, We tentatively ascribe this to energy transfer interactions between Tb-complexes at the surface of the nanoparticles at high Tb-sAv loading levels. Another, less likely, explanation may be that a dense packing of Tb-sAv at the biot-AuNP surface changes the structure of the PEG-biotin ligand shell in such a way as to reduce the average distance between Tb complexes and AuNP surface, AuNPs is present, i.e. in the cases where only few Tb-sAv are attached to each biot-AuNP

, Using the same analysis procedure based on the Kohlrausch decay law, Similar behavior was observed with the 5 nm, 30 nm and 80 nm biot-AuNPs (Figures 7.12, 7.13 and 7.14)

, Experimental decay traces (red), with fitted two-component Kohlrausch decay laws (black). The traces were scaled to equal initial amplitude for clarity. (b) Amplitude fraction of the Tb-sAv/biot-AuNP donor-acceptor assembly PL decay in the total PL decay as a function of biotAuNP concentration, obtained from the curve fits, PL decays of Tb-sAv (0.91 nM) in the presence of increasing amounts of 5 nm biotAuNPs in buffer. (a)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2006.

N. Hildebrandt and I. Medintz, FRET -Förster Resonance Energy Transfer, 2013.

N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart et al., Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications, Chem. Rev, vol.2017, issue.2, pp.537-711

C. Berney and G. Danuser, FRET or No FRET: A Quantitative Comparison

J. , , vol.84, pp.3992-4010, 2003.

B. Corry, D. Jayatilaka, and P. Rigby, A Flexible Approach to the Calculation of Resonance Energy Transfer Efficiency between Multiple Donors and Acceptors in Complex Geometries, Biophys. J, vol.89, issue.6, pp.3822-3836, 2005.

E. Deplazes, D. Jayatilaka, and B. Corry, ExiFRET: Flexible Tool for Understanding FRET in Complex Geometries, J. Biomed. Opt, vol.2012, issue.1, p.11005

V. Raicu, Efficiency of Resonance Energy Transfer in Homo-Oligomeric Complexes of Proteins, J. Biol. Phys, vol.33, issue.2, pp.109-127, 2007.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi et al., Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors, J. Am. Chem. Soc, vol.126, issue.1, pp.301-310, 2004.

A. L. Efros and A. L. Efros, Interband Light Absorption in Semiconductor Spheres, Sov. Phys Semicond, vol.1982, issue.7, pp.772-775

A. Ekimov and A. Onushchenko, Quantum Size Effect in the Optical Spectra of Semiconductor Microcrystals, Sov. Phys Semicond, vol.16, issue.7, pp.775-778, 1982.

R. Rossetti, S. Nakahara, and L. E. Brus, Quantum Size Effects in the Redox Potentials, Resonance Raman Spectra, and Electronic Spectra of CdS Crystallites in Aqueous Solution, J. Chem. Phys, vol.79, issue.2, pp.1086-1088, 1983.

C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites, J. Am. Chem. Soc, vol.115, issue.19, pp.8706-8715, 1993.

A. P. Alivisatos, Perspectives on the Physical Chemistry of Semiconductor Nanocrystals, J. Phys. Chem, vol.100, issue.31, pp.13226-13239, 1996.

A. D. Yoffe, Semiconductor Quantum Dots and Related Systems: Electronic, Optical, Luminescence and Related Properties of Low Dimensional Systems, Adv. Phys, vol.50, issue.1, pp.1-208, 2001.

W. C. Chan and S. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science, vol.281, issue.5385, pp.2016-2018, 1998.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Semiconductor Nanocrystals as Fluorescent Biological Labels, Science, issue.5385, pp.2013-2016, 1998.

P. Reiss, M. Carrière, C. Lincheneau, L. Vaure, and S. Tamang, Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials

, Chem. Rev, vol.116, issue.18, pp.10731-10819, 2016.

W. R. Algar, K. Susumu, J. B. Delehanty, and I. L. Medintz, Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death, Anal. Chem, vol.83, issue.23, pp.8826-8837, 2011.

U. Resch-genger, M. Grabolle, S. Cavaliere-jaricot, R. Nitschke, and T. Nann, Quantum Dots versus Organic Dyes as Fluorescent Labels, Nat. Methods, vol.5, issue.9, pp.763-775, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00798911

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong et al., Compact High-Quality CdSe-CdS Core-shell Nanocrystals with Narrow Emission Linewidths and Suppressed Blinking

. Mater, , vol.12, pp.445-451, 2013.

J. H. Yu, S. Kwon, Z. Petrá?ek, O. K. Park, S. W. Jun et al., High-Resolution Three-Photon Biomedical Imaging Using Doped ZnS Nanocrystals, Nat. Mater, vol.12, issue.4, pp.359-366, 2013.

Y. Kim, W. Kim, H. Yoon, and S. K. Shin, Bioconjugation of Hydroxylated Semiconductor Nanocrystals and Background-Free Biomolecule Detection

, Bioconjug. Chem, vol.21, issue.7, pp.1305-1311, 2010.

W. R. Algar and U. J. Krull, Adsorption and Hybridization of Oligonucleotides on Mercaptoacetic Acid-Capped CdSe/ZnS Quantum Dots and Quantum Dot?Oligonucleotide Conjugates, Langmuir, vol.22, issue.26, pp.11346-11352, 2006.

R. Wilson, D. G. Spiller, A. Beckett, I. A. Prior, and V. Se?e, Highly Stable DextranCoated Quantum Dots for Biomolecular Detection and Cellular Imaging

. Mater, , pp.6361-6369, 2010.

A. Kongkanand, Interfacial Water Transport Measurements in Nafion Thin Films Using a Quartz-Crystal Microbalance, J. Phys. Chem. C, issue.22, pp.11318-11325, 2011.

R. Freeman, R. Gill, I. Shweky, M. Kotler, U. Banin et al., Biosensing and Probing of Intracellular Metabolic Pathways by NADH-Sensitive Quantum Dots

, Angew. Chem. Int. Ed, vol.48, issue.2, pp.309-313, 2009.

G. P. Mitchell, C. A. Mirkin, and R. L. Letsinger, Programmed Assembly of DNA Functionalized Quantum Dots, J. Am. Chem. Soc, vol.121, issue.35, pp.8122-8123, 1999.

A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki et al., Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification, Nano Lett, vol.4, issue.11, pp.2163-2169, 2004.

V. R. Hering, G. Gibson, R. I. Schumacher, A. Faljoni-alario, and M. J. Politi, Energy Transfer between CdSe/ZnS Core/Shell Quantum Dots and Fluorescent Proteins

, Bioconjug. Chem, vol.18, issue.6, pp.1705-1708, 2007.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar et al., Self-Assembly of CdSe?ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein, J. Am. Chem. Soc, vol.122, issue.49, pp.12142-12150, 2000.

E. Kang, A. Ogura, K. Kataoka, and Y. Nagasaki, Preparation of Water-Soluble PEGylated Semiconductor Nanocrystals, Chem. Lett, issue.7, pp.840-841, 2004.

M. E. Akerman, W. C. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, Nanocrystal Targeting in Vivo, Proc. Natl. Acad. Sci, pp.12617-12621, 2002.

K. Susumu, B. C. Mei, and H. Mattoussi, Multifunctional Ligands Based on Dihydrolipoic Acid and Polyethylene Glycol to Promote Biocompatibility of Quantum Dots, Nat. Protoc, vol.4, issue.3, pp.424-436, 2009.

B. C. Mei, K. Susumu, I. L. Medintz, and H. Mattoussi, Polyethylene Glycol-Based Bidentate Ligands to Enhance Quantum Dot and Gold Nanoparticle Stability in Biological Media, Nat. Protoc, vol.4, issue.3, pp.412-423, 2009.

H. T. Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon, and H. Mattoussi, Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores, J. Am. Chem. Soc, vol.127, issue.11, pp.3870-3878, 2005.

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou et al., In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles, Science, vol.298, issue.5599, pp.1759-1762, 2002.

T. Nann and P. Mulvaney, Single Quantum Dots in Spherical Silica Particles, Angew. Chem. Int. Ed, vol.43, issue.40, pp.5393-5396, 2004.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet et al., Synthesis and Properties of Biocompatible Water-Soluble SilicaCoated CdSe/ZnS Semiconductor Quantum Dots ?, J. Phys. Chem. B, issue.37, pp.8861-8871, 2001.

M. Darbandi, R. Thomann, and T. Nann, Single Quantum Dots in Silica Spheres by Microemulsion Synthesis, Chem. Mater, vol.17, issue.23, pp.5720-5725, 2005.

S. T. Selvan, T. T. Tan, J. Y. Ying, and . Robust, Non-Cytotoxic, Silica-Coated CdSe Quantum Dots with Efficient Photoluminescence, Adv. Mater, vol.17, issue.13, pp.1620-1625, 2005.

S. T. Selvan, P. K. Patra, C. Y. Ang, and J. Y. Ying, Synthesis of Silica-Coated Semiconductor and Magnetic Quantum Dots and Their Use in the Imaging of Live Cells, Angew. Chem. Int. Ed, vol.46, issue.14, pp.2448-2452, 2007.

F. Gao, Q. Ye, P. Cui, and L. Zhang, Efficient Fluorescence Energy Transfer System between CdTe-Doped Silica Nanoparticles and Gold Nanoparticles for Turn-On Fluorescence Detection of Melamine, J. Agric. Food Chem, vol.2012, issue.18, pp.4550-4558

C. Wu, M. K. Oo, and X. Fan, Highly Sensitive Multiplexed Heavy Metal Detection Using Quantum-Dot-Labeled DNAzymes, ACS Nano, vol.4, issue.10, pp.5897-5904, 2010.

C. Chen, L. Ao, Y. Wu, V. Cifliku, . Cardoso-dos et al., Single-Nanoparticle Cell Barcoding by Tunable FRET from Lanthanides to Quantum Dots, Angew. Chem. Int. Ed, vol.57, issue.41, pp.13686-13690, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02177003

F. Patolsky, R. Gill, Y. Weizmann, T. Mokari, and U. Banin, Willner, I. Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSe?ZnS Quantum Dots

, J. Am. Chem. Soc, vol.125, issue.46, pp.13918-13919, 2003.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher et al., Self-Assembled Nanoscale Biosensors Based on Quantum Dot FRET Donors

. Mater, , vol.2, pp.630-638, 2003.

E. Oh, M. Hong, D. Lee, S. Nam, H. C. Yoon et al., Inhibition Assay of Biomolecules Based on Fluorescence Resonance Energy Transfer (FRET) between

, Quantum Dots and Gold Nanoparticles, J. Am. Chem. Soc, vol.127, issue.10, pp.3270-3271, 2005.

L. Shi, V. De-paoli, N. Rosenzweig, and Z. Rosenzweig, Synthesis and Application of Quantum Dots FRET-Based Protease Sensors, J. Am. Chem. Soc, vol.128, issue.32, pp.10378-10379, 2006.

A. M. Dennis, W. J. Rhee, D. Sotto, S. N. Dublin, and G. Bao, Quantum DotFluorescent Protein Fret Probes for Sensing Intracellular PH, ACS Nano, vol.6, issue.4, pp.2917-2924, 2012.

H. Lu, O. Schöps, U. Woggon, and C. M. Niemeyer, Self-Assembled Donor Comprising Quantum Dots and Fluorescent Proteins for Long-Range Fluorescence Resonance Energy Transfer, J. Am. Chem. Soc, vol.130, issue.14, pp.4815-4827, 2008.

W. R. Algar, M. G. Ancona, A. P. Malanoski, K. Susumu, and I. L. Medintz, Assembly of a Concentric Förster Resonance Energy Transfer Relay on a Quantum Dot Scaffold: Characterization and Application to Multiplexed Protease Sensing, ACS Nano, vol.6, issue.12, pp.11044-11058, 2012.

C. M. Spillmann, M. G. Ancona, S. Buckhout-white, W. R. Algar, M. H. Stewart et al., Achieving Effective Terminal Exciton Delivery in Quantum Dot Antenna-Sensitized Multistep DNA Photonic Wires, ACS Nano, vol.7, issue.8, pp.7101-7118, 2013.

H. Kim, C. Y. Ng, and W. R. Algar, Quantum Dot-Based Multidonor Concentric FRET System and Its Application to Biosensing Using an Excitation Ratio, Langmuir, vol.30, issue.19, pp.5676-5685, 2014.

M. Wu and W. R. Algar, Concentric Förster Resonance Energy Transfer Imaging, Anal. Chem, vol.87, issue.16, pp.8078-8083, 2015.

M. Wu, M. Massey, E. Petryayeva, and W. R. Algar, Energy Transfer Pathways in a Quantum Dot-Based Concentric FRET Configuration, J. Phys. Chem. C, issue.46, pp.26183-26195, 2015.

E. M. Conroy, J. J. Li, H. Kim, and W. R. Algar, Self-Quenching, Dimerization, and Homo-FRET in Hetero-FRET Assemblies with Quantum Dot Donors and Multiple Dye Acceptors, J. Phys. Chem. C, issue.31, pp.17817-17828, 2016.

M. Massey, H. Kim, E. M. Conroy, and W. R. Algar, Expanded Quantum Dot-Based Concentric Förster Resonance Energy Transfer: Adding and Characterizing EnergyTransfer Pathways for Triply Multiplexed Biosensing, J. Phys. Chem. C, vol.2017, issue.24, pp.13345-13356

A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, Can Luminescent Quantum Dots Be Efficient Energy Acceptors with Organic Dye Donors?, J. Am. Chem. Soc, vol.127, issue.4, pp.1242-1250, 2005.

W. R. Algar, H. Kim, I. L. Medintz, and N. Hildebrandt, Emerging Non-Traditional Förster Resonance Energy Transfer Configurations with Semiconductor Quantum Dots: Investigations and Applications, Coord. Chem. Rev, pp.65-85, 2014.

N. Hildebrandt, L. J. Charbonnière, M. Beck, R. F. Ziessel, and H. Löhmannsröben, Quantum Dots as Efficient Energy Acceptors in a Time-Resolved Fluoroimmunoassay, Angew. Chem. Int. Ed, vol.44, issue.46, pp.7612-7615, 2005.

L. J. Charbonnière, N. Hildebrandt, R. F. Ziessel, and H. Löhmannsröben, Lanthanides to Quantum Dots Resonance Energy Transfer in Time-Resolved Fluoro-Immunoassays and Luminescence Microscopy, J. Am. Chem. Soc, vol.128, issue.39, pp.12800-12809, 2006.

M. So, C. Xu, A. M. Loening, S. S. Gambhir, and J. Rao, Self-Illuminating Quantum Dot Conjugates for in Vivo Imaging, Nat. Biotechnol, vol.24, issue.3, pp.339-343, 2006.

X. Huang, L. Li, H. Qian, C. Dong, and J. Ren, A Resonance Energy Transfer between Chemiluminescent Donors and Luminescent Quantum-Dots as Acceptors (CRET)

, Angew. Chem. Int. Ed, vol.45, issue.31, pp.5140-5143, 2006.

L. Mattsson, K. D. Wegner, N. Hildebrandt, and T. Soukka, Upconverting Nanoparticle to Quantum Dot FRET for Homogeneous Double-Nano Biosensors

. Rsc-adv, , vol.5, pp.13270-13277, 2015.

W. R. Algar, D. Wegner, A. L. Huston, J. B. Blanco-canosa, M. H. Stewart et al., Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Förster Resonance Energy Transfer Relays: Characterization and Biosensing, J. Am. Chem. Soc, vol.2012, issue.3, pp.1876-1891

W. R. Algar, A. P. Malanoski, K. Susumu, M. H. Stewart, N. Hildebrandt et al., Multiplexed Tracking of Protease Activity Using a Single Color of Quantum Dot Vector and a Time-Gated Förster Resonance Energy Transfer Relay, Anal. Chem, vol.2012, issue.22, pp.10136-10146

J. C. Claussen, N. Hildebrandt, K. Susumu, M. G. Ancona, and I. L. Medintz, Complex Logic Functions Implemented with Quantum Dot Bionanophotonic Circuits, ACS Appl. Mater. Interfaces, vol.6, issue.6, pp.3771-3778, 2014.

H. S. Afsari, . Cardoso-dos, M. Santos, S. Lindén, T. Chen et al., Time-Gated FRET Nanoassemblies for Rapid and Sensitive Intra-and Extracellular Fluorescence Imaging. Sci. Adv, vol.2016, issue.6, p.1600265

G. Jiang, A. S. Susha, A. A. Lutich, F. D. Stefani, J. Feldmann et al., Cascaded FRET in Conjugated Polymer/Quantum Dot/Dye-Labeled DNA Complexes for DNA Hybridization Detection, ACS Nano, vol.3, issue.12, pp.4127-4131, 2009.

W. R. Algar, A. Khachatrian, J. S. Melinger, A. L. Huston, M. H. Stewart et al., Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality, J. Am. Chem. Soc, vol.2017, issue.1, pp.363-372

S. Schlücker, Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications, Angew. Chem. Int. Ed, vol.53, issue.19, pp.4756-4795, 2014.

E. G. Moore, A. P. Samuel, and K. N. Raymond, From Antenna to Assay: Lessons Learned in Lanthanide Luminescence, Acc. Chem. Res, vol.42, issue.4, pp.542-552, 2009.

S. V. Eliseeva and J. G. Bünzli, Lanthanide Luminescence for Functional Materials and Bio-Sciences, Chem. Soc. Rev, vol.39, issue.1, pp.189-227, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02102772

A. D. Sherry, K. N. Green, S. J. Ratnakar, Z. Kovacs, and S. Viswanathan, Alternatives to Gadolinium-Based Metal Chelates for Magnetic Resonance Imaging ?, Chem. Rev, vol.110, issue.5, pp.2960-3018, 2010.

S. V. Eliseeva and J. G. Bünzli, Rare Earths: Jewels for Functional Materials of the Future, New J. Chem, issue.6, pp.1165-1176, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02102851

J. G. Bünzli and C. Piguet, Taking Advantage of Luminescent Lanthanide Ions, Chem. Soc. Rev, vol.34, issue.12, pp.1048-1077, 2005.

E. Debroye and T. N. Parac-vogt, Towards Polymetallic Lanthanide Complexes as Dual Contrast Agents for Magnetic Resonance and Optical Imaging, Chem. Soc. Rev, vol.43, issue.23, pp.8178-8192, 2014.

E. Pershagen and K. E. Borbas, Designing Reactivity-Based Responsive Lanthanide Probes for Multicolor Detection in Biological Systems, Coord. Chem. Rev, pp.30-46, 2014.

J. G. Bunzli, Lanthanide Luminescence for Biomedical Analyses and Imaging, Chem. Rev, vol.110, issue.5, pp.2729-2755, 2010.

G. Li, Y. Tian, Y. Zhao, and J. Lin, Recent Progress in Luminescence Tuning of Ce 3+ and Eu 2+ -Activated Phosphors for Pc-WLEDs, Chem. Soc. Rev, vol.44, issue.23, pp.8688-8713, 2015.

B. Zhou, B. Shi, D. Jin, and X. Liu, Controlling Upconversion Nanocrystals for Emerging Applications, Nat. Nanotechnol, vol.10, issue.11, pp.924-936, 2015.

Y. Liu, D. Tu, H. Zhu, and X. Chen, Lanthanide-Doped Luminescent Nanoprobes: Controlled Synthesis, Optical Spectroscopy, and Bioapplications. Chem. Soc. Rev, vol.42, issue.16, p.6924, 2013.

K. Y. Zhang, Q. Yu, H. Wei, S. Liu, Q. Zhao et al., Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing, Chem. Rev, vol.118, issue.4, pp.1770-1839, 2018.

M. C. Heffern, L. M. Matosziuk, and T. J. Meade, Lanthanide Probes for Bioresponsive Imaging, Chem. Rev, vol.114, issue.8, pp.4496-4539, 2014.

J. Xu, T. M. Corneillie, E. G. Moore, G. L. Law, N. G. Butlin et al., Octadentate Cages of Tb(III) 2-Hydroxyisophthalamides: A New Standard for Luminescent Lanthanide Labels, J. Am. Chem. Soc, issue.49, pp.19900-19910, 2011.

J. C. Bünzli, On the Design of Highly Luminescent Lanthanide Complexes, Coord. Chem. Rev, pp.19-47, 2015.

H. Dong, S. Du, X. Zheng, G. Lyu, L. Sun et al., Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy, Chem. Rev, vol.115, issue.19, pp.10725-10815, 2015.

F. Auzel, Upconversion and Anti-Stokes Processes with f and d Ions in Solids, Chem. Rev, vol.104, issue.1, pp.139-174, 2004.

J. Shen, G. Chen, A. Vu, W. Fan, O. S. Bilsel et al., Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-Doped Upconversion Colloidal Nanoparticles at 800 Nm, Adv. Opt. Mater, vol.2013, issue.9, pp.644-650

X. Xie, N. Gao, R. Deng, Q. Sun, Q. Xu et al., Mechanistic Investigation of Photon Upconversion in Nd 3+ -Sensitized Core-Shell Nanoparticles, J. Am. Chem

. Soc, , vol.135, pp.12608-12611, 2013.

Y. Wang, G. Liu, L. Sun, J. Xiao, J. Zhou et al., Nd 3+ -Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect, ACS Nano, vol.7, issue.8, pp.7200-7206, 2013.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han et al., Tuning Upconversion through Energy Migration in Core-shell Nanoparticles, Nat. Mater, vol.10, issue.12, pp.968-973, 2011.

M. Cardoso-dos-santos and N. Hildebrandt, Recent Developments in Lanthanide-toQuantum Dot FRET Using Time-Gated Fluorescence Detection and Photon Upconversion, TrAC -Trends Anal. Chem, vol.84, pp.60-71, 2016.

N. Hildebrandt, K. D. Wegner, and W. R. Algar, Luminescent Terbium Complexes: Superior Förster Resonance Energy Transfer Donors for Flexible and Sensitive Multiplexed Biosensing, Coord. Chem. Rev, pp.125-138, 2014.

G. Mathis, Rare Earth Cryptates and Homogeneous Fluoroimmunoassays with Human Sera, Clin. Chem, vol.39, issue.9, pp.1953-1959, 1993.

D. Geißler, S. Linden, K. Liermann, K. D. Wegner, L. J. Charbonnière et al., Lanthanides and Quantum Dots as Förster Resonance Energy Transfer Agents for Diagnostics and Cellular Imaging, Inorg. Chem, vol.53, issue.4, pp.1824-1838, 2014.

K. E. Sapsford, L. Berti, and I. L. Medintz, Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor-Acceptor Combinations

, Angew. Chem. Int. Ed, vol.45, issue.28, pp.4562-4589, 2006.

R. N. Dsouza, U. Pischel, and W. M. Nau, Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution, Chem. Rev, vol.111, issue.12, pp.7941-7980, 2011.

M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging, 2011.

A. Eisfeld and J. S. Briggs, The J-and H-Bands of Organic Dye Aggregates, Chem. Phys, vol.324, issue.2-3, pp.376-384, 2006.

U. Rösch, S. Yao, R. Wortmann, and F. Würthner, Fluorescent H-Aggregates of Merocyanine Dyes, Angew. Chem. Int. Ed, vol.45, issue.42, pp.7026-7030, 2006.

N. J. Hestand and F. C. Spano, Molecular Aggregate Photophysics beyond the Kasha Model: Novel Design Principles for Organic Materials, Acc. Chem. Res, vol.50, issue.2, pp.341-350, 2017.

J. E. Halpert, J. R. Tischler, G. Nair, B. J. Walker, W. Liu et al., Electrostatic Formation of Quantum Dot/J-Aggregate FRET Pairs in Solution

, J. Phys. Chem. C, issue.23, pp.9986-9992, 2009.

B. J. Walker, V. Bulovi?, and M. G. Bawendi, Quantum Dot/J-Aggregate Blended Films for Light Harvesting and Energy Transfer, Nano Lett, issue.10, pp.3995-3999, 2010.

B. J. Walker, G. P. Nair, L. F. Marshall, V. Bulovi?, and M. G. Bawendi, Narrow-Band Absorption-Enhanced Quantum Dot/J-Aggregate Conjugates, J. Am. Chem. Soc, vol.131, issue.28, pp.9624-9625, 2009.

J. A. Levitt, D. R. Matthews, S. M. Ameer-beg, and K. Suhling, Fluorescence Lifetime and Polarization-Resolved Imaging in Cell Biology, Curr. Opin. Biotechnol, vol.20, issue.1, pp.28-36, 2009.

H. Sahoo, Förster Resonance Energy Transfer -A Spectroscopic Nanoruler: Principle and Applications, J. Photochem. Photobiol. C Photochem. Rev, vol.12, issue.1, pp.20-30, 2011.

Y. Yan, Analysis of Protein Interactions Using Fluorescence Technologies, Curr. Opin. Chem. Biol, vol.7, issue.5, pp.635-640, 2003.

N. G. Zhegalova, S. He, H. Zhou, D. M. Kim, and M. Y. Berezin, Minimization of SelfQuenching Fluorescence on Dyes Conjugated to Biomolecules with Multiple Labeling Sites via Asymmetrically Charged NIR Fluorophores, Contrast Media Mol. Imaging, vol.2014, issue.5, pp.355-362

V. Ghukasyan and . Fluorescence, Lifetime Dynamics of Enhanced Green Fluorescent Protein in Protein Aggregates with Expanded Polyglutamine, J. Biomed. Opt, vol.15, issue.1, p.16008, 2010.

S. V. Koushik and S. S. Vogel, Energy Migration Alters the Fluorescence Lifetime of Cerulean: Implications for Fluorescence Lifetime Imaging Forster Resonance Energy Transfer Measurements, J. Biomed. Opt, vol.13, issue.3, p.31204, 2008.

X. Song and B. I. Swanson, Rapid Assay for Avidin and Biotin Based on Fluorescence Quenching, Anal. Chim. Acta, vol.442, issue.1, pp.79-87, 2001.

K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, Gold Nanoparticles in Chemical and Biological Sensing, Chem. Rev, vol.2012, issue.5, pp.2739-2779

M. Daniel and D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem. Rev, vol.104, issue.1, pp.293-346, 2004.

C. Subramaniam, T. Pradeep, and J. Chakrabarti, Flow-Induced Transverse Electrical Potential across an Assembly of Gold Nanoparticles, Phys. Rev. Lett, issue.16, p.164501, 2005.

G. Schmid and U. Simon, Gold Nanoparticles: Assembly and Electrical Properties in 1-3 Dimensions, Chem. Commun, issue.6, pp.697-710, 2005.

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, Plasmons in Strongly Coupled Metallic Nanostructures, Chem. Rev, vol.111, issue.6, pp.3913-3961, 2011.

K. Su, Q. Wei, X. Zhang, J. J. Mock, D. R. Smith et al., Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles, Nano Lett, vol.3, issue.8, pp.1087-1090, 2003.

L. Dyadyusha, H. Yin, S. Jaiswal, T. Brown, J. J. Baumberg et al., Quenching of CdSe Quantum Dot Emission, a New Approach for Biosensing

, Chem. Commun, issue.25, pp.3201-3203, 2005.

Y. Chen, M. B. Donoghue, Y. Huang, H. Kang, J. A. Phillips et al., A Surface Energy Transfer Nanoruler for Measuring Binding Site Distances on Live Cell Surfaces, J. Am. Chem. Soc, issue.11, pp.16559-16570, 2010.

M. P. Singh and G. F. Strouse, Involvement of the LSPR Spectral Overlap for Energy Transfer between a Dye and Au Nanoparticle, J. Am. Chem. Soc, issue.27, pp.9383-9391, 2010.

M. P. Singh, T. L. Jennings, and G. F. Strouse, Tracking Spatial Disorder in an Optical Ruler by Time-Resolved NSET, J. Phys. Chem. B, vol.113, issue.2, pp.552-558, 2009.

T. L. Jennings, M. P. Singh, and G. F. Strouse, Fluorescent Lifetime Quenching near d = 1.5 nm Gold Nanoparticles: Probing NSET Validity, J. Am. Chem. Soc, vol.128, issue.16, pp.5462-5467, 2006.

J. Seelig, K. Leslie, A. Renn, S. Kühn, V. Jacobsen et al., Nanoparticle-Induced Fluorescence Lifetime Modification as Nanoscopic Ruler: Demonstration at the Single Molecule Level, Nano Lett, vol.7, issue.3, pp.685-689, 2007.

A. Samanta, Y. Zhou, S. Zou, H. Yan, and Y. Liu, Fluorescence Quenching of Quantum Dots by Gold Nanoparticles: A Potential Long Range Spectroscopic Ruler, Nano Lett, vol.14, issue.9, pp.5052-5057, 2014.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes et al., On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles, Nano Lett, vol.7, issue.10, pp.3157-3164, 2007.

S. Jin, E. Demarco, M. J. Pellin, O. K. Farha, G. P. Wiederrecht et al., Distance-Engineered Plasmon-Enhanced Light Harvesting in CdSe Quantum Dots

, J. Phys. Chem. Lett, vol.2013, issue.20, pp.3527-3533

X. Zhang, C. A. Marocico, M. Lunz, V. A. Gerard, Y. K. Gun'ko et al., Distance Dependence of Nonradiative Energy Transfer to a Plane of Gold Nanoparticles, ACS Nano, vol.6, issue.10, pp.9283-9290, 2012.

J. K. Vaishnav and T. K. Mukherjee, Long-Range Resonance Coupling-Induced Surface Energy Transfer from CdTe Quantum Dot to Plasmonic Nanoparticle, J. Phys

. Chem, , pp.28324-28336, 2018.

S. Saraswat, A. Desireddy, D. Zheng, L. Guo, H. P. Lu et al., Energy Transfer from Fluorescent Proteins to Metal Nanoparticles, J. Phys. Chem. C, issue.35, pp.17587-17593, 2011.

C. Chen, C. Midelet, S. Bhuckory, N. Hildebrandt, and M. H. Werts, Nanosurface Energy Transfer from Long-Lifetime Terbium Donors to Gold Nanoparticles, J. Phys. Chem. C, issue.30, pp.17566-17574, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01994523

A. Kapur, F. Aldeek, X. Ji, M. Safi, W. Wang et al., Self-Assembled Gold Nanoparticle ? Fluorescent Protein Conjugates as Platforms for Sensing Thiolate Compounds via Modulation of Energy Transfer Quenching, Bioconjug. Chem, vol.2017, issue.2, pp.678-687

B. N. Persson and N. D. Lang, Electron-Hole-Pair Quenching of Excited States near a Metal, Phys. Rev. B, issue.10, pp.5409-5415, 1982.

T. L. Jennings, J. C. Schlatterer, M. P. Singh, N. L. Greenbaum, and G. F. Strouse, LETTERS NSET Molecular Beacon Analysis of Hammerhead RNA Substrate Binding and Catalysis, Nano Lett, vol.6, issue.7, pp.1318-1324, 2006.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira et al., Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc, vol.127, issue.9, pp.3115-3119, 2005.

W. Becker, Fluorescence Lifetime Imaging--Techniques and Applications, J. Microsc, vol.2012, issue.2, pp.119-136

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu et al., Tunable Lifetime Multiplexing Using Luminescent Nanocrystals

, Nat. Photonics, vol.8, issue.1, pp.32-36, 2014.

E. Baggaley, S. W. Botchway, J. W. Haycock, H. Morris, I. V. Sazanovich et al., Long-Lived Metal Complexes Open up Microsecond Lifetime Imaging Microscopy under Multiphoton Excitation: From FLIM to PLIM and Beyond, Chem. Sci, vol.2014, issue.3, pp.879-886

C. Gan, Y. Zhang, D. Battaglia, X. Peng, and M. Xiao, Fluorescence Lifetime of MnDoped ZnSe Quantum Dots with Size Dependence, Appl. Phys. Lett, issue.24, p.241111, 2008.

C. Chen, P. Zhang, G. Gao, D. Gao, Y. Yang et al., Near-Infrared-Emitting Two-Dimensional Codes Based on Lattice-Strained Core/(Doped) Shell Quantum Dots with Long Fluorescence Lifetime, Adv. Mater, vol.26, issue.36, pp.6313-6317, 2014.

S. Jana, B. B. Srivastava, S. Jana, R. Bose, and N. Pradhan, Multifunctional Doped Semiconductor Nanocrystals, J. Phys. Chem. Lett, vol.2012, issue.18, pp.2535-2540

R. Martí-n-rodrí-guez, R. Geitenbeek, and A. Meijerink, Incorporation and Luminescence of Yb 3+ in CdSe Nanocrystals, J. Am. Chem. Soc, vol.135, issue.37, pp.13668-13671, 2013.

A. M. Smith, A. M. Mohs, and S. Nie, Tuning the Optical and Electronic Properties of Colloidal Nanocrystals by Lattice Strain, Nat. Nanotechnol, vol.4, issue.1, pp.56-63, 2009.

L. Zhang, C. Chen, W. Li, G. Gao, P. Gong et al., Living Cell Multilifetime Encoding Based on Lifetime-Tunable Lattice-Strained Quantum Dots, ACS Appl

, Mater. Interfaces, vol.8, issue.21, pp.13187-13191, 2016.

K. Jiang, Y. Wang, C. Cai, and H. Lin, Activating Room Temperature Long Afterglow of Carbon Dots via Covalent Fixation, Chem. Mater, vol.29, issue.11, pp.4866-4873, 2017.

K. G. Stamplecoskie and P. V. Kamat, Size-Dependent Excited State Behavior of Glutathione-Capped Gold Clusters and Their Light-Harvesting Capacity, J. Am

, Chem. Soc, vol.136, issue.31, pp.11093-11099, 2014.

L. Chen, C. Wang, Z. Yuan, and H. Chang, Fluorescent Gold Nanoclusters: Recent Advances in Sensing and Imaging, Anal. Chem, vol.87, issue.1, pp.216-229, 2015.

A. Abdukayum, J. T. Chen, Q. Zhao, and X. P. Yan, Functional near Infrared-Emitting Cr 3+ /Pr 3+ Co-Doped Zinc Gallogermanate Persistent Luminescent Nanoparticles with Superlong Afterglow for in Vivo Targeted Bioimaging, J. Am. Chem. Soc, vol.135, issue.38, pp.14125-14133, 2013.

D. Jin and J. A. Piper, Time-Gated Luminescence Microscopy Allowing Direct Visual Inspection of Lanthanide-Stained Microorganisms in Background-Free Condition, Anal. Chem, vol.83, issue.6, pp.2294-2300, 2011.

C. Chen, B. Corry, L. Huang, and N. Hildebrandt, FRET-Modulated Multihybrid Nanoparticles for Brightness-Equalized Single-Wavelength Barcoding, J. Am
URL : https://hal.archives-ouvertes.fr/hal-02176960

, Chem. Soc, vol.141, issue.28, pp.11123-11141, 2019.

A. Byrne, C. S. Burke, and T. E. Keyes, Precision Targeted Ruthenium(II) Luminophores; Highly Effective Probes for Cell Imaging by Stimulated Emission Depletion (STED) Microscopy, Chem. Sci, vol.2016, issue.10, pp.6551-6562

B. Del-rosal, D. H. Ortgies, N. Fernández, F. Sanz-rodrí-guez, D. Jaque et al., Overcoming Autofluorescence: Long-Lifetime Infrared Nanoparticles for Time-Gated In Vivo Imaging, Adv. Mater, vol.28, issue.46, pp.10188-10193, 2016.

D. H. Ortgies, M. Tan, E. C. Ximendes, B. Del-rosal, J. Hu et al., Lifetime-Encoded InfraredEmitting Nanoparticles for in Vivo Multiplexed Imaging, ACS Nano, vol.12, issue.5, pp.4362-4368, 2018.

Y. Fan, P. Wang, Y. Lu, R. Wang, L. Zhou et al., Zhang, F. Lifetime-Engineered NIR-II Nanoparticles Unlock Multiplexed in Vivo Imaging

, Nat. Nanotechnol, vol.13, issue.10, pp.941-946, 2018.

A. M. Smith, M. C. Mancini, and S. Nie, Second Window for in Vivo Imaging, Nat. Nanotechnol, vol.4, issue.11, pp.710-711, 2009.

K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen et al., A Route to Brightly Fluorescent Carbon Nanotubes for Near-Infrared Imaging in Mice, Nat. Nanotechnol, vol.4, issue.11, pp.773-780, 2009.

Y. Wang, J. Y. Shyy, .. Chien, and S. F. Proteins, Live-Cell Imaging, and Mechanobiology: Seeing Is Believing, Annu. Rev. Biomed. Eng, vol.10, issue.1, pp.1-38, 2008.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques

A. W. Castleman, J. P. Toennies, and W. Zinth, Springer Series in Chemical Physics, vol.81, 2005.

K. Suhling, L. M. Hirvonen, J. Levitt, P. Chung, C. Tregidgo et al., Fluorescence Lifetime Imaging (FLIM): Basic Concepts and Some Recent Developments. Med. Photonics, vol.44, pp.3-40, 2015.

T. Wu, Y. Tzeng, W. Chang, C. Cheng, Y. Kuo et al., Tracking the Engraftment and Regenerative Capabilities of Transplanted Lung Stem Cells Using Fluorescent Nanodiamonds, Nat. Nanotechnol, vol.8, issue.9, pp.682-689, 2013.

C. Chen, P. Zhang, L. Zhang, D. Gao, G. Gao et al., Long-Decay near-Infrared-Emitting Doped Quantum Dots for Lifetime

P. H. Vivo and . Imaging, Chem. Commun, vol.51, issue.56, pp.11162-11165, 2015.

E. Yaghini, H. D. Turner, A. M. Le-marois, K. Suhling, I. Naasani et al., In Vivo Biodistribution Studies and Ex Vivo Lymph Node Imaging Using Heavy Metal-Free Quantum Dots, Biomaterials, vol.104, pp.182-191, 2016.

P. Zijlstra, J. W. Chon, and M. Gu, Five-Dimensional Optical Recording Mediated by Surface Plasmons in Gold Nanorods, Nature, issue.7245, pp.410-413, 2009.

M. Han, X. Gao, J. Z. Su, and S. Nie, Quantum-Dot-Tagged Microbeads for Multiplexed Optical Coding of Biomolecules, Nat. Biotechnol, vol.19, issue.7, pp.631-635, 2001.

D. C. Pregibon, M. Toner, and P. S. Doyle, Multifunctional Encoded Particles for HighThroughput Biomolecule Analysis, Science, issue.5817, pp.1393-1396, 2007.

Y. C. Cao, R. Jin, and C. A. Mirkin, Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection, Science, vol.297, issue.5586, pp.1536-1540, 2002.

X. Li, T. Lan, C. Tien, and M. Gu, Three-Dimensional Orientation-Unlimited Polarization Encryption by a Single Optically Configured Vectorial Beam, Nat. Commun, vol.2012, issue.1, p.998

Y. Leng, K. Sun, X. Chen, and W. Li, Suspension Arrays Based on NanoparticleEncoded Microspheres for High-Throughput Multiplexed Detection, Chem. Soc. Rev, vol.44, issue.1, pp.5552-5595, 2015.

B. Andreiuk, A. Reisch, M. Lindecker, G. Follain, N. Peyriéras et al., Fluorescent Polymer Nanoparticles for Cell Barcoding In Vitro and In Vivo, Small, vol.2017, issue.38, p.1701582
URL : https://hal.archives-ouvertes.fr/hal-01662065

Y. Lu, J. Lu, J. Zhao, J. Cusido, F. M. Raymo et al., On-the-Fly Decoding Luminescence Lifetimes in the Microsecond Region for Lanthanide-Encoded Suspension Arrays, Nat. Commun, vol.5, issue.1, p.3741, 2014.

P. Rees, J. W. Wills, M. R. Brown, J. Tonkin, M. D. Holton et al., Nanoparticle Vesicle Encoding for Imaging and Tracking Cell Populations, Nat. Methods, vol.11, issue.11, pp.1177-1181, 2014.

T. L. Jennings, S. G. Becker-catania, R. C. Triulzi, G. Tao, B. Scott et al., Reactive Semiconductor Nanocrystals for Chemoselective Biolabeling and Multiplexed Analysis, vol.5, pp.5579-5593, 2011.

K. D. Wegner and N. Hildebrandt, Quantum Dots: Bright and Versatile in Vitro and in Vivo Fluorescence Imaging Biosensors, Chem. Soc. Rev, vol.44, issue.14, pp.4792-4834, 2015.

H. H. Gorris and O. S. Wolfbeis, Photon-Upconverting Nanoparticles for Optical Encoding and Multiplexing of Cells, Biomolecules, and Microspheres, Angew. Chem. Int. Ed, vol.52, issue.13, pp.3584-3600, 2013.

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik et al., Aqueous Synthesis of ThiolCapped CdTe Nanocrystals: State-of-the-Art, J. Phys. Chem. C, issue.40, pp.14628-14637, 2007.

O. Faklaris, M. Cottet, A. Falco, B. Villier, M. Laget et al., Multicolor Time-Resolved Förster Resonance Energy Transfer Microscopy Reveals the Impact of GPCR Oligomerization on Internalization Processes, FASEB J, vol.29, issue.6, pp.2235-2246, 2015.

M. Delbianco, V. Sadovnikova, E. Bourrier, G. Mathis, L. Lamarque et al., Highly Water-Soluble Triazacyclononane Europium Complexes to Detect Ligand Binding with Time-Resolved FRET Microscopy

, Chem. Int. Ed, vol.53, issue.40, pp.10718-10722, 2014.

S. J. Butler, M. Delbianco, L. Lamarque, B. K. Mcmahon, E. R. Neil et al., EuroTracker® Dyes: Design, Synthesis, Structure and Photophysical Properties of Very Bright Europium Complexes and Their Use in Bioassays and Cellular Optical Imaging, Dalt. Trans, vol.44, issue.11, pp.4791-4803, 2015.

M. Cardoso-dos-santos, J. Goetz, H. Bartenlian, K. Wong, L. J. Charbonnière et al., Autofluorescence-Free Live-Cell Imaging Using Terbium Nanoparticles, Bioconjug. Chem, vol.29, issue.4, pp.1327-1334, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02177002

N. Gahlaut and L. W. Miller, Time-Resolved Microscopy for Imaging Lanthanide Luminescence in Living Cells, In Cytometry Part A, vol.77, pp.1113-1125, 2010.

J. M. Zwier and N. Hildebrandt, Time-Gated FRET Detection for Multiplexed Biosensing, In Reviews in Fluorescence, 2016.

C. D. Geddes and . Ed, , pp.17-43, 2017.

X. Qiu, J. Guo, J. Xu, and N. Hildebrandt, Three-Dimensional FRET Multiplexing for DNA Quantification with Attomolar Detection Limits, J. Phys. Chem. Lett, vol.2018, issue.15, pp.4379-4384
URL : https://hal.archives-ouvertes.fr/hal-02183318

J. C. Claussen, W. R. Algar, N. Hildebrandt, K. Susumu, M. G. Ancona et al., Biophotonic Logic Devices Based on Quantum Dots and Temporally-Staggered Förster Energy Transfer Relays, Nanoscale, vol.2013, issue.24, pp.12156-12170

X. Qiu and N. Hildebrandt, Rapid and Multiplexed MicroRNA Diagnostic Assay Using Quantum Dot-Based Förster Resonance Energy Transfer, ACS Nano, vol.2015, issue.8, pp.8449-8457

D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H. G. Löhmannsröben et al., Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostic

, Angew. Chem. Int. Ed, issue.8, pp.1396-1401, 2010.

F. Morgner, D. Geißler, S. Stufler, N. G. Butlin, H. G. Löhmannsröben et al., A Quantum-Dot-Based Molecular Ruler for Multiplexed Optical Analysis, Angew. Chem. Int. Ed, issue.41, pp.7570-7574, 2010.

S. A. Dí-az, G. Lasarte-aragones, R. G. Lowery, J. N. Vranish, W. P. Klein et al., Quantum Dots as Förster Resonance Energy Transfer Acceptors of Lanthanides in Time-Resolved Bioassays, ACS Appl. Nano Mater, vol.2018, issue.6, pp.3006-3014

K. D. Wegner, Z. Jin, S. Linden, T. L. Jennings, and N. Hildebrandt, Quantum-DotBased Forster Resonance Energy Transfer Immunoassay for Sensitive Clinical Diagnostics of Low-Volume Serum Samples, ACS Nano, vol.7, issue.8, pp.7411-7419, 2013.

K. D. Wegner, S. Lindén, Z. Jin, T. L. Jennings, R. Khoulati et al., Nanobodies and Nanocrystals: Highly Sensitive Quantum Dot-Based Homogeneous FRET Immunoassay for Serum-Based EGFR Detection, Small, vol.10, issue.4, pp.734-740, 2014.

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain et al., Influence of Luminescence Quantum Yield, Surface Coating, and Functionalization of Quantum Dots on the Sensitivity of Time-Resolved FRET Bioassays, vol.2013, pp.2881-2892

K. D. Wegner, F. Morgner, E. Oh, R. Goswami, K. Susumu et al., Three-Dimensional Solution-Phase Förster Resonance Energy Transfer Analysis of Nanomolar Quantum Dot Bioconjugates with Subnanometer Resolution, Chem. Mater, vol.26, issue.14, pp.4299-4312, 2014.

X. Qiu, K. D. Wegner, Y. Wu, P. M. Van-bergen-en-henegouwen, and T. L. Jennings, Hildebrandt, N. Nanobodies and Antibodies for Duplexed EGFR/HER2

, Immunoassays Using Terbium-to-Quantum Dot FRET, Chem. Mater, vol.28, issue.22, pp.8256-8267, 2016.

G. Annio, T. L. Jennings, O. Tagit, and N. Hildebrandt, Sensitivity Enhancement of Förster Resonance Energy Transfer Immunoassays by Multiple Antibody Conjugation on Quantum Dots, Bioconjug. Chem, issue.6, pp.2082-2089, 2018.

M. Dagher, M. Kleinman, A. Ng, and D. Juncker, Ensemble Multicolour FRET Model Enables Barcoding at Extreme FRET Levels, Nat. Nanotechnol, vol.13, issue.10, pp.925-932, 2018.

Y. Xing, Q. Chaudry, C. Shen, K. Y. Kong, H. E. Zhau et al., Bioconjugated Quantum Dots for Multiplexed and Quantitative Immunohistochemistry, Nat. Protoc, vol.2, issue.5, pp.1152-1165, 2007.

P. Reiss, M. Protière, and L. Li, Core/Shell Semiconductor Nanocrystals. Small, vol.5, issue.2, pp.154-168, 2009.

P. Wu and X. Yan, Doped Quantum Dots for Chemo/Biosensing and Bioimaging

, Chem. Soc. Rev, vol.2013, issue.12, pp.5489-5521

A. M. Smith and S. Nie, Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering, vol.43, pp.190-200, 2010.

S. J. Lim, M. U. Zahid, P. Le, L. Ma, D. Entenberg et al., Brightness-Equalized Quantum Dots, Nat. Commun, vol.6, issue.1, p.8210, 2015.

R. Arppe-tabbara, M. R. Carro-temboury, C. Hempel, T. Vosch, and T. J. Sørensen, Luminescence from Lanthanide(III) Ions Bound to the Glycocalyx of Chinese Hamster Ovary Cells. Chem. -A, Eur. J, vol.24, issue.46, pp.11885-11889, 2018.

M. Grabolle, P. Kapusta, T. Nann, X. Shu, and J. Ziegler,

. Chem, , pp.7807-7813, 2009.

K. Hoffmann, T. Behnke, D. Drescher, J. Kneipp, and U. Resch-genger, NearInfrared-Emitting Nanoparticles for Lifetime-Based Multiplexed Analysis and Imaging of Living Cells, ACS Nano, vol.7, issue.8, pp.6674-6684, 2013.

K. Hoffmann, T. Behnke, M. Grabolle, and U. Resch-genger, NanoparticleEncapsulated Vis-and NIR-Emissive Fluorophores with Different Fluorescence Decay Kinetics for Lifetime Multiplexing, Anal. Bioanal. Chem, issue.14, pp.3315-3322, 2014.

X. Qiu, J. Guo, Z. Jin, A. Petreto, I. L. Medintz et al., Multiplexed Nucleic Acid Hybridization Assays Using Single-FRET-Pair Distance-Tuning, Small, vol.2017, issue.25, p.1700332

Z. Liao, M. Tropiano, S. Faulkner, T. Vosch, and T. J. Sørensen, Time-Resolved Confocal Microscopy Using Lanthanide Centred near-IR Emission, RSC Adv, vol.2015, issue.86, pp.70282-70286

M. R. Carro-temboury, R. Arppe, T. Vosch, and T. J. Sørensen, An Optical Authentication System Based on Imaging of Excitation-Selected Lanthanide Luminescence, Sci. Adv, vol.2018, issue.1, p.1701384

R. Xiong, D. Mara, J. Liu, R. Van-deun, and K. E. Borbas, Excitation-and EmissionWavelength-Based Multiplex Spectroscopy Using Red-Absorbing Near-InfraredEmitting Lanthanide Complexes, J. Am. Chem. Soc, vol.140, issue.35, pp.10975-10979, 2018.

D. Kovacs, X. Lu, L. S. Mészáros, M. Ott, J. Andres et al., Photophysics of Coumarin and Carbostyril-Sensitized Luminescent Lanthanide Complexes: Implications for Complex Design in Multiplex Detection, J. Am. Chem. Soc, vol.2017, issue.16, pp.5756-5767

J. Guo, C. Mingoes, X. Qiu, and N. Hildebrandt, Simple, Amplified, and Multiplexed Detection of MicroRNAs Using Time-Gated FRET and Hybridization Chain Reaction, Anal. Chem, vol.91, issue.4, pp.3101-3109, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02171004

J. Guo, X. Qiu, C. Mingoes, J. R. Deschamps, K. Susumu et al., Conformational Details of Quantum Dot-DNA Resolved by Förster Resonance Energy Transfer Lifetime Nanoruler, ACS Nano, vol.13, issue.1, pp.505-514, 2019.

J. Kang, O. Kaczmarek, J. Liebscher, and L. Dähne, Prevention of H-Aggregates Formation in Cy5 Labeled Macromolecules, Int. J. Polym. Sci, pp.1-7, 2010.

P. R. Selvin, The Renaissance of Fluorescence Resonance Energy Transfer, Nat. Struct. Biol, vol.7, issue.9, pp.730-734, 2000.

T. Ha, Single-Molecule Fluorescence Resonance Energy Transfer, Methods, vol.86, issue.1, pp.78-86, 2001.

S. Weiss, Measuring Conformational Dynamics of Biomolecules by Single Molecule Fluorescence Spectroscopy, Nat. Struct. Biol, vol.7, issue.9, pp.724-729, 2000.

R. B. Sekar and A. Periasamy, Fluorescence Resonance Energy Transfer (FRET)

, Microscopy Imaging of Live Cell Protein Localizations. J. Cell Biol, vol.160, issue.5, pp.629-633, 2003.

M. Li, S. K. Cushing, Q. Wang, X. Shi, L. A. Hornak et al., SizeDependent Energy Transfer between CdSe/ZnS Quantum Dots and Gold Nanoparticles, J. Phys. Chem. Lett, vol.2, issue.17, pp.2125-2129, 2011.

W. Guo, Y. Wei, Z. Dai, G. Chen, Y. Chu et al., Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes. Materials (Basel), vol.11, p.272, 2018.

N. Li, C. Chang, W. Pan, and B. Tang, A Multicolor Nanoprobe for Detection and Imaging of Tumor-Related MRNAs in Living Cells, Angew. Chem. Int. Ed, vol.2012, issue.30, pp.7426-7430

P. Vilela, A. Heuer-jungemann, A. El-sagheer, T. Brown, O. L. Muskens et al., Sensing of Vimentin MRNA in 2D and 3D Models of Wounded Skin Using DNA-Coated Gold Nanoparticles, Small, vol.14, issue.12, p.1703489, 2018.

Y. Zhong, F. Zeng, J. Chen, S. Wu, C. Hou et al., Modulation of Fluorescence of a Terbium-Complex-Containing Polymer by Gold Nanoparticles through Energy Transfer, J. Inorg. Organomet. Polym. Mater, vol.17, issue.4, pp.679-685, 2007.

S. Comby and T. Gunnlaugsson, Luminescent Lanthanide-Functionalized Gold Nanoparticles: Exploiting the Interaction with Bovine Serum Albumin for Potential Sensing Applications, ACS Nano, vol.5, issue.9, pp.7184-7197, 2011.

B. I. Ipe, K. Yoosaf, and K. G. Thomas, Functionalized Gold Nanoparticles as Phosphorescent Nanomaterials and Sensors, J. Am. Chem. Soc, vol.128, issue.6, pp.1907-1913, 2006.

W. A. Hendrickson, A. Pahler, J. L. Smith, Y. Satow, E. A. Merritt et al., Crystal Structure of Core Streptavidin Determined from Multiwavelength Anomalous Diffraction of Synchrotron Radiation, Proc. Natl. Acad. Sci, vol.86, pp.2190-2194, 1989.

J. R. Navarro and M. H. Werts, Resonant Light Scattering Spectroscopy of Gold, Silver and Gold-silver Alloy Nanoparticles and Optical Detection in Microfluidic Channels, Analyst, vol.138, issue.2, pp.583-592, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00764780

M. Loumaigne, C. Midelet, T. Doussineau, P. Dugourd, R. Antoine et al., Optical Extinction and Scattering Cross Sections of Plasmonic Nanoparticle Dimers in Aqueous Suspension, Nanoscale, vol.8, issue.12, pp.6555-6570, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386353

J. Midelet, A. H. El-sagheer, T. Brown, A. G. Kanaras, A. Débarre et al., Spectroscopic and Hydrodynamic Characterisation of DNA-Linked Gold Nanoparticle Dimers in Solution Using Two-Photon Photoluminescence, ChemPhysChem, vol.19, issue.7, pp.827-836, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01793564

G. De?eli? and J. P. Kratohvil, Determination of Size of Small Particles by Light Scattering. Experiments on Ludox Colloidal Silica, vol.173, pp.38-48, 1960.

P. Englebienne, Use of Colloidal Gold Surface Plasmon Resonance Peak Shift to Infer Affinity Constants from the Interactions between Protein Antigens and Antibodies Specific for Single or Multiple Epitopes, Analyst, vol.123, issue.7, pp.1599-1603, 1998.

S. K. Ghosh and T. Pal, Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications, Chem. Rev, vol.107, issue.11, pp.4797-4862, 2007.

N. Hildebrandt, How to Apply FRET: From Experimental Design to Data Analysis, FRET -Förster

I. Medintz and N. Hildebrandt, , pp.105-163, 2013.

P. Wu and L. Brand, Resonance Energy Transfer: Methods and Applications. Anal. Biochem, vol.218, issue.1, pp.1-13, 1994.

A. Sillen and Y. Engelborghs, The Correct Use of "Average" Fluorescence Parameters, Photochem. Photobiol, vol.67, issue.5, pp.475-486, 1998.

M. Loumaigne, R. Praho, D. Nutarelli, M. H. Werts, and A. V;-débarre, Fluorescence Correlation Spectroscopy Reveals Strong Fluorescence Quenching of FITC Adducts on PEGylated Gold Nanoparticles in Water and the Presence of Fluorescent Aggregates of Desorbed Thiolate Ligands, Phys. Chem. Chem. Phys, vol.2010, issue.36, p.11004
URL : https://hal.archives-ouvertes.fr/hal-00542994

J. R. Navarro, M. Plugge, M. Loumaigne, A. Sanchez-gonzalez, B. Mennucci et al., Probing the Interactions between Disulfide-Based Ligands and Gold Nanoparticles Using a Functionalised Fluorescent Perylene-Monoimide Dye, Photochem. Photobiol. Sci, vol.2010, issue.7, pp.1042-1054
URL : https://hal.archives-ouvertes.fr/hal-00542995

N. Nerambourg, R. Praho, M. H. Werts, D. Thomas, and M. B. Desce, Hydrophilic Monolayer-Protected Gold Nanoparticles and Their Functionalisation with Fluorescent Chromophores, Int. J. Nanotechnol, vol.5, issue.6, p.722, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00396983

T. Huang and R. W. Murray, Quenching of [Ru(Bpy)3] 2+ Fluorescence by Binding to Au Nanoparticles, Langmuir, vol.18, issue.18, pp.7077-7081, 2002.

X. Ji, W. Wang, and H. Mattoussi, Controlling the Spectroscopic Properties of Quantum Dots via Energy Transfer and Charge Transfer Interactions: Concepts and Applications, Nano Today, vol.11, issue.1, pp.98-121, 2016.

P. R. Selvin, J. E. Hearst, and . Luminescence, Energy Transfer Using a Terbium Chelate: Improvements on Fluorescence Energy Transfer, Proc. Natl. Acad. Sci, pp.10024-10028, 1994.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles

C. F. Bohren and D. R. Huffman, , 1998.

M. N. Berberan-santos, E. N. Bodunov, and B. Valeur, Mathematical Functions for the Analysis of Luminescence Decays with Underlying Distributions 1. Kohlrausch Decay Function (Stretched Exponential), Chem. Phys, vol.315, issue.1-2, pp.171-182, 2005.

D. C. Johnston, Stretched Exponential Relaxation Arising from a Continuous Sum of Exponential Decays, Phys. Rev. B, issue.18, p.184430, 2006.

J. M. Zwier, G. J. Van-rooij, J. W. Hofstraat, and G. J. Brakenhoff, Image Calibration in Fluorescence Microscopy, J. Microsc, vol.216, issue.1, pp.15-24, 2004.

M. Newville, T. Stensitzki, D. B. Allen, and A. Ingargiola, LMFIT: Non-Linear LeastSquare Minimization and Curve-Fitting for Python, 2014.