of two-phase flows including phase change, International Journal of Heat and Mass Transfer, vol.122, pp.182-203, 2018.

Y. Zhao and H. Chen, A new coupled level set and volume-offluid method to capture free surface on an overset grid system, International Journal of Multiphase Flow, vol.90, pp.144-155, 2017.

D. L. Sun and W. Q. Tao, A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows, International Journal of Heat and Mass Transfer, vol.53, issue.4, pp.645-655, 2010.

Y. Li and A. Umemura, Two-dimensional numerical investigation on the dynamics of ligament formation by Faraday instability, International Journal of Multiphase Flow, vol.60, pp.64-75, 2014.

D. Liu, W. Tang, J. Wang, H. Xue, and K. Wang, Modelling of liquid sloshing using CLSVOF method and very large eddy simulation, Ocean Engineering, vol.129, pp.160-176, 2017.

Y. Guo, L. Wei, G. Liang, and S. Shen, Simulation of droplet impact on liquid film with CLSVOF, International Communications in Heat and Mass Transfer, vol.53, pp.26-33, 2014.

J. Shinjo and A. Umemura, Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation, International Journal of Multiphase Flow, vol.36, issue.7, pp.513-532, 2010.

P. L. Roe, Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, Journal of Computational Physics, vol.135, issue.2, pp.250-258, 1997.

E. F. Toro, M. Spruce, and W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, vol.4, issue.1, pp.25-34, 1994.

E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations, Journal of Computational Physics, vol.72, issue.2, pp.277-298, 1987.

, An Advanced Simulation and Computing (ASC) Academic Strategic Alliances Program (ASAP) Center at The University of Chicago The Center for Astrophysical

W. Bo and J. W. Grove, A volume of fluid method based ghost fluid method for compressible multi-fluid flows, Computers & Fluids, vol.90, pp.113-122, 2014.

C. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, Journal of Computational Physics, vol.83, issue.1, pp.32-78, 1989.

M. Liou and C. J. Steffen, A New Flux Splitting Scheme, Journal of Computational Physics, vol.107, issue.1, pp.23-39, 1993.

M. Liou, A sequel to AUSM, Part II: AUSM+-up for all speeds, Journal of Computational Physics, vol.214, issue.1, pp.137-170, 2006.

E. Shima and K. Kitamura, New approaches for computation of low Mach number flows, Computers & Fluids, vol.85, pp.143-152, 2013.

S. Matsuyama, Performance of all-speed AUSM-family schemes for DNS of low Mach number turbulent channel flow, Computers & Fluids, vol.91, pp.130-143, 2014.

C. Li, M. Tsubokura, W. Fu, N. Jansson, and W. Wang, Compressible direct numerical simulation with a hybrid boundary condition of transitional phenomena in natural convection, International Journal of Heat and Mass Transfer, vol.90, pp.654-664, 2015.

J. M. Weiss and W. A. Smith, Preconditioning applied to variable and constant density flows, AIAA Journal, vol.33, issue.11, pp.2050-2057, 1995.

S. Osher and F. Solomon, Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws, Mathematics of Computation, vol.38, issue.158, pp.339-374, 1982.

B. Koren, M. R. Lewis, E. H. Van-brummelen, and B. Van-leer, RiemannProblem and Level-Set Approaches for Homentropic Two-Fluid Flow Computations, Journal of Computational Physics, vol.181, issue.2, pp.654-674, 2002.

Y. Samet, M. Kadioglu, S. Sussman, J. P. Osher, M. Wright et al., A second order primitive preconditioner for solving all speed multi-phase flows, Journal of Computational Physics, vol.209, issue.2, pp.477-503, 2005.

H. Francis, A. A. Harlow, and . Amsden, A numerical fluid dynamics calculation method for all flow speeds, Journal of Computational Physics, vol.8, issue.2, pp.197-213, 1971.

S. T. Miller, H. Jasak, D. A. Boger, E. G. Paterson, and A. Nedungadi, A pressure-based, compressible, two-phase flow finite volume method for underwater explosions, Computers & Fluids, vol.87, pp.132-143, 2013.

M. Boger, F. Jaegle, B. Weigand, and C. D. Munz, A pressure-based treatment for the direct numerical simulation of compressible multi-phase flow using multiple pressure variables, Computers & Fluids, vol.96, pp.338-349, 2014.

G. Huber, S. Tanguy, J. Béra, and B. Gilles, A time splitting projection scheme for compressible two-phase flows. Application to the interaction of bubbles with ultrasound waves, Journal of Computational Physics, vol.302, pp.439-468, 2015.

Y. Hou and K. Mahesh, A robust, colocated, implicit algorithm for direct numerical simulation of compressible, turbulent flows, Journal of Computational Physics, vol.205, issue.1, pp.205-221, 2005.

I. Yilmaz, H. Firat-oguz-edis, and . Saygin, Application of an all-speed implicit non-dissipative DNS algorithm to hydrodynamic instabilities, Computers & Fluids, vol.100, pp.237-254, 2014.

F. Cordier, P. Degond, and A. Kumbaro, An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations, Journal of Computational Physics, vol.231, issue.17, pp.5685-5704, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00614662

C. Chalons, S. Mathieu-girardin, and . Kokh, An all-regime Lagrange-Projection like scheme for 2d homogeneous models for two-phase flows on unstructured meshes, Journal of Computational Physics, vol.335, pp.885-904, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01495699

. Charles-s-peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, vol.25, issue.3, pp.220-252, 1977.

J. Schlottke and B. Weigand, Direct numerical simulation of evaporating droplets, Journal of Computational Physics, vol.227, issue.10, pp.5215-5237, 2008.

J. Brackbill, D. Kothe, and C. Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, vol.100, issue.2, pp.335-354, 1992.

S. Tanguy, T. Ménard, and A. Berlemont, A Level Set Method for vaporizing two-phase flows, Journal of Computational Physics, vol.221, issue.2, pp.837-853, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00649783

F. Gibou, L. Chen, D. Nguyen, and S. Banerjee, A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change, Journal of Computational Physics, vol.222, issue.2, pp.536-555, 2007.

L. R. Villegas, R. Alis, M. Lepilliez, and S. Tanguy, A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect, Journal of Computational Physics, vol.316, pp.789-813, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01407719

M. Chai, K. Luo, C. Shao, H. Wang, and J. Fan, A coupled vaporization model based on temperature/species gradients for detailed numerical simulations using conservative level set method, International Journal of Heat and Mass Transfer, vol.127, pp.743-760, 2018.

B. Duret, G. Luret, J. Reveillon, T. Menard, A. Berlemont et al., DNS analysis of turbulent mixing in two-phase flows, International Journal of Multiphase Flow, vol.40, pp.93-105, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00649803

Z. Bouali, B. Duret, F. Demoulin, and A. Mura, DNS analysis of small-scale turbulence-scalar interactions in evaporating twophase flows, International Journal of Multiphase Flow, vol.85, pp.326-335, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01596521

J. López, P. Hernández, F. Gómez, and . Faura, A volume of fluid method based on multidimensional advection and spline interface reconstruction, Journal of Computational Physics, vol.195, issue.2, pp.718-742, 2004.

Y. Wang and C. J. Rutland, Direct numerical simulation of turbulent flow with evaporating droplets at high temperature, vol.42, pp.1103-1110, 2006.

A. Bukhvostova, E. Russo, J. G. Kuerten, and B. J. Geurts, Comparison of DNS of compressible and incompressible turbulent droplet-laden heated channel flow with phase transition, International Journal of Multiphase Flow, vol.63, pp.68-81, 2014.

C. Shao, K. Luo, M. Chai, H. Wang, and J. Fan, A computational framework for interface-resolved DNS of simultaneous atomization, evaporation and combustion, Journal of Computational Physics, vol.371, pp.751-778, 2018.

, RÉFÉRENCES

W. Ryan, K. K. Houim, and . Kuo, A ghost fluid method for compressible reacting flows with phase change, Journal of Computational Physics, vol.235, pp.865-900, 2013.

J. Lee and G. Son, A sharp-interface level-set method for compressible bubble growth with phase change, International Communications in Heat and Mass Transfer, vol.86, pp.1-11, 2017.

B. Duret, Simulation numérique directe des écoulements liquide-gaz avec évaporation : application à l'atomisation. thesis, 2013.

B. Duret, R. Canu, J. Reveillon, and F. X. Demoulin, A pressure based method for vaporizing compressible two-phase flows with interface capturing approach, International Journal of Multiphase Flow, vol.108, pp.42-50, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01827180

A. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of Computational Physics, vol.2, issue.1, pp.12-26, 1967.

G. Vaudor, T. Ménard, W. Aniszewski, M. Doring, and A. Berlemont, A consistent mass and momentum flux computation method for two phase flows. Application to atomization process, Computers & Fluids, vol.152, pp.204-216, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01525891

M. Sussman, K. M. Smith, M. Y. Hussaini, M. Ohta, and R. Zhi-wei, A sharp interface method for incompressible two-phase flows, Journal of Computational Physics, vol.221, issue.2, pp.469-505, 2007.

B. Lalanne, L. R. Villegas, S. Tanguy, and F. Risso, On the computation of viscous terms for incompressible two-phase flows with Level Set/Ghost Fluid Method, Journal of Computational Physics, vol.301, pp.289-307, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01308135

P. Ronald, T. Fedkiw, B. Aslam, S. Merriman, and . Osher, A Nonoscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method), Journal of Computational Physics, vol.152, issue.2, pp.457-492, 1999.

H. Francis, J. E. Harlow, and . Welch, Numerical Calculation of TimeDependent Viscous Incompressible Flow of Fluid with Free Surface, Physics of Fluids, vol.8, issue.12, p.2182, 1965.

X. Liu, S. Osher, and T. Chan, Weighted Essentially Nonoscillatory Schemes, Journal of Computational Physics, vol.115, issue.1, pp.200-212, 1994.

G. Jiang and C. Shu, Efficient Implementation of Weighted ENO Schemes, Journal of Computational Physics, vol.126, issue.1, pp.202-228, 1996.

M. Rudman, A volume-tracking method for incompressible multifluid flows with large density variations, International Journal for Numerical Methods in Fluids, vol.28, issue.2, pp.357-378, 1998.

G. Vaudor, Atomisation assistée par un cisaillement de l'écoulement gazeux. Développement et validation. thesis, 2015.

C. Shu, Essentially non-oscillatory and weighted essentially nonoscillatory schemes for hyperbolic conservation laws, 1997.

O. Tatebe, The Multigrid Preconditioned Conjugate Gradient Method, 1993.

J. Zhang, Acceleration of five-point red-black Gauss-Seidel in multigrid for Poisson equation, Applied Mathematics and Computation, vol.80, issue.1, pp.73-93, 1996.

M. Kang, R. P. Fedkiw, and X. Liu, A Boundary Condition Capturing Method for Multiphase Incompressible Flow, Journal of Scientific Computing, vol.15, issue.3, pp.323-360, 2000.

X. Y. Hu and B. C. Khoo, An interface interaction method for compressible multifluids, Journal of Computational Physics, vol.198, issue.1, pp.35-64, 2004.

N. Kwatra, J. Su, J. T. Grétarsson, and R. Fedkiw, A method for avoiding the acoustic time step restriction in compressible flow, Journal of Computational Physics, vol.228, issue.11, pp.4146-4161, 2009.

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00270731

X. Calimez, Simulation a petite échelle par une méthode VOF d'écoulements diphasiques réactifs, 1998.

D. Tariq and . Aslam, A partial differential equation approach to multidimensional extrapolation, Journal of Computational Physics, vol.193, issue.1, pp.349-355, 2004.

M. Gorokhovski and M. Herrmann, Modeling Primary Atomization, Annual Review of Fluid Mechanics, vol.40, issue.1, pp.343-366, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00442584

J. Francois-xavier-demoulin, B. Reveillon, Z. Duret, P. Bouali, T. Desjonqueres et al., Toward using direct numerical simulation to improve primary break-up modeling, Atomization and Sprays, vol.23, issue.11, pp.957-980, 2013.

E. Babinsky and P. E. Sojka, Modeling drop size distributions, Progress in energy and combustion science, vol.28, issue.4, pp.303-329, 2002.

F. A. Williams, Spray Combustion and Atomization, Physics of Fluids, vol.1, issue.6, p.541, 1958.

, Romain Canu DNS diphasiques changement de phase, 2019.

, RÉFÉRENCES

S. De-chaisemartin, L. Fréret, D. Kah, F. Laurent, R. O. Fox et al., Eulerian models for turbulent spray combustion with polydispersity and droplet crossing, Comptes Rendus Mécanique, vol.337, issue.6, pp.438-448, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00408719

S. Rigopoulos, Population balance modelling of polydispersed particles in reactive flows, Progress in Energy and Combustion Science, vol.36, issue.4, pp.412-443, 2010.

D. Kah, O. Emre, Q. H. Tran, S. De-chaisemartin, S. Jay et al., High order moment method for polydisperse evaporating sprays with mesh movement: Application to internal combustion engines, International Journal of Multiphase Flow, vol.71, pp.38-65, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00941796

F. Doisneau, M. Arienti, and J. C. Oefelein, A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows, Journal of Computational Physics, vol.329, pp.48-72, 2017.

A. Sibra, J. Dupays, A. Murrone, F. Laurent, and M. Massot, Simulation of reactive polydisperse sprays strongly coupled to unsteady flows in solid rocket motors: Efficient strategy using Eulerian Multi-Fluid methods, Journal of Computational Physics, vol.339, pp.210-246, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01063816

M. Essadki, S. De-chaisemartin, F. Laurent, and M. Massot, High Order Moment Model for Polydisperse Evaporating Sprays towards Interfacial Geometry Description, SIAM Journal on Applied Mathematics, vol.78, issue.4, pp.2003-2027, 2018.

M. Sabat, A. Vié, A. Larat, and M. Massot, Statistical description of turbulent particle-laden flows in the very dilute regime using the anisotropic Gaussian moment method, International Journal of Multiphase Flow, vol.112, pp.243-257, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01886835

P. Baptiste-déjean, P. Berthoumieu, and . Gajan, Experimental study on the influence of liquid and air boundary conditions on a planar air-blasted liquid sheet, Part I: Liquid and air thicknesses, International Journal of Multiphase Flow, vol.79, pp.202-213, 2016.

K. Warncke, S. Gepperth, B. Sauer, A. Sadiki, J. Janicka et al., Experimental and numerical investigation of the primary breakup of an airblasted liquid sheet, International Journal of Multiphase Flow, vol.91, pp.208-224, 2017.

S. Navarro-martinez, Large eddy simulation of spray atomization with a probability density function method, International Journal of Multiphase Flow, vol.63, pp.11-22, 2014.

C. Dumouchel, W. Aniszewski, T. Vu, and T. Ménard, Multi-scale analysis of simulated capillary instability, International Journal of Multiphase Flow, vol.92, pp.181-192, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01494475

R. O. Fox, Large-Eddy-Simulation Tools for Multiphase Flows, Annual Review of Fluid Mechanics, vol.44, issue.1, pp.47-76, 2012.

A. S?bastien-tanguy and . Berlemont, Application of a level set method for simulation of droplet collisions, International Journal of Multiphase Flow, vol.31, issue.9, pp.1015-1035, 2005.

R. Lebas, T. Menard, P. A. Beau, A. Berlemont, and F. X. Demoulin, Numerical simulation of primary break-up and atomization: DNS and modelling study, International Journal of Multiphase Flow, vol.35, issue.3, pp.247-260, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00649748

J. Chesnel, J. Reveillon, T. Menard, and F. Demoulin, Large eddy simulation of liquid jet atomization, Atomization and Sprays, vol.21, issue.9, pp.711-736, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00767791

R. Canu, S. Puggelli, M. Essadki, B. Duret, T. Menard et al., Where does the droplet size distribution come from?, International Journal of Multiphase Flow, vol.107, pp.230-245, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01821941

A. Vallet and R. Borghi, Modélisation eulerienne de l'atomisation d'un jet liquide, Comptes Rendus de l'Académie des Sciences-Series IIB-MechanicsPhysics-Astronomy, vol.327, issue.10, pp.1015-1020, 1999.

A. Vallet, A. A. Burluka, and R. Borghi, Development of a Eulerian model for the "Atomization" of a liquid jet, Atomization and Sprays, vol.11, issue.6, pp.619-642, 2001.

M. Essadki, ?. St, M. De-chaisemartin, . Massot, . Fr?d?rique et al., Adaptive Mesh Refinement and High Order Geometrical Moment Method for the Simulation of Polydisperse Evaporating Sprays. Oil & Gas Science and Technology ? Revue d?IFP Energies nouvelles, vol.71, p.61, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01395317

, Gaussian curvature, p.902438714, 2019.

M. Essadki, F. Drui, S. Chaisemartin, A. Larat, T. Ménard et al., Statistical modeling of the gas-liquid interface using geometrical variables: toward a unified description of the disperse and separated phase flows, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01615076

C. Dumouchel, T. Ménard, and W. Aniszewski, Towards an interpretation of the scale diffusivity in liquid atomization process: An experimental approach, Physica A: Statistical Mechanics and its Applications, vol.438, pp.612-624, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01612368

, RÉFÉRENCES

F. Thiesset, T. Dumouchel, . Ménard, G. Aniszewski, . Vaudor et al., Probing liquid atomization using probability density functions, the volume-based scale distribution and differential geometry, p.9, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02271699

G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moller, Curvature-based transfer functions for direct volume rendering: Methods and applications, Visualization, 2003. VIS 2003. IEEE, pp.513-520, 2003.

M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, Discrete differential-geometry operators for triangulated 2-manifolds. Visualization and mathematics, vol.3, pp.52-58, 2002.

G. Luret, T. Menard, G. Blokkeel, A. Berlemont, J. Réveillon et al., Modeling collision outcome in moderately dense spray, Journal of Atomization and Spray, 2010.

B. Duret, J. Reveillon, T. Menard, and F. X. Demoulin, Improving primary atomization modeling through DNS of two-phase flows, International Journal of Multiphase Flow, vol.55, pp.130-137, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01596523

C. Dumouchel, A New Formulation of the Maximum Entropy Formalism to Model Liquid Spray Drop-Size Distribution. Particle & Particle Systems Characterization, vol.23, pp.468-479, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01844116

A. Déchelette, E. Babinsky, and P. E. Sojka, Drop Size Distributions, Handbook of Atomization and Sprays, pp.479-495, 2011.

M. Herrmann, A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids, Journal of Computational Physics, vol.227, issue.4, pp.2674-2706, 2008.

J. Anez, A. Ahmed, N. Hecht, B. Duret, J. Reveillon et al., Eulerian-Lagrangian spray atomization model coupled with interface capturing method for diesel injectors, International Journal of Multiphase Flow, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01970788

G. Luret, T. Ménard, A. Berlemont, J. Réveillon, and F. X. Demoulin, A DNS study ranging from dense to dilute turbulent two-phase flows, 2010.

K. E. Wardle and H. G. Weller, Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction, International Journal of Chemical Engineering, pp.1-13, 2013.

B. Duret, . Menard, F. Reveillon, and . Demoulin, A DNS database to improve atomization modeling, 2012.

J. O. Hinze, Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE Journal, vol.1, issue.3, pp.289-295, 1955.

G. Henry, G. Weller, H. Tabor, C. Jasak, and . Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in physics, vol.12, issue.6, pp.620-631, 1998.

, Engine Combustion Network | Near-nozzle mixture derived from x-ray radiography