K. Adelman and J. T. Lis, Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans, Nat. Rev. Genet, vol.13, pp.720-731, 2012.

I. Artsimovitch and R. Landick, Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals, Proc. Natl. Acad. Sci, 2000.

U. S. , , vol.97, pp.7090-7095

I. Artsimovitch and R. Landick, The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand, Cell, vol.109, pp.193-203, 2002.

K. L. Berg, C. Squires, and C. L. Squires, Ribosomal RNA operon antitermination. Function of leader and spacer region box B-box A sequences and their conservation in diverse micro-organisms, Journal of Molecular Biology, vol.209, pp.345-358, 1989.

B. Beuth, S. Pennell, K. B. Arnvig, S. R. Martin, and I. A. Taylor, Structure of a Mycobacterium tuberculosis NusA-RNA complex, Embo J, vol.24, pp.3576-3587, 2005.

I. Bonin, R. Mühlberger, G. P. Bourenkov, R. Huber, A. Bacher et al., Structural basis for the interaction of Escherichia coli NusA with protein N of phage lambda, Proc. Natl. Acad. Sci. U.S.a, vol.101, pp.13762-13767, 2004.

S. Borukhov, J. Lee, and O. Laptenko, Bacterial transcription elongation factors: new insights into molecular mechanism of action, Molecular Microbiology, vol.55, pp.1315-1324, 2005.

F. Brueckner and P. Cramer, Structural basis of transcription inhibition by ?-amanitin and implications for RNA polymerase II translocation, Nature Structural \& Molecular Biology, vol.15, pp.811-818, 2008.

C. M. Burns, W. L. Nowatzke, and J. P. Richardson, Activation of Rhodependent transcription termination by NusG. Dependence on terminator location and acceleration of RNA release, Journal of Biological Chemistry, vol.274, pp.5245-5251, 1999.

C. M. Burns, L. V. Richardson, and J. P. Richardson, Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli, Journal of Molecular Biology, vol.278, pp.307-316, 1998.

S. Busby and R. H. Ebright, Promoter structure, promoter recognition, and transcription activation in prokaryotes, Cell, vol.79, pp.743-746, 1994.

S. Busby and R. H. Ebright, Transcription activation by catabolite activator protein (CAP), Journal of Molecular Biology, vol.293, pp.199-213, 1999.

C. J. Cardinale, R. S. Washburn, V. R. Tadigotla, L. M. Brown, M. E. Gottesman et al., Termination factor Rho and its cofactors NusA and NusG silence foreign, DNA in E. coli. Science, vol.320, pp.935-938, 2008.

C. L. Chan and R. Landick, The Salmonella typhimurium his operon leader region contains an RNA hairpin-dependent transcription pause site. Mechanistic implications of the effect on pausing of altered RNA hairpins, Journal of Biological Chemistry, vol.264, pp.20796-20804, 1989.

C. L. Chan and R. Landick, Dissection of the his leader pause site by base substitution reveals a multipartite signal that includes a pause RNA hairpin, Journal of Molecular Biology, vol.233, pp.25-42, 1993.

C. L. Chan, D. Wang, and R. Landick, Multiple interactions stabilize a single paused transcription intermediate in which hairpin to 3' end spacing distinguishes pause and termination pathways, Journal of Molecular Biology, vol.268, pp.54-68, 1997.

A. C. Cheung and P. Cramer, Structural basis of RNA polymerase II backtracking, arrest and reactivation, Nature, vol.471, pp.249-253, 2011.

S. E. Cohen and G. C. Walker, The transcription elongation factor NusA is required for stress-induced mutagenesis in Escherichia coli, Curr. Biol, vol.20, pp.80-85, 2010.

S. E. Cohen, V. G. Godoy, and G. C. Walker, Transcriptional modulator NusA interacts with translesion DNA polymerases in Escherichia coli, Journal of Bacteriology, vol.191, pp.665-672, 2009.

S. E. Cohen, C. A. Lewis, R. A. Mooney, M. A. Kohanski, J. J. Collins et al., Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli, Proc. Natl, 2010.

, Acad. Sci. U.S.a, vol.107, pp.15517-15522

L. J. Core and J. T. Lis, Transcription Regulation Through PromoterProximal Pausing of RNA Polymerase II, Science, vol.319, pp.1791-1792, 2008.

P. Cramer, D. A. Bushnell, and R. D. Kornberg, Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution, Science, vol.292, pp.1863-1876, 2001.

P. Cramer, D. A. Bushnell, J. Fu, A. L. Gnatt, B. Maier-davis et al., Architecture of RNA polymerase II and implications for the transcription mechanism, Science, vol.288, pp.640-649, 2000.

M. G. Craven and D. I. Friedman, Analysis of the Escherichia coli nusA10(Cs) allele: relating nucleotide changes to phenotypes, Journal of Bacteriology, vol.173, pp.1485-1491, 1991.

S. S. Daube, V. Hippel, and P. H. , Functional transcription elongation complexes from synthetic RNA-DNA bubble duplexes, Science, vol.258, pp.1320-1324, 1992.

J. Drögemüller, M. Strauß, K. Schweimer, M. Jurk, P. Rösch et al., Determination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy, Sci Rep, vol.5, 2015.

R. H. Ebright, RNA Polymerase: Structural Similarities Between Bacterial RNA Polymerase and Eukaryotic RNA Polymerase II, Journal of Molecular Biology, vol.304, pp.687-698, 2000.

A. Eisenmann, S. Schwarz, S. Prasch, K. Schweimer, and P. Rösch, , 2005.

E. The and . Coli, NusA carboxy-terminal domains are structurally similar and show specific RNAP-and lambdaN interaction, Protein Sci, vol.14, pp.2018-2029

P. J. Farnham, J. Greenblatt, and T. Platt, Effects of NusA protein on transcription termination in the tryptophan operon of Escherichia coli, Cell, vol.29, pp.945-951, 1982.

D. I. Friedman, D. I. Friedman, and L. S. Baron, Genetic characterization of a bacterial locus involved in the activity of the N function of phage ?, Virology, vol.58, pp.141-148, 1974.

A. L. Gnatt, P. Cramer, J. Fu, D. A. Bushnell, and R. D. Kornberg, , 2001.

, Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution, Science, vol.292, pp.1876-1882

S. R. Goldman, R. H. Ebright, and B. E. Nickels, Direct detection of abortive RNA transcripts in vivo, Science, vol.324, pp.927-928, 2009.

B. Gopal, L. F. Haire, S. J. Gamblin, E. J. Dodson, A. N. Lane et al., Crystal structure of the transcription elongation/anti-termination factor NusA from Mycobacterium tuberculosis at 1.7 A resolution, Journal of Molecular Biology, vol.314, pp.1087-1095, 2001.

J. Greenblatt, J. Li, S. Adhya, D. I. Friedman, L. S. Baron et al., L factor that is required for beta-galactosidase synthesis is the nusA gene product involved in transcription termination, Proc. Natl. Acad. Sci. U.S.a, vol.77, 1980.

I. Gusarov and E. Nudler, The mechanism of intrinsic transcription termination, Molecular Cell, vol.3, pp.495-504, 1999.

I. Gusarov and E. Nudler, Control of intrinsic transcription termination by N and NusA: the basic mechanisms, Cell, vol.107, pp.437-449, 2001.

K. S. Ha, I. Toulokhonov, D. G. Vassylyev, and R. Landick, The NusA NTerminal Domain Is Necessary and Sufficient for Enhancement of Transcriptional Pausing via Interaction with the RNA Exit Channel of RNA Polymerase, Journal of Molecular Biology, vol.401, pp.708-725, 2010.

P. P. Hein, K. E. Kolb, T. Windgassen, M. J. Bellecourt, S. A. Darst et al., RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement, Nature Structural \& Molecular Biology, vol.21, pp.794-802, 2014.

K. M. Herbert, A. La-porta, B. J. Wong, R. A. Mooney, K. C. Neuman et al., Sequence-resolved detection of pausing by single RNA polymerase molecules, Cell, vol.125, pp.1083-1094, 2006.

A. Hirata, B. J. Klein, and K. S. Murakami, The X-ray crystal structure of RNA polymerase from Archaea, Nature, vol.451, pp.851-854, 2008.

C. J. Ingham, J. Dennis, and P. A. Furneaux, Autogenous regulation of transcription termination factor Rho and the requirement for Nus factors in Bacillus subtilis, Molecular Microbiology, vol.31, pp.651-663, 1999.

J. Y. Kang, T. V. Mishanina, M. J. Bellecourt, R. A. Mooney, S. A. Darst et al., RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing, Molecular Cell, vol.69, pp.802-815, 2018.

J. Y. Kang, R. A. Mooney, Y. Nedialkov, J. Saba, T. V. Mishanina et al., Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators, Cell, vol.173, pp.1650-1662, 2018.

J. Y. Kang, P. D. Olinares, J. Chen, E. A. Campbell, A. Mustaev et al., Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex, vol.6, pp.25478-25498, 2017.

A. N. Kapanidis, E. Margeat, S. O. Ho, E. Kortkhonjia, S. Weiss et al., Initial transcription by RNA polymerase proceeds through a DNAscrunching mechanism, Science, vol.314, pp.1144-1147, 2006.

G. A. Kassavetis and M. J. Chamberlin, Pausing and termination of transcription within the early region of bacteriophage T7 DNA in vitro, Journal of Biological Chemistry, vol.256, pp.2777-2786, 1981.

T. Kent, E. Kashkina, M. Anikin, and D. Temiakov, Maintenance of RNA-DNA hybrid length in bacterial RNA polymerases, Journal of Biological Chemistry, vol.284, pp.13497-13504, 2009.

H. Kettenberger, K. Armache, and P. Cramer, Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS, Molecular Cell, vol.16, pp.955-965, 2004.

M. L. Kireeva and M. Kashlev, Mechanism of sequence-specific pausing of bacterial RNA polymerase, Proc. Natl. Acad. Sci. U.S.a, vol.106, pp.8900-8905, 2009.

M. L. Kireeva, B. Hancock, G. H. Cremona, W. Walter, V. M. Studitsky et al., Nature of the Nucleosomal Barrier to RNA Polymerase II, Molecular Cell, vol.18, pp.97-108, 2005.

M. Kireeva, M. Kashlev, and Z. F. Burton, Translocation by multi-subunit RNA polymerases, Biochim. Biophys. Acta, vol.1799, pp.389-401, 2010.

K. E. Kolb, P. P. Hein, and R. Landick, Antisense Oligonucleotidestimulated Transcriptional Pausing Reveals RNA Exit Channel Specificity of RNA Polymerase and Mechanistic Contributions of NusA and RfaH, Journal of Biological Chemistry, vol.289, pp.1151-1163, 2014.

H. Kung, C. Spears, and H. Weissbach, Purification and properties of a soluble factor required for the deoxyribonucleic acid-directed in vitro synthesis of beta-galactosidase, Journal of Biological Chemistry, vol.250, pp.1556-1562, 1975.

S. Kyzer, K. S. Ha, R. Landick, and M. Palangat, Direct versus limitedstep reconstitution reveals key features of an RNA hairpin-stabilized paused transcription complex, Journal of Biological Chemistry, vol.282, pp.19020-19028, 2007.

L. Mata, M. De, C. R. Alonso, S. Kadener, J. P. Fededa et al., A Slow RNA Polymerase II Affects Alternative Splicing In Vivo, Molecular Cell, vol.12, pp.525-532, 2003.

R. Landick, The regulatory roles and mechanism of transcriptional pausing, Biochemical Society Transactions, vol.34, pp.1062-1066, 2006.

R. Landick, Transcriptional pausing without backtracking, Proc. Natl, 2009.

, Acad. Sci. U.S.a, vol.106, pp.8797-8798

R. Landick, Y. , and C. , Stability of an RNA secondary structure affects in vitro transcription pausing in the trp operon leader region, Journal of Biological Chemistry, vol.259, pp.11550-11555, 1984.

R. Landick, Y. , and C. , Isolation and structural analysis of the Escherichia coli trp leader paused transcription complex, Journal of Molecular Biology, vol.196, pp.363-377, 1987.

R. Landick, J. Carey, Y. , and C. , Translation activates the paused transcription complex and restores transcription of the trp operon leader region, 1985.

, Proc. Natl. Acad. Sci. U.S.a, vol.82, pp.4663-4667

M. H. Larson, R. A. Mooney, J. M. Peters, T. Windgassen, D. Nayak et al., A pause sequence enriched at translation start sites drives transcription dynamics in vivo, Science, vol.344, pp.1042-1047, 2014.

L. F. Lau and J. W. Roberts, Rho-dependent transcription termination at lambda R1 requires upstream sequences, Journal of Biological Chemistry, vol.260, pp.574-584, 1985.

L. F. Lau, J. W. Roberts, and R. Wu, Transcription terminates at lambda tR1 in three clusters, Proc. Natl. Acad. Sci. U.S.a, vol.79, pp.6171-6175, 1982.

L. F. Lau, J. W. Roberts, and R. Wu, RNA polymerase pausing and transcript release at the lambda tR1 terminator in vitro, Journal of Biological Chemistry, vol.258, pp.9391-9397, 1983.

D. N. Lee, L. Phung, J. Stewart, and R. Landick, Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences, Journal of Biological Chemistry, vol.265, pp.15145-15153, 1990.

T. I. Lee, Y. , and R. A. , Transcriptional Regulation and Its Misregulation in Disease, Cell, vol.152, pp.1237-1251, 2013.

J. Li, R. Horwitz, S. Mccracken, and J. Greenblatt, NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage lambda, Journal of Biological Chemistry, vol.267, pp.6012-6019, 1992.

K. Liu and M. M. Hanna, NusA interferes with interactions between the nascent RNA and the C-terminal domain of the alpha subunit of RNA polymerase in Escherichia coli transcription complexes, Proc. Natl. Acad. Sci. U.S.a, vol.92, pp.5012-5016, 1995.

K. Liu, Y. Zhang, K. Severinov, A. Das, and M. M. Hanna, Role of Escherichia coli RNA polymerase alpha subunit in modulation of pausing, termination and anti-termination by the transcription elongation factor NusA, 1996.

, Embo J, vol.15, pp.150-161

Y. Liu, C. Kung, J. Fishburn, A. Z. Ansari, K. M. Shokat et al., Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex, Mol. Cell. Biol, vol.24, pp.1721-1735, 2004.

C. Ma, M. Mobli, X. Yang, A. N. Keller, G. F. King et al., RNA polymerase-induced remodelling of NusA produces a pause enhancement complex, Nucleic Acids Research, vol.43, pp.2829-2840, 2015.

T. F. Mah, K. Kuznedelov, A. Mushegian, K. Severinov, and J. Greenblatt, The alpha subunit of E. coli RNA polymerase activates RNA binding by NusA, Genes \& Development, vol.14, pp.2664-2675, 2000.

T. F. Mah, J. Li, A. R. Davidson, and J. Greenblatt, Functional importance of regions in Escherichia coli elongation factor NusA that interact with RNA polymerase, the bacteriophage lambda N protein and RNA, Molecular Microbiology, vol.34, pp.523-537, 1999.

S. Mondal, A. V. Yakhnin, A. Sebastian, I. Albert, and P. Babitzke, , 2016.

, NusA-dependent transcription termination prevents misregulation of global gene expression, Nature Microbiology, vol.1, p.15007

K. S. Murakami and S. A. Darst, Bacterial RNA polymerases: the wholo story, Current Opinion in Structural Biology, vol.13, pp.31-39, 2003.

G. W. Muse, D. A. Gilchrist, S. Nechaev, R. Shah, J. S. Parker et al., RNA polymerase is poised for activation across the genome, Nat. Genet, vol.39, pp.1507-1511, 2007.

S. Naji, M. G. Bertero, P. Spitalny, P. Cramer, and M. Thomm, , 2008.

, Structure-function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement, Nucleic Acids Research, vol.36, pp.676-687

Y. Nakamura, S. Mizusawa, D. L. Court, and A. Tsugawa, Regulatory defects of a conditionally lethal nusAts mutant of Escherichia coli. Positive and negative modulator roles of NusA protein in vivo, Journal of Molecular Biology, vol.189, pp.103-111, 1986.

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, Ubiquitous Transcriptional Pausing Is Independent of RNA Polymerase Backtracking, Cell, vol.115, pp.437-447, 2003.

W. Niu, Y. Kim, G. Tau, T. Heyduk, and R. H. Ebright, Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase, Cell, vol.87, pp.1123-1134, 1996.

E. Nudler, E. Avetissova, V. Markovtsov, and A. Goldfarb, Transcription processivity: protein-DNA interactions holding together the elongation complex, Science, vol.273, pp.211-217, 1996.

E. Nudler and M. E. Gottesman, Transcription termination and antitermination in E. coli, Genes Cells, vol.7, pp.755-768, 2002.

M. Palangat, C. T. Hittinger, and R. Landick, Downstream DNA Selectively Affects a Paused Conformation of Human RNA Polymerase II, Journal of Molecular Biology, vol.341, pp.429-442, 2004.

M. Palangat, T. I. Meier, R. G. Keene, and R. Landick, Transcriptional Pausing at +62 of the HIV-1 Nascent RNA Modulates Formation of the TAR RNA Structure, Molecular Cell, vol.1, pp.1033-1042, 1998.

T. Pan, I. Artsimovitch, X. W. Fang, R. Landick, and T. R. Sosnick, Folding of a large ribozyme during transcription and the effect of the elongation factor NusA, Proc. Natl. Acad. Sci. U.S.a, vol.96, pp.9545-9550, 1999.

M. Z. Qayyum, D. Dey, and R. Sen, Transcription Elongation Factor NusA Is a General Antagonist of Rho-dependent Termination in Escherichia coli, Journal of Biological Chemistry, vol.291, pp.8090-8108, 2016.

A. Ray-soni, M. J. Bellecourt, and R. Landick, Mechanisms of Bacterial Transcription Termination: All Good Things Must End, Annual Review of Biochemistry, vol.85, pp.319-347, 2016.

A. Revyakin, C. Liu, R. H. Ebright, and T. R. Strick, Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching, Science, vol.314, pp.1139-1143, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00115689

J. P. Richardson, Rho-dependent termination and ATPases in transcript termination, Biochim. Biophys. Acta, vol.1577, pp.251-260, 2002.

J. W. Roberts, S. Shankar, and J. J. Filter, RNA Polymerase Elongation Factors, Annual Review of Microbiology, vol.62, pp.211-233, 2008.

N. Said, F. Krupp, E. Anedchenko, K. F. Santos, O. Dybkov et al., Structural basis for ?N-dependent processive transcription antitermination, Nature Microbiology, pp.1-13, 2017.

S. Saxena and J. Gowrishankar, Compromised factor-dependent transcription termination in a nusA mutant of Escherichia coli: spectrum of termination efficiencies generated by perturbations of Rho, NusG, NusA, and H-NS family proteins, Journal of Bacteriology, vol.193, pp.3842-3850, 2011.

M. C. Schmidt and M. J. Chamberlin, nusA protein of Escherichia coli is an efficient transcription termination factor for certain terminator sites, Journal of Molecular Biology, vol.195, pp.809-818, 1987.

K. Schweimer, S. Prasch, P. S. Sujatha, M. Bubunenko, M. E. Gottesman et al., NusA interaction with the ? subunit of E. coli RNA polymerase is via the UP element site and releases autoinhibition, Structure, vol.19, pp.945-954, 2011.

S. Shankar, A. Hatoum, and J. W. Roberts, A transcription antiterminator constructs a NusA-dependent shield to the emerging transcript, Molecular Cell, vol.27, pp.914-927, 2007.

R. Shibata, Y. Bessho, A. Shinkai, M. Nishimoto, E. Fusatomi et al., Crystal structure and RNA-binding analysis of the archaeal transcription factor NusA, Biochem. Biophys. Res. Commun, vol.355, pp.122-128, 2007.

D. H. Shin, H. H. Nguyen, J. Jancarik, H. Yokota, R. Kim et al., , 2003.

, Crystal Structure of NusA from Thermotoga Maritimaand Functional Implication of the N-Terminal Domain ?, Biochemistry, vol.42, pp.13429-13437

B. Shu and P. Gong, Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation, Proc. Natl. Acad. Sci. U.S.a, vol.113, pp.4005-4014, 2016.

R. J. Sims, R. Belotserkovskaya, and D. Reinberg, Elongation by RNA polymerase II: the short and long of it, Genes \& Development, vol.18, pp.2437-2468, 2004.

L. A. Stargell and K. Struhl, Mechanisms of transcriptional activation in vivo: two steps forward, Trends Genet, vol.12, pp.311-315, 1996.

D. C. Straney and D. M. Crothers, A stressed intermediate in the formation of stably initiated RNA chains at the Escherichia coli lac UV5 promoter, Journal of Molecular Biology, vol.193, pp.267-278, 1987.

J. Svaren and W. Hörz, Transcription factors vs nucleosomes: regulation of the PHO5 promoter in yeast, Trends in Biochemical Sciences, vol.22, pp.93-97, 1997.

V. Svetlov and E. Nudler, Macromolecular micromovements: how RNA polymerase translocates, Current Opinion in Structural Biology, vol.19, pp.701-707, 2009.

I. Toulokhonov, I. Artsimovitch, and R. Landick, Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins, Science, vol.292, pp.730-733, 2001.

I. Toulokhonov and R. Landick, The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination, Molecular Cell, vol.12, pp.1125-1136, 2003.

I. Toulokhonov and R. Landick, The Role of the Lid Element in Transcription by E. coli RNA Polymerase, Journal of Molecular Biology, vol.361, pp.644-658, 2006.

I. Toulokhonov, J. Zhang, M. Palangat, and R. Landick, A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing, Molecular Cell, vol.27, pp.406-419, 2007.

D. G. Vassylyev, Elongation by RNA polymerase: a race through roadblocks, Current Opinion in Structural Biology, vol.19, pp.691-700, 2009.

D. G. Vassylyev, M. N. Vassylyeva, A. Perederina, T. H. Tahirov, A. et al., Structural basis for transcription elongation by bacterial RNA polymerase, Nature, vol.448, pp.157-162, 2007.

D. G. Vassylyev, M. N. Vassylyeva, J. Zhang, M. Palangat, I. Artsimovitch et al., Structural basis for substrate loading in bacterial RNA polymerase, Nature, vol.448, pp.163-168, 2007.

U. Vogel and K. F. Jensen, NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA, Journal of Biological Chemistry, vol.272, pp.12265-12271, 1997.

I. O. Vvedenskaya, H. Vahedian-movahed, J. G. Bird, J. G. Knoblauch, S. R. Goldman et al., Interactions between RNA polymerase and the "core recognition element" counteract pausing, Science, vol.344, pp.1285-1289, 2014.

D. Wang, D. A. Bushnell, X. Huang, K. D. Westover, M. Levitt et al., Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution, Science, vol.324, pp.1203-1206, 2009.

D. Wang, D. A. Bushnell, K. D. Westover, C. D. Kaplan, and R. D. Kornberg, Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis, Cell, vol.127, pp.941-954, 2006.

A. Weixlbaumer, K. Leon, R. Landick, and S. A. Darst, Structural Basis of Transcriptional Pausing in Bacteria, Cell, vol.152, pp.431-441, 2013.

K. D. Westover, D. A. Bushnell, and R. D. Kornberg, Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center, Cell, vol.119, pp.481-489, 2004.

K. D. Westover, D. A. Bushnell, and R. D. Kornberg, Structural basis of transcription: separation of RNA from DNA by RNA polymerase II, Science, vol.303, pp.1014-1016, 2004.

J. K. Wickiser, W. C. Winkler, R. R. Breaker, and D. M. Crothers, The Speed of RNA Transcription and Metabolite Binding Kinetics Operate an FMN Riboswitch, Molecular Cell, vol.18, pp.49-60, 2005.

M. Worbs, G. P. Bourenkov, H. D. Bartunik, R. Huber, and M. C. Wahl, An extended RNA binding surface through arrayed S1 and KH domains in transcription factor NusA, Molecular Cell, vol.7, pp.1177-1189, 2001.

X. Yang, S. Molimau, G. P. Doherty, E. B. Johnston, J. Marles-wright et al., The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA, EMBO Rep, vol.10, pp.997-1002, 2009.

W. S. Yarnell and J. W. Roberts, The phage lambda gene Q transcription antiterminator binds DNA in the late gene promoter as it modifies RNA polymerase, Cell, vol.69, pp.1181-1189, 1992.

M. Yonaha and N. J. Proudfoot, Specific Transcriptional Pausing Activates Polyadenylation in a Coupled In Vitro System, Molecular Cell, vol.3, pp.593-600, 1999.

G. Zhang, E. A. Campbell, L. Minakhin, C. Richter, K. Severinov et al., Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution, Cell, vol.98, pp.811-824, 1999.

J. Zhang and R. Landick, A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure, Trends in Biochemical Sciences, vol.41, pp.293-310, 2016.

J. Zhang, M. Palangat, and R. Landick, Role of the RNA polymerase trigger loop in catalysis and pausing, Nature Structural \& Molecular Biology, vol.17, pp.99-104, 2010.

C. Zheng and D. I. Friedman, Reduced Rho-dependent transcription termination permits NusA-independent growth of Escherichia coli, Proc. Natl, 1994.

, Acad. Sci. U.S.a, vol.91, pp.7543-7547

Y. Zuo and T. A. Steitz, Crystal structures of the E. coli transcription initiation complexes with a complete bubble, Molecular Cell, vol.58, pp.534-540, 2015.