A. Lu?tge, U. Winkler, and A. Lasaga, Interferometric study of the dolomite dissolution: a new conceptual model for mineral dissolution, Geochim. Cosmochim. Acta, vol.67, p.1099, 2003.

A. Lasaga and A. Lu?tge, Variation of crystal dissolution rate based on a dissolution stepwave model, Science, 2001.

H. Teng, Controls by saturation state on etch pit formation during calcite dissolution, Geochim. Cosmochim. Acta, vol.68, pp.253-262, 2004.

R. Arvidson, A. Lu?tge, A. Jeschke, K. Vosbeck, and W. Dreybrodt, Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics, Geochim. Cosmochim. Acta, vol.269, issue.5, p.27, 2001.

M. Raines and T. Dewers, Mixed transport/reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst, Chem. Geol, vol.140, p.29, 1997.

J. Herrero, O. Artieda, W. Hudnall, and . Gypsum, Soil Sci. Soc. Am. J, vol.73, pp.1757-1763, 2009.

E. Pachon-rodriguez, E. Guillon, G. Houvenaghel, and J. Colombani, Wet creep of hardened hydraulic cements -Example of gypsum plaster and implication for hydrated Portland cement, Cem. Concr. Res, vol.63, pp.67-74, 2014.

M. Wolthers, How minerals dissolve, Science, vol.349, p.1288, 2015.

R. Shiraki, P. Rock, and W. Casey, Dissolution kinetics of calcite in

, M NaCl solution at room temperature: an atomic force microscopic (AFM) study, Aquat. Geochem, vol.6, pp.87-108, 2000.

O. Duckworth and S. Martin, Dissolution rates and pit morphologies of rhombohedral carbonate minerals, Am. Mineral, vol.89, pp.554-563, 2004.

J. Colombani, The alkaline dissolution rate of calcite, J. Phys. Chem. Lett, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01331143

I. Kurganskaya and A. Lu?tge, Kinetic Monte Carlo approach to study carbonate dissolution, J. Phys. Chem. C, vol.120, pp.6482-6492, 2016.

C. Fischer, A. Lu?tge, C. Fischer, R. Arvidson, and A. Lu?tge, Beyond the conventional understanding of water-rock reactivity, Earth Planet. Sci. Lett, vol.457, issue.15, pp.177-185, 2012.

H. Shindo, M. Kaise, H. Kondoh, C. Nishihara, H. Hayakawa et al., Mass transfer limitations at Crystallizing interfaces in an atomic force microscopy fluid cell: A finite element analysis, J. Chem. Soc., Chem. Commun, vol.16, issue.17, pp.6578-6586, 1991.

M. Peruffo, M. Mbogoro, M. Adobes-vidal, and P. Unwin, Importance of mass transport and spatially heterogeneous flux processes for in situ atomic force microscopy measurements of crystal growth and dissolution kinetics, J. Phys. Chem. C, vol.120, pp.12100-12112, 2016.

A. Burgos-cara, C. Putnis, C. Rodriguez-navarro, and E. Ruizagudo, Hydration effects on gypsum dissolution revealed by in situ nanoscale atomic force microscopy observations, Geochim. Cosmochim. Acta, vol.179, pp.110-122, 2016.

C. Fan, H. Teng, D. Bosbach, W. Rammensee, C. Hall et al., Unwin, P. Holistic approach to dissolution kinetics: linking direction-specific microscopic fluxes, local mass transport effects and global macroscopic rates from gypsum etch pit analysis, Geochim. Cosmochim. Acta, vol.58, issue.23, p.232, 1956.

J. Colombani, E. Pachon-rodriguez, A. Piednoir, and J. Colombani, Measurement of the pure dissolution rate constant of a mineral in water, Geochim. Cosmochim. Acta, vol.72, issue.26, p.107, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00432693

J. Gratier, D. Dysthe, and F. Renard, The role of pressure solution creep in the ductility of the earth's upper crust, Adv. Geophys, vol.54, pp.47-179, 2013.

N. Park, M. Kim, S. Langford, and J. Dickinson, Atomic layer wear of single-crystal calcite in aqueous solution scanning force microscopy, J. Appl. Phys, vol.80, p.2680, 1996.

J. Morse and R. Arvidson, The dissolution kinetics of major sedimentary carbonate minerals, Earth-Sci. Rev, vol.58, pp.51-84, 2002.

M. Vinson and A. Lu?tge, Multiple length-scale kinetics: an integrated study of calcite dissolution rates and strontium inhibition, Am. J. Sci, vol.305, pp.119-146, 2005.

J. Colombani and J. Bert, Holographic interferometry study of the dissolution and diffusion of gypsum in water, Geochim. Cosmochim. Acta, vol.71, 1913.
URL : https://hal.archives-ouvertes.fr/hal-00432680

S. L. Stipp and M. F. Hochella, Geochim. Cosmochim. Acta, vol.55, p.1723, 1991.

M. Andersson, S. Dobberschtz, K. Sand, D. Tobler, J. D. Yoreo et al., Angew. Chem, vol.128, p.1, 2016.

A. E. Van-driessche, L. G. Benning, J. D. Rodriguezblanco, M. Ossorio, P. Bots et al., Science, vol.336, p.69, 2012.

C. Perdikouri, C. V. Putnis, A. Kasioptas, and A. Putnis, Crystal Growth Des, vol.9, p.4344, 2009.

J. N. Bracco, A. G. Stack, and C. I. Steefel, Environ. Sci. Technol, vol.47, p.7555, 2013.

M. Wothers, D. D. Tommaso, Z. Du, and N. De-leeuw, CrystEngComm, vol.15, p.5506, 2013.

M. De-la-pierre, P. Raiteri, A. Stack, and J. Gale, Angew. Chem. Int. Ed, vol.56, p.8464, 2017.

F. Bouville, E. Maire, S. Meille, B. V. De-moortèle, A. Stevenson et al., Nature Mat, vol.13, p.508, 2014.

K. Larsen, K. Bechgaard, and S. L. Stipp, Geochim. Cosmochim. Acta, vol.74, p.2099, 2010.

. Vitruvius, The ten books of architecture English -translation by, 1914.

Y. Wang, H. K. Christenson, and F. C. Meldrum, Adv. Funct. Mater, vol.23, p.5615, 2013.

F. Kohler, L. Gagliardi, O. Pierre-louis, and D. Dysthe, Phys. Rev. Lett, vol.121, p.96101, 2018.

M. Merlini, M. Hanfland, and W. A. Crichton, Earth Planet. Sci. Lett, p.265, 2012.

Y. Diao and R. Espinoza-marzal, Proc. Natl. Acad. Sci. USA, vol.113, p.12047, 2016.

S. Weiner and L. Addadi, Annu Rev. Mater. Res, vol.41, p.21, 2011.

E. Weber and B. Pokroy, CrystEngComm, vol.17, p.5873, 2015.

C. Damle, A. Kumar, S. Sainkar, M. Bhagawat, and M. Sastry, Langmuir, vol.18, p.6075, 2002.

J. Ihli, J. Clark, N. Kanwal, Y. Kim, M. Holden et al., Chem. Sci, 2019.

Y. Kim, J. D. Carloni, B. Demarchi, D. Sparks, D. G. Reid et al., Nature Mat, vol.15, p.903, 2016.

, 0-12927, a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations, PHREEQC interactive

G. Montanari, L. Lakshtanov, D. Tobler, K. Dideriksen, K. N. Dalby et al., Crystal Growth Des, vol.16, p.4813, 2016.

C. Fan and H. Teng, Chem. Geol, vol.245, p.242, 2007.

B. Zareeipolgardani, A. Piednoir, and J. Colombani, Journal of Physical Chemistry C, vol.121, p.9325, 2017.

H. H. Teng, P. M. Dove, and J. J. De-yoreo, Geochim. Cosmochim. Acta, vol.64, p.2255, 2000.

J. Clark, J. Ihli, A. Schenk, Y. Kim, A. Kulak et al., Nature Mater, vol.14, p.780, 2015.

P. M. Dove and M. F. Hochella, Geochim. Cosmochim. Acta, vol.57, p.705, 1993.

H. H. Teng, P. M. Dove, C. A. Orme, and J. J. De-yoreo, Science, vol.282, p.724, 1998.

A. Stack and M. Grantham, Crystal Growth Des, vol.10, p.1409, 2010.

M. Hong and H. H. Teng, Geochim. Cosmochim. Acta, vol.141, p.228, 2014.

K. K. Sand, D. J. Tobler, S. Dobberschütz, K. K. Larsen, E. Makovicky et al., Crystal Growth Des, vol.16, p.3602, 2016.

J. D. Yoreo, L. Zepeda-ruiz, R. Friddle, S. Qiu, L. E. Wasylenki et al., Crystal Growth Des, vol.9, p.5135, 2009.

J. Chung, I. Granja, M. Taylor, G. Mpourmpakis, J. Asplin et al., Nature, vol.536, p.446, 2016.

E. Pachon-rodriguez, A. Piednoir, and J. Colombani, Phys. Rev. Lett, vol.107, p.146102, 2011.

K. Suito, J. Namba, T. Horikawa, Y. Taniguchi, N. Sakurai et al., Am. Mineral, vol.86, p.997, 2001.

S. Stipp, C. Eggleston, and B. Nielsen, Geochim. Cosmochim. Acta, vol.58, p.3023, 1994.

N. Park, M. Kim, S. Langford, and J. Dickinson, J. Applied Phys, vol.80, p.2680, 1996.

S. Elhadj, J. J. De-yoreo, J. R. Hoyer, and P. M. Dove, Proc. Natl. Acad. Sci. USA, vol.103, p.19237, 2006.

A. Côté, R. Darkins, and D. Dufy, PCCP, vol.17, 2015.

, We would like to stress on the fact that the measurements between 150 and 250 nN are delicate, leading to unstable values. Therefore we do not claim that velocities in this range are representative of calcite II

L. Addadi and S. Weiner, Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization, Proceedings of the National Academy of Sciences, vol.82, pp.4110-4114, 1985.

N. Alcantar, J. Israelachvili, and J. Boles, Forces and ionic transport between mica surfaces: Implications for pressure solution, Geochimica et Cosmochimica Acta, vol.67, p.1270, 2003.

D. Allemand, Biomineralisation in reef-building corals: From molecular mechanisms to environmental control, Comptes Rendus -Palevol, vol.3, pp.6-7, 2004.

M. Andersson, A Microkinetic Model of Calcite Step Growth, Angewandte Chemie, vol.55, 2016.

D. Arcos, Long-term geochemical evolution of the near field repository: Insights from reactive transport modelling and experimental evidences, Journal of Contaminant Hydrology, vol.102, pp.196-209, 2008.

. Rolf-s-arvidson, Variation in calcite dissolution rates: A fundamental problem?, In: Geochimica et Cosmochimica Acta, vol.67, 2003.

J. M. Astilleros, The effect of barium on calcite 1014 surfaces during growth, Geochimica et Cosmochimica Acta, vol.64, pp.16-7037, 2000.

R. J. Christensen, P. K. Hansma, G. D. Stucky, A. Belcher, X. Wu et al., Control of Crystal Phase Switching and Orientation by Soluble MolluscShell Proteins, Nature, 1996.

R. A. Berner, The role of magnesium in the crystal growth of calcite and aragonite from sea water, Geochimica et Cosmochimica Acta, vol.39, pp.16-7037, 1975.

C. F. Quate, G. Binning, and G. Ch, Atomic Force Microscope, Physical Review Letters, vol.56, pp.930-933, 1986.

D. Bosbach and M. F. Hochella, Gypsum growth in the presence of growth inhibitors: a scanning force microscopy study, Chemical Geology, vol.132, pp.59-68, 1996.

A. S. Brand, P. Feng, and J. W. Bullard, Calcite dissolution rate spectra measured by in situ digital holographic microscopy, Geochimica et Cosmochimica Acta, vol.213, pp.317-329, 2017.

P. W. Bridgman, The high pressure behavior of miscellaneous minerals, American Journal of Science, vol.237, 1939.

A. Burgos-cara, Hydration effects on gypsum dissolution revealed by in situ nanoscale atomic force microscopy observations, Geochimica et Cosmochimica Acta, vol.179, 2016.

W. D. Carlson, The polymorphs of CaCO3 and the aragonite-calcite transformation, SAE Technical Papers, pp.402-1215, 1983.

J. Kang-chen and M. Jiang, Long-term evolution of delayed ettringite and gypsum in Portland cement mortars under sulfate erosion, Construction and Building Materials, vol.23, pp.812-816, 2009.

L. Chou and R. Wollast, Study of the Weathering of Albite at Room Temperature and Pressure with a Fluidized Bed Reactor, Geochimica et Cosmochimica Acta, vol.48, pp.90217-90222, 1984.

J. Colombani, Measurement of the pure dissolution rate constant of a mineral in water, Geochimica et Cosmochimica Acta, vol.72, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00432693

S. F. Cox and M. S. Paterson, Experimental dissolution-precipitation creep in quartz aggregates at high temperatures, Geophysical Research Letters, vol.18, pp.1401-1404

D. Croizé, F. Renard, and J. P. Gratier, Compaction and Porosity Reduction in Carbonates: A Review of Observations, Theory, and Experiments, Advances in Geophysics, vol.54, pp.181-238, 2013.

D. Croizé, Experimental calcite dissolution under stress: Evolution of grain contact microstructure during pressure solution creep, Journal of Geophysical Research, vol.115, p.9207, 2010.

D. Daval, Linking nm-scale measurements of the anisotropy of silicate surface reactivity to macroscopic dissolution rate laws: New insights based on diopside, Geochimica et Cosmochimica Acta, vol.107, pp.121-134, 2013.

K. J. Davis, P. M. Dove, and J. J. De-yoreo, The Role of Mg2+ as an Impurity in Calcite Growth, Science 290, vol.5494, pp.36-8075, 2000.

M. Bas-den-brok, C. W. Zahid, and . Passchier, Pressure solution compaction of sodium chlorate and implications for pressure solution in NaCl, Tectonophysics 307, pp.297-312, 1999.

J. Desarnaud, D. Bonn, and S. Noushine, Measurement of the Pressure induced by salt crystallization in confinement, In: Scientific Reports, vol.6, 2016.

Y. Diao and R. M. Espinosa-marzal, Molecular insight into the nanoconfined calcite-solution interface, Proceedings of the National Academy of Sciences, vol.113, 2016.

W. Dong, Influence of calcite and dissolved calcium on uranium(VI) sorption to a Hanford subsurface sediment, In: Environmental Science and Technology, vol.39, pp.7949-7955, 2005.

M. Patricia, . Dove, and . Stephen-f-elston, Dissolution kinetics of quartz in sodium chloride solutions: Analysis of existing data and a rate model for 25°C, Geochimica et Cosmochimica Acta, vol.56, pp.16-7037, 1992.

P. M. Dove and F. M. Platt, Compatible real-time rates of mineral dissolution by Atomic Force Microscopy (AFM), Chemical Geology, vol.127, issue.95, pp.127-128, 1996.

D. W. Durney, SOLUTION-TRANSFER, AN IMPORTANT GEOLOGICAL DEFORMATION MECHANISM, Nature, vol.238, pp.37-38, 1972.

S. Elhadj, Peptide controls on calcite mineralization: Polyaspartate chain length affects growth kinetics and acts as a stereochemical switch on morphology, Crystal Growth and Design, vol.6, issue.1, pp.197-201, 2006.

S. Emmanuel and Y. Levenson, Limestone weathering rates accelerated by micron-scale grain detachment, Geology 42, 2014.

C. Fan and H. Teng, Surface behavior of gypsum during dissolution, Chemical Geology, vol.245, pp.242-253, 2007.

L. Fernández-diaz, J. M-astilleros, and C. Pina, The morphology of calcite crystals grown in a porous medium doped with divalent cations, Chemical geology, vol.225, pp.1868-4394, 2006.

E. Finot, Reactivity of gypsum faces according to the relative humidity by scanning force microscopy, Surface Science, vol.384, pp.201-217, 1997.

E. Finot, Correlation between surface forces and surface reactivity in the setting of plaster by atomic force microscopy, Applied Surface Science, vol.161, pp.316-322, 2000.

C. Fischer, R. S. Arvidson, and A. Lüttge, How predictable are dissolution rates of crystalline material?, In: Geochimica et Cosmochimica Acta, vol.98, 2012.

C. Fischer and A. Luttge, Beyond the conventional understanding of water-rock reactivity, Earth and Planetary Science Letters, vol.457, pp.12-821, 2017.

C. Fischer and A. Luttge, Pulsating dissolution of crystalline matter, 2018.

G. Fu, Acceleration of Calcite Kinetics by Abalone Nacre Proteins, Advanced Materials, vol.17, pp.2678-2683, 2005.

L. Gagliardi and O. Pierre-louis, Thin film modeling of crystal dissolution and growth in confinement, Phys. Rev. E, vol.97, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02044046

E. Gartner, Industrially interesting approaches to "low-CO2" cements, Cement and Concrete Research, vol.34, pp.1489-1498, 2004.

P. U. Gilbert, The Organic-Mineral Interface in Biominerals, Reviews in Mineralogy and Geochemistry, vol.59, pp.1529-6466, 2005.

J. Gratier, earth ' s upper crust The role of pressure solution creep in the ductility of the Earth ' s upper crust, 2013.

. Pe-gratz and . Aj-;-hillner, STEP DYNAMICS DURING GROWTH AND DISSO-LUTION -AFM STUDIES ON MINERALS, vol.57, pp.491-495, 1993.

A. Gutjahr, H. Dabringhaus, and R. Lacmann, Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite II. The influence of divalent cation additives on the growth and dissolution rates, Journal of Crystal Growth, vol.158, pp.447-452, 1996.

C. Hall and D. C. Cullen, Scanning Force Microscopy of Gypsum Dissolution and Crystal Growth, AIChE Journal, vol.42, pp.232-238, 1996.

W. John and . Harbaugh, Carbonate Oil Reservoir Rocks, Algae, pp.349-398, 1967.

T. Hassenkam, Tracking single coccolith dissolution with picogram resolution and implications for CO2 sequestration and ocean acidification, Proceedings of the National Academy of Sciences, vol.108, pp.8571-8576, 2011.

F. Heberling, Reactivity of the calcite-water-interface, from molecular scale processes to geochemical engineering, Applied Geochemistry, vol.45, 2014.

H. Henry-teng and P. M. Dove, Surface site-specific interactions of aspartate with calcite during dissolution: Implications for biomineralization, American Mineralogist, vol.82, 1997.

P. Hillner, AFM images of dissolution and growth on a calcite crystal, p.90454, 1992.

M. Hong and H. Teng, Implications of solution chemistry effects: Direction-specific restraints on the step kinetics of calcite growth, Geochimica et Cosmochimica Acta, vol.141, pp.228-239, 2014.

A. A. Jeschke, K. Vosbeck, and W. Dreybrodt, Surface controlled dissolution rates of gypsum in aqueous insolutions exhibit nonlinear dissolution kinetics, Geochimica et Cosmochimica Acta, vol.65, pp.27-34, 2001.

G. Jordan and W. Rammensee, Dissolution rates of calcite (1014) obtained by scanning force microscopy: Microtopography-based dissolution kinetics on surfaces with anisotropic step velocities, vol.6, pp.941-947, 1998.

J. Kawano, Molecular dynamics simulation of the phase transition between calcite and CaCO3-II, Journal of Physics Condensed Matter, vol.21, p.27, 2009.

A. Klimchouk and ;. Klimchouk, Chapter, International Journal of Speleology, vol.25, 1996.

D. Koehn, B. Dag-kristian-dysthe, and . Jamtveit, Transient dissolution patterns on stressed crystal surfaces, Geochimica et Cosmochimica Acta, vol.68, 2004.

R. Kuechler, K. Noack, and T. Zorn, Investigation of gypsum dissolution under saturated and unsaturated water conditions, Ecological Modelling, vol.176, pp.1-14, 2004.

I. Kurganskaya and A. Lüttge, Kinetic Monte Carlo approach to study carbonate dissolution, J. Phys. Chem. C, vol.120, pp.6482-6492, 2016.

S. L. Stipp and M. Hochella, Structure and bonding environments at the calcite surface as observed with X-ray Photoelectron Spectroscopy (XPS) and low energy electron diffraction (LEED), Geochimica et Cosmochimica Acta, vol.55, pp.1723-1736, 1991.

L. Lakshtanov, N. Bovet, and S. L. Stipp, Inhibition of calcite growth by alginate, Geochimica et Cosmochimica Acta, vol.75, pp.3945-3955, 2011.

C. Antonio, A. Lasaga, and . Lüttge, A model for crystal dissolution, European Journal of Mineralogy, vol.15, pp.603-615, 2003.

C. Antonio, A. Lasaga, and . Luttge, Variation of Crystal Dissolution Rate Based on a Dissolution Stepwave Model, 2000.

C. Antonio, A. Lasaga, and . Luttge, Variation of Crystal Dissolution Rate Based on a Dissolution Stepwave Model, Science 291, vol.5512, pp.2400-2404, 2001.

C. and L. Guern, Arsenic trapping by iron oxyhydroxides and carbonates at hydrothermal spring outlets, Applied Geochemistry, vol.18, 2003.

L. Li, Growth of Calcite in Confinement, Crystals 7, 2017.

Y. Liang, Interplay between step velocity and morphology during the dissolution of CaCO3 surface, Journal of Vacuum Science and Technology A, vol.14, issue.3, pp.1368-1375, 1996.

Y. Liang, Dissolution kinetics at the calcite-water interface, vol.23, pp.4883-4887, 1996.

. Ha-lowenstam, Minerals formed by organisms, Science 211, vol.4487, pp.36-8075, 1981.

A. Lttge, A. Winkler, and . Lasaga, Interferometric study of the dolomite dissolution: a new conceptual model for mineral dissolution, Geochimica et Cosmochimica Acta, vol.67, pp.1099-1116, 2003.

A. Luttge, Crystal Dissolution Kinetics and Gibbs Free Energy, Journal of Electron Spectroscopy and Related Phenomena, vol.150, pp.248-259, 2006.

A. Luttge and E. Bolton, An interferometric study of the dissolution kinetics of anorthite: The role of reactive surface area, 1999.

C. M. Holl, Compression of witherite to 8 GPa and the crystal structure of BaCO3II, Physics and Chemistry of Minerals, vol.27, pp.467-473, 2000.

S. I-n-macinnis and . Brantley, {the} {Role} {of} {Dislocations} {and} {Surface}-{Morphology} {in} {Calcite} {Dissolution}, Geochimica Et Cosmochimica Acta, vol.56, pp.16-7037, 1992.

J. Dawoud-al-mahrouqi, M. D. Vinogradov, and . Jackson, Zeta potential of artificial and natural calcite in aqueous solution, Advances in Colloid and Interface Science, vol.240, pp.1-8686, 2017.

S. Mann-;-mann and S. , Molecular recognition in biomineralization, Nature, vol.332, pp.119-124, 1988.

P. Martins, Caractérisation mécanique des matériaux pour les micro / nanosystèmes Procédés applicables aux épaisseurs submicroniques, These, p.228, 2009.

M. D. Vinson and A. Luttge, Multiple length-scale kinetics: An integrated study of calcite dissolution rates and strontium inhibition, American Journal of Science, vol.305, pp.119-146, 2005.

S. Meer and C. J. Spiers, Uniaxial compaction creep of wet gypsum aggregates, Journal of Geophysical Research: Solid Earth, vol.102, pp.875-891, 1997.

F. C. Meldrum and H. Cölfen, Controlling mineral morphologies and structures in biological and synthetic systems, Chemical Reviews, vol.108, pp.4332-4432, 2008.

M. Merlini, M. Hanfland, and W. A. Crichton, CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth's mantle, Earth and Planetary Science Letters, pp.265-271, 2012.

L. Merrill and W. A. Bassett, The crystal structure of CaCO <sub>3</sub> (II), a high-pressure metastable phase of calcium carbonate, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.31, pp.343-349, 1975.

E. Meyer, Atomic Force Microscope, Progress in Surface Science, vol.41, pp.3-49, 1992.

G. Reddy, The crystallization of calcium carbonate: I. Isotopic exchange and kinetics, pp.166-172, 1971.

G. Montanari, Effect of Aspartic Acid and Glycine on Calcite Growth, Crystal Growth and Design, vol.16, p.15287505, 2016.

J. Morse, The dissolution kinetics of major sedimentray carbonate minerals, In: Earth-Science Reviews, vol.58, pp.83-89, 2002.

L. Neveux, Experimental simulation of chemomechanical processes during deep burial diagenesis of carbonate rocks, Journal of Geophysical Research: Solid Earth, vol.119, pp.984-1007, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01303809

Ö. Nilsson and J. Sternbeck, A mechanistic model for calcite crystal growth using surface speciation, Geochimica et Cosmochimica Acta, vol.63, pp.16-7037, 1999.

B. Njegic-dzakula, Calcite Crystal Growth Kinetics in the Presence of Charged Synthetic Polypeptides, Crystal Growth & Design, vol.9, pp.2425-2434, 2009.

C. Orme, Formation of chiral morphologies through selective binding of amino acids to calcite surface steps, Nature, vol.411, pp.775-784, 2001.

A. Wierzbicki, M. Mcbride, M. Grantham, H. H. Teng, P. M. Dove et al., Formation of chiral morphologies through selective binding of amino acids to calcite surface steps, Nature, pp.775-779, 2001.

A. Edgar-alejandro-pachon-rodriguez, J. Piednoir, and . Colombani, Pressure solution at the molecular scale, Physical Review Letters, vol.107, 2011.

. Edgar-alejandro-pachon-rodriguez, Pressure solution as origin of the humid creep of a mineral material, Phys. Rev. E, vol.84, 2011.

N. Park, Tribological Enhancement of CaCO3 Dissolution during Scanning Force Microscopy, In: Langmuir, vol.12, pp.4599-4604, 1996.

N. Park, Atomic layer wear of single-crystal calcite in aqueous solution using scanning force microscopy, Journal of Applied Physics, vol.80, pp.21-8979, 1996.

L. , N. Plummer, and E. Busenberg, The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O, Geochimica et Cosmochimica Acta, vol.46, pp.90056-90060, 1982.

O. S. Pokrovsky and J. Schott, Surface Chemistry and Dissolution Kinetics of Divalent Metal Carbonates, Environmental Science & Technology, vol.36, issue.3, pp.426-432, 2002.

A. Michael, T. A. Raines, and . Dewers, Mixed transport/reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst, Chemical Geology, vol.140, pp.29-48, 1997.

R. Raj, Creep in polycrystalline aggregates by matter transport through a liquid phase, Journal of Geophysical Research: Solid Earth, vol.87, pp.4731-4739

U. G. Krishnam, G. Raju, and . Atkinson, The Thermodynamics of "Scale" Mineral Solubilities. 3. Calcium Sulfate in Aqueous NaCl, In: Journal of Chemical and Engineering Data, vol.35, pp.361-367, 1990.

S. J. Reed, Electron microprobe analysis and scanning electron microscopy in geology, 2005.

F. Renard, An integrated model for transitional pressure solution in sandstones, Tectono physics, vol.312, pp.202-206, 1999.

E. Ruiz-agudo, The role of background electrolytes on the kinetics and mechanism of calcite dissolution, Geochimica et Cosmochimica Acta, vol.74, pp.1256-1267, 2010.

E. Ruiz-agudo, An atomic force microscopy study of calcite dissolution in saline solutions: The role of magnesium ions, Geochimica et Cosmochimica Acta, vol.73, pp.3201-3217, 2009.

P. Rumolo, Heavy metals in benthic foraminifera from the highly polluted sediments of the Naples harbour, Science of the Total Environment, vol.407, pp.5795-5802, 2009.

W. S. Broecker and T. Takahashi, The relationship between lysocline depth and in situ carbonate ion concentration, Deep Sea Res, vol.25, pp.65-95, 1978.

K. Sand, Calcite Growth Kinetics: Dependence on Saturation Index, Ca2+:CO32-Activity Ratio, and Surface Atomic Structure, Crystal Growth and Design, vol.16, 2016.

K. K. Sand, Controlling biomineralisation with cations, Nanoscale 9, pp.12925-12933, 2017.

W. George and . Scherer, Crystallization in". In: October 29, pp.1986-1986, 1986.

S. De, M. Christopher, and J. Spiers, On Mechanisms and Kinetics of Creep by Intergranular Pressure Solution, 1999.

H. and C. W. Skinner, A review of apatites, iron and manganese minerals and their roles as indicators of biological activity in black shales, Precambrian Research, vol.61, issue.3, p.90114, 1993.

C. I. Steefel and P. C. Lichtner, Diffusion and reaction in rock matrix bordering a hyperalkaline fluid-filled fracture, Geochimica et Cosmochimica Acta, vol.58, p.90152, 1994.

S. Stipp, C. Eggleston, and N. B. , Calcite surface structure observed at microtopographic and molecular scales with atomic force microscopy ( AFM )*, 1994.

S. L. Stipp, Toward a conceptual model of the calcite surface: hydration, hydrolysis, and surface potential, Geochimica et Cosmochimica Acta, vol.63, issue.99, pp.239-241, 1999.

C. Summerhayes, Deep Water -The Gulf Oil Disaster and the Future of Offshore Drilling, vol.30, pp.113-115, 2011.

H. , H. Teng, and P. M. Dove, Surface site-specific interactions of aspartate with calcite during dissolution: Implications for biomineralization, American Mineralogist, vol.82, issue.10, 1997.

H. and H. Teng, Thermodynamics of calcite growth: Baseline for understanding biomineral formation, Science, vol.282, 1998.

H. Teng, AFM measurement of step kinetics for the growth and dissolution of crystallites, Spectroscopy, 2005.

H. H. Teng, P. M. Dove, and J. J. De-toreo, Kinmetics of calcite growth: surface processes and relationships to macroscopic laws, Gca 64, vol.13, pp.2255-2266, 2000.

P. Vancappellen, A surface complexation model of the carbonate mineralaqueous solution interface, Geochimica Et Cosmochimica Acta, vol.57, pp.16-7037, 1993.

D. Michael, A. Vinson, and . Luttge, Multiple length-scale kinetics: An integrated study of calcite dissolution rates and strontium inhibition, American Journal of Science, vol.305, pp.119-146, 2005.

M. Von and A. , Das Elektronen-Rastermikroskop. Theoretische Grundlagen, In: Zeitschrift für Physik, vol.109, 1938.

W. Owen, S. Duckworth, and . Martin, Dissolution rates and pit morphologies of rhombohedral carbonate minerals, American Mineralogist, vol.89, 2004.

L. G. Wade, Organic chemistry. Pearson Prentice Hall in Upper Saddle River, N.J, p.9780321592316, 2010.

A. Deron and . Walters, Modification of calcite crystal growth by abalone shell proteins: An atomic force microscope study, Biophysical Journal, vol.72, 1997.

L. E. Wasylenki, Nanoscale effects of strontium on calcite growth: An in situ AFM study in the absence of vital effects, Geochimica et Cosmochimica Acta, vol.69, pp.3017-3027, 2005.

G. K. Ulrike and . Wegst, Bioinspired structural materials, Nature Materials, vol.14, pp.23-36, 2015.

R. Hans, A. Wenk, and . Bulakh, Minerals: Their Constitution and Origin, 2004.

M. Wolthers and S. Stipp, Calcite Growth Kinetics: Dependence on Saturation Index, Ca 2+ :CO 32 Activity Ratio, and Surface Atomic Structure, Crystal Growth and Design, vol.16, pp.3602-3612, 2016.

M. Wolthers, How minerals dissolve, Science 349, vol.6254, pp.36-8075, 2015.

M. Wolthers, Calcite growth kinetics: Modeling the effect of solution stoichiometry, Geochimica et Cosmochimica Acta, vol.77, pp.16-7037, 2012.

B. Zareeipolgardani, A. Piednoir, and J. Colombani, Gypsum Dissolution Rate from Atomic Step Kinetics, Journal of Physical Chemistry C, vol.121, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01523924

X. Zhang, C. J. Spiers, and C. J. Peach, Effects of pore fluid flow and chemistry on compaction creep of calcite by pressure solution at 150°C, Geofluids 11, pp.108-122, 2011.

Z. Zheng, T. Tokunaga, and J. Wan, Influence of Calcium Carbonate on U(VI) Sorption to Soils, In: Environmental Science & Technology, vol.37, pp.5603-5608, 2003.