, An d'améliorer la qualité d'une couche de graphène exfoliée

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Eect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, p.666669, 2004.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao et al., One-Dimensional Electrical Contact to a Two-Dimensional Material, Science, vol.342, issue.6158, p.614617, 2013.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, vol.321, issue.5887, p.385388, 2008.

Y. Wei, B. Wang, J. Wu, R. Yang, and M. L. Dunn, Bending Rigidity and Gaussian Bending Stiness of Single-Layered Graphene, Nano Letters, vol.13, issue.1, p.2630, 2013.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine Structure Constant Denes Visual Transparency of Graphene, Science, vol.320, issue.5881, pp.1308-1308, 2008.

B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn et al., High-Performance Flexible Graphene Field Eect Transistors with Ion Gel Gate Dielectrics, Nano Letters, vol.10, issue.9, p.34643466, 2010.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park et al., Roll-to-roll production of 30-inch graphene lms for transparent electrodes, Nature Nanotechnology, vol.5, issue.8, p.574578, 2010.

F. Schwierz, Graphene transistors, Nature Nanotechnology, vol.5, issue.7, pp.487-496, 2010.

L. Liao and X. Duan, Graphene for radio frequency electronics, Materials Today, vol.15, issue.7-8, p.328338, 2012.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.438, issue.7065, p.197200, 2005.

J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet et al., Observation of electron-hole puddles in graphene using a scanning single-electron transistor, Nature Physics, vol.4, issue.2, p.144148, 2008.

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi et al.,

G. Nanoelectronics, The Journal of Physical Chemistry B, vol.108, issue.52, 2004.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, vol.45, issue.7, p.15581565, 2007.

V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, High-throughput solution processing of large-scale graphene, Nature Nanotechnology, vol.4, issue.1, p.2529, 2009.

X. Li, W. Cai, J. An, S. Kim, J. Nah et al., LargeArea Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, vol.324, issue.5932, p.13121314, 2009.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, vol.9, issue.1, p.3035, 2009.

P. Y. Huang, C. S. Ruiz-vargas, A. M. Van-der-zande, W. S. Whitney, M. P. Levendorf et al., Grains and grain boundaries in single-layer graphene atomic patchwork quilts, Nature, vol.469, issue.7330, p.389392, 2011.

V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker et al., Graphene based materials : Past, present and future, Progress in Materials Science, vol.56, issue.8, p.11781271, 2011.

Z. Han, A. Kimouche, A. Allain, H. Arjmandi-tash, A. Reserbat-plantey et al., Suppression of Multilayer Graphene Patches during CVD Graphene growth on Copper, Arxiv preprint arXiv, p.4, 2012.

P. Blake, E. W. Hill, A. H. Castro-neto, K. S. Novoselov, D. Jiang et al., Making graphene visible, Applied Physics Letters, vol.91, issue.6, p.63124, 2007.

S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, The Optical Visibility of Graphene : Interference Colors of Ultrathin Graphite on SiO 2, Nano Letters, vol.7, issue.9, p.27072710, 2007.

I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, The eect of substrates on the Raman spectrum of graphene : Graphene-on-sapphire and graphene-on-glass, Applied Physics Letters, vol.91, issue.20, p.14, 2007.

L. G. De-arco, Y. Zhang, A. Kumar, and C. Zhou, Synthesis, Transfer, and Devices of Single-and Few-Layer Graphene by Chemical Vapor Deposition, IEEE Transactions on Nanotechnology, vol.8, issue.2, p.135138, 2009.

B. N. Chandrashekar, B. Deng, A. S. Smitha, Y. Chen, C. Tan et al., Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator, Advanced Materials, vol.27, issue.35, p.52105216, 2015.

L. Gomez-de-arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson et al., Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics, ACS Nano, vol.4, issue.5, p.28652873, 2010.

M. V. Feigel'man, M. A. Skvortsov, and K. S. Tikhonov, Theory of proximity-induced superconductivity in graphene, Solid State Communications, vol.149, p.11011105, 2009.

B. M. Kessler, Ç. Ö. Girit, A. Zettl, and V. Bouchiat, Tunable superconducting phase transition in metal decorated graphene sheets, Physical Review Letters, vol.104, issue.4, p.14, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00700022

A. Allain, Z. Han, and V. Bouchiat, Electrical control of the superconducting to insulating transition in graphene metal hybrids, Nature Materials, vol.11, issue.7, p.590594, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00700001

Z. Han, Macroscopic CVD graphene for nanoelectronics : from growth to proximity induced 2D superconductivity. Thesis, 2013.

A. Hebard, A. Fiory, and R. Eick, Experimental considerations in the quest for a thin-lm superconducting eld-eect transistor, IEEE Transactions on Magnetics, vol.23, issue.2, p.12791282, 1987.

J. Mannhart, High Tc transistors, Supercond. Sci. Technol, vol.9, p.4967, 1996.

C. H. Ahn, J. M. Triscone, and J. Mannhart, Electric eld eect in correlated oxide systems, Nature, vol.424, issue.6952, p.10151018, 2003.

J. Mannhart, J. G. Bednorz, K. A. Müller, and D. G. Schlom, Electric eld eect on superconducting YBa 2 Cu 3 O 7 _ ? lms, Zeitschrift für Physik B Condensed Matter, vol.83, issue.3, p.307311, 1991.

P. W. Anderson, Absence of Diusion in Certain Random Lattices, Physical Review, vol.109, issue.5, p.14921505, 1958.

K. B. Efetov, Phase transitions in granulated superconductors, Sov. Phys. JETP, vol.51, issue.5, p.10151022, 1980.

A. Frydman, The superconductor insulator transition in systems of ultrasmall grains, Physica C : Superconductivity, vol.391, issue.2, p.189195, 2003.

M. Strongin, R. S. Thompson, O. F. Kammerer, and J. E. Crow, Destruction of Superconductivity in Disordered Near-Monolayer Films, Physical Review B, vol.1, issue.3, p.10781091, 1970.

D. B. Haviland, Y. Liu, and A. M. Goldman, Onset of superconductivity in the two-dimensional limit, Physical Review Letters, vol.62, issue.18, p.21802183, 1989.

A. F. Hebard and M. A. Paalanen, Magnetic-eld-tuned superconductorinsulator transition in two-dimensional lms, Physical Review Letters, vol.65, issue.7, p.927930, 1990.

T. I. Baturina, A. Y. Mironov, V. M. Vinokur, M. R. Baklanov, and C. Strunk, Localized Superconductivity in the Quantum-Critical Region of the Disorder-Driven Superconductor-Insulator Transition in TiN Thin Films, Physical Review Letters, vol.99, issue.25, p.257003, 2007.

K. A. Parendo, K. H. Sarwa, B. Tan, A. Bhattacharya, M. Eblenzayas et al., Electrostatic Tuning of the Superconductor-Insulator Transition in Two Dimensions, Physical Review Letters, vol.94, issue.19, p.197004, 2005.

N. Markovi¢, C. Christiansen, A. M. Mack, W. H. Huber, and A. M. Goldman, Superconductor insulator transition in two dimensions, Physical Review B, vol.60, issue.6, p.43204328, 1999.

X. Leng, J. Garcia-barriocanal, S. Bose, Y. Lee, and A. M. Goldman, Electrostatic Control of the Evolution from a Superconducting Phase to an Insulating Phase in Ultrathin YBa 2 Cu 3 O 7 _ x, Physical Review Letters, vol.107, issue.2, p.27001, 2011.

H. B. Heersche, P. Jarillo-herrero, J. B. Oostinga, L. M. Vandersypen, and A. F. Morpurgo, Bipolar supercurrent in graphene, Nature, vol.446, issue.7131, p.5659, 2007.

X. Du, I. Skachko, and E. Y. Andrei, Josephson current and multiple Andreev reections in graphene SNS junctions, Physical Review B, vol.77, issue.18, p.184507, 2008.

F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao et al., Phase-Coherent Transport in Graphene Quantum Billiards, Science, vol.317, issue.5844, p.15301533, 2007.

C. Ojeda-aristizabal, M. Ferrier, S. Guéron, and H. Bouchiat, Tuning the proximity eect in a superconductor graphene superconductor junction, Physical Review B, vol.79, issue.16, p.165436, 2009.

Ç. Girit, V. Bouchiat, O. Naaman, Y. Zhang, M. F. Crommie et al., Tunable Graphene dc Superconducting Quantum Interference Device, Nano Letters, vol.9, issue.1, p.198199, 2009.

K. Komatsu, C. Li, S. Autier-laurent, H. Bouchiat, and S. Gué-ron, Superconducting proximity eect in long superconductor/graphene/superconductor junctions : From specular Andreev reection at zero eld to the quantum Hall regime, Physical Review B, vol.86, issue.11, p.115412, 2012.

I. V. Borzenets, U. C. Coskun, S. J. Jones, and G. Finkelstein, Phase Diffusion in Graphene-Based Josephson Junctions, Physical Review Letters, vol.107, issue.13, p.137005, 2011.

F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. , Savchenko. Weak Localization in Graphene Flakes, Physical Review Letters, vol.100, issue.5, p.56802, 2008.

V. L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symetry group. II. quantum systems, Sov. Phys. JETP, vol.34, issue.3, 1972.

J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. Cond. Mat, vol.6, p.1181, 1973.

M. R. Beasley, J. E. Mooij, and T. P. Orlando, Possibility of VortexAntivortex Pair Dissociation in Two-Dimensional Superconductors, Physical Review Letters, vol.42, issue.17, p.11651168, 1979.

J. M. Repaci, C. Kwon, Q. Li, X. Jiang, T. Venkatessan et al., Absence of a Kosterlitz-Thouless transition in ultrathin YBa 2 Cu 3 O 7 _ ? lms, Physical Review B, vol.54, issue.14, pp.9674-9677, 1996.

M. Mondal, S. Kumar, M. Chand, A. Kamlapure, G. Saraswat et al., Role of the Vortex-Core Energy on the Berezinskii-Kosterlitz-Thouless Transition in Thin Films of NbN, Physical Review Letters, vol.107, issue.21, p.217003, 2011.

T. I. Baturina, S. V. Postolova, A. Y. Mironov, A. Glatz, M. R. Baklanov et al., Superconducting phase transitions in ultrathin TiN lms, Europhysics Letters), vol.97, issue.1, p.17012, 2012.

M. Bard, I. V. Protopopov, I. V. Gornyi, A. Shnirman, and A. D. Mirlin, Superconductor-insulator transition in disordered Josephsonjunction chains, Physical Review B, vol.96, issue.6, p.64514, 2017.

L. J. Geerligs and J. E. Mooij, Charge quantization and dissipation in arrays of small Josephson junctions, Physica B, vol.152, p.212217, 1988.

H. S. Van-der-zant, W. J. Elion, L. J. Geerligs, and J. E. Mooij, Quantum phase transitions in two dimensions : Experiments in Josephsonjunction arrays, Physical Review B, vol.54, issue.14, p.1008110093, 1996.

P. Judeinstein and C. Sanchez, Hybrid organic-inorganic materials : a land of multidisciplinarity, J. Mater. Chem, vol.6, issue.4, p.511525, 1996.

C. O. Oriakhi, Polymer Nanocomposition Approach to Advanced Materials, Journal of Chemical Education, vol.77, issue.9, p.1138, 2000.

M. Carraro and S. Gross, Hybrid Materials Based on the Embedding of Organically Modied Transition Metal Oxoclusters or Polyoxometalates into Polymers for Functional Applications : A Review, Materials, vol.7, issue.5, p.39563989, 2014.

J. Jakabovi£, J. Ková£, M. Weis, D. Ha²ko, R. Srnánek et al., Preparation and properties of thin parylene layers as the gate dielectrics for organic eld eect transistors, Microelectronics Journal, vol.40, issue.3, p.595597, 2009.

V. E. Calado, S. Goswami, G. Nanda, M. Diez, A. R. Akhmerov et al., Ballistic Josephson junctions in edge-contacted graphene, Nature Nanotechnology, vol.10, issue.9, p.761764, 2015.

D. B. Tuckerman, M. C. Hamilton, D. J. Reilly, R. Bai, G. A. Hernandez et al., Flexible superconducting Nb transmission lines on thin lm polyimide for quantum computing applications, Superconductor Science and Technology, vol.29, issue.8, p.84007, 2016.

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis et al., Microwave propagation in graphene, Applied Physics Letters, vol.95, issue.7, p.73107, 2009.

Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu et al., 100-GHz Transistors from Wafer-Scale Epitaxial Graphene, Science, vol.327, issue.5966, p.662662, 2010.

H. S. Skulason, H. V. Nguyen, A. Guermoune, V. Sridharan, M. Siaj et al., 110 GHz measurement of large-area graphene integrated in low-loss microwave structures, Applied Physics Letters, vol.99, issue.15, p.153504, 2011.

S. A. Awan, A. Lombardo, A. Colli, G. Privitera, T. S. Kulmala et al., Transport conductivity of graphene at RF and microwave frequencies, 2D Materials, vol.3, issue.1, p.15010, 2016.

Y. M. Lin, K. A. Jenkins, A. Valdes-garcia, J. P. Small, and D. B. , Farmer, and P. Avouris. Operation of Graphene Transistors at Gigahertz Frequencies, Nano Letters, vol.9, issue.1, p.422426, 2009.

H. Yoon, C. Forsythe, L. Wang, N. Tombros, K. Watanabe et al., Measurement of collective dynamical mass of Dirac fermions in graphene, Nature Nanotechnology, vol.9, issue.8, p.594599, 2014.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen et al., Planar superconducting resonators with internal quality factors above one million, Applied Physics Letters, vol.100, issue.11, p.113510, 2012.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang et al., Boron nitride substrates for high-quality graphene electronics, Nature Nanotechnology, vol.5, issue.10, p.722726, 2010.

A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks et al., Tunable superconducting nanoinductors, Nanotechnology, vol.21, issue.44, p.445202, 2010.

J. R. Clem and V. G. Kogan, Kinetic impedance and depairing in thin and narrow superconducting lms, Physical Review B -Condensed Matter and Materials Physics, vol.86, issue.17, 2012.

R. Meservey and P. M. Tedrow, Measurements of the Kinetic Inductance of Superconducting Linear Structures, Journal of Applied Physics, vol.40, issue.5, p.20282034, 1969.

B. Dassonneville, M. Ferrier, S. Guéron, and H. Bouchiat, Dissipation and Supercurrent Fluctuations in a Diusive Normal Metal Superconductor Ring, Physical Review Letters, vol.110, issue.21, p.217001, 2013.

F. E. Schmidt, M. D. Jenkins, K. Watanabe, T. Taniguchi, and G. A. Steele, A ballistic graphene superconducting microwave circuit, Nature communications, vol.9, issue.1, p.4069, 2018.

, Sonnet, dielectric and metal libraries. www.sonnetsoftware.com. Accessed, pp.2018-2025

V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, Fluxonium : Single Cooper-Pair Circuit Free of Charge Osets, Science, vol.326, issue.5949, p.113116, 2009.

J. I. Wang, D. Rodan-legrain, L. Bretheau, D. L. Campbell, B. Kannan et al., Quantum coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures, p.116, 2018.

A. H. Castro-neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol.81, issue.1, p.109162, 2009.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al.,

. Geim, Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, vol.97, issue.18, p.187401, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130091

A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology, vol.8, issue.4, pp.235-246, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00844853

T. M. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini et al., Uniaxial strain in graphene by Raman spectroscopy : G peak splitting, Grüneisen parameters, and sample orientation, Physical Review B -Condensed Matter and Materials Physics, issue.20, p.79, 2009.

R. Beams, L. G. Cançado, and L. Novotny, Raman characterization of defects and dopants in graphene, Journal of Physics : Condensed Matter, vol.27, issue.8, p.83002, 2015.

R. Narula and S. Reich, Double resonant Raman spectra in graphene and graphite : A two-dimensional explanation of the Raman amplitude, Physical Review B, vol.78, issue.16, p.165422, 2008.

M. Huang, H. Yan, C. Chen, D. Song, T. F. Heinz et al., Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy, Proceedings of the National Academy of Sciences, vol.106, issue.18, p.73047308, 2009.

M. Huang, H. Yan, T. F. Heinz, and J. Hone, Probing strain-induced electronic structure change in graphene by Raman spectroscopy, Nano Letters, vol.10, issue.10, p.40744079, 2010.

N. Bendiab, J. Renard, C. Schwarz, A. Reserbat-plantey, L. Djevahirdjian et al., Unravelling external perturbation eects on the optical phonon response of graphene, Journal of Raman Spectroscopy, vol.49, issue.1, p.130145, 2018.

J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Electric eld eect tuning of electron-phonon coupling in graphene, Physical Review Letters, vol.98, issue.16, p.14, 2007.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nature Nanotechnology, vol.3, issue.4, p.210215, 2008.

J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, Optical separation of mechanical strain from charge doping in graphene, Nature Communications, vol.3, p.1024, 2012.

D. Yoon, Y. W. Son, and H. Cheong, Strain-Dependent Splitting of the Double-Resonance Raman Scattering Band in Graphene, Physical Review Letters, vol.106, issue.15, p.155502, 2011.

J. M. Martinis and K. Osborne, Superconducting Qubits and the Physics of Josephson Junctions. lecture, 2004.

V. Ambegaokar and A. Barato, Tunneling between superconductors, Physical Review Letters, vol.10, issue.2, p.486, 1963.

V. Ambegaokar and A. Barato, Tunneling Between Superconductors (Errata), 104(E), vol.11, 1963.

M. Tinkham, Introduction to superconductivity, 1996.

H. Michel, A. Devoret, J. M. Wallra, and . Martinis, Superconducting qubits : A short review, 2004.

J. Clarke and .. I. Braginski, Front Matter, The SQUID Handbook, pages ixvi, 2005.

V. Bouchiat and W. Wernsdorfer, Un interféromètre à nanotube de carbone. Images de la Physique, 2008.

J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature, vol.453, issue.7198, p.10311042, 2008.

M. L. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 2000.

Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits : Superconducting circuits interacting with other quantum systems, Reviews of Modern Physics, vol.85, issue.2, p.623653, 2013.

A. Wallra, D. Schuster, A. Blais, L. Frunzio, R. Huang et al., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, vol.431, issue.7005, p.162167, 2004.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson et al., Coupling superconducting qubits via a cavity bus, Nature, vol.449, issue.7161, p.443447, 2007.

A. Blais, R. S. Huang, A. Wallra, S. M. Girvin, and R. J. , Schoelkopf. Cavity quantum electrodynamics for superconducting electrical circuits : An architecture for quantum computation, Physical Review A, vol.69, issue.6, p.62320, 2004.

T. A. Fulton and L. N. Dunkleberger, Lifetime of the zero-voltage state in Josephson tunnel junctions, Physical Review B, vol.9, issue.11, p.47604768, 1974.

H. Courtois, Eets de cohérence électronique dans les nanostructures supraconductrices. Habilitation direction recherches, 2004.

B. Pannetier and H. Courtois, Andreev reection and Proximity eect, Journal of Low Temperature Physics, vol.118, issue.5, p.599615, 2000.

A. Allain, Superconductivity in graphene doped with metallic nanoparticles. Thesis, 2013.

. Af-andreev and . Af, sov. phys. jetp, vol.19, p.1228, 1964.

G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions : Excess current, charge imbalance, and supercurrent conversion, Physical Review B, vol.25, issue.7, p.45154532, 1982.

N. W. Ashcroft and N. D. Mermin, Solid state physics. Holt, 1976.

J. Kang, Y. Matsumoto, X. Li, J. Jiang, X. Xie et al., On-chip intercalated-graphene inductors for next-generation radio frequency electronics, Nature Electronics, vol.1, issue.1, p.4651, 2018.

H. Li and K. Banerjee, High-frequency eects in carbon nanotube interconnects and implications for on-chip inductor design, Electron Devices Meeting, p.14, 2008.

H. Li and K. Banerjee, High-Frequency Analysis of Carbon Nanotube Interconnects and Implications for On-Chip Inductor Design, IEEE Transactions on Electron Devices, vol.56, issue.10, p.22022214, 2009.

H. Yoon, K. Y. Yeung, P. Kim, and D. Ham, Plasmonics with two-dimensional conductors, Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.372, p.2013010420130104, 2012.

N. A. Masluk, I. M. Pop, A. Kamal, Z. K. Minev, and M. H. Devoret, Microwave Characterization of Josephson Junction Arrays : Implementing a Low Loss Superinductance, Physical Review Letters, vol.109, issue.13, p.137002, 2012.

S. R. Broadbent and J. M. Hammersley, Percolation processes. Mathematical Proceedings of the Cambridge Philosophical Society, vol.53, p.642, 1957.

P. G. De-gennes, Percolation : quelques systèmes nouveaux, Journal de Physique, issue.4, p.317, 1980.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma et al., Direct transfer of wafer-scale graphene lms, 2D Materials, vol.4, issue.3, p.35004, 2017.

K. M. Balss, G. Llanos, G. Papandreou, and C. A. Maryano, Quantitative spatial distribution of sirolimus and polymers in drug-eluting stents using confocal Raman microscopy, Journal of Biomedical Materials Research Part A, vol.85, issue.1, p.258270, 2008.

D. W. Park, S. K. Brodnick, J. P. Ness, F. Atry, L. Krugner-higby et al., Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics, Nature Protocols, vol.11, issue.11, p.22012222, 2016.

Y. Takai, T. Mizutani, and M. Ieda, Photoluminescence Study in Polymers, Japanese Journal of Applied Physics, vol.17, issue.4, p.651658, 1978.

M. S. Mathur and . Weir, Laser Raman and infrared spectrum of Polyp-xylylene, Journal of Molecular Structure, vol.15, p.459463, 1973.

M. Moskovits and U. Uersi, Surface-enhanced spectroscopy, Review of Modern Physics, vol.57, issue.3, p.783, 1985.

. Ru and . Info, , pp.2018-2024

G. Skoblin, J. Sun, and A. Yurgens, Encapsulation of graphene in Parylene, Applied Physics Letters, vol.110, issue.5, p.37, 2017.

N. S. Mueller, S. Heeg, M. P. Alvarez, P. Kusch, S. Wasserroth et al., Evaluating arbitrary strain congurations and doping in graphene with Raman spectroscopy, 2D Materials, vol.5, issue.1, 2018.

M. Durkin, I. Mondragon-shem, S. Eley, T. L. Hughes, and N. Mason, History-dependent dissipative vortex dynamics in superconducting arrays, Physical Review B, vol.94, issue.2, p.18, 2016.

B. Matthias, T. Geballe, and V. Compton, Superconductivity. Reviews of Modern Physics, vol.35, issue.1, p.122, 1963.

, J. Eisenstein. Superconducting Elements. Reviews of Modern Physics, vol.26, issue.3, p.277291, 1954.

H. S. Van-der-zant, W. J. Elion, L. J. Geerligs, and J. E. Mooij, Quantum phase transitions in two dimensions : Experiments in Josephsonjunction arrays, Physical Review B, vol.54, issue.14, p.1008110093, 1996.

A. Kahouli, A. Sylvestre, L. Ortega, F. Jomni, B. Yangui et al., Structural and dielectric study of parylene C thin lms, Applied Physics Letters, vol.94, issue.15, 2009.

R. W. Shaw, D. E. Mapother, and D. C. Hopkins, Critical Fields of Superconducting Tin, Indium, and Tantalum, vol.120, p.91, 1960.

M. Tian, J. Wang, J. Snyder, J. Kurtz, Y. Liu et al., Synthesis and characterization of superconducting single-crystal Sn nanowires, Applied Physics Letters, vol.83, issue.8, p.16201622, 2003.

Y. J. Hsu, S. Y. Lu, and Y. F. Lin, Nanostructures of Sn and their enhanced, shape-dependent superconducting properties, Small, vol.2, issue.2, p.268273, 2006.

K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip lines and slotlines, 1979.

J. M. Bueno-barrachina, C. S. Cañas-peñuelas, and S. Catalan-izquierdo, Capacitance evaluation on parallel-plate capacitors by means of nite element analysis, Journal of Energy and Power Engineering, vol.5, issue.7, pp.373-378, 2011.

K. K. Likharev, Superconducting weak links, Journal of Chemical Information and Modeling, vol.53, issue.1, p.16891699, 2013.

P. Townsend and J. Sutton, Investigation by electron tunneling of the superconducting energy gaps in Nb, Ta, Sn, and Pb, Physical Review, vol.128, issue.2, p.591595, 1962.

P. Joyez, V. Bouchiat, D. Esteve, C. Urbina, and M. H. Devoret, Strong tunneling in the single-electron transistor, Physical review letters, vol.79, issue.7, p.1349, 1997.

T. A. Fulton and L. N. Dunkleberger, Origin of hysteresis in the I-V curves of point-contact junctions, Journal of Applied Physics, vol.45, issue.5, p.22832285, 1974.

W. J. Skocpol, M. R. Beasley, and M. Tinkham, Self heating hotspots in superconducting thin lm microbridges, Journal of Applied Physics, vol.45, issue.9, p.40544066, 1974.

H. Courtois, M. Meschke, J. T. Peltonen, and J. P. Pekola, Origin of hysteresis in a proximity josephson junction, Physical Review Letters, vol.101, issue.6, p.14, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00283197

K. Van-der, F. Beek, and . Lévy-bertrand, Les vortex dans les supraconducteurs Une matière molle au sein de la matière dure. Reets de la Physique, vol.28, p.49, 2012.

L. P. Gor'kov and N. B. Kopnin, Vortex motion and resistivity of type-ll superconductors in a magnetic eld, Uspekhi Fizicheskih Nauk, vol.116, issue.7, p.413, 1975.

W. Xia and P. L. ,

, Defects, vortices, and critical current in Josephsonjunction arrays, Physical Review Letters, vol.63, issue.13, p.14281431, 1989.

P. L. Leath and W. Xia, Vortices and critical current in disordered arrays of Josephson junctions, Physical Review B, vol.44, issue.17, p.96199633, 1991.

J. Mannhart, P. Chaudhari, D. Dimos, C. C. Tsuei, and T. R. Mcguire, Critical currents in [001] grains and across their tilt boundaries in yba 2 cu 3 o 7 lms, Phys. Rev. Lett, vol.61, p.24762479, 1988.

K. Senapati, M. G. Blamire, and Z. H. Barber, Spin-lter Josephson junctions, Nature Materials, vol.10, issue.11, p.849852, 2011.

T. I. Baturina and V. M. Vinokur, Superinsulator-superconductor duality in two dimensions, Annals of Physics, vol.331, p.236257, 2013.

M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson et al., Tuning the eld in a microwave resonator faster than the photon lifetime, Applied Physics Letters, vol.92, issue.20, p.203501, 2008.

A. Palacios-laloy, F. Nguyen, F. Mallet, P. Bertet, D. Vion et al., Tunable Resonators for Quantum Circuits, Journal of Low Temperature Physics, p.10341042, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00193151

M. A. Castellanos-beltran and K. W. Lehnert, Widely tunable parametric amplier based on a superconducting quantum interference device array resonator, Applied Physics Letters, vol.91, issue.8, p.83509, 2007.

D. Pozar, Microwave Engineering Fourth Edition, 2012.

. Dickmann, Fabry-Perot resonator, Fachbereich Physikal. Technik, issue.03, 2003.

M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp et al., Coplanar waveguide resonators for circuit quantum electrodynamics, Journal of Applied Physics, vol.104, issue.11, p.113904, 2008.

J. Xia, F. Chen, J. Li, and N. Tao, Measurement of the quantum capacitance of graphene, Nature Nanotechnology, vol.4, issue.8, p.505509, 2009.

J. J. Viennot, M. R. Delbecq, M. C. Dartiailh, A. Cottet, and T. Kontos, Out-of-equilibrium charge dynamics in a hybrid circuit quantum electrodynamics architecture, Physical Review B, vol.89, issue.16, p.165404, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01310664

M. R. Delbecq, V. Schmitt, F. D. Parmentier, N. Roch, J. J. Viennot et al., Coupling a Quantum Dot, Fermionic Leads, and a Microwave Cavity on a Chip, Physical Review Letters, vol.107, issue.25, p.256804, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00657375

J. J. Viennot, J. Palomo, and T. Kontos, Stamping single wall nanotubes for circuit quantum electrodynamics, Applied Physics Letters, vol.104, issue.11, p.113108, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01310663

J. Clarke, the Proximity Eect Between Superconducting and Normal Thin Films in Zero Field, Journal de Physique Colloques, vol.29, issue.C2, 1968.

D. K. Ki, D. Jeong, J. H. Choi, H. J. Lee, and K. S. Park, Inelastic scattering in a monolayer graphene sheet : A weak-localization study, Physical Review B, vol.78, issue.12, p.125409, 2008.

P. K. Day, H. G. Leduc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, A broadband superconducting detector suitable for use in large arrays, Nature, vol.425, issue.6960, p.817821, 2003.

L. Grünhaupt, N. Maleeva, S. Skacel, M. Calvo, F. Levy-bertrand et al., Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum, Physical Review Letters, vol.121, issue.11, p.117001, 2018.

M. T. Bell, I. A. Sadovskyy, L. B. Ioe, A. Y. Kitaev, and M. E. Gershenson, Quantum Superinductor with Tunable Nonlinearity, vol.109, p.137003, 2012.

N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. P. Divincenzo et al., High-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field, Physical Review Applied, vol.5, issue.4, p.44004, 2016.

J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim et al., Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium, Science, vol.344, issue.6181, p.286289, 2014.

A. Cottet, M. C. Dartiailh, M. M. Desjardins, T. Cubaynes, L. C. Contamin et al., Kontos. Cavity QED with hybrid nanocircuits : From atomic-like physics to condensed matter phenomena, Journal of Physics Condensed Matter, vol.29, issue.43, 2017.

, au sein du Département QUEST, dans l'équipe Systèmes hybrides de basse dimensionnalité. Je remercie Wiebke Guichard, Claude Chapelier, Jean-François Dayen et Philippe Lafarge d'avoir bien voulu être examinateurs et rapporteurs de cette thèse. Je remercie également Vincent Bouchiat, mon directeur de thèse, Remerciements Ce travail de thèse a été eectué à l'Institut Néel (CNRS)

, Je tiens à exprimer ma reconnaissance envers Laëtitia Marty et Nedjma Bendiab pour le partage de leur point de vue sur mon travail et leur soutien. J'adresse toute ma gratitude aux membres de l'équipe NanoFab, Thierry Crozes, Bruno Fernandez, Gwenaëlle Julié, Sébastien Dufresnes, Latifa Abassi, Jean-François Motte, qui m'ont fait bénécier de leur savoir-faire technique avec générosité

S. Merci-À-mesdames-florence-pois, Je remercie chaleureusement Christophe Hoarau, Eric Eyraud, Cécile Naud, Valérie Reita, Arnaud Claudel, Christophe Thirion, Pierre Bouvier, Emmanuel André, et Riadh Othmen pour leur support scientique. Enn, j'ai beaucoup apprécié les moments amicaux partagés avec Pierre Giroux