P. H. Groop, M. C. Thomas, and J. L. Moran, FinnDiane Study Group. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes, Diabetes, vol.58, pp.1651-1658, 2009.

M. T. Pedrini, A. S. Levey, J. Lau, T. C. Chalmers, and P. H. Wang, The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis, Ann Intern Med, vol.124, pp.627-632, 1996.

S. Klahr, The modification of diet in renal disease study, N Engl J Med, vol.320, pp.864-866, 1989.

T. H. Hostetter, Human renal response to meat meal, Am J Physiol, vol.250, pp.613-618, 1986.

H. Mansy, D. Patel, and J. S. Tapson, Four methods to recruit renal functional reserve, Nephrol Dial Transplant, vol.2, pp.228-232, 1987.

B. H. Brouhard and L. Lagrone, Effect of dietary protein restriction on functional renal reserve in diabetic nephropathy, Am J Med, vol.89, pp.427-431, 1990.

J. Uribarri and K. R. Tuttle, Advanced glycation end products and nephrotoxicity of highprotein diets, Clin J Am Soc Nephrol, vol.1, pp.1293-1299, 2006.

J. Uribarri, S. Woodruff, and S. Goodman, Advanced glycation end products in foods and a practical guide to their reduction in the diet, J Am Diet Assoc, vol.110, pp.911-916, 2010.

J. P. Bosch, A. Saccaggi, A. Lauer, C. Ronco, M. Belledonne et al., Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate, Am J Med, vol.75, pp.943-950, 1983.

J. Uribarri, A. Stirban, and D. Sander, Single oral challenge by advanced glycation end products acutely impairs endothelial function in diabetic and nondiabetic subjects, Diabetes Care, vol.30, pp.2579-2582, 2007.

C. C. Lin, C. M. Chan, Y. P. Huang, S. H. Hsu, C. L. Huang et al., Methylglyoxal activates NF-kB nuclear translocation and induces COX-2 expression via a p38-dependent pathway in synovial cells, Life Sci, vol.149, pp.25-33, 2016.

M. M. Levine, M. A. Kirschenbaum, A. Chaudhari, M. W. Wong, and N. S. Bricker, Effect of protein on glomerular filtration rate and prostanoid synthesis in normal and uremic rats, Am J Physiol, vol.251, pp.635-641, 1986.

A. J. Premen, Potential mechanisms mediating postprandial renal hyperemia and hyperfiltration, FASEB J, vol.2, pp.131-137, 1988.

T. Pelikánová, I. Smrcková, J. Krízová, J. Stríbrná, V. Lánská et al., Effects of insulin and lipid emulsion on renal haemodynamics and renal sodium handling in IDDM patients, Diabetologia, vol.39, pp.91-94, 1988.

R. 1. Go, A. S. Chertow, G. M. Fan, D. Mcculloch, C. E. Hsu et al., Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization, N Engl J Med, vol.351, issue.13, pp.1296-305, 2004.

N. Rognant, F. Guebre-egziabher, J. Bacchetta, M. Janier, B. Hiba et al., Evolution of renal oxygen content measured by BOLD MRI downstream a chronic renal artery stenosis, Nephrol Dial Transplant, vol.26, issue.4, pp.1205-1215, 2011.

L. Juillard, M. F. Janier, D. Fouque, M. Lionnet, L. Bars et al., Renal blood flow measurement by positron emission tomography using 15O-labeled water, Kidney Int, vol.57, issue.6, pp.2511-2519, 2000.

L. Juillard, S. Lemoine, M. F. Janier, P. Y. Barthez, F. Bonnefoi et al., Validation of renal oxidative metabolism measurement by positron-emission tomography, Hypertension, vol.50, issue.1, pp.242-249, 2007.

S. Y. Chan, R. C. Brunken, M. E. Phelps, and H. R. Schelbert, Use of the metabolic tracer carbon-11-acetate for evaluation of regional myocardial perfusion, J Nucl Med, vol.32, issue.4, pp.665-72, 1991.

P. Shreve, P. C. Chiao, H. D. Humes, M. Schwaiger, and M. D. Gross, Carbon-11-acetate PET imaging in renal disease, J Nucl Med, vol.36, issue.9, pp.1595-601, 1995.

J. A. Schafer and J. C. Williams, Transport of metabolic substrates by the proximal nephron, Annu Rev Physiol, vol.47, pp.103-128, 1985.

G. Normand, S. Lemoine, M. Villien, L. Bars, D. Merida et al., AGE Content of a Protein Load Is Responsible for Renal Performances: A Pilot Study, Diabetes Care, vol.41, issue.6, pp.1292-1296, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847393

O. G. Rousset, Y. Ma, and A. C. Evans, Correction for partial volume effects in PET: principle and validation, J Nucl Med, vol.39, issue.5, pp.904-915, 1998.

C. Lartizien, C. Kuntner, A. L. Goertzen, A. C. Evans, and A. Reilhac, Validation of PET-SORTEO

, Monte Carlo simulations for the geometries of the MicroPET R4 and Focus 220 PET scanners, Phys Med Biol, vol.52, issue.16, pp.4845-62, 2007.

L. Juillard, M. F. Janier, D. Fouque, M. Lionnet, L. Bars et al., Renal blood flow measurement by positron emission tomography using 15O-labeled water, Kidney Int, vol.57, issue.6, pp.2511-2519, 2000.

H. Akaike, Information Theory and an Extension of the Maximum Likelihood Principle

, Springer Series in Statistics). Available from, pp.199-213, 1998.

C. K. Ng, S. C. Huang, H. R. Schelbert, and D. B. Buxton, Validation of a model for [1-11C]acetate as a tracer of cardiac oxidative metabolism, Am J Physiol, vol.266, issue.4, pp.1304-1315, 1994.

Z. Szabo, J. Xia, W. B. Mathews, and P. R. Brown, Future direction of renal positron emission tomography, Semin Nucl Med, vol.36, issue.1, pp.36-50, 2006.

N. M. Alpert, C. A. Rabito, D. Correia, J. W. Babich, B. H. Littman et al., Mapping of local renal blood flow with PET and H(2)(15)O, J Nucl Med, vol.43, issue.4, pp.470-475, 2002.

C. , Acetate as a quantitative perfusion tracer in myocardial PET, J Nucl Med, vol.42, issue.8, pp.1174-82, 2001.

P. Herrero, J. Kim, T. L. Sharp, J. A. Engelbach, J. S. Lewis et al., Assessment of myocardial blood flow using 15O-water and 1-11C-acetate in rats with small-animal PET, J Nucl Med, vol.47, issue.3, pp.477-85, 2006.

J. Päivärinta, N. Koivuviita, V. Oikonen, H. Iida, K. Liukko et al., The renal blood flow reserve in healthy humans and patients with atherosclerotic renovascular disease measured by positron emission tomography using [15O]H2O. EJNMMI Res, vol.8, p.45, 2018.

M. A. Brown, D. W. Myears, and S. R. Bergmann, Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization, J Nucl Med, vol.30, issue.2, pp.187-93, 1989.

L. Bankir, N. Bouby, and T. Mm, Renal circulation. Organization of the medullary circulation: functional implications, Nephrology, 1984.

W. Kriz and T. Sakai, Morphological aspects of glomerular function, Nephrology, 1988.

K. Thurau and . Schnermann, The juxtaglomerular apparatus, Kidney International, 1982.

R. S. Cotran, New roles for endothelium in inflammation and immunity, American Journal of Pathology, 1987.

P. J. Courtoy, R. Timpl, and M. G. Farqhar, Comparative distribution of laminin, type IV collagen and fibronectin in the rat glomerulus, Journal of Histochemistry and Cytochemistry, 1982.

D. Drenckhahn, H. Schnitter, R. Nobiling, and W. Kriz, Ultrastructural organization of contractile proteins in rat glomerular mesangial cells, American Journal of Pathology, 1990.

R. Mancilla-jimenez, B. Bellon, J. Kuhn, M. F. Belair, M. Rouchon et al., Phagocytosis of heat-aggregated immunoglobulines by mesangial cells. An immunoperoxidase and acid phosphatase study, Laboratory Investigations, 1982.

W. J. Arendshorst and C. V. Gottschalk, Glomerular ultrafiltration dynamics : historical perspective, American Journal of Physiology, 1985.

J. E. Hall, Regulation of renal hemodynamics, Cardiovascular Physiology, 1982.

C. R. Robertson, W. Deen, J. L. Troy, and B. M. Brenner, Dynamics of glomerular ultrafiltration in the rat, American Journal of Physiology, 1972.

B. M. Brenner, C. Baylis, and W. Deen, Transport of molecules across renal glomerular capillaries, Physiol Rev, 1976.

J. Briggs, Simple steady state model for feedback control of glomerular filtration rate, Kidney International, 1982.

L. M. Harrison-bernard, The renal renin-angiotensin system, Adv Physiol Educ, vol.33, issue.4, pp.270-274, 2009.

L. D. Dworkin, I. Ichikawa, and B. M. Brenner, Hormonal modulation of glomerular function, American Journal of Physiology, 1983.

N. Schor, I. Ichikawa, B. M. Brenner, W. L. Henrich, T. Berl et al., Mechanisms of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat, American Journal of Physiology, vol.16, 1978.

L. Juillard, S. Lemoine, M. F. Janier, P. Y. Barthez, F. Bonnefoi et al., Validation of renal oxidative metabolism measurement by positron-emission tomography, Hypertension, vol.50, issue.1, pp.242-249, 2007.

S. Lemoine, M. Papillard, A. Belloi, N. Rognant, D. Fouque et al., Renal perfusion: noninvasive measurement with multidetector CT versus fluorescent microspheres in a pig model, Radiology, vol.260, issue.2, pp.414-434, 2011.

L. Juillard, M. F. Janier, D. Fouque, M. Lionnet, L. Bars et al., Renal blood flow measurement by positron emission tomography using 15O-labeled water, Kidney Int, vol.57, issue.6, pp.2511-2519, 2000.

N. Rognant, F. Guebre-egziabher, J. Bacchetta, M. Janier, B. Hiba et al., Evolution of renal oxygen content measured by BOLD MRI downstream a chronic renal artery stenosis, Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc -Eur Ren Assoc, vol.26, issue.4, pp.1205-1215, 2011.

L. Juillard, M. F. Janier, D. Fouque, L. Cinotti, N. Maakel et al., Dynamic renal blood flow measurement by positron emission tomography in patients with CRF, Am J Kidney Dis Off J Natl Kidney Found, vol.40, issue.5, pp.947-54, 2002.

L. Juillard, L. O. Lerman, D. G. Kruger, J. A. Haas, B. C. Rucker et al., Blood oxygen level-dependent measurement of acute intra-renal ischemia, Kidney Int, vol.65, issue.3, pp.944-50, 2004.

R. G. Evans, B. S. Gardiner, D. W. Smith, O. Connor, and P. M. , Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis, Am J Physiol Renal Physiol, vol.295, issue.5, pp.1259-1270, 2008.

M. Brezis and S. Rosen, Hypoxia of the renal medulla--its implications for disease, N Engl J Med, vol.332, issue.10, pp.647-55, 1995.

N. Kudomi, N. Koivuviita, K. E. Liukko, V. J. Oikonen, T. Tolvanen et al., Parametric renal blood flow imaging using [15O]H2O and PET, Eur J Nucl Med Mol Imaging, vol.36, issue.4, pp.683-91, 2009.

N. M. Alpert, C. A. Rabito, D. Correia, J. W. Babich, B. H. Littman et al., Mapping of local renal blood flow with PET and H(2)(15)O. J Nucl Med Off Publ Soc Nucl Med, vol.43, pp.470-475, 2002.

S. P. Soltoff, ATP and the regulation of renal cell function, Annu Rev Physiol, vol.48, pp.9-31, 1986.

U. V. Lassen and J. H. Thaysen, Correlation between sodium transport and oxygen consumption in isolated renal tissue, Biochim Biophys Acta, vol.47, pp.616-624, 1961.

F. Kiil, K. Aukland, and H. E. Refsum, Renal sodium transport and oxygen consumption, Am J Physiol, vol.201, pp.511-517, 1961.

F. Kiil, K. Aukland, and H. E. Refsum, Renal sodium transport and oxygen consumption, Am J Physiol, vol.201, pp.511-517, 1961.

S. Y. Chan, R. C. Brunken, M. E. Phelps, and H. R. Schelbert, Use of the metabolic tracer carbon-11-acetate for evaluation of regional myocardial perfusion, J Nucl Med Off Publ Soc Nucl Med, vol.32, issue.4, pp.665-72, 1991.

C. K. Ng, S. C. Huang, H. R. Schelbert, and D. B. Buxton, Validation of a model for [1-11C]acetate as a tracer of cardiac oxidative metabolism, Am J Physiol, vol.266, issue.4, pp.1304-1315, 1994.

P. Shreve, P. C. Chiao, H. D. Humes, M. Schwaiger, and M. D. Gross, Carbon-11-acetate PET imaging in renal disease, J Nucl Med Off Publ Soc Nucl Med, vol.36, issue.9, pp.1595-601, 1995.

L. Li, H. Tan, J. M. Thacker, W. Li, Y. Zhou et al., Evaluation of Renal Blood Flow in Chronic Kidney Disease Using Arterial Spin Labeling Perfusion Magnetic Resonance Imaging, Kidney Int Rep, vol.2, issue.1, pp.36-43, 2017.

P. Martirosian, U. Klose, I. Mader, and F. Schick, FAIR true-FISP perfusion imaging of the kidneys, Magn Reson Med, vol.51, issue.2, pp.353-61, 2004.

P. V. Prasad, D. Kim, A. M. Kaiser, D. Chavez, S. Gladstone et al., Noninvasive comprehensive characterization of renal artery stenosis by combination of STAR angiography and EPISTAR perfusion imaging, Magn Reson Med, vol.38, issue.5, pp.776-87, 1997.

A. Odudu, S. T. Francis, and C. W. Mcintyre, MRI for the assessment of organ perfusion in patients with chronic kidney disease, Curr Opin Nephrol Hypertens, vol.21, issue.6, pp.647-54, 2012.

M. Ritt, J. R. Schneider, M. P. Martirosian, P. Hornegger, J. Bautz et al., Measurement of kidney perfusion by magnetic resonance imaging: comparison of MRI with arterial spin labeling to para-aminohippuric acid plasma clearance in male subjects with metabolic syndrome

, Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc -Eur Ren Assoc, vol.25, issue.4, pp.1126-1159, 2010.

N. S. Artz, A. L. Wentland, E. A. Sadowski, A. Djamali, T. M. Grist et al., Comparing Kidney Perfusion Using Noncontrast Arterial Spin Labeling MRI and Microsphere Methods in an Interventional Swine Model, Invest Radiol, vol.46, issue.2, pp.124-155, 2011.

T. Miyata and . De-strihou-c-van-y, Diabetic nephropathy: a disorder of oxygen metabolism?, Nat Rev Nephrol, vol.6, issue.2, pp.83-95, 2010.

Y. Takiyama and M. Haneda, Hypoxia in diabetic kidneys, BioMed Res Int, 2014.

P. V. Prasad, L. Li, J. M. Thacker, W. Li, B. Hack et al., Cortical Perfusion and Tubular Function as Evaluated by Magnetic Resonance Imaging Correlates with Annual Loss in Renal Function in Moderate Chronic Kidney Disease, Am J Nephrol, vol.49, issue.2, pp.114-138, 2019.

K. Sugiyama, T. Inoue, E. Kozawa, M. Ishikawa, A. Shimada et al., Reduced oxygenation but not fibrosis defined by functional magnetic resonance imaging predicts the longterm progression of chronic kidney disease, Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc -Eur Ren Assoc, 2018.

N. Rognant, S. Lemoine, M. Laville, and L. Juillard,

, Nephrol Ther, vol.8, issue.4, pp.212-217, 2012.

S. C. Simon-zoula, L. Hofmann, A. Giger, B. Vogt, P. Vock et al., Non-invasive monitoring of renal oxygenation using BOLD-MRI: a reproducibility study, NMR Biomed, vol.19, issue.1, pp.84-93, 2006.

M. Piskunowicz, L. Hofmann, E. Zuercher, I. Bassi, B. Milani et al., A new technique with high reproducibility to estimate renal oxygenation using BOLD-MRI in chronic kidney disease, Magn Reson Imaging, vol.33, issue.3, pp.253-61, 2015.

M. Pedersen, T. H. Dissing, J. Mørkenborg, H. Stødkilde-jørgensen, L. H. Hansen et al., Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction, Kidney Int, vol.67, issue.6, pp.2305-2317, 2005.

M. Brezis and S. Rosen, Hypoxia of the renal medulla--its implications for disease, N Engl J Med, vol.332, issue.10, pp.647-55, 1995.

M. L. Gloviczki, J. F. Glockner, L. O. Lerman, M. A. Mckusick, S. Misra et al., Preserved oxygenation despite reduced blood flow in poststenotic kidneys in human atherosclerotic renal artery stenosis. Hypertens Dallas Tex 1979, vol.55, pp.961-967, 2010.

J. L. Zhang, G. Morrell, H. Rusinek, L. Warner, P. Vivier et al., Measurement of renal tissue oxygenation with blood oxygen level-dependent MRI and oxygen transit modeling, Am J Physiol Renal Physiol, vol.306, issue.6, pp.579-587, 2014.

M. Pruijm, I. A. Mendichovszky, P. Liss, P. Van-der-niepen, S. C. Textor et al., Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review, Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc -Eur Ren Assoc, vol.33, issue.suppl_2, pp.22-30, 2018.

P. V. Prasad and F. H. Epstein, Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition, Kidney Int, vol.55, issue.1, pp.294-302, 1999.

B. Ebrahimi, M. Gloviczki, J. R. Woollard, J. A. Crane, S. C. Textor et al., Compartmental analysis of renal BOLD MRI data: introduction and validation, Invest Radiol, vol.47, issue.3, pp.175-82, 2012.

A. S. Go, G. M. Chertow, D. Fan, C. E. Mcculloch, and C. Hsu, Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization, N Engl J Med, vol.351, issue.13, pp.1296-305, 2004.

R. L. Perlman, F. O. Finkelstein, L. Liu, E. Roys, M. Kiser et al., Quality of life in chronic kidney disease (CKD): a cross-sectional analysis in the Renal Research Institute-CKD study, Am J Kidney Dis Off J Natl Kidney Found, vol.45, issue.4, pp.658-66, 2005.

E. F. De-vries, T. J. Rabelink, and W. B. Van-den-hout, Modelling the Cost-Effectiveness of Delaying End-Stage Renal Disease, Nephron, vol.133, issue.2, pp.89-97, 2016.

L. J. Appel, J. T. Wright, T. Greene, L. Y. Agodoa, B. C. Astor et al., Intensive bloodpressure control in hypertensive chronic kidney disease, N Engl J Med, vol.363, issue.10, pp.918-947, 2010.

J. C. Peterson, S. Adler, J. M. Burkart, T. Greene, L. A. Hebert et al., Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study, Ann Intern Med, vol.123, issue.10, pp.754-62, 1995.

E. Ku, J. Gassman, L. J. Appel, M. Smogorzewski, M. J. Sarnak et al., A Randomized Trial of Intensive versus Standard Blood-Pressure Control, J Am Soc Nephrol JASN, vol.28, issue.2, pp.2103-2119, 2015.

B. Williams, G. Mancia, W. Spiering, E. A. Rosei, M. Azizi et al.,

, Kardiol Pol, vol.77, issue.2, pp.71-159, 2019.

P. Zucchelli and A. Zuccala, Mechanisms of progression, the role of vascular injury/ sclerosis in prevention of progressive chronic renal failure, 1993.

R. E. Tracy, M. Velez-duran, T. Heigle, and M. C. Oalmann, Two variants of nephrosclerosis separately related to age and blood pressure, Am J Pathol, vol.131, issue.2, pp.270-82, 1988.

U. Helmchen, Benign and malignant nephrosclerosis and renovascular disease, 1994.

P. Cortes, B. L. Riser, J. Yee, and R. G. Narins, Mechanical strain of glomerular mesangial cells in the pathogenesis of glomerulosclerosis: clinical implications, Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc -Eur Ren Assoc, vol.14, issue.6, pp.1351-1355, 1999.

S. J. Shankland, H. Ly, K. Thai, and J. W. Scholey, Increased glomerular capillary pressure alters glomerular cytokine expression, Circ Res, vol.75, issue.5, pp.844-53, 1994.

T. Yasuda, S. Kondo, T. Homma, and R. C. Harris, Regulation of extracellular matrix by mechanical stress in rat glomerular mesangial cells, J Clin Invest, vol.98, issue.9, pp.1991-2000, 1996.

F. Eitner, E. Bücher, C. Van-roeyen, U. Kunter, S. Rong et al., PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis, J Am Soc Nephrol JASN, vol.19, issue.2, pp.281-290, 2008.

J. Gaedeke, N. A. Noble, and W. A. Border, Curcumin blocks multiple sites of the TGF-beta signaling cascade in renal cells, Kidney Int, vol.66, issue.1, pp.112-132, 2004.

U. C. Brewster and M. A. Perazella, The renin-angiotensin-aldosterone system and the kidney: effects on kidney disease, Am J Med, vol.116, issue.4, pp.263-72, 2004.

G. S. Hill, D. Heudes, C. Jacquot, E. Gauthier, and J. Bariéty, Morphometric evidence for impairment of renal autoregulation in advanced essential hypertension, Effect of ramipril, nifedipine, and moxonidine on glomerular morphology and podocyte structure in experimental renal failure. -PubMed -NCBI, vol.69, pp.823-854, 2006.

G. S. Hill, D. Heudes, and J. Bariéty, Morphometric study of arterioles and glomeruli in the aging kidney suggests focal loss of autoregulation, Kidney Int, vol.63, issue.3, pp.1027-1063, 2003.

C. Marcantoni and A. B. Fogo, A perspective on arterionephrosclerosis: from pathology to potential pathogenesis, J Nephrol, vol.20, issue.5, pp.518-542, 2007.

C. Burton and K. P. Harris, The role of proteinuria in the progression of chronic renal failure

, Am J Kidney Dis Off J Natl Kidney Found, vol.27, issue.6, pp.765-75, 1996.

A. A. Eddy, L. Mcculloch, E. Liu, and J. Adams, A relationship between proteinuria and acute tubulointerstitial disease in rats with experimental nephrotic syndrome, Am J Pathol, vol.138, issue.5, pp.1111-1134, 1991.

A. Benigni, D. Corna, C. Zoja, L. Longaretti, E. Gagliardini et al., Targeted deletion of angiotensin II type 1A receptor does not protect mice from progressive nephropathy of overload proteinuria, J Am Soc Nephrol JASN, vol.15, issue.10, pp.2666-74, 2004.

R. Hirschberg and S. Wang, Proteinuria and growth factors in the development of tubulointerstitial injury and scarring in kidney disease, Curr Opin Nephrol Hypertens, vol.14, issue.1, pp.43-52, 2005.

, Kidney Disease Outcomes Quality Initiative (K/DOQI). K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease, Am J Kidney Dis Off J Natl Kidney Found, vol.43, issue.5, pp.1-290, 2004.

P. A. Sarafidis, N. Khosla, and G. L. Bakris, Antihypertensive therapy in the presence of proteinuria, Am J Kidney Dis Off J Natl Kidney Found, vol.49, issue.1, pp.12-26, 2007.

Y. Wang, J. Chen, L. Chen, Y. C. Tay, G. K. Rangan et al., Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein, J Am Soc Nephrol JASN, vol.8, issue.10, pp.1537-1582, 1997.

L. A. Hebert, G. Agarwal, D. D. Sedmak, J. D. Mahan, W. Becker et al., Proximal tubular epithelial hyperplasia in patients with chronic glomerular proteinuria, Kidney Int, vol.57, issue.5, pp.1962-1969, 2000.

H. Birn, J. C. Fyfe, C. Jacobsen, F. Mounier, P. J. Verroust et al., Cubilin is an albumin binding protein important for renal tubular albumin reabsorption, J Clin Invest, vol.105, issue.10, pp.1353-61, 2000.

M. Arici, R. Chana, A. Lewington, J. Brown, and N. J. Brunskill, Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-gamma, J Am Soc Nephrol JASN, vol.14, issue.1, pp.17-27, 2003.

S. Troyanov, C. A. Wall, J. A. Miller, J. W. Scholey, D. C. Cattran et al., Idiopathic membranous nephropathy: definition and relevance of a partial remission, ONTARGET Investigators, vol.66, pp.1199-205, 2004.

. Telmisartan, or both in patients at high risk for vascular events, N Engl J Med, vol.358, issue.15, pp.1547-59, 2008.

A. H. Anderson, W. Yang, R. R. Townsend, Q. Pan, G. M. Chertow et al., Timeupdated systolic blood pressure and the progression of chronic kidney disease: a cohort study, Ann Intern Med, vol.162, issue.4, pp.258-65, 2015.

T. H. Jafar, P. C. Stark, C. H. Schmid, M. Landa, G. Maschio et al., Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis, Ann Intern Med, vol.139, issue.4, pp.244-52, 2003.

A. Remuzzi, E. Perticucci, P. Ruggenenti, L. Mosconi, M. Limonta et al., Angiotensin converting enzyme inhibition improves glomerular size-selectivity in IgA nephropathy, Kidney Int, vol.39, issue.6, pp.1267-73, 1991.

A. Remuzzi, S. Puntorieri, C. Battaglia, T. Bertani, and G. Remuzzi, Angiotensin converting enzyme inhibition ameliorates glomerular filtration of macromolecules and water and lessens glomerular injury in the rat, J Clin Invest, vol.85, issue.2, pp.541-550, 1990.

R. T. Gansevoort, D. De-zeeuw, and P. E. De-jong, Dissociation between the course of the hemodynamic and antiproteinuric effects of angiotensin I converting enzyme inhibition, Kidney Int, vol.44, issue.3, pp.579-84, 1993.

J. E. Heeg, P. E. De-jong, G. K. Van-der-hem, and D. De-zeeuw, Angiotensin II does not acutely reverse the reduction of proteinuria by long-term ACE inhibition, Kidney Int, vol.40, issue.4, pp.734-775, 1991.

F. N. Ziyadeh and G. Wolf, Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy, Curr Diabetes Rev, vol.4, issue.1, pp.39-45, 2008.

R. G. Langham, D. J. Kelly, A. J. Cox, N. M. Thomson, H. Holthöfer et al., Proteinuria and the expression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin converting enzyme inhibition, Diabetologia, vol.45, issue.11, pp.1572-1578, 2002.

A. C. Ong and L. G. Fine, Loss of glomerular function and tubulointerstitial fibrosis: cause or effect? Kidney Int, vol.45, pp.345-51, 1994.

K. A. Nath, Tubulointerstitial changes as a major determinant in the progression of renal damage, Am J Kidney Dis Off J Natl Kidney Found, vol.20, issue.1, pp.1-17, 1992.

G. D'amico, Influence of clinical and histological features on actuarial renal survival in adult patients with idiopathic IgA nephropathy, membranous nephropathy, and membranoproliferative glomerulonephritis: survey of the recent literature, Am J Kidney Dis Off J Natl Kidney Found, vol.20, issue.4, pp.315-338, 1992.

E. Alexopoulos, D. Seron, R. B. Hartley, and J. S. Cameron, Lupus nephritis: correlation of interstitial cells with glomerular function, Kidney Int, vol.37, issue.1, pp.100-109, 1990.

I. M. Bajema, E. C. Hagen, J. Hermans, L. H. Noël, R. Waldherr et al., Kidney biopsy as a predictor for renal outcome in ANCA-associated necrotizing glomerulonephritis, Kidney Int, vol.56, issue.5, pp.1751-1759, 1999.

T. W. Meyer, Tubular injury in glomerular disease, Kidney Int, vol.63, issue.2, pp.774-87, 2003.

M. Zeisberg and E. G. Neilson, Mechanisms of tubulointerstitial fibrosis, J Am Soc Nephrol JASN, vol.21, issue.11, pp.1819-1853, 2010.

M. Loghman-adham, Role of phosphate retention in the progression of renal failure, J Lab Clin Med, vol.122, issue.1, pp.16-26, 1993.

H. Y. Lan, D. J. Paterson, and R. C. Atkins, Initiation and evolution of interstitial leukocytic infiltration in experimental glomerulonephritis, Kidney Int, vol.40, issue.3, pp.425-458, 1991.

K. A. Nath, The tubulointerstitium in progressive renal disease, Kidney Int, vol.54, issue.3, pp.992-996, 1998.

Y. Liu, Renal fibrosis: new insights into the pathogenesis and therapeutics, Kidney Int, vol.69, issue.2, pp.213-220, 2006.

D. Mahajan, Y. Wang, X. Qin, Y. Wang, G. Zheng et al., CD4+CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease, J Am Soc Nephrol JASN, vol.17, issue.10, pp.2731-2772, 2006.

N. Sakai, T. Wada, H. Yokoyama, M. Lipp, S. Ueha et al., Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis, Proc Natl Acad Sci, vol.103, issue.38, pp.14098-103, 2006.

J. Kie, M. H. Kapturczak, A. Traylor, A. Agarwal, and N. Hill-kapturczak, Heme oxygenase-1 deficiency promotes epithelial-mesenchymal transition and renal fibrosis, J Am Soc Nephrol JASN, vol.19, issue.9, pp.1681-91, 2008.

L. Yang, T. Y. Besschetnova, C. R. Brooks, J. V. Shah, and J. V. Bonventre, Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury, Nat Med, vol.16, issue.5, pp.1-143, 2010.

M. Ruiz-ortega, M. Rupérez, V. Esteban, J. Rodríguez-vita, E. Sánchez-lópez et al., Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases

, Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc -Eur Ren Assoc, vol.21, issue.1, pp.16-20, 2006.

S. D. Crowley, M. P. Vasievich, P. Ruiz, S. K. Gould, K. K. Parsons et al., Glomerular type 1 angiotensin receptors augment kidney injury and inflammation in murine autoimmune nephritis, J Clin Invest, vol.119, issue.4, pp.943-53, 2009.

C. Aros and G. Remuzzi, The renin-angiotensin system in progression, remission and regression of chronic nephropathies, J Hypertens Suppl Off J Int Soc Hypertens, vol.20, issue.3, pp.45-53, 2002.

J. Kaimori, Y. Isaka, M. Hatanaka, S. Yamamoto, N. Ichimaru et al., Diffusion Tensor Imaging MRI With Spin-Echo Sequence and Long-Duration Measurement for Evaluation of Renal Fibrosis in a Rat Fibrosis Model, Transplant Proc, vol.49, issue.1, pp.145-52, 2017.

K. Hueper, M. Schmidbauer, A. Thorenz, J. H. Bräsen, M. Gutberlet et al., Longitudinal evaluation of perfusion changes in acute and chronic renal allograft rejection using arterial spin labeling in translational mouse models, J Magn Reson Imaging JMRI, vol.46, issue.6, pp.1664-72, 2017.

L. Berchtold, I. Friedli, L. A. Crowe, C. Martinez, S. Moll et al., Validation of the corticomedullary difference in magnetic resonance imaging-derived apparent diffusion coefficient for kidney fibrosis detection: a cross-sectional study, Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc -Eur Ren Assoc, 2019.

P. E. Stevens, A. Levin, and K. Disease, Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline, Ann Intern Med, vol.158, issue.11, pp.825-855, 2013.

C. Lawes, S. Vander-hoorn, and A. Rodgers, International Society of Hypertension. Global burden of blood-pressure-related disease, Lancet Lond Engl, vol.371, issue.9623, pp.1513-1521, 2001.

S. Lewington, R. Clarke, N. Qizilbash, R. Peto, and R. Collins, Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies, Lancet Lond Engl, vol.360, issue.9349, pp.1903-1916, 2002.

L. Hong, Y. Labarthe, D. Mozaffarian, D. Appel, L. J. Van-horn et al., Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association's strategic Impact Goal through 2020 and beyond, Circulation, vol.121, issue.4, pp.586-613, 2010.

L. J. Appel, M. W. Brands, S. R. Daniels, N. Karanja, P. J. Elmer et al., Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association, Hypertens Dallas Tex, vol.47, pp.296-308, 1979.

F. J. He and G. A. Macgregor, Importance of salt in determining blood pressure in children: metaanalysis of controlled trials. Hypertens Dallas Tex 1979, vol.48, pp.861-870, 2006.

P. K. Whelton, L. J. Appel, M. A. Espeland, W. B. Applegate, W. H. Ettinger et al., Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). TONE Collaborative Research Group, JAMA, vol.279, issue.11, pp.839-885, 1998.

N. A. Graudal, T. Hubeck-graudal, and G. Jurgens, Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev, vol.4, p.4022, 201709.

D. Mozaffarian, S. Fahimi, G. M. Singh, R. Micha, S. Khatibzadeh et al., Global sodium consumption and death from cardiovascular causes, N Engl J Med, vol.371, issue.7, pp.624-658, 2014.

W. M. Vollmer, F. M. Sacks, J. Ard, L. J. Appel, G. A. Bray et al., Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial, Ann Intern Med, vol.135, issue.12, pp.1019-1047, 2001.

R. J. Johnson, J. Herrera-acosta, G. F. Schreiner, and B. Rodriguez-iturbe, Subtle acquired renal injury as a mechanism of salt-sensitive hypertension, N Engl J Med, vol.346, issue.12, pp.913-936, 2002.

F. Elijovich, M. H. Weinberger, C. Anderson, L. J. Appel, M. Bursztyn et al., Salt Sensitivity of Blood Pressure: A Scientific Statement From the American Heart Association. Hypertens Dallas Tex, vol.68, pp.7-46, 1979.

M. Slagman, F. Waanders, M. H. Hemmelder, A. Woittiez, and W. Janssen,

H. J. Heerspink, Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial, BMJ, vol.343, p.4366, 2011.

J. A. Wright and K. L. Cavanaugh, Dietary sodium in chronic kidney disease: a comprehensive approach, Semin Dial, vol.23, issue.4, pp.415-436, 2010.

, Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate, 2019.

L. K. Dahl, Salt and hypertension, Am J Clin Nutr, vol.25, issue.2, pp.231-275, 1972.

N. Schor, I. Ichikawa, and B. M. Brenner, Glomerular adaptations to chronic dietary salt restriction or excess, American Journal of Physiology, 1980.

B. J. Tucker and R. C. Blantz, Mechanism of altered glmerular hemodynamics during chronic sodium depletion, American Journal of Physiology, 1983.

C. Assael, B. M. Tirelli, A. S. Marra, G. Cavanna, and G. , Lack of glomerular hemodynamic stimulation after infusion of branched-chain amino acids, Kidney Int, vol.33, issue.1, pp.91-95, 1988.

D. Hahn, E. M. Hodson, and D. Fouque, Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst Rev, vol.10, p.1892, 201804.
URL : https://hal.archives-ouvertes.fr/hal-02003938

, Effects of dietary protein restriction on the progression of moderate renal disease in the Modification of Diet in Renal Disease Study, J Am Soc Nephrol JASN, vol.7, issue.12, pp.2616-2642, 1996.

J. P. Bosch, A. Saccaggi, A. Lauer, C. Ronco, M. Belledonne et al., Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate, Am J Med, vol.75, issue.6, pp.943-50, 1983.

K. Kalantar-zadeh and D. Fouque, Nutritional Management of Chronic Kidney Disease, N Engl J Med, vol.377, issue.18, pp.1765-76, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02003939

H. W. Smith and J. A. Shannon, The excretion of Urine in the dog. The effects of xylose and sucrose upon the glomerular and urea clearances, Am J Physiol, issue.101, p.639, 1932.

A. J. Premen, Potential mechanisms mediating postprandial renal hyperemia and hyperfiltration, FASEB J, vol.2, issue.2, pp.131-138, 1988.

T. W. Meyer, I. Ichikawa, R. Zatz, and B. M. Brenner, The renal hemodynamic response to amino acid infusion in the rat, Trans Assoc Am Physicians, vol.96, pp.76-83, 1983.

M. Brezis, P. Silva, and F. H. Epstein, Amino acids induce renal vasodilatation in isolated perfused kidney: coupling to oxidative metabolism, Am J Physiol, issue.6, pp.999-1004, 1984.

M. Laville, A. Hadj-aissa, N. Pozet, L. Bras, J. H. Labeeuw et al., Restrictions on use of creatinine clearance for measurement of renal functional reserve, Nephron, vol.51, issue.2, pp.233-239, 1989.

J. M. Kaufman, N. J. Siegel, and J. P. Hayslett, Functional and hemodynamic adaptation to progressive renal ablation, Circ Res, vol.36, issue.2, pp.286-93, 1975.

C. Ronco, A. Brendolan, L. Bragantini, S. Chiaramonte, A. Fabris et al., Renal functional reserve in pregnancy, Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc -Eur Ren Assoc, vol.3, issue.2, pp.157-61, 1988.

C. Baylis, The determinants of renal hemodynamics in pregnancy, Am J Kidney Dis Off J Natl Kidney Found, vol.9, issue.4, pp.260-264, 1987.

J. L. Olson, T. H. Hostetter, H. G. Rennke, B. M. Brenner, and M. A. Venkatachalam, Altered glomerular permselectivity and progressive sclerosis following extreme ablation of renal mass, Kidney Int, vol.22, issue.2, pp.112-138, 1982.

N. Bouby, M. M. Trinh-trang-tan, D. Laouari, C. Kleinknecht, J. P. Grünfeld et al., Role of the urinary concentrating process in the renal effects of high protein intake, Kidney Int, vol.34, issue.1, pp.4-12, 1988.

A. J. Williams, F. Baker, and J. Walls, Effect of varying quantity and quality of dietary protein intake in experimental renal disease in rats, Nephron, vol.46, issue.1, pp.83-90, 1987.

N. Goraya, J. Simoni, C. Jo, and D. E. Wesson, Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy, Kidney Int, vol.81, issue.1, pp.86-93, 2012.

L. Garneata and G. Mircescu, Effect of low-protein diet supplemented with keto acids on progression of chronic kidney disease, J Ren Nutr Off J Counc Ren Nutr Natl Kidney Found, vol.23, issue.3, pp.210-213, 2013.

A. J. Premen, Nature of the renal hemodynamic action of amino acids in dogs, Am J Physiol, vol.256, issue.4, pp.516-523, 1989.

A. J. Premen, Protein-mediated elevations in renal hemodynamics: existence of a hepatorenal axis? Med Hypotheses, vol.19, pp.295-309, 1986.

B. H. Brouhard, L. F. Lagrone, G. E. Richards, and L. B. Travis, Somatostatin limits rise in glomerular filtration rate after a protein meal, J Pediatr, vol.110, issue.5, pp.729-763, 1987.

A. J. Premen, Autoregulation of renal hemodynamics is not impaired by a "physiologic" dose of glucagon. Regul Pept, vol.21, pp.57-67, 1988.

E. U. Poulsen, J. Frøkiaer, T. M. Jørgensen, E. B. Pedersen, and M. Rehling, Renal functional reserve in pigs: renal haemodynamics, renal tubular function and salt and water homeostatic hormones during amino acid and dopamine stimulation, Clin Physiol Oxf Engl, vol.17, issue.1, pp.57-69, 1997.

J. Calam, D. Gordon, W. S. Peart, S. A. Taylor, and R. J. Unwin, Renal effects of gastrin C-terminal tetrapeptide (as pentagastrin) and cholecystokinin octapeptide in conscious rabbit and man, Br J Pharmacol, vol.91, issue.2, pp.307-321, 1987.

K. Farrington, E. Nahas, A. M. Hilson, A. J. Gornacz, G. Bloom et al., Gut hormones and glomerular hyperfiltration, Lancet Lond Engl, vol.1, issue.8377, p.636, 1984.

F. D. Seney and F. S. Wright, Dietary protein suppresses feedback control of glomerular filtration in rats, J Clin Invest, vol.75, issue.2, pp.558-68, 1985.

F. D. Seney, E. G. Persson, and F. S. Wright, Modification of tubuloglomerular feedback signal by dietary protein, Am J Physiol, vol.252, issue.1, pp.83-90, 1987.

M. M. Levine, M. A. Kirschenbaum, A. Chaudhari, M. W. Wong, and N. S. Bricker, Effect of protein on glomerular filtration rate and prostanoid synthesis in normal and uremic rats, Am J Physiol, vol.251, issue.4, pp.635-641, 1986.

L. M. Ruilope, J. Rodicio, G. Robles, R. , S. J. Miranda et al., Influence of a low sodium diet on the renal response to amino acid infusions in humans, Kidney Int, vol.31, issue.4, pp.992-1001, 1987.

R. Bhardwaj and P. K. Moore, The effect of arginine and nitric oxide on resistance blood vessels of the perfused rat kidney, Br J Pharmacol, vol.97, issue.3, pp.739-783, 1989.

M. E. Rosenberg, S. M. Kren, and T. H. Hostetter, Effect of dietary protein on the renin-angiotensin system in subtotally nephrectomized rats, Kidney Int, vol.38, issue.2, pp.240-248, 1990.

A. J. King, J. L. Troy, S. Anderson, J. R. Neuringer, M. Gunning et al., Nitric oxide: a potential mediator of amino acid-induced renal hyperemia and hyperfiltration, J Am Soc Nephrol JASN, vol.1, issue.12, pp.1271-1278, 1991.

C. Amiel, F. Blanchet, G. Friedlander, and A. Nitenberg,

. Néphrologie, , vol.12, pp.55-61, 1991.

B. H. Brouhard and L. Lagrone, Effect of dietary protein restriction on functional renal reserve in diabetic nephropathy, Am J Med, vol.89, issue.4, pp.427-458, 1990.

S. Klahr, J. Buerkert, and M. L. Purkerson, Role of dietary factors in the progression of chronic renal disease, Kidney Int, vol.24, issue.5, pp.579-87, 1983.

U. Nezu, H. Kamiyama, Y. Kondo, M. Sakuma, T. Morimoto et al., Effect of low-protein diet on kidney function in diabetic nephropathy: meta-analysis of randomised controlled trials, BMJ Open, vol.3, issue.5, 2013.

S. Klahr, The modification of diet in renal disease study, N Engl J Med, vol.320, issue.13, pp.864-870, 1989.

J. Uribarri and K. R. Tuttle, Advanced glycation end products and nephrotoxicity of high-protein diets, Clin J Am Soc Nephrol CJASN, vol.1, issue.6, pp.1293-1302, 2006.

J. Uribarri, S. Woodruff, S. Goodman, W. Cai, X. Chen et al., Advanced glycation end products in foods and a practical guide to their reduction in the diet, J Am Diet Assoc, vol.110, issue.6, pp.911-916, 2010.

W. Cai, M. Ramdas, L. Zhu, X. Chen, G. E. Striker et al., Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1, Proc Natl Acad Sci, vol.109, issue.39, pp.15888-93, 2012.

J. Uribarri, W. Cai, M. Peppa, S. Goodman, L. Ferrucci et al., Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging, J Gerontol A Biol Sci Med Sci, vol.62, issue.4, pp.427-460, 2007.

H. Vlassara, M. Torreggiani, J. B. Post, F. Zheng, J. Uribarri et al., Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging, Kidney Int Suppl, issue.114, pp.3-11, 2009.

T. Koschinsky, C. J. He, T. Mitsuhashi, R. Bucala, C. Liu et al., Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy, Proc Natl Acad Sci, vol.94, issue.12, pp.6474-6483, 1997.

J. Uribarri, A. Stirban, D. Sander, W. Cai, M. Negrean et al., Single oral challenge by advanced glycation end products acutely impairs endothelial function in diabetic and nondiabetic subjects. Diabetes Care, vol.30, pp.2579-82, 2007.

M. Negrean, A. Stirban, B. Stratmann, T. Gawlowski, T. Horstmann et al., Effects of low-and high-advanced glycation endproduct meals on macro-and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus, Am J Clin Nutr, vol.85, issue.5, pp.1236-1279, 2007.

A. Stirban, P. Kotsi, K. Franke, U. Strijowski, W. Cai et al., Acute macrovascular dysfunction in patients with type 2 diabetes induced by ingestion of advanced glycated ?-lactoglobulins. Diabetes Care, vol.36, pp.1278-82, 2013.

J. Uribarri, M. Peppa, W. Cai, T. Goldberg, M. Lu et al., Restriction of dietary glycotoxins reduces excessive advanced glycation end products in renal failure patients, J Am Soc Nephrol JASN, vol.14, issue.3, pp.728-759, 2003.

H. Vlassara, J. Uribarri, W. Cai, S. Goodman, R. Pyzik et al., Effects of sevelamer on HbA1c, inflammation, and advanced glycation end products in diabetic kidney disease, Clin J Am Soc Nephrol CJASN, vol.7, issue.6, pp.934-976, 2012.

E. M. Yubero-serrano, M. Woodward, L. Poretsky, H. Vlassara, and G. E. Striker, AGE-less Study Group. Effects of sevelamer carbonate on advanced glycation end products and antioxidant/prooxidant status in patients with diabetic kidney disease, Clin J Am Soc Nephrol CJASN, vol.10, issue.5, pp.759-66, 2015.

W. Cai, J. C. He, L. Zhu, X. Chen, S. Wallenstein et al., Reduced Oxidant Stress and Extended Lifespan in Mice Exposed to a Low Glycotoxin Diet, Am J Pathol, vol.170, issue.6, pp.1893-902, 2007.

A. Debout, Y. Foucher, K. Trébern-launay, C. Legendre, H. Kreis et al., Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal transplantation, Kidney Int, vol.87, issue.2, pp.343-352, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02147789

K. Y. Stokes, H. K. Abdih, C. J. Kelly, H. P. Redmond, and D. J. Bouchier-hayes, Thermotolerance attenuates ischemia-reperfusion induced renal injury and increased expression of ICAM-1. Transplantation, vol.62, pp.1143-1152, 1996.

T. G. Peters, T. R. Shaver, J. E. Ames, E. A. Santiago-delpin, K. W. Jones et al., Cold ischemia and outcome in 17,937 cadaveric kidney transplants, Transplantation, vol.59, issue.2, pp.191-197, 1995.

C. F. Bryan, A. M. Luger, J. Martinez, N. Muruve, P. W. Nelson et al., Cold ischemia time: an independent predictor of increased HLA class I antibody production after rejection of a primary cadaveric renal allograft, Transplantation, vol.71, issue.7, pp.875-884, 2001.

C. A. Labarrere, D. Pitts, D. R. Nelson, and W. P. Faulk, Vascular tissue plasminogen activator and the development of coronary artery disease in heart-transplant recipients, N Engl J Med, vol.333, issue.17, pp.1111-1117, 1995.

A. Chandraker, M. Takada, K. C. Nadeau, R. Peach, N. L. Tilney et al., CD28-b7 blockade in organ dysfunction secondary to cold ischemia/reperfusion injury, Kidney Int, vol.52, issue.6, pp.1678-84, 1997.

J. G. Abuelo, Normotensive ischemic acute renal failure, N Engl J Med, vol.357, issue.8, pp.797-805, 2007.

I. D. Bucaloiu, H. L. Kirchner, E. R. Norfolk, J. E. Hartle, and R. M. Perkins, Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury, Kidney Int, 2012.

S. M. Bagshaw, Short-and long-term survival after acute kidney injury, Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc -Eur Ren Assoc, vol.23, issue.7, pp.2126-2134, 2008.

R. D. Safian and S. C. Textor, Renal-artery stenosis, N Engl J Med, vol.344, issue.6, pp.431-473, 2001.

S. C. Textor and M. A. Mckusick, Renal Artery Stenosis, Curr Treat Options Cardiovasc Med, vol.3, issue.3, pp.187-94, 2001.

C. M. Gibson, D. S. Pinto, S. A. Murphy, D. A. Morrow, H. P. Hobbach et al., Association of creatinine and creatinine clearance on presentation in acute myocardial infarction with subsequent mortality, J Am Coll Cardiol, vol.42, issue.9, pp.1535-1578, 2003.

J. Ritchie, H. V. Alderson, and P. A. Kalra, Where now in the management of renal artery stenosis? Implications of the ASTRAL and CORAL trials, Curr Opin Nephrol Hypertens, vol.23, issue.6, pp.525-557, 2014.

. Astral-investigators, K. Wheatley, N. Ives, R. Gray, P. A. Kalra et al., Revascularization versus medical therapy for renal-artery stenosis, N Engl J Med, vol.361, issue.20, pp.1953-62, 2009.

L. Bax, A. Woittiez, H. J. Kouwenberg, W. Mali, E. Buskens et al., Stent placement in patients with atherosclerotic renal artery stenosis and impaired renal function: a randomized trial, Ann Intern Med, vol.150, issue.12, pp.150-151, 2009.

C. J. Cooper, T. P. Murphy, D. E. Cutlip, K. Jamerson, W. Henrich et al., Stenting and medical therapy for atherosclerotic renal-artery stenosis, N Engl J Med, vol.370, issue.1, pp.13-22, 2014.

K. Kako, M. Kato, T. Matsuoka, and A. Mustapha, Depression of membrane-bound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney, Am J Physiol, vol.254, issue.2, pp.330-337, 1988.

M. Tani and J. R. Neely, Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange, Circ Res, vol.65, issue.4, pp.1045-56, 1989.

J. B. Chappell and A. R. Crofts, CALCIUM ION ACCUMULATION AND VOLUME CHANGES OF ISOLATED LIVER MITOCHONDRIA. CALCIUM ION-INDUCED SWELLING, Biochem J, vol.95, pp.378-86, 1965.

D. R. Pfeiffer, T. E. Gunter, R. Eliseev, K. M. Broekemeier, and K. K. Gunter, Release of Ca2+ from mitochondria via the saturable mechanisms and the permeability transition, IUBMB Life, vol.52, issue.3-5, pp.205-217, 2001.

D. R. Hunter and R. A. Haworth, The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms, Arch Biochem Biophys, vol.195, issue.2, pp.453-462, 1979.

M. Crompton, A. Costi, and L. Hayat, Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria, Biochem J, vol.245, issue.3, pp.915-923, 1987.

D. Lisa, F. Bernardi, and P. , A CaPful of mechanisms regulating the mitochondrial permeability transition, J Mol Cell Cardiol, vol.46, issue.6, pp.775-80, 2009.

M. Crompton, The mitochondrial permeability transition pore and its role in cell death, Biochem J, vol.341, issue.2, pp.233-282, 1999.

A. P. Halestrap, G. P. Mcstay, and S. J. Clarke, The permeability transition pore complex: another view, Biochimie, vol.84, issue.2-3, pp.153-66, 2002.

S. Lemoine, B. Pillot, N. Rognant, L. Augeul, M. Rayberin et al., Postconditioning with cyclosporine a reduces early renal dysfunction by inhibiting mitochondrial permeability transition, Transplantation, vol.99, issue.4, pp.717-740, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01850624

A. Eirin, Z. Li, X. Zhang, J. D. Krier, J. R. Woollard et al., A mitochondrial permeability transition pore inhibitor improves renal outcomes after revascularization in experimental atherosclerotic renal artery stenosis. Hypertens Dallas Tex 1979, vol.60, pp.1242-1251, 2012.

S. Herrmann, A. Saad, A. Eirin, J. Woollard, H. Tang et al., Differences in GFR and Tissue Oxygenation, and Interactions between Stenotic and Contralateral Kidneys in Unilateral Atherosclerotic Renovascular Disease, Clin J Am Soc Nephrol CJASN, vol.11, issue.3, pp.458-69, 2016.

T. Cung, O. Morel, C. G. Rioufol, G. Garcia-dorado, D. Angoulvant et al., Cyclosporine before PCI in Patients with Acute Myocardial Infarction, N Engl J Med, vol.373, issue.11, pp.1021-1052, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01260566

C. Lin, C. Chan, Y. Huang, S. Hsu, C. Huang et al., Methylglyoxal Activates NF-?B Nuclear Translocation and Induces COX-2 Expression via a p38-Dependent Pathway in Synovial Cells, Life Sci, 2016.

R. A. Stahl, S. Kudelka, and U. Helmchen, High protein intake stimulates glomerular prostaglandin formation in remnant kidneys, Am J Physiol, vol.252, issue.6, pp.1088-1094, 1987.

A. Stirban, M. Negrean, B. Stratmann, T. Gawlowski, T. Horstmann et al., Benfotiamine Prevents Macro-and Microvascular Endothelial Dysfunction and Oxidative Stress Following a Meal Rich in Advanced Glycation End Products in Individuals With Type 2 Diabetes. Diabetes Care, vol.29, pp.2064-71, 2006.

A. T. Layton, Recent advances in renal hypoxia: insights from bench experiments and computer simulations, Am J Physiol Renal Physiol, vol.311, issue.1, pp.162-165, 2016.

H. Chasis, H. A. Ranges, W. Goldring, and H. W. Smith, THE CONTROL OF RENAL BLOOD FLOW AND GLOMERULAR FILTRATION IN NORMAL MAN, J Clin Invest, vol.17, issue.5, pp.683-97, 1938.

T. Pelikánová, I. Smrcková, J. Krízová, J. Stríbrná, and V. Lánská, Effects of insulin and lipid emulsion on renal haemodynamics and renal sodium handling in IDDM patients, Diabetologia, vol.39, issue.9, pp.1074-82, 1996.

, INRA -Composition en nutriments de l'oeuf : protéines, 2016.

. De-la-même-manière, CICLOSAAR qui est actuellement en cours a pour but d'étudier, grâce à la TEP-IRM, le bénéfice de la CsA perfusée, en continu, une heure avant la reperfusion, sur les paramètres fonctionnels rénaux, de manière non invasive, chez l'homme. L'étude concomitante de la perfusion, du métabolisme et du contenu tissulaire en oxygène sur rein séparé devrait nous permettre d'améliorer notre compréhension des mécanismes physiopathologiques à l'oeuvre après dilatation d'une sténose de l'artère rénale afin d, la prévention des lésions d'ischémie-reperfusion cardiaques et de reperfusion. L'étude

, Nos travaux devraient permettre de renforcer l'applicabilité clinique des techniques TEP en permettant d'obtenir deux informations à l'issue d'une seule injection de traceur : perfusion (K1) et métabolisme oxydatif (k2) pour réduire la durée, le coût et l'irradiation d'un examen. La corrélation entre les mesures obtenues après l'injection d'eau marquée par rapport à celles obtenues en acétate marqué nous a permis d'isoler le coefficient d'extraction rénal de l'acétate, qui n'était jusque-là pas connu. La connaissance de ce coefficient permet d'obtenir une évaluation quantitative de la perfusion rénale à l'issue de l, Dans un second temps, nous avons démontré que l'acétate pouvait être utilisé comme un marqueur de perfusion au-delà d'être un marqueur de métabolisme oxydatif