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Résumé

Les catastrophes naturelles comme les canicules, les tempêtes ou les précipitations extrêmes,
proviennent de processus physiques et ont, par nature, une dimension spatiale ou spatio-
temporelle. Le développement de modèles et de méthodes d’inférences pour ces processus
est un domaine de recherche très actif. Cette thèse traite de l’inférence statistique pour les
événements extrêmes dans le cadre spatial et spatio-temporel. En particulier, nous nous in-
téressons à deux classes de processus stochastique: les processus spatiaux max-mélange et les
processus max-stable spatio-temporels. Nous illustrons les résultats obtenus sur des données de
précipitations dans l’Est de l’Australie et dans une région de la Floride aux Etats-Unis.

Dans la partie spatiale, nous proposons deux tests sur le paramètre demélange a d’un processus
spatial max-mélange: le test statistique Za et le rapport de vraisemblance par paire LRa. Nous
comparons les performances de ces tests sur simulations. Nous utilisons la vraisemblance par
paire pour l’estimation. Dans l’ensemble, les performances des deux tests sont satisfaisantes.
Toutefois, les tests rencontrent des difficultés lorsque le paramètre a se situe à la frontière
de l’espace des paramètres, i.e., a ∈ {0,1}, dues à la présence de paramètre de “nuisance”
qui ne sont pas identifiés sous l’hypothèse nulle. Nous appliquons ces tests dans le cadre
d’une analyse d’excès au delà d’un grand seuil pour des données de précipitations dans l’Est
de l’Australie. Nous proposons aussi une nouvelle procédure d’estimation pour ajuster des
processus spatiaux max-mélanges lorsqu’on ne connait pas la classe de dépendance extrêmal.
La nouveauté de cette procédure est qu’elle permet de faire de l’inférence sans spécifier au
préalable la famille de distributions, laissant ainsi parle les données et guider l’estimation. En
particulier, la procédure d’estimation utilise un ajustement par la méthode des moindres carrés
sur l’expression du Fλ-madogramme d’un modèle max-mélange qui contient les paramètres
d’intérêt. Nous montrons la convergence de l’estimateur du paramètre de mélange a. Une
indication sur la normalité asymptotique est donnée numériquement. Une étude sur simulation
montrent que laméthode proposée améliore les coefficients empiriques pour la classe demodèles
max-mélange. Nous implémentons notre procédure d’estimations sur des données de maximas
mensuels de précipitations en Australie dans un but exploratoire et confirmatoire.

Dans la partie spatio-temporelle, nous proposons uneméthode d’estimation semi-paramétrique
pour les processus max-stables spatio-temporels en nous basant sur une expression explicite du
F-madogramme spatio-temporel. Cette partie permet de faire le pont entre la géostatistique et
la théorie des valeurs extrêmes. En particulier, pour des observations sur grille régulière, nous
estimons le F-madogramme spatio-temporel par sa version empirique et nous appliquons une
procédure basée sur les moments pour obtenir les estimations des paramètres d’intérêt. Nous
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illustrons les performances de cette procédure par une étude sur simulations. Ensuite, nous
appliquons cette méthode pour quantifier le comportement extrêmal de maximum de données
radar de précipitations dans l’Etat de Floride. Cette méthode peut être une alternative ou une
première étape pour la vraisemblance composite. En effet, les estimations semi-paramétriques
pourrait être utilisées comme point de départ pour les algorithmes d’optimisation utilisés dans
la méthode de vraisemblance par paire, afin de réduire le temps de calcul mais aussi d’améliorer
l’efficacité de la méthode.

Mots-clé: Dépendance/Indépendance asymptotique, vraisemblance composite, événement
extrême, Fλ-madogramme, processus max-stable, processus max-mélange, précipitations, esti-
mation semi-paramétrique, processus max-stable spatio-temporel.



Abstract

Natural hazards such as heat waves, extreme wind speeds, and heavy rainfall, arise due to
physical processes and are spatial or spatio-temporal in extent. The development of models and
inference methods for these processes is a very active area of research. This thesis deals with
the statistical inference of extreme and rare events in both spatial and spatio-temporal settings.
Specifically, our contributions are dedicated to two classes of stochastic processes: spatial
max-mixture processes and space-time max-stable processes. The proposed methodologies are
illustrated by applications to rainfall data collected from the East of Australia and from a region
in the State of Florida, USA.

In the spatial part, we consider hypothesis testing for the mixture parameter a of a spatial max-
mixture model using two classical statistics: the Z-test statistic Za and the pairwise likelihood
ratio statistic LRa. We compare their performance through an extensive simulation study. The
pairwise likelihood is employed for estimation purposes. Overall, the performance of the two
statistics is satisfactory. Nevertheless, hypothesis testing presents some difficulties when a lies
on the boundary of the parameter space, i.e., a ∈ {0,1}, due to the presence of additional nuisance
parameters which are not identified under the null hypotheses. We apply this testing framework
in an analysis of exceedances over a large threshold of daily rainfall data from the East of
Australia. We also propose a novel estimation procedure to fit spatial max-mixture processes
with unknown extremal dependence class. The novelty of this procedure is to provide a way
to make inference without specifying the distribution family prior to fitting the data. Hence,
letting the data speak for themselves. In particular, the estimation procedure uses nonlinear least
squares fit based on a closed form expression of the so-called Fλ-madogram of max-mixture
models which contains the parameters of interest. We establish the consistency of the estimator
of the mixing parameter a. An indication for asymptotic normality is given numerically. A
simulation study shows that the proposed procedure improves empirical coefficients for the class
of max-mixture models. In an analysis of monthly maxima of Australian daily rainfall data, we
implement the proposed estimation procedure for diagnostic and confirmatory purposes.

In the spatio-temporal part, based on a closed form expression of the spatio-temporal F-
madogram, we suggest a semi-parametric estimation methodology for space-time max-stable
processes. This part provides a bridge between geostatistics and extreme value theory. In
particular, for regular grid observations, the spatio-temporal F-madogram is estimated nonpara-
metrically by its empirical version and a moment-based procedure is applied to obtain parameter
estimates. The performance of the method is investigated through an extensive simulation study.
Afterward, we apply this method to quantify the extremal behavior of radar daily rainfall maxima
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data from a region in the State of Florida. This approach could serve as an alternative or a pre-
requisite to pairwise likelihood estimation. Indeed, the semi-parametric estimates could be used
as starting values for the optimization algorithm used to maximize the pairwise log-likelihood
function in order to reduce the computational burden and also to improve the statistical efficiency.

Keywords: Asymptotic dependence/independence, composite likelihood, extreme event, Fλ-
madogram, max-stable process, max-mixture process, rainfall data, semi-parametric estimation,
space-time max-stable process.
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Chapter 1

Introduction

This thesis aims to develop novel statistical inferencemethods that allow quantifying the extremal
dependence structure of both spatial and spatio-temporal processes. Specifically, we focus on
two families of extreme stochastic processes: the spatial max-mixture processes and the space-
time max-stable processes. These inference methods comprise parametric, semi-parametric, as
well as nonparametric procedures. In addition, we show all methods at work in both simulation
studies and in an analysis of extremal rainfall data collected in two regions: the East of Australia
and the State of Florida, USA.

In this introductory chapter, we present some general statements on spatial and spatio-temporal
modeling of extremes, with a highlight on the existing statistical inferencemethods in this context.
The latter motivated us to conduct this thesis. Afterward, we present the main contributions and
outline of the thesis.

Chapter 2 will recall the mathematical background on spatial and spatio-temporal max-stable
processes as well as spatial max-mixture processes. We refer the reader to that chapter for
precise definitions of the concepts and tools used in this chapter.

1.1 General introduction and motivation

Many extreme value phenomena are inherently spatial, or spatio-temporal, in nature. For exam-
ple, [81] provided a bridge between classical geostatistics and extreme value theory to analyze
annual maxima of daily precipitation measurement in Bourgogne, France. [18] fitted spatial
max-stable models to extreme snowfall data in the Alpine region of Switzerland. [44] modeled
the annual temperature maxima in Switzerland, which is a relatively large-scale phenomenon
compared to rainfall, based on spatial max-stable processes derived from underlying Gaussian
random fields. [64] extended the latter to spatio-temporal modeling of hourly rainfall mea-
surements in western Switzerland. [11] (respectively, [101]) used spatial max-mixture models
to analyze daily precipitations over the East of Australia based on block maxima over the ob-
servation period and exceedances over a large threshold (respectively, extremes of the winter
observations of a hindcast dataset of significant wave height, a measure of ocean energy, from
the North Sea). [24] used a particular class of space-time max-stable models in an analysis of
radar rainfall measurements in a region located in Florida.

1



CHAPTER 1. INTRODUCTION 2

In the context of climate change, some extreme events tend to be more and more frequent. For
example, heatwaves and heavy rainfall are predicted to become more frequent in some regions
of Europe, see [16]. These natural disasters (meteorological and more generally environmental
disasters) have a considerable impact on societies since they leave destruction and chaos behind
while passing over certain areas. Hence, the statistical modeling of extremes constitutes a crucial
challenge.

Typically, extremes of environmental and climate processes such as extreme wind speeds or
heavy precipitation aremodeled using extreme value theory. For an introduction to the univariate
extreme value theory, see, e.g., [32] and in the multivariate case, see, e.g., [14]. Max-stable
processes are ideally suited for the statistical modeling of spatial extremes as they form the
natural extension of multivariate extreme value distributions to infinite dimensions, see [49].
Various families of max-stable models have been proposed for extremal data, see [69, 82, 90, 94].
Within the class of max-stable models, only two types of dependence structures are possible;
either the process is asymptotically dependent or it is exactly independent, see, e.g., [11, 45, 96].
In particular, fitting asymptotically dependent models to asymptotically independent data may
lead to mis-estimation of probabilities of extreme joint events, since it is wrongfully assumed
that the most extreme marginal events may occur simultaneously [33].

Alternatively, [101] introduced a class of max-mixture models, which are able to capture both
asymptotic dependence and asymptotic independence. The basic idea is to mix max-stable and
asymptotically independent processes (i.e., Gaussian and inverted max-stable processes). For
statistical inference on max-stable and max-mixture models, the common approach has been to
maximize the composite likelihood, see, e.g., [11, 26, 63, 64, 84, 101]. The composite likelihood
is obtained by multiplying likelihoods of marginal or conditional events [73, 98]. Specifically,
the pairwise likelihood is often used because it only requires the specification of bivariate events
and typically leads to substantial computational gains compared to the full likelihood approach.
These advantages come at the cost of a loss of efficiency which depends mainly on the underlying
true model. Usually, the composite likelihood information criterion (CLIC) [100] is used for
model selection.

The inference on spatial and spatio-temporal extreme processes is an open field that is still
in development. Various techniques have been proposed for parameter estimation for these
processes. Each technique has its pros and cons. For instance, a semi-parametric estimation
procedure was proposed by [5] for spatial max-mixture processes as an alternative or a prereq-
uisite to the widely used pairwise likelihood inference which has gained much popularity due to
its theoretical properties. Nevertheless, parameter estimation using pairwise likelihood suffers
from some defects:

(i) it can be onerous, since the computation and subsequent optimization of the objective
function is time-consuming, see, e.g., [23, 101],

(ii) the choice of good initial values for optimization of the pairwise likelihood is essential,
see, e.g., [23, 26],

(iii) the resulting estimates of the asymptotically independent process parameters in the max-
mixture model are unsatisfactory in some situations, see, e.g., [5, 11],



3 1.1. General introduction and motivation

(iv) it is a model-based procedure which means that a parametric distribution family has to be
specified prior to fitting the data.

On the basis of point (iv), fitting max-mixture models with this approach can be laborious,
owing to the large number of possible combinations that can be constructed from asymptotically
dependent and asymptotically independent processes. Moreover, within the same family of max-
stable processes, a large variety of behaviors can be obtained depending on the used dependence
model. For instance, different options of the semivariogram model for a Brown-Resnick (BR)
process (see [20, 69]) lead to different behaviors. As an illustration, Figure 1.1 displays the
theoretical behaviors of some valid isotropic semivariogram models and the associated extremal
coefficient functions for the BR process. Using power semivariogram models (e.g., quadratic
or linear) leads to independence as the distance tends to ∞ (i.e., the extremal dependence
coefficient tends to 2). While using bounded semivariogram models (e.g., exponential or
Cauchy), independence cannot be reached even when the distance tends to∞ (i.e., the extremal
dependence coefficient is less than 2). In other words, when the semivariogram model is
bounded, then the resulting BR process will be dependent even at very long ranges. Analogously,
for Schlather processes (see [90]), the correlation function can be modeled by different valid
parametric families allowing for considerable diversity of spatial behavior. In other words, the
smoothness of these processes can be controlled by the choice of the correlation function.

Similarly, the semi-parametric estimation approach proposed in [5] for fitting these processes
is also a model-based approach. Indeed, in [5], the estimation is based on a least squares
minimization between the empirical F-madogram (see [35]) and its theoretical counterpart,
computed for several parametric models. However, in real-world applications, asymptotic
properties are always difficult to infer, see [67]. Accordingly, it could be interesting to fit spatial
models encompassing both asymptotic dependence classes, and let the data speak for themselves.
Furthermore, there is a need to develop efficient exploratory tools that may guide the model
choice in existing model-based inference methods.

In addition, the observations at spatial locations are often assumed to be independent in time,
see, e.g., [45, 46, 84]. However, many extreme environmental processes observations show: (i)
a spatial dependence structure, which means that geographically close locations show similar
patterns (ii) a temporal dependence, which can be noticed from similar high values for two
successive time moments such as within hours. As an illustration, Figure 1.2 depicts the daily
rainfall maxima for the wet seasons (June−September) from the years 2007−2012 at one fixed
grid location in Florida. We observe that it is likely that a high value is followed by a value of
a similar magnitude. So, the temporal dependence may be present. Accordingly, the temporal
dependence structure should be considered in an appropriate way. Currently, space-time models
are still taking up little space in the literature. Max-stable processes have been expanded to
quantify extremal dependence in spatio-temporal data, see [24, 40, 54, 64]. As with spatial
max-stable processes, pairwise likelihood estimation has been found useful to estimate the
parameters of these processes, see, e.g., [41, 54, 64]. Alternatively, [23] introduced a semi-
parametric estimation procedure based on a closed form expression of the so-called extremogram
[42] to estimate the parameters of space-time max-stable BR process. The extremogram has
been estimated nonparametrically by its empirical version, where space and time are separated.
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Figure 1.1: Different semivariogrammodels for a BR process plotted as functions
of distance (left panel). The associated extremal dependence functions (right
panel).

A constrained weighted linear regression is then applied in order to produce parameter estimates.
A big advantage of this semi-parametric method is the substantial reduction of computation time
compared to the pairwise likelihood estimation used so far. However, an implicit difficulty in
any extreme value analysis is the limited amount of data for model estimation, see, e.g., [32].
Hence, inference on the extremogram is difficult because few observations are available as the
threshold approaches 1. Consequently, the semi-parametric estimates obtained by [23] showed
a larger bias than pairwise likelihood estimates and are sensitive to the choice of the threshold
used for the extremogram. Accordingly, the surrogates of existing estimation techniques should
be welcomed.

1.2 Main realizations of the thesis

1.2.1 Hypothesis testing for the mixture parameter a of a spatial max-
mixture model

Many efforts has been previously placed on determining the appropriate dependence class for
modeling spatial extremes. For instance, in [9], a madogram-based test has been proposed
to test the asymptotic independence of bivariate maxima vectors with a generalization to the
spatial context (Gaussian and max-stable processes). Such a test could facilitate the modeling
of spatial data by a random field with appropriate extremal behavior. In this context, we provide
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Figure 1.2: Daily rainfall maxima in inches taken over hourly accumulated
measurements from 2007−2012 for a fixed location in Florida, USA.

a parametric model-based approach for testing hypothesis on the mixture parameter of a max-
mixture process. The latter is defined as Z (s) = max {aX (s), (1− a)Y (s)}, s ∈ S ⊂ R2, with
{X (s)}s∈S is a max-stable process, {Y (s)}s∈S is an asymptotically independent process and the
mixture parameter a ∈ [0,1]. Accordingly, a controls the level of the asymptotically dependent
part present in this process.

To test the hypothesis H0 : a = a0 versus H1 : a , a0, for some specified value a0 ∈[0,1],
we consider two statistics: the composite likelihood ratio statistic LRa and the Z-test statistic
Za. Pairwise likelihood is adopted for estimation purposes. To that aim, we consider the
following usual testing framework. Assume that we observe the spatial max-mixture process
Z at D locations s1, . . ., sD and T times t1, . . ., tT , where the observations are assumed to be
independent in time. Suppose that the parameters of a max-mixture model ϑ ∈ Rq is partitioned
as ϑ =

(
γ,η

)
∈ Rq1 ×Rq2 , with q1+ q2 = q, and that we want to test whether the null hypothesis

H0 : γ = γ∗ holds (i.e., reject it, or fail to reject it). The parameter γ ∈ Rq1 is the parameter
of interest, while η ∈ Rq2 acts as a nuisance parameter. Let ϑ̂ =

(
γ̂, η̂

)
denotes the unrestricted

maximum pairwise likelihood estimator. Under some regularity conditions, for large T , ϑ̂
is asymptotically normally distributed (see, e.g., [27, 99]), i.e., ϑ̂

D
→ Nq

(
ϑ,G−1(ϑ)

)
, where

Nq(µ,Σ) denotes the q-dimensional normal distribution with mean µ and variance Σ and
D
−−→

denotes the convergence in distribution. The asymptotic variance is given by

G
−1(ϑ) =H −1(ϑ)J (ϑ)H −1(ϑ),

where G(ϑ) is the Godambe information matrix,H (ϑ) = E
{
−∇2`(ϑ)

}
is called the sensitivity

matrix, J (ϑ) = Var {∇`(ϑ)} = E
{
∇`(ϑ)∇t`(ϑ)

}
is called the variability matrix, and `(.) is

the (weighted) pairwise log-likelihood. We denote by ϑ̂
∗
= (γ∗, η̂∗) the maximum pairwise

likelihood estimator under the null hypothesis, i.e., η̂∗ is the maximum pairwise likelihood
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estimator of η when γ is held fixed to the value γ∗. A two-sided pairwise likelihood ratio test
may be based on the statistic (see, e.g. [70, 99])

LR = 2
{
`(ϑ̂)− `(ϑ̂

∗
)
}
D
−−→

q1∑
j=1

c jW j,

where the W j’s are independent χ2
1 random variables, and the c j’s are the eigenvalues of

the matrix {H γγ
}−1Gγγ evaluated under the null hypothesis, where H γγ (ϑ) and Gγγ (ϑ)

denote, respectively, the q1 × q1 submatrices of the inverse of H (ϑ) and G(ϑ) with elements
corresponding to γ. Many different adjustments have been proposed in the literature to recover
an asymptotic chi-squared distribution χ2

q1
when q1 > 1, see, e.g., [28, 83, 88]. Nevertheless,

simulation-based techniques could be used to approximate the quantiles of the limit
∑q1

j=1 c jW j .
Accordingly, to test H0 : a = a0 versus H1 : a , a0, a0 ∈[0,1], we set γ = a. For this special case,
we adopt the following two statistics:

(i) The pairwise likelihood ratio statistic with q1 = 1 can be expressed as

LRa = c−1LR
D
−−→ χ2

1,

where the constant c is computed by the same manner described above, that is, c =
{H

aa
}−1Gaa, where H aa (ϑ) and Gaa (ϑ) denote, respectively, the 1× 1 submatrices of

the inverse ofH (ϑ) and G(ϑ) with elements corresponding to a.

(ii) The Z-test statistic which is straightforwardly derived from the central limit theorem
(CLT) for maximum pairwise likelihood estimators.

Za =
â− a√
Gaa (ϑ̂)

D
−−→ N {0,1},

where Gaa (ϑ̂) denotes a 1×1 submatrix of the inverse of G(ϑ̂) pertaining to a.

In a simulation study, we obtain the power curves when the corresponding null hypotheses
are false (i.e. the proportion of null hypotheses rejected) for the two statistics: LRa and Za.
Generally, we notice that the performance of the two statistics is satisfactory. As anticipated, the
power to reject asymptotic dependence, i.e., H0 : a = 1 (respectively, asymptotic independence,
i.e., H0 : a = 0) improves as a0 → 0 (respectively, a0 → 1), although the tests seem not very
powerful in these two cases. Furthermore, these likelihood-based tests statistics can control the
type I error rate α. Finally, to illustrate the benefits of the suggested testing approach, we analyze
daily rainfall data (in millimeters) recorded during 1972−2014 at 38 monitoring stations (which
are shown by black cross-symbols in Figure 1.3) in the East of Australia using exceedances
over a large threshold. We show that our testing procedure could be an effective tool for model
validation on the mixing parameter a. Testing when all model parameters are of interest is also
discussed.
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1.2.2 Fλ-madogram for a spatial max-mixture model

Based on the definition of Fλ-madogram [15], we derive a closed form expression of the
Fλ-madogram for max-mixture model containing the parameters of interest.

Proposition 1.1. Let {X (s)}s∈S, S ⊂ R2 be a simple max-stable process, with extremal de-
pendence coefficient function θX , and {Y (s)}s∈S be an inverted max-stable process with tail
dependence coefficient η = 1/θY , where θY is the extremal dependence coefficient function of the
latent max-stable process. Then, for any spatial lag h = s1 − s2, s1, s2 ∈ S, the Fλ-madogram
of the spatial max-mixture process {Z (s)}s∈S is given for a , 1 by

νFλ (h) =
λ

1+ λ
−

2λ
a(θX (h)−1)+1+ λ

+
λ

aθX (h)+ λ

−
λθY (h)

(1− a)θY (h)+ aθX (h)+ λ
β

(
aθX (h)+ λ

1− a
, θY (h)

)
, λ ≥ 0

where β(., .) is the beta function.

As a consequence of the above formula for νFλ (h), we easily recover the expressions of the
following special cases:

(i) By letting a→ 1, the Fλ-madogram corresponds to a simplemax-stable process {X (s)}s∈S
and switches to the extremal dependence coefficient θX (h), i.e.,

νFλ (h) =
λ

λ +1
θX (h)−1
λ + θX (h)

,

where νFλ (h) ∈
[
0, λ

(1+λ)(2+λ)

]
, see [15].

(ii) By setting a = 0, the Fλ-madogram corresponds to an inverted max-stable process
{Y (s)}s∈S and switches to the extremal dependence coefficient θY (h), i.e.,

νFλ (h) =
1

1+ λ
−

λθY (h)
λ + θY (h)

β (λ, θY (h)) .

(iii) By setting λ = 1, we obtain formula of F-madogram for max-mixture process {Z (s)}s∈S ,
see [5].

Accordingly, the Fλ-madogram can detect both dependence structures: asymptotic dependence
and independence.

1.2.3 Fλ-madogramestimationprocedure for a spatialmax-mixturemodel
parameters

Whenmodeling dependence in spatial extremes, imposing a specific type of asymptotic behavior
has important consequences on the estimation of return levels for spatial functionals. So, it could
be interesting to fit spatial models encompassing both asymptotic dependence classes, and let
the data speak for themselves. Thus, we develop a novel estimation procedure based on the
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Fλ-madogram to fit spatial max-mixture models, which combine max-stable and inverted max-
mixture processes into a single family, in order to capture both asymptotic dependence and
independence in spatial extremes.

The estimation procedure consists of using a moment-based approach to estimate the mixture
parameter a and the bivariate dependence summaries (θX (h), θY (h)) for the two processes
(max-stable, inverted max-stable). More precisely, we split the estimation procedure into two
steps: we first estimate the extremal dependence coefficient functions θX (h) and θY (h), with
a fixed mixing parameter a, and then we estimate a with the former estimates of θX (h) and
θY (h). In other words, we may write the Fλ-madogram as a function of a, λ, θX and θY ; that
is, νFλ (h) = g(a, λ, θX (h), θY (h)). The idea beyond our procedure is that θX and θY may be
estimated by θ̂X and θ̂Y , minimizing the square difference between g(a, λ, θX (h), θY (h)) and its
empirical counterpart. A similar approach has been proposed by [15] to estimate the extremal
dependence coefficient function in a max-stable setting. Then we can estimate a by â such that
the empirical version of the Fλ ′-madogram is the closest to g(a, λ′, θ̂X (h), θ̂Y (h)).

The proposed estimation procedure does not provide a full characterization of the max-
mixture process. It allows estimating the mixture parameter a and bivariate summaries of the
two components in the mixture (θX (h), θY (h)). While the likelihood-based procedures can be
used to estimate a full generative spatial model and not only bivariate dependence summaries.
So, the proposed approach may be viewed as an intermediate approach between a completely
nonparametric approach based on empirical extremal coefficients, which have high variability
and do not yield a valid spatial model, and a fully parametric approach, which is very efficient and
yields a valid spatial model. Therefore, we employ our procedure for selection and diagnostic
purposes.

We establish the consistency of the resulting estimates from the proposed Fλ-madogram
estimation procedure. Then, in a simulation study, we assess the performance of the resulting
estimates

(
â, θ̂X (h), θ̂Y (h)

)
. It shows that the proposed estimation procedure performswell, even

when considering the boundary values for a ∈ {0,1}. In addition, an indication for asymptotic
normality is given numerically. Finally, we apply our inference framework in an analysis of
monthly maxima of daily rainfall data collected in the East of Australia. Our procedure works as
a guiding tool for pairwise likelihood estimation. It offers an exploratory assessment for model
selection in a preliminary step and model checking in the validation step. Furthermore, we
perform a small prediction application at ungauged locations. Denoting by {ZM (s)}s∈S , S ⊂ R2

the site-wise monthly maxima process of the max-mixture rainfall process Z (s). An interesting
question might be “given that the process ZM (s) exceeds a high threshold z at location s2, how
likely is it high at a (nearby) location s1?”. More precisely, how can we predict

P (z) = P[ZM (s1) > z |ZM (s2) > z]?,

where z denotes a high threshold. In the following lemma, we express the bivariate conditional
exceedance probability P (z) for the max-mixture process Z (s) in terms of the parameters: a, θX

and θY .

Lemma 1.1. The bivariate conditional exceedance probability of a max-mixture process Z (s)
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is given by

P (z) =
1−2e−

1
z + e−

aθX (h)
z

{
−1+2e−

1−a
z +

[
1− e−

1−a
z

] θY (h)
}

1− e−
1
z

, a ∈ [0,1].

where h = s1− s2 is the distance vector between the locations s1, s2 ∈ S.

Since the aim of spatial analysis is usually to enable prediction at unobserved location, we
predict P (z) at three “unused” sites s1 using our proposed estimation methodology and pairwise
likelihood method with various values of the threshold z. The geographical locations of the
unused sites s1 are shown by colored numbers in Figure 1.3. Afterward, the goodness-of-fit
is assessed based on empirical counterparts of P (z) at the unused locations. The results are
promising with a good agreement overall.

1

2

3

Figure 1.3: Geographical locations of 41 meteorological stations located in the
East ofAustralia. The 38 stationswith cross symbols are used formodel inference.
The other 3 stations labeled by colored numbers {1,2,3} are put aside for assessing
the goodness-of-fit.

1.2.4 Semi-parametric estimation for space-time max-stable processes

We propose two novel semi-parametric estimation schemes for space-time max-stable processes
based on the spatio-temporal F-madogram νF (h, l). Let X := {X (s, t) : (s, t) ∈ S×T } be a sta-
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tionary space-timemax-stable random process, then the spatio-temporal version of F-madogram
(originally due to [35]) is defined by

νF (h, l) := νF (s1− s2, t1− t2) =
1
2
E [|F (X (s1, t1))−F (X (s2, t2)) |],

where h is the spatial lag, l is the temporal lag and F is the standard Fréchet probability
distribution function. We assume that the locations lie on a regular grid and that time points are
equidistant. Using the link between the extremal coefficient and the F-madogram in the context
of a space-time max-stable process, we suggest the following estimation schemes:

(i) Scheme 1: we estimate spatial and temporal parameters separately. So, we consider the
spatial evolution of X (s, t) at a given time of reference (a merely spatial process) or its
evolution over time at a given location of reference (a merely temporal process). Based
on nonlinear least squares, we minimize the squared difference between the empirical
estimates of purely spatial/temporal F-madograms and their model-based counterparts.
[24] proposed a similar approach for fitting isotropic space-time max-stable BR process
based on the extremogram which is the natural extreme analog of the correlation function
for stationary processes, see [42].

(ii) Scheme 2: we generalize the nonlinear least squares to estimate spatial and temporal
parameters simultaneously. Thus, we consider how X (s, t) evolves in both space and time.

Let us remark that similar estimation fashions can be found in the geostatistics literature, which
are based on the basic tool in geostatistics, the semivariogram, see Section 2.1.2. In a simulation
study, we evaluate our new semi-parametric estimation procedure. We compute performance
metrics: the mean estimate, the root mean squared error (RMSE) and the mean absolute error
(MAE). Altogether, we observe that the estimates are close to the true values. In addition,
we remark that our estimation methodology outperforms the one suggested by [23]. Finally,
we apply our semi-parametric estimation procedure to quantify the extremal behavior of daily
rainfall maxima in a region of the State of Florida, see Figure 1.4. We consider various space-
time max-stable models, where the Akaike Information Criterion (AIC) under the framework of
least squares estimation is used to select the best-fitting model, see [13]. Lower values of AIC
indicate a better fit. Moreover, permutation tests are used to determine the range of clear spatial
and temporal dependence.

1.3 Outline of the thesis
The remainder of the thesis is organized as follows. Chapter 2 introduces theoretical foundations
on spatial and spatio-temporal modeling of extremes, which will be used in the subsequent
chapters. In Chapter 3, we consider hypothesis testing for the mixture parameter a of a
spatial max-mixture model using two classical statistics: the Z-test statistic Za and the pairwise
likelihood ratio statistic LRa. A novel estimation procedure in the family of spatial max-mixture
models based on a closed form expression of the Fλ-madogram is described and analyzed in
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Chapter 4. In Chapter 5, we develop a novel semi-parametric inference approach for space-
time max-stable processes based on the spatio-temporal F-madogram. Concluding remarks are
discussed in Chapter 6. In addition, we mention some remaining problems which are subject to
future research.

Figure 1.4: Radar rainfall observation area in the State of Florida, USA. Source:
Southwest Florida Water Management District (SWFWMD).





Chapter 2

Statistical modeling for spatial and
spatio-temporal extremes

In this chapter, we introduce theoretical foundations, which will be used in the subsequent
chapters. In Section 2.1, we recall some well-known results on spatial stochastic processes. In
Section 2.2, we define spatial extremes processes: max-stable, inverted max-stable and max-
mixture processes. Furthermore, some classical extremal dependence measures are presented.
In Section 2.3, we state some general definitions for extreme space-time processes.

2.1 Fundamentals of spatial stochastic processes
In this section, we provide some basics on spatial random processes: definitions, notations,
examples and related properties. For a detailed description, see, e.g., [36, 37, 56, 95] and the
references therein.

2.1.1 Definitions, notations and important properties

Definition 2.1. (A spatial stochastic process) A spatial stochastic process X is a collection of
random variables {X (s) : s ∈ S} =: {X (s)}s∈S defined on a common probability space (Ω,F ,P)
and indexed by a parameter s ∈ S ⊂ Rd . The points s denote the spatial coordinates and are
called “sites” or “locations” or “stations”. Different notations can be adopted in specific
frameworks:

(i) When X is a purely temporal process, it is common to replace s ∈ S by t ∈ T ⊂ R+ to
indicate time, where the points t denote the temporal coordinates and are called “times”
or “moments”. The process is usually referred to as a time series.

(ii) When X is a spatio-temporal process, we usuallywrite
{
X (s, t) : (s, t) ∈ S×T ⊂ Rd ×R+

}
,

where the space S×T is the spatio-temporal domain.

Usually, a spatial process is observed at a set of locations. For example, the rainfall measure-
ments in a region are observed at the points where the monitoring stations are located. However,
the rainfall process is distributed continuously in space. A spatial process in dimension d ≥ 2 is

12
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also called a random field. Generally, throughout this thesis, we will consider spatial processes
when d = 2.

The first two moments of a stochastic process {X (s)}s∈S are useful to describe it, that is,

• the expectation µ(s) = E {X (s)} , s ∈ S,

• the covariance functionCov(s1, s2) =E {X (s1)X (s2)}− µ(s1)µ(s2), s1, s2 ∈ S, also called
covariogram.

The variance is defined asVar (s) =Cov(s, s) and the correlation function is given by ρ(s1, s2) =
Cov(s1, s2) {Var (s1)Var (s2)}−1/2 , s1, s2 ∈ S. An important class of stochastic processes is
formed by Gaussian processes, which are fully characterized by µ(s) and Cov(s1, s2).

Definition 2.2. (Gaussian process)The stochastic process {X (s)}s∈S is aGaussian process if for
any k ∈ N, s1, . . ., sk ∈ S, the joint distribution of of the random vector X = (X (s1), . . .,X (sk ))t

is a k-dimensional Gaussian distribution with mean vector µ = E(X ) and covariance matrix
Σ =

(
Cov(si, s j )

)
i, j
, i, j = 1, . . ., k.

Provided the covariancematrixΣ is nonsingular, X has aGaussian probability density function
(p.d.f.) given by

f (x) =
∂k

∂1, . . ., ∂k
F (x) = (2π)−k/2(det Σ)−1/2 exp

{
−

1
2

(x− µ)tΣ−1(x− µ)
}
, (2.1)

where ∂i is the differentiation with respect to the variable xi, F is the Gaussian cumulative
distribution function (c.d.f.) of X and x are possible values of X . Gaussian processes have
been used extensively in classical geostatistics due to their appealing theoretical properties,
tractability in high dimensions, explicit conditional distributions, and simulation facility, see
[57].

When modeling spatial phenomena, various forms of a stationary process may be assumed.
Definition 2.3 states three “levels” of stationarity. In what follows, D= stands for equality in
distribution.

Definition 2.3. (Stationarity)

(i) (Strict stationarity) A spatial stochastic process {X (s)}s∈S is called strictly/strongly sta-
tionary if for any k ∈ N, s1, . . ., sk ∈ S, s1+ h, . . ., sk + h ∈ S with h ∈ Rd ,

(X (s1), . . .,X (sk ))t D= (X (s1+ h), . . .,X (sk + h))t ,

In other words, strict stationarity implies that the finite-dimensional distribution is unaf-
fected by the translation of an arbitrary quantity h ∈ Rd .

(ii) (Weak stationarity) A spatial stochastic process {X (s)}s∈S is called weakly/second-order
stationary or stationary in the broad sense, if its mean is constant, that is µ(s) = µ, s ∈ S
and if its covariance function depends only on the separation vector, that is Cov(s1, s2) =
Cov(h), where h = s1− s2, and s1, s2 ∈ S. In particular, the variance takes the constant
value Var (s) = σ2, s ∈ S, and the correlation function equals ρ(h) = Cov(h)/σ2.
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(iii) (Intrinsic stationarity and semivariogram) A spatial stochastic process {X (s)}s∈S is
called intrinsically stationary, if its increments are weakly stationary; in particular, there
exists a function γ(h), called the semivariogram, forwhich2γ(h) =Var (X (s)− X (s+ h)),
provided that s, s+ h ∈ S. The function 2γ(h) is called the variogram.

These three types of stationarity relate to shift-invariance property. Nevertheless, they are
not equivalent. The strict stationarity implies weak stationarity, which in turn entails intrinsic
stationarity. However, the converse is not necessarily true. In the case of Gaussian processes,
second-order stationarity is equivalent to strict stationarity. In what follows, unless specified
otherwise, we shall say “stationary” for strictly stationary.

The concept of isotropy is closely linked to stationarity, where both are geometric invariance
properties of stochastic processes. Similarly, as stationarity is a shift-invariance property,
isotropy is a rotation-invariance property.

Definition 2.4. (Isotropy) A spatial stochastic process {X (s)}s∈S is called isotropic, if for any
Rd isometry m with m(si) ∈ S, i = 1, . . ., k,

(X (s1), . . .,X (sk ))t D= (X (m(s1)), . . .,X (m(sk )))t .

If the stochastic process {X (s)}s∈S is weakly stationary and isotropic, then its covariance
function Cov(s1, s2) depends only on ‖ s1− s2‖ not on its orientation, where ‖ s1− s2‖ denotes
the Euclidean distance between sites s1, s2, that is, Cov(s1, s2) = Cov(‖ s1− s2‖).

2.1.2 Correlation functions and semivariograms

In geostatistics, correlation functions and semivariograms are used to express the structure of the
spatial dependence present in the realization observed. In a weakly stationary framework, both
the correlation functions and the semivariograms are theoretically equivalent. More precisely,
we have

γ(s1− s2) = σ2 {1− ρ(s1− s2)} . (2.2)

Therefore, γ(s1− s2) can be easily recovered from ρ(s1− s2). Note that if the semivariogram
γ is unbounded, a relationship of the form (2.2) with some correlation function ρ cannot hold,
(see, e.g., [56]). Correlation functions and semivariograms cannot be an arbitrary functions
and must verify specific constraints. More precisely, for any given set s1, . . ., sk of arbitrary
locations in S and for any given set of real numbers a1, . . .,ak ∈ R, correlation functions are
nonnegative-definite, that is,

k∑
i=1

k∑
j=1

aia j ρ(si − s j ) ≥ 0,

whilst semivariograms are conditionally negative-definite, that is,

k∑
i=1

k∑
j=1

aia jγ(si − s j ) ≤ 0,
k∑

i=1
ai = 0.
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Examples of correlation functions

The following examples are isotropic parametric families of correlation functions on Rd tradi-
tionally used in geostatistics, where ρ(s1, s2) = ρ (‖ s1− s2‖) ,∀s ∈ S ⊂ Rd . Other models are
presented in [1, 56, 103]. Below, c1 denotes a smoothness parameter (also called the shape
parameter), c2 denotes a range parameter (sometimes called the scale parameter), Γ(.) is the
gamma function, Jc1 and Kc1 denote, respectively, the Bessel and the modified Bessel functions
of the second kind with order c1 and d is the dimension of the spatial process.

• Bessel: ρ(s1, s2) =
( 2c2
‖ s1−s2‖

)c1
Γ(c1+1)Jc1

(
‖ s1−s2‖

c2

)
, c2 > 0, c1 ≥

d−2
2 ,

• Cauchy: ρ(s1, s2) =
[
1+

(
‖ s1−s2‖

c2

)2]−c1
, c1,c2 > 0,

• Powered exponential (stable model): ρ(s1, s2) = exp
[
−

(
‖ s1−s2‖

c2

)] c1
, 0 < c1 ≤ 2, c2 > 0,

• Whittle-Matérn: ρ(s1, s2) = 21−c1
Γ(c1)

(
‖ s1−s2‖

c2

)c1 Kc1

(
‖ s1−s2‖

c2

)
, c1,c2 > 0,

• Spherical: ρ(s1, s2) =
[
1−1.5

(
‖ s1−s2‖

c2

)
+0.5

(
‖ s1−s2‖

c2

)3]
1{‖ s1−s2‖≤c2}, c2 > 0.

In what follows, we will call the range the smallest distance ‖ s1− s2‖ for which ρ (‖ s1− s2‖) = 0
(if it exists). Also, let us remark that setting c1 = 1 (respectively, c1 = 2) in the powered ex-
ponential model, leads to exponential (respectively, Gaussian) models. Figure 2.1 depicts the
correlation functions for the first four parametric families introduced above with various smooth-
ness parameters c1. For example, with this particular setting for the correlation parameters, the
slope of the powered exponential correlation function near the origin is steeper than Whittle-
Matérn, leading to a rougher dependence structure. Complete positive (respectively, negative)
dependence is reached when ρ(s1, s2) = 1 (respectively, −1), whereas independence occurs
when ρ(s1, s2) = 0. Most parametric correlation families do not allow negative values, see [86].

Examples of semivariograms

In many applications the semivariogram is taken to be stationary, i.e., it depends only on s1− s2,
and isotropic, i.e., it depends only on the length ‖ s1 − s2‖. As we mentioned above, bounded
semivariograms can be constructed from correlation functions according to relation (2.2). For
instance, the powered exponential model is defined by

γ(s1, s2) = σ2
{

1− exp
[
−

(
‖ s1− s2‖

c2

)] c1}
, 0 < c1 ≤ 2, c2,σ

2 > 0,

where c1 and c2 are defined as above, and σ2 denotes the sill; the value that the semivariogram
model attains at the range. Other bounded models are defined analogously. Another useful class
of models, the semivariograms without a sill. These models are unbounded and correspond
to an intrinsically stationary stochastic process that is not weakly stationary. For instance, the
fractal Brownian motion (FBM) semivariogram (also called the power model) is defined by

γ(s1, s2) =
(
‖ s1− s2‖

c2

)c1

, 0 < c1 < 2, c2 > 0,
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Figure 2.1: Dependence structure of the Bessel, Cauchy, powered exponential and
Whittle-Matérn correlation functions - from left to right. The range parameter
c2 = 1 while the smoothness parameter c1 values are given in the legends. The
distance h = ‖ s1− s2‖.

where the case c1 = 1 results in the linear model. Figure 2.2 displays the dependence behavior
of isotropic Cauchy, powered exponential, Whittle-Matérn and FBM semivariograms. The first
three semivariograms are bounded and their counterparts of correlation functions are displayed
in Figure 2.1. In addition, we can see that depending on the value of c1, the FBMmodel exhibits
a large variety of behaviors near the origin.

Empirical semivariogram

In practice, the empirical (or experimental) semivariogram/covariogram is the instrument used
to estimate the structure of spatial variability existing in the phenomenon of interest. The
empirical classical semivariogram of a stationarity spatial is obtained by implementing the
method of moments (MoM).

Definition 2.5. (Spatial empirical semivariogram, [76]) Let {X (s)}s∈S be a stationary spatial
process, then the empirical classical semivariogram is defined by

γ̂(h) =
1

2|Bh |

∑
(si,si+h)∈Bh

(X (si)− X (si + h))2 , (2.3)

where |.| denotes the cardinality, X (s) are the values of the phenomenon of interest at locations
s and Bh is the set of pair of locations whose pairwise distances h.

Under the intrinsic stationarity hypothesis, the empirical semivariogram γ̂(h) is an unbiased
estimator of the semivariogram γ(h), that is, E

{
γ̂(h)

}
= γ(h), see Section 5.1.2 in [56].
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Figure 2.2: Cauchy, powered exponential, Whittle-Matérn and FBM semivari-
ograms - from left to right. For all models, we set the sill and range parameters
σ2 = c2 = 1 while the smoothness parameter c1 values are given in the legends.
The distance h = ‖ s1− s2‖.

2.2 Spatial extremes processes: models
Although Gaussian processes are convenient for modeling some phenomena (see, e.g., [56]).
However, they are unrealistic formany environmental data, e.g., for precipitation data. Moreover,
they have been heavily criticized as being unable to capture asymptotic dependence, see [45].
Indeed, the Gaussian p.d.f., recall 2.1, has exceptionally light tails and therefore can badly
underestimate probabilities associated to extreme events. In addition, Gaussian processes are
asymptotically independent, meaning that the dependence strength between events observed at
two distinct spatial sites vanishes as their extremeness increases. However, when modeling the
joint occurrence of extremes over a region, different forms of extremal dependence may arise:
asymptotic dependence and asymptotic independence. Therefore, there is a need to develop
more suitable models for analyzing spatial extremes. Extreme value theory provides powerful
statistical tools for this purpose. Max-stable processes form an extension of extreme value theory
to the level of stochastic processes.

The following definition extends the concept of asymptotic independence and dependence
between a pair of random variables into the framework of spatial processes, see [33, 93].

Definition 2.6. (Asymptotic independence and dependence) Let {X (s)}s∈S be a stationary
spatial process with univariate common marginal distribution function F. The upper tail
dependence function χ is defined by

χ(h) = lim
x→∞
P{X (s) > x |X (s+ h) > x}, s, s+ h ∈ S. (2.4)

• If χ(h) = 0, the pair (X (s),X (s+ h)) is said to be asymptotically independent.

• If χ(h) , 0, the pair (X (s),X (s+ h)) is said to be asymptotically dependent.
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• The process X is said to be asymptotically independent (respectively, asymptotically
dependent) process if χ(h) = 0 (respectively, χ(h) , 0) for any h ∈ S.

Accordingly, a max-stable process X (s) (see Definition 2.7) defined on a spatial domain S
is asymptotically dependent in the sense that χ(h) > 0, for all h ∈ S. Accordingly, a large
event at s+ h leads to a non zero probability of a similarly large event at s. However, in some
applications, it seems that χ(h) = 0 and then asymptotic independencemodels may be preferred.
As mentioned above, Gaussian processes are asymptotically independent. However, they are
too restrictive in the bulk of extremal applications, so broader classes of models are needed to
allow flexible modeling. For instance, the inverted max-stable processes, see Definition 2.15.

In the sequel, we present the theory of extreme spatial processes: max-stable, inverted max-
stable and max-mixture processes. In addition, we describe measures of dependence that are
suitable either for asymptotic dependence or independence models, or to help to discriminate
between them.

2.2.1 Models for asymptotic dependence: max-stable models

Classical extreme value theory provides support for the use of max-stable models for block-
maxima (e.g., annual maxima of daily temperature or precipitation). Indeed, max-stable models
form the natural extension of the multivariate extreme value distribution to infinite dimensions.
We start with the definition of max-stable processes, see [49, 50, 51].

Definition 2.7. (Spatial max-stable process) Let {Xi (s) : s ∈ S}, i = 0,1,2, . . ., denote an inde-
pendent and identically distributed (i.i.d.) replicates of a random process X (s). The process
X is called max-stable if there exist sequences of continuous functions {an(s) > 0} and {bn(s)}
such that,




n∨
i=1

Xi (s)− bn(s)
an(s)


 s∈S

D
= {X (s)}s∈S, n = 1,2, . . ., (2.5)

where
∨

denotes the max-operator.

This definition of max-stable processes offers a natural choice for modeling spatial extremes.
Univariate extreme value theory implies that the marginal distributions of {X (s)}s∈S are Gen-
eralized Extreme Value GEVµ(s),σ(s),ξ (s) distributed, i.e.,

F (x) := P(X (s) ≤ x) =



exp
{
−

(
1+ ξ (s) x−µ(s)

σ(s)

)−1/ξ (s)
}
, ξ (s) , 0,

exp
{
−e−

x−µ(s)
σ(s)

}
, ξ (s) = 0,

(2.6)

provided that 1+ ξ (s) x−µ(s)
σ(s) > 0, for some location µ(s) ∈ R, scale σ(s) > 0 and shape

ξ (s) ∈ R. The parameter ξ determines the tail behavior of the distribution. Consequently, it
divides the GEV into three standardized families of distributions as follows.

• Type I (Gumbel, ξ = 0): F (x) = exp
{
−e−x} , x ∈ R.
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• Type II (Fréchet, ξ = α−1 > 0): F (x) =



0, x < 0,
exp

{
−x−α

}
, x ≥ 0.

• Type III (Reversed Weibull, ξ = −α−1 < 0): F (x) =



exp {−(−x)α} , x < 0,
1, x ≥ 0.
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Figure 2.3: Density functions of the GEV distribution families.

Figure 2.3 visualizes the density curves of the three GEV distribution families. Theoretically,
there is no loss of generality in transforming the margins to have unit Fréchet distribution, that is,
F (x) =: GEV1,1,1(x) = exp{−x−1}, x > 0, see [55]. With this choice, the normalizing functions
are an = n and bn = 0 and the process is called simple max-stable process. For a detailed
overview of extreme value theory, we refer the reader to [14, 32, 50]. A simple max-stable
process can be constructed using the spectral representation introduced by [49, 90].

Theorem 2.1. (Spectral representation for spatial simple max-stable processes) Let X be a
simple max-stable process on S. Then there exists {ζi}i≥1 that generates a Poisson point process
on R+ with intensity ζ−2dζ and a sequence {Ui (s), s ∈ S}i≥1 of i.i.d. copies of a positive
stochastic process U (s) that satisfies E[U (s)] = 1 for all s ∈ S such that

X (s) D=



∞∨
i=1
{ζiUi (s)}


 s∈S

. (2.7)

Theorem 2.2. (Multivariate maxima) For D ∈ N \ {0}, s1, . . ., sD ∈ S, and x1, . . ., xD > 0, the
finite D-dimensional distributions of the max-stable process X (2.7) is

P(X (s1) ≤ x1, . . .,X (sD) ≤ xD) = exp


−E



D∨
j=1

{
U (s j )

x j

}



=: exp

{
−Vs1,...,sD (x1, . . ., xD)

}
,

(2.8)
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where Vs1,...,sD (.) is called the D-dimensional exponent function.

The function Vs1,...,sD (.) summarizes the extremal dependence structure and satisfies

• homogeneity of order −1, that is, Vs1,...,sD (t x1, . . ., t xD) = t−1Vs1,...,sD (x1, . . ., xD), t > 0.

• max
{
x−1

1 , . . ., x
−1
D

}
≤ Vs1,...,sD (x1, . . ., xD) ≤ x−1

1 + · · ·+ x−1
D , where the lower (respectively,

upper) bound corresponds to complete dependence (respectively, independence).

• Vs1,...,sD (x,∞, . . .,∞) = 1/x for any permutation of the D arguments.

• setting xi = x for all i = 1, . . .,D yields Vs1,...,sD (1, . . .,1) = θD (s1, . . ., sD), where the
function θD (.) is known as the D-dimensional extremal dependence function, see [92].

Unlike for univariate case, the functionVs1,...,sD (.) has no explicit form. Thus, various approaches
are exist for estimating it. For instance, a nonparametric estimation procedure has been proposed
by [25] in the bivariate case. Also to that aim, the authors in [81] tied together the tools used in
classical geostatistics (in particular, themadogram) and extremevalue theory. The corresponding
p.d.f. can be obtained by computing the derivative of (2.8) with respect to all xi, i = 1, . . .,D.
Namely,

f (x1, . . ., xD) = exp
{
−Vs1,...,sD (x1, . . ., xD)

} ∑
η∈BD

(−1) |η |
|η |∏
i=1

∂ |ηi |

∂xηi
Vs1,...,sD (x1, . . ., xD), (2.9)

where BD denotes the set of all possible partitions of the set {s1, . . ., sD}, η = (η1, . . ., ηt ), |η | = t
is the size of the partition η and ∂ |ηi |

∂xηi
denotes the mixed partial derivatives with respect to the

elements of the i-th element of the partition η. For example, with D = 3 there are five partitions.
If η = {(s1, s2)(s3)}, we have

∂ |η1 |

∂xη1

Vs1,...,sD (x1, . . ., xD) =
∂2

∂x1∂x2
Vs1,s2,s3 (x1, x2, x3) =: V12,

∂ |η2 |

∂xη2

Vs1,...,sD (x1, . . ., xD) =
∂

∂x3
Vs1,s2,s3 (x1, x2, x3) =: V3,

and so forth for the other four partitions. The p.d.f. of the max-stable process X in this case is

f (x1, x2, x3) = exp {−V } {V1V23+V2V13+V3V12−V123−V1V2V3} .

Definition 2.8. (Extremal dependence function; [92]) Let X be a simple max-stable process on
S. The D-dimensional extremal coefficient function is defined for D ∈ N \ {0}, s1, . . ., sD ∈ S,
and x > 0, by

θD (s1, . . ., sD) = −x logP(X (s1) ≤ x, . . .,X (sD) ≤ x) ∈ [1,D]. (2.10)

The function θD varies from θD = 1 when the observations Xi, i ∈ {1, . . .,D} are completely
dependent to θD = D when they are completely independent. In practice, this coefficient provides
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a summary of the degree of dependence on the diagonal (i.e., x1 = . . . = xD = x). In this sense,
it does not give an exhaustive description of extremal dependence, especially for large D.
Throughout this thesis, we are particularly interestedwith the bivariate case (i.e., D = 2), where

the corresponding pairwise extremal dependence function θ2(s1, s2) : R+ 7→ [1,2] satisfies

θ2(s1, s2) = Vs1,s2 (1,1) = −x logP[max{X (s1),X (s2)} ≤ x], x > 0. (2.11)

Several interesting properties for θ2(.) have been proved in [92]. From now on, we will consider
stationary processes such that θ2(s1, s2) depends only on h = s1− s2. For the sake of notational
simplicity, we will write θ(h) for θ2(s1, s2) and Vh for Vs1,s2 .
An important property for stationary max-stable processes defined on Z, intrinsically related

to the extremal dependence function θ(h), has been discussed in [68]. Their result is summarized
in the next theorem.

Theorem 2.3. (Mixing property of stationary max-stable process); [68] Let X be a stationary
simple max-stable process on S ⊂ Z, then X is mixing if and only if lim‖h‖→∞ θ(h)→ 2.

Stationary parametric max-stable models

Based on the spectral representation (recall Theorem 2.1), different choices for the processU (s)
lead to more or less flexible models for spatial maxima. We now provide some examples of
well-known max-stable models, where different sequences of Ui are considered. These models
will be frequently used in the subsequent chapters. In the following, let {ζi}i≥1 be a Poisson
point process on (0,∞) with intensity ζ−2dζ .

(i) Smith model (Guassian extreme value model)
Let φd (.,Σ) denote the d-variate Gaussian p.d.f. with mean 0 and covariance matrix Σ.
For all s ∈ Rd , define Ui (s) = φd (s− si;Σ), where {si}i≥1 be a Poisson point process on
Rd with intensity d s. The spatial Smith model [94] is defined as

X (s) =
∞∨

i=1
{ζiφd (s− si;Σ)} . (2.12)

The Σ matrix controls the dependence range and the degree of anisotropy of the realized
random field. In the general case, the storm events have an elliptical shape. If Σ is
diagonal and all the diagonal elements are identical, the ellipsoids change to spheres (that
is, the random process is isotropic). However, due to the deterministic storm shapes of
this model, it is not very flexible for modeling environmental data.

(ii) Schlather model (extremal Gaussian model)
Let {Ui}i≥1 be independent replications of the stochastic processU (s) =

√
2πmax{0, ε(s)}

for s ∈ S, where ε is a standard Gaussian process with correlation function ρ(.). The
spatial Schlather process [90] is defined as

X (s) =
∞∨

i=1

{√
2πζi max{0, εi (s)}

}
. (2.13)
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Accordingly, the random shape of the storms may provide more realistic realizations.
As for Gaussian processes, the smoothness of the process constructed from (2.13) can
be controlled by the choice of correlation function ρ, recall Figure 2.1. However, this
model cannot take into account extremes that become independent when the distance
becomes large. Indeed, lim‖h‖→∞ θ(h) ≤ 1.707, where this upper boundary value of θ(h)
corresponding to ρ(h) = 0, see Table 2.1 and Figure 2.4. So, this model is not mixing,
recall Theorem 2.3. To get around this issue, a truncated version of U (s) can be used.
Let {qi}i≥1 be a homogeneous Poisson point process of unit rate on S. Then, the spatial
truncated extremal Gaussian model (TEG) (originally due to [90]) is defined as

X (s) =
∞∨

i=1

{√
2π(E{|A|})−1ζi max{0, εi (s)}1Ai (s− qi)

}
, (2.14)

where 1A denotes an indicator function of a compact random set A ⊂ S, Ai are i.i.d.
copies of A, |.| is used to denote the volume of a set and ε(s) is defined as above.
According to this construction, the short-range dependence is largely determined by
the correlation function ρ(h), whereas the long-range dependence is regulated by the
geometry of the set A. Thus, in the bivariate case, we can choose A so that α(h)→ 0
and thus lim‖h‖→∞ θ(h) → 2, where α(h) is the expected volume of overlap between
the random set A and A + h. So, this model is mixing, see Table 2.1 and Figure 2.4.
Accordingly, when modeling spatial/spatio-temporal phenomena, a suitable choice forA
has to be considered, so that independence can be captured. The defect of this model is
that realizations are not continuous due to the set A. Nevertheless, it can be adapted to
model processes with very local effects, or phenomena that reflect perfect independence
after some fixed lag (e.g., spatio-temporal applications). The TEG model has been fitted
to annual temperature maxima in Switzerland (respectively, daily rainfall in the East of
Australia) in [44] (respectively, [11]). In addition, a spatio-temporal version of it has been
fitted satisfactorily to hourly rainfall extremes in [64].

(iii) Brown-Resnick model (BR)

Sometimes called the geometric Gaussian model [20, 69]. Let Ui (s) = exp {εi (s)−γ(s)},
where εi (s) are independent copies of an intrinsically stationary centered Gaussian pro-
cess and with dependence function γ(.) which is termed the semivariogram (recall Defi-
nition 2.3). The spatial BR model is defined as

X (s) =
∞∨

i=1

{
ζi exp {εi (s)−γ(s)}

}
, s ∈ S. (2.15)

This construction may provide more realistic event realizations. At large distances the
maxima are close to independence, see Figure 2.4. The function γ is often considered as
the unbounded FBMmodel, i.e., γ(h) =

(
‖h‖
φ

) κ
, φ > 0, κ ∈ (0,2]. In this case, the process is

mixing and φ is a range parameter, whereas κ is a smoothness parameter with higher values
indicating smoother processes. Furthermore, small and large values of γ(h) respectively
correspond to strong and to weak dependence; as γ(h)→ 0 and γ(h)→∞, we see that



23 2.2. Spatial extremes processes: models

Vh (x1, x2)→ max {1/x1,1/x2} , Vh (x1, x2)→ 1/x1 + 1/x2, corresponding respectively to
complete dependence of X (s) and X (s+ h) and to their independence, see Table 2.1.

(iv) Extremal-t model
Another interestingmax-stablemodel, the extremal-tmodel, is a generalization of Schlather
model, see [82, 87]. Let Ui (s) = cν max{0, εi (s)}ν, cν =

√
π2−(ν−2)/2Γ

(
ν+1

2

)−1
, ν ≥ 1,

where ε(s) is defined as in Schlather model, Γ is the Gamma function and ν is the degrees
of freedom (df) parameter. The spatial extremal-t model is defined as

X (s) =
∞∨

i=1

{
ζicν max{0, εi (s)}ν

}
, s ∈ S. (2.16)

As for BR processes, the process realizations are realistic and close to independence for
distances of going to ∞, see Figure 2.4. In the bivariate case, if ρ(h) → 0, we have
lim‖h‖→∞ θ(h) → 2Tν+1

(√
ν+1

)
, where Tν is the c.d.f. of a Student random variable

with df ν. So, the process is not mixing (i.e., independence cannot be captured), unless
ν→∞, see Table 2.1. Accordingly, the df parameter ν controls the degree of long-range
dependence.

In the following, we will focus on bivariate max-stable models. Table 2.1 gives a brief
summary of the above-mentioned max-stable processes by their bivariate exponent function
Vh (.) and extremal coefficient function θ(.). Figure 2.4 plots the extremal coefficient function
for isotropic versions of the max-stable models introduced in Table 2.1. Clearly, the Smith model
covers the whole range of dependence while Schlather’s model has an upper bound of 1.707 if
the covariance function only takes positive values. More generally, the properties of isotropic
positive-definite functions imply that θ(.) ≤ 1.838 in R2 and θ(.) ≤ 1.781 in R3, see [75, 86].
In other words, the asymptotic dependence persists even at distances going to ∞. In the TEG
model, extremes separated by a distance ‖h‖ ≥ 2r are (exactly) independent. For extremal-t and
BR processes, the pairs of sites separated by a large distance are close to independence, where
the df parameter ν controls the upper bound of the extremal coefficient function for extremal-t
processes, that is, θ(h)→ 2Tv+1

(√
v+1

)
, ‖h‖ →∞. Note that general expressions of the c.d.f.

for some popular max-stable models can be found in the literature. For instance, [58] provided a
closed form expression of the c.d.f. for the Smith max-stable model indexed by Rd for D ≤ d+1
sites and the generalization of this to the BR process can be found in [63].

Remark 2.1. From Table 2.1, it is easy to verify the following special cases:

• Setting 2γ(h) =
√
hTΣ−1h in BR model, for some covariance matrix Σ, we recover Smith

model. In particular, isotropic Smith process is recovered when the FBM semivariogram
is γ(h) =

(
‖h‖
φ

)2
, φ > 0.

• Setting α(h) = 1 in TEG model, we recover Schlather model.

• Setting the df ν = 1 in extremal-t model, we recover Schlather model.
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Table 2.1: Bivariate marginal distributions for spatial max-stable models.

Model Vh (x1, x2) θ(h)

Smith 1
x1
Φ*

,
b(h)

2 +
log

(
x2
x1

)
b(h)

+
-
+ 1

x2
Φ*

,
b(h)

2 +
log

(
x1
x2

)
b(h)

+
-

2Φ
(

b(h)
2

)
b(h) =

√
hTΣ−1h and Φ(.) denotes the standard normal distribution

Schlather 1
2

(
1
x1
+ 1

x2

) [
1+

√
1− 2(ρ(h)+1)x1 x2

(x1+x2)2

]
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Figure 2.4: Extremal coefficient function θ(.) for isotropic max-stable families
given in Table 2.1 plotted as a function of the distance h = ‖h‖ ≥ 0. Covariance
matrix: Σ = Id2, Id2 is 2 by 2 identity matrix. Correlation function: Whittle-
Matérn with c1 = c2 = 1. Compact set: A is a disk of fixed radius 2; α(‖h‖) '
(1− ‖h‖/4)1[0,4]. Semivariogram: γ(‖h‖) = 2‖h‖. Degrees of freedom: ν = 5.



25 2.2. Spatial extremes processes: models

Remark 2.2. Another well-known representation for bivariate distribution of a max-stable
process is given by the Pickands dependence function A(.) : [0,1]→ [1/2,1] [85]. It turns out
that we can rewrite the exponent measure as

Vh (x1, x2) =
(
x−1

1 + x−2
2

)
Ah

(
x1

x1+ x2

)
. (2.17)

Setting ϕ = x1/(x1+ x2), ϕ ∈ (0,1) in (2.17), we obtain

Ah (ϕ) = ϕ(1−ϕ)Vh (ϕ,1−ϕ), (2.18)

where the Pickands dependence function Ah (.) is a convex function satisfying: max(t,1−
t) ≤ Ah (t) ≤ 1, t ∈ [0,1] and Ah (0) = Ah (1) = 1, where the lower (respectively, upper) bound
corresponds to complete dependence (respectively, independence). Accordingly, the Pickands
dependence function A is related to the extremal dependence function θ(.) through a simple link
θ(h) = Vh (1,1) = 2Ah (1/2). For a detailed overview on Ah (.), refer to [14]. Analogously, an
extension of Ah (.) to spatio-temporal framework can be found in [40], see Section 2.3.1.

2.2.2 Summary measures for extremal dependence

When dealing with non-extremal data, a common tool is the semivariogram, recall Section 2.1.
However, when extreme values are of interest, the semivariogram is no longer a useful tool, as
it may even not exist. Therefore, there is a need to develop more suitable tools for analyzing the
spatial dependence of extremes. Different measures of extremal dependence have been proposed
in the literature. The extremal dependence function θ, described in Section 2.2.1, is suitable
for asymptotically dependent processes (i.e., max-stable processes). It provides sufficient in-
formation about extremal dependence for many problems although it does not characterize the
full distribution. In what follows, we shortly recall functions that may be used to describe the
extremal dependence behavior for spatial processes. A concise review can be found in [12, 45].

Two model-free diagnostic measures: χu(h) and χ̄u(h) have been suggested in [33] for
distinguishing among different types of tail dependence, see also Section 8.4 from [32].

Definition 2.9. (Upper tail dependence function; [33]) For a stationary spatial process
{X (s)}s∈S with univariate margin cumulative distribution function F. The upper tail dependence
function χ in (2.4) may be rewritten as

χ(h) = lim
u→1−
P{F (X (s)) > u|F (X (s+ h)) > u}, s, s+ h ∈ S. (2.19)

Recall that If χ(h) > 0, ∀h ∈ S, the process X is said to be asymptotically dependent. On
the other hand, a process is asymptotically independent if χ(h) = 0 for any h ∈ S. The best-
known example is the Gaussian model which is asymptotically independent for all correlations
ρ(h) , 1, see [93]. Alternatively, for u ∈ [0,1], χ(h) can be expressed as

χu(h) = 2−
logP{F (X (s)) < u,F (X (s+ h)) < u}

logP{F (X (s+ h)) < u}
and χ(h) = lim

u→1−
χu(h). (2.20)
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The function χu(h) can be viewed as a measure of the dependence at the u-quantile level.
Note also for a max-stable process X the function χu(h) is constant with respect to u for a
fixed h, i.e., χu(h) = 2− θ(h), see Figure 2.7. The dependence measure χ(h) is related to the
pairwise extremal function θ(h) of a max-stable process through a simple link: χ(h) = 2−θ(h).
Thus, both θ(.) and χ(.) functions provide simple measures of extremal dependence within the
class of asymptotically dependent processes, whereas, under asymptotic independence, they are
uninformative and of limited interest.

In order to measure the strength of dependence for asymptotically independent processes, a
complementary dependence measure known as lower tail dependence function χ̄(.) has been
introduced by [33].

Definition 2.10. (Lower tail dependence function; [33]) Let {X (s)}s∈S be a stationary spatial
process with univariate margin F. The lower tail dependence function χ̄(.) is defined as

χ̄u(h) =
2logP(F (X (s)) > u)

logP(F (X (s)) > u,F (X (s+ h)) > u)
−1 and χ̄(h) = lim

u→1−
χ̄u(h). (2.21)

Accordingly, asymptotic dependence (respectively, asymptotic independence) is achieved if
χ̄(h) = 1 (respectively, χ̄(h) < 1). Moreover, χ̄u(h) ∈ (0,1) (respectively, (−1,0)) implies
positive (respectively, negative) association at distance h. Hence, | χ̄u(h) | increases with the
dependence. For bivariate max-stable processes with extremal dependence function θ(h), it is
easy to verify that

χ̄u(h) =
2log(1−u)

log
(
1−2u+uθ(h)

) −1, u ∈ [0,1] and θ(h) ∈ [1,2]. (2.22)

So, in practice, the two indicators χ and χ̄ should be considered together. For a fixed lag h,
the pair of diagnostics { χu(h), χ̄u(h)} can be used as a tool to detect asymptotic independence
when u approaches 1. Alternatively, for a fixed extreme level u, it can provide a “correlogram”
for extreme events, when considered as a function of h. Note that these dependence measures
may be estimated by their empirical rank-based counterparts. Furthermore, [71] proposed a
model that smoothly links the asymptotic dependence and independence based on the value of
another summary measure known as the coefficient of tail dependence η(h). This measure
determines the rate of tail decay towards independence, where asymptotic dependence being a
particular case. More precisely, let {X (s)}s∈S be a stationary spatial process with unit Fréchet
margin, their approach relies on the assumption that the bivariate joint tail (survivor function)
and the conditional upper tail behave respectively as

P (X (s) > x,X (s+ h) > x) ∼ Lh (x)x−1/η(h), x→∞, (2.23)

P(X (s) > x |X (s+ h) > x) ∼ Lh (x)x1−1/η(h), x→∞, (2.24)

whereLh (.) is a slowly varying function at∞; that is, limy→∞
Lh (yt)
Lh (y) = 1, t > 0, and η(h) ∈ (0,1].

Indeed, several dependence scenarios can be handled within this simple modeling framework
(see [62, 71, 72] for more details):
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• η(h) < 1 and Lh (x) > 0, corresponds to asymptotic independence, where η(h) ∈
(

1
2,1

)(
respectively,

(
0, 1

2

))
implies a positive (respectively, negative) association at distance h.

• η(h) = 1
2 and Lh (x) ≥ 1, corresponds to near independence.

• η(h) = 1 and Lh (x) > 0, corresponds to asymptotic dependence. For instance, simple
max-stable processes have η(h) = 1 for all h.

Moreover, under condition (2.23), one can easily deduce that χ̄(h) = 2η(h)−1.

Example 2.1. (Gaussian copulamodel)As an illustration example, let us consider the stationary
Gaussian process {ε(s)}s∈S with zero mean, unit variance and correlation function ρ(h), then
the spatial process Q(s) = −1/ log {Φ(ε(s))} is an asymptotically independent process with unit
Fréchet margins and verifies,

P(Q(s) > x,Q(s+ h) > x) ∼ cρx−2/{1+ρ(h)} (log x)−ρ(h)/{1+ρ(h)},

with cρ = {1+ ρ(h)}3/2{1− ρ(h)}−1/2(4π)−ρ(h)/{1+ρ(h)}, whereΦ denotes the c.d.f. of a standard
normal distribution. Obviously, according to (2.23), η(h) = (1+ ρ(h))/2 and χ̄(h) = ρ(h), see
[71]. Accordingly, the process Q(s) is asymptotically independent when ρ < 1. In addition, if
ρ→ 1 (complete dependence), we have P(Q(s) > x,Q(s + h) > x) ∼ x−1. Whereas, if ρ→ 0
(exact independence), we have P(Q(s) > x,Q(s+ h) > x) ∼ x−2.

The natural extreme analog of the correlation function of a stationary process which is known
as the extremogram was introduced by [42] for the use particularly with time series. It has been
extended to a spatial setting in [31].

Definition 2.11. (Spatial extremogram) The extremogram for a stationary spatial process
{X (s)}s∈S is defined by

ρA1,A2 (h) = lim
x→∞

P
{
x−1X (s) ∈ A1, x−1X (s+ h) ∈ A2

}

P
{
x−1X (s) ∈ A1

} , h ∈ Rd, (2.25)

where A1 and A2 are Borel sets bounded away from 0.

Setting A1 = A2 = (1,∞), we recover the tail dependence coefficient χ(h) = ρ(1,∞),(1,∞),
recall (2.4). So, if ρ(1,∞),(1,∞) = 0 then X (s) and X (s+ h) are asymptotically independent, and
in case 0 < ρ(1,∞),(1,∞) ≤ 1 they are asymptotically dependent. The spatio-temporal version of
the extremogram is defined analogously, see Section 5.2.

Lastly, we present the madogram-based tools that are especially well-adapted to extremes.
Various definitions of madograms are exist: F-madogram, Fλ-madogram and λ-madogram.
Extensions of these summary measures to spatio-temporal framework are given in Section 2.3.1.

(i) [35] proposed the F-madogram as a summary statistics for the spatial extremal dependence
structure.



CHAPTER 2. STATISTICAL MODELING OF EXTREMES 28

Definition 2.12. (Spatial F-madogram; [35]) Let {X (s)}s∈S be a stationary spatial
process with marginal distribution function F. The F-madogram is defined by

νF (h) =
1
2
E [|F (X (s))−F (X (s+ h)) |], 0 ≤ νF (h) ≤ 1/6. (2.26)

Complete dependence (respectively, complete independence) is achieved when νF (h) = 0
(respectively, νF (h) = 1/6). For a max-stable process, the F-madogram is related to the
extremal dependence function θ(.) through a simple link

νF (h) =
1
2
−

1
θ(h)+1

. (2.27)

The νF (h) may be estimated nonparametrically by its empirical version (see, e.g., [35, 5]),

ν̂F (h) =
1

2T

T∑
i=1

[
|F̂ (Xi (s))− F̂ (Xi (s+ h)) |

]
, (2.28)

where F̂ denotes the empirical distribution function, i.e., F̂ (x) = 1
T+1

∑T
i=11{Xi (s)<x}, where

1{B} corresponds to the indicator function of B, Xi (s) the i-th observations of the spatial
process X at location s and T is the total number of observations. In some applications,
it might be preferable to use a “binned” version of estimator (2.28), that is,

ν̂F (h) =
1

2T |Bh |

∑
(s,s+h)∈Bh

T∑
i=1

[
|F̂ (Xi (s))− F̂ (Xi (s+ h)) |

]
, (2.29)

where Bh is a lag class of pairs (s, s+ h) at distance h ∈ Rd within a certain tolerance ∆.

(ii) The Fλ-madogram has been introduced in [15] as a generalization of F-madogram.

Definition 2.13. (Spatial Fλ-madogram; [15])For a stationary spatial process {X (s)}s∈S
with marginal distribution function F. For any λ > 0, the Fλ-madogram is defined as

νFλ (h) =
1
2
E

[
|Fλ {X (s)} −Fλ {X (s+ h)}|

]
. (2.30)

(iii) The extremal function θ and thus the madogram functions νF and νFλ do not fully
characterize the spatial dependence of a randomfield. Indeed, they only considerP(X (s) ≤
x1,X (s + h) ≤ x2) where x1 = x2 = x. To bypass this issue, [81] introduced the λ-
madogram.

Definition 2.14. (Spatial λ-madogram; [81]) Let {X (s)}s∈S be a stationary spatial pro-
cess with marginal distribution function F. The λ-madogram is defined as

νλ (h) =
1
2
E

[
|Fλ (X (s))−F1−λ (X (s+ h)) |

]
, λ ∈ [0,1]. (2.31)

The idea beyond this is to explore the whole space. By varying λ, we focus on P(X (s) ≤
x1,X (s + h) ≤ x2) with x1 = λx and x2 = (1− λ)x. Hence, this measure can provide
information on Vh (x1, x2) for x1 , x2.

Moreover, in [60], the madogram has been adapted for the asymptotic independence framework
instead of asymptotic dependence only, whereas, [74] extended the concept of the λ-madogram
from a bivariate set up to a multivariate one.
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2.2.3 Models for asymptotic independence: inverted max-stable models

In what follows, for any stationary process X , we denote by FX
h

(x1, x2) the bivariate c.d.f. of
the pair (X (s),X (s+ h)).

Processes derived from Gaussian fields by a nondecreasing transformation of the marginals
are examples of asymptotically independent processes, recall Example 2.1. Alternatively, the
class of inverted max-stable processes has been proposed by [101]. It was found to be more
flexible than Gaussian derivated processes in some applications, see [96, 45]. Indeed, the
inverted max-stable process is obtained by simply inverting a max-stable process as follows.

Definition 2.15. (Spatial inverted max-stable process, [101]) Let {X ′(s)}s∈S be a simple max-
stable process with extremal dependence coefficient function θ′(h). Define t(x) : (0,∞) 7→ (0,∞)
by t(x) = −1/ log[1− exp{−1/x}], then the process Y (s) = t(X ′(s)) is an inverted max-stable
process. It has unit Fréchet margins and satisfies (2.23) with tail dependence coefficient
η(h) = 1/θ′(h).

With this construction, each max-stable process may be transformed into an asymptotically
independent counterpart. The stochastic process Y (s) has bivariate c.d.f. of the form

FY
h (x1, x2) = −1+ exp(−x−1

1 )+ exp(−x−1
2 )+ exp

{
−V X ′

h {t(x1), t(x2)}
}
, (2.32)

where V X ′
h

is the exponent function of the bivariate c.d.f. corresponding to (X ′(s),X ′(s+ h)).
From now on, with a slight abuse of notations, we will write VY

h
for V X ′

h
and θY (h) for θ′(h).

Figure 2.5 displays two realizations of isotropic asymptotically independent processes over the
[0,10]2 square. The corresponding η is also represented as a function of h = ‖h‖ ≥ 0. According
to [72], the case η(h) = 1/2 corresponds to near independence (recall Section 2.2.2). So, the
asymptotically independent process constructed from an isotropic Smith process allows asymp-
totic independence but tends to near independence for long distances, whereas the asymptotically
independent process constructed from extremal-t process presents a stronger dependence in the
asymptotic independence when h is sufficiently large.

The conditional exceedance probabilities in (2.24), P(u) =: P (F (X (s1)) > u|F (X (s2)) > u),
u ∈ [0,1], for a max-stable (respectively, an inverted max-stable) process

(
P(u) = 1−2u+uθX (h)

1−u

)(
respectively, P(u) = (1−u)θY (h)−1

)
and for various levels of dependence are displayed in Fig-

ure 2.6. Obviously, the conditional probabilities for max-stable processes are convex in u and
converge to a positive value, whereas they are concave in u and tend to zero for inverted max-
stable processes. Furthermore, the probabilities for inverted max-stable processes tend very
slowly to zero.

Figure 2.7 depicts the summary dependence measures χu(h) and χ̄u(h) in (2.20) and (2.21)
as functions of the extremal level u for max-stable and inverted max-stable processes. Clearly,
for max-stable processes χu(h) takes the constant value 2− θX (h) and χ̄u(h) increases to one.
While χu(h) decreases to zero and χ̄u(h) takes the constant value 2/θY (h) − 1 in the case of
inverted max-stable processes. For the latter, it is easy to verify that

χu(h) = 2−
log

(
−1+2u+ (1−u)θY (h)

)
log(u)

, u ∈ [0,1] and θY (h) ∈ [1,2]. (2.33)
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Figure 2.5: Simulations of two inverted max-stable processes on the logarithm
scale. Left panel: simulated image of an asymptotically independent process
constructed by inverting an isotropic Smith process with Σ = 3/4 Id2, Id2 is
2 by 2 identity matrix. Middle panel: simulated image of an asymptotically
independent process constructed by inverting an isotropic extremal-t process
with df ν = 2 and exponential correlation function ρ(h) = exp

(
−h/φ

)
with range

φ = 1. On the right panel: the associated function η plotted against h = ‖h‖.
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Figure 2.6: Conditional exceedance probabilities for random variables
(X (s1),X (s2)) with uniform margins on [0,1]. Left panel: a max-stable process
with θX (h) = 1,1.2,1.4,1.6,1.8,2 (from top to bottom). Right panel: an inverted
max-stable process with θY (h) = 2,1.8,1.6,1.4,1.2,1 (also from bottom to top).
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Figure 2.7: χu(h) and χ̄u(h) for a max-stable process with θX (h) = 1.75 (red)
and an inverted max-stable process with θY (h) = 1.25 (blue).

2.2.4 Max-mixture models of spatial extremal dependence

Max-mixture processes [101] are an interesting alternative to max-stable and asymptotically
independent (e.g., Gaussian and inverted max-stable) processes, especially when the regions
monitored are wide. These processes are obtained by mixing max-stable and asymptotically
independent processes. In what follows, we will consider inverted max-stable processes for the
asymptotically independent component.

Definition 2.16. (Spatial max-mixture process, [101]) Let {X (s)}s∈S be a simple max-stable
process with extremal coefficient θX (h), and {Y (s)}s∈S be an inverted max-stable process with
coefficient of tail dependence η(h) = 1/θY (h). Assume X and Y are independent. Then the
process

Z (s) =max {aX (s), (1− a)Y (s)} , 0 ≤ a ≤ 1, (2.34)

is a max-mixture process. It has unit Fréchet margins.

Clearly, models that are only asymptotically dependent (respectively, independent) are sub-
models of Z , obtained for a = 1 (respectively, a = 0). Figure 2.8 displays four realizations of
two isotropic max-mixture processes over the [0,10]2 square according to different values of the
mixing parameter a. In order to show the role of the mixing parameter, the plots are obtained by
considering values between a = 1 (max-stable process) and a = 0 (inverted max-stable process).
The mixing parameter a represents the proportion of asymptotic dependence in the max-mixture
process Z . The simulations have been carried out using the function rmaxstab of the R package
SpatialExtremes [86].

The bivariate c.d.f. and the bivariate conditional upper tail distribution for a pair of sites
(Z (s), Z (s+h)) are straightforwardly obtained for 0 < a < 1 by the independence between X (s)
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Figure 2.8: Simulations of the max-mixture model (2.34) on the logarithm scale
according different values of mixing coefficient a ∈ {1,0.7,0.3,0}. Left panel: X
is an isotropic Smith processwithΣ =Id2, andY is an isotropic inverted extremal-t
process with df ν = 2 and exponential correlation function ρ(h) = exp

(
−‖h‖/φ

)
with range φ = 1. Right panel: X is an isotropic extremal-t process with df
ν1 = 2 and exponential correlation function ρX (h) = exp

(
−‖h‖/φX

)
with range

φX = 1, and Y is an isotropic inverted extremal-t process with df ν2 = 5 and
ρY (h) = exp(−‖h‖/φY ) with range φY = 1.

and Y (s) as (see, [101, 11])

F Z
h (z1, z2) =FX

h

( z1

a
,

z2

a

)
FY
h

( z1

1− a
,

z2

1− a

)
, (2.35)

=e−aVX
h

(z1,z2)
{
e
−(1−a)

z1 + e
−(1−a)

z2 −1+ e−VY
h

(ta (z1),ta (z2))
}
,

where ta (z) = t
(

z
1−a

)
.

P(Z (s) > z |Z (s+ h) > z) ∼ a {2− θX (h)}+ (1− a)θY (h)Lh {z/(1− a)}
zθY (h)−1 , z→∞. (2.36)

According to (2.36), we can deduce the following interesting remarks:

• max-stable models (a = 1), may be too restrictive since they have only the first term, recall
(2.4) and (2.19).

• inverted max-stable models (a = 0), may be unreliable since they are left with the second
term only, recall (2.24).

• If a = 0 or θX (h) = 2, then the first term on the right-hand side (which corresponds to the
max-stable part of Z) vanishes. Hence, in the case where a , 0 and if there exists finite
h′ = inf {h : θX (h) = 2}, then the process Z is asymptotically dependent up to distance
h′ and asymptotically independent for longer distances. This is in contrast with the
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exact independence that would arise at distances h > h′ under the max-stable process X .
For currently known max-stable processes, h′ is not attained at any finite level except
the TEG process, where A is often assumed to be a disk of fixed radius r , so, α(h)
can be approximated by α(h) ' (1− ‖h‖/2r)1[0,2r], refer to [44]. If the approximation
holds, it turns out that pairs of sites separated by a distance ‖h‖ < 2r are asymptotically
dependent and asymptotically independent otherwise. More precisely, these findings can
be summarized into the formula (see [11])

χ̄(h) = 1[0,2r](‖h‖)+ (2/θY (h)−1)1[2r,∞) (‖h‖). (2.37)

In [11], various instances of max-mixture processes have been considered by combining
the TEG process with asymptotically independent processes. So, asymptotic dependence
(respectively, independence) is present at short (respectively, intermediate) lags and pos-
sibly exact independence at larger ones, see Example 2.2. Analogously to max-stable
models, max-mixture models have been fitted using composite likelihood and compared
using the CLIC criterion. Details are deferred to Chapter 3.

• Recalling (2.4), it is easy to show that for the max-mixture process Z

χ(h) = lim
z→∞
P(Z (s) > z |Z (s+ h) > z) = a {2− θX (h)} (2.38)

Finally, the summary dependencemeasures χu(h) and χ̄u(h) in (2.20) and (2.21) can be easily
computed for bivariate max-mixture processes. Namely, for u ∈ [0,1] and θX (h), θY (h) ∈ [1,2],
we have

χu(h) = 2− aθX (h)−
log

(
−1+2u(1−a) +

(
1−u(1−a)

)θY (h)
)

log(u)
, and (2.39)

χ̄u(h) =
2log(1−u)

log
{
1−2u+

[(
uaθX (h)

) (
−1+2u(1−a) +

(
1−u(1−a))θY (h))] } −1. (2.40)

Figure 2.9 displays the summary dependence measures χu(h) and χ̄u(h) in (2.39) and (2.40)
for max-mixture processes. Obviously, for a ∈ (0,1), χu(h) decreases from a(2− θX (h)) to
zero, whereas χ̄u(h) increases to unity. For a ∈ {0,1}, recall Figure 2.7.

Example 2.2. (Detecting asymptotic dependence classes for max-mixture models using the
pair of diagnostics: { χu(h), χ̄u(h)}) As we mentioned in Section 2.2.2, the two indicators
{ χu(h), χ̄u(h)} can be used as a tool to detect asymptotic dependence classes when u approaches
unity. As an illustration, let us consider the following isotropic max-mixture model:

M1: is a max-mixture model (2.34) in which X is a TEG process (see Table 2.1) with
AX a disk of fixed radius rX = 0.25 and a stationary isotropic correlation function ρX (h) =
exp

{
−

(
‖h‖/φX

) κX } with range parameter φX = 0.1 and smoothness κX = 1. The asymptotically
independent process Y is an inverted TEG process withAY a disk of fixed radius rY = 0.75 and
a stationary isotropic correlation function ρY (h) = exp

{
−

(
‖h‖/φY

) κY } with range parameter
φY = 1.2 and smoothness κY = 1. Recall that ‖h‖ = ‖ s1− s2‖ ≥ 0 denotes the Euclidean distance
between sites s1, s2.
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Figure 2.9: χu(h) and χ̄u(h) for a max-mixture process with extremal de-
pendence summary measures (θX (h), θY (h)) = (1.75,1.25) and various mixing
parameters a ∈ {0,0.2,0.4,0.6,0.8,1} .

Fig 2.10 displays the pair of diagnostics { χ0.97(h), χ̄0.97(h)} in (2.39) and (2.40) for model
M1. Clearly, with this particular setting for the model parameters, the model is asymptoti-
cally dependent up to distance ‖h‖ = 0.5

(
χ0.97(h) > 0, for all ‖h‖ ≤ 0.5

)
and asymptotically

independent at ‖h‖ ∈ (0.5,2.4)
(
χ̄0.97(h) ∈ (0,1), for all ‖h‖ ∈ (0.5,2.4)

)
. Furthermore, for

‖h‖ ≥ 2.4, the model is exactly independent
(
χ̄0.97(h) = 0, for all ‖h‖ ≥ 2.4

)
.

2.3 Space-time max-stable models
Max-stable processes have been expanded to quantify extremal dependence in spatio-temporal
data. Different spectral representations of stationary space-time max-stable processes have been
developed, see, e.g., [40, 54]. In what follows, {X (s, t) : (s, t) ∈ S×T }, S × T ⊂ Rd ×R+

(generally, d = 2) is space-time max-stable process. The space index s and time index t will
respectively belong to the sets S and T . In addition, we will denote by h = s1 − s2 ∈ R

2

(respectively, l = t1− t2 ∈ R) the spatial (respectively, temporal) lag.

2.3.1 Space-time max-stable models without spectral separability

The next two theorems extend the spectral representation and the D-finite dimensional distri-
bution of spatial max-stable process to spatio-temporal setting, recall Theorem 2.1 and Theo-
rem 2.2.
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Figure 2.10: Theoretical behavior of χ0.97(h) and χ̄0.97(h) as functions of the
distance h = ‖h‖ derived frommodel M1. We set φX = 0.1, rX = 0.25, φY = 0.75,
rY = 1.2, κX = κY = 1 and a = 0.5. The dotted vertical lines represent the diameters
of disks in the TEG processes.

Theorem 2.4. (Spectral representation for space-time max-stable processes, [49]) Let X (s, t)
be a simple space-time max-stable process on S×T . Then there exists {ζi}i≥1 i.i.d. points of
a Poisson process on (0,∞) with intensity ζ−2dζ and a sequence {Ui (s, t)}i≥1 of independent
replications of some space-time process {U (s, t), (s, t) ∈ S ×T } with E{U (s, t)} < ∞ for each
(s, t) ∈ S×T , and U (s, t) ≥ 0, which are also independent of ζi, such that

X (s, t) D=
∞∨

i=1
ζiUi (s, t), (s, t) ∈ S×T . (2.41)

Remember that simple means that the margins are unit Fréchet, that is, F (x) := P(X (s, t) ≤
x) = exp{−x−1}, x > 0. Analogously to spatial max-stable processes, this representation is in
particular useful for the simulation of space-time max-stable processes as well as for providing
examples of such processes.

Theorem 2.5. (Multivariate maxima) For D ∈ N \ {0}, s1, . . ., sD ∈ S, t1, . . ., tD ∈ T and
x1, . . ., xD > 0, the finite D-dimensional distributions of the space-time max-stable process
X are given by

P(X (s1, t1) ≤ x1, . . .,X (sD, tD) ≤ xD) =P


ζi

D∨
j=1

Ui (s j, t j )
x j

≤ 1,∀i = 1,2, . . .



(2.42)

= exp


−E

*.
,

D∨
j=1

U (s j, t j )
x j

+/
-



.
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Hence, all finite-dimensional distributions are multivariate extreme value distributions with
unit Fréchet margins. In particular, for x1, x2 > 0, the bivariate c.d.f. Fs1,t1,s2,t2 of the space-
time max-stable process X (s, t) in (2.41) can be expressed in terms of the underlying bivariate
spatio-temporal exponent function Vs1,t1,s2,t2 as

− log Fs1,t1;s2,t2 (x1, x2) = − logP [X (t1, s1) ≤ x1,X (t2, s2) ≤ x2] =: Vs1,t1;s2,t2 (x1, x2) . (2.43)

Below, we will consider stationary space-time processes such that Vs1,t1;s2,t2 depends on h =

s1− s2 and l = t1− t2, so that we can write Fh,l for Fs1,t1;s2,t2 and Vh,l for Vs1,t1;s2,t2 .

Spatio-temporal extremal dependence summary measures

In order to measure the spatio-temporal extremal dependence, we provide in the next Definition,
extensions to the spatio-temporal setting of quantities that have been introduced in the spatial
context, recall Section 2.2.2.

Definition 2.17. (Summary measures of spatio-temporal dependence) For a stationary spatio-
temporal max-stable process {X (s, t) : (s, t) ∈ S×T } with univariate margin c.d.f. F, we define

(i) (Spatio-temporal extremal dependence function)

θ(h, l) = −x logP (X (s, t) ≤ x,X (s+ h, t + l) ≤ x) ∈ [1,2], x > 0. (2.44)

(ii) (Spatio-temporal upper tail dependence function)

χu(h, l) = 2−
2logP{F (X (s, t)) < u,F (X (s+ h, t + l)) < u}

logP{F (X (s+ h, t + l)) < u}
(2.45)

and χ(h, l) = limu→1− χu(h, l), u ∈ [0,1]. Similarly to spatial setting, χ(h, l) = 2−θ(h, l).

(iii) (Spatio-temporal lower tail dependence function)

χ̄u(h, l) =
2logP(F (X (s, t)) > u)

logP(F (X (s, t)) > u,F (X (s+ h, t + l)) > u)
−1, (2.46)

and χ̄(h, l) = limu→1− χ̄u(h, l).

(iv) (Spatio-temporal F-madogram)

νF (h, l) =
1
2
E [|F (X (s, t))−F (X (s+ h, t + l)) |] ∈ [0,1/6]. (2.47)

Furthermore, the Fλ-madogram and λ-madogram can be defined analogously, recall
Definitions 2.14 and 2.13.

(v) (Spatio-temporal Pickands dependence function)

Ah,l (ϕ) = ϕ(1−ϕ)Vh,l (ϕ,1−ϕ), ϕ ∈ (0,1). (2.48)

Setting ϕ = 1
2 , it easy to verify that Ah,l

(
1
2

)
= 1

2θ(h, l).
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Stationary parametric space-time max-stable models without spectral separability

Below, we briefly review three examples of space-time max-stable processes satisfying (2.41).
Recall that {ζi}i≥1 are points of a Poisson process on (0,∞) with intensity ζ−2dζ .

(i) BR process in space and time

[40] introduced the spatial BR model (2.15) in space and time. A strictly stationary
spatio-temporal BR process X has the following spectral representation

X (s, t) =
∞∨

i=1
ζi exp {εi (s, t)−γ(s, t)} , (s, t) ∈ S×T , (2.49)

where the processes {εi (s, t) : (s, t) ∈ (S×T )} are independent replications of a Gaus-
sian process {ε(t, s)} with stationary increments, ε(0,0) = 0, E[ε(s, t)] = 0 and co-
variance function Cov(ε(s1, t1), ε(s2, t2)) = γ(s1, t1) + γ(s2, t2) − γ(s1 − s2, t1 − t2), for
all (s1, t1), (s2, t2) ∈ S × T . The dependence function γ which is termed the spatio-
temporal semivariogram of the process {ε(s, t)}, is nonnegative and conditionally neg-
ative definite, that is,

∑k
i=1

∑k
j=1 aia jγ

(
si − s j, ti − t j

)
≤ 0,

∑k
i=1 ai = 0, for any k ∈ N,

(s1, t1), . . ., (sk, tk ) ∈ S×T and a1, . . .,ak ∈ R.

The process X (s, t) in (2.49) is fully characterized by the dependence function γ. The
function γ is given by γ (s1− s2, t1− t2) = 1

2Var (ε(s1, t1)− ε(s2, t2)) (recall Section 2.1.2).
Let Φ denote the standard normal distribution function. For x1, x2 > 0, the bivariate
exponent function of (X (s1, t1),X (s2, t2)) in the stationary case is given by

Vh,l (x1, x2) =
1
x1
Φ

*.
,

√
γ(h, l)

2
+

log
(

x2
x1

)
√

2γ(h, l)
+/
-
+

1
x2
Φ

*.
,

√
γ(h, l)

2
+

log
(

x1
x2

)
√

2γ(h, l)
+/
-
. (2.50)

Recall that if γ is assumed to depend only on the norm of s1− s2, the associated process
is spatially isotropic. The pairwise spatio-temporal extremal dependence function for this
model is θ(h, l) = 2Φ

{√
γ(h, l)/2

}
and the spatio-temporal Pickands function is

Ah,l (ϕ) = ϕΦ*.
,

√
γ(h, l)

2
+

log
(

ϕ
1−ϕ

)
√

2γ(h, l)
+/
-
+ (1−ϕ)Φ*.

,

√
γ(h, l)

2
+

log
( 1−ϕ

ϕ

)
√

2γ(h, l)
+/
-
.

This model has been used in [23] to quantify the extremal behavior of radar rainfall data
in a region in Florida, where a new semi-parametric procedure based on the extremogram
[42] is applied to estimate the model parameters.

(ii) Smith’s storm profile in space-time domain

An extension of the spatial Smith’s storm profile model (2.12) to a space-time setting has
been driven in [40], where extremes are observed at certain locations through time. The
characterization of a space-time max-stable Smith process is

X (s, t) =
∞∨

i=1
ζiφ(zi, ηi; s, t), (s, t) ∈ S×T , (2.51)
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where {zi, ηi}i≥1 denote the points of a Poisson point process on E1 × E2 with intensity
µ1(d z) × µ2(dη), E1 × E2 ⊂ S ×T , µi denotes Lebesgue measure on S for i = 1,2 and
the function φ represents the shape of the storm with

∫
E1×E2

φ(z, η; s, t)µ1(d z)µ2(dη) = 1.
A potential physical interpretation of the construction (2.51) is as follows: think of the
product ζiφ(zi, ηi; t, s) as the wind speed at location s and moment t from the i-th storm
with intensity ζi, where thewind speed has itsmaximum at the center of the spatial location
zi at time ηi. According to Theorem 2.6 from [40], a closed form of the bivariate c.d.f.
of Smith’s model in spatio-temporal setting has been calculated. More precisely, setting
the function φ as a trivariate Gaussian density with mean (z, η) and covariance matrix Σ′,
i.e., φ(z, η; s, t) = φ3(z − s, η − t), where φ3 is a trivariate Gaussian density with mean 0

and covariance matrix Σ′ =
(
Σ 0
0 σ33

)
, where the spatial dependence is modeled through

the matrix Σ and the temporal dependence is given by σ33. With this particular setting,
the bivariate exponent function of this model in the stationary case can be expressed as

Vh,l (x1, x2) =
1
x1
Φ

*..
,

2σ33 log
(

x2
x1

)
+σ33b(h)2+ l2

2
√
σ2

33b(h)2+σ33l2

+//
-
+

1
x2
Φ

*..
,

2σ33 log
(

x1
x2

)
+σ33b(h)2+ l2

2
√
σ2

33b(h)2+σ33l2

+//
-
,

(2.52)

where b(h)2 = hTΣ−1h. As a consequence of (2.52), by setting time lag l = 0, we easily
recover spatial max-stable field as calculated in [84], recall also Table 2.1. The extremal
dependence function for this model has the form θ(h, l) = 2Φ

{√
σ33b(h)2+ l2/2√σ33

}

and the spatio-temporal Pickands dependence function is

Ah,l (ϕ) = ϕΦ
*..
,

2σ33 log
(

ϕ
1−ϕ

)
+σ33b(h)2+ l2

2
√
σ2

33b(h)2+σ33l2

+//
-
+ (1−ϕ)Φ

*..
,

2σ33 log
( 1−ϕ

ϕ

)
+σ33b(h)2+ l2

2
√
σ2

33b(h)2+σ33l2

+//
-
.

Lastly, it is easy to show that the bivariate distribution of Smith’s storm model (2.52) is a
special case of BR (2.50) when γ(h, l) = 1

2

{
b(h)2+ l2

σ33

}
.

(iii) Schlather TEG space-time model

[64] considered an extension of the spatial Schlather TEG model (2.14) that comprises a
truncated Gaussian process, so that storm shapes are stochastic, and includes a compact
random setwhich allows independent extremes. More precisely, the space-timemax-stable
TEG process is defined by

X (s, t) =
√

2π(E{|A|})−1
∞∨

i=1
ζiW+i (s, t)1Ai {(s, t)−Pi}, (s, t) ∈ S×T , (2.53)

here |.| is used to denote the volume of a set, W+i (s, t) = max{0, εi (s, t)}, {εi (s, t)}i≥1 are
independent replicates of a Gaussian random field with space-time correlation function
ρ, 1A is the indicator function of a compact random set A ⊂ S×T , Ai are independent
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replicates of A and Pi are points of a unit Poisson process on S×T , independent of εi.
The bivariate exponent function of this model in the stationary case has the form

Vh,l (x1, x2) =
(

1
x1
+

1
x2

)
×


1−

α(h, l)
2

*.
,
1−

√
1−

2{ρ(h, l)+1}x1x2

(x1+ x2)2
+/
-


, (2.54)

where α(h, l) = E[|A ∩ {(h, l)+A}|]/E(|A|). Accordingly, the pairwise spatio-temporal
extremal coefficient is θ(h, l) = 2−α(h, l)

{
1−

√
(1− ρ(h, l))/2

}
and the spatio-temporal

Pickands dependence function is Ah,l (ϕ) = 2− α(h, l)
{

1−
√

(1−ρ(h,l))ϕ(1−ϕ)
2

}
. In [64],

this model has been fitted to hourly rainfall extremes in western Switzerland with the
adoption of pairwise likelihood for statistical inference, see Section 3.1.2.

The fundamental advantages of the spectral representation in (2.41) are (i) the construction of
spatio-temporal models from widely studied max-stable processes (ii) the large literature avail-
able on spatio-temporal correlation functions for Gaussian processes, allowing for considerable
diversity of spatio-temporal behavior. However, time has no specific role but is equivalent to an
additional spatial dimension (the spatial and temporal distributions belong to a similar family
of models). To overcome this defect, a new class of space-time max-stable models has been
suggested in [54]. It allows distinct roles for space and time.

2.3.2 Space-time max-stable models with spectral separability

Definition 2.18. (Space-time max-stable models with spectral separability, [54]) The class of
space-time max-stable models with spectral separability is defined by the following spectral
decomposition:

X (s, t) =
∞∨

i=1
ζiUt (Qi)UR (t,Qi )s (Wi), where (2.55)

• {ζi,Qi,Wi}i≥1 are the points of a Poisson process on (0,∞) × E1 × E2, and with intensity
ζ−2dζ × µ1(dq)× µ2(dw) for some Polish measure spaces (E1,E1, µ1) and (E2,E2, µ2),

• the spectral function Ut : E1 → (0,∞) is measurable such that
∫

E1
Ut (q)µ1(dq) = 1 for

each t ∈ T and contributes to the temporal dynamic of the process, whereas the spectral
function Us : E2 → (0,∞) is measurable such that

∫
E2

Us (w)µ2(dw) = 1 for each s ∈ S

and drives the shape of the main spatial patterns,

• the operators R (t,q) are bijective from S to S for each (t,q) ∈ T ×E1 and describes how
the spatial patterns move in space.

The construction (2.55) allows one to deal with the temporal and spatial aspects separately.
So, the estimation procedure can be simplified by estimating in a first step the spatial parameters
independently from the temporal ones. Several examples of subclasses of the general class of
space-time process X (2.55) were introduced by [54], where the operator is either a translation
or a rotation. The authors in that paper focused mainly on a special case of models where
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the function corresponding to the time in the spectral representation is the exponential density
(continuous-time case) or the probability values of a geometric random variable (discrete-time
case). So, the corresponding models become Markovian and have a useful max-autoregressive
representation, i.e.,

X (s, t) =max {δX (s−τ, t −1), (1− δ)H (s, t)} , (s, t) ∈ S×T , (2.56)

where the parameter δ ∈ (0,1) measures the influence of the past, the parameter τ ∈ R2 represents
some type of specific direction of propagation/contagion in space and H =: {H (s, t), s ∈ S, t ∈ T }
is a time-independent process that is derived from independent replications of a spatial max-
stable process {H (s), s ∈ S}.

Indeed, the model in (2.56) can be seen as an extension of the real-valued max-autoregressive
moving-average process MARMA(1,0) to the spatial context, see [43]. The value at location s

and time t is either related to the value at location s−τ at time t −1 or to the value of another
process (the innovation), H , that characterizes a new event happening at location s. This model
may be useful for phenomena that propagate in space.

Definition 2.19. (max-autoregressive moving-average process, [43]) The real-valued process
{M (t)}t∈Z follows the max-autoregressive moving-average process of orders p and q, i.e.,
MARMA(p,q), if it satisfies the recursion

M (t) =max
{
a1M (t −1), . . .,apM (t − p), A(t),b1 A(t −1), . . .,bq A(t − q)

}
,

where ai,b j ≥ 0 for i = 1, . . ., p, j = 1, . . .,q, and {A(t)}t∈Z are i.i.d. max-stable random variables.

In the following, we will focus on the processes satisfying (2.56). Let V0,h−lτ denote the
exponent function characterizing the spatial distribution of the process H (s, t), then the bivariate
c.d.f. Fh,l of (X (0,0),X (h, l)) can be expressed for x1, x2 > 0 as

− log Fh,l (x1, x2) = V0,h−lτ

(
x1,

x2

δl

)
+

1− δl

x2
. (2.57)

Moreover, the spatio-temporal extremal dependence function in (2.44) can be easily deduced in
this case by setting x1 = x2 = x in (2.57),

θ(h, l) = V0,h−lτ
(
1, δ−l

)
+1− δl . (2.58)

Clearly, space and time are not fully separated in the extremal dependence function, even if τ = 0
(space and time are completely separated in the spectral representation, where Ut depends on
time andUR (t,q)s =Us depends only on space). Asymptotic time independence is achieved when
(liml→∞ θ(h, l)→ 2). Furthermore, X is called strongly mixing in space (respectively, time)
if and only if lim‖h‖→∞ θ(h,0)→ 2

(
respectively, liml→∞ θ(0, l)→ 2

)
, recall Theorem 2.3. In

the sequel, we give two examples of a bivariate space-time max-stable process satisfying (2.56).

(i) Spectrally separable space-time max-stable Smith process
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If the innovation process H is derived from independent replications of a spatial Smith
process with a covariance matrix Σ, recall (2.12). Then the bivariate c.d.f. Fh,l of the
resulting spatio-temporal model in (2.56) has the form

− log Fh,l (x1, x2) =
1
x1
Φ

(
b(h, l)

2
+

1
b(h, l)

log
(

x2

δl x1

))
(2.59)

+
δl

x2
Φ

(
b(h, l)

2
+

1
b(h, l)

log
(
δl x1

x2

))
+

1− δl

x2
,

where b(h, l) =
√

(h− lτ)tΣ−1(h− lτ). The associated spatio-temporal extremal depen-
dence function with this model is

θ(h, l) =Φ
(

b(h, l)
2
+

1
b(h, l)

log
(
δ−l

))
+ δl
Φ

(
b(h, l)

2
+

1
b(h, l)

log
(
δl

))
+1− δl . (2.60)

(ii) Spectrally separable space-time max-stable Schlather process

The spatio-temporal model in (2.56) when the innovation process H is derived from
independent replications of a spatial Schlather process with correlation function ρ(.),
recall (2.13), has a bivariate c.d.f. Fh,l of the form

− log Fh,l (x1, x2) =
1
2

(
1
x1
+
δl

x2

)
×



*.
,
1+

√
1−

2δl (ρ(h, l)+1)x1x2

(δl x1+ x2)2
+/
-


+

1− δl

x2
, (2.61)

where ρ(h, l) is the spatio-temporal correlation function associated to this model. The
associated spatio-temporal extremal coefficient with this model is

θ(h, l) =
1
2

(1+ δl )


*.
,
1+

√
1−

2δl (ρ(h, l)+1)
(1+ δl )2

+/
-


+1− δl . (2.62)

If the time lag l = 0, the formulas in (2.59) and (2.61) reduce to the bivariate distributions of the
max-stable spatial fields given in Table 2.1.

2.3.3 Space-time Gaussian correlation functions

Recently, a significant growth of interest in spatio-temporal correlation models has emerged.
This section introduces some basic concepts for space-time Gaussian correlation functions. For
a detailed review of spatio-temporal correlation functions, see [48, 80] and the references therein.

Definition 2.20. (Space-time correlation function) The correlation function of a Gaussian
space-time process {ε(s, t) : (s, t) ∈ S×T } is defined by

ρ(s1, t1; s2, t2) =
Cov(ε(s1, t1), ε(s2, t2))

√
Var (ε(s1, t1))Var (ε(s2, t2)))

.

For simplicity, we assume that Var (ε(s, t)) = 1 for all s ∈ S and t ∈ T .
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Definition 2.21. (Basic concepts for space-time correlation functions) We call the space-time
correlation function ρ

(i) stationary, if ρ only depends on the spatial and the temporal lags. More precisely,

ρ(s1, t1) = ρ(s1+ h, t1+ l) =: ρ(h, l), h ∈ Rd, l ∈ R.

(ii) isotropic, if the stationary correlation function only depends on the norm of spatial lag
and the absolute value of the temporal lag, that is, ρ(h, l) =: ρ(‖h‖, |l |). Note that if
the stationary correlation function is isotropic in space and time, then it is also fully
symmetric, that is, ρ(h, l) = ρ(−h, l) = ρ(h,−l) = ρ(−h,−l), ∀(h, l) ∈ Rd ×R.

(iii) separable, if ρ can be separated into a purely temporal correlation function ρt and a
purely spatial correlation function ρs. For instance,

• the product model (factorizing): ρ(s1, t1; s2, t2) = ρs (s1, s2)ρt (t1, t2).

• the sum model (additive): ρ(s1, t1; s2, t2) = ρs (s1, s2)+ ρt (t1, t2).

Figure 2.11 displays two examples of parametric families of isotropic separable space-time
correlation functions under the product model. The plots have been obtained using the function
drape.plot of theR package fields. Separablemodels do not allow for spatio-temporal interaction.
This is unrealistic in many applications, see, e.g., [22, 21]. Therefore, non-separable model
constructions have been developed. For instance, a very general flexible class of spatio-temporal
correlation models has been proposed by [59].

Definition 2.22. (Gneiting’s class of correlation functions) Let φ: R+ → R be a completely
monotone function and letψ: R+→R be a positive functionwith completelymonotone derivative.
Then, the function

ρ(‖h‖, |l |) =
1

ψ(|l |2)
φ

(
‖h‖2

ψ(|l |2)

)
, (2.63)

is a non-separable valid isotropic spatio-temporal correlation function.

Table 2.2 lists some known completely monotone functions, whereas Table 2.3 provides some
examples of positive functions with completely monotone derivatives. Note that a continuous
function f (x), x ≥ 0 is said to be completely monotonic if it satisfies: (−1)n dn

dxn f (x) ≥ 0, n =
1,2, . . ., x > 0. Several families of valid space-time correlation functions can be constructed
using the entries in Tables 2.2 and 2.3, allowing for considerable diversity of spatio-temporal
behavior.

Example 2.3. (Non-separable flexible spatio-temporal correlation function) By combining the
first entries in Tables 2.2 and 2.3 with expression (2.63) and then multiplying by the purely
temporal correlation function {1+ (|l |/bt )at }−1, we obtain

ρ(‖h‖, |l |) =
{

1+
(
|l |
bt

)at}−(β+1)

exp


−

(
‖h‖
bs

)as

{
1+

(
|l |
bt

)at }bs β/2


, (2.64)
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Figure 2.11: Isotropic separable space-time correlation functions. Double expo-
nential correlation function ρ(‖h‖, |l |) = exp {−(0.5‖h‖+ |l |)} (left panel). Dou-
ble cauchy correlatio function ρ(‖h‖, |l |) = {1+ ‖h‖2}−1{1+ |l |2}−1 (right panel),
where h = ‖h‖.

where bt,bs > 0 determine spatial and temporal scale parameters, at,as ∈ (0,2] are temporal
and spatial smoothness parameters, and β ∈ [0,1] is the separability parameter quantifying
the space-time interactions, see Section 5.2 in [64]. Accordingly, when β = 0, the correlation
function (2.64) is separable, whereas, as β→ 1, the spatial and temporal components become
increasingly entwined.

Table 2.2: Some completely monotone functions φ(r), r > 0. Kc denotes the
modified Bessel function of order c.

Function φ(r) Parameters
exp{−(

√
r/b)a} b > 0, a ∈ (0,2]

{1+ (
√

r/b)a}−c b, c > 0, a ∈ (0,2]
{2c−1Γ(c)}−1(2

√
crb−1)cKc(2

√
crb−1) c,b > 0

Table 2.3: Some positive functions ψ(t), t > 0, with a completely monotone
derivative.

Function ψ(t) Parameters
{(
√

t/b)a +1}ζ b > 0, a ∈ (0,2], ζ ∈ [0,1]
log{(

√
t/b)a + c}/ log(c) b > 0, c > 1, a ∈ (0,2]

{(
√

t/b)a + c}/[c{(
√

t/b)a +1}] b > 0, c ∈ (0,1], a ∈ (0,2]



Chapter 3

Pairwise likelihood-based tests for mixture
parameter of spatial max-mixture models

This chapter is based on our results from the paper: A.Abu-Awwad, V.Maume-Deschamps
and P. Ribereau—Censored pairwise likelihood-based tests for mixture parameter of spa-
tial max-mixture models. Accepted for publication to Revista de Investigacion Operacional.

Testing of hypotheses is one of the main tools in statistics and crucial in many applications.
For instance, within the spatial framework, a madogram statistical testing procedure has been
proposed by [9] to discriminate between asymptotic independence and asymptotic dependence at
various lags. More precisely, for a stationary isotropic spatial process {X (s)}s∈S with marginal
distribution F, the asymptotic independence of the pairs (X (s1),X (s2)) such that ‖ s1− s2‖ = h
can be checked by testing the null hypothesis H0 : νF (h) = 1

6 against H1 : νF (h) < 1
6 using the

following straightforward statistic

√
T
ν̂F (h)− 1

6
σ̂(h)

D
→ N (0,1), as T →∞, (3.1)

where ν̂F (.) is the empirical version of νF (.) over T independent observations and σ2(h) =
Var

{
1
2 |F (X (s1))−F (X (s2)) |

}
. In that study, the test (3.1) has been applied to examine the

spatial asymptotic independence of two climatological datasets: daily maxima temperature in
France and daily maxima precipitations in the French Burgundy region. Although its simplicity,
the major advantage of this test is that it is a model-free test. Needless to specify a distribution
family prior to the analysis.

In the spatial max-mixture framework, the mixture parameter a controls the level of the
asymptotic dependence component present in the max-mixture process {Z (s)}s∈S , recall (2.34).
In this chapter, we focus on twomodel-based statistical tests for themixing parameter a. Pairwise
likelihood has employed for statistical inference.

The remainder of the chapter is organized as follows. Pairwise likelihood estimation for
max-mixture processes is presented in Section 3.1. The proposed pairwise statistics and their
main properties are detailed in Section 3.2. In Section 3.3, we show by various simulation
studies the performance of the proposed statistics. In Section 3.4, we apply the proposed testing
approach to daily precipitation from the East of Australia. Concluding remarks and limitations
are addressed in Section 3.5.

44
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3.1 Inference for max-mixture processes
Modeling joint occurrence of spatial extremes over a region usually comprises the following two
steps: (i) estimating the marginal distribution and (ii) characterizing the dependence via a model
issued from the multivariate extreme value theory. So, a proper inferential approach requires to
fit marginal and dependence parameters. To that aim, the spatial extreme process is supposed
to be a plausible model for block maxima or large threshold exceedances. The block maxima
approach is based on dividing the observation period into non-overlapping periods of equal size
and restrict attention to the maximum observation in each period (e.g., seasonal maxima). The
choice of block size can be critical. Too small blocks may lead to bias in the estimation and
extrapolation and large ones may lead to large variance in estimation. On the other hand, this
approach becomes wasteful if other data on extremes are available. Then, it is natural to regard
as extreme events that exceed some high threshold. However, the issue of threshold choice
is analogous to the choice of block size in the block maxima approach, implying a trade-off
between bias and variance. In this case, too low thresholds are likely to violate the asymptotic
support of the model, leading to bias in the estimation, while too high thresholds will generate
few excesses, leading to high variance in estimation.

3.1.1 Marginal fitting

The max-mixture model in (2.34) assumes a unit marginal Fréchet distributions. Since, in
practical applications, this is not the case, marginal laws have to be transformed to unit Fréchet
margins. Consequently, the marginal distribution F has to be estimated, and this can be done in
the following ways

(i) nonparametrically by the empirical distribution function, i.e., F̂ (z) = 1
T+1

∑T
i=11Zi (s)<z,

where 1 is the indicator function, see, e.g., [81, 15, 5],

(ii) parametrically by fitting the GEV distribution in (2.6) separately to each site s, which is

usually applied to block maxima approach, i.e., F̂ (z) = exp
{
−

(
1+ ξ̂ (s) z−µ̂(s)

σ̂(s)

)−1/ξ̂ (s)
}
,

see, e.g., [11, 101],

(iii) semi-parametrically, F may approximated empirically below the marginal threshold u and
a site-wise fitted Generalized Pareto Distribution (GPD) above the threshold u, which is
the standard way for threshold exceedance approach, see [34, 67], i.e.,

F̂ (z) =



F̃ (z), z ≤ u,

1− ζ̂u(s)
{
1+ ξ̂ (s)(z−u)/σ̂∗(s)

}−1/ξ̂ (s)
, z > u,

(3.2)

where F̃ (z) is the empirical distribution function, ζ̂u is the estimated probability of
exceeding the threshold u and

(
σ̂∗, ξ̂

)
are estimates of the GPD parameters (σ∗, ξ), which

has the form (see [47])

GPDσ∗(s),ξ (s) (z) = 1−
(
1+

ξ (s)
σ∗(s)

z
)−1/ξ (s)

+

, z > 0, (3.3)
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where the scale parameter is linked to that of the GEV distribution by σ∗ = σ+ ξ (u− µ)
and the shape parameter ξ is the same as for GEV distribution.

Then according to the probability integral transformation: t(z) = − 1
log(F̂ (z))

, the observations
are approximately standardizes to have unit Fréchet distribution. Sometimes it may be useful to
transform to other marginal distributions such as Gumbel

(
t(z) = − log[− log(F̂ (z))]

)
orWeibull(

t(z) = log(F̂ (z))
)
.

3.1.2 Dependence parameters fitting: composite likelihood approach

Likelihood inference for multivariate or spatial extremes is computationally challenging. In a
max-stable framework, the c.d.f. can be easily written as (2.8), whereas the density for a single
vector x = (x1, . . ., xD)t , D is the number of monitoring stations, is much more complicated
when D is large, since it corresponds to the derivative of (2.8) with respect to all components of
x, recall (2.9). For example, with D = 10 there are around 105 terms in the density. To bypass
this difficulty, the usual procedure has been to maximize the composite likelihoods constructed
from small subsets of data (e.g., [17, 73, 98, 99]), on the basis of pairs (e.g., [84, 44]) or
triples (e.g., [58, 63, 89]). Under some regularity conditions, these misspecified likelihoods
enable consistent but generally less efficient estimation of parameters and are computationally
convenient. However, high-order composite likelihood inference for max-stable processes is
sometimes possible. For instance, full likelihood inference for BR process seems to be restricted
to dimension D = 12 or D = 13 with current technologies. However, the computations are very
time-consuming and need a very powerful computer, see [26].

Before focusing onmax-mixture processes, let us introduce the notion of composite likelihood.
Let Z be an N-dimensional random vector with p.d.f. g(z;ψ), for some q-dimensional parameter
ψ ∈Ψ. Let {E1, . . .,EK } denote a set ofmarginal or conditional eventswith associated likelihoods
g(z ∈ Ek ;ψ). Following [73], the composite likelihood for n independent replicates of Z can be
constructed as

Lc(ψ) =
n∏

i=1

K∏
k=1

g(zi ∈ Ek ;ψ)ωk, (3.4)

where ωk are a nonnegative deterministic weights. The composite log-likelihood is

`c(ψ) =
n∑

i=1

K∑
k=1

ωk logg(zi ∈ Ek ; (ψ). (3.5)

The maximum composite likelihood estimator ψ̂c is obtained by maximizing (3.5), i.e.,
ψ̂c = arg max

ψ∈Ψ
`c(ψ). Marginal likelihoods (e.g., pseudolikelihood, pairwise likelihood, triple-

wise likelihood) which are constructed from lower-order marginal densities form a subclass of
composite likelihood.

For our purpose of fitting max-mixture processes, we will adopt the widely used pairwise
likelihood approach. Let zik denote the site-wise block maximum of the max-mixture process
of interest {Z (s)}s∈S , observed at site si, i = 1, . . .,D and at time tk, k = 1, . . .,T , where the
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observations are assumed to be independent in time. We denote by ϑ the vector gathering
the parameters to be estimated using pairwise likelihood. Then the (weighted) pairwise log-
likelihood is

`p(ϑ) =
T∑

k=1

D−1∑
i=1

D∑
j>i

ωi j logLp(zik, z j k ;ϑ) =:
T∑

k=1
`pk (ϑ), (3.6)

where Lp(zik, z j k ;ϑ) is the likelihood of the pair (zik, z j k), and ωi j are nonnegative weights
specifying the contribution of each pair. Then, the maximum pairwise likelihood estimator is
ϑ̂p = arg max `p(ϑ).
Unfortunately there is no existing theory to define optimal weights. However, a careful choice

of the weights ωi j could improve the estimation efficiency as well as the computational one.
Various weighting strategies have been proposed in this context, see, e.g., [61, 26, 19, 64, 89].
For example, a simple weighting choice is to let

ωi j = 1{‖ si−s j ‖≤h∗}, (3.7)

for some specified value h∗, where 1{B} represents the indicator function of B, see, e.g.,
[61]. With this approach, the selection of the threshold h∗ is critical, where the complete
pairwise likelihood is recovered when h∗→∞. Complete pairwise likelihood has been adopted
by [18] (respectively, [44]) to fit max-stable processes to annual maxima of snow depth in the
Alpine region (respectively, annual temperaturemaxima in Switzerland). Generally, neighboring
sites are more informative about dependence parameters than distant ones. Thus, in [10, 11],
it is suggested to choose h∗ as the q-quantile of the distribution of the distances between
pairs of sites, q ∈ [0,1]. Another possibility is to downweight the distant pairs such that all
ωi j , 0

(
e.g., ωi j = 1/‖ si − s j ‖ or exp

{
−τ‖ si − s j ‖

}
, τ > 0

)
, this approach might improve the

statistical efficiency, but no computational gains can be expected with respect to complete
pairwise likelihood. Furthermore, as already pointed out by [26], when the dimensionality is
too high, the use of a truncated composite likelihood (or also called tapered composite likelihood,
see [89]), that is, using binary weights ωi j = 0 or 1, is absolutely needed.

On the other hand, according to [101], under asymptotic independence, a more efficient
inference is feasible by modeling the extremes of original events that exceed a large threshold
u rather than site-wise maxima. More precisely, let F Z

h
denote the bivariate c.d.f. of the max-

mixture process Z , recall (2.35), and u ∈ R a high threshold; the censored pairwise likelihood
contribution is defined as follows

Lu
p(zik, z j k ;ϑ) =




F Z
h

(u,u;ϑ), if max (zik, z j k ) ≤ u,

∂2
12F Z

h
(zik, z j k ;ϑ), if max (zik, z j k ) > u,

(3.8)

where ∂i is the differentiation with respect to the variable zi, and zik is the observed value at
the i-th site and k-th time. So, the maximum censored pairwise likelihood estimator is given
by ϑ̂

u
p = argmax `u

p(ϑ), where `u
p(.) is the (weighted) censored pairwise log-likelihood. The

choice of the threshold u, which is sometimes aided by diagnostic plots, is crucial. A common
choice is to set u corresponding to the empirical q-quantile at each site, provided that q is
sufficiently large, see, e.g., [64, 11]. The estimation methodologies in (3.6) and (3.8) have been
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used satisfactorily for fitting spatial max-mixture processes by [101] (respectively, [11]) in an
analysis of extremes of the winter observations of a hindcast dataset of significant wave height
from the North Sea (respectively, daily precipitations over the East of Australia).

Remark 3.1. Different censoring approaches of the pairwise likelihood have been introduced.
In addition to (3.8), the censored pairwise likelihood contribution Lu

p(zik, z j k ;ϑ) of a pair
(zik, z j k) can be taken as follows

Lu
p(zik, z j k ;ϑ) =




F Z
h

(u,u;ϑ), if max (zik, z j k ) ≤ u,

∂1F Z
h

(zik,u;ϑ), if zik > u, z j k ≤ u,

∂2F Z
h

(u, z j k ;ϑ), if zik ≤ u, z j k > u,

∂2
12F Z

h
(zik, z j k ;ϑ), if min(zik, z j k ) > u.

(3.9)

This approach has proved to be useful for the statistical inference of spatial/spatio-temporal
extremes, see, e.g., [64, 102, 97, 65].

3.1.3 Asymptotics and assessing uncertainties

For notational simplicity, we will write ϑ̂ for ϑ̂p / ϑ̂
u
p and `(.) for `p(.) / `u

p(.). Asymptotics
properties of ϑ̂ are available from [11, 84, 70, 73], which we now summarize. For large T
and under some regularity conditions (see, Section 9.2.2 from [79]), ϑ̂ is asymptotically Gaus-
sian with asymptotic variance G−1(ϑ) =H −1(ϑ)J (ϑ)H −1(ϑ), where G(ϑ) is the Godambe
information matrix, H (ϑ) = E

{
−∇2`(ϑ)

}
=: E {−∇ϑU (ϑ)} is called the sensitivity matrix,

J (ϑ) =Var {∇`(ϑ)} = E
{
∇`(ϑ)∇`(ϑ)t } =: E

{
U (ϑ)U (ϑ)t } is called the variability matrix and

U (ϑ) = ∇ϑ`(ϑ) =:
(
∂/∂ϑ

)
`(ϑ) is called the pairwise score function.

Reporting the standard errors ϑ̂ requires consistent estimation of the Godambe matrix and
its components. Analytical expressions for H and J are difficult to obtain in most realistic
applications. So, they are usually estimated either empirically, exploiting groups of independent
or almost independent data, or through simulation. The empirical (sample) estimate of H is
given by

Ĥ
E

(ϑ) = −T−1
T∑

k=1
∇2`k (ϑ̂), (3.10)

which corresponds to minus the Hessian matrix. So, H can be estimated from the Hessian
matrix computed in the optimization algorithm. The J matrix for large independent or pseu-
doindependent replicates T of the data may be estimated empirically by the outer product of the
pairwise scores computed at ϑ̂,

Ĵ
E

(ϑ) = T−1
T∑

k=1
∇`k (ϑ̂)∇`k (ϑ̂)t . (3.11)

When T is not sufficiently large compared to the dimension of ϑ̂, the above empirical estimates
of H and J may be imprecise. On the other hand, when it is easy to simulate data from the
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full model, Monte-Carlo simulations can be used as an alternative method to estimate these
matrices, see, e.g., Section 5 in [99] and Section 3 in [27].

For model selection, the composite likelihood information criterion (CLIC) [100], an analog
of the Akaike information criterion (AIC), can be used to choose the best-fitting model. It is
defined as CLIC= −2

[
`(ϑ̂)− tr

{
J (ϑ̂)H −1(ϑ̂)

}]
, where tr(.) denotes the trace operator. Lower

values of CLIC indicate a better fit. A rescaled version of CLIC has been proposed by [44] to be
comparable with AIC in the independence case, i.e., CLIC∗ = (D− 1)−1 CLIC when pairwise
likelihood is adopted.

3.2 Pairwise likelihood statistics for testing H0 : a = a0

In order to propose a testing procedure on the mixing parameter a of a max-mixture process
{Z (s)}s∈S , we use pairwise likelihood for parametric estimation. Suppose that the parameters
of a max-mixture model ϑ ∈ Rq is partitioned as ϑ = (γ,η) ∈ Rq1 ×Rq2 , with q1 + q2 = q, and
that we want to test whether the null hypothesis H0 : γ = γ∗ holds (that is, reject it, or fail to
reject it). In this testing framework, the parameter γ ∈ Rq1 is the parameter of interest, while
η ∈ Rq2 acts as a nuisance parameter. With the partition ϑ = (γ,η), the pairwise score function
is partitioned as U (ϑ) =

(
Uγ (ϑ),Uη (ϑ)

)
=:

(
(∂/∂γ)`(ϑ), (∂/∂η)`(ϑ)

)
. Also, considering the

further partitions

H =

(
H γγ H γη

H ηγ H ηη

)
, H −1 =

(
H

γγ
H

γη

H
ηγ
H

ηη

)
, (3.12)

where, H γη = E
{
−(∂/∂η)Uγ (ϑ)

}
and so forth. Analogously for G and G−1. Let ϑ̂ = (γ̂, η̂)

denote the unrestricted maximum pairwise likelihood estimator, and ϑ̂
∗
= (γ∗, η̂∗) denote the

maximum pairwise likelihood estimator under the null hypothesis, i.e., η̂∗ is the maximum
pairwise likelihood estimator of η when γ is held fixed to the value γ∗. A two-sided pairwise
likelihood ratio test may be based on the statistic

LR = 2
{
`(ϑ̂)− `(ϑ̂

∗
)
}
D
−−→

q1∑
j=1

c jW j, (3.13)

where the W j’s are independent χ2
1 random variables, and the c j’s are the eigenvalues of the

matrix {H γγ
}−1Gγγ evaluated under the null hypothesis. This follows from Theorem 3.1 in

[70]. The form of asymptotic distribution in (3.13) is mainly due to the failure of the second
Bartlett identity, which refers to the equality between the expected negative Hessian of the log-
likelihood and the covariance of the score function, i.e.,H (ϑ) ,J (ϑ), and the problem is that
generally the distribution of

∑q1
j=1 c jW j is not known exactly when q1 > 1. The other pairwise

likelihood versions of Wald and score statistics for testing H0 : γ = γ∗ are easily constructed,
and they have the usual asymptotic χ2

q1
. The Wald-type statistic for the parameter of interest is

W =
(
γ̂−γ∗

) t
{
G
γγ

(
ϑ̂
∗
)}−1 (

γ̂−γ∗
)
. (3.14)
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While the score-type statistic is

S =Uγ

(
ϑ̂
∗
) t

Hγγ
(
ϑ̂
∗
) {

Gγγ
(
ϑ̂
∗
)}−1

H
γγ

(
ϑ̂
∗
)

Uγ

(
ϑ̂
∗
)
. (3.15)

However, as is well known, these two statistics suffer from practical limitations: Wald-type
statistics are not invariant by reparametrization, while score-type statistics suffer from numerical
instability. In this respect, a likelihood ratio-type statistic would be more appealing since it often
has better finite-sample performance, see, e.g., [83]. So, various adjustments have been proposed
in the literature to recover an asymptotic chi-squared distribution χ2

q1
when q1 > 1. For instance,

[88] considered q1LR/
∑q1

j=1 c jW j as a χ2
q1
random variable. While [28] proposed to adjust the

composite likelihood through a vertical scaling, instead of adjusting the asymptotic likelihood
ratio statistic ditribution, in the following way

LRI =

(
γ̂−γ

) t
{
Gγγ

(
ϑ̂
)}−1 (

γ̂−γ
)

(
γ̂−γ

) t
H γγ

(
ϑ̂
) (
γ̂−γ

) LR. (3.16)

Above, recall that H γγ and Gγγ denote, respectively, the q1 × q1 submatrices of H and the
inverse of G pertaining to γ. The resulting statistic LRI has asymptotic χ2

q1
distribution but

it lacks invariance under reparameterization. To get around this issue, [83] proposed another
adjustment based on the composite score function, i.e.,

LRI I =
S

Uγ

(
ϑ̂
∗
) t
H

γγ
(
ϑ̂
∗
)

Uγ

(
ϑ̂
∗
) LR, (3.17)

again LRI I has an asymptotic χ2
q1

null distribution. A regularity condition underlying these
adjustments is that the parameter γ∗ is interior to its parameter space, so thatU (ϑ̂) = 0. However,
this condition is usually not satisfied in the case where γ∗ lies on the boundary. So, existing
adjustments may not yield an asymptotic χ2

q1
. In addition, the limiting distribution for “regular”

boundary problems (i.e., the same number of nuisance parameters under H0 and H1) is a
complicated mixture of weighted χ2 distributions. The computation of the mixing weights is
challenging. It depends on a partition of the parameter space, where the partition relies on the
decomposition of the G matrix, see [29, 30]. On the other hand, simulation-based techniques
could be used to approximate the quantiles of the limit

∑q1
j=1 c jW j . In the present chapter,

our purpose is to test the hypothesis H0 : a = a0 versus H1 : a , a0, for some specified value
a0 ∈[0,1]. Therefore, we propose using following two pairwise likelihood-based statistics:

(i) the pairwise likelihood ratio statistic, which can be easily deduced from (3.13) with γ = a
and q1 = 1, that is,

LRa = c−1LR
D
−−→ χ2

1, (3.18)

here the constant c = {H aa
}−1Gaa, whereH aa (ϑ) and Gaa (ϑ) denote, respectively, the

1×1 submatrices of the inverse ofH (ϑ) and G(ϑ) with elements corresponding to a,
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(ii) the Z-test statistic which is straightforwardly derived from the central limit theorem for
maximum pairwise log-likelihood estimator ϑ̂, recall that ϑ̂

D
→ Nq

(
ϑ,G−1(ϑ)

)
when

T →∞, i.e.,

Za =
â− a√
Gaa (ϑ̂)

D
−−→ N (0,1), (3.19)

where Gaa (ϑ̂) denotes a 1×1 submatrix of the inverse of G(ϑ̂) pertaining to a.

Testing at boundary points H0 : a = 1 (asymptotic dependence) or H0 : a = 0 (asymptotic
independence) is nonstandard since there are additional nuisance parameters that are present only
under the alternative hypothesis. [38, 39] studied the situations were the nuisance parameters
are present only under H1. To the best of our knowledge, there is no systematic theoretical study
dealing with “non-regular” boundary problems with an unequal number of nuisance parameters
under H0 and H1. So, much more theoretical research has to be undertaken to determine the
limiting distribution for this case. For this reason, we apply our LRa test at points close to the
boundaries, i.e., a0 = 0.99 or a0 = 0.01.

Remark 3.2. If the mixing parameter a is interior to its parameter space (i.e., 0 < a < 1), one
may tests the global hypothesis H0 : ϑ = ϑ0 using the statistics in (3.2), (3.17), (3.14) and (3.15).
All of them having the usual χ2

q, where q is the of dimension of ϑ.

3.3 Simulation study
This section studies the performance of the proposed test statistics LRa and Za via several
simulation studies. To that aim, we consider testing H0 : a = a0 against H1 : a , a0, where
a0 varies from 0.01 to 0.99 by steps of 0.01. Let ϑ denote the vector gathering the model
parameters. Throughout this section, we consider the following two max-mixture models:

(i) M1: is a max-mixture model (2.34) which combines TEG and inverted TEG processes
(recall Table 2.1) with isotropic exponential correlation functions ρ(h) = exp

(
−‖h‖/φ

)
,

for some range parameter φ > 0. The compact set A is a disk of fixed radius r . The
model parameters are ϑ = (φX,rX,a, φY,rY )t . Recall that ‖h‖ = ‖ s1− s2‖ ≥ 0 denotes the
Euclidean distance between sites s1, s2. With this construction of model M1, the pairs
of sites separated by a distance ‖h‖ smaller than 2rX (respectively, greater than 2rY ) are
asymptotically dependent (respectively, exactly independent). Whereas, at intermediate
distances the pairs exhibit asymptotic independence, recall Example 2.2.

(ii) M2: is a max-mixture model, which combines a TEG process as in M1 and an inverted
BR process with a stationary isotropic semivariogram γY (h) =

(
‖h‖/φY

) κY , the range
φY > 0 and smoothness κY ∈ (0,2]. The model parameters are ϑ = (φX,rX,a, φY, κY )t .
In this model, the pairwise max-mixture processes (Z (s), Z (s+ h)) are asymptotically
dependent at distance ‖h‖ up to 2rX and asymptotically independent for all ‖h‖ > 2rX ,
see Figure 3.1.
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Figure 3.1: Theoretical behavior of χ0.97(h) and χ̄0.97(h) derived from model
M2 as functions of the distance h = ‖h‖. We set φX = 0.1, rX = 0.5, φY = 1,
κY = 1.5 and a = 0.5. The dotted vertical line represents the diameter of the disk
in the TEG process.

3.3.1 Results on model M1

Estimation performance

The pairwise likelihood contribution (3.8) is used for estimation, where the threshold u is taken
corresponding to the 0.9 empirical quantiles at each site. The weights are ignored, i.e., ωi j = 1.
Indeed, choosing equal weights in the pairwise likelihood may not be ideal both in terms of
computational efficiency and statistical efficiency, see, e.g., [26]. Nevertheless, the equally
weighted pairwise likelihood has been adopted in many applications, see, e.g., [18, 44]. The
matricesH (ϑ) and J (ϑ) are estimated empirically. The fitting is done by the code which was
used by [11] with some appropriate modifications. Note that the pairwise likelihood function
was coded in C and used as a function in R in order to reduce computational burden.

We start by presenting the results on model M1. To assess the quality of the pairwise
likelihood estimation procedure, a simulation study has been carried out. We simulate T = 1000
independent copies of the model M1 at D = 50 sites randomly and uniformly distributed in
the square [0,3]2. We consider several mixing parameters a ∈ {0,0.25,0,50,0.75 and 1}. The
parameters used are φX = 0.10,rX = 0.25, φY = 0.75,rY = 1.20. Each experiment was repeated
J = 200 times to obtain boxplots of the estimated parameters and compute performance metrics,
i.e., the mean estimate, the root mean squared error (RMSE), and the mean absolute error
(MAE). Denote by ϑ̂ j the jth estimation, then

RMSE =

J−1

J∑
j=1

(ϑ̂ j −ϑ)2


1/2

and MAE = J−1
J∑

j=1
|ϑ̂ j −ϑ | (3.20)

The boxplots of the errors of the estimated parameters on the J samples are displayed in
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Figure 3.2. Table 3.1 reports the mean estimate, RMSE, and MAE of the estimated parameters.
Generally, the estimation procedure appears to work well although the variability of some
estimates was relatively large, especially for the asymptotic independence parameters {φY,rY }.
This probably stems from the fact that asymptotic independence is difficult to estimate, see
[5, 45]. Moreover, we observe that contrary to asymptotic independence parameters {φY,rY },
the estimation of asymptotic dependence parameters {φX,rX } becomes more accurate as the
mixing parameter value increases (the RMSE and MAE are lower). Using (3.9) instead of (3.8)
as censored pairwise likelihood leads to similar results, see Figure 3.3 and Figure 3.4.

Testing performance with true a being a non-boundary point in (0,1)

We evaluate the performance of the proposed pairwise likelihood test statistics (3.18) and
(3.19). We test whether the null hypothesis H0 : a = a0 holds for all a0 values in the set
{0.01,0.02, . . .,0.99}. Here we examine three cases with a true mixing parameter a ∈ {0.25,0.5,
0.75}, based on J = 150 simulation replicates from T = 1000 independent copies simulated at
D = 50 randomly and uniformly sampled locations in the square [0,3]2 from the model M1
with parameters {φX = 0.10,rX = 0.25, φY = 0.75, and rY = 1.2}. We compute the empirical
probabilities of rejecting H0 denoted by P. In other words, P represents the power of the test
when H0 is false (i.e., the proportion of null hypotheses rejected). Decisions obtained at three
significance levels α ∈ {0.01,0.05,0.10}.

For both statistics LRa and Za, our results are summarized in Figure 3.5 and Table 3.2.
Overall, the results show a reasonable performance for the two statistics. In particular, both tests
seem to be unbiased (the power is greater than the sensitivity level α). Moreover, the type I
errors are close to the nominal level size α = 0.01,0.05 and 0.1 (recall that the type I error is
the probability of rejecting a true null hypothesis H0). Consequently, these pairwise likelihood
statistics can control the type I error rate α. We also remark that the LRa test seems to be more
powerful than the Za one as can be seen on Table 3.2.

Testing performance with true a being a boundary point (i.e., a = 0 or a = 1)

The pairwise likelihood ratio test statistics LRa cannot be applied directly for testing H0 : a = a0
with a0 being the boundary point (i.e., a0 = 0 or a0 = 1) since there are additional nuisance
parameters which are present only under the alternative hypothesis H1. To circumvent this, we
apply our statistics at some points very close to the boundaries, i.e., a0 = 0.01 or a0 = 0.99. For
this purpose, we simulate T = 1000 independent observations of a TEG process (asymptotic
dependence case) (respectively, an inverted TEG process (asymptotic independence case)) with
parameters {φX = 0.10,rX = 0.25} (respectively, {φY = 0.75,rY = 1.2}) at D = 50 sites uniformly
generated in [0,3]2. We repeat this experiment J = 150 times. For both cases, we test whether
the null hypothesis H0 : a = a0 holds, where a0 varies from 0.01 to 0.99 by steps of 0.01. Here,
the global model M1 that mixes both processes (TEG and inverted TEG) is used to perform
testing for each step on the basis of the simulated data from TEG (asymptotic dependence
case) and inverted TEG (asymptotic independence case). Similarly, as before, the empirical
probabilities (P) are computed for both cases. Decisions are obtained at three significance levels
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α ∈ {0.01,0.05,0.10}.
Figure 3.6 and Table 3.3 compare the empirical probabilities (P) obtained for both statistics

LRa and Za. We note that the performance of the two statistics is satisfactory. As anticipated, the
power to reject asymptotic dependence, i.e., H0 : a = 1 (respectively, asymptotic independence,
i.e., H0 : a = 0) improves as a0→ 0 (respectively, a0→ 1). Moreover, we observe that the values
of P at a0 close to the boundaries, i.e., a0 = 0.01 or a0 = 0.99 are close to the nominal level size
α = 0.01,0.05,0.1. Therefore, these pairwise likelihood statistics can control the type I error
rate α. So, these statistics can provide a strong indication for both asymptotic dependence and
independence. Let us remark that near the boudaries (a = 0 or a = 1), the LRa test seems to be
less powerful than the Za one (contrary to what we observed when a is interior to its parameter
space).
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Figure 3.2: Boxplots display ϑ̂ −ϑ of the estimated parameters using pairwise
likelihood contribution (3.8) based on 200 simulation replicates from 1000 in-
dependent copies of the model M1 with parameters φX = 0.10,rX = 0.25, φY =

0.75,rY = 1.20, and mixture parameter a ∈ {0,0.25,0.5,0.75,1}. Blue dotted/red
solid horizontal lines show the estimated errors means/zero value.
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Table 3.1: Performance of the estimation for 200 simulated M1 models with
parameters φX = 0.10,rX = 0.25, φY = 0.75,rY = 1.20, and various mixing pa-
rameter values a ∈ {0,0.25,0.5,0.75,1}. The mean estimate, RMSE, and MAE
of the estimated paramters.

Performance metrics
True Mean RMSE MAE

estimate
a = 0 0.031 0.043 0.031
φY = 0.75 0.731 0.092 0.072
rY = 1.2 1.183 0.095 0.073
φX = 0.1 0.121 0.064 0.053
rX = 0.25 0.269 0.053 0.039
a = 0.25 0.261 0.037 0.029
φY = 0.75 0.782 0.115 0.088
rY = 1.2 1.229 0.125 0.091
φX = 0.1 0.115 0.058 0.044
rX = 0.25 0.257 0.036 0.028
a = 0.5 0.529 0.043 0.032
φY = 0.75 0.789 0.143 0.105
rY = 1.2 1.183 0.168 0.126
φX = 0.1 0.111 0.030 0.023
rX = 0.25 0.255 0.027 0.021
a = 0.75 0.751 0.029 0.020
φY = 0.75 0.812 0.186 0.144
rY = 1.2 1.213 0.203 0.153
φX = 0.1 0.093 0.018 0.014
rX = 0.25 0.231 0.024 0.017
a = 1 0.951 0.053 0.049
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Figure 3.3: Boxplots display ϑ̂ −ϑ of the estimated parameters using pairwise
likelihood contribution (3.9) based on 100 simulation replicates from 1000 in-
dependent copies of the model M1 with parameters φX = 0.10,rX = 0.25, φY =

0.75,rY = 1.20, and mixture parameter a ∈ {0,0.3,0.7,1}. Blue dotted/red solid
horizontal lines show the estimated errors means/zero value.
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Figure 3.4: Barplots display RMSE of ϑ̂ = {φ̂X, r̂X, â, φ̂Y, r̂Y } for each estimated
parameter using pairwise likelihood contribution (3.9) based on 100 simulation
replicates from 1000 independent copies of the model M1 with parameters φX =

0.10,rX = 0.25, φY = 0.75,rY = 1.20, and mixture parameter a ∈ {0,0.3,0.7,1}.
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Figure 3.5: Empirical probabilities (P) based on 150 replicates simulation study
of the model M1 with φX = 0.10,rX = 0.25, φY = 0.75,rY = 1.20. The mixing
coefficients (top row: a = 0.25, middle row: a = 0.50 and bottom row: a = 0.75).
(Solid line: Za test and dashed line: LRa test). Horizontal red dotted lines show
the nominal level size α = 0.1,0.05,0.01.
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Table 3.2: Empirical probabilities (P) for testing H0 : a = a0 against H1 : a , a0
based on 150 simulation replicates from1000 independent copies of themodelM1
with parameters φX = 0.10,,rX = 0.25, φY = 0.75,rY = 1.2 andmixing coefficients
a ∈ {0.25,0.5,0.75} at three significance levels α ∈ {0.01,0.05,0.10}.

True a = 0.25
α = 0.01 α = 0.05 α = 0.1

a0 LRa Za LRa Za LRa Za

0.05 0.960 0.867 0.980 0.993 0.993 0.953
0.10 0.653 0.527 0.833 0.807 0.913 0.900
0.15 0.327 0.160 0.467 0.393 0.587 0.540
0.20 0.093 0.053 0.100 0.113 0.213 0.153
0.25 0.013 0.000 0.040 0.053 0.093 0.087
0.30 0.033 0.020 0.080 0.060 0.173 0.113
0.35 0.127 0.073 0.327 0.400 0.487 0.627
0.40 0.460 0.633 0.820 0.907 0.873 0.960
0.50 0.987 0.973 0.987 0.980 0.987 0.993
0.80 0.993 0.993 0.993 0.993 0.993 1.000

True a = 0.5
α = 0.01 α = 0.05 α = 0.1

a0 LRa Za LRa Za LRa Za

0.10 0.993 0.967 1.000 0.980 1.000 0.980
0.25 0.973 0.953 0.980 0.967 0.993 0.967
0.35 0.727 0.833 0.913 0.907 0.947 0.940
0.40 0.333 0.387 0.647 0.593 0.707 0.773
0.45 0.073 0.147 0.213 0.273 0.273 0.307
0.50 0.020 0.027 0.047 0.067 0.107 0.080
0.55 0.087 0.127 0.280 0.360 0.413 0.487
0.60 0.560 0.660 0.673 0.813 0.780 0.867
0.65 0.887 0.920 0.960 0.933 0.973 0.947
0.75 0.973 0.960 1.000 0.960 1.000 0.973

True a = 0.75
α = 0.01 α = 0.05 α = 0.1

a0 LRa Za LRa Za LRa Za

0.40 0.987 0.960 0.993 1.000 0.993 1.000
0.50 0.973 0.953 0.980 0.967 0.993 0.980
0.60 0.733 0.700 0.927 0.893 0.967 0.933
0.65 0.260 0.193 0.547 0.520 0.713 0.653
0.70 0.060 0.040 0.140 0.093 0.240 0.187
0.75 0.013 0.007 0.067 0.060 0.113 0.107
0.80 0.187 0.133 0.313 0.220 0.367 0.293
0.85 0.547 0.373 0.787 0.607 0.913 0.680
0.90 0.913 0.767 0.953 0.860 0.980 0.907
0.95 0.980 0.920 1.000 0.973 1.000 0.993
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Figure 3.6: Top row: empirical probabilities (P) for testing H0 : a = 0 (asymptotic
independence case) based on 150 simulation replicates from 1000 independent
copies from an inverted TEG process with parameters {φY = 0.75, rY = 1.2}).
Bottom row: empirical probabilities (P) for testing H0 : a = 1 (asymptotic depen-
dence case) based on 150 simulation replicates from 1000 independent copies
from a TEG process with parameters {φX = 0.1, rX = 0.25}). (Solid line: Za test
and dashed line: LRa test). Horizontal red dotted lines show the nominal level
size α = 0.1,0.05,0.01.

Table 3.3: Empirical probabilities (P) for testing H0 : a = a0 against H1 : a , a0
based on 150 simulation replicates from 1000 independent copies of an inverted
TEG process (true a = 0) with parameters {φY = 0.75,rY = 1.2} (left table) and
a TEG process (true a = 1) with parameters {φX = 0.10,rX = 0.25} (right table).
Significance levels α ∈ {0.01,0.05,0.10}.

True a = 0
α = 0.01 α = 0.05 α = 0.1

a0 LRa Za LRa Za LRa Za

0.01 0.020 0.033 0.053 0.040 0.127 0.113
0.05 0.053 0.073 0.140 0.100 0.193 0.187
0.10 0.133 0.160 0.233 0.207 0.273 0.247
0.20 0.333 0.413 0.420 0.453 0.567 0.647
0.30 0.507 0.620 0.587 0.740 0.727 0.800
0.40 0.667 0.793 0.820 0.873 0.907 0.893
0.50 0.833 0.880 0.933 0.940 0.960 0.967
0.60 0.933 0.973 0.980 0.987 1.000 0.993
0.70 1.000 1.000 1.000 1.000 1.000 1.000

True a = 1
α = 0.01 α = 0.05 α = 0.1

a0 LRa Za LRa Za LRa Za

0.30 0.993 1.000 1.000 1.000 1.000 1.000
0.40 0.927 0.987 0.973 0.993 0.933 1.000
0.50 0.807 0.893 0.907 0.920 0.960 0.987
0.60 0.667 0.727 0.693 0.753 0.853 0.887
0.70 0.480 0.553 0.467 0.527 0.680 0.733
0.80 0.260 0.313 0.293 0.353 0.447 0.493
0.90 0.120 0.133 0.147 0.173 0.220 0.267
0.95 0.033 0.047 0.073 0.107 0.167 0.213
0.99 0.000 0.027 0.047 0.080 0.087 0.133
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3.3.2 Results on model M2

Using the same procedure introduced in Section 3.3.1, we carry out another simulation study
based on model M2 with φX = 0.1, rX = 0.5, φY = 1 and κY = 1.5. The obtained results are
summarized in Figures 3.7, 3.8 and 3.9. Figures 3.7 and 3.8 show the performance of the
resulting pairwise likelihood estimates when a ∈ {0,0.3,0.7,1}, whereas Figure 3.9 displays the
proportion of null hypotheses rejected (i.e., the power curves when the corresponding null hy-
potheses are false), estimated using the 150 simulations and plotted as a function of a0 ∈ (0,1).
Similarly to model M1, we obtain an equally satisfying results.
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Figure 3.7: Plots display ϑ̂ of the estimated parameters using pairwise likelihood
contribution (3.8) based on 200 simulation replicates from 1000 independent
copies of the model M2 with parameters φX = 0.10,rX = 0.5, φY = 1, κY = 1.5 and
mixture parameter a ∈ {0,0.3,0.7,1}. Black dotted/solid horizontal lines show
the estimated means/true values. φ̂X : red, r̂X : purple, â: blue, φ̂Y : green and κ̂Y :
brown.
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Figure 3.8: Barplots display RMSE of ϑ̂ = {φ̂X, r̂X, â, φ̂Y, κ̂Y } for each estimated
parameter using pairwise likelihood contribution (3.8) based on 200 simulation
replicates from 1000 independent copies of the model M2 with parameters φX =

0.10,rX = 0.5, φY = 1, κY = 1.5, and mixture parameter a ∈ {0,0.3,0.7,1}.

3.4 Rainfall data example: Australian Rainfall data

3.4.1 Description of the dataset

The dataset analyzed in this section is composed of daily rainfall measurements (in millimeters),
totals for the 24 h (measured at 9 am), recorded from 1972 to 2014 at 38 monitoring stations on
the south east coast of Australia, where it has a temperate climate, oceanic, or Mediterranean.
The locations of the monitoring stations are shown in Figure 3.10. Being in the Southern
Hemisphere, Australia has, of course, reversed seasons in comparison with Europe or North
America. Only the winter period (April−September) is considered. The entire dataset comprises
183× 43× 38 = 299,022 measurements, with 7869 data points per station, where 183 is the
number of days in the wet season considered in one particular year. The altitude of the stations
varies from 4 to 552 meters above mean sea level. The stations are separated by distances
ranging from 34 km to 1383 km. Australian rainfall data are freely available on http://www.

http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
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Figure 3.9: Empirical probabilities (P) for testing H0 : a = a0, plotted against a0,
where a0 varies from 0.01 to 0.99 by steps of 0.01. P computed based on 150
simulations fromT = 1000 independent copies simulated at D = 50 randomly and
uniformly sampled locations in the square [0,3]2. Top left: data simulated from
themodelM2 with parameters φX = 0.10, rX = 0.5, a = 0.3, φY = 1, and κY = 1.5.
Top right: as in top left with a = 0.7. Bottom left: data simulated from the
asymptotically independent component of M2 (i.e., the inverted BR process) with
parameters φY = 1, κY = 1.5. Bottom right: data simulated from the max-stable
component of M2 (i.e., the TEG process) with parameters φX = 0.1, rX = 0.5.
Blue/green lines show results from Za/LRa tests. The horizontal dotted line at
0.05 shows the nominal level α used for the tests.

bom.gov.au/climate/data/. This dataset and more details about the monitoring stations can
be found in the online supplementary material: http://math.univ-lyon1.fr/homes-www/
abuawwad/Australia_Rainfalldata/.

http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
http://math.univ-lyon1.fr/homes-www/abuawwad/Australia_Rainfalldata/
http://math.univ-lyon1.fr/homes-www/abuawwad/Australia_Rainfalldata/
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Figure 3.10: Geographical locations of the 38 meteorological stations located in
the East of Australia. Black/Red cross-symbols show the stations in A/B zones.
Stations in zone A are used for model inference, and the other stations in zone B
are put aside for hypothesis testing.

3.4.2 Exploratory analysis

For given data, it might be important to check whether the extremes in space have directional
dependence. There exist various graphical diagnostic approaches in the literature. They are
based on pairwise summary measures, recall Section 2.2.2. For example, [101] explored
possible anisotropy based on the estimates of the coefficient of tail dependence function η(h).
[11] proposed to use the summary measures χu(h) and χ̄u(h). Another possibility would be
to consider the F-madogram approach, see [5]. Following the approach in [11], a graphical
test based on the empirical versions of χu(h) in (2.20) and χ̄u(h) in (2.21) is used to explore
possible anisotropy of the spatial dependence. Consider Zt, t = 1, . . .,T , T copies of a max-
mixture process Z with unit Fréchet margin F. It is easy to compute the empirical estimates of
χu(h) and χ̄u(h) from the empirical univariate and bivariate distributions as follows:

χ̂u(h) = 2−
log

(
T−1 ∑T

t=11{Ut (s)<u,Ut (s+h)<u}
)

log
(
T−1 ∑T

t=11{Ut (s)<u}
) , s, s+ h ∈ S, (3.21)

̂̄χu(h) =
2log

(
T−1 ∑T

t=11{Ut (s)>u}
)

log
(
T−1 ∑T

t=11{Ut (s)>u,Ut (s+h)>u}
) −1, s, s+ h ∈ S, (3.22)

where Ut = F (Zt ) and 1(.) represents the indicator function.
The dataset has been divided according to four different directional sectors: (−π/8, π/8],

(π/8,3π/8], (3π/8,5π/8], and (5π/8,7π/8], where 0 represents the northing direction. On the
basis of observed data, we construct the empirical estimates χ̂u(h) and ̂̄χu(h). Figure 3.11
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Figure 3.11: Pairwise empirical estimates of χ(.) (left panel) and χ̄(.) (right
panel) versus distance h = ‖h‖ at threshold u = 0.970. Gray points are empirical
pairwise estimates for all data pairs. Colored curves are the loess smoothed
values of the empirical estimates in different directional sectors: black curve
(−π/8, π/8], red curve (π/8,3π/8], blue curve (3π/8,5π/8], and green curve
(5π/8,7π/8].

displays the directional loess smoothing of the empirical estimates χ̂u(h) and ̂̄χu(h) at u = 0.97
with respect to distance h = ‖h‖. Based on these estimates, there is no strong evidence against
isotropy. On the other hand, as mentioned in Section 2.2.2, the empirical estimates of χu(h)
and χ̄u(h) can be useful in distinguishing between asymptotic dependence and independence.
By means of visual inspection, Figure 3.11 provides an indication that asymptotic dependence
between stations seems to be present up to a distance of 500 km, where χ̂0.97(h) > 0 for h ≤ 500
km, whereas asymptotic independence could be conjectured between 500 km and 1000 km,
where ̂̄χ0.97(h) < 1 for h ∈ (500,1000) km. Moreover, the pairs of sites separated by a distance
h ≥ 1000 km are (exactly) independent as ̂̄χ0.97(h) ' 0 for h ≥ 1000 km, recall Example 2.2.

3.4.3 Testing procedure

The two statistics LRa and Za have emerged as an effective tool for testing hypothesis on
the mixing parameter of a spatial max-mixture model by the simulation study. These tests
are model-based approaches. The first step is to adopt a family of models within which the
true distribution of the data is assumed to lie. However, it is difficult to assess in practice
whether a data set should be modeled using an asymptotically dependent or asymptotically
independent model. So, the common way to perform statistical inference is to fit several
parametric models. Afterward, selecting the best-fitting model based on a suitable criterion,
see, e.g., [5, 11, 101]. Nevertheless, many dependence structures can be obtained by varying the
max-stable and asymptotically independent components (X and Y ) of a max-mixture model Z .
In addition, various dependence structures can be obtained by varying the dependence function
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(e.g., correlation functions and semivariograms) for each component.
We now describe a testing procedure for the mixing parameter of a max-mixture process

based on the observed rainfall dataset. We split the daily rainfall dataset from the 38 sites into
two zones; A and B, see Figure 3.10. The 19 sites in zone A are used for model inference and
the other sites in zone B are put aside for testing. For this purpose, we consider nine arbitrary
models that belong to the three classes: max-mixture, max-stable, and inverted max-stable. The
models are

(i) Class A: consists of max-mixture models A1−A3.

• A1: a max-mixture model which combines TEG and inverted TEG processes with
an exponential correlation functions ρ(h) = exp

(
−‖h‖/φ

)
, φ > 0. The compact set

A is a disk of fixed and unknown radius r .

• A2: a max-mixture model which combines a TEG and inverted BR processes. The
correlation function for the TEG process is of type powered exponential defined by
ρX (h) = exp

[
−

(
‖h‖/φX

) κX ] , φX > 0 and 0 < κX < 2, where φX and κX denote,
respectively, the range and the smoothing parameters. While the semivariogram for
the inverted BR process is modeled by a spherical model

γY (s1, s2) =



αY
{
1.5

(
‖h‖/φY

)
−0.5

(
‖h‖/φY

)3}
, ‖h‖ ≤ φY

αY , ‖h‖ > φY,

where αY > 0 is the value of the semivariogram when it reaches its sill, and φY > 0
is the range, recall Section 2.1.2.

• A3: a max-mixture model which combines TEG process as in A1 and an inverted
Smith process with a diagonal covariance matrix ΣY = φY Id2.

(ii) Class B: consists of max-stable models B1−B3.

• B1: the TEG process described in A1.

• B2: a BR process with a spherical semivariogram.

• B3: a Smith process with a diagonal covariance matrix.

(iii) Class C: consists of models C1−C3 which are the inverted max-stable components in
models A1−A3.

For all the consideredmodels, the marginal distribution is assumed to be unit Fréchet. Therefore,
we transform the dataset to Fréchet by adopting a nonparametric transformation using the
empirical distribution function, recall Section 3.1.1. Afterward, we estimate the dependence
parameters using the censored pairwise approach (3.8), where the threshold u in (3.8) is taken
as the 0.9 empirical quantiles at each site. So, with this censoring mechanism, we focus on
threshold exceedances. Equal weights are assumed. The matrices H (ϑ) and J (ϑ) and the
related quantities, CLIC and standard errors (S.E.) are estimated empirically.



65 3.4. Rainfall data example: Australian Rainfall data

Our results are summarized in Table 3.4. The best-fitting model for zone A, as judged by
CLIC, is the hybrid dependence model A2, for which pairs of sites separated by a distance h
smaller than 2r̂X ' 720 km (respectively, greater than 720 km) are asymptotically max-stable
dependent (respectively, asymptotically independent).

Table 3.4: Summary of the fitted models based on the daily exceedances from
the Australian data at zone A. The CLIC and S.E. values are reported. a indicates
to the lower CLIC.

Class A φ̂X κX r̂X â φ̂Y r̂Y α̂Y CLIC
A1 342.87 - 713.08 ' 1 2235.51 986.40 - 1952371
S.E. 58.39 - 210.74 0.03 498.65 271.34 - -
A2 206.22 1.93 361.71 0.39 1014.54 - 2.46 1952188a

S.E. 81.17 1.04 199.62 0.11 306.55 - 1.24 -
A3 32.19 - 108.55 0.28 1154.96 - - 1952402
S.E. 13.76 - 70.02 0.16 217.88 - - -
Class B φ̂X r̂X α̂X CLIC
B1 311.92 761.84 - 1952378
S.E. 68.52 189.10 - -
B2 422.89 - 4.77 1952266
S.E. 78.29 - 2.93 -
B3 189.59 - - 1960850
S.E. 41.66 - - -
Class C φ̂Y r̂Y α̂Y CLIC
C1 18.05 707.12 - 1960726
S.E. 6.81 115.41 - -
C2 533.04 - 5.63 1952411
S.E. 88.15 - 2.27 -
C3 316.63 - - 1963215
S.E. 207.85 - - -

Considering the best-fitting model in zone A (i.e., A2), we perform the proposed statistical
tests LRa and Za to examine whether model A2 can be an appropriate model to quantify the
extremal dependence structures for rainfall data in zone B as in zone A with the same mixing
parameter a0 = 0.39. Simply, on the basis of observed data in zone B, we want to test whether the
null hypothesis H0 : a = a0 holds for a0 ∈ {0.01,0.1,0.2,0.3,0.39,0.5,0.6,0.99}. In addition, to
assess the validity of our results, the corresponding CLIC under the null hypothesis is computed.
Our results are summarized in Table 3.5. In summary, both statistics retain the null hypothesis
H0 : a = 0.39. Moreover, we observe the agreement between the test findings and CLIC values.
Thus, the max-mixture model A2 may be used to model the dependence structures of daily
precipitation in both zones A and B with the same a. These conclusions seem to be reasonable
and could be expected since both studied zones are located on the east coast of Australia and may
have a homogeneous precipitation pattern. Equivalently, an independent two-samples Z-test is
performed to compare the mixture parameter in both zones. Denote by aA (respectively, aB the
mixing parameter for the best-fitting model in zone A (respectively, zone B). We want to test the
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null hypothesis H0 : aA = aB. We compute the statistic

Z∗a =
âA− âB

SEâA−âB

, (3.23)

where SE stands for the estimated standard error. We found |Z∗a | = 0.42, and p-value = 0.67,
α = 0.05. Similarly, we conclude that there is no significant difference between the mixing
parameters in both zones. On the other hand, for testing H0 : aA = aB by the LR statistics, a
reparameterization may be required, i.e., to define a new parameter a′ = aA− aB and treat the
rest as nuisance parameters. Investigation about the latter is deferred to future work.

Table 3.5: Testing results of the null hypothesis H0 : a = a0, with a0 ∈

{0.01,0.1,0.2,0.3,0.39,0.5,0.6,0.99} on the basis of observed data in zone B.
α = 0.05. The corresponding CLIC values under H0 are reported.

LRa |Za |

a0 statistic p-value statistic p-value CLIC
0.01 16.07 6.10×10−5 4.42 9.87×10−6 2085837
0.10 10.98 9.21×10−4 3.63 2.83×10−4 1980814
0.20 9.53 2.02×10−3 2.75 5.96×10−3 1955458
0.30 6.34 1.18×10−2 2.19 2.85×10−2 1952356
0.39 1.21 2.71 ×10−1 0.92 3.58×10−1 1952194
0.50 3.78 5.18×10−2 1.83 6.72×10−2 1952227
0.60 10.14 1.45×10−3 2.68 7.36×10−3 1957503
0.99 21.46 3.61×10−6 4.69 2.73×10−6 2213019

Finally, by the introduced testing scheme, the statistics LRa and Za can be viewed as an efficient
parametric approach for model validation on the mixing parameter a. Of course, since â ∈ (0,1),
testing the global hypothesis H0 : ϑ = ϑ0, where ϑ0 = (206.22,1.93,361.71,0.39,1014.54,2.46)
is possiblewith a limiting distribution χ2

6, recall Remark 3.2. This testmight provide a parametric
validation tool for all model parameters. However, in the case of rejection H0, an individual test
has to be applied to each parameter.

3.5 Conclusions
In summary, we considered hypothesis testing for the mixture parameter of a max-mixture
model using two statistics the Za and LRa. A censored pairwise likelihood has employed for
statistical estimation. A simulation study showed that both statistics perform well, even when we
considered testing at values that are very close to the boundary points. In addition, we observed
the following:

• Generally, the resulting pairwise likelihood estimates perform well, although the vari-
ability in some estimates is relatively large, especially for the asymptotic independence
parameters. It also shows some bias in the estimation of asymptotic independence model
parameters.
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• The two statistics LRa and Za show a plausible performance. Both tests seem to be
unbiased. Furthermore, these tests can control the type I error rate α.

• The LRa test seems to be more powerful than the Za one when the true mixing parameter
a being a non-boundary point (i.e., a ∈ (0,1)), whereas, the converse is true when a being
a boundary point (i.e., a = 0 or 1).

• As expected, the power to reject asymptotic dependence, i.e., H0 : a = 1 (respectively,
asymptotic independence, i.e., H0 : a = 0) improves as the tested value a0→ 0 (respectively,
a0 → 1). Nevertheless, these tests do not seem to be very powerful in this case. One
possibility that might improve the performance is to consider a truncated high-order
composite likelihood, which results in a better estimation performance, see [26].

In the real data example, we showed that our testing procedure could be a performant model
validation tool.

Froma theoretical point of view, traditionalmethods for deriving hypothesis tests at boundaries
(i.e., H0 : a = 0 or a = 1) do not work in this non-regular situation due to the presence of additional
nuisance parameters which are not identified under the null hypotheses. The subject of non-
regular likelihood-based inference for composite likelihoods is not well studied and might be
very difficult, where the usual asymptotic theory doesn’t work. So, deriving hypothesis tests for
this case remains an open question.

Finally, let us remark that the composite LR statistic could also be useful when comparing
nested models. For instance, it could be interesting to test whether it is more appropriate to use
a powered exponential correlation function ρ(h) = exp

{
−

(
‖h‖
φ

) κ}
, for φ > 0 and 0 < κ < 2, or

an exponential correlation function ρ(h) = exp
{
−
‖h‖
φ

}
in spatial TEG model, i.e., H0 : κ = 1

versus H1 : κ , 1.



Chapter 4

Fitting spatial max-mixture processes with
unknown extremal dependence class: an
exploratory analysis tool

This chapter is based on our results from the paper: A.Abu-Awwad, V.Maume-Deschamps
and P. Ribereau—Fitting spatial max-mixture processes with unknown extremal depen-
dence class: an exploratory analysis tool. Published online to TEST journal.
Typically, the classes of models fitted to extreme data are based on asymptotic arguments

that do not apply to the data themselves. Hence, the statistical estimation for extreme values
is always subject to mis-specification bias. So, there is still a need to develop tools for initial
analysis and for checking the validity of fitted models.

In the max-stable framework, on the basis of the infinite possible choices of λ for Fλ-
madogram (2.30), the authors in [15] proposed an estimation procedure for the extremal depen-
dence function θ(.) of a max-stable process. They first estimate the Fλ-madogram nonpara-
metrically by its empirical version; then, a nonlinear least squares minimization between the
empirical Fλ-madogram and its theoretical counterpart is applied to obtain the estimates. The
appropriate choice of λ has been determined via some numerical trials. In a simulation study,
this procedure seems to improve the empirical estimates of θ(.) andmay outperform other known
estimators: the nonparametric estimator [25], the maximum likelihood estimator [92] and the
madogram-based estimator see [35]. In this chapter, we broaden the use of Fλ-madogram to fit
the class of spatial max-mixture processes, recall Definition 2.16.

Fitting spatial max-mixture processes using existing inference approaches such as the widely
adopted pairwise likelihood estimation and the semi-parametric estimation method in [5] have
somedisadvantages, recall Section 1.1. Specifically, they aremodel-based approaches. However,
in practice, asymptotic properties are always difficult to infer, see [67]. Hence, it would be
interesting to fit spatial max-mixture models which encompassing both asymptotic dependence
classes and let the data speak for themselves. In this chapter, we develop a new estimation
procedure in the family ofmax-mixturemodels. Unlike existing approaches, there is no necessity
to make subjective a priori judgments about which distribution family to adopt. In this sense, this
approach can be seen as “ a model-free” approach in the class of max-mixture models. The main
motivation for developing this approach is to offer a better model selection at an exploratory

68
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stage and better model checking at the validation stage. Our approach uses a least squares
fit based on the Fλ-madogram. It has some similarities with the semi-parametric estimation
approach used in [5]. However, there are important fundamental differences between the two
procedures in the inferential methodology and target, see Section 4.2.

The remainder of the chapter is organized as follows. The Fλ-madogram for max-mixture
models is calculated in Section 4.1. The proposed Fλ-madogram inference procedure and
its main properties are detailed in Section 4.2. Section 4.3 illustrates the performance of the
proposed estimation procedure through various simulation studies. In Section 4.4, we apply
our inference approach to analyze monthly maxima of daily rainfall over the East of Australia.
Concluding remarks are given in Section 4.5.

4.1 Fλ-madogram for spatial max-mixture model
The χ(.) (respectively, χ̄(.)) measures defined in Section 2.2.2 are suited to quantify asymptotic
dependence (respectively, asymptotic independence). Nevertheless, inference based on these
measures is difficult because few observations are available as u approaches 1, see, e.g., [9, 23].
Therefore, in the present chapter, we propose an appropriate dependence measure for the class of
max-mixture processes that may provide information on several extremal dependence structures.

The Fλ-madogram is defined in (2.30). We derive a closed-form expression of the Fλ-
madogram formax-mixturemodels containing the parameters of interest. Afterward, we develop
Fλ-madogram procedure to estimate the model parameters: θX , θY and a.

Proposition 4.1. Let {X (s)}s∈S be a simple max-stable process, with extremal dependence coef-
ficient function θX , and {Y (s)}s∈S be an inverted max-stable process with extremal dependence
coefficient function θY . Then, for any spatial lag h = s1 − s2, s1, s2 ∈ S, the Fλ-madogram of
the spatial max-mixture process {Z (s)}s∈S is given for a , 1 by

νFλ (h) =
λ

1+ λ
−

2λ
a(θX (h)−1)+1+ λ

+
λ

aθX (h)+ λ

−
λθY (h)

(1− a)θY (h)+ aθX (h)+ λ
β

(
aθX (h)+ λ

1− a
, θY (h)

)
, (4.1)

where β(., .) is the beta function.

As a consequence of Proposition 4.1, we rediscover the expressions of Fλ-madograms for
max-stable and inverted max-stable processes, that is,

• letting a→ 1, the Fλ-madogram of a simple max stable process X with extremal depen-
dence coefficient θX is

νFλ (h) =
λ

λ +1
θX (h)−1
λ + θX (h)

(4.2)

and we have νFλ (h) ∈ [0, λ
(1+λ)(2+λ) ], see [15],
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• setting a = 0, the Fλ-madogram of an inverted max-stable process Y with extremal
dependence coefficient θY is

νFλ (h) =
1

1+ λ
−

λθY (h)
λ + θY (h)

β(λ, θY (h)), (4.3)

• the choice λ = 1 gives the formula for F-madogram for max-mixture models, see [5].

Proof. Proposition 4.1. Following the idea of the proof from [60, 81], we use that for any
x, y ∈ R, |x − y | = 2max{x, y} − (x + y) with x = Fλ {Z (s)} and y = Fλ {Z (s + h)}. Moreover,
recall that E[Fα{Z (s)}] = 1/(1+α) for any α > 0. We have

νFλ (h) = E
[
max

{
Fλ {Z (s)},Fλ {Z (s+ h)}

}]
−

1
2
E

[
Fλ {Z (s)}+Fλ {Z (s+ h)}

]

= E
[
max

{
Fλ {Z (s)},Fλ {Z (s+ h)}

}]
−

1
(1+ λ)

.

Considering the random variable, W = max
{
Fλ {Z (s)},Fλ {Z (s+ h)}

}
. The probability distri-

bution function G of W satisfies (recall (2.32) and (2.35))

G(z) = P[W ≤ z]

= P
[
max

{
Fλ {Z (s)},Fλ {Z (s+ h)}

}
≤ z

]

= P
[
Z (s) ≤ F−1(z1/λ ), Z (s+ h) ≤ F−1(z1/λ )

]

= P

[
Z (s) ≤ −

λ

log(z)
, Z (s+ h) ≤ −

λ

log(z)

]

= exp
{
−V X

h

(
−

λ

a log(z)
,−

λ

a log(z)

)}
·

[
z

1−a
λ + z

1−a
λ −1 +

exp


−VY

h
*.
,
−

1

log
(
1− z

1−a
λ

) ,− 1

log
(
1− z

1−a
λ

) +/
-





.

This may be rewritten as

G(z) = z
aθX (h)

λ ·

[
2z

(1−a)
λ −1+

(
1− z

(1−a)
λ

)θY (h)
]

= 2z
a(θX (h)−1)+1

λ − z
a
λ θX (h) + z

a
λ θX (h)

(
1− z

(1−a)
λ

)θY (h)
.

Thus, one has

E[W ] =
∫ 1

0
zdG(z) = zG(z)���

1

0
−

∫ 1

0
G(z)dz

= 1−
[

2λ
a(θX (h)−1)+1+ λ

−
λ

aθX (h)+ λ
+ I

]
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and

I : =
∫ 1

0
z
a
λ θX (h)

(
1− z

(1−a)
λ

)θY (h)
dz

=
λ

(1− a)
β

(
aθX (h)+ λ

1− a
, θY (h)+1

)
=

λθY (h)
(1− a)θY (h)+ aθX (h)+ λ

β

(
aθX (h)+ λ

1− a
, θY (h)

)
.

This proves (4.1). �

Figures 4.1 and 4.2 visualize the theoretical behavior of the Fλ-madogram as a function of the
scalar distance h = ‖h‖ =: ‖ s1− s2‖ ≥ 0, s1, s2 ∈ S for isotropic max-stable, inverted max-stable
and max-mixture models. Different values of λ are used, i.e., λ ∈ {0.5,1,1.5,3}. Obviously,
depending on the value of λ, the Fλ-madogram exhibits a large variety of behaviors away from
the origin, where λ = 1.5 corresponds to the largest values of the Fλ-madogram.
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Figure 4.1: Fλ-madogram plotted as a function of the distance h = ‖h‖ for an
extremal-t process with degrees of freedom (df) ν = 4 and exponential correlation
function ρ(h) = exp(−‖h‖/3) (left panel) and for an inverted extremal-t process
with the same parameters (right panel).

4.2 Estimation of max-mixture models using Fλ-madogram

4.2.1 Estimation methodology

We now describe an estimation scheme for the max-mixture process Z (2.34). Due to compu-
tational reasons, we split the estimation scheme into two steps: we first estimate the extremal
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Figure 4.2: Theoretical Fλ-madogram functions (4.1) for λ = {0.5,1,1.5,3}. Top
row: (left panel) a max-mixture model in which X is a TEG process with AX a
disk of fixed radius rX = 0.25 and ρX (h) = exp(−‖h‖/0.2). The asymptotically
independent process Y is an inverted TEG process withAY a disk of fixed radius
rY = 0.5 and ρY (h) = exp(−‖h‖/0.4). (Middle panel) a max-mixture model in
which X is a TEG process as before. The asymptotically independent process Y
is an inverted extremal-t process with df ν = 2 and ρY (h) = exp(−‖h‖). (Right
panel) a max-mixture model in which X is a TEG process as before. The
asymptotically independent process Y is an inverted Smith process with Σ = Id2.
The gray vertical lines represent the diameters of the disks for TEG processes.
Bottom row: (left panel) a max-mixture model in which X is a BR process
with an intrinsically stationary isotropic semivariogram model γ(h) = 2‖h‖.
The asymptotically independent process Y is an inverted extremal-t process with
df ν = 3 and exponential correlation function ρY (h) = exp(−‖h‖/2). (Middle
panel) a max-mixture model in which X is an extremal-t process with df ν1 = 2
and exponential correlation function ρX (h) = exp(−‖h‖/2). The asymptotically
independent process Y is an inverted extremal-t process with df ν2 = 4 and
ρY (h) = exp(−‖h‖/3). (Right panel) a max-mixture model in which X is a BR
process with semivariogram γ(h) = 2‖h‖1/2. The asymptotically independent
process Y is an inverted BR process with semivariogram γ(h) = 2‖h‖. The
mixing parameter is fixed to a = 0.5 in the six models.
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dependence coefficient functions θX (h) and θY (h), with a fixed mixing parameter a, and then
we estimate a with the former estimates of θX (h) and θY (h). From (4.1), we may write the
Fλ-madogram as a function of a, λ, θX and θY , that is, νFλ (h) = g(a, λ, θX (h), θY (h)). The idea
beyond our procedure is that θX and θY may be estimated by θ̂X and θ̂Y , minimizing the square
difference between g(a, λ, θX (h), θY (h)) and its empirical counterpart, then we can estimate a
by â such that the empirical version of the Fλ ′-madogram is the closest to g(a, λ′, θ̂X (h), θ̂Y (h)).
Formally, for Zi, i = 1, . . .,T , independent copies of Z , let

Qi (h, λ) =
1
2
|Fλ (Zi (s))−Fλ (Zi (s+ h)) |,

where F denotes the unit Fréchet distribution function. From the definition of the Fλ-madogram,
we have E[Qi (h, λ)] = νFλ (h). In real-world applications, the marginal laws are usually not unit
Fréchet and thus have to be transformed to unit Fréchet. In that case, the empirical distribution
function F̂ is used instead of F. More precisely, we have:

Q̂i (h, λ) =
1
2
|F̂λ (Zi (s))− F̂λ (Zi (s+ h)) | and ν̂Fλ (h) = T−1

T∑
i=1

Q̂i (h, λ),

where ν̂Fλ (h) denotes the empirical version of νFλ (h). Denote byΛ ⊂ (0,∞) a finite set of some
possible choices for λ; then, for a given value of a, a semi-parametric nonlinear least squares
minimization procedure for estimating the summary functions θ (h) = (θX (h), θY (h))t is

θ̂ a
NLS

(h) = arg min
(θX,θY )∈[1,2]

T−1
∑
λ∈Λ

∑
i=1,...,T

[
Q̂i (h, λ)−g(a, λ, θX (h), θY (h))

]2
. (4.4)

The suggested minimizing criterion (4.4) has some similarities with the semi-parametric esti-
mation approach of [5]. Indeed, in [5], the estimation is based on a least squares minimization
between the empirical F-madogram (i.e., λ = 1) and its theoretical counterpart, computed for
several parametric models. However, one major difference here is that by (4.4) the estimates of
θX and θY do not rely on given forms for θX (h) and θY (h) (recall Table 2.1); hence, it provides a
way to make inference without specifying a specific distribution family before fitting the model.

Next, we estimate a by profiling the values of a goodness-of-fit criterion with respect to a.
Assume that the Zi’s are observed at locations s1, . . ., sD and let h be the pairwise distances
between the s j’s. For fixed a, let θ̂ a

NLS
(h) =

(
θ̂a

X (h), θ̂a
Y (h)

) t
be estimated as above with some

chosen distinct values λ ∈ Λ. Let λ′ ∈ [0,∞)/Λ and denote byH ⊂ [0,∞) the finite set of spatial
lags h, i.e.,

H =

{
hk = si − s j, i = 1, . . .,D−1, j = i+1, . . .,D, k = 1, . . .,

D(D−1)
2

}
.

Moreover, let ν̃Fλ (h) = g
(
a, λ, θ̂X (h), θ̂Y (h)

)
. We define the following decision criterion (DC)

DC(a) =
∑
h∈H

ω(h) [R−1]2 , (4.5)
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where R =
ν̂Fλ′ (h)
ν̃Fλ′ (h) andω(h)’s are nonnegative weights which can be used for example to reduce

the number of pairs included in the estimation in order to decrease the computational burden and
improving statistical efficiency, recall Section 3.1.2. Lastly, we estimate a by â that minimizes
DC(a).

Remark 4.1. Equivalently, instead of (4.4), one may solve the following optimization problem

θ̂ a
NLS

(h) = arg min
(θX,θY )∈[1,2]

∑
λ∈Λ

[
ν̂Fλ (h)−g(a, λ, θX (h), θY (h))

]2 . (4.6)

A similar approach has been proposed by [15] to estimate the extremal dependence coefficient
function in a max-stable setting.

Of course, the likelihood-based procedures can be used to estimate a full generative spatial
model and not only bivariate dependence summaries. However, the motivation beyond the
construction of this inference strategy is to gain flexibility, where the data have the chance to
speak for themselves without relying on a parametric model. This property is interesting from
a statistical point of view, it may reduce the model risk and can be used as a preliminary step
toward parametric modeling.

4.2.2 Consistency results

Below we establish the consistency of the resulting estimates from the Fλ-madogram estimation
approach. We will assume the set Λ = {λ1, λ2}, see Section 4.3. Accordingly, we rewrite the
criterion in (4.4) as

θ̂ a
NLS

(h) = arg min
(θX,θY )∈[1,2]2

T−1
∑

i=1,...,T

[
Q̂i (h, λ1)−g(a, λ1, θX (h), θY (h)

]2

+
[
Q̂i (h, λ2)−g(a, λ2, θX (h), θY (h)

]2
,

=: arg min
θ∈[1,2]2

LT (h,a, λ1, λ2,θ (h)).

In order to prove the consistency of the estimators, we need the two following assumptions:

(i) I1: for any a ∈ [0,1], ∃{λ1, λ2} ∈ Λ with λ1 , λ2, such that the mapping

[1,2]2 −→ R2

(x, y) 7→
(
g(a, λ1, x, y),g(a, λ2, x, y)

)
is injective.

(ii) I2: let θX (respectively, θY ), θ′X (respectively, θ′Y ) be the extremal coefficients ofmax-stable
(respectively, inverted max-stable) processes. Let λ be fixed, if for all h,

g (a, λ, θX (h), θY (h)) = g(a′, λ, θ′X (h), θ′Y (h)),

then a = a′.
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Remark 4.2. The hypotheses I1 and I2 are identifiability hypotheses. Numerical tests on several
models seem to indicate that they are satisfied for various max-mixture models, but we have no
formal proof.

Theorem 4.1. Assume that
(
Zi (s j )

)
i=1,...,T

are i.i.d. copies of Z (s j ), j = 1, . . .,D where Z is
a max-mixture spatial process with mixing parameter a0 ∈ [0,1]. Assume that the injectivity
conditions I1 and I2 are verified. Then the estimator â of a is consistent in the sense that

â −→ a0 in probability as T →∞.

Proof. of Theorem 4.1. We first begin with standard arguments on least squares to prove the
consistency of θ̂a0

X and θ̂a0
Y . Consider {λ1, λ2} ∈Λ, with λ1 , λ2 satisfying I1. For any h ∈ H , let

θ0(h) =
(
θ0

X (h), θ0
X (h)

) t
∈ [1,2]2 denote the unknown true parameter of extremal coefficients,

write
ε1
h,i = Q̂i (h, λ1)−g

(
a0, λ1,θ

0(h)
)
and

ε2
h,i = Q̂i (h, λ2)−g

(
a0, λ2,θ

0(h)
)
.

So, we have

LT
(
h,a0, λ1, λ2,θ

0(h)
)
=

1
T

T∑
i=1

(ε1
h,i)

2+
1
T

T∑
i=1

(ε2
h,i)

2 and

LT
(
h,a0, λ1, λ2, θ̂

a0
NLS

(h)
)
=

1
T

T∑
i=1

(ε1
h,i)

2+
1
T

T∑
i=1

(ε2
h,i)

2+
[
g(a0, λ1,θ

0(h))−g(a0, λ1, θ̂
a0
NLS

(h))
]2

+
2
T

[
g(a0, λ1,θ

0(h))−g(a0, λ1, θ̂
a0
NLS

(h))
] T∑

i=1
ε1
h,i +

[
g(a0, λ2,θ

0(h))−g(a0, λ2, θ̂
a0
NLS

(h))
]2

+
2
T

[
g(a0, λ2,θ

0(h))−g(a0, λ2, θ̂
a0
NLS

(h))
] T∑

i=1
ε2
h,i .

Since LT (h,a0, λ1, λ2, θ̂
a0
NLS (h)) ≤ LT (h,a0, λ1, λ2,θ

0(h)), we get

[
g(a0, λ1,θ

0(h))−g(a0, λ1, θ̂
a0
NLS

(h))
]2
+

2
T

[
g(a0, λ1,θ

0(h))−g(a0, λ1, θ̂
a0
NLS

(h))
] T∑

i=1
ε1
h,i

+
[
g(a0, λ2,θ

0(h))−g(a0, λ2, θ̂
a0
NLS

(h))
]2
+

2
T

[
g(a0, λ2,θ

0(h))−g(a0, λ2, θ̂
a0
NLS

(h))
] T∑

i=1
ε2
h,i ≤ 0.

Using the convergence results from [81] (Proposition 3), we have that

1
T

T∑
i=1

εk
h,i → 0 in probability, k = 1,2.

It follows that g(a0, λk, θ̂
a0
NLS

(h))→ g(a0, λk,θ
0(h)) in probability, k = 1,2. Consider θ∗(h) =

lim sup θ̂ a0
NLS

(h) and θ∗(h) = lim inf θ̂ a0
NLS

(h) (exist and are random variables), leading to

g(a0, λk,θ
∗(h)) = g(a0, λk,θ

0(h)) and g(a0, λk,θ∗(h)) = g(a0, λk,θ
0(h)), k = 1,2.
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Using the injectivity hypothesis I1, we conclude that for any h ∈ H ,θ∗(h) = θ0(h) and θ∗(h) =
θ0(h) and thus θ̂ a0

NLS
(h)→ θ0(h) (in probability).

Now, since â reaches the minimum of DC, we have DC(â) ≤ DC(a0). The convergence of
θ̂ a0
NLS

(h) and ν̂Fλ′ from [81] (Proposition 3) implies that lim
T→∞

DC(a0) = 0. By the same arguments
as above and using the injectivity condition I2, we conclude that â→ a0 (in probability). �

4.3 Simulation study
In this section, we provide some simulation results to assess the Fλ-madogram estimation
approach introduced in Section 4.2. Denote by ϑ the vector gathering the parameters to be
estimated. Three examples of isotropic max-mixture models are studied, namely

(i) M1: is the max-mixture model described in Section 3.3, which combines TEG and
inverted TEG processes with stationary isotropic exponential correlation functions. The
model parameters are ϑ = (a, φX,rX, φY,rY )t .

(ii) M2: is a max-mixture model where X is a TEG process as in M1 and Y is an isotropic
inverted extremal-t process with df νY and exponential correlation function ρY (h) =
exp

(
−‖h‖/φY

)
, φY > 0. The model parameters are ϑ = (a, φX,rX, φY, κY, νY )t .

(iii) M3: is a max-mixture model, which combines extremal-t process X (recall 2.16) and
inverted extremal-t process Y . Both X and Y have a stationary isotropic correlation
function ρ(h) = exp

{
−

(
‖h‖/φ

) κ}, with range φ > 0 and smoothness κ ∈ (0,2] and df
ν ≥ 1. The model parameters are ϑ = (a, φX, φY, κX, κY, νX, νY )t .

4.3.1 Setup for simulation study

(i) For each experiment, we consider a moderately sized dataset frommodelsM1, M2, andM3
with a true mixing parameter a0, D = 50 sites randomly and uniformly distributed in the
square [0, L]2, L ∈ N and T = 1000 independent replications at each site. The simulations
have been carried out using the function rmaxstab of the R package SpatialExtremes
(see [86]), except the TEG process (not implemented in SpatialExtremes) which has been
simulated as in [44]. Each experiment was repeated M = 100 times.

(ii) For each dataset in (i), we estimate the extremal dependence functions θX (h) and θY (h)
using the nonlinear least squares estimation procedures (4.4) and (4.6). We perform this
step with a set of different mixing parameters including a0.

(iii) We calculate DC(a) with the estimated θ̂a
X (h) and θ̂a

Y (h) functions from (ii). It is expected
that lower values of DC are likely related to the estimates of θX (h) and θY (h) under a0 in
(ii). Equal weights ω(.) are assumed.
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4.3.2 Results for Fλ-madogram estimation approach

Before showing some simulation studies results, as in [15], we have to determine the range of λ
and λ′. After some exploratory analysis based on the considered models and using different sets
of λ and λ′, we found that the lower values of DC are likely related to the choice of Λ = {1,3}
and λ′ = 1.5. Furthermore, this choice seems a reasonable compromise between accuracy and
computation time.

To assess the performance of the nonlinear least squares estimator θ̂
a
N LS (h), we simulate data

from models M1, M2 and M3 as mentioned in (i). The performance of the estimators is given
by the relative mean square error MSErel, for the D(D−1)/2 pairwise distances hk = ‖hk ‖, see
[15] (page 171), for a similar definition in the multivariate context

MSErel(hk ) = M−1
M∑

i=1

(θ̂a
i (hk )− θ(hk ))2

θ(hk )
, k = 1, . . .,D(D−1)/2. (4.7)

Figures 4.3 and 4.4 display the estimation performance of θ̂X (h) and θ̂Y (h) for models M1 and
M2 as functions of the distance h = ‖h‖ for mixing parameters a ∈ {0.75,0.5,0.25} based on
the minimizing criterion (4.4), while Figure 4.5 shows the performance for model M3 on the
basis of the minimizing criterion (4.6). Generally, our estimation procedure appears to work
well. It improves the empirical dependence summaries, which have high variability and do not
yield a valid spatial model. Moreover, we observe that contrary to θY (h), the estimation of
θX (h) becomes more accurate as the mixing parameter value increases. The latter conclusion
is consistent with the results obtained by the parametric estimation using pairwise likelihood,
where the estimation of asymptotic dependence parameters becomesmore accurate as themixing
parameter value increases (the RMSE and MAE are lower) and the converse seems to hold for
asymptotic independence parameters, recall Section 3.3.

Next, we turn to the proposed decision criterion (DC) about the mixing parameter a. We
perform a number of simulation studies using the above-mentioned max-mixture models. The
boxplots in Figure 4.6, 4.7, and 4.8 show the values of DC against different mixing parameters
a ∈ {0,0.25,0.5,0.75,1} for models M1, M2, and M3. Clearly, the lower values of DC are likely
related with the true mixing parameter a0.
Lastly, we assess whether the resulting estimates of the mixing parameter a from the proposed

Fλ-madogram estimation procedure are asymptotically Gaussian distributed. We apply our
inferential methodology for all a ∈ (0,1) by step 0.01. The data have been simulated from
the max-mixture model M1 with a true mixing parameter value a0 ∈ {0.25,0.5,0.75}. Each
experiment was repeated 500 times. Figure 4.9 displays the histograms and density curves of
the obtained errors: â− a0. Clearly, the density of the errors is close to a centered Gaussian
distribution.
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Figure 4.3: Estimation performance of θ̂N LS (h). Data simulated from model
M1. We set φX = 0.1, rX = 0.25, φY = 0.75, and rY = 1.2 over a square [0,3]2.
Black points/red points: nonlinear least squares mean estimates/true extermal
coefficients. The histograms display the MSErel of the nonlinear least squares
estimates.
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Figure 4.4: Estimation performance of θ̂N LS (h). Data simulated frommodelM2.
We set φX = 0.5, rX = 1, φY = 1, and ν = 3 over a square [0,3]2. Black points/red
points: nonlinear least squares mean estimates/true extermal coefficients. The
histograms display the MSErel of the nonlinear least squares estimates.
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Figure 4.5: Estimation performance of θ̂N LS (h). Data simulated from M3 using
the same setup in Section 4.3.1. We set φX = 0.5, φY = 1.5, κX = κY = 1, and
νX = νY = 3 over a square [0,3]2. Black points/red points: nonlinear least squares
mean estimates/true extermal coefficients. The histograms display the MSErel of
the nonlinear least squares estimates.
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Figure 4.6: Boxplots for decision criterion (DC) of 100 data replications of 1000
independent copies fromM1 with parameters φX = 0.1, rX = 0.25, φY = 0.75 and
rY = 1.2 over the square [0,3]2. a0 corresponds to the true mixing parameter.
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Figure 4.7: Boxplots for decision criterion (DC) of 100 data replications of 1000
independent copies from M2 with parameters φX = 0.5, rX = 1, φY = 1 and ν = 3
over the square [0,3]2. a0 corresponds to the true mixing parameter.
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independent copies fromM3 with parameters φX = 0.5, φY = 1.5, κX = κY = 1 and
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4.4 Australian rainfall data revisited
In this section, we discuss a spatial extreme application to illustrate the benefits of our Fλ-
madogram estimation approach. We revisit the Australian daily rainfall example analyzed in
Section 3.4. Three additional monitoring stations are added to assess the goodness-of-fit. They
are labeled by colored numbers {1,2,3}, see Figure 4.10.

1

2

3

Figure 4.10: Geographical loca-
tions of 41 meteorological stations
located in the East of Australia. The
38 stations with a cross-label are
used for model inference. The other
3 stations labeled by colored num-
bers {1,2,3} are put aside for assess-
ing the goodness-of-fit.

4.4.1 Monthly maxima data

Modeling only the seasonal winter maxima might lead to large variances in estimating empirical
Fλ-madogram, which probably can be justified by the small number of independent replicates
over the years 1972−2014. On the other hand, the potential problem with taking weekly maxima
is that there will be some (even many) zero values. In addition, weekly maxima, which might
correspond to just one wet day, might not be extreme. So, here we analyze block maxima of
east Australia rainfall data by taking monthly maxima of daily rainfall in the winter season over
the 43-year period. This yields a dataset comprising a total of 6×43 = 258 monthly maxima at
each monitoring station. The entire dataset comprises 9804 measurements. About 2.6% of the
measurements equal zero. Figure 4.11 depicts the distribution for the entire dataset of monthly
maxima measurements, while Table 4.1 reports basic statistics for these measurements. Clearly,
they suggest that the distribution of monthly maxima measurements is highly right-skewed and
heavy-tailed. Furthermore, by inspecting autocorrelation plots of monthly maxima with a fixed
location, we conclude that there is no temporal dependence in the time series.

In the literature, e.g., [60] analyzed monthly maxima of hourly precipitation measured at two
French stations located in the west of Paris from February 1987 to December 2002. In that
study, the authors proposed a simple inference tool inspired by geostatistics, the madogram, to
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Figure 4.11: Australian rainfall example—histogram of winter monthly maxima
of daily rainfall (measured in mm/day), combined for the 38 monitoring stations
over the 43-year period (1972−2014).

Table 4.1: Australian rainfall example—basic statistics for winter monthly max-
ima of daily rainfall (measured in mm/day), combined for the 38 monitoring
stations over the 43-year period (1972−2014). The central moments (first row)
and empirical quantiles (second row).

Central moments Mean Variance Skewness Kurtosis
21.3 535.4 3.8 30.5

Empirical quantiles Minimum 25% 50% 75% 90% 95% 99% Maximum
0 7.2 15.4 27.4 45.0 60.2 118.0 410.7
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the context of asymptotic independence between pairwise block maxima. Finally, let us remark
that the daily rainfall in this region was also analyzed in two other studies [11, 5]. In [11],
the pairwise likelihood estimation was adopted in the analysis of site-wise winter maxima and
exceedances over a large threshold, while, in [5], a semi-parametric fit based on F-madogram
was applied to analyze all daily rainfall data.

4.4.2 Marginal fitting

An appropriate inferential approach requires to fit marginal and dependence parameters. For
marginal fitting, the generalized extreme value distribution GEVµ(s),σ(s),ξ (s) in (2.6) is usually
fitted to block maxima, recall Section 3.1. So, we fit this distribution separately to each station.
Figure 4.12 displays the shape parameter estimates for each monitoring station. They are
positive with positive confidence intervals. This may suggest a Fréchet distribution to be the
most appropriate for the data at hand.

We assess the goodness of the marginal fits by quantile-quantile plots (QQ-plots) of the winter
monthly maxima observations against fitted GEV distribution for each monitoring station. For
example, Figure 4.13 depicts the QQ-plots at four monitoring stations. All plots show a
reasonable fit. Afterward, data are transformed to unit Fréchet scale according to the probability
integral transformation: z → −1

log(F̂ (z))
, where F̂ (.) is the estimated generalized extreme value

distribution, that is, GEV
µ̂(s),σ̂(s),ξ̂ (s).
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Figure 4.12: Estimated GEV shape parameter ξ̂ (s) at all monitoring stations with
95% confidence intervals.

4.4.3 Exploratory data analysis: Fλ-madogram estimation approach

The composite likelihood estimation serves as a reliable method to estimate parameters for
extreme processes, see, e.g., [84]. Somuch effort has been placed on determining the appropriate
dependence class using this method, where the standard way to perform statistical inference is
based on fitting a list of models. Afterward, select the best-fitting model based on a suitable
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Figure 4.13: QQ-plots of winter monthlymaxima of daily rainfall versus the fitted
GEVdistributionwith µ̂(s), σ̂(s) and ξ̂ (s) based on the time series corresponding
to four monitoring stations.

criterion. Sometimes (even often) the list of fitted models seems arbitrary. The major advantage
of the Fλ-madogram inference approach for spatial extremes over existing model-based ones is
needless to explicitly determine parametric families on which we should work. Since we do not
want to give an unfair advantage to our approach, it could serve as an exploratory tool to assess
(in a preliminary step) what kind of parametric model would be appropriate for fitting the data.

In a preliminary analysis, we apply the Fλ-madogram estimation procedure described in
Section 4.2 to estimate the max-mixture model parameters: a and the summary measures θX (.)
and θY (.). We use the following two steps.

(i) We first estimate a, where a varies from 0 to 1 by steps of 0.01. Similarly as mentioned
in Section 4.3, we fixed Λ = {1,3} and λ′ = 1.5. The a 7→ DC(a) function is plotted in
Figure 4.14. The best-fitting max-mixture model as judged by the DC criterion has an
estimated mixing parameter of â = 0.64.

(ii) Next, for estimating the functions θX (h) and θY (h), we refit the dataset again by the
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nonlinear least squares procedure (4.4) on the basis of the resulting estimate of the mixing
parameter in (i). The results are summarized in Figure 4.15.
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Figure 4.14: a 7→ DC(a) for real data exam-
ple on the interval a ∈ (0,1) by steps 0.01.
Red star corresponds to the minimum DC
value which occurs at a = 0.64.
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Figure 4.15: Nonlinear least squares estimates for θX (h) (left panel) and θY (h)
(right panel) as a function of distance ‖h‖. Gray points are pairwise estimates;
black ones are binned estimates—the number of bins is 200. Red lines represent
smoothed values of the binned estimates.

Although the estimates of θY (h) appear to be relatively more “random” than those of θX (h)
which might be expected since â > 0.5, this approach improves the empirical extremal summary
measures for the class of max-mixture models. Hence, this approach could be used to guide the
likelihood-based procedure: perform better model selection at this exploratory stage and better
model checking at the validation stage.

In the left panel of Figure 4.15, asymptotic dependence between monitoring stations seems
to be present up to a distance of 400 km and asymptotic independence could be conjectured
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after. While the right panel seems to suggest the same for a distance of 600 km. Only a few
number of pairs appear to be completely independent, i.e., θ̂X (h) or/and θ̂Y (h) → 2. This
means that for large distances there is still a weak extremal dependence. Such a process might
be modeled by a BR or extremal-t processes with their inverted versions as asymptotically
independent processes. The distribution of a BR process depends only on the semivariogram
γ(h). Although a wide range of γ(h) can be employed, a common choice is the so-called
stable semivariogram, sometimes called fractional Brownian motion (FBM) semivariogram,
γ(h) =

(
‖h‖/φ

) κ , φ > 0, and κ ∈ (0,2]. The variation in κ and φ yieldsmax-stable processeswith
quite different roughnesses and scales for spatial dependence. The corresponding correlation
function is ρ(h) = exp(−γ(‖h‖)) which can be employed when modeling data with an extremal-
t process. Under certain conditions, the extremal-t process converges to a BR process as the
degrees of freedom ν→∞. So, an extremal-t process will typically fit data at least as well as a
BR process.

On the other hand, it appears that the multivariate distribution of monthly maxima of rainfall
in this region might be poorly modeled by the Smith, Schlather, and TEG models. The Smith
models are not flexible enough to cope with pairwise extremal coefficients that increase quickly
around the origin but increase much more slowly for larger distances, whereas Schlather model
is unable to capture the long-range independence, where the extremal dependence function is
bounded above by 1+

√
1/2. Finally, the TEG model which can be adapted for modeling very

local effects and sudden changes, or phenomena that reflect complete independence after some
fixed lag, might be too restrictive for this application.

Besides performing better model selection, providing good starting values to maximize com-
posite likelihoods may decrease the computational time and also improves the statistical effi-
ciency, see [26]. So, the resulting estimate of the mixing parameter a could serve as a starting
value for the optimization routine used to maximize the pairwise log-likelihood function. Also,
some indications about range parameters could be obtained.

4.4.4 Fitting dependence parameters: pairwise likelihood estimation

To examine our conjecture in the preliminary analysis step about the suitable max-mixture class
for this application, we consider four stationary isotropic max-mixture processes to assess the
spatial dependence of monthly maxima rainfall events over the entire study region. In addition,
we take into account the max-stable and inverted max-stable components of these models. The
models are

(i) Class A: consists of max-mixture A1−A4 models.

• A1 : a mixture which combines BR and an inverted BR processes with semi-
variograms γ(h) =

(
‖h‖/φ

) κ , φ > 0 and κ ∈ (0,2]. The model parameters are
ϑ = (a, φX, κX, φY, κY )t .

• A2 : a mixture which combines extremal-t and an inverted extremal-t processes
with powered exponential correlation functions ρ(h) = exp(−γ(‖h‖)). The model
parameters are ϑ = (a, φX, κX, νX, φY, κY, νY )t .
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• A3 : a mixture which combines TEG and an inverted TEG processes with powered
exponential correlation functions and with a compact random setA is a disk of fixed
radius r . So, the expected volume of overlap between the random set A and itself
shifted by the space lag h = s1− s2 is approximately α(h) ' (1− ‖h‖/2r)1[0,2r]. The
model parameters are ϑ = (a, φX, κX,rX, φY, κY,rY )t .

• A4 : a mixture which combines Smith and an inverted Smith processes with Gaussian
density kernels defined through the diagonal covariance matrices Σ = φ2 Id2, which
corresponds to max-stable BR process when κ = 2, recall that Id2 denotes a 2 by 2
identity matrix. The model parameters are ϑ = (a, φX, φY )t .

(ii) Class B: consists of models B1−B4 which are, respectively, the max-stable components in
models A1−A4.

(iii) Class C: consists of models C1−C4 which are, respectively, the inverted max-stable
components in models A1−A4.

The dependence parameters are estimated using the pairwise likelihood contribution (3.6).
Equal weights are assumed. For evaluating the CLIC and the standard errors (S.E.), we assume
that themonthlymaxima are independent in time. In that case, we estimateH andJ empirically,
recall Section 3.1.3. Graphical diagnostics based on nonlinear least squares estimates of θX (h)
and θY (h) are also used to examine the suitability of the fitted models.

Table 4.2 reports the parameter estimates along with CLIC and S.E. values. As expected
from the exploratory analysis, the hybrid dependence model A2 has the lowest CLIC value and
therefore would be considered the best of the candidate models for this dataset, closely followed
by hybrid model A1. Figure 4.16 depicts the fitted χ0.97(h) and χ̄0.97(h) derived from model
A2. It seems that pairs of sites separated by a distance d smaller than 400 km are asymptotically
dependent. At larger distances, the monthly maxima exhibit asymptotic independence. We also
notice that there is a good agreement between the mixing parameter estimate â obtained from
these two models and the proposed Fλ-madogram approach. Furthermore, the Smith models
(A4, B4 and C4) are the worst ones. They have the largest values of CLIC.
For assessing the goodness-of-fit, Figures 4.17 and 4.18 compare the nonlinear pairwise

extremal dependence estimates
(
θ̂X (h), θ̂Y (h)

)
as a function of distance ‖h‖ and their model-

based counterparts derived from the fitted models. These figures confirm the conclusions we
draw from Table 4.2. Models A1 and A2 provide plausible fits, the models A4, B4 and C4
are too rigid to appropriately capture the decay of dependence with distance and model A3
seems to overestimate the strength of short-range dependence and underestimate the strength
of long-range dependence by its max-stable component (similar to model B3), while it tends to
overestimate the strength of dependence over the entire range by the inverted max-stable part
(similar to model C3).
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Figure 4.16: Fitted χ0.97(h) and χ̄0.97(h) derived from model A2 as functions
of the distance h = ‖h‖.

Table 4.2: Estimated dependence parameters for all selected models fitted to
Australian winter rainfall monthly maxima. The CLIC and S.E. values are
reported. a indicates to the lower CLIC.

Class A â φ̂X [km] κ̂X ν̂X r̂X [km] φ̂Y [km] κ̂Y ν̂Y r̂Y [km] CLIC
A1 0.61 31.42 0.72 - - 81.07 0.84 - - 62926
S.E. 0.04 5.93 0.11 - - 42.86 0.20 - - -
A2 0.73 358.14 1.09 7.31 - 796.13 1.65 5.58 - 62902a
S.E. 0.14 81.05 0.29 2.52 - 123.44 0.29 3.06 - -
A3 0.18 116.37 0.74 - 222.15 367.48 1.68 - 709.73 64463
S.E. 0.09 24.99 0.40 - 96.33 82.00 0.56 - 63.65 -
A4 0.42 29.72 - - - 83.50 - - - 68859
S.E. 0.12 23.60 - - - 35.19 - - - -
Class B φ̂X κ̂X ν̂X r̂X CLIC
B1 44.14 0.86 - - 63109
S.E. 16.03 0.26 - - -
B2 269.60 0.82 7.23 - 62985
S.E. 41.62 0.10 1.95 - -
B3 212.49 1.08 - 263.64 68705
S.E. 17.12 0.37 - 116.00 -
B4 77.02 - - - 68721
S.E. 9.39 - - - -
Class C φ̂Y κ̂Y ν̂Y r̂Y CLIC
C1 137.55 1.13 - - 63650
S.E. 60.45 0.07 - - -
C2 461.87 1.58 3.99 - 63672
S.E. 165.08 0.47 0.89 - -
C3 288.33 1.65 - 672.05 64413
S.E. 75.70 0.01 - 54.06 -
C4 69.86 - - - 68838
S.E. 26.94 -
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Figure 4.17: Site-wise winter monthly maxima analysis (Class A): nonlinear least
squares and model-based estimates of the extremal dependence functions θX (h)
(left panel) and θY (h) (right panel). Gray points are nonlinear least squares
pairwise estimates, black ones are binned estimates—the number of bins is 200.
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Figure 4.18: Site-wise winter monthly maxima analysis (Classes B and C):
nonlinear least squares and model-based estimates of the extremal dependence
functions θX (h) (left panel) and θY (h) (right panel). Gray points are nonlinear
least squares pairwise estimates, black ones are binned estimates—the number
of bins is 200.
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Finally, on the basis of the proposed Fλ-madogram inference approach, we estimate the
full process by contrasting the estimated nonlinear pairwise summaries θ̂X (h) and θ̂Y (h) as
a function of ‖h‖ with their parametric counterparts from the best-fitting model A2. More
precisely, we apply the following nonlinear least squares minimization procedure:

*..
,

φ̂

κ̂

ν̂

+//
-
= arg min
φ>0, κ∈(0,2],

ν≥1

∑
‖hk ‖

ω(hk )

θ̂(hk )−2Tν+1

*.
,

√
(ν+1)

1− ρ(hk )
1+ ρ(hk )

+/
-



2

, k = 1, . . .,703. (4.8)

The resulting estimates are: φ̂X = 350.69 km, κ̂X = 1.22, ν̂X = 6.08, φ̂Y = 738.35 km, κ̂Y = 1.77
and ν̂Y = 4.46. Overall, there is a good agreement between these estimates and the ones obtained
by model A2.

4.4.5 Threshold exceedances probability

One of the most important weather hazards is heavy rainfall. Extreme rainfall may cause
flooding or landslides which in turn threatens the lives of organisms, disrupt transportation and
communication, damage infrastructure and so forth. Extreme rainfall observations show a spatial
dependence structure, where neighboring sites within some distance exhibit similar patterns.
For example, Figure 4.19 displays the scatterplot of winter monthly maxima measured over the
period 1972-2014 between two adjacent monitoring stations (distance d ≈ 37 km). It seems
that the dependence structure is strong (the points are strongly clustered). Furthermore, large
values of winter monthly maxima rainfall tend to occur together. The aim of spatial analysis
is usually to enable prediction at an unobserved location. Hence, quantifying the dependence
structure across a sample of stations may be useful in estimating the extreme value behavior at
other unobserved stations.

As the last step in this study, in order to illustrate the behavior of the best-fitting model A2
and the Fλ-madogram estimation approach, we perform a small prediction in the context of the
rainfall example. Denote by ZM (s) the site-wise monthly maxima process of the max-mixture
rainfall process Z (s). An interesting question might be “given that the process ZM (s) at location
s2 exceeds a high threshold z, how likely is it high at a ‘nearby’ location s1?”. In other words,
how can we predict

P (z) = P[ZM (s1) > z |ZM (s2) > z]?

Indeed, the probability P can be viewed as an alarm for the risk of extreme rainfall. In the
following lemma, we derive the probability P for the max-mixture process Z (s).

Lemma4.1. The bivariate conditional exceedance probability of amax-mixture process {Z (s)}s∈S
is given by

P (z) =
1−2e−

1
z + e−

aθX (h)
z

{
−1+2e−

1−a
z +

[
1− e−

1−a
z

] θY (h)
}

1− e−
1
z

, a ∈ [0,1]. (4.9)
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Figure 4.19: Australian rainfall example—scatterplot of winter monthly maxima
(measured in mm) recorded during 1972−2014 between two adjacent monitoring
stations. The two stations are separated by a distance d ≈ 37 km.

Proof. We may write the joint survivor function of the spatial max-mixture process Z in (2.34)

P[Z (s1) > z1, Z (s2) > z2] = F̄Z (z1, z2)

= 1−FZ (z1)−FZ (z2)+FZ (z1, z2),

where FZ (z) and FZ (z1, z2) denote, respectively, the marginal probability distribution function
(i.e., unit Fréchet) and the bivariate c.d.f. of the max-mixture process Z (.). Applying (2.35)
and setting z1 = z2 = z, we obtain

P[Z (s1) > z |Z (s2) > z] =
P[Z (s1) > z, Z (s2) > z]

P[Z (s2) > z]

=
1−2P(Z (s1) < z)+FX

h

(
z
a,

z
a

)
FY
h

(
z

1−a,
z

1−a

)
1−P[Z (s2) ≤ z]

=

1−2e−
1
z + e−aVX

h
(z,z)

{
−1+2e−

1−a
z + e−VY

h

[
t
(

1−a
z

)
, t

(
1−a
z

)]}
1− e−

1
z

,

where t
(

1−a
z

)
=−1/ log

[
1− e−

1−a
z

]
, FX

h

(
z
a,

z
a

)
= P

(
X (s1) < z

a,X (s2) < z
a

)
and FY

h

(
z

1−a,
z

1−a

)
=

P
(
Y (s1) < z

1− a,Y (s2) < z
1− a

)
.

As a consequence of the homogeneity property of the exponent functions V X
h

(.) and VY
h

(.),

we have V X
h

(z, z) = θX/z and e−VY
h

[
t
(

1−a
z

)
, t

(
1−a
z

)]
=

[
1− e−

1−a
z

] θY
, and this gives (4.9). �

In what follows, let s1 and s2 denote, respectively, the unused stations (which are shown by
the numbers {1,2,3}, see Figure 4.10) and the closest adjacent (nearby) stations to s1 and let
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d = ‖ s1− s2‖. Taking site-wise monthly maxima data, we estimate P by model A2 and the Fλ-
madogram approach. Then, the obtained results are compared with the empirical counterparts
of P. The threshold z in (4.9) is taken corresponding to the q-empirical quantile at station s2,
q ∈ (0,1). Specifically, q ∈ {0.75,0.80,0.85,0.90,0.925,0.95}. For the Fλ-madogram approach,
under the isotropy hypothesis, one may extrapolate θX (h) and θY (h) when ‖h‖ = d from the
(smoothed) binned versions of the nonlinear least squares pairwise estimates by distance classes.

The diagnostic probability plots in Figure 4.20 compare the resulting estimates of P using
model A2 and the Fλ-madogram approachwith their empirical counterparts, where the empirical
estimates of P are computed on the basis of the observed data at the unused monitoring stations.
There is a good agreement overall, as the points are sufficiently close to linearity. We also
observe a slight outperformance for model A2.
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Figure 4.20: Comparison between empirical estimates of P at the unused mon-
itoring stations for Australian monthly maxima rainfall data example and their
model-based counterparts on the basis of the best-fitting parametric model A2
(left panel) and their Fλ-madogram approach counterparts (right panel). A per-
fect agreement would place all points on the black diagonal line. Green: station
1; red: station 2; blue: station 3 , see Figure 4.10.

4.5 Conclusions
To sum up, semi/nonparametric estimation methods are valuable for the initial analysis and
for checking the adequacy of fitted models. Most approaches are based on pairs of extremal
observations, which provide direct insight into the dependence structure of the data. In this
chapter, we developed an estimation approach for max-mixture models, which combine max-
stable processes and inverted max-stable processes into a single family, in order to capture
both asymptotic dependence and independence in spatial extremes. We suggested using Fλ-
madogram approach to gain in flexibility.
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The proposed approach can be viewed as a compromise (or an intermediate approach) between
a completely nonparametric approach based on empirical extremal dependence functions (which
have high variability and do not yield a valid spatial model) and a fully parametric approach
(which is very efficient and yields a valid spatial model).

A simulation study has shown that our estimation procedure performs well, even when we
have considered the boundary values for a. It improves empirical dependence functions for
the class of max-mixture models. In the rainfall example, we used our estimation approach in
order to perform better model selection at an exploratory stage and better model checking at the
validation stage. Furthermore, we estimated the bivariate conditional exceedance probability of
monthly maxima rainfall at ungauged locations.

Finally, isotropic models have been widely studied. Owing to our motivating isotropic rainfall
dataset, we focused on fitting isotropic max-mixture processes. However, anisotropic situations
are often observed in environmental phenomena, especially when the study regions are very
large. So, it could be interesting to introduce anisotropy to our inference framework, see
Section 6.2.



Chapter 5

Semi-parametric estimation for space-time
max-stable processes

This chapter is based on our results from the submitted paper: A. Abu-Awwad, V.Maume-
Deschamps and P. Ribereau—Semi-parametric estimation for space-time max-stable pro-
cesses: F-madogram-based estimation approach.

In the literature, the observations at spatial locations are often assumed to be temporally
independent. So, only the spatial structure is studied, see, e.g., [84]. This may be unrealistic.
For example, hourly and even daily measurements of rainfall are rarely independent in time,
where the chance of a day being free of rain may be substantially greater if the previous few
days were dry rather than wet. Thus, space-time max-stable processes have been developed to
study the extremal dependence of spatio-temporal data, see [40, 41, 64, 54].

In the spatial setting, the λ-madogram (recall Definition 2.31) has been proposed by [81]
to estimate the extremal dependence function Vh (x1, x2). Its simplest version F-madogram
[35] (recall Definition 2.26) is used to estimate the extremal dependence function θ(h) =
Vh (1,1). Recently, a nonlinear least squares approach based on the F-madogram has been
applied satisfactorily for statistical inference on spatial max-mixture models, see [5]. In this
chapter, we broaden the use of the F-madogram as an inferential tool to the spatio-temporal
setting. Specifically, we propose the following two novel semi-parametric estimation schemes
based on spatio-temporal F-madogram to fit space-time max-stable processes:

(i) Scheme 1: we estimate spatial and temporal parameters separately. Based on nonlin-
ear least squares, we minimize the squared difference between the empirical estimates
of spatial/temporal F-madograms and their model-based counterparts. Our inferential
methodology is close to the one that has been proposed by [23] as an alternative or a
preliminary analysis to the pairwise likelihood approach in [41], where only isotropic
space-time max-stable BR process (2.49) has been fitted.

(ii) Scheme 2: we generalize the nonlinear least squares to estimate spatial and temporal
parameters simultaneously.

These methods can be viewed as similar in spirit to those used in the geostatistics literature in the
context of nonlinear least squares fitting of the semivariogram, see, e.g., [80]. For instance, in

96
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the spatial setting, let γ̂(h) =
(
γ̂(h1), . . ., γ̂(hk )

) t denotes the k ×1 vector containing the values
of the spatial empirical semivariogram (recall Definition 2.5) at the k lag distances considered
and let γ(h,ψ) be the vector of the values derived by the theoretical model from the same lags,
where ψ denotes the vector gathering the parameters to be estimated. Then, one may write

γ̂(h) = γ(h,ψ})+ ε (h,ψ), (5.1)

where ε (.) has 0 mean, provided that γ̂(h) is unbiased estimator of γ(h). Its covariance matrix
typically depends on ψ. Let

Q(ψ) =
k∑

i=1
ωi

(
γ̂(hi)−γ(hi,ψ)

)2 , (5.2)

where ωi are nonnegative weights specifying the contribution of each pair. The (weighted)
nonlinear least squares fitting aims to determine the vector ψ̂ that minimizes the expression
(5.2), that is,

ψ̂ = arg min
ψ∈Ψ

Q(ψ), (5.3)

where Ψ is a set of admissible parameters. So, it is natural to adapt the strategies introduced in
geostatistics to this context.

The remainder of the chapter is organized as follows. In Section 5.1, we derive a closed
form expression of the spatio-temporal λ-madogram and Pickands dependence function in
the framework of spectrally separable space-time max-stable processes. Two semi-parametric
estimation schemes for space-timemax-stable are described in Section 5.2. Section 5.3 illustrates
the performance of our method through a number of simulation studies, where also a comparison
with the semi-parametric estimation [23] is performed. In Section 5.4, we apply our inferential
procedure to quantify the extremal behavior of radar rainfall data in a region in the State of
Florida. Concluding remarks are given in Section 5.5.

5.1 Extensions of spatial extremal summary measures
In the next two propositions, we derive explicit formulas for the λ-madogram and Pickands
dependence function in the case of the spectrally separable spatio-temporal model (recall Sec-
tion 2.3.2), i.e.,

X (s, t) =max{δX (s−τ, t −1), (1− δ)H (s, t)}, (s, t) ∈ S×T . (5.4)

Proposition 5.1. (λ-madogram for space-time max-stable process with spectral separability)
In the case of (5.4), for h ∈ R2 and l ∈ R, the spatio-temporal λ-madogram for any λ ∈ (0,1) is
given by

νλ (h, l) =
(1− λ){V0,h−lτ

(
λ, (1− λ)δ−l

)
}+1− δl

(1− λ){1+V0,h−lτ
(
λ, (1− λ)δ−l ) }+1− δl − c(λ), (5.5)

where c(λ) = 3
2(1+λ)(2−λ) .
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Proof. We follow the idea of the proof from [81, 60]. In the case of (5.4), the spatio-temporal
λ-madogram, stemming from the spatial version (recall Definition 2.14) is defined by

νλ (h, l) =
1
2
E[|Fλ (X (0,0))−F1−λ (X (h, l)) |],

where F is the unit Fréchet distribution function. Applying the equation |a− b| = 2max{a,b} −
(a+b) with a = Fλ {X (0,0)} and b= F1−λ {X (h, l)} and recalling thatE[Fα{X (h, l)}]= 1/(1+α)
for any α > 0, we have

νλ (h, l) = E
[
max{Fλ {X (0,0)},F1−λ {X (h, l)}}

]

−
1
2
E

[
Fλ {X (0,0)}+F1−λ {X (h, l)}

]

= E
[
max{Fλ {X (0,0)},F1−λ {X (h, l)}}

]
− c(λ).

Considering the random variable W = max
{
Fλ {X (0,0)},F1−λ {X (h, l)}

}
. The probability dis-

tribution function G of W satisfies (recall (2.57))

G(x) = P[W ≤ x]

= P

[
X (0,0) ≤ −

λ

log x
,X (h, l) ≤ −

1− λ
log x

]

= exp
{

log x
(
V0,h−lτ

(
λ, (1− λ)δ−l

)
+

1− δl

1− λ

)}
.

Differentiating G with respect to x gives the p.d.f. of the random variable W . So, we obtain

E[W ] =
∫ 1

0
Ω(.) exp

{
log x Ω(.)

}
dx =

Ω(.)
1+Ω(.)

,

where Ω(.) = V0,h−lτ
(
λ, (1− λ)δ−l

)
+ 1−δl

1−λ . This yields the spatio-temporal λ-madogram (5.5).
�

Unlike the extremal coefficient θ and thus the F-madogram, this measure provides information
on V0,h−lτ (x1, x2) for x1 , x2. Hence, exploring the whole space.

Remark 5.1. Based on expression (5.5), we easily rediscover the expressions of the
following special cases:

(i) Setting λ = 0.5, we obtain ν0.5(h, l) = 2θ(h,l)
1+2θ(h,l) −

2
3 , where θ(h, l) = V0,h−lτ

(
1, δ−l

)
+ 1−

δl , recall (2.58). Using the one-to-one relationship between the spatio-temporal ex-
tremal dependence function and the spatio-temporal F-madogram, that is, θ(h, l) =
1+ 2νF (h, l)/1− 2νF (h, l), yields ν0.5(h, l) = 8νF (h,l)

3{3+2νF (h,l)} . This induces that the spatio-
temporal F-madogram is a special case of the λ-madogram when λ = 0.5.

(ii) Setting the time lag l = 0, we rediscover the formula of spatial λ-madogram νλ (h) as
calculated in [81].
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Proposition 5.2. (Pickands dependence function for space-timemax-stable process with spec-
tral separability) In the case of (5.4), for h ∈ R2 and l ∈ R, the spatio-temporal Pickands
dependence function Ah,l for any ϕ ∈ (0,1) is given by

Ah,l (ϕ) = ϕ(1−ϕ)
[
V0,h−lτ

(
ϕ,

1−ϕ
δl

)
+

1− δl

1−ϕ

]
, (5.6)

where V0,h−lτ is the exponent function characterizing the spatial component.

Proof. The proof can be easily deduced using the spatio-temporal version of the Pickands
dependence function A (2.48) and then setting x1 = ϕ and x2 = 1− ϕ in the bivariate exponent
function of (X (0,0),X (h, l)) (2.57). �

Remark 5.2. In the case of (5.4), it is easy to show that the extremal dependence function θ(h, l)
(2.58) is a special case of the Pickands dependence function Ah,l (ϕ) (5.6) with ϕ = 1/2, i.e.,

2Ah,l

(
1
2

)
= θ(h, l) =: V0,h−lτ

(
1, δ−l

)
+1− δl .

5.2 Statistical inference for space-time max-stable processes
In what follows, we shall denote, respectively, by h = ‖h‖ =: ‖ s1 − s2‖, h ∈ R

2 and l′ = |l | =:
|t1− t2 |, l ∈ R the Euclidean norm of spatial lag h and the absolute value of temporal lag l.
We now describe two semi-parametric estimation schemes for space-time max-stable pro-

cesses (recall Section 2.3) based on a closed form expression of the spatio-temporal F-madogram
(recall Definition 2.17), which stems from a classical geostatistical tool; the madogram [77]. It
has a clear link with extreme value theory throughout the spatio-temporal extremal dependence
function θ(.), i.e.,

νF (h, l) =
1
2
−

1
θ(h, l)+1

. (5.7)

In practice, measurements are typically taken at various locations, sometimes on a grid, and
at regularly spaced time intervals. In the following, the process X := {X (s, t) : (s, t) ∈ S×T } is
assumed to be a stationary space-time max-stable process. It is observed on locations assumed
to lie on a regular 2-dimensional (2D) grid, i.e.,

Sn =
{
si : i = 1, . . .,n2

}
= {(x, y), x, y ∈ {1, . . .,n}} ,

and at equidistant time moments, given by {t1, . . ., tT } = {1, . . .,T }. This sampling scheme has
been adopted in various studies in the literature, see, e.g., [41, 24, 23]. For statistical inference
on the process X , we develop the following two semi-parametric estimation schemes.

5.2.1 Scheme 1

Let ψ = (ψ (s),ψ (t)) denotes the vector gathering the parameters of the process X to be estimated,
where ψ (s) and ψ (t) denote, respectively, the vectors gathering the spatial and temporal param-
eters. In this scheme, we consider how the process evolves at given time of reference (a merely
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spatial process), and its evolution over time at a given location (a merely temporal process). So,
ψ (s) and ψ (t) can be estimated separately. More precisely, denote byH ⊂ [0,∞) andK ⊂ [0,∞)
finite sets of spatial and temporal lags on which the estimation is performed. Let the set Bh

summarizes all pairs of Sn which give rise to the same spatial lag h ∈ H , i.e.,

Bh = {(`, p) ∈ {1, . . .,n2}2 : ‖ s` − sp‖ = ‖h‖ = h}.

The inferential methodology is summarized in the following steps:

(i) As a first step, we estimate the purely spatial/temporal F-madogram nonparametrically
by the empirical version. Denote by ν̂(t)

F (h), ‖h‖ ∈ H
(
respectively, ν̂(s)

F (l′), l′ ∈ K
)

the nonparametric estimate of the purely spatial (respectively, temporal) F-madogram.
As is standard in geostatistics, we compute ν̂(t)

F (h) from the empirical spatio-temporal
F-madogram ν̂F (h, l) at spatio-temporal distances (h,0), that is for all {t1, . . ., tT },

ν̂(t)
F (h) = ν̂F (h,0) =

1
2|Bh |

n2∑
p=1

n2∑
`=1

‖ s`−sp ‖=‖h‖=h

|F{X (s`, t)} −F{X (sp, t)}|, h ∈ H ,

where |.| denotes the cardinality of the set Bh and F is the standard Fréchet probability
distribution function. Let us remark that, a similar estimator in the framework of λ-
madogram has been adopted by [81] in an analysis of Bourgogne (France) annual maxima
of daily rainfall measurements recorded over a period of 51 years (1953-2003) at 146
locations. In this study, the authors focused on a single realization of a random field of
maxima computed over 51 years instead of 51 random fields of maxima.

On the other hand, ν̂(s)
F (l′) is computed from the empirical spatio-temporal F-madogram

ν̂F (h, l′) at spatio-temporal distances (0, l′), that is for all s ∈ Sn,

ν̂(s)
F (l′) = ν̂F (0, l′) =

1
2(T − l′)

T−l ′∑
k=1
|F{X (s, tk )} −F{X (s, tk+l ′)}|, l′ ∈ K .

(ii) Then, the overall purely spatial (respectively, temporal) F-madogram estimates ν̂F (h)
(respectively, ν̂F (l′)) are computed from the averages over the temporal moments (respec-
tively, the spatial locations). More precisely,

ν̂F (h) =
1
T

T∑
k=1
‖h‖=h

ν̂(tk )
F (h), h ∈ H . (5.8)

ν̂F (l′) =
1
n2

n2∑
`=1

ν̂(s` )
F (l′), l′ ∈ K . (5.9)

(iii) Finally, a nonlinear least squares procedure is applied to estimate the parameters of interest.

ψ̂
(s)
= arg min
ψ (s)∈Ψ(s)

∑
‖h‖=h∈H

ωh
(
ν̂F (h)− ν(s)

F (h,ψ (s))
)2
, h ∈ H , (5.10)
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ψ̂
(t)
= arg min
ψ (t)∈Ψ(t)

∑
l ′∈K

ωl ′
(
ν̂F (l′)− ν(t)

F (l′,ψ (t))
)2
, l′ ∈ K , (5.11)

where ν(s)
F (h,ψ (s)) = νF (h,0,ψ (s)) and ν(t)

F (l′,ψ (t)) = νF (0, l′,ψ (t)) denote, respectively,
the spatial and temporal model-based F-madogram counterparts. ωh ≥ 0 and ωl ′ ≥ 0
denote, respectively, the spatial and temporal weights. Since it is anticipated that the
spatio-temporal pairs which are far away in space or in time, have only little influence
on the dependence parameters to be estimated, a simple choice for these weights is
ωh = 1{‖h‖≤r }, ωl ′ = 1{l ′≤q}, where 1(.) denotes the indicator function and (r,q) to be
specified, recall Section 3.1.

Note that the setup of the inferential methodology in Scheme 1 is close to the one proposed
in [23], in which the spatio-temporal extremogram was adopted. The latter is defined for a
stationary space-time process X := {X (s, t) : (s, t) ∈ S×T } by

ρA1,A2 (h, l) = lim
x→∞

P
{
x−1X (s, t) ∈ A1, x−1X (s+ h, t + l) ∈ A2

}

P
{
x−1X (s, t) ∈ A1

} , h ∈ Rd, l ∈ R. (5.12)

[23] considered the special case when the Borel sets A1 =A2 = (1,∞), where ρ(1,∞),(1,∞) (h, l) =
χ(h, l). The two cases χ(h, l) = 0 and χ(h, l) = 1 correspond to the boundary cases of asymptotic
independence and complete dependence.

5.2.2 Scheme 2

Wenowgeneralize Scheme1 in order to estimate temporal and spatial parameters simultaneously.
Thus, we consider how the process X evolves in both space and time. In the classical geostatistics,
for a stationary spatio-temporal process {X (s, t) : (s, t) ∈ S×T }, the spatio-temporal empirical
classical semivariogram is defined by

γ̂(h, l) =
1

2|B(h,l) |

∑
B(h,l)

(
X (si, ti, )− X (s j, t j )

)2
,

where B(h,l) =
{
(si, ti)(s j, t j ) : si − s j = h and ti − t j = l

}
, see, e.g., [78, 80]. By adapting this

estimator to our framework, we consider the following estimation procedure:

(i) First, the spatio-temporal F-madogram is estimated nonparametrically by its empirical
version. Assume the set B(h,l ′) summarizes all pairs of Sn which give rise to the same
spatial lag h ∈ H ⊂ [0,∞) and the same temporal lag l′ ∈ K ⊂ [0,∞). In other words,
combining the spatial and the temporal lags from Scheme 1, i.e.,

B(h,l ′) =
{(
si, ti), (s j, t j )

)
: ‖ si − s j ‖ = h, |ti − t j | = l′

}
.

We estimate νF (h, l′) by

ν̂F (h, l′) =
1

2|B(h,l ′) |

∑
B(h,l′)

|F{X (si, ti) −F{X (s j, t j )}|, (h, l′) ∈ H ×K , (5.13)

where |.| denotes the cardinality of the set B(h,l ′).
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(ii) Then, we apply a nonlinear least squares fitting to obtain the estimates of the process
parameters; ψ, i.e.,

ψ̂ = arg min
ψ∈Ψ

∑
l ′∈K

∑
h∈H

‖h‖=h

ωh,l ′ (ν̂F (h, l′)− νF (h, l′,ψ)
)2 , (h, l′) ∈ H ×K , (5.14)

where ωh,l ′ ≥ 0 denotes the spatio-temporal weights and νF (h, l′,ψ) is the model-based
spatio-temporal F-madogram counterpart.

The idea underlying the construction of Scheme 2 is that when modeling and predicting a given
phenomenon, significant benefits may be obtained by considering how it evolves in both space
and time rather than only considering its spatial distribution at a given time of reference (a merely
spatial process), or its evolution over time at a given location (a merely temporal process), such
as those described in Scheme 1.

Lastly, the establishment of the asymptotic properties of the resulting pairwise dependence
estimates is deferred to future work. The derived asymptotic properties of the “unbinned”
empirical λ-madogram in the spatial context, see [81] (Proposition 3 and 4) might provide a
starting point. Nevertheless, this setting is more specialized. In the real data example of that
study, a binned version of the empirical λ-madogram is adopted and deriving the convergence
of this estimator as the cardinality of the distance class (i.e., Bh) increases is still challenging.
Therefore, for this moment, we will provide some numerical indications for the asymptotic
properties of our pairwise dependence estimates.

Example 5.1. (Computing spatio-temporal distances and the number of spatio-temporal pairs
of points for such distances, see also [80] for more details) Assume that we observe a set of
spatio-temporal data at three moments of time t1, t2 and t3, on a regular 4×4, 1 km spaced grid,
see Figure 5.1. Assuming an isotropic, stationary random field. The set of possible spatial lags
between the pairs of the locations considered in the grid is

{
0,1,
√

2,2,
√

5,
√

8,3,
√

10,
√

13,
√

18
}

km, whereas the temporal lags are: 0,1,2. Combining the spatial and temporal lags, we obtain
10×3 spatio-temporal distances. For instance, at the spatio-temporal distance (0,1), there are
16×2 = 32 spatio-temporal pairs of points, that is,

{(s1, t2), (s1, t1)} , {(s2, t2), (s2, t1)} , . . ., {(s16, t2), (s16, t1)}

{(s1, t3), (s1, t2)} , {(s2, t3), (s2, t2)} , . . ., {(s16, t3), (s16, t2)} .

Analogously, there are 16× 1 = 16 spatio-temporal pairs of points at distance (0,2). It is
also easy to check that there are 24×3 = 72 spatio-temporal pairs of points at distance (1,0),
16×3 = 48 at distance (2,0), and so forth. On the other hand, we need to be more careful when
identifying the spatio-temporal pairs of points that are separated by a specific distance if both
spatial and time lags are non zero. For example, we can count 16 pairs of points separated by
a spatio-temporal distance (3,2), i.e.,

{(s1, t3), (s4, t1)} , {(s5, t3), (s8, t1)} , {(s9, t3), (s12, t1)} , {(s13, t3), (s16, t1)}
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{(s4, t3), (s1, t1)} , {(s8, t3), (s5, t1)} , {(s12, t3), (s9, t1)} , {(s16, t3), (s13, t1)}

{(s1, t3), (s13, t1)} , {(s2, t3), (s14, t1)} , {(s3, t3), (s15, t1)} , {(s4, t3), (s16, t1)}

{(s13, t3), (s1, t1)} , {(s14, t3), (s2, t1)} , {(s15, t3), (s3, t1)} , {(s16, t3), (s4, t1)} .

s1 s2 s3 s4

s5 s6 s7 s8

s9 s10 s11 s12

s13 s14 s15 s16

s1 s2 s3 s4

s5 s6 s7 s8

s9 s10 s11 s12

s13 s14 s15 s16

s1 s2 s3 s4

s5 s6 s7 s8

s9 s10 s11 s12

s13 s14 s15 s16

Time moments

t = 3
t = 2
t = 1

Figure 5.1: Regular 4×4, 1 km spaced grid.

5.2.3 Illustration examples

In order to illustrate how the proposed estimation schemes perform, we consider the following
two examples, which we will revisit in Section 5.3.

Example 5.2. (Estimation of isotropic space-time max-stable BR) Let us consider the space-
time max-stable BR process in (2.49) with bivariate c.d.f. (2.50), where the dependence structure
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is given by the following stationary isotropic FBM spatio-temporal semivariogram (recall Sec-
tion 2.1.2)

γ(h, l) := γ(h, l′) = 2φshκs +2φt l′
κt, (5.15)

where the scalar distance h = ‖h‖ = ‖ s1− s2‖, l′ = |l | = |t1− t2 |, φs, φt > 0 determine spatial and
temporal scale parameters and κs, κt ∈ (0,2] relate to the smoothness of the underlying Gaussian
process in space and time. The associated spatio-temporal F-madogram with this process is

νF (h, l′) =
1
2
−

1
2Φ

(√
φshκs +φt l′κt

)
+1

, (5.16)

where θ(h, l′) = 2Φ
(√
φshκs +φt l′κt

)
is the associated spatio-temporal extremal dependence

function. Figure 5.2 visualizes a 3D representation of the spatio-temporal FBM semivariogram
in (5.15) and the associated dependence summary measures: the spatio-temporal extremal
dependence function θ : R2×R+ 7→ [1,2] and the spatio-temporal F-madogram νF : R2×R+ 7→

[0,1/6]. Complete dependence (respectively, complete independence) is achieved at lower
boundaries (respectively, upper boundaries). Moreover, Figure 5.3 displays the theoretical
behaviors of the purely spatial FBM semivariogram γ (s) (h, κs) and the related purely spatial
F-madogram ν(s)

F (h, κs). Obviously, depending on the value of the smoothness parameter κs,
these measures exhibit a large variety of dependence behaviors.
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Figure 5.2: Spatio-temporal FBM semivariogram γ(h, l′) = 0.8h1.5 + 0.4l′ (left
panel). The associated spatio-temporal extremal dependence function (middle
panel). The associated spatio-temporal F-madogram (right panel).

With this construction, based on Scheme 1, the nonlinear least squares optimization problems
in (5.10) and (5.11) can be expressed as(

κ̂s

φ̂s

)
= arg min

φs>0
κs∈(0,2]

∑
h∈H

ωh *.
,
ν̂F (h)−




1
2
−

1
2Φ

(√
φshκs

)
+1




+/
-

2

, h ∈ H , (5.17)
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Figure 5.3: The FBM semivariogram γ (s) (h, κs) = 0.8hκs (left panel) and
the related spatial F-madogram ν(s)

F (h, κs) = 0.5−
{
2Φ

(√
0.4hκs

)
+1

}−1
(right

panel) plotted as functions of space lag h, with different smoothness parameter
κs ∈ {0.1,0.5,1,1.5,2}.

(
κ̂t

φ̂t

)
= arg min

φt>0
κt∈(0,2]

∑
l ′∈K

ωl ′ *.
,
ν̂F (l′)−




1
2
−

1
2Φ

(√
φt l′κt

)
+1




+/
-

2

, l′ ∈ K . (5.18)

Lastly, with (h, l′) ∈ H ×K and on the basis of Scheme 2, the nonlinear least squares
estimation problem in (5.14) has the form

*.....
,

κ̂s

φ̂s

κ̂t

φ̂t

+/////
-

= arg min
φs,φt>0
κs,κt∈(0,2]

∑
l ′∈K

∑
h∈H

ωh,l ′ *.
,
ν̂F (h, l′)−




1
2
−

1
2Φ

(√
φshκs +φt l′κt

)
+1




+/
-

2

. (5.19)

Example 5.3. (Estimation of spectrally separable space-time max-stable Smith process) We
nowdescribe theway to fit the spectrally separable space-timemax-stable Smith process. Indeed,
the estimation procedure can be simplified since the purely spatial parameters can be estimated
independently of the purely temporal parameters. Formally, we consider the process in (5.4),
where the innovation process H is derived from independent replications of a spatial Smith
process with covariance matrix

Σ =

(
σ11 σ12
σ12 σ22

)
. (5.20)

Wedonte byψ the vector gathering the parameters to be estimated, i.e.,ψ =
(
σ11,σ12,σ22,τ

t, δ
) t .

It is possible to separate the estimation. Firstly, the estimation of the spatial parameters
ψ (s) = (σ11,σ12,σ22)t is carried out. Secondly, once ψ (s) is known, it is held fixed and we
estimate the temporal parameters ψ (t) =

(
τt, δ

) t
= (τ1, τ2, δ)t . Subsequently, under Scheme 1,
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the nonlinear least squares optimization problems in (5.10) and (5.11) can be expressed as

*..
,

σ̂11
σ̂12
σ̂22

+//
-
= arg min
σ11,σ22>0
σ12∈R

∑
h∈H
‖h‖=h

ωh
*...
,

ν̂F (h)−



1
2
−

1

2Φ
(√

htΣ−1h/2
)
+1




+///
-

2

, h ∈ H , (5.21)

*..
,

δ̂

τ̂1
τ̂2

+//
-
= arg min

a∈(0,1)
τ1,τ2∈R

∑
l ′∈K

ωl ′
(
ν̂F (l′)−

{
1
2
−

1
θ(l′)+1

})2
, l′ ∈ K , (5.22)

where θ(l′) := θ(0, l′) = Φ
(

b∗(l′)
2
+

1
b∗(l′)

log
(
δ−l ′

))
+ δl
Φ

(
b∗(l′)

2
+

1
b∗(l′)

log
(
δl ′

))
+1− δl ′

with b∗(l′) =
√

(0− l′τ)tΣ̂
−1

(0− l′τ).
In order to figure out the role of the temporal parameter δ for this process. For a fixed site

s ∈ S, Figure 5.4 displays the temporal extremal function θ(l′) and the associated temporal
F-madogram ν(t)

F for δ ∈ {0.1,0.3,0.5,0.7,0.9}. We set Σ = 10 Id2 and τ = (1,1)t (translation
to the top right). Clearly, as the value of δ increases, the independece (i.e., θ(l′)→ 2) occurs at
larger time lags l′.
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Figure 5.4: θ(l′) and the associated ν(t)
F (l′) plotted as functions of time lag l′ for

δ ∈ {0.1,0.3,0.5,0.7,0.9} based on the process (5.4), where H is a sequence of
i.i.d. spatial Smith processes with covariance matrix Σ = 10 Id2.

Lastly, based on Scheme 2, the nonlinear least squares estimator ψ̂ =
(
σ̂11, σ̂12, σ̂22, τ̂1, τ̂2, δ̂

) t

is given by

ψ̂ = arg min
ψ∈Ψ

∑
l ′∈K

∑
h∈H

‖h‖=h

ωh,l ′
(
ν̂F (h, l′)−

{
1
2
−

1
θ(h, l′)+1

})2
, (h, l′) ∈ H ×K , (5.23)
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where θ(h, l′) = Φ
(

b(h,l ′)
2 + 1

b(h,l ′) log
(
δ−l ′

))
+ δl ′Φ

(
b(h,l ′)

2 + 1
b(h,l ′) log

(
δl ′

))
+1− δl ′

with b(h, l′) =
√

(h− l′τ)tΣ−1(h− l′τ).

5.3 Simulation study
Throughout this section, we investigate the performance of the semi-parametric estimation
procedures introduced in Section 5.2 with three simulation studies.

5.3.1 Simulation study 1: Fitting space-time max-stable BR process

In this study, we adopt the same experiment plan that has been proposed in [23] (Section 5), in
order to make the results obtained there comparable with the results here.

Setup for a simulation study

We simualte the space-time BR process with spectral representation (2.49) and dependence
function γ modeled as in (5.15). Namely,

γ(h, l) = 0.8h3/2+0.4l′. (5.24)

The simulations have been carried out using the function RFsimulate of the R package Random-
Fields [91] and based on the exact method proposed by [52]. The space-time observation area
is assumed to be on a n× n spatial grid and the time moments are equidistantly, i.e.,

A = {(x, y) : x, y ∈ {1, . . .,n}} × {1, . . .,T }.

Figure 5.5 visualizes a realization simulated from space-time BR process with a spatio-temporal
FBM semivariogram model (5.24) at six consecutive time points. As in [23], we choose
the sets H = {1,

√
2,2,
√

5,
√

8,3,
√

10,
√

13,4,
√

17} and K = {1, . . .,10}, where permutation tests
(which we describe at the end of Section 5.4) show that these lags are enough to capture the
relevant extremal dependence structure. The adoption of larger lags may introduce a bias in
the estimation, see [23, 41]. Figure 5.6 depicts the locations with influence on the estimation.
Equal weights are assumed. We repeat this experiment 100 times to obtain summary plots of the
resulting estimates and to compute performance metrics: the mean estimate, RMSE, and MAE.

Estimation using Scheme 1

Simulation of space-time max-stable BR processes based on the exact method proposed in [52]
can be time-consuming. Hence, for the sake of time-saving and due to the fact that the estimation
of the purely spatial (respectively, purely temporal) parameters depends on a large number of
spatial observations (respectively, a large number of observed time instants), we examine the
performance of the purely spatial (respectively, purely temporal) estimates using two different
space-time observation areas, i.e.,

• A1 = {(x, y) : x, y ∈ {1, . . .,50}} × {1, . . .,10}.
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Figure 5.5: Simulation from a space-time max-stable BR process with spatio-
temporal FBM semivariogram γ(h, l) = 0.8h1.5 + 0.4l′ at six consecutive time
points (from left to right and top to bottom).

Figure 5.6: A regular 14×14 spatial grid. The distances between the peripheral
locations (shown by red square-symbols) and the central one (shown by blue
square symbol) belong to the setH .



109 5.3. Simulation study

• A2 = {(x, y) : x, y ∈ {1, . . .,5}} × {1, . . .,300}.

We assess the quality of the fit between the theoretical values of spatial/temporal F-madograms
and their estimates. Figure 5.7 compares empirical estimates of purely spatial/temporal F-
madograms with their asymptotic counterparts. Overall, both the purely spatial/temporal empir-
ical versions are consistent with their asymptotic counterparts, with a relatively higher variability
for the temporal estimates. This is probably due to the fairly low number of time instants (300)
used for the estimation of the purely temporal parameters compared to the number of spatial
locations (2500) used for the estimation of the purely spatial parameters.
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Figure 5.7: Scheme 1—boxplots of purely spatial/temporal empirical F-
madograms estimates at lags (h, l′) ∈ H ×K for 100 simulated BR processes
(2.49) with FBM spatio-temporal semivariogram (5.24) (top row). The middle
blue dotted/red solid lines show the overall mean of the estimates/true values.
Boxplots of the corresponding estimation errors (bottom row).

Next, we present results for the semi-parametric estimation with Scheme1. Figure 5.8 dis-
plays the resulting estimates of the purely spatial parameters (φs, αs) and the purely temporal
parameters (φt, αt ). Generally, the estimation procedure appears to work well. Moreover, we
observe that the estimation of the purely spatial parameters is more accurate (the RMSE and
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MAE are lower), see Table 5.1. Again this probably stems from the large number of spatial
locations used in the estimation which is (≈ 8.3) times higher than the time points.
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Figure 5.8: Scheme 1—semi-parametric estimates of ψ̂ = {φ̂s, κ̂s, φ̂t, κ̂t } for 100
simulated BR processes defined by (2.49) with FBM spatio-temporal semivari-
ogram (5.24). The middle blue dotted/red solid lines show the overall mean of
the estimates/true values.

As the last step in this study, we compare the statistical efficiency of our method and the one
proposed in [23]. Table 5.1 reports the performance metrics for both methods. Although in
that study, the authors used a larger grid size (n = 70) to estimate the purely spatial parameters,
clearly, the F-madogram semi-parametric estimation outperforms their approach which based
on the extremogram as an inferential tool (their semi-parametric estimates show a larger bias
than ours; the RMSE and MAE are higher). This is probably due to the fact that the estimates
obtained in [23] are sensitive to the choice of the threshold used for computing (possibly bias
corrected) empirical estimates of the extremogram.
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Estimation using Scheme 2

Based on Scheme 2, we estimate the parameters of the space-time max-stable BR process with a
similar simulation setting which is previously described in Section 5.3.1. We consider the space-
time observation area where the spatial locations consisted of a 20× 20 grid and equidistantly
time points, {1, . . .,200}. Figure 5.9 displays the boxplots of the empirical spatio-temporal F-
madogram estimates at a subset of spatio-temporal lags; {(1, l′), l′ ∈ K }, and the corresponding
errors boxplots. Whereas, Figure 5.10 compares the empirical spatio-temporal F-madogram
estimates ν̂F (h, l′) with their model-based counterparts νF (h, l′) over the spatio-temporal lags
(h, l′) ∈H ×K . There is a good agreement overall. These diagnostic plots provide a satisfactory
representation of the empirical spatio-temporal F-madogram estimates. Generally, the results
lend support to the agreement between the empirical spatio-temporal F-madogram estimates
and model-based counterparts, especially once sampling variability is taken into account.
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Figure 5.9: Scheme 2—boxplots of empirical spatio-temporal F-madogram
estimates at spatio-temporal lags {(1, l′), l′ ∈ K } for 100 simulated BR pro-
cesses defined by (2.49) with FBM spatio-temporal semivariogram (5.24) (left
panel). The middle blue dotted/red solid lines show the overall mean of the
estimates/model-based counterparts. The associated boxplots of the errors
ν̂F (1, l′)− νF (1, l′), l′ ∈ K (right panel).

Figure 5.11 shows the estimation performance of the estimated parameters. Overall, the
parameters are well estimated. Moreover, we observe that the estimation of the scale parameters
{φs, φt } is more accurate than the smoothness parameters {κs, κt } (the RMSE and MAE are
lower), see Table 5.1.

To sum up, for both schemes, Table 5.1 reports the mean estimate, RMSE, and MAE of the
estimated parameters ψ̂ = {φ̂s, κ̂s, φ̂t, κ̂t }. Let us remark that the comparison between the resulting
parameter estimates from the two estimation schemes is not completely straightforward because
we consider non-unified space-time observation areas due to the above-mentioned computational
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Figure 5.10: Scheme 2—diagnostic plots of the empirical spatio-temporal
F-madogram estimates for 100 simulated BR processes defined by (2.49)
with FBM spatio-temporal semivariogram (5.24). Histogram of the errors,
ν̂F (h, l′) − νF (h, l′), (h, l′) ∈ H ×K (left panel). Blue/red cross-symbols show
the overall mean of the empirical spatio-temporal F-madogram estimates/model-
based counterparts (right panel).

reasons. However, with the above sampling schemes, we observe that the estimation of the purely
spatial parameters is more accurate when using Scheme 1 (the RMSE and MAE are lower). On
the other hand, we notice a slight outperformance for Scheme 2 in estimating purely temporal
parameters. Finally, the QQ-plots against a normal distribution in Figure 5.12 provide an
indication for asymptotic normality of the resulting estimates.

Table 5.1: Performance of the estimation for 100 simulated BR processes defined
by (2.49) with FBM spatio-temporal semivariogram (5.24). The mean estimate,
RMSE, and MAE of the estimated parameters.

Scheme 1 Scheme 1, [23] Scheme 2
True Mean estimate RMSE MAE Mean estimate RMSE MAE Mean estimate RMSE MAE
Purely Spatial
φs = 0.4 0.3998 0.0191 0.0162 0.4033 0.0678 0.0559 0.4093 0.0389 0.0307
κs = 1.5 1.5019 0.0289 0.0243 1.4984 0.0521 0.0400 1.4921 0.1399 0.1083
Purely temporal
φt = 0.2 0.1944 0.0314 0.0246 0.2249 0.0649 0.0526 0.1909 0.0251 0.0201
κt = 1 0.9969 0.0831 0.0657 0.9563 0.0939 0.0767 1.0278 0.0785 0.0619



113 5.3. Simulation study

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

φs

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

κs

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

φt

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

κt

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 5.11: Scheme 2—semi-parametric estimates of ψ̂ = {φ̂s, κ̂s, φ̂t, κ̂t } for 100
simulated BR processes defined by (2.49) with FBM spatio-temporal semivari-
ogram (5.24). The middle blue dotted/red solid lines show overall mean of the
estimates/true values.

5.3.2 Simulation study 2: Fitting spectrally separable spatio-temporal
Smith process

Setup for a simulation study

We simulate data from the spatio-temporal Smith process considered in Example 5.3, with
parameter vector ψ = (1,0,1,1,1,0.7)t . As a reasonable compromise between accuracy and
computation time, the locations are assumed to lie on a regular 2D grid of size n = 20. The
time points are equidistant, given by the set {1, . . .,200}. The simulations have been carried out
using R SpatialExtremes package with rmaxstab function, see [86]. The spatial lags setH and
temporal lags set K are fixed as before, recall Section 5.3.1. Equal weights are assumed. We
repeat this experiment 100 times.
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Figure 5.12: QQ-plots of the estimates resulting from both estimation schemes
for 100 simulated BR processes defined by (2.49) with the FBM spatio-temporal
semivariogram (5.24) against the normal distribution. Scheme 1—purely spatial
parameters (top row) and purely temporal parameters (second row). Scheme
2—purely spatial parameters (third row) and purely temporal parameters (bottom
row). Dashed red lines correspond to 95% confidence intervals.
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Results for the two estimation schemes

The top row of Figure 5.13 displays the density of the errors between the empirical estimates
of the purely spatial/temporal F-madograms and their model-based counterparts, whereas the
bottom row displays the density of the errors between empirical spatio-temporal F-madogram
estimates and model-based counterparts. Generally, all of the empirical versions are congruous
with their asymptotic counterparts. Clearly, the density of the errors is close to a centered
Gaussian distribution.

Figure 5.14 displays boxplots the errors of the resulting estimates from both schemes: (ψ̂−ψ).
The top row displays the estimation errors of purely spatial parameters (σ11,σ12,σ22) and purely
temporal parameters (τ1, τ2, δ) resulting from Scheme 1, whereas the bottom row displays the
estimation errors resulting form Scheme 2. Overall, the inference procedures perform well.
Altogether, we observe that the estimates are close to the true values.

To sum up, for both schemes, Table 5.2 reports the mean estimate, RMSE, and MAE of the
estimated parameters ψ̂ = {σ̂11, σ̂12, σ̂22, τ̂1, τ̂2, δ̂}. Contrary to Scheme 2, we observe that the
estimation of purely spatial parameters Σ is more precise than the estimation of purely temporal
parameters (τ and δ) when using Scheme 1 (RMSE and MAE are lower). This probably can
be justified by the fact that in Scheme 1 the number of spatial locations used is higher than
time moments. Additionally, there is probably an impact of the estimated covariance matrix Σ̂
on the estimation efficiency of the purely temporal parameters, whereas, the purely temporal
parameters are estimated independently of purely spatial parameters when using Scheme 2.
Moreover, we notice that the estimation of purely spatial parameters is less precise when using
Scheme 2 (RMSE and MAE are higher). This is probably owing to the fact that in Scheme 2
the number of pairs used is higher than in Scheme 1, leading more variability. Whereas, both
schemes seem to have the same performance order in estimating purely temporal parameters.

We also showQQ-plots against a normal distribution for all parameters in Figure 5.15. For both
schemes, it seems that the semi-parametric estimates are approximately normally distributed.

Table 5.2: Performance of the estimation for 100 simulated spectrally separable
space-time max-stable Smith processes considered in Example 5.3, with param-
eter ψ = (1,0,1,1,1,0.7)t . The mean estimate, RMSE, and MAE of the estimated
parameters.

Scheme 1 Scheme 2
True Mean estimate RMSE MAE Mean estimate RMSE MAE
Purely Spatial
σ11 = 1 0.9973 0.0331 0.0259 0.9929 0.0888 0.0727
σ12 = 0 0.0081 0.0470 0.0369 −0.0357 0.0770 0.0609
σ22 = 1 0.9848 0.0440 0.0346 1.0295 0.0805 0.0647
Purely temporal
τ1 = 1 1.0021 0.0549 0.0426 1.0261 0.0747 0.0591
τ2 = 1 1.0107 0.0646 0.0505 0.9962 0.0620 0.0516
δ = 0.7 0.7012 0.0595 0.0482 0.6939 0.0510 0.0400

Finally, let us remark that a simulation study has been carried out in [54], where only
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Figure 5.13: Density of the errors between the empirical versions of the F-
madogram estimates and their model-based counterparts for 100 simulated
spectrally separable space-time max-stable Smith processes with parameter
ψ = (1,0,1,1,1,0.7)t . Scheme 1 (Top row): ν̂F (h)− νF (h), ‖h‖ ∈ H (left panel)
ν̂F (l′)−νF (l′), l′ ∈ K (right panel). Scheme 2 (Bottom row): ν̂F (h, l′)−νF (h, l′),
at spatio-temporal lags (‖h‖, l′) ∈ H ×K .

the spectrally separable spatio-temporal Smith process has been fitted with parameters ψ =
(1,0,1,−1,−1,0.7)t . Irregularly spaced locations have been considered. Two estimation ap-
proaches based on pairwise likelihood have been adopted: (i) a two-step approach, first estimat-
ing the purely spatial parameters. Once these parameters are known, they are held fixed and the
purely temporal parameters are estimated. (ii) a one-step approach, all parameters are estimated
simultaneously. More precisely, assume that we observe the space-time max-stable process X
at D sites s1, . . ., sD and T dates t1, . . ., tT . Let f denotes the p.d.f. of the process X , then the
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Figure 5.14: Boxplots of the errors ψ̂−ψ resulting from both estimation schemes
for 100 simulated spectrally separable space-time max-stable Smith processes
with parameter ψ = (1,0,1,1,1,0.7)t . Scheme 1 (Top row): purely spatial pa-
rameters (left panel) and purely temporal parameters (right panel). Scheme 2
(Bottom row): all parameters. The middle blue dotted/red solid lines show the
overall mean of errors estimates/zero value.

spatio-temporal pairwise log-likelihood is defined by (see, [41])

`p(ψ) =
T−1∑
k=1

T∑
l=k+1

D−1∑
i=1

D∑
j=i+1

ωi j ωkl log f (si,tk )(s j,tl ) (xik, x jl ;ψ),

where ωi j , ωlk are nonnegative spatial and temporal weights, respectively, and xik denotes the
observation of X at site i and date k. The maximum pairwise likelihood estimator is given
by ψ̂ = argmax `p(ψ). The obtained results have shown that, the estimation of purely spatial
parameters is more accurate with a two-step approach.



CHAPTER 5. SEMI-PARAMETRIC ESTIMATION FOR SPACE-TIME . . . 118

−2 −1 0 1 2

0.
90

0.
95

1.
00

1.
05

Scheme1: σ11

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

Scheme1: σ12

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

Scheme1: σ12

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

0.
85

0.
95

1.
05

Scheme1: τ1

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

0.
90

1.
00

1.
10

1.
20

Scheme1: τ2

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

0.
55

0.
65

0.
75

Scheme1: δ

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

0.
8

0.
9

1.
0

1.
1

1.
2

Scheme2: σ11

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−
0.

20
−

0.
10

0.
00

0.
05

0.
10

Scheme2: σ12

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

0.
9

1.
0

1.
1

1.
2

Scheme2: σ12

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

0.
9

1.
0

1.
1

1.
2

Scheme2: τ1

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

0.
90

0.
95

1.
00

1.
05

1.
10

Scheme2: τ2

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

Scheme2: δ

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 5.15: QQ-plots of the estimates from both estimation schemes for 100 sim-
ulated spectrally separable space-timemax-stable Smith processeswith parameter
ψ = (1,0,1,1,1,0.7)t against the normal distribution. Scheme 1: purely spatial
parameters (top row) and purely temporal parameters (second row). Scheme 2:
purely spatial parameters (third row) and purely temporal parameters (bottom
row). Dashed red lines correspond to 95% confidence intervals.

5.3.3 Simulation study 3: Fitting spectrally separable spatio-temporal
Schlather process

Finally, we perform a third simulation study to fit spectrally separable space-time max-stable
Schlather process. The innovation process H is derived from independent replications of a
spatial Schlather process (recall 2.13) with correlation function of powered exponential type
defined, for all ‖h‖ ≥ 0, by ρ(h) = exp[−(‖h‖/φ)κ], φ > 0 and 0 < κ < 2, where φ and κ

denote, respectively, the range and the smoothing parameters. We denote by ψ = (φ, κ, τ1, τ2, δ)t
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the vector gathering the model parameters. We take φ = 3, κ = 3/2, τ = (1,0)t and δ = 0.3 .
As previously, we consider the same simulation setup used in Section 5.3.2. The results are
summarized in Figure 5.16 and Table 5.3. Generally, we obtain equally satisfying results.
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Figure 5.16: Boxplots of errors ψ̂ −ψ from both estimation schemes for 100
simulated spectrally separable STMS Schlather processes with parameter ψ =
(2,1.5,1,0,0.3)t . Scheme 1 (Top row): purely spatial parameters (left panel)
and purely temporal parameters (right panel). Scheme 2 (Bottom row): all
parameters. The middle blue dotted/red solid lines show the overall mean of
errors estimates/zero value.

Table 5.3: Performance of the estimation for 100 simulated spectrally separable
STMS Schlather processes, with parameter ψ = (2,1.5,1,0,0.3)t . The mean
estimate, RMSE, and MAE of the estimated parameters.

Scheme 1 Scheme 2
True Mean estimate RMSE MAE Mean estimate RMSE MAE
Purely Spatial
φ = 2 1.9841 0.0368 0.0309 2.0357 0.0812 0.0599
κ = 1.5 1.4967 0.0407 0.0327 1.4814 0.0771 0.0557
Purely temporal
τ1 = 1 0.9852 0.0442 0.0346 1.0036 0.0556 0.0393
τ2 = 0 −0.0177 0.0636 0.0512 −0.0053 0.0427 0.0353
δ = 0.3 0.3031 0.0473 0.0383 0.2913 0.0393 0.0318
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5.4 Real data analysis
In this section, we aim to quantify the extremal behavior of radar rainfall data in a region located
in the State of Florida. Our approach is to fit the data by different space-time max-stable classes
based on a space-time block maxima design using the proposed semi-parametric estimation
procedure.

5.4.1 Description of the dataset

The dataset analyzed in this section is composed of radar rainfall values (in inches) measured
on a square of 140 × 140 km region containing 4900 grid locations in the State of Florida.
The database consists of radar hourly rainfall values measured on a regular grid with squared
cells of size 2 km covering a region of 70 × 70 cells in the State of Florida. A map of
the study area is shown in Figure 5.17. We only consider the wet season (June-September)
over the years 2007−2012. The data were collected by the Southwest Florida Water Man-
agement District (SWFWMD) and freely available on ftp://ftp.swfwmd.state.fl.us/
pub/radar_rainfall. Moreover, the dataset is available in the Supplementary Material:
http://math.univ-lyon1.fr/homes-www/abuawwad/Florida_RadarRainfall/.

Figure 5.17: Radar rainfall observation area in the State of Florida. Source:
Southwest Florida Water Management District (SWFWMD).

ftp://ftp.swfwmd.state.fl.us/pub/radar_rainfall
ftp://ftp.swfwmd.state.fl.us/pub/radar_rainfall
http://math.univ-lyon1.fr/homes-www/abuawwad/Florida_RadarRainfall/
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5.4.2 Data fitting

We perform a block maxima design in space and time as follows: we take block maxima over
24 consecutive hours and over 10 km × 10 km areas (the daily maxima over 25 grid locations),
resulting in 14× 14 grid in space for all 6× 122 days of the wet seasons. So, this gives a time
series of dimension 14×14 and of length 732. For the sake of notational simplicity, we denote the
set of resulting grid locations by S = {(x, y) : x, y ∈ {1, . . .,14}} and the space-time realizations
by {X (s, t), s ∈ S, t ∈ {t1, . . ., t732}}. This setup has been also considered in [23, 41] for analyzing
radar rainfall measurements in a region from the State of Florida over the years 1999−2004,
where only space-time max-stable BR process has been fitted to the data by a semi-parametric
approach in [23] and a pairwise likelihood approach in [41]. Let us remark that both regions
here and in the above-mentioned two studies are located in the central portion of Florida District,
which would probably have the best square area of coverage. Having larger grid size will lead
to some cells missing in the southwestern ‘corner’ due to the coastline. Figure 5.19 shows the
obtained time series for daily maxima observations at four grid locations. One location lies on
the boundary of the study region and three are located in the interior, see Figure 5.18.

Figure 5.18: Blue square-symbols show the reference locations for the time series
plotted in Figure 5.19.

As has already been mentioned in Chapter 3, when we are interested in modeling the joint
occurrence of extremes over a region, then the dependence structure of a multivariate variable
has to be explicitly stated. The usual modeling strategy consists of two steps: firstly, estimating
the marginal distribution. Secondly, characterizing the dependence via a model issued by the
multivariate extreme value theory, see, e.g., [14, 84]. For marginal modeling, we explain the
procedure as follows:

(i) We transform the data to stationarity by removing possible seasonal effects using a simple
moving average with a period of 122 days (the number of days in the wet season considered
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Figure 5.19: Plots of daily maximal rainfall in inches for four grid locations with
simplified coordinates: (1,1), (6,5), (7,10) and (11,8).

in one particular year). More precisely, for each fixed location s ∈ S, we deseasonalize
the time series {X (s, t), t ∈ {t1, . . ., t732}} by computing

X̃ (s, ti+122( j−1)) = X (s, ti+122( j−1))−
1
6

6∑
j=1

X (s, ti+122( j−1)), for i = 1, . . .,122. (5.25)

(ii) For each fixed location s ∈ S, the deseasonalized observations are fitted to the generalized
extreme value distribution,

GEVµ(s),σ(s),ξ (s) (x) = exp


−

[
1+ ξ (s)

(
x− µ(s)
σ(s)

)]−1/ξ (s) 

, (5.26)
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for some location µ(s) ∈ R, scale σ(s) > 0, and shape ξ (s) ∈ R. The estimated shape pa-
rameters ξ (s) are sufficiently close to zero with confidence interval containing zero,
see Figure 5.20. This suggests a Gumbel distribution (GEV with ξ = 0) as appro-
priate model. Therefore, we fit directly a Gumbel distribution GEVµ(s),σ(s),0(x) ={
exp

[
−exp

(
−

x−µ(s)
σ(s)

)] }
. For each spatial location, we assess the goodness of the marginal

fits by QQ-plots of deseasonalized rainfall series versus the fitted Gumbel distribution.
The results at four spatial locations (1,1), (6,5), (7,10) and (11,8) are summarized in
Figure 5.21. All plots provide a plausible fit.

(iii) The deseasonalized observations may be transformed either to standard Gumbel or stan-
dard Fréchet margins. More precisely, let µ̂(s), σ̂(s) are the parameter estimates obtained
from (ii), then we may use:

(a) ˜̃X (s, t) = X̃ (s,t)−µ̂(s)
σ̂(s) , t ∈ {1, . . .,732} to transform the deseasonalized observations to

standard Gumbel margins;

(b) ˜̃X (s, t) =− 1
log{GEVµ̂(s),σ̂(s),0(X̃ (s,t))}

, t ∈ {1, . . .,732} to transform the deseasonalized ob-
servations to standard Fréchet margins. This transformation is called the probability
integral transformation. In this study, we adopt this case.
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Figure 5.20: Estimated GEV shape parameter ξ̂ (s) at all grid locations with 95%
confidence intervals.

In [23, 41], the authors assume that the observations ˜̃X (s, t) are realizations from the space-
timemax-stableBRprocess. The contribution of the present section is to broaden the dependence
structure by considering the spectrally separable space-time max-stable processes, that allow
interactions between spatial and temporal components.

In the sequel, we estimate the extremal dependence structure for the daily maxima of rainfall
measurements. Based on our findings in the simulation studies, we notice that Scheme 1
outperforms Scheme 2 generally. So, one may first estimate the extremal dependence parameters
using Scheme 2. Afterward, re-estimating the parameters using Scheme 1, where the estimates
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Figure 5.21: QQ-plots of deseasonalized rain series versus the fitted Gumbel
distribution (GEV with µ̂(s), σ̂(s) and 0) on the basis of the time series corre-
sponding to the four grid locations shown in Figure 5.19.

resulting from Scheme 2 serve as starting values for the optimization routine used in Scheme 1.
To that aim, we consider the following five spatio-temporal max-stable models:

(i) Class A: consists of two non-spectrally separable models A1 and A2.

• A1: a space-time max-stable BR model (2.49), with dependence function γ(h, l) =
2φs‖h‖

κs +2φt l′κt , where l′ = |l |, recall Example 5.2.

• A2: a space-time max-stable Schlather model (2.13). The space-time correlation
function is chosen to be separable such that ρ(h, l) = exp

{
−

[(
‖h‖/φs

) κs + (
l′/φt

) κt ] } ,
where the range parameters φt, φs > 0 and the smoothing parameters 0 < κt, κs < 2.

(ii) Class B: consists of spectrally separable models B1, B2, and B3.

• B1: a spectrally separable space-time max-stable model (5.4), where the innovation
process H is derived from independent replications of a spatial BR process with
semivariogram γ(h) =

(
‖h‖/φ

) κ, for some range parameter φ > 0 and smoothness
parameter κ ∈ (0,2]. Obviously, models A1 and B1 are equivalent when l′ = 0.
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• B2: a spectrally separable space-time max-stable model (5.4), where the innovation
process H is derived from independent replications of a spatial Smith process with

covariance matrix Σ =
(
σ11 σ12
σ12 σ22

)
, recall Example 5.3.

• B3: a spectrally separable space-time max-stable model (5.4), where the innovation
process H is derived from independent replications of a spatial extremal-t process
(2.16) with degrees of freedom ν ≥ 1 and correlation function of powered exponential
type, defined for all ‖h‖ ≥ 0, by ρ(h) = exp[−(‖h‖/φ)κ], φ > 0 and 0 < κ < 2, where
φ and κ denote, respectively, the range and the smoothing parameters.

To select the best-fitting model, we use the Akaike Information Criterion (AIC) which was
first developed by [6] under the framework of maximum likelihood estimation. The AIC is
one of the most widely used methods for selecting a best-fitting model from several competing
models given a particular dataset. A concise formulation of the AIC under the framework of
least squares estimation has been derived by [13]. The AIC under Scheme 1 is defined as

AICNLS = |H | log*.
,

L(ψ̂
(s)

)
|H |

+/
-
+2(ks +1)+ |K | log*.

,

L(ψ̂
(t)

)
|K |

+/
-
+2(kt +1), (5.27)

where L(ψ̂
(s)

) and L(ψ̂
(t)

) are the estimated objective functions in space and time with ωh =

ωl ′ = 1, i.e.,

L(ψ̂
(s)

) =
∑

‖h‖=h∈H

(
ν̂F (h)− ν(s)

F (h, ψ̂
(s)

)
)2
, h ∈ H ,

L(ψ̂
(t)

) =
∑
l ′∈K

(
ν̂F (l′)− ν(t)

F (l′, ψ̂
(t)

)
)2
, l′ ∈ K .

where |A| denotes the cardinality of the setA, and ks and kt are, respectively, the total number
of purely spatial and purely temporal parameters in the underlying model. If |H |/ks + 1 < 40
and |K |/kt +1 < 40, it is suggested to use an adjusted “corrected” version of AICNLS (5.27), see
[13], i.e.,

AICNLSc = AICNLS+
2(ks +1)(ks +2)
|H | − ks

+
2(kt +1)(kt +2)
|K | − kt

. (5.28)

Our results are summarized in Table 5.4. Model A1 has the lowest AICNLSc value and
therefore would be considered as the best candidate for this dataset, closely followed by model
B3. Obviously, the temporal estimates (φ̂t and κ̂t) in the best-fitting model A1 indicate that there
is a weak temporal extremal dependence. Recall that the purely temporal F-madogram for this
model is given by

ν(t)
F (l′) = 0.5−

{
2Φ

(√
φt l′κt

)
+1

}−1
, l′ > 0.

Accordingly, ν(t)
F (l′) is close to 1/6 for large values of φt , indicating asymptotic independence.

On the other hand, ν(t)
F (l′) is approximately constant when κt is small, indicating that the extremal

dependence is the same for all l′. So, both large φt and small κt lead to temporal asymptotic
independence.
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For comparison, we present the semi-parametric estimates obtained by [23]; φ̂s = 0.3611, κ̂s =

0.9876, φ̂t = 2.3650 and κ̂t = 0.0818. On the other hand, the pairwise likelihood estimates
obtained by [41] are φ̂s = 0.3485, κ̂s = 0.8858, φ̂t = 2.4190 and κ̂t = 0.1973. Obviously, these
estimates are close to our estimates, except the temporal smoothness estimate κ̂t which is
relatively large.

Figure 5.22 shows the empirical values of νF (h), h ∈ H and νF (l′), l′ ∈ K , and their model-
based counterparts from the three best-fitting models according to the AICNLS. It seems that
the three models give a quite reasonable fit with a little outperformance for model A1. So,
considering these plots and the AICNLS values there is overall evidence in favor of model A1.

Table 5.4: Summary of the fitted models based on the block maxima design from
the radar rainfall measurements in a region in the State of Florida.

Model Purely spatial parameters Purely temporal parameters AICNLSc

A1 φ̂s = 0.4109, κ̂s = 0.9527 φ̂t = 2.1686, κ̂t = 0.5410 −64.3921
A2 φ̂s = 2.6023, κ̂s = 1.2600 φ̂t = 2.1902, κ̂t = 0.3464 −43.0257
B1 φ̂ = 1.2289, κ̂ = 0.9527 τ̂ = (−0.2990,0.1661)t , −58.7364

δ̂ = 0.5821
B2 σ̂11 = 3.7253, σ̂12 = −0.4181, τ̂ = (0.5379,−0.1452)t , −21.4420

σ̂22 = 4.2100 δ̂ = 0.1830
B3 φ̂ = 5.9293, κ̂ = 1.2491, τ̂ = (1.4074,0.8505)t , −59.7906

ν̂ = 6.0820 δ̂ = 0.5317
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Figure 5.22: Red star-symbols show the empirical values of νF (h) and νF (l′)
used for estimation. The curves show the fitted νF (h) and νF (l′) from the three
best-fitting models (A1, B1 and B3).

Lastly, permutation tests (or sometimes called randomization tests) can be useful to determine
the range of clear dependence. So, in order to examine whether the extremal dependence
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in space and time is significant, we perform a permutation test. We randomly permute the
space-time data and compute the empirical spatial/temporal F-madograms. More precisely, to
check how the extremal dependence lasts in space, for each fixed time point t ∈ {t1, . . ., t732}

we permute the spatial locations. Afterward, the spatial F-madogram is computed and the
procedure is repeated 1000 times. From the obtained spatial F-madogram sample, we compute
97.5% and 2.5% empirical quantiles which form a 95% confidence region for spatial extremal
independence. On the other hand, to test the presence of temporal extremal independence, the
analog procedure is done for the temporal F-madogram. In particular, for each fixed location
s ∈ S = {(x, y) : x, y ∈ {1, . . .,14}} we sample without replacement from the corresponding time
series and compute the empirical temporal F-madogram. Our findings are shown in Figure 5.23
together with the fitted values of spatial/temporal F-madograms derived from the best-fitting
models A1. Inspecting these plots, it appears that the spatial extremal dependence vanishes for
spatial lags larger than four (the fitted values for the spatial F-madogram lies within the obtained
independence confidence region), whereas the temporal extremal dependence vanishes for time
lags larger than three. The same conclusions are obtained in [23], where the permutation tests
have been carried out based on the extremogram.
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Figure 5.23: Permutation test for extremal independence in space (left panel) and
time (right panel). Upper/lower blue lines show 97.5% and 2.5% quantiles of
empirical F-madograms for 1000 spatial (right) and temporal (left) permuations
of the space-time observations. Red star-symbols show the fitted values of
νF (h), h ∈ H and νF (l′), l′ ∈ K derived from the best-fitting model A1.

5.5 Conclusions
In summary, we proposed two novel and flexible semi-parametric estimation schemes for space-
time max-stable processes based on the spatio-temporal F-madogram, νF (h, l). Working with
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the madogram has a few advantages. In addition to its simple definition and the computational
facility, it has a clear link with extreme value theory throughout the extremal dependence
function. The new estimation procedure may be employed as an alternative or a prerequisite to
the widely used pairwise likelihood; the semi-parametric estimates could serve as starting values
for the optimization routine used to maximize the pairwise log-likelihood function to decrease
the computational time and also improve the statistical efficiency, see [26].

A simulation study has shown a visual overview of the quality of the proposed inference proce-
dure. Overall, the procedure performs well. Moreover, our estimationmethodology outperforms
the semi-parametric estimation procedure suggested by [23] which was based on the dependence
measure extremogram. The introduced method is applied to radar rainfall measurements in a
region in the State of Florida (Section 5.4) in order to quantify the extremal properties of the
space-time observations. Finally, our attention is concentrated on fitting space-time max-stable
processes based on gridded datasets. In the future, we plan to generalize our method in order
to fit space-time max-stable processes with extensions to irregularly spaced locations that may
have a fundamental interest in practice.





Chapter 6

Conclusions and outlook

6.1 Concluding remarks
In summary, we have considered hypothesis testing for the mixing parameter a of a spatial max-
mixture process using two pairwise likelihood-based statistics: Za and LRa. Pairwise marginal
likelihood appears to be an attractive tool for modeling complex data and has received increasing
attention in handling high dimensional datasets when the joint distribution is computationally
difficult to evaluate, or intractable due to the complex structure of dependence. Afterward, we
have suggested a madogram-based selection criterion for the mixing parameter a of a spatial
max-mixture process. Finally, we have also explored a madogram-based inference procedure
for some spatio-temporal max-stable processes.

Hypothesis testing presents some difficulties: Wald-type tests lack invariance under repa-
rameterizations, score-type tests suffer from numerical instability, whereas the asymptotic null
distribution of the composite likelihood ratio statistic depends both on the statistical model and
on the dimension of the parameter of interest. It involves a linear combination of independent
chi-squared variables with coefficients given by the eigenvalues of a matrix related to Godambe
information matrix. Many different adjustments of the composite likelihood ratio statistic have
been proposed to recover the usual chi-squared distribution which depends only on the dimen-
sion of the parameter of interest. A regularity condition underlying these adjustments is that
the parameter of interest is interior to its parameter space. However, this is usually not satisfied
where the parameter of interest lies on the boundary. Accordingly, testing whether the data are
asymptotically dependent or independent, i.e., H0 : a = a0, a0 ∈ {1,0} are much more tricky to
deal with because standard asymptotic theory does not apply. For this reason, we applied the
statistics when the model is near to asymptotic dependence (i.e., we tested H0 : a = 0.99) or
asymptotic independence (i.e., we tested H0 : a = 0.01). In a simulation study, the two statistics
Za and LRa showed a reasonable performance. They can control the type I error rate α. The
LRa test seems to be more powerful than the Za one when the true mixing parameter a ∈ (0,1),
while the contrary seems to hold for a ∈ {0,1}. Furthermore, the power to reject asymptotic
dependence, i.e., H0 : a = 1 (respectively, asymptotic independence, i.e., H0 : a = 0) improves
as the tested value a0 → 0 (respectively, a0 → 1). We applied our testing framework in an
analysis of exceedances over a large threshold of daily rainfall data from the East of Australia,

129
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where pairwise likelihood is adopted for estimating the dependence parameters. We showed that
our testing procedure could be an efficient model validation tool on a. In addition, our testing
framework could be generalized to test for all model parameters. Hence, providing a tool for
model checking in the validation stage.

Furthermore, we have derived a closed form expression of the Fλ-madogram νλF (h) in the
framework of spatial max-mixture models. It can detect more than one dependence structure in
the model: asymptotic dependence and independence. Indeed, the Fλ-madogram presents the
advantage of having both extremal dependence functions of the max-mixture model components
by its formula, i.e., θX (h) and θY (h). Afterward, motivated by defects in existing model-based
inference approaches for spatial extremes, we have developed an estimation procedure for max-
mixture model parameters based on νλF (h). It consists of using a moment-based approach to
estimate the mixture parameter a and the bivariate dependence summaries for the two processes
(max-stable, inverted max-stable). The estimation algorithm proceeds by estimating those
bivariate dependence summaries for fixed values of the mixture parameter a, and then the best
value of a is selected by profiling the values of a goodness-of-fit criterion with respect to a.
Unlike the estimation techniques used so far in this context, an appealing feature of this approach
is that the estimation of max-mixture model parameters can be performed without specifying
a parametric distribution family prior to fitting the model. In practice, the main advantage of
this strategy is to reduce the effect resulting from inaccurate choices of stochastic processes
used for describing the joint tail distribution. Such inaccurate choices may lead to severe mis-
estimation of probabilities associated with simultaneous extreme events. However, the proposed
procedure does not allow for estimating the entire process: only the mixing parameter and the
bivariate summaries of the two components in the mixture are estimated. So, it can be seen as
an exploratory tool to assess (in a preliminary step) what kind of parametric max-mixture model
would be appropriate to fit the data. Also, to perform model checking at the validation step.
In a simulation study, the proposed procedure performs well, even when we have considered
the boundary values for a. It improves the empirical dependence summaries for the class of
max-mixture models. In an analysis of monthly maxima of Australian daily rainfall data, we
implemented the Fλ-madogram estimation procedure for diagnostic and confirmatory purposes.

Finally, we have also proposed a semi-parametric estimation procedure for space-time max-
stable processes based on the spatio-temporal F-madogram, νF (h, l). In a simulation study,
the proposed procedure results in quite reliable estimates. It outperforms the semi-parametric
procedure suggested by [23] in which the extremogram was employed for inferential purposes.
Then, we applied our proposed inference framework to analyze radar daily rainfall maxima
measurements in a region of Florida. The proposed procedure could be used as an alternative
or a prerequisite to likelihood-based methods, where the semi-parametric estimates could serve
as starting values for the optimization routine used to maximize the pairwise log-likelihood
function in order to reduce the computational time and also improves the statistical efficiency
for estimators.
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6.2 Future research
To conclude the thesis, we mention some remaining issues which are subject to future research.

• In Chapter 4, besides the proposed estimation approach for bivariate dependence sum-
maries of the two processes, i.e., θX (h) and θY (h), let us remark that a maximum
likelihood-based method could also be implemented as an alternative parametric ap-
proach. Indeed, using the idea of profiling goodness-of-fit criterion with respect to the
value of the mixture parameter a could also be used to devise a composite likelihood pro-
cedure for estimating the mixture parameter a and the bivariate dependence summaries,
similar to the moment-based procedure presented. More precisely, for a fixed value of the
mixture parameter a, the functions θX (h) and θY (h) can be estimated by maximizing a
composite likelihood based on setting z = z1 = z2 in (2.35).

• Anisotropic situations may have a fundamental interest in practice. Especially, envi-
ronmental phenomena often have strong anisotropic spatial variation when the regions
monitored are very large, see [8]. Our suggestion is to introduce anisotropic models.
There are two types of anisotropy: geometric or elliptical, and zonal. An easy way
to introduce spatial anisotropy to a model is given by geometric anisotropy, see [53].
For example, spatial geometrically anisotropic models may be obtained by replacing the
Euclidean distance ‖ s1− s2‖ with the Mahalanobis distance, i.e.,

h2
M
= (s1− s2)t

(
cos(%) −sin(%)
sin(%) cos(%)

) (
1 0
0 b2

) (
cos(%) −sin(%)
sin(%) cos(%)

) t

(s1− s2) , (6.1)

with b > 0 and % ∈ [−π, π]. The parameter b reflects the degree of anisotropy, as it
corresponds to the ratio of the principal axes of dependence contours, whereas % is the
angle with respect to the west-east direction. When b = 1, the model is isotropic, see
[18, 66].

• Equally weighted inference approaches have been widely implemented. However, using
non-constant weights seems appealing for at least two reasons. First from a computational
point of view, for example discarding distant pairs, the central processing unit (CPU) load
for the evaluationmight be smaller and the fitting procedurewould be less time-consuming.
On the other hand, as neighboring pairs are expected to be strongly dependent, thus
providing valuable information for the estimation of dependence parameters, this may
improve the statistical efficiency. Therefore, it could be interesting to investigate the
gain in statistical efficiency of estimators as well as computational efficiency by adopting
different weighting strategies. For the semi-parametric estimation of space-time max-
stable processes, since the number of spatial and temporal lags are limited, we could
consider weights such that locations and time points which are further apart from each
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other have less influence on the estimation, i.e.,

ωh =exp {−c1‖h‖} or exp
{
−c1‖h‖

2
}
or ‖h‖−c1,

ωl ′ =exp
{
−c2l′

}
or exp

{
−c2l′2

}
or l′−c2,

ωh,l ′ =exp
{
−c

(
‖h‖+ l′

)}
or exp

{
−c

(
‖h‖2+ l′2

)}
or

(
‖h‖+ l′

)−c,

where c1, c2, c > 0, ‖h‖ ∈ H and l′ ∈ K .

• Owing to ourmotivating radar rainfall dataset, we focused on fitting space-timemax-stable
processes based on gridded datasets using the spatio-temporal F-madogram. We plan to
generalize our method in order to fit space-time max-stable processes with extensions
to irregularly spaced locations (typically, a more realistic scenario). For non-gridded
sampling locations, the estimators need to be modified to account for the fact that very few
or no pairs of locations will be separated by a specific spatial lag, h. One solution to this
challenge is to specify a distance tolerance (ε) such that lags having length ‖h‖ + ε are
included in estimating the F-madogram at lag h. We could also use the λ-madogram to
estimate the spatio-temporal extremal dependence function Vh,l . Furthermore, it could be
interesting to extend the proposed Fλ-madogram estimation approach in Chapter 4 to fit
spatio-temporal max-stable processes with unknown extremal dependence class. Hence,
providing better model selection at an exploratory stage and better model checking at the
validation stage.

• Asymptotic properties of our pairwise dependence estimators were analyzed numerically.
However, still, much more theoretical research has to be undertaken to establish the
asymptotic properties of these estimators. Some helpful ideas can be found in [81, 23].

• Finally, an important modeling issue is that asymptotic independence cannot be captured
by the spatio-temporal max-stable processes. To handle this issue, one possibility is to
extend the spatial max-mixture model to the spatio-temporal setting. However, this will
lead to a highly parameterized spatio-temporal model. Accordingly, novel classes of
spatial extremal models described by a small number of parameters and making a smooth
transition between the two dependence paradigms have been proposed recently in the
literature. For instance,

1. let {W (s)}s∈S be a stationary spatial process with standard Pareto margins, which
satisfies for any x ≥ 1

P{W (s j ) > x} = x−1,

P{W (s j ) > x,W (sk ) > x} = LW (x)x−1/ηW (h), j , k,

where LW (.) : (0,∞) → (0,∞) is slowly varying at infinity and the parameter
ηW (h) with h = s j − sk is the coefficient of tail dependence (recall Section 2.2.2).
It summarizes the joint tail decay of the process W (s). With W (s) as described, let
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R be a standard Pareto random variable independent of W . A spatial dependence
model is defined by [67] through the random field constructed as

X (s) = RαW (s)1−α, α ∈ [0,1].

According to this construction: when α > 0.5 then Rα is heavier-tailed than W 1−α

and this induces asymptotic dependence; the converse is true when α < 0.5, and this
induces asymptotic independence.

2. let {W (s)}s∈S be a standard Gaussian process with correlation function ρ(s1, s2) and
R ∼ F (r) is a positive random variable. A Gaussian scale mixture (GSM) process
(i.e., a Gaussian process with random variance) is defined as follows:

X (s) = RW (s), s ∈ S.

Several new models have been proposed in [66] based on GSM models that provide
a transition from one asymptotic dependence regime to the other. For example, R
can be assumed to have a two-parameter Weibull-type distribution, for r ≥ 1

F (r) =



1− exp
{
−γ(r β −1)/β)α

}
, β > 0,

1− r−γ, β = 0.

Therefore, GSM models can add modeling flexibility to spatial extreme analysis.
They have non-Gaussian marginals and can exhibit asymptotic dependence unlike
Gaussian processes, which are asymptotically independent except in the case of
perfect dependence.
Hence, it could be interesting to adapt these approaches to the spatio-temporal setting.
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Sur l’inférence statistique pour des processus spatiaux et spatio-temporels
extrêmes

Résumé. Cette thèse traite de l’inférence statistique pour les événements extrêmes dans le cadre spatial et spatio-temporel.
Dans la partie spatiale, nous proposons deux tests sur le paramètre de mélange a d’un processus spatial max-mélange :
le test statistique Za et le rapport de vraisemblance par paire LRa. Une étude de simulations permete d’avoir une vision
globale de leurs performances. Nous appliquons ces tests dans le cadre d’une analyse d’excès au delà d’un grand seuil
pour des données de précipitations dans l’Est de l’Australie. Nous proposons aussi une nouvelle procédure d’estimation,
basée sur l’utilisation de la méthode des moindres carrés sur le Fλ-madogramme, pour ajuster des processus spatiaux max-
mélanges lorsqu’on ne connait pas la classe de dépendance extrêmal. La nouveauté de cette procédure est qu’elle permet
de faire de l’inférence sans spécifier au préalable la famille de distributions, laissant ainsi parle les données et guider
l’estimation. Nous prouvons la convergence des estimateurs obtenus. Une indication sur la normalité asymptotique est
donnée numériquement. Une étude sur simulation montrent que la méthode proposée améliore les coefficients empiriques
pour la classe de modèles max-mélange. Nous implémentons notre procédure d’estimations sur des données de maximas
mensuels de précipitations en Australie dans un but exploratoire et confirmatoire. Dans la partie spatio-temporelle, nous
proposons une méthode d’estimation semi-paramétrique pour les processus max-stables spatio-temporels en nous basant
sur une expression explicite du F-madogramme spatio-temporel. En particulier, pour des observations sur grille régulière,
nous estimons le F-madogramme spatio-temporel par sa version empirique et nous appliquons une procédure basée sur
les moments pour obtenir les estimations des paramètres d’intérêt. Nous illustrons les performances de cette procédure par
une étude sur simulations. Ensuite, nous appliquons cette méthode pour quantifier le comportement extrêmal de maximum
de données radar de précipitations dans l’Etat de Floride. Cette méthode peut être une alternative ou une première étape
pour la vraisemblance composite.

Mots-clés : Dépendance/Indépendance asymptotique, vraisemblance composite, événement extrême, Fλ-madogramme,
processus max-stable, processus max-mélange, précipitations, estimation semi-paramétrique, processus max-stable spatio-
temporel.

On statistical inference for spatial and spatio-temporal extreme processes
Abstract. This thesis deals with the statistical inference of extreme events in both spatial and spatio-temporal settings.
In the spatial part, we consider hypothesis testing for the mixture parameter of a spatial max-mixture model using two
classical statistics: the Z-test statistic and the pairwise likelihood ratio statistic. A simulation study gives a visual overview
of their performances. Afterward, we apply this testing framework in an analysis of exceedances over a large threshold of
daily rainfall data from the East of Australia. Using nonlinear least squares fit based on the Fλ-madogram, we also propose
a novel estimation procedure to fit spatial max-mixture processes with unknown extremal dependence class. The novelty
of this procedure is to let the data speak for themselves. We establish the consistency of the estimators. An indication for
asymptotic normality is given numerically. A simulation study shows that this procedure improves empirical coefficients
for this class of models. In an analysis of monthly maxima of Australian daily rainfall data, we implement this procedure
for diagnostic and confirmatory purposes. In the spatio-temporal part, based on the spatio-temporal F-madogram, we
suggest a semi-parametric estimation approach for space-time max-stable processes. For regular grid observations, the
F-madogram is estimated nonparametrically by its empirical version and a moment-based procedure is applied to obtain
the estimates of interest. The performance of the method is investigated by various simulation studies. Lastly, we apply
this method to quantify the extremal behavior of radar daily rainfall maxima data from a region in Florida. This approach
could serve as an alternative or a prerequisite to pairwise likelihood estimation.

Keywords: Asymptotic dependence/independence, composite likelihood, extreme event, Fλ-madogram, max-stable
process, max-mixture process, rainfall data, semi-parametric estimation, space-time max-stable process.
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