. Nicolaus, Après cetépisode, chaque point/emplacement est potentiellement très différent de ce qu'i? etait quelques jours avant. Les conditions actuelles rencontréesà un instant ne sont peut-être pas représentatives des conditions qui ont dominées jusqu'alors. Dans notre cas, l'étude des profils de SSA a pu permettre la distinction entre les accumulations récentes et les anciennes plaquesà vent, et donc de retrouver la succession desévénements. Ces deux aspects de la variabilité, spatiale et temporelle, représentent les principales limites de l'échantillonnage du manteau neigeux in situ, et doncà sa compréhension dans sa globalité, En effet, les fortes chutes de neige des 8-9 mai 2015 ont quasiment doublé l'épaisseur moyenne du manteau neigeux. La neige fraîche s'était principalement accumulée dans les dépressions entre les dunes, 2013.

, Liste des figures

, Sea ice conditions over the melting period

. .. , Temporal evolution of air temperatures and snow thickness, p.35

, Color code is used to distinguish the two main layers according to their SSA values range : dark and light gray for low (layers I and II only) and high SSA values respectively. Vertical scale is not provided as snow depths were highly variable, p.36

, Snow elevation (in centimeters) on y axis, sampling dates on x axis. Phases I to III are specified, Vertical profiles of SSA (A) and density (B) for each snowpit sampled in 2015

, represented with boxplot graphs and sorted by phases : A) cold, dry snow, B) surface melting, C) ripe snowpack and D) melt pond formation, here albedo over bare ice only and melt pond only are also shown, Spectral albedo from 400 nm to 1000 nm for both years

, Albedo measurements (black) and modeling (gray) at 500 nm (A) and 1000 nm (B) for each sampling station in 2015 (different scale in y axis). Error bars on both sides of simulation points represent results with SSA reduced, p.20

, Modelings of albedo using the surface layer of the snowpack only (extended as a semi infinite snowpack) are presented with star markers. The grey shaded area specifies the melting period

, In other words, above this minimal depth the underlying snow layer has no influence on albedo. Results are given for various couples of SSA (from 5 m 2 kg ?1 to 58 m 2 kg ?1 ) at the surface and within the semi-infinite underlying snowpack. Snow density was set to 350 kg m ?3 for both layers

, SSA of 3 m 2 kg ?1 covering whether bar ice or a slush layer (solid and dashed lines respectively). Dots and square markers represent the data at respectively 500 nm and 1000 nm collected during phase III in 2016 along two albedo transects (June 13 and 15) where snow depths were also measured, Simulations of albedo with varying snow depths. Results are given at 500 nm and 1000 nm

, Broadband albedo (top) and total energy transmitted to the sea ice system (bottom) in W m ?2 ,over the 2015 field campaign. Main phases are specified for each graph, p.40

, An overview of land repartition around the ice camp

, Justification of the adjustment of the absorption enhancement parameter B, p.63

. .. , Absorption coefficients of snow impurities measured and reconstructed, vol.64

, Comparisons between SOLEXS measurements and reconstructed vertical profiles of irradiance using optimized parameters

, Impacts of snow impurities on spectral albedos for the five dunes, p.66

, Scatter plot of measured and simulated transmittance, impacts of snow impurities, p.66

, Whole dataset of transmittance measurments plotted with corresponding simulations with and without bottom ice algae

, Extinction coefficients in snow and ice, deducted from all radiative transfer simulations 68

, Comparisons between measured and modeled transmittance in the case of the five dunes

, Ratios between transmitted PAR with and without snow impurities as a function of SSA and snow thickness

, de la température (B) et de l'épaisseur du manteau neigeux (C),comprenant les données de la station fixe du camp de glace ainsi que les mesures réalisées pour chaque snowpitétudié. Les zones hachurées correspondent aux chutes de neige significatives, 4.1Évolutions temporelles pour chacune des saisons du PAR incident reconstruit (moyenne quotidienne) (A)

, Liste des figures Liste des figures 95

, mesurées ponctuellement (triangles noirs) et simulées (bleu). B) même chose que précédemment mais multiplié par le PAR incident afin d'obtenir des valeurs absolues de l'éclairement. C) Isolumes dans la neige et la glace. D) les concentrations en chlorophylle-a pour les sites LS et HS mesurées dans la partie basale de la glace, entre 0 et 3 cm et et entre 3 et 10 cm. Chacun des graphes est divisé en 3 phases : I-15, 2Évolution temporelle de l'éclairement sous et dans la banquise et des concentrations en chlorophylle-a dans la glace basale pour la saison 2015. en détail :A) transmittances déduites du C-ops (noirs)

, Mêmes résultats que la Figure 3 mais pour la saison 2016 divisée en quatre phases : I-16

, Evolution temporelle des profils verticaux de SSA pour chacune des saisons tels que reconstruits pour simuler leséclairements moyens sous la banquise, p.86

, 41 2.2 Mean albedo and corresponding standard deviation at 500 nm and 1000 nm along each phase. In phase IV, measurement above ice and pond only (one station for each) are specified, Average values of SSA and density and corresponding standard deviations for each phase (SSA in m 2 kg ?1 and density in kg m ?3 )

, Relative deviations between albedo simulations and measurements in percentages at 500,700 and 1000 nm, and corresponding standard deviations

, Results of the optimization algorithm for the five dunes composed of two distinctive snow layers. Impurity concentration are given in ng g ?1

, Sea ice IOPs that allow, in average, reasonable simulations of the transmittances of the 32 snowpits. ? br and ? bu are the volume fractions, r br and r bu the radii of brine pockets and air bubbles respectively

T. P. Ackerman and O. B. Toon, Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles, Applied optics, vol.21, issue.5, p.758, 1982.

T. Aoki, A. Hachikubo, and M. Hori, Effects of snow physical parameters on shortwave broadband albedos, Journal of Geophysical Research, vol.108, issue.D19, p.4616, 2003.

K. R. Arrigo, G. V. Dijken, and S. Pabi, Impact of a shrinking Arctic ice cover on marine primary production, Geophysical Research Letters, vol.35, pp.1-6, 2008.

K. R. Arrigo, T. Mock, M. Lizotte, and G. S. Dieckmann, Primary Producers and Sea Ice, Sea Ice, chapter 8, pp.283-325, 2010.

K. R. Arrigo, D. K. Perovich, R. S. Pickart, Z. W. Brown, G. L. Dijken et al., Phytoplankton blooms beneath the sea ice in the Chukchi sea, Deep-Sea Research Part II, vol.105, pp.1-16, 2014.

K. R. Arrigo, D. K. Perovich, R. S. Pickart, Z. W. Brown, G. L. Van et al.,

J. K. Ehn, K. E. Frey, R. Garley, S. R. Laney, L. Lubelczyk et al., Brevia Massive Phytoplankton Blooms Under Arctic Sea Ice. Science, vol.336, issue.6087, p.1408, 2012.

K. R. Arrigo and G. L. Van-dijken, Secular trends in Arctic Ocean net primary production, Journal of Geophysical Research, vol.116, issue.9, pp.1-15, 2011.

D. G. Barber, S. P. Reddan, and E. F. Ledrew, Statistical characterization of the geophysical and electrical, Assessment, vol.100, issue.94, pp.2673-2686, 1995.

J. Boé, A. Hall, and X. Qu, September sea-ice cover in the Arctic Ocean projected to vanish by 2100, Nature Geoscience, vol.2, issue.5, pp.341-343, 2009.

C. F. Bohren and B. R. Barkstrom, Theory of the optical properties of snow, Journal of Geophysical Research, vol.79, issue.30, pp.4527-4535, 1974.

T. C. Bond, R. W. Bergstrom, T. C. Bond, R. W. Bergstrom, L. Absorption et al., Light Absorption by Carbonaceous Particles : An Investigative Review, Aerosol Science and Technology, vol.40, pp.27-67, 2006.

A. D. Clarke and J. Noone, SOOT IN THE ARCTIC SNOWPACK : A CAUSE FOR PERTURBATIONS IN RADIATIVE TRANSFER, Atmospheric Environment, vol.19, issue.12, pp.2045-2053, 1985.

S. Colbeck, The Theory of Metamorphism of Wet Snow. US Army Corps Eng Cold Reg Res Eng Lab Res Rep, p.19, 1973.

S. C. Colbeck, Theory of metamorphism of dry snow, Journal of Geophysical Research, vol.88, issue.C9, pp.5475-5482, 1983.

J. C. Comiso, Large Decadal Decline of the Arctic Multiyear Ice Cover, Journal of climate, vol.25, issue.4, pp.1176-1193, 2012.

J. C. Comiso, C. L. Parkinson, R. Gersten, and L. Stock, Accelerated decline in the Arctic sea ice cover, Geophysical Research Letters, vol.35, issue.1, pp.1-6, 2008.

S. M. Conger and D. M. Mcclung, Comparison of density cutters for snow profile observations, Journal of Glaciology, vol.55, issue.189, pp.163-169, 2009.

F. Cox and W. Weeks, Equations for determining the gas and brine volumes in sea -ice samples, Journal of Glaciology, vol.29, issue.102, pp.306-316, 1983.

S. J. Doherty, T. C. Grenfell, S. Forsström, D. L. Hegg, R. E. Brandt et al., , 2013.

, Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow, Journal of Geophysical Research Atmospheres, vol.118, pp.5553-5569

S. J. Doherty, M. Steele, I. Rigor, and S. G. Warren, Interannual variations of lightabsorbing particles in snow on Arctic sea ice, Journal of Geophysical Research : Atmospheres RESEARCH, pp.391-400, 2015.

S. J. Doherty, S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt, Lightabsorbing impurities in Arctic snow, Atmospheric Chemistry and Physics, vol.10, pp.11647-11680, 2010.

F. Domine, M. Albert, T. Huthwelker, H. Jacobi, A. A. Kokhanovsky et al., Snow physics as relevant to snow photochemistry, Atmospheric Chemistry and Physics, vol.8, pp.171-208, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00328560

F. Domine, M. Barrere, and D. Sarrazin, Seasonal evolution of the effective thermal conductivity of the snow and the soil in high Arctic herb tundra at Bylot Island, Canada. The Cryosphere, vol.10, issue.6, pp.2573-2588, 2016.

, Références bibliographiques

F. Dominé, A. Cabanes, and L. Legagneux, Structure, microphysics, and surface area of the Arctic snowpack near Alert during the ALERT 2000 campaign, Atmospheric Environment, vol.36, pp.2753-2765, 2002.

F. Domine, J. C. Gallet, J. Bock, and S. Morin, Structure, specific surface area and thermal conductivity of the snowpack around Barrow, Alaska. Journal of Geophysical Research Atmospheres, issue.D14, p.117, 2012.

F. Domine, R. Salvatori, L. Legagneux, R. Salzano, M. Fily et al., Correlation between the specific surface area and the short wave infrared (SWIR) reflectance of snow, Cold Regions Science and Technology, vol.46, issue.1, pp.60-68, 2006.
URL : https://hal.archives-ouvertes.fr/insu-00375443

J. K. Ehn, C. J. Mundy, D. G. Barber, H. Hop, A. Rossnagel et al., Impact of horizontal spreading on light propagation in melt pond covered seasonal sea ice in the Canadian Arctic, Journal of Geophysical Research, vol.116, pp.1-15, 2011.

J. K. Ehn, T. N. Papakyriakou, and D. G. Barber, Inference of optical properties from radiation profiles within melting landfast sea ice, Journal of Geophysical Research, vol.113, pp.1-15, 2008.

H. Eicken, T. C. Grenfell, D. K. Perovich, and K. Frey, Hydraulic controls of summer Arctic pack ice albedo, Journal of Geophysical Research, vol.109, pp.1-13, 2004.

S. Filhol and M. Sturm, Snow bedforms : A review, new data, and a formation model, 2015.

M. G. Flanner, C. S. Zender, J. T. Randerson, and P. J. Rasch, Present-day climate forcing and response from black carbon in snow, Journal of Geophysical Research, vol.112, pp.1-17, 2007.

M. Fortier, L. Fortier, C. Michel, and L. Legendre, Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice, Marine Ecology Progress Series, vol.225, pp.1-16, 2002.

V. Galindo, M. Gosselin, J. Lavaud, C. J. Mundy, B. Else et al., Pigment composition and photoprotection of Arctic sea ice algae during spring, Marine Ecology Progress Series, vol.585, pp.49-69, 2017.

J. Gallet, F. Domine, J. Savarino, M. Dumont, and E. Brun, The growth of sublimation crystals and surface hoar on the Antarctic plateau, The Cryosphere, vol.8, issue.4, pp.1205-1215, 2014.

J. C. Gallet, F. Domine, and M. Dumont, Measuring the specific surface area of wet snow using 1310 nm reflectance, Cryosphere, vol.8, issue.4, pp.1139-1148, 2014.

J. C. Gallet, F. Domine, C. S. Zender, and G. Picard, Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm, The Cryosphere, vol.3, issue.2, pp.167-182, 2009.
URL : https://hal.archives-ouvertes.fr/insu-00497930

J. C. Gallet, I. Merkouriadi, G. E. Liston, C. Polashenski, S. Hudson et al., Spring snow conditions on Arctic sea ice north of Svalbard, during the Norwegian Young Sea ICE (N-ICE2015) expedition, Journal of Geophysical Research, vol.122, issue.20, pp.820-830, 2017.

M. Gosselin, L. Legendre, S. Demers, and R. Ingram, Responses of Sea-Ice Microalgae to Climatic and Fortnightly Tidal Energy Inputs ( Manitounuk Sound , Hudson Bay, Canadian Journal of Fisheries and Aquatic Sciences, vol.42, pp.999-1006, 1985.

M. Gosselin, L. Legendre, J. Therriault, and S. Demers, LIGHT AND NUTRIENT LIMITATION OF SEA-ICE MICROALGAE (HUDSON BAY, CANADIAN ARCTIC), Journal of Phycology, vol.26, issue.2, pp.220-232, 1990.

M. Gosselinl, L. Legendre, J. Therriault, S. Demers, and M. Rochetl, Physical control of the horizontal patchiness of sea-ice microalgae*, Marine Ecology Progress Series, vol.29, pp.289-298, 1986.

C. Grenfell and G. Warren, Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation, Journal of Geophysical Research, vol.104, issue.24, pp.31697-31709, 1999.

T. C. Grenfell, B. Light, and M. Sturm, Spatial distribution and radiative effects of soot in the snow and sea ice during the SHEBA experiment, Journal of Geophysical Research, vol.107, pp.1-7, 2002.

T. C. Grenfell and G. A. Maykut, The optical properties of ice and snow in the Arctic basin, J. Glaciology, vol.18, issue.80, pp.445-463, 1977.

T. C. Grenfell and D. K. Perovich, Seasonal and spatial evolution of albedo in a snow-iceland-ocean environment, Journal of Geophysical Research, vol.109, issue.C1, 2004.

C. Guéguen, L. Guo, and N. Tanaka, Distributions and characteristics of colored dissolved organic matter in the Western Arctic Ocean, Continental Shelf Research, vol.25, pp.1195-1207, 2005.

J. Haapala, M. Lensu, M. Dumont, A. H. Renner, M. A. Granskog et al., Small-scale horizontal variability of snow , sea-ice thickness and freeboard in the firstyear ice region north of Svalbard, Annals of Glaciology, vol.54, issue.62, pp.261-266, 2013.

A. Hall, The Role of Surface Albedo Feedback in Climate, Journal of climate, vol.17, pp.1550-1568, 2004.

B. Hamre, J. Winther, S. Gerland, J. J. Stamnes, and K. Stamnes, Modeled and measured optical transmittance of snow-covered first-year sea ice in, Journal of Geophysical Research, vol.109, pp.1-14, 2004.

R. Horner, S. F. Ackley, G. S. Dieckmann, B. Guiliksen, T. Hoshiap et al., Ecology of sea ice biota, Polar Biology, vol.12, issue.3-4, pp.417-427, 1992.

J. I. Jimenez-aquinoa and J. R. Varela, Two stream approximation to radiative transfer equation : An alternative method of solution, Revista Mexicana de Fisica, vol.51, pp.82-86, 2005.

A. R. Juhl and C. Krembs, , 2010.

, E V ects of snow removal and algal photoacclimation on growth and export of ice algae, Polar Biology, vol.33, pp.1057-1065

C. Katlein, M. Fernandez-méndez, F. Wenzhoefer, and M. Nicolaus, Distribution of algal aggregates under summer sea ice in the Central Arctic, Polar Biology, 2014.

C. Katlein, M. Nicolaus, and C. Petrich, The anisotropic scattering coefficient of sea ice, Journal of Geophysical Research : Oceans, pp.842-855, 2014.

A. A. Kokhanovsky, Light scattering media optics : problems and solutions, 2004.

A. A. Kokhanovsky and E. P. Zege, Scattering optics of snow, Applied Optics, vol.43, issue.7, pp.1589-1602, 2004.

M. Korhonen, B. Rudels, M. Marnela, A. Wisotzki, and J. Zhao, Time and space variability of freshwater content , heat content and seasonal ice melt in the Arctic Ocean from, Ocean Science, vol.9, pp.1015-1055, 1991.

R. Kwok and D. A. Rothrock, Decline in Arctic sea ice thickness from submarine and ICESat records : 1958 -2008, Geophysical Research Letters, vol.36, pp.1-5, 2009.

T. Lacour, M. Babin, and J. Larivie, Growth, Chl a content, photosynthesis, and elemental composition in polar and temperate microalgae, Limnology and Oceanography, vol.62, pp.43-58, 2006.

M. L. Lamare, J. Lee-taylor, and M. D. King, The impact of atmospheric mineral aerosol deposition on the albedo of snow & sea ice : are snow and sea ice optical properties more important than mineral aerosol optical properties ?, Atmospheric Chemistry and Physics, vol.16, pp.843-860, 2016.

A. Langlois, C. J. Mundy, and D. G. Barber, On the winter evolution of snow thermophysical properties over land-fast first-year sea ice, HYDROLOGICAL PROCESSES, vol.21, pp.705-716, 2007.

D. Lavoie, K. Denman, and C. Michel, Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic ( Resolute Passage , Canadian Archipelago ), Journal of Geophysical Research, vol.110, pp.1-17, 2005.

L. Fouest, V. Babin, M. Tremblay, and J. , The fate of riverine nutrients on Arctic shelves, Biogeosciences, vol.10, pp.3661-3677, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01089953

S. Ledley, Snow on Sea Ice : Competing Effects in Shaping Climate, Journal of Geophysical Research, vol.96, issue.17, pp.195-208, 1991.

L. Legagneux and F. Domine, A mean field model of the decrease of the specific surface area of dry snow during isothermal metamorphism, Journal of Geophysical Research : Earth Surface, vol.110, issue.4, pp.1-12, 2005.
URL : https://hal.archives-ouvertes.fr/insu-00374624

L. Legendre, M. Aota, K. Shirasawa, M. , M. Ishikawa et al., Crystallographic structure of sea ice along a salinity gradient and environmental control of microalgae in the brine cells, Journal of Marine Systems, vol.2, issue.3, pp.347-357, 1991.

M. Leppäranta, A review of analytical models of sea -ice growth, Atmosphere-Ocean, vol.131, issue.1, pp.123-138, 1993.

M. Leppäranta and T. Manninen, The brine and gas content of sea ice with attention to low salinity and hight temperature, Finn. Inst. Mar. Res. Int. Rep, vol.2, 1988.

E. Leu, C. J. Mundy, P. Assmy, K. Campbell, T. M. Gabrielsen et al., Progress in Oceanography Arctic spring awakening -Steering principles behind the phenology of vernal ice algal blooms, Progress in Oceanography, vol.139, pp.151-170, 2015.

Q. Libois, G. Picard, M. Dumont, L. Arnaud, C. Sergent et al., Experimental determination of the absorption enhancement parameter of snow, Journal of Glaciology, vol.60, issue.222, pp.714-724, 2014.

Q. Libois, G. Picard, J. L. France, L. Arnaud, M. Dumont et al., Influence of grain shape on light penetration in snow, The Cryosphere, vol.7, issue.6, pp.1803-1818, 2013.

B. Light, T. C. Grenfell, and D. K. Perovich, Transmission and absorption of solar radiation by Arctic sea ice during the melt season, Journal of Geophysical Research, vol.113, pp.1-19, 2006.

B. Light, G. A. Maykut, and T. C. Grenfell, The effect of included particulates on the spectral albedo of sea ice optical model was used with a four-stream transfer model to examine Références bibliographiques the effects of such particulates on the optical calculations contained radius to those of Saharan with spectral obser, Journal of Geophysical Research, vol.103, issue.12, p.103, 1998.

B. Light, G. A. Maykut, and T. C. Grenfell, A two-dimensional Monte Carlo model of radiative transfer in sea ice, Journal of climate, vol.108, pp.1-18, 2003.

B. Light, G. A. Maykut, and T. C. Grenfell, A temperature-dependent , structural-optical model of first-year sea ice, Journal of Geophysical Research, vol.109, 2004.

B. Loose, L. A. Miller, S. Elliott, and T. Papakyriakou, Sea ice biogeochemistry and material transport across the frozen interface, Oceanography, vol.24, issue.3, pp.202-218, 2011.

K. E. Lowry, G. L. Dijken, and K. R. Arrigo, Deep-Sea Research II Evidence of underice phytoplankton blooms in the Chukchi Sea from 1998 to 2012, Deep-Sea Research Part II, vol.105, pp.105-117, 2014.

L. C. Lund-hansen, S. Markager, K. Hancke, T. Stratmann, S. Rysgaard et al., Effects of sea-ice light attenuation and CDOM absorption in the water below the Eurasian sector of central Arctic Ocean (> 88 N ), Polar Research, vol.34, pp.1-12, 2015.

N. Mahowald, S. Albani, J. F. Kok, S. Engelstaeder, R. Scanza et al., The size distribution of desert dust aerosols and its impact on the Earth system Aeolian Research, Aeolian Research, vol.15, pp.1875-9637, 2014.

E. Maksimovich and T. Vihma, The effect of surface heat fluxes on interannual variability in the spring onset of snow melt in the central Arctic Ocean, Journal of Geophysical Research, vol.117, pp.1-19, 2012.

A. A. Marks and M. D. King, The effect of snow / sea ice type on the response of albedo and light penetration depth ( e-folding depth ) to increasing black carbon, The Cryosphere, vol.8, pp.1625-1638, 2014.

T. Markus, J. C. Stroeve, and J. Miller, Recent changes in Arctic sea ice melt onset , freezeup , and melt season length, Journal of Geophysical Research, vol.114, pp.1-14, 2009.

J. Maslanik, J. Stroeve, C. Fowler, and W. Emery, Distribution and trends in Arctic sea ice age through spring 2011, Geophysical Research Letters, vol.38, pp.2-7, 2011.

F. Massonnet, M. Vancoppenolle, H. Goosse, D. Docquier, T. Fichefet et al., Arctic sea-ice change tied to its mean state through thermodynamic processes, Nature Climate Change, vol.8, pp.599-605, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01860677

, Références bibliographiques

O. Meinander, A. Kontu, K. Lakkala, A. Heikkilä, L. Ylianttila et al., Diurnal variations in the UV albedo of arctic snow, Atmospheric Chemistry and Physics, vol.8, issue.21, pp.6551-6563, 2008.

C. Michel, R. Ingram, and L. Harris, Variability in oceanographic and ecological processes in the Canadian Arctic Archipelago, Progress in Oceanography, vol.71, pp.379-401, 2006.

C. Michel, R. G. Ingram, and M. Gosselin, Carbon budget of sea-ice alagae in spring : Evidence of a significant transfer to zooplankton grazers, Journal of Geophysical Research, vol.101, issue.C8, pp.345-360, 1996.

T. Mock and R. Gradinger, Determination of Arctic ice algal production with a new in situ incubation technique, Marine Ecology Progress Series, vol.177, pp.15-26, 1997.

H. Moosmuller, R. K. Chakrabarty, and W. Arnott, Aerosol light absorption and its measurement : A review, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.110, pp.844-878, 2009.

A. Morel and S. Maritorena, Bio-optical properties of oceanic waters : A reappraisal, Journal of Geophysical Research, vol.106, issue.C4, pp.7163-7180, 2001.

J. Mortin, G. Svensson, R. G. Graversen, M. Kapsch, J. C. Stroeve et al., Melt onset over Arctic sea ice controlled by atmospheric moisture transport, Geophysical Research Letters, vol.43, issue.12, pp.6636-6642, 2016.

C. J. Mundy, D. G. Barber, and C. Michel, Variability of snow and ice thermal , physical and optical properties pertinent to sea ice algae biomass during spring, Journal of Marine Systems, vol.58, pp.107-120, 2005.

C. J. Mundy, J. K. Ehn, D. G. Barber, and C. Michel, Influence of snow cover and algae on the spectral dependence of transmitted irradiance through Arctic landfast first-year sea ice, Journal of Geophysical Research, vol.112, pp.1-10, 2007.

C. J. Mundy, M. Gosselin, J. Ehn, Y. Gratton, A. Rossnagel et al., , 2009.

, Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea, Geophysical Research Letters, vol.36, issue.17, pp.1-5

C. J. Mundy, M. Gosselin, Y. Gratton, K. Brown, V. Galindo et al., Role of environmental factors on phytoplankton bloom initiation under landfast sea ice in Resolute Passage, Canada. Marine Ecology Progress Series, vol.497, pp.39-49, 2009.

, Références bibliographiques

M. Nakawo and N. Sinha, Growth Rate and Salinity Profile of First-Year Sea Ice in the High Arctic, Journal of Glaciology, vol.27, issue.96, p.1981, 1977.

M. Nicolaus, S. Gerland, S. R. Hudson, S. Hanson, J. Haapala et al., , 2010.

, Seasonality of spectral albedo and transmittance as observed in the Arctic Transpolar Drift in 2007, Journal of Geophysical Research : Oceans, vol.115, issue.11, pp.1-21

M. Nicolaus, C. Petrich, S. R. Hudson, and M. A. Granskog, The Cryosphere Variability of light transmission through Arctic land-fast sea ice during spring, The Cryosphere, vol.7, pp.977-986, 2013.

D. Notz and M. G. Worster, Desalination processes of sea ice revisited, Journal of Geophysical Research, vol.114, pp.1-10, 2009.

L. Oziel, P. Massicotte, A. Randelhoff, J. Ferland, A. Vladoiu et al.,

C. Marec, M. H. Forget, N. Garcia, P. Coupel, P. Raimbault et al., Environmental factors influencing the seasonal dynamics of under-ice spring blooms in Baffin Bay, 2019.

S. Pabi, G. L. Dijken, and K. R. Arrigo, Primary production in the Arctic Ocean, Journal of Geophysical Research, vol.113, pp.1998-2006, 1998.

T. H. Painter, A. P. Barrett, C. C. Landry, J. C. Neff, M. P. Cassidy et al., Impact of disturbed desert soils on duration of mountain snow cover, Geophysical Research Letters, vol.34, pp.1-6, 2007.

M. A. Palmer, B. T. Saenz, and K. R. Arrigo, Deep-Sea Research II Impacts of sea ice retreat , thinning , and melt-pond proliferation on the summer phytoplankton bloom in the Chukchi Sea, Arctic Ocean. Deep-Sea Research Part II, vol.105, pp.85-104, 2014.

D. Perovich, C. Polashenski, A. Arntsen, and C. Stwertka, Anatomy of a late spring snowfall on sea ice, Geophysical Research Letters, vol.44, issue.6, pp.2802-2809, 2017.

D. K. Perovich, Theoretical estimates of light reflection and transmission by spatially complex and temporally varying sea ice covers, Journal of Geophysical Research, vol.95, issue.C6, pp.9557-9567, 1990.

D. K. Perovich, G. F. Cota, G. A. Maykut, and T. C. Grenfell, Bio-optical observations of first-year Arctic sea ce, Geophysical Research Letters, vol.20, issue.11, pp.1059-1062, 1993.

D. K. Perovich, T. C. Grenfell, B. Light, B. C. Elder, J. Harbeck et al., Transpolar observations of the morphological properties of Arctic sea ice, Journal of Geophysical Research, p.114, 2009.

D. K. Perovich, T. C. Grenfell, B. Light, and P. V. Hobbs, Seasonal evolution of the albedo of multiyear Arctic sea ice, Journal of Geophysical Research, vol.107, issue.C10, p.8044, 2002.

D. K. Perovich, T. C. Grenfell, J. A. Richter-menge, B. Light, W. B. Iii et al., Thin and thinner : Sea ice mass balance measurements during SHEBA, Journal of climate, vol.108, pp.1-21, 2003.

D. K. Perovich, S. V. Nghiem, T. Markus, and A. Schweiger, Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice-ocean system, Journal of Geophysical Research : Oceans, vol.112, issue.3, pp.1-13, 2007.

D. K. Perovich and C. Polashenski, Albedo evolution of seasonal Arctic sea ice, Geophysical Research Letters, vol.39, pp.1-6, 2012.

D. K. Perovich, C. S. Roesler, and W. S. Pegau, Variability in Arctic sea ice properties, Journal of Geophysical Research, vol.103, pp.1193-1208, 1998.

C. Petrich, M. Nicolaus, and R. Gradinger, Cold Regions Science and Technology Sensitivity of the light fi eld under sea ice to spatially inhomogeneous optical properties and incident light assessed with three-dimensional Monte Carlo radiative transfer simulations, Cold Regions Science and Technology, vol.73, pp.1-11, 2012.

G. Picard, L. Arnaud, F. Domine, and M. Fily, Determining snow specific surface area from near-infrared re flectance measurements : Numerical study of the influence of grain shape, Cold Regions Science and Technology, vol.56, pp.10-17, 2009.

G. Picard, Q. Libois, A. , and L. , Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow, The Cryosphere, vol.10, pp.2655-2672, 2016.

G. Picard, Q. Libois, L. Arnaud, G. Vérin, and M. Dumont, Estimation of superficial snow specific surface area from spectral albedo time-series at Dome C, Antarctica. The Cryosphere Discussions, pp.1-39, 2016.

R. Pirazzini, T. Vihma, M. A. Granskog, and B. Cheng, Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period, Annals of Glaciology, vol.44, pp.7-14, 2006.

, Références bibliographiques

F. Pithan and T. Mauritsen, Arctic amplification dominated by temperature feedbacks in contemporary climate models, Nature Geoscience, p.7, 2014.

C. Polashenski, D. Perovich, and Z. Courville, The mechanisms of sea ice melt pond formation and evolution, Journal of Geophysical Research, vol.117, pp.1-23, 2012.

R. M. Pope and E. S. Fry, pure water . II . Integrating cavity measurements, Applied Optics, vol.36, issue.33, pp.8710-8723, 1997.

L. Rainville, C. M. Lee, and R. A. Woodgate, Impact of wind-driven mixing in the Arctic Ocean. The Official Magazine of the, vol.24, pp.136-145, 2011.

J. Ras, H. Claustre, and J. Uitz, Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean : comparison between in situ and predicted data, Biogeosciences, vol.5, pp.353-369, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00330697

P. Ricchiazzi, S. Yang, C. Gauthier, and D. Sowle, SBDART : A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere. Bulletion of the, pp.2101-2114, 1998.

D. A. Robinson, K. F. Dewey, R. R. Heim, D. A. Robinson, K. F. Dewey et al., Global Snow Cover Monitoring : An Update, Bulletion of the American Meteorological Society, vol.74, issue.9, pp.1689-1696, 1993.

H. Rosen, T. Novakov, and B. Bodhaine, SOOT IN THE ARCTIC *, vol.15, pp.1371-1374, 1981.

D. A. Rothrock, D. B. Percival, and M. Wensnahan, The decline in arctic sea-ice thickness : Separating the spatial , annual , and interannual variability in a quarter century of submarine data, Journal of Geophysical Research, vol.113, pp.1-9, 2008.

D. A. Rothrock, Y. Yu, and G. A. Maykut, Thinning of the Arctic sea-ice cover, Geophysical Research Letters, vol.26, issue.23, pp.3469-3472, 1999.

E. Sakshaug, Primary and Secondary Production in the Arctic Seas, vol.3, pp.57-81, 2004.

T. Semmler, R. Mcgrath, W. , and S. , The impact of Arctic sea ice on the Arctic energy budget and on the climate of the Northern mid-latitudes, Clim Dyn, vol.39, pp.2675-2694, 2012.

M. C. Serreze and R. G. Barry, Processes and impacts of Arctic amplification : A research synthesis, Global and Planetary Change, vol.77, issue.1-2, pp.85-96, 2011.

S. M. Skiles, M. Flanner, J. M. Cook, M. Dumont, and T. H. Painter, Radiative forcing by light-absorbing particles in snow, Nature Climate Change, vol.8, pp.964-971, 2018.

R. E. Smith, W. Harrison, L. R. Harris, and A. W. Herman, Vertical Fine Structure of Particulate Matter and Nutrients in Sea Ice of the High Arctic, Canadian Journal of Fisheries and Aquatic Sciences, vol.47, issue.7, pp.1348-1355, 1990.

G. Song, H. Xie, C. Aubry, Y. Zhang, M. Gosselin et al., Spatiotemporal variations of dissolved organic carbon and carbon monoxide in first -year sea ice in the western Canadian Arctic, Journal of Geophysical Research, vol.116, pp.1-13, 2011.

K. Stamnes, B. Hamre, J. J. Stamnes, G. Ryzhikov, M. Biryulina et al., Journal of Quantitative Spectroscopy & Radiative Transfer Modeling of radiation transport in coupled atmosphere-snow-ice-ocean systems, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.112, issue.4, pp.714-726, 2011.

J. C. Stroeve, V. Kattsov, A. Barrett, M. Serreze, T. Pavlova et al., Trends in Arctic sea ice extent from CMIP5 , CMIP3 and observations, Geophysical Research Letters, vol.39, pp.1-7, 2012.

J. C. Stroeve, M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik et al., , 2011.

, The Arctic's rapidly shrinking sea ice cover : A research synthesis, Climatic Change, vol.110, issue.3-4, pp.1005-1027

M. Sturm, C. Derksen, G. Liston, A. Silis, D. Solie et al., A Reconnaissance Snow Survey across Northwest Territories Cold Regions Research, 2008.

M. Sturm, J. Holmgren, and D. K. Perovich, Winter snow cover on the sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA) : Temporal evolution and spatial variability, Journal of Geophysical Research, vol.107, issue.C10, p.8047, 2002.

A. S. Taillandier, F. Domine, W. R. Simpson, M. Sturm, and T. A. Douglas, Rate of decrease of the specific surface area of dry snow : Isothermal and temperature gradient conditions, Journal of Geophysical Research : Earth Surface, vol.112, issue.3, pp.1-13, 2007.
URL : https://hal.archives-ouvertes.fr/insu-00377486

A. S. Thorndike and R. Colony, Sea Ice Motion in Response to Geostrophic Winds, Journal of Geophysical Research, vol.87, issue.C8, pp.5845-5852, 1982.

J. M. Toole, M. L. Timmermans, D. K. Perovich, R. A. Krishfield, A. Proshutinsky et al., Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin, Journal of Geophysical Research, vol.115, pp.1-14, 2010.

C. Trembay, J. A. Runge, and L. Legendre, Grazing and sedimentation of ice algae during and immediately after a bloom at the ice-water interface *, Marine Ecology Progress Series, vol.56, pp.291-300, 1989.

J. Tremblay, L. G. Anderson, P. Matrai, P. Coupel, S. Bélanger et al., Progress in Oceanography Global and regional drivers of nutrient supply , primary production and CO 2 drawdown in the changing Arctic Ocean, Progress in Oceanography, p.189, 2015.

F. Tuzet, M. Dumont, M. Lafaysse, G. Picard, L. Arnaud et al., A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow, The Cryosphere, vol.11, pp.2633-2653, 2017.

N. Untersteiner, Natural Desalination and Equilibrium Salinity Profile, Journal of Geophysical Research, vol.73, issue.4, pp.1251-1257, 1968.

D. E. Varela, D. W. Crawford, I. A. Wrohan, S. N. Wyatt, and E. C. Carmack, Pelagic primary productivity and upper ocean nutrient dynamics across Subarctic and Arctic Seas, Journal of Geophysical Research : Oceans, vol.118, pp.7132-7152, 2013.

R. Wagner, T. Ajtai, K. Kandler, K. Lieke, T. Muller et al., and Physics Complex refractive indices of Saharan dust samples at visible and near UV wavelengths : a laboratory study, Atmospheric Chemistry and Physics, vol.12, pp.2491-2512, 2012.

S. Warren and I. Rigor, Snow depth on Arctic sea ice, Journal of climate, vol.12, pp.1814-1829, 1999.

S. G. Warren, Optical Properties of Snow, Reviews of Geophysics and Space Physics, vol.20, issue.1, pp.67-89, 1982.

S. G. Warren, Impurities in Snow : Effects on Albedo and Snowmelt ( Review ) IMPU-RITIES IN SNOW : EFFECTS ON ALBEDO AND SNOWMELT by, vol.5, pp.177-179, 1984.

S. G. Warren and R. E. Brandt, Optical constants of ice from the ultraviolet to the microwave : A revised compilation, Journal of Geophysical Research Atmospheres, p.113, 2008.

S. G. Warren and W. Wiscombe, A Model for the Spectral Albedo of Snow. II : Snow Containing Atmospheric Aerosols, Journal of the Atmospheric Sciences, vol.37, issue.12, pp.2734-2745, 1980.

H. E. Welch and M. A. Bergmann, Seasonal Development of Ice Algae and its Prediction from Environmental Factors near Resolute, Canada. Canadian Journal of Fisheries and Aquatic Sciences, vol.46, pp.1793-1804, 1989.

W. Wiscombe and S. G. Warren, A Model for the Spectral Albedo of Snow. I : Pure Snow, Journal of the Atmospheric Sciences, vol.37, issue.12, pp.2712-0731, 1980.

P. Wright, M. Bergin, J. Dibb, B. Lefer, F. Domine et al., Comparing MODIS daily snow albedo to spectral albedo field measurements in Central Greenland, Remote Sensing of Environment, vol.140, pp.118-129, 2014.

H. Xie, C. Aubry, Y. Zhang, and G. Song, Chromophoric dissolved organic matter ( CDOM ) in fi rst-year sea ice in the western Canadian Arctic, Marine Chemistry, vol.165, pp.25-35, 2014.

G. Zibordi, S. Hooker, J. Mueller, and G. Lazin, Characterization of the Immersion Factor for a Series of In-Water Optical Radiometers, vol.1, pp.501-514, 2004.