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Résumé en Français

La compétitivité croissante sur le marché des systèmes ferroviaires de voyageurs, tout

en considérant des contrats de performance (c’est-à-dire performance-based contract en

anglais) a conduit les fournisseurs de systèmes ferroviaires à se concentrer simultanément

sur deux objectifs : réduire le coût des solutions proposées, et respecter les exigences de

haute performance et de sûreté de fonctionnement [1]. Les ententes de niveaux de service

(Service-Level-Agreements : SLA en anglais) font également partie intégrante de ces contrats

de performance, dans lesquels les objectifs de disponibilité du système sont stricts, et où le

non-respect des niveaux de performance requis mène souvent à des pénalités [1]. La mesure

du coût du cycle de vie (CCV) est très utile dans de tels cas pour estimer le coût total des

frais encourus durant le cycle de vie d’un système [2] ; et de plus permet de prendre des

décisions d’achat bien renseignées [1].

L’estimation du CCV peut inclure, de manière non exhaustive, le coût de l’arrêt du

matériel roulant ferrovaire dû à des défaillances du système de signalisation, le coût d’une

opération de maintenance corrective sur une voie ferrée bloquant la circulation, le coût

d’accidents causant de graves blessures voire mortels, etc. [3]. Les paramètres de Fiabilité,

de Disponibilité, de Maintenabilité et de Sécurité (FDMS) sont importants pour déterminer le

CCV [3], et la gestion des FDMS doit être considérée dans le projet d’ingénierie de système

afin d’atteindre des objectifs de haute performance [4]. L’analyse des FDM traite la mesure

des performances (liées à la sûreté de fonctionnement) de systèmes ferroviaires (par exemple

matériel roulant ferrovaire, réseaux de communication, compteurs d’essieux, etc.) ainsi que

les facteurs les influençant [4]. Plus important encore, les facteurs de FDM constituent une

approche stratégique pour l’intégration de la fiabilité, de la disponibilité et de la maintenabi-

lité en utilisant des méthodes, outils et techniques d’ingénierie afin d’identifier, quantifier et

analyser les défaillances d’un équipement ou d’un système qui empêchent la réalisation de

leurs objectifs [5]. Par conséquent, l’analyse des FDM est un élément intégral pour évaluer et

réaliser efficacement des obligations de contrat [3] et est également un des domaines les plus

importants pour l’amélioration de la rentabilité [6]. Afin d’étudier de manière précise ces

systèmes hautement fiables et complexes, trois aspects doivent être considérés : le choix des

paramètres de fiabilité [7], une modélisation mathématique simple mais efficace (incluant la

conception d’un système) ainsi qu’une méthodologie d’analyse efficiente [8].

Choix des mesures de fiabilité pour l’analyse de FDM

Il y a plusieurs mesures de performance/fiabilité associées à l’analyse des FDM, comme
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par exemple le temps moyen d’atteinte de la défaillance (Mean Time To Failure : MTTF

en anglais), la moyenne des temps de bon fonctionnement (Mean Time Between Failures :

MTBF en anglais), la durée moyenne de panne (Mean Time To Repair : MTTR en anglais),

le temps moyen d’indisponibilité (Mean Down Time : MDT en anglais), la fiabilité (ou la

non-fiabilité), la disponibilité (ou indisponibilité), etc [3, 9, 10]. Le choix des paramètres

de fiabilité peut être utile dans différentes situations et dans certains cas il est possible de

déduire certains paramètres à partir d’autres [3]. Ce choix requiert également de prendre en

considération le cas où la pénalité ou le coût de la défaillance du système dépend de la durée

totale des défaillances ou de la fréquence des défaillances [7]. Dans cette thèse, nous nous

concentrons sur l’estimation de la fiabilité (ou non-fiabilité) dans le cas de réseaux statiques

(où le temps ne joue aucun rôle) et la disponibilité (ou indisponibilité) asymptotique pour

des systèmes dynamiques (sous des hypothèses markoviennes). La fiabilité d’un système est

définie comme la probabilité de fonctionner tel que requis pendant un intervalle de temps

donné (par exemple t1, t2), dans des conditions données [2]. Ce paramètre est utile pour les

réseaux statiques dans lesquels le temps ne jouè aucun rôle. D’autre part, la disponibilité

(ou au contraire l’indisponibilité) asymptotique d’un système est la fraction de temps durant

laquelle le système est dans un état de fonctionnement (ou au contraire défaillance) lorsque

le temps tend vers l’infini (c’est-à-dire en régime asymptotique) [2, 10]. Ainsi nous basons

notre choix sur l’estimation de la disponibilité (ou indisponibilité) asymptotique pour les

systèmes dynamique, où l’état du système change au cours du temps.

Technique de modélisation

Un autre aspect important pour l’analyse des FDM est une technique de modélisation effi-

ciente. Cela est nécessaire pour comprendre comment un système réel particulier fonctionne

et quelles hypothèses peuvent être faites pour mathématiquement modéliser un tel système

[8]. La technique de modélisation doit être simple et suffisamment représentative du système

réel [8], et de manière plus importante, soluble. Pour l’estimation de la fiablité des réseaux sta-

tiques, où le temps ne joue aucun rôle, les techniques de modélisation graphique fournissent

des modèles plus simples qui sont faciles à valider [11]. Pour les systèmes dynamiques, où le

facteur temps intervient, la modélisation des réseaux de Petri rend possible la visualisation et

la modélisation de comportements complexes qui comprennent la concurrence, la synchroni-

sation et le partage des ressources tout en représentant une description concise [12].

Méthodologie d’analyse

L’analyse de modèles mathématiques est la partie la plus importante de l’étude de systèmes

complexes et est le sujet principal de cette thèse. Les techniques analytiques et numériques

deviennent rapidement inutiles à cause des exigences rigoureuses qu’elles nécessitent en

terme de complexité et (ou) d’hypothèses sur le modèle [13, 14]. Elles deviennent également

inefficaces dès lors que les dimensions mathématiques deviennent importantes [13, 14].

La simulation de Monte Carlo dans sa forme standard peut être utilisée pour simuler des

modèles mathématiques à larges dimensions. Elle est basée sur une méthode d’approxi-

mation statitistique [13, 14] et fournit une alternative plus pratique. Plus précisément, les

intégrales mutli-dimensionnelles ne peuvent être évaluées que numériquement, et de ce fait
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la simulation de Monte Carlo est plus pratique que la méthode déterministe [13, 14, 15, 16].

Cependant, bien que la simulation de Monte Carlo dans sa forme standard soit facile pour es-

timer les paramètres de fiabilité auxquels nous nous intéressons (par exemple l’indisponibilité

asymtpotique) pour des modèles larges, elle présente également des limites. Particulièrement

lorsque l’événement d’intérêt est rare (par exemple la défaillance d’un système hautement

fiable), la simulation de Monte Carlo dans sa forme standard souffre d’inefficacité [13, 14].

La taille d’échantillon et par conséquent le temps de calcul doivent être augmentés quand

la rareté d’un événement d’intérêt augmente (c’est-à-dire lorsque la probabilité de l’occur-

rence d’un événement d’intérêt diminue). La simulation d’événements rares est un terme

générique qui couvre le domaine de recherche d’estimation de paramètres spécifiques quand

la probabilité d’un événement d’intérêt est très faible.

Simulations d’Evénements Rares

Les événements rares, comme leur nom l’indique, sont des événements dont les occurrences

sont très peu probables. Le terme très peu dépend du contexte et du domaine d’application

[14]. De très nombreux domaines présentent des événements d’intérêt rares mais critiquement

importants (par exemple, les paramètres de sûreté de fonctionnement [17], les probabilités

de dépassement de tampon dans les réseaux de télécommunication [17, 18], la fréquence

de dommage au cœur dans l’analyse de risques et de sécurité de centrales nucléaires [19],

etc). Ces probabilités sont associées à la défaillance de systèmes ou infrastructures critiques

spécifiques pouvant entraîner la perte de services essentiels, la perte catastrophique de vies

humaines, instabilité financière, etc.

Les systèmes ferroviaires de voyageurs sont généralement constitués de composants hété-

rogènes hautement fiables, et afin de satisfaire les critères de fiabilité, on utilise la redondance

à des niveaux hiérarchiques différents (composant, produit, sous-système, équipement, etc.)

[1]. Cela rend le système hautement fiable et en fait une structure complexe. Comme expliqué

précédemment, la simulation de Monte Carlo dans sa forme standard devient inefficace dans

l’estimation des paramètres de fiabilité dans le contexte d’événements rares. Il existe de

nombreuses techniques d’accélération (ou techniques de réduction de la variance) qui ont

été proposées pour augmenter la fréquence d’événements d’intérêt rares. Il faudrait, par

ailleurs, prendre une taille d’échantillon inacceptablement grande pour obtenir suffisam-

ment d’échantillons positifs (utiles) pour l’estimation de n’importe quel paramètre lié à un

événement d’intérêt rare [17] et cela rendrait le temps de calcul peu pratique. Les deux

principales techniques d’accélération qui ont reçu une attention considérable dans ce contexte

sont : l’échantillonnage préférentiel (Importance Sampling en anglais) [14] et la technique

du Splitting [20]. L’idée générale derrière la méthode du Splitting est l’utilisation d’un

mécanisme de sélection pour favoriser l’échantillon de chemins considérés comme menant

à des événements rares [21]. L’autre méthode pour l’accélération d’événements rares qui a

mérité une attention particulière et fait l’objet de notre travail actuel est l’échantillonnage

préférentiel.
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L’idée générale derrière l’échantillonnage préférentiel est de changer les lois de probabi-

lité (procédé appelé changement de mesure de l’échantillonnage) du modèle utilisé pour la

simulation afin d’augmenter l’occurrence d’événements d’intérêt rares [13, 22]. Les résultats

sont ensuite utilisés pour calculer les paramètres d’intérêt dans les conditions des lois de

probabilité d’origine en compensant le biais. Cette compensation est faite en multipliant

l’estimateur par un facteur de correction nommé fonction de vraisemblance afin d’obtenir

des estimateurs sans biais des paramètres d’intérêt [13]. Ce concept a pour origine le travail

fait sur l’échantillonnage aléatoire (nommé la méthode Monte Carlo) de John von Neumann

et Stanislaw Ulam dans le projet Manhattan mené durant les années 1940 et est utilisé afin de

résoudre des problèmes de physique nucléaire [23, 24].

L’échantillonnage préférentiel est maintenant une technique avancée de réduction de

variance qui a été appliquée avec succès en conjonction avec la simulation de Monte Carlo

afin d’obtenir de précises estimations dans une grande variété de domaines, dont les pro-

blèmes de files d’attente et de fiabilité [10, 17, 25, 26]. Cependant, le changement de mesure

dans l’échantillonnage préférentiel n’est pas connu a priori et la difficulté principale est de

déterminer un bon changement de mesure. Le terme ambigu bon est en fait le changement de

mesure qui réduit la variance de l’estimateur final, le terme optimal fournissant évidemment

un estimateur avec une variance zéro [13, 14]. Le changement de mesure optimal est égale-

ment inconnu a priori, et même s’il était connu, il serait difficile d’effectuer l’échantillonnage

à partir de celui-ci [17]. Une sélection inappropriée du changement de mesure de l’échan-

tillonnage préférentiel peut donner une estimation complètement incorrecte. Cependant, un

changement de mesure optimal (ou même bon) de l’échantillonnage préférentiel permet une

considérable amélioration en terme de temps de calcul, de réduction de la variance, et ainsi

de précision de l’estimateur. De ce fait, cette thèse apporte plusieurs contributions en matière

d’estimation des paramètres d’intérêt dans le contexte d’événements rares, comme nous

l’expliquons dans la partie suivante.

Objectifs et Contributions de la Thèse

En raison des différents problèmes mentionnés plus haut, l’objectif principal de ce travail

est de proposer des méthodes d’application pratiques pour l’échantillonnage préférentiel. Le

travail contribue à proposer et à étendre les techniques d’approximation/d’estimation auto-

matisées. D’une part, nous proposons une méthode qui imite un échantillonnage à partir de

la mesure de la zéro-variance de l’échantillonnage préférentiel. D’autre part, nous proposons

une autre méthode, qui elle estime le changement de mesure optimal de l’échantillonnage pré-

férentiel dans une pré-simulation, et utilise ce changement de mesure pour l’échantillonnage

préférentiel dans la simulation principale. Cela permettra de fournir une estimation précise

(c’est-à-dire la réduction de la variance) des paramètres d’intérêt à un coût raisonnable (c’est-

à-dire le temps de calcul). Les modèles mathématiques pris en considération dans ce travail

sont à grande échelle à la fois pour les réseaux statiques et pour les systèmes dynamiques

avec des contraintes logistiques (sous des hypothèses markoviennes). Ces modèles peuvent
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représenter les besoins de gestion des FDM de réels systèmes ferroviaires de voyageurs.

Cette thèse tente de résoudre ces problèmes et comprend deux principales contributions.

Estimation de la fiabilité des réseaux statiques dans les cas des défaillances

de nœuds

Le problème de fiabilité des réseaux statiques dont traite cette thèse, concerne l’estimation de

la probabilité qu’un ensemble donné de nœuds dans un modèle graphique soient connectés

[11]. Dans un tel cas, chaque composant individuel (lien ou nœud) pourrait être dans un

état de fonctionnement ou de défaillance selon ses propres probabilités [11]. Le cas où les

liens sont les éléments défaillants est essentiel dans de nombreuses applications et a été

largement étudié [27]. Cependant, il existe un large éventail d’applications où les nœuds sont

les composants défaillants, par exemple dans les modèles de survivalité du réseau [28]. Cela

requiert une adaptation des méthodes existantes au cas des défaillances de nœuds [11]. Dans

ce contexte, une défaillance de nœud signifie que le nœud devient non-fonctionnel et ses

liens associés deviennent alors inutiles [11]. Dans le problème de fiabilité à deux terminaux

ou source-à-terminal (s-t), deux nœuds du graphique sont fixes et la fiabilité du réseau est

définie comme la probabilité d’obtenir un chemin entre ces deux nœuds [11]. Dans une telle

analyse, lorsqu’un nœud est défaillant, un plus grand nombre de chemins s-t deviennent

non-fonctionnels que dans le cas d’une défaillance de lien (selon le degré du nœud) [11].

Ainsi, la fiabilité d’un réseau serait affectée plus sévèrement dans le cas d’une défaillance de

nœud [11].

Il faut également prendre en considération le fait que les défaillances de réseaux statiques

si hautement fiables sont rares, et nous utilisons ainsi ici les techniques d’échantillonnage

préférentiel. Dans le contexte des problèmes mentionnés ci-dessus, cette thèse contribue

donc à l’estimation efficiente de la fiabilité/non-fiabilité des réseaux statiques des manières

suivantes.

• Prolongation de la méthode d’échantillonnage à partir de la mesure de la zéro-

variance de l’échantillonnage préférentiel : La méthodologie de l’approximation

de l’estimateur à variance zéro dans l’échantillonnage préférentiel dans le cas de la

défaillance des liens [29] est étendue au cas des défaillances de nœuds (au lieu des

liens). Pour cette méthode, nous adaptons l’algorithme de Ford-Fulkerson maxflow

mincut pour considérer le flux (flow en anglais) selon la capacité (calculée en fonction

des probabilités de défaillance) des nœuds et obtenir les mincuts avec les probabilités

maximales. La méthode estime la non-fiabilité entre deux nœuds (la source et le

terminal). La connectivité entre le nœud source et le nœud terminal définit la défaillance

complète du réseau statique dans le contexte d’événements rares. Pour les estimateurs,

nous obtenons une erreur relative bornée (ErrRB) et dans certains cas des erreurs

relatives disparaissant dans les régimes asymptotiques (en terme de rareté).

• Application dans les systèmes réels : Dans les systèmes ferroviaires de voyageurs

(urbains) d’Alstom, le sous-système, dont l’objectif est d’assurer le fonctionnement
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de la communication principale, est appelé Data Communication System (DCS) [11].

Le DCS utilise deux réseaux parallèles qui permettent à des équipements situés dans

différentes stations (ou sur les voies) de communiquer avec les équipements de contrôle

centraux [11]. Le DCS est configuré pour que tous les équipements aient deux réseaux

(rouge et bleu) en redondance active afin d’envoyer des messages simultanés sur les

deux réseaux (rouge et bleu) [11]. Si l’un des deux réseaux est en panne, l’équipement

peut utiliser l’autre réseau [11]. La fiabilité du DCS est la probabilité que tous les

messages entre tous les équipements et contôleurs soient transmis avec succès [11].

Dans cette thèse, nous considérons la fiabilité ou la non-fiabilité entre la source et le

terminal. Nous considérons un train à l’arrêt comme le nœud-source, et le contrôleur

de la zone comme le nœud-terminal. Nous illustrons également l’utilité de l’algorithme

proposé sur un modèle graphique de système DCS à 164 nœuds d’ALSTOM. Dans

le cas de cette application réelle, nous observons également la propriété de l’erreur

relative bornée (ErrRB).

Estimation de l’indisponibilité asymptotique des systèmes dynamiques

avec contraintes logistiques

Dans cette partie, cette thèse contribue [30] à l’estimation de l’indisponibilité asymptotique

(steady-state unavailability en anglais) pour les systèmes markoviens hautement fiables.

Nous modélisons les systèmes sous forme de réseaux de Petri stochastiques (Stochastic Petri

Nets : SPNs en anglais) Markovien. Ces derniers incluent des protocoles de logistique et

de maintenance. Certains aspects logistiques importants inclus dans nos exemples sont : la

disponibilité des pièces de rechange, une équipe de restauration dans un dépôt, une inspection

minutée des composants pour toute défaillance et le temps de leur déplacement vers le site

pour réparation/inspection.

La contribution principale est un algorithme de pré-simulation basé sur l’optimisation de

distance de l’entropie croisée [31] afin d’approcher le changement de mesure optimal pour

l’échantillonnage préférentiel appliqué aux transitions d’intérêt dans les modèles SPN (au

sein de la même famille paramétrique). La densité de l’échantillonnage préférentiel est celle

qui se rapproche le plus de la densité de la variance zéro, en terme de distance d’entropie

croisée, c’est aussi la densité pour laquelle la variance asymptotique (en terme de rareté) de

l’estimateur est minimale [32]. Nous exploitons également la structure régénérative [10, 33]

des chaînes de Markov à temps continu (Continuous Time Markov Chain : CTMC en anglais)

sous-jacentes des modèles SPN [34] markoviens. La simulation principale utilise les taux

de l’échantillonnage préférentiel obtenus à partir de l’algorithme de pré-simulation pour

estimer l’indisponibilité asymtotique. Les résultats pour différents exemples montrent un

gain (quantifié par le ratio de la «work-normalized variance» [35] de la méthode Monte

Carlo dans sa forme standard et de la méthode d’échantillonnage préférentiel proposée ici)

et montrent également la réduction de la variance comparée aux simulations de la méthode

Monte Carlo dans sa forme standard. Les contributions sont :
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• Evolution progressive de la rareté de chaque problème : La première étape de l’al-

gorithme proposé dans cette partie consiste à réduire le problème d’origine (donné

par les taux de transitions d’un modèle SPN) à un sous-problème moins rare. Cela

est possible en augmentant les taux de défaillance des composants afin de créer un

système instable avec des défaillances non-rares. Ensuite la rareté du problème est

progressivement augmentée à chaque étape de la pré-simulation (en réduisant le taux

de défaillance des composants) jusqu’à ce que le problème d’origine soit atteint (c’est-

à-dire les mêmes taux de défaillance des composants du problème d’origine). La

topologie du modèle reste la même, cependant les dynamiques probabilistes intrin-

sèques impliquées sont changées à chaque étape. La répartition du problème d’origine

est effectuée selon le nombre d’étapes (S) spécifiées pour la pré-simulation. Cela si-

gnifie que le problème d’origine est décomposé en sous-problèmes rares et facilement

solubles (dans lesquels les contraintes sont de simuler à chaque étape le nombre de

cycles) et définis par le choix de S, problèmes qui sont résolus à chaque étape. A chaque

étape, ces sous-problèmes sont considérés comme la mesure de probabilité originale et

les taux d’échantillonnage préférentiel sont ceux obtenus à l’étape précédente. Dans

l’étape finale de pré-simulation, le problème d’origine est résolu en utilisant le vecteur

des taux d’échantillonnage préférentiel obtenus lors de l’étape précédente.

• Le choix de départ du changement de mesure pour l’échantillonnage préférentiel

pour la pré-simulation : Durant la première étape de simulation, le choix de départ

du changement de mesure pour l’échantillonnage préférentiel (défini par le vecteur

des taux de transitions dans les modèles SPN markoviens dans notre cas) est souvent

spécifique à chaque problème dans les algorithmes d’optimisation de l’entropie croisée.

La méthodologie que nous proposons ici crée une séquence de problèmes moins rares

à résoudre (comme expliqué dans la contribution ci-dessus). Lors de la première étape,

le vecteur de taux initial pour l’échantillonnage préférentiel (c’est-à-dire lorsque le

changement de mesure est appliqué) pour les transitions d’intérêt est considéré comme

étant le même que le vecteur de taux du problème devant être résolu à cette même

étape. Cette approche fait de la première étape de la pré-simulation une méthode de

simulation régénérative de Monte Carlo dans sa forme standard, où la fonction de

vraisemblance des transitions d’intérêt respectives est égale à 1. L’équation principale

de l’algorithme reflète alors la contribution de ces transitions respectives du modèle

SPN markovien vers l’événement d’intérêt non-rare du problème devant être résolu

à cette étape. Avec cette approche heuristique, il n’est pas nécessaire de spécifier

le changement de mesure de l’échantillonnage préférentiel par l’utilisateur pour la

première étape.

• Facilité d’utilisation de l’algorithme : La méthode que nous proposons permet éga-

lement à l’utilisateur d’optimiser différentes transitions d’intérêt dans un modèle SPN

markovien uniquement, ou dans des groupes. L’optimisation individuelle fournit des

solutions sous la forme de taux d’échantillonnage préférentiel optimisés pour chaque

transition uniquement. Une optimisation groupée fournit quant à elle une solution

sous la forme d’une valeur commune de taux d’échantillonnage préférentiel pour les
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transitions spécifiques regroupées ensemble. Des groupes mutliples peuvent également

être formés.

Cette approche de regroupement est intéressante dans le cas de très grands systèmes, par

exemple si nous considérons un système avec plusieurs types de composants (type A, B,

C, etc) qui peuvent mener le système à un état de défaillance (événement d’intérêt) dans

un cycle régénératif. Dans un nombre limité de cycles de pré-simulation, il est possible

que tous les composants de chaque type (A, B ou C) sur lesquels l’échantillonnage

préférentiel est utilisé ne soient pas échantillonnés dans la simulation d’événements

discrets (c’est-à-dire Discrete Event Simulation : DES en anglais). Cela peut donner

comme solution une valeur de zéro indésirable à la méthode d’optimisation de l’entro-

pie croisée pour les transitions de défaillance de certains composants. Cependant le

regroupement peut aider à calculer une valeur commune de taux pour l’échantillonnage

préférentiel, pour toutes les transitions de défaillance goupées ensemble. Dans ce cas,

même si la transition d’un composant n’est pas échantillonnée, cela peut quand même

fournir une valeur commune comme solution, grâce à l’échantillonnage possible des

autres transitions du même groupe. L’approche de groupement aide également à la

réduire le bruit statique dans des problèmes à grandes dimensions abordés dans ce

travail. Un autre avantage du groupement constaté à partir des résultats empiriques

des exemples de cette thèse, est la légère réduction du temps de calcul lorsqu’il est

comparé individuellement à l’optimisation multidimensionnelle de chaque transition.

Cette approche fournit une contribution plus pratique pour une facilité d’usage. La

stratégie de regroupement peut être basée sur le jugement technique et la connaissance

pratique d’un modèle SPN. Les différentes transitions de défaillance des composants

peuvent être regroupées ensemble sur la base de similarité en terme de modes de

défaillance, de types de composants, ou de niveaux hiérarchiques (composant, produit,

sous-système, équipement, etc).

A partir des contributions de la thèse citées plus haut, nous pouvons conclure que cette

thèse propose des méthodes qui peuvent être utilisées efficacement pour l’application au-

tomatisée de l’échantillonnage préférentiel aux modèles de fiabilité statique et dynamique

(Markovien). Les résultats des exemples obtenus dans cette thèse montrent une réduction im-

portante de la variance (ainsi que la propriété ErrRB souhaitée) dans le régime asymptotique

(c’est-à-dire lorsque la probabilité d’une défaillance du système tend vers zéro). Cependant,

comme la recherche scientifique est en évolution continue, il y a toujours une marge pour

l’amélioration.

Pour les future travaux, un des aspects que nous considérons comme important est

l’utilisation de l’entropie croisée proposée dans ce travail pour les SPNs non-markoviens,

où les différentes distributions peuvent devenir n’importe quelle distribution générale (par

exemple, Weibull, triangulaire, log-normal, etc.). Dans de tels cas, des «A-cycles» pourraient

être utilisés pour représenter le ratio de la disponibilité asymptotique [17, 36]. La méthode de

traitement par lots (c’est-à-dire Batch Means method en anglais) pourrait aussi être utilisée

pour estimer la variance [17, 36]. Cette intégration de l’entropie croisée pour les SPNs

non-markovien utilisant des «A-cycles» peut être très utile pour les praticiens de la FDM
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afin de modéliser et d’analyser les systèmes ferroviaires réels de voyageurs avec moins

d’hypothèses.

La thèse est organisée selon les chapitres suivants (en anglais) : dans le chapitre 1,

nous abordons les motivations de la thèse et les contributions de cette dernière. Dans le

chapitre 2, nous montrons la nécessité de la simulation d’événements rares, nous décrivons

l’échantillonnage préférentiel, les possibilités d’application de l’échantillonnage préférentiel,

ainsi que les mesures de robustesse (en terme de précision, d’efficacité et de performance).

Dans le chapitre 3, nous proposons notre méthodologie et ses résultats pour l’estimation

de la fiabilité des réseaux statiques et des systèmes DCS réels. Dans le chapitre 4, nous

illustrons notre méthode pour l’estimation de l’indisponibilité asymptotique via l’utilisation

de l’optimisation de la distance d’entropie croisée pour les transitions (défaillances) dans les

SPNs markoviens (avec contraintes logistiques). Dans le dernier chapitre 5, nous présentons

nos conclusions ainsi que des perspectives de recherches futures.





Chapter 1

Introduction

1.1 Motivations

In the contemporary world, urban passenger rail systems are large-scale systems with highly

redundant structures at different hierarchical levels. Rail system suppliers such as ALSTOM

need to commit contractually to service-level-agreements (SLA), including stringent system

availability targets, to remain competitive and advance in the market. A non-adherence to the

performance levels often leads to penalties. To meet such strict contractual obligations, rail

system suppliers need to minimize the cost of the offered solutions while also satisfying the

high performance and dependability requirements [1]. A solution’s life cycle cost (LCC) in

these so-called Performance-Based Contracts is an appropriate measure based on which rail

system suppliers can make purchasing decisions [1].

LCC can be defined as the total cost incurred during the life cycle [2] of a system. It can

include, but not limited to, the costs of a rolling stock stopped due to signaling system failures,

a corrective maintenance operation on a rail track that clogs the traffic, accidents that can

cause serious injuries or be fatal, and so forth [3]. Reliability, Availability, Maintainability,

and Safety (RAMS) parameters/metrics are essential to determine the LCC [3], and RAMS

management is useful in system engineering projects to meet the high-performance targets

[4]. RAM (Reliability, Availability, and Maintainability) analysis deals with the performance

measures related to the dependability of rail systems (e.g., rolling stocks, communication

networks, axle counters, etc.) and the factors affecting it [4]. Most importantly, RAM factors

constitute a strategic approach for integration of reliability, availability, and maintainability,

by use of methods, tools and engineering techniques to identify, quantify, and analyze

equipment or system failures that prevent the achievement of RAM objectives [5]. Thus,

RAM analysis is an integral part of assessing and meeting the contractual obligations

effectively [3] and is also one of the most significant areas for profitability improvement [6].

To accurately study such highly reliable and complex systems, there are three main important

aspects, namely, the choice of reliability metrics [7], a simple yet effective mathematical

modeling (including the designing of a system) and an efficient analysis methodology [8].
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The choice of reliability metrics can be useful for different situations and in some cases

it is possible to deduct some metrics from the others [3]. This choice also requires putting

into consideration if the main penalty or cost of the system failure depends on the total

duration of failures or the frequency of failures [7]. There are several reliability metrics

associated with RAM analysis, e.g., Mean Time To Failure (MTTF), Mean Time Between

Failures (MTBF), Mean Time To Repair (MTTR), Mean Down Time (MDT), reliability

(or unreliability), availability (or unavailability), etc. [3, 9, 10]. In this thesis, the focus is

on computing the reliability/unreliability in case of static networks (where time plays no

role) and the steady-state availability/unavailability for dynamic systems (under Markovian

assumptions).

Another important aspect is an efficient modeling technique. It is needed to understand

how a particular real system operates and the specific assumptions that can be made to

model such a system mathematically [8]. The modeling technique needs to be simple yet

sufficiently representing the real system [8] and most importantly, solvable. For static

networks’ reliability estimation, where time plays no role, graph modeling techniques

provide simpler models that are easy to validate [11]. For dynamic systems, where the

time factor intervenes, Petri Nets (PNs) modeling makes it possible to visualize and model

complex behaviors comprising concurrency, synchronization, and resource sharing while

also providing a condensed description [12].

Analysis of the respective mathematical models is the essential part of studying complex

systems and is the main subject of this thesis. Techniques like direct computations (also

called analytic techniques) and standard numerical analysis become quickly useless due to

their stringent requirements regarding complexity and (or) assumptions on the model [14].

These methods also suffer from inefficiency as soon as the mathematical dimensions of the

problem become large [14]. Standard Monte Carlo simulations (hereafter referred as standard

MC simulation) are useful for simulating high dimensional mathematical models and use

statistical approximation techniques [14], providing a more practical alternative. Specifically,

multi-dimensional integrals fall into the category of problems that we can only evaluate

numerically. For solving multi-dimensional integrals, MC methods are more practical than

deterministic techniques [14, 15, 16]. However, even though standard MC simulations are

easy to compute reliability metrics of interest (e.g., steady-state unavailability) for large

models, but they also have limitations. Especially, when the event of interest (EOI) is rare

(e.g., a system failure of a highly reliable system), they suffer from inefficiency [14]. In such

cases, it is required to increase the sample size (and consequently the computation time) as

the rarity of EOI increases (i.e., the probability of the occurrence of EOI decreases). Rare

events simulation is an umbrella term covering the field of research for estimation of specific

metrics when the probability of the EOI is very low.

Rare events, as the name itself indicates, are events that have very small probabilities

of occurrence. The term small depends on the context and the application domain [14].

There are many fields where these EOI are rare but critically important. Some cases where

the study of rare events finds use are: measures of dependability in reliability models [17],

the buffer overflow probabilities in telecommunication networks [17, 18], the core damage

frequency in risk and safety analysis of civilian nuclear power plants [19], etc. We associate
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these probabilities with the failure of particular critical systems or infrastructures that can

lead to loss of essential services, catastrophic loss of human lives, financial instability, etc.

Passenger rail systems typically constitute of heterogeneous very reliable components [1].

To satisfy the dependability requirements, rail system suppliers use redundancy at different

hierarchical levels (component, item or subsystem levels) [1]. These aspects make the

entire system highly reliable and a complex structure. As previously stated, standard MC

simulations become inefficient for estimating reliability metrics in rare events context. There

are several acceleration techniques (also known as variance reduction techniques) that have

been proposed to increase the frequency of rare events under consideration. Otherwise, it may

take unacceptably large sample sizes and computation time to get enough positive (useful)

samples for estimation of any metrics related to the rare EOI [17]. The two main acceleration

techniques that have received considerable focus in this context are Importance Sampling

[14] and the Splitting technique [20].

The generic idea behind the Splitting method is to use a selection mechanism to favor the

sample paths (sequence of states visited in a replication) deemed likely to lead to rare events

[21]. The main idea is to decompose the sample paths leading to the rare events into smaller

subpaths having a higher probability, encourage the realizations that follow these subpaths

towards rare events by allowing them to reproduce and to discourage the realizations that do

not follow these subpaths to rare events with some positive probability [21].

The other method for rare events simulation that has also received a considerable focus

and is the subject of the current work is Importance Sampling (IS). The general idea behind

IS is to change the probability laws (called as performing a change of measure) driving the

model in a simulation to increase the occurrence of the rare EOI and thus the property is

more likely to be seen [22]. The results are then used to calculate the target metric under the

original probability laws by compensating for the differences. A correction factor, called

as the likelihood ratio, is used to compensate the bias by multiplying the estimator with it,

and thus obtaining an unbiased estimator of the target metric. The concept of the IS method

originated from the work done on random sampling (i.e., the Monte Carlo method) by John

von Neumann and Stanislaw Ulam in the Manhattan project during the 1940’s and was used

to solve problems in nuclear physics [23, 24].

IS is now an advanced class of variance reduction techniques that have been successfully

applied in conjunction with MC simulations to obtain accurate estimations in a wide variety

of fields, including queueing and reliability problems [10, 17, 25, 26]. However, the change

of measure in IS used for the sampling during a simulation is unknown a priori, and the main

difficulty is to determine a good IS change of measure. The ambiguous term good is the

change of measure that reduces the variance of the final estimator, optimal one providing

an estimator with zero variance [14]. The optimal change of measure is also unknown a

priori, and even if it were known, it would be difficult to do the sampling from it [17].

An inappropriate selection of the IS change of measure can give an incorrect estimation.

However, an optimal (or a good) IS change of measure allows a considerable improvement

in terms of the computation time, variance reduction, and the accuracy of the estimator. In

regard to this, the thesis makes specific contributions, as presented in the next section.
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1.2 Thesis Contributions

In the wake of the above-mentioned discussions, the primary focus of the current work is

to propose practically applicable IS methodologies. The work focuses on proposing and

extending automated approximation/estimation techniques to form a zero-variance IS scheme

or to obtain the optimal IS change of measure and use it in main simulations. We show the

proposed methods provide accurate estimation (i.e., with variance reduction) of the reliability

metrics at a reasonable cost (i.e., computation time). The mathematical models considered in

the current work are large-scale static networks, as well as dynamic systems with logistics

(under Markovian assumptions), that can resolve the needs of RAM management of real

passenger rail systems. The thesis attempts to address these problems and makes the following

contributions broadly classified into two main parts:

1. Static Networks: In this part, the thesis contributes [11] to efficiently estimate static

network reliability (or contrarily the unreliability) and extends the work on approximate

zero-variance IS where in this case, nodes in a graph model are considered to be

components of failure. The problem of link failures has been extensively studied,

however, the case of node failures is critical in our case. The specific contributions are

as follows:

1.1. Extension: We extend the approximate zero-variance IS methodology for link

failure case as given in [29] to the case of node failures (instead of links) here.

The adapted Ford-Fulkerson maxflow-mincut algorithm in this thesis considers

flow through nodes (according to the capacity of nodes assigned as per the

probability of failure of the respective nodes) and find the mincuts with maximal

probability. The method estimates the source(s)-terminal(t) unreliability (i.e., the

probability of s-t being disconnected) in context of rare events. We observe the

bounded relative error (in some cases, vanishing relative error too) property from

the empirical results. Thus, we also obtain a significant variance reduction and

considerable gain, when comparing to standard MC simulations.

1.2. Application to a real system: We also illustrate the usefulness of the proposed

algorithm on a real system of ALSTOM, called as the Data Communication

System (DCS) having 164 nodes in a graph model. For this real application also,

we observe the bounded relative error property.

2. Dynamic Systems with Logistics: In this part, the thesis contributes [30] to estimate

the cumulative steady-state unavailability of Highly Reliable Markovian Systems

(HRMS). We model the systems as Markovian Stochastic Petri Nets (SPNs), and

usually, also include complex protocols of logistics and maintenance. The main con-

tribution is a pre-simulation algorithm based on Cross-Entropy (CE) optimization to

approximate the optimal IS change of measure (i.e., the vector of rates for IS) for

transitions of interest in the SPN models within the same parametric family. We also

exploit the regenerative structure of the underlying continuous-time Markov chains

(CTMC) of the Markovian SPN models, and apply IS on the failure transitions of the
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model (i.e., the transitions of interest). The main simulation uses the IS rates obtained

from the pre-simulation algorithm to estimate the cumulative steady-state unavailabil-

ity. Results for different examples show a considerable gain and variance reduction

compared to standard regenerative MC simulations. The specific contributions are as

follows:

2.1. Progressive rarity shift of the problem: In the proposed algorithm for this part,

the target problem is first reduced to a less rare sub-problem (by increasing the

failure rates of components) to create an unstable system with non-rare failures.

In the subsequent stages, the rarity of the sub-problem is progressively increased

(by decreasing the failure rates of components) at each step of the pre-simulation

until it reaches the original problem. The topology of the model remains the

same; however, we shift the inherent probabilistic dynamics involved, at each

stage. We perform this shifting of the original problem into different less rare

sub-problems according to the number of stages S used for pre-simulation (within

constraints of the number of regenerative cycles simulated at a stage). In the

final pre-simulation stage, the original problem is solved using the set of IS rates

obtained from the penultimate stage of pre-simulation.

2.2. Starting choice of IS change of measure for pre-simulation: The starting

choice of IS change of measure (for example, parameter vector including rates in

a Markov model) for the first pre-simulation stage is usually problem dependent

in CE algorithms. The proposed methodology under this part forms a series of

less rare sub-problems to be solved (as explained in contribution 2.1 above). At

the first stage, the initial IS vector of rates (i.e., the change of measure applied) for

the transitions of interest is considered to be the same as the vector of rates of the

shifted problem (i.e., the sub-problem) to be solved at that stage. This approach

makes the first pre-simulation stage as a standard regenerative MC simulation,

where likelihood ratio of the respective transitions is equal to one. In this case, the

algorithm’s main equation captures the contribution of the respective transitions

towards the EOI for the sub-problem solved at the first stage. With this heuristic,

there is no requirement to specify the IS change of measure by the user for the

first stage.

2.3. Usability: Our proposed methodology also allows the user to be able to optimize

different transitions of interest in a Markovian SPN model individually or in

groups together. Individual optimization provides the solution in the form of

optimized IS rates for each transition uniquely. A grouped optimization provides

the solution in the form of a common value of IS rates for the specific transitions

in that group. It is also possible to form multiple groups.

The approach of grouping is interesting in case of large systems. For example, let

us consider a system has several types of components (Type A, B, C, etc.) that

contribute towards the rare EOI in a sample path/regenerative cycle, and within

each type, there are several components with possible failure transitions. In a

limited number of cycles, it is possible that all components’ failure transitions
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within each type A, B or C (on which IS change of measure is applied) are not

sampled in the discrete event simulation (DES). Thus, it can give the undesired

value of zero for those transitions as a solution to the CE stochastic approximation

problem. However, grouping can help to compute a common value of IS rates, for

all failure transitions in the specific group. In such a case, even if a component

transition is not sampled, it would still provide a common value as a solution,

thanks to the possible sampling of other transitions in the same group. Grouping

also helps in reducing the statistical noise in the high dimensional problems

considered in this work. Another aspect of grouping is that it also reduces the

computation time slightly when comparing to the multi-dimensional optimization

of each transition individually, as observed from the empirical results of the

examples considered here. This approach provides a more practical contribution

towards the ease of use. We can base the grouping strategy on the engineering

judgment and knowledge of an SPN model. Also, we can group the various

failure transitions of components by the similarity in modes of failure, types of

components or the hierarchical levels (component, item or subsystem levels).

1.3 Thesis Organization

The introduction of the thesis here aims to emphasize the use of advanced, even if complex,

simulation techniques for RAM analysis. The motivation of the entire thesis is to provide

methodologies for highly efficient estimations of reliability metrics, which are mathematically

sound and also easily applicable to real systems. The motivation/choice of using IS techniques

is to analyze highly reliable large-scale systems where EOI are rare, and standard MC

simulations do not guarantee accurate estimation. The thesis organization is as follows:

• Chapter 2: A General Introduction to Rare Events Simulation

In this Chapter 2, we aim to provide the background for rare events simulation, where

standard MC method is highly limited in terms of accuracy. It also provides a brief

introduction to the two main variance reduction techniques, including the one focused

in the current thesis (Importance Sampling). In the chapter, we also explain the general

problems in the application of IS methods (unknown optimal change of measure)

which the thesis specifically addresses. The chapter also attempts to provide brief

background information on the possible methods to approximate/obtain the optimal

change of measure. We also discuss in this chapter the different measures of accuracy

generally used in rare events simulations.

• Chapter 3: Static Network Reliability Estimation with Node Failures

In Chapter 3, we propose an adapted algorithm for approximate Zero-Variance IS

methodology with the focus on node failures. Our proposed methodology is an

adaptation of the approximate zero-variance IS methodology given in [29], where

the focus was on links as failure components. We also propose an adaptation of the

Ford-Fulkerson’s maxflow-mincut algorithm for considering flow through nodes and



1.3 Thesis Organization 17

use it in our main algorithm to estimate s-t node unreliability using IS. The application

is shown on benchmark networks and also a real DCS system of Alstom.

• Chapter 4: Cross-Entropy Optimization of Transitions in Markovian SPNs

In this Chapter 4, we propose a multi-level CE optimization scheme for Markovian

SPNs. The chapter illustrates the mathematical model of the CTMCs. We model

the systems conveniently using SPNs from which we can also extract the underlying

CTMC. The chapter gives a comprehensive description of the pre-simulation CE

algorithm that we propose, to obtain optimized (in terms of CE distance) IS rates

for transitions of interest in Markovian SPNs, while also including logistics aspects.

Application and results of the proposed algorithm on various examples to estimate the

cumulative steady-state unavailability is also shown.

• Chapter 5: Conclusions

In this Chapter 5, we discuss the conclusions drawn from the various methodologies

proposed in this thesis. The chapter also discusses the directions and possibilities for

future research that we consider useful, for example, use of the CE pre-simulation

algorithm in the context of Non-Markovian SPNs to estimate steady-state measures.





Chapter 2

A General Introduction to Rare Events

Simulation

This chapter aims to give the background information about the problems encountered in

the simulation of rare events by standard methods (i.e., standard Monte Carlo simulation). It

briefly introduces the background information on the two main rare event simulation methods:

the Splitting and the IS. The concepts behind the IS method are elaborated further and is

the main conceptual idea focused upon in the current work. The chapter also provides the

background information for the optimal change of measure in IS. It further discusses the

various possibilities to find or approximate the optimal change of measure that subsequently

can provide highly accurate estimates of reliability metrics and help in meeting the RAM

objectives. Finally, we also discuss in the final section the measures of accuracy that are

considered to quantify the effectiveness and efficiency of the IS methodologies in rare events

simulation context.

2.1 Standard Monte Carlo Simulations & Limitations

The impracticality of analytic and numerical analysis to compute reliability metrics for

large-scale highly reliable systems justify the use of simulation techniques [37]. Computer

simulations provide a practically feasible alternative to study the behavior of real-life systems

that are too difficult to examine analytically [37]. Simulations have found use in a wide

variety of disciplines: engineering, operation research and management science, statistics,

mathematics, physics, economics, biology, medicine, engineering, chemistry, and the social

sciences [37]. Standard simulations are based on Monte Carlo (MC) simulation technique

and are stochastic, that is, they include some randomness in the underlying model [37] and

use a statistical approximation to provide point estimates [14].

To further illustrate standard MC simulations in a very generic setting as given in [17],

let us consider that X is a real random variable (r.v.) having f (x) as its probability density

function (pdf). One wants to estimate the probability γ of some event A happening (i.e.,

γ = E[ψ(X)]) [17], where ψ(X) is an identity function such that ψ(x) = 1 if x ∈ A or
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ψ(x) = 0 if x ̸∈ A. Then, the probability of A occurring is given by:

γ =
Z ∞

−∞
ψ(x) f (x) dx = E[ψ(X)], (2.1)

where E is the expectation under the density f (x). Solving the above integral by standard MC

simulation to estimate γ would require drawing n independent samples of X , i.e., (X1, ...,Xn)

from the density f (x). We assume that Xi is an independently and identically distributed (iid)

random variable with mean µ and variance σ2 [35, 37]. The estimator of the true value γ is

then given by:

γ̂MC =
1

n

n

∑
i=1

ψ(Xi). (2.2)

Here, γ̂MC is an unbiased estimate of γ (i.e., E[γ̂MC] = γ). As per the law of large numbers,

γ̂MC converges to γ as n → ∞. However, to know the accuracy of the point estimate γ̂MC (how

close it is to the actual unknown value γ), one needs to provide not only the point estimate

γ̂MC but also a confidence interval (CI) with a given degree of confidence as well [37]. The

CI is built around the estimator γ̂MC and requires the variance of the estimator, as given by:

Var(γ̂MC) = σn
2 =

σ2

n
=

γ(1− γ)

n
,

where σ2 = E[(ψ(X))2]− (E[γ̂MC])
2. In practice, neither E[γ̂MC] = γ is known and nor the

variance Var(γ̂MC) beforehand. Generally, we estimate σ2 by the sample variance, given by

[37]:

S2
MC =

1

n−1

n

∑
i=1

ψ2(Xi) −
n

n−1
(γ̂MC)

2 .

According to the central limit theorem (CLT), a CI at level (1−α) for γ is approximately:

�

γ̂MC ∓ zα/2

σ√
n

�

=
h
γ̂MC ∓ zα/2

p
γ(1− γ)/n)

i
,

where zα/2 = Φ−1 (1−α/2), with Φ being the standard normal cumulative distribution

function N (0,1) (i.e., mean 0 and variance 1) [17, 22, 37]. The relative half-width of the CI

is now given by:

zα/2

q
S2

MC/n

E[γ̂MC]
= zα/2

 s
1− γ

γ n

!
.

To explain the limitation of standard MC technique, in the above discussion, let us suppose

we want the relative half-width for a 95% CI for γ to be less than 0.1, i.e., 1.96
�q

1−γ
γ n

�

≤ 0.1.

In such a case, we see that n ≈ 100×1.962×(1−γ)/γ [17]. Thus, n is inversely proportional

to γ and consequently, the smaller the γ is, the larger the n must be. Also, in rare event

simulations, where the probabilities for the respective EOI are very low, absolute error ceases

to be of interest [14]. In such situations, relative error (RE) for the point estimate γ̂MC is used
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[14]. We discuss these measures of accuracy for rare event simulations further in Section 2.5.

The RE is the ratio of the standard deviation of the estimate and its expected value, given by:

RE(γ̂MC) =

s
1− γ

nγ
≈ 1

√
nγ

.

As evident from the above equation, for a fixed RE, n is inversely proportional to γ and the

required n → ∞ as γ → 0 [14, 17]. In other words, for a fixed sample size n, RE is unbounded

and would increase to ∞ as γ → 0 [17]. Either way, the computational cost (in terms of

simulation time or the number of samples n) is bound to increase in standard MC simulations

for efficient estimation of rare event probabilities (when γ is too small). In highly reliable

systems, this is the usual scenario where system failure is the EOI with a very low probability,

and standard MC simulations become quickly inefficient.

2.2 Rare Events Simulation Techniques

To overcome the previously mentioned problems in the context of rare event simulations

using the standard MC method, the two main methods of Splitting and Importance Sampling

(IS) have been focused upon and developed in the literature. The primary goal of these

methods is to accelerate the occurrence of the rare EOI and to obtain significant variance

reduction that would not be practically possible by standard MC simulations.

The splitting method employs a sequential sampling strategy to decompose a "difficult"

estimation problem into a sequence of "easy" problems [37]. Splitting is useful for various

purposes, including, rare-event problems, Monte Carlo counting, randomized optimization,

etc. [37]. This method is applied (in a generic sense) by creating an artificial drift towards the

rare EOI in a twofold approach: terminate with some probability the trajectories that seem

to go away from it and split (clone) those that are going towards the target EOI [20]. More

specifically, the state space of a system is divided into intermediate subsets, also called as

levels. Starting from a given level, the paths (also called as trajectories or chains or particles)

that do not reach the next level will not reach the target set (i.e., the rare EOI); while those

that reach the next level are again split (or cloned) into multiple copies and evolve thereafter

[21]. This approach would create an artificial drift towards the target set by favoring the

paths that are evolving in the direction of the target set [21]. We can obtain the unbiased

estimator of the target metrics by multiplying the original estimator by an appropriate factor

(which is 1 in some cases) [20]. This is also known as multilevel splitting [20, 21].

The two main aspects of the splitting method on which it’s efficiency is dependent upon

are the choice of the number of levels and the amount of splits per level [21]. The levels

in the splitting method are defined via an importance function that aims to represent how

close a state is from a rare set of state (i.e., the target state of EOI) [20, 21]. In the splitting

method, finding this importance function is the main difficulty. Also, the amount of splitting

when reaching a new level is also crucial. Too much splitting at a given level can result

in an explosion of chains, while too little would make very few trajectories to go in the
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right direction [21]. There are several ways of doing the splitting, like, fixed splitting, the

fixed effort method, the fixed success implementation or the fixed probability of success

implementation [20, 21, 38]. Without going further into the details of the splitting method,

in the current work, the focus is on the use of IS methods. Readers interested in the splitting

method can find more detailed description in [20, 21, 37, 38, 39, 40, 41, 42].

The second method of interest is the IS method that owes its origins to the works of von

Neumann, Ulam, Fermi, Kahn, Metropolis, and their colleagues [23, 24, 43, 44, 45] who

paved the path for the IS method by employing random sampling to perform computations in

nuclear physics during the 1940’s. Since long, IS has been considered as a useful technique

to increase the efficiency of MC simulation algorithms for numerical evaluation of integrals

[17, 25]. IS is a variance reduction technique (like the splitting method also) that is useful

in conjunction with MC simulations. In simulations, certain values of the input random

variables have a higher impact on the target metrics we try to estimate as compared to others

[46]. Emphasizing upon these "important" values (i.e., sampling more frequently) can result

in a significant variance reduction [46]. Hence the name Importance Sampling. In IS, the

dynamics of the system, in terms of the underlying probability distributions, are changed to

increase the occurrence of the rare EOI and these new probability measures are called as the

change of measure [14]. Since the simulation is done under a new probability law, it would

result in a biased estimation if directly applied. The correction factor, called as the likelihood

ratios corrects the bias of the simulation outputs. The likelihood ratio is the Radon-Nikodym

derivative of the true underlying distribution with respect to the biased simulation distribution

[22, 25]. However, the most crucial factor in IS is the proper selection of a change of measure.

The choice of an appropriate change of measure is not straightforward and usually depends

on the system we simulate, and an unsuitable change of measure can even increase the

variance [47]. The following sections elaborate the IS method in more detail.

2.3 Importance Sampling: Basics

The IS method forms the basis of the current work and thus, discussed in more detail here. In

Section 2.3.1, we introduce the basic notations for IS in the context of a continuous case, to

maintain continuance with the general setting previously presented in Section 2.1. Similarly

for discrete or static (time playing no role) cases, simply the probabilities could be used. In

Section 2.3.2, we explain the definition of an optimal change of measure. We also discuss

the different possibilities for application of IS techniques to obtain highly accurate estimates

of target metrics in Section 2.4. Section 2.5 elaborates on the measures of accuracy that we

generally consider in rare event simulations, and also use in the current work.

2.3.1 Notations

As previously explained, IS involves changing the probability laws to increase the occurrence

of the rare EOI. In the general settings introduced in Section 2.1, let us consider the integral



2.3 Importance Sampling: Basics 23

in Equation 2.1. Multiplying and dividing the integral by another pdf g(x) we get:

γ =
Z

ψ(x) f (x) dx =
Z

ψ(x)
f (x)

g(x)
g(x)dx = Eg

�

ψ(x)
f (X)

g(X)

�

= Eg [ψ(X)L(X)] , (2.3)

where L(x) = f (x)/g(x) is the likelihood ratio on the set {x : ψ(x) f (x) > 0} (g strictly

positive), and by L(x) = 0 otherwise [14]. The sampling is done from the density g(x) (i.e.,

performing the change of measure) and the expectation Eg is thus taken under g(x). For IS,

the Equation 2.3 is valid for any density g(x) provided the following condition is met:

Condition for IS: g(x)> 0 ∀ψ(x) = 1 whenever ψ(x) f (x)> 0, (2.4)

meaning a non-zero possible sample under f (x) must also be a non-zero possible sample

under g(x) [17]. The density g(x) is sometimes called as the importance density or the IS

density or the IS change of measure [17].

With the given formulation, sampling X1, ...Xn from g(x), the IS estimator is given by:

γ̂IS =
ψ(X1)L(X1)+ · · ·+ψ(Xn)L(Xn)

n

=
1

n

n

∑
i=1

ψ(Xi)L(Xi).
(2.5)

The variance of the IS estimator is Var(γ̂IS) = σ̃2
n = σ̃2/n and ,

σ̃2 = Eg

h
(ψ(X)L(X))2

i
− (E [ψ(X)])2 , (2.6)

which again is unknown and estimated by the sample variance:

S2
IS =

1

n−1

n

∑
i=1

ψ2(Xi)L
2(Xi)−

n

n−1
(γ̂IS)

2 . (2.7)

By the CLT again, the CI at confidence level (1−α) for the IS estimator has the same

form as before:
�

γ̂IS ∓ zα/2σ̃/
√

n
�

.

Here, again it is assumed that the IS estimator has a normal distribution, which often can

be a good approximation, but not always [22]. The goal of the IS method is to accurately

estimate the target metric by its estimator γ̂IS, especially in the context of rare events (i.e.,

γ → 0). Accurate estimation itself means the reduction of variance of the estimator. The next

section elaborates the idea for the choice of the IS density g(x) that can help in obtaining the

desired accuracy (i.e., variance reduction).
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2.3.2 Optimal Change of Measure

The importance density g(x) in Equation 2.3 can be any density as long as it suffices the

Condition 2.4. However, what would be the optimal importance density to choose for IS? An

optimal importance density (i.e., the optimal change of measure) is the one that minimizes

the variance of γ̂IS, and since Var(γ̂IS)≥ 0, the minimum variance possible is 0 [17]. If we

consider a density g(x)≡ g∗(x) ∀ ψ(x)> 0 then:

g∗(x) =
f (x)ψ(x)

γ
, (2.8)

where L(x) = γ/ψ(x) whenever ψ(x) f (x)> 0 [14, 17]. Since ψ(x)L(x) would be a constant

in this case, the variance of a constant is zero, as given below:

Var(γ̂IS) =
1

n
Varg∗(L(X)ψ(X)) =

1

n
Varg∗ [γ] = 0. (2.9)

The optimal change of measure is thus the conditional density (the condition being

the rare event occurs) and leads to a zero-variance estimator [14, 17]. In such a case, the

simulation becomes a kind of pseudo simulation leading to the exact value in just one sample,

i.e., the unbiased estimator with zero-variance [14]. The density g∗(x) is sometimes referred

to as the zero-variance IS density too. However, the problem with attempting to sample from

the optimal importance density in Equation 2.8 is that it explicitly depends on the value of γ ,

the original problem we are trying to solve. If γ is already known, then there is no point in

running simulations at all. Also, even if γ were known, it might be impractical to sample

efficiently from g∗(x) [17]. The observation in Equations 2.8 & 2.9, however, also gives two

important possibilities: first, there is a possibility to find good IS densities that can reduce

the variance; second, there are several possibilities to develop IS schemes leading to the best

possible estimator by exploring in greater depth the optimal change of measure [14].

Since Eg [ψ(X)L(X)] = γ (see Equation 2.3) for any density g(x) satisfying the Condition

2.4, reducing the variance of the estimator corresponds to selecting a density g(·) that

reduces the second moment of ψ(X)L(X) (the first term) of Equation 2.6. The second term

(E [ψ(X)])2 is a constant. From this we can also say:

Eg

�

ψ2(X)L2(X)
�

=
Z

ψ(x)

�

f (x)

g(x)

�2

g(x)dx

=
Z

ψ(x)
f (x)

g(x)
f (x)dx = E [ψ(X)L(X)] .

(2.10)

Thus, in order to reduce the variance, the likelihood ratio L(x) should be small on the

target set A. It is evident that the event A is rare under density f (x), i.e., f (x) is small on

set A. In order to make the L(x) small on A, the selection of g should be such that g(x) is

large on A, thus making the event A more likely to occur [17]. Also, in the context of rare

events, simulations are performed until the relative accuracy of the estimator (given by the
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ratio of the CI half-width and the quantity γ to be estimated) is below a certain threshold [22].

It requires that σ̃2/n is approximately proportional to γ2 such that the number of samples

needed is proportional to the variance of the estimator [22].

State dependency of the change of measure

The application of the IS change of measure can be considered in two ways, especially, in

the context of simulations of Markov chains [22]:

1. State-Independent: We consider a change of measure as state-independent if it simply

does not depend on the current state of the Markov chain.

2. State-Dependent: In this strategy, a new IS change of measure is used at each step of

the Markov chain, and it takes into account the current state of the Markov chain.

In specific applications (e.g., queueing theory), the state-independent change of measure has

been used [48]. However, it has been shown that the state-independent change of measure

does not always work (i.e., not even asymptotically efficient) and the use of state-dependent

change of measure can produce asymptotic efficiency [49, 50, 51]. The state-dependent

change of measure, even though being more efficient, is also significantly more complex than

a state-independent one for large state space models [49, 52].

2.4 Algorithmic Strategies for Importance Sampling

The general conclusion from the aforementioned discussions is the accurate estimation of the

target metrics γ in the context of rare events, i.e., when γ → 0. There are several possible

strategies to meet this objective. We can define a good IS strategy as the one that leads to

variance reduction of the final estimator, best case being a zero-variance estimator. There

are several possible good IS strategies, and we can broadly classify them in two [22]: first,

restricting a priori the change of measure to a parametric class and then trying to optimize

the parameters; second, to directly approximate the optimal change of measure (i.e., the

zero-variance one) via an approximation. In both these cases also, the choices can be based on

simple heuristics, or via a known asymptotic approximation, or by adaptive methods that can

learn the vector of parameters that meet a specific objective [22] (e.g., cross-entropy distance

minimization or direct variance minimization). Some of these approaches are discussed in

the next sections and also used in the current work.

2.4.1 Optimization within a Parametric Class

In case of large state spaces (the usual case for real systems), the best strategies include

a priori restriction to a parametric class (either explicitly or implicitly) for the IS change

of measures and to estimate the parameter vectors that can minimize the variance of the

final estimator [22]. For optimization within a parametric class, we can consider a family of
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measures for IS {P̃θ̃ , θ̃ ∈ Θ}, where Θ is the parameter space. These family of measures

may represent a family of densities gθ̃ (·) or probability vectors p̃θ̃ for the discrete case,

or probability measures associated with the transition matrix of a Markov chain, etc. [22].

For example, in a continuous case where g belongs to the exponential family, θ̃ represents

the vector of rates. It is noteworthy that the zero-variance change of measure is not always

within the parametric family [18, 22]. Here, we wish to choose the IS change of measure g

(as previously explained in Equation 2.3) such that the associated estimator is optimal in a

well-defined sense [32] and also leads to variance reduction.

Let us consider a parametric family P̃θ̃ = { f (x; θ̃)} indexed by a parameter vector θ̃
that also contains the original density f [32]. Now, we can write f (x) = f (x;θ) for some

parameter vector θ for the original density. The goal in optimization within a parametric

class is to find the set of parameters θ̃ over the set Θ that either minimizes the variance of the

IS estimator (e.g., in case of Variance Minimization algorithms [31]) or some other measure

of distance to the zero-variance measure (e.g., Cross-Entropy distance [31]). Clever selection

of the parametric class is a key ingredient that inherently should include good IS strategies

within that class [22]. The question arising now is how to find the good set of parameters

θ̃ . Possibilities for this include selecting θ̃ based on asymptotically valid approximations

(e.g., Large-Deviations Theory) or learning them adaptively (e.g., Variance Minimization or

Cross-Entropy algorithms) [22].

Large-Deviations Theory (LDT) has been considered for non-adaptive parameter selection

[22] in the literature. The problem with the IS method as stated before is that an optimal

change of measure is unknown. In [22], the popular idea of fixing θ̃ based on an asymptotic

analysis is explained for specific examples for binomially distributed random variables.

Generally speaking, we can consider LDT as an extension of traditional limit theorems of

probability theory [53]. The weak law of large numbers in its basic form states that certain

probabilities converge to zero, while LDT focuses on the rate of convergence [53]. However,

in [22] it has also been shown that the LDT cannot provide a bounded relative variance. The

LDT method is beyond the scope of the current study and readers interested in LDT can

find more detailed description and examples of selecting a good change of measure based on

LDT in [17, 54, 55, 56, 57, 58, 59, 60].

Adaptive learning of θ̃ for IS can be done in several ways, for example, using Variance

Minimization (VM) algorithms or using Cross-Entropy (CE) algorithms to find an optimal

θ̃ ∗ that meets a certain optimality criteria [31]. For example, in the VM algorithms, the

optimality criteria is to reduce variance directly; while, in case of the CE algorithms it is

minimizing the CE distance. Obviously, the main goal of using IS is to obtain variance

reduction (irrespective of using VM or CE algorithms) in the estimation of the target metrics.

For further explanation, let us consider we restrict ourselves a priori to a parametric class with

the IS density given by f (x; θ̃). The objective is to find a θ̃ within the same parametric class as

the original one and reduce the variance. There are several strategies to obtain the mentioned

θ̃ , for example, stochastic approximation or by using sample average approximation [22]. In

the sample average approximation, one could write the variance of the second moment as a

mathematical expression depending on θ̃ [22]. The expectation can be thus replaced by a

sample average function of θ̃ and this sample function can be optimized with respect to θ̃
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via simulation [22]. In this approach, the sampling in the simulation is done under the IS

measure {P̃θ̃} that may differ from the original measure P and not necessarily belong to the

selected family. The solution of such an optimization approach should provide a θ̃ ∗ that is

optimized under certain optimality criteria. The next sections explain the two approaches

that can be used to obtain an optimal θ̃ ∗ based on VM (lets say θ̃ ∗
vm) or CE optimization (lets

say θ̃ ∗
ce) techniques and their respective optimality criteria.

Variance-minimization

In the VM algorithms, the optimality criteria is to find a θ̃ within the same parametric family

P̃θ̃ , that reduces the variance, or actually the second moment as given in the Equation 2.10.

Similar to Equation 2.10, the second moment is:

Eθ̃

�

ψ2(X)L2(X ;θ ; θ̃)
�

=
Z

ψ(x)

�

f (x;θ)

f (x; θ̃)

�2

f (x; θ̃)dx

=
Z

ψ(x)
f (x;θ)

f (x; θ̃)
f (x;θ)dx = E

�

ψ(X)L(X ;θ ; θ̃)
�

.

(2.11)

From above, the optimization problem aiming to reduce the second moment of the IS

estimator is defined as:

min
θ̃∈Θ

υvm(θ̃) = min
θ̃∈Θ

Eθ̃

�

ψ2(X)L2(X ;θ ; θ̃)
�

, (2.12)

where υvm is implicitly defined above. Let us consider the optimizer in this case to be θ̃ ∗
vm.

The optimal VM parameter vector is then:

θ̃ ∗
vm = argmin

θ̃∈Θ
Eθ̃

�

ψ2(X)L2(X ;θ ; θ̃)
�

. (2.13)

The optimization problem in Equation 2.12 is difficult to solve as the density with

respect to which the expectation is computed depends on the decision variable θ̃ [31]. To

overcome this, let us consider a sampling density f (x; θ̌) in the same parametric family [31].

Multiplying and dividing the integrand for the expectation in Equation 2.12, by f (x; θ̌), the

new expectation can be written as:

min
θ̃∈Θ

υvm(θ̃) = min
θ̃∈Θ

Eθ̌

�

ψ2(X) L(X ;θ ; θ̌) L(X ;θ ; θ̃)
�

. (2.14)

In the above Equation 2.14, the expectation is now taken under f (x; θ̌) and θ̌ is an

arbitrary reference parameter [31]. The optimization problem of Equation 2.14 can be solved

via sample average approximation obtained from simulations and thus the optimizer θ̃ ∗
vm in

Equation 2.13 can be computed.
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Cross-entropy optimization

The foundation of the CE method was an extension to the variance minimization problem in

the context of rare event simulations [61], as introduced in [62, 63]. In conjunction with IS,

the CE method is to be used as a pre-simulation methodology to optimize the parameters

which we can later use as the IS change of measure for the final simulations [31]. A very

generic description of the CE method is that it provides an easy and adaptive learning

algorithm involving following two phases in stochastic simulations [31]:

• Generating a sample of random data (vectors, trajectories, etc.) as per a specific random

mechanism [31].

• Updating the specifics (i.e., parameters) of the random mechanism for the next iteration

based on the data and produce better samples in the next iteration [31].

In the current context of the work, let us consider the parameterized IS density f (x; θ̃) as

explained previously. The CE method aims to find the importance density that is closest in

CE distance (Kullback-Leibler divergence) to the zero-variance importance density g∗(x) as

given in Equation 2.8 within the same parametric family f . Let us consider this IS density

closest in CE distance to g∗(x) is f (·; θ̃ ∗
ce), i.e., the optimal one. The CE distance between

two distributions (g∗(x) and f (x; θ̃)) is given by [18, 22, 31]:

D(g∗(x), f (x; θ̃)) = Eg∗

�

log
g∗(x)

f (x; θ̃)

�

, (2.15)

where Eg∗ is the expectation under g∗(x) and f (x; θ̃) is the density with the parameter vector

θ̃ [18, 22, 31]. Replacing g∗(x) by its true value, it is equivalent to [22]:

D(g∗(x), f (x; θ̃)) = E

�

ψ(X)

E[ψ(X)]
log

�

ψ(X)

E[ψ(X)]
f (x;θ)

��

− 1

E[ψ(X)]
E [ψ(X) log f (x; θ̃)],

(2.16)

where except for the last term of expectation, all other terms are constants and denoted by

their expectations. The goal of the CE method is to minimize the above equation which gives

the CE distance between the two densities to obtain the f (x; θ̃ ∗
ce) i.e., with the optimizer θ̃ ∗

ce.

As the last expectation only depends on θ̃ , we can instead maximize E [ψ(X) log f (x; θ̃)]
to minimize the CE distance given above [22]. Now the problem is transformed from a

minimization of CE distance to maximization of:

max
θ̃∈Θ

υ(θ̃) = max
θ̃∈Θ

E[ψ(X) log f (x; θ̃)], (2.17)

where υ is implicitly defined above [31].

Using IS with importance density for sampling, let us say f (x; θ̌) with arbitrary reference

parameter θ̌ (as explained previously for the VM case), the above equation can be re-written

as:

max
θ̃∈Θ

υ(θ̃) = max
θ̃∈Θ

Eθ̌

�

ψ(X) L(X ;θ ; θ̌) log f (x; θ̃)
�

. (2.18)
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The expectation is taken under the importance density defined by f (x; θ̌) and the likelihood

ratio is again the ratio of the original density ( f (x;θ)) and the IS density used for sampling

( f (x; θ̌)). Now, the optimal solution of Equation 2.18 can be written as [31]:

θ̃ ∗
ce = argmax

θ̃∈Θ

Eθ̌

�

ψ(X) L(X ;θ ; θ̌) log f (X ; θ̃)
�

. (2.19)

The optimization problem is defined now by the right-hand side of Equation 2.18 to

obtain the θ̃ ∗
ce, and can be achieved by a sample average approximation. We can replace

the expectation in Equation 2.18 by a sample average over simulations performed under

θ̌ . However, the selection of θ̌ is very crucial as we know that in case of rare events, it is

difficult to know a priori the good value of θ̌ to perform the simulations. The term "good"

here means the distribution with parameter vector θ̌ under which the optimizer of the sample

average approximation does not have too much variance and is sufficiently reliable [22].

It is also noteworthy that restricting a priori to a specific parametric family would result

in a lower dimensional (i.e., more restrictive) optimizer obtained via VM or CE strategies as

explained above.

Comparison of VM and CE optimization techniques

The main goal of using IS in rare event simulations is to efficiently estimate the target metrics

(e.g., γ here) with variance reduction. We discussed in previous sections how adaptive

techniques of VM or CE could be useful for optimizing within the same parametric class.

The two different approaches of VM and CE have the same goal to reduce the variance,

however, a different optimality criteria. As explained previously, the VM method aims to

reduce the second moment of the IS estimator and consequently the variance directly, and we

obtain the optimizer θ̃ ∗
vm. On the other hand, the CE method aims to reduce the CE distance

between the zero-variance density g∗(x) and the IS density f (x; θ̃), providing the optimizer

θ̃ ∗
ce. Both the respective optimizing parameter vectors are well defined as per the respective

approach of VM or CE.

However, the drawback in attempting to reduce the variance directly through the adaptive

VM programs is that it has proved to be quite time-consuming and computationally burden-

some in practice [31, 32]. Instead of directly trying to minimize the variance of the estimator,

the CE method provides a simpler and faster adaptive procedure for estimating the optimal

density. Also, another advantage of the CE method is that the solution of the optimization

problem from which an optimal density can be obtained, often has a closed-form solution

[32]. In the examples considered in [32], it is shown that the optimal VM and CE densities

are asymptotically (in terms of rarity of EOI) identical or very close. The f (·; θ̃ ∗
ce) density

which is closest to g∗(x) in terms of the CE distance is also the one for which the asymptotic

variance of the estimator is minimum [32]. In general, the optimization problems of VM and

CE are difficult to be solved analytically, except in few specific cases [32]. To overcome

this issue, a multi-level procedure (both for VM and CE) is used [31] and explained in later

chapters. Thus, we consider that it could be easier to use a CE optimization technique in
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comparison to VM techniques to meet the objective of variance reduction in IS and find the

good change of measure for that.

2.4.2 Learning Techniques and Heuristic Approximations

The previous Section 2.4.1 discussed optimization techniques based on optimization within

a parametric class. However, a priori restriction to a parametric class also means a more

restrictive optimization, as the zero-variance density may or may not be within the parametric

class.

To overcome the limitations of the a priori restriction to a parametric class, in the

literature, several heuristic approximation and learning techniques have been discussed

[29, 55, 64, 65, 66, 67]. Learning techniques are based on adaptive learning of the target

metrics (where we can consider it as a function of the states of a Markov chain) and plugging

in a zero-variance approximation. One approach for this is called as adaptive Monte Carlo

[66, 67]. Another approach is based on a stochastic approximation of the target metrics in

the context of discrete-time finite-state Markov chains (DTMC) as proposed in [65], and is

called as the adaptive stochastic approximation. Experimental results shown by [65] prove

the effectiveness of these methods when the state-space is small. However, for practical cases

where state-space is large, learning techniques become difficult to be applied and impractical

[22].

Heuristic approximation techniques like zero-variance IS based on mincuts including the

most likely paths to failure has been discussed in [29] for static network reliability estimation.

In [64], heuristic methods to approximate the zero-variance IS for highly reliable Markovian

systems are proposed and their effectiveness illustrated. In the next Chapter 3, we propose a

zero-variance IS approximation based on mincuts with maximal probability for the case of

static network reliability estimation, specifically, when nodes are the failing components.

2.5 Measures of Accuracy

The previous sections introduced how IS could be useful for estimation of target metrics in

rare events context and the different techniques that help in obtaining an accurate estimator of

the target metrics. We also discussed the second moment (and consequently the variance) of

the IS estimator, the RE, and the CI. However, in the literature, several measures of accuracy

are used to define and quantify the robustness and reliability of the estimators obtained via

various IS techniques. In this section, we elaborate further on the topic of these measures of

accuracy for IS estimators, especially in the rare event context (i.e., γ → 0). These measures

are used in the current work to quantify the benefits and efficiency of the IS techniques in the

next chapters.

Theoretical analysis of rare event simulation usually involves the use of a rarity parameter

"ε" [17, 35]. In such cases, the model is parameterized by a small and real ε (ε > 0) such

that γ = γ(ε) → 0 as ε → 0. This parameterization means that the EOI occurs (in the

original model) with a probability that converges to zero as the rarity parameter ε → 0. We
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can formally say that limε→0+ γ(ε) = 0 [68]. In applications, γ(ε) can be considered as a

performance measure in the form of a mathematical expectation, and some model parameters

can be defined as functions of ε [68]. For different models, different parameterization may

specify different asymptotic regime [17, 55, 69]. For example, in reliability models, the

failure rates of components can be parameterized by ε [17, 70, 71, 72] or in case of static

network reliability estimation, the probabilities of failure of components can be parameterized

by ε [29, 68].

In the context of rare event simulations, as the rarity of EOI increases (i.e., ε → 0), the

quality of the estimator with respect to accuracy and coverage needs to be controlled [35]. In

[35], the two notions of robustness and reliability of an estimator are discussed. Robustness

is concerned with the error itself (i.e., how far the estimator is from the true value), while

reliability of the estimator considers the quality of error estimation (i.e., the CI coverage) as

ε → 0 [35]. The next sections elaborate the concepts of asymptotic robustness properties and

efficiency measures that we use in the current work.

2.5.1 Asymptotic Robustness Properties

Asymptotic behavior of the IS estimator is usually studied on the basis of how the RE

changes when the rarity parameter ε → 0. Recall that in rare events context, absolute error

is uninteresting and RE (the ratio of the standard deviation and the expected value of the

target metrics) is considered [14]. The variance of the IS estimator is the same as before (see

Equation 2.6) and the standard deviation is σ̃n =
p

σ̃2
n . The relative error RE is defined by

the half-width CI and is given as:

RE(γ̂IS(ε)) = zδ

p
Var(γ̂IS(ε))

γ(ε)
= zδ

σ̃n

γ(ε)
, (2.20)

where we consider γ is parameterized by ε and zδ is the 1− δ/2 quantile of the standard

normal distribution (zδ = Φ−1(1−δ/2)), Φ being the standard normal cumulative distribu-

tion) [35]. Here, the IS estimator is considered, but these measures can be computed for the

estimator under original probability measure too. Now we consider three different asymptotic

properties that define the robustness of the estimator obtained via IS.

• Bounded Relative Error (BRE): The typically desirable property in the asymptotic

regime is the BRE [35]. BRE property is obtained if the RE of the estimator remains

bounded as ε → 0 [17]. Formally, it means that

RE(γ̂IS(ε))≤C as ε → 0, (2.21)

where C is some constant. For interpretation, estimation of a target metric γ(ε) with a

given relative accuracy can be achieved in a bounded number of replications even if

ε → 0 [35].

• Logarithmic Efficiency (LE): LE (also called as asymptotic optimality) property for

an unbiased estimator, lets say γ̂IS(ε) here, of γ is considered true with respect to the
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rarity parameter ε , if the following condition is met [17, 73]:

lim
ε→0

ln Eg

�

γ̂2
IS(ε)

�

ln γ(ε)
= 2. (2.22)

Generally, LE is a weaker property in comparison to BRE. The above quantity (under

limit) is always positive and ≤ 2 because Var(γ̂IS(ε))≥ 0 and so Eg

�

γ̂2
IS(ε)

�

≥ γ(ε)

and then ln Eg

�

γ̂2
IS(ε)

�

≥ 2 ln γ(ε) [35].

• Vanishing Relative Error (VRE): It is the strongest property in comparison to the

BRE or LE and is formally defined for the RE as [68, 69]:

RE(γ̂IS(ε))→ 0 as ε → 0, (2.23)

or equivalently if

lim sup
ε→0

σ(ε)

γ(ε)
= 0. (2.24)

It means that the VRE property holds if the relative error also goes to zero as ε → 0.

Asymptotically, this would result in a zero-variance estimator.

Among the above asymptotic robustness measures, the most desirable property is the VRE

followed by BRE and LE (note, BRE implies asymptotic optimality too [53]). There are

several other robustness measures existing based on higher degree moments [68], on the

Normal approximation [35] or the variance of the empirical variance, where BRE for the

empirical variance was studied in [74]. In this thesis, we focus on the BRE and the VRE

property. In the next section, we explain the efficiency measures that can quantify the

advantage of using IS methods.

2.5.2 Efficiency Measures in Rare Event Simulations

Standard MC simulations have found use in a variety of fields due to their simpler algorithms.

On the other hand, the use of IS (along with using methods for finding an optimal change

of measure) results in more complex algorithms. These complex algorithms can generally

lead to increased computation time (i.e., higher computational cost). However, using IS as

explained previously can (under certain conditions) provide significant variance reduction

and thus higher accuracy. This is a trade-off between accuracy and computation time, and

therefore requires quantification of the gain obtained via IS methods when used in simulations.

For this purpose, the product of the variance and expected computation time per replication

has been defined [35], namely, the work-normalized variance.

Let us consider in the current context, using standard MC method, the variance of the

estimator (γ̂MC) is σn
2 obtained from n replications in computation time tn. We can define the

work-normalized variance (let’s say varwn) for this by varwn = σn
2tn [35]. The IS estimator

(γ̂IS) having variance σ̃2
n is let’s say obtained in computation time t̃n (from n replications

again) and has work-normalized variance ( ˜varwn) equal to σ̃2
n t̃n [35]. This allows us to
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compare the two estimators obtained from two different techniques [35] and the better

estimator is the one having lower work-normalized variance. In this context, using IS should

mean that ˜varwn < varwn for the same sample size n. Also, using this, the gain by using IS

technique can be quantified as:

Gain =
varwn

˜varwn
=

σn
2tn

σ̃2
n t̃n

. (2.25)

The "Gain" as defined above should be greater than one and σ̃2
n (ε) < σn

2(ε), for any IS

method to be considered better in comparison to a standard MC simulation. It is obvious

from this that the validation of a BRE property (or VRE) in an asymptotic regime would

result in significant increase in gain as ε → 0.

Thus, we discussed here the measures of accuracy as well as efficiency in the current

context. However, when doing simulations, many times issues may occur that one is not

aware of, or at worse, these issues are hidden. In the next section, we discuss some of these

issues.

2.5.3 Issues in Empirical Results

As previously stated, the robustness measures in the asymptotic regime can be considered

to capture the error accurately, however, reliability or the quality of the error estimation is

also important. In the previous discussions on asymptotic robustness measures, we assumed

that the coverage of the CI obtained based on the CLT is always valid [35]. It is noteworthy

that the point estimates or variance are estimated via simulations and their exact values are

unknown. For example, if the rare EOI does not occur ever in a simulation, one might obtain

a CI of (0,0) empirically. In [35], examples are presented where the RE seems bounded in

empirical results but actually it is not. The validity of the CI coverage can be ascertained

using the Normal approximation or the coverage function can be used to represent the actual

coverage [35]. Diagnostic ideas based on expected value of likelihood ratio, observed relative

error values or based on coverage function are also presented in [35].

In the current work, we consider the robustness measures of BRE (or VRE), the efficiency

measures of work-normalized variance (and the gain), and the coverage of the computed

CI for the true value (in smaller analytically solvable examples). However, one needs to be

always careful with the empirical results obtained, in case the issues mentioned above occur.





Chapter 3

Static Network Reliability Estimation of

Passenger Rail Systems

This chapter aims to focus on the estimation of reliability (or contrarily the unreliability in

context of rare events) for static networks where time plays no role. The chapter illustrates

and proposes an adapted version of the approximate zero-variance IS (Importance Sampling)

method for estimation of static network reliability, and we also show the application of

the proposed method on a real system, while also focusing on the measures of accuracy as

explained in the previous chapter.

3.1 Motivation and Objectives

In the previous chapters, we discussed how RAM analysis could be done efficiently us-

ing simulations for highly reliable systems. The RAM metrics also help in determining

the LCC (Life Cycle Costs) of the offered solutions and thus, help rail system suppliers,

such as ALSTOM, to comply with contractual obligations and ensure system availability

requirements [1]. In the current context, one of the main functions necessary for nominal

operation is the communication of different signals between centrally localized computers

and trackside/onboard equipment. In Alstom’s urban metro solution the subsystem whose

objective is to perform this communication function is called the data communication system

(DCS). The DCS uses a dual-ring topology to communicate equipment located in different

stations (or the track) with centrally located computers. It is configured so that all end

communication equipment has a preferred ring through which it sends its messages (but is

able to use the other ring if needed) and all messages are simultaneously transmitted on each

ring separately. The availability of the DCS is the probability that all messages between all

end-communication devices are successfully transmitted. We describe the model in more

detail in Section 3.4.3.

The choice of the reliability metric here thus becomes straightforward as the reliability

between specific components of the network of a subsystem like the DCS. Reliability of a

system is defined as the probability of performing as required for the time interval (let us say
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t1, t2), under given conditions [2]. In other words, as a metric, reliability is the probability

that no failure occurs over a specified period of time [75].

Methods like Reliability Block Diagrams (RBD) and Fault Tree Analysis (FTA) are often

used for evaluation of reliability or availability of passenger rail systems. For example, [76]

discuss the use of RBD method for calculation of reliability or availability for non-repairable

and repairable systems, respectively. A comparison between RBD and FTA methods is

discussed by [77], where it is shown that the RBD method is more appropriate than the FTA

method for availability assessment. Another approach to predict the availability of systems

also involves the creation of a Markov model which characterizes the different failure paths

of the network. Typically up to third-order failure paths are included. The selection of which

paths to model is made by reliability modeling experts. Resulting models are hard to validate

both by other experts and the end-user. Furthermore, it is not clear whether there exist

relevant failure paths that have not been modeled. Modeling the communication network as a

graph with communication equipment as nodes and communication paths as links overcomes

both shortcomings: first, the model can be easily validated by the design expert and the

client; and second, by defining successful communication as the existence of a path between

the communicating devices, no modeling of failure paths is needed because path finding

algorithms can be used to establish connectivity.

The static network reliability problem deals with the estimation of the probability that a

given set of nodes in a graph model are connected when each individual component (link or

node) is in an UP/ DOWN (working/ failed) state according to their respective probabilities.

The case where links are the failing elements is essential in many applications and has been

extensively studied [27]. However, there are a wide range of applications where nodes are

the failing components, such as the DCS here, or models of network survivability [28]. This

requires an adaptation of the existing methods to the case of node failures. Formally, a node

failure means that the node becomes nonfunctional and its associated links useless. In the

2-terminal or source-to-terminal reliability problem, two nodes of the graph are fixed and

the reliability of the network is defined as the probability of having a path between those

two nodes. In such analysis, a node failure causes a higher number of s-t paths to become

nonfunctional as compared to a link failure (depending on the node’s degree). Thus, the

reliability of a network would be affected more severely in the case of node failures.

Computing the unreliability of highly reliable systems (e.g., the DCS) requires efficient

simulation techniques. For large graphs, an exact computation of the unreliability u becomes

an NP-hard problem that is impractical to be solved analytically [29]. As previously stated,

standard MC methods can estimate u in its crude form (CMC) sampling n stochastically

independent realizations of the graph and computing the proportion of these n realizations

for which the s-t are not connected [29]. For rare events, when u << 1 here, the standard

MC method (the crude MC) will suffer from inefficiency requiring unnecessarily large n and

consequently increasing the computational cost, as previously detailed in Section 2.1. The

accuracy and efficiency of the simulation process is captured by the RE and the gain (based

on work-normalized variance) when u → 0, see Section 2.5.

In this case of estimating the static network unreliability u for highly reliable networks,

the use of IS methods is justifiable. However, again for using IS, if the IS probabilities
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which lead to frequent failure are not properly selected, the likelihood ratio may have a huge

variance resulting in a bad estimation, even if the failure event is not rare anymore [22].

Recall, the optimal change of measure is unknown (see Section 2.3.2) and to find/approximate

such a change of measure is our goal here.

The current chapter aims to propose and adapt the dynamic importance sampling method

based on MC simulations as described by [29], considering node failures, and to prove its

application on an existing example of a communication network (i.e., the DCS). We propose

an approximation of the zero-variance IS method based on minimal cuts having relatively

high failure probability in the subgraph that remains after removing the nonfunctional nodes

and their associated links (irrespective of being functional or not, if one of the associated

node is failed), while enforcing the states of the nodes which are functional, at each step of a

Markov chain [29]. These cuts approximate the u conditional on the current state, at each

step. The networks are analysed as a graph model and the Ford-Fulkerson maxflow-mincut

algorithm [78] is adapted for considering flow through nodes. The estimators obtained via

simulations here adhere to the measures of accuracy, as explained previously in Section 2.5.

We observe the BRE property in general as node reliability increases, and the VRE property

under additional conditions (as proved by [29] for link failure case). The usefulness of the

proposed scheme is proved using a quantified measure of work normalized variance (varwn).

The next sections are as follows: in Section 3.2, we explain the mathematical model

for considering node failures and the inefficiency of crude Monte Carlo (CMC) methods

with respect to rare event analysis for static network unreliability. In Section 3.3, continuing

with the basic idea of IS, an approximate Zero-Variance IS method is illustrated (from a

theoretical perspective). In Section 3.4, we propose the adaptation of the Ford-Fulkerson

maxflow-mincut algorithm and the approximate zero-variance IS method based on mincuts

with maximal probability while considering node failures. The analysis of the method on

various networks, including a case study on an existing network of DCS and its results

showing BRE or VRE properties are illustrated in Sections 3.4.2 & 3.4.3. Conclusions of the

current study are drawn at the end.

3.2 Mathematical Model for Static Networks

Let us consider an undirected connected graph G = (N ,L ), where N = {1, ...,m} is the

set of nodes, and L is the set of links. The model is static, that is, time is not considered.

Links are assumed to always work, but the nodes are subject to (independent) failures. Node

i ∈ N fails with a probability qi, where 0 < qi < 1. A configuration of the graph [79] is

given by the random vector X = (X1, ...,Xm), where for all i ∈ N , Xi = 1 or 0 representing

the working or failed state of a node i, respectively. Retaining only the functional nodes N ′,
a random partial graph G ′ = (N ′,L ) of G is obtained.

To estimate the probability u that two nodes named s and t (for source and terminal

respectively) are not connected in the random graph G , a structure function can be defined as

ψ(X) equal to 1 if s and t are not connected in G ′ (or equivalently the configuration X), else
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as 0 [29]. The expectation u = E[ψ(X)] or the s-t unreliability is given by [29]:

u = E[ψ(X)] = ∑
x∈{0,1}m

ψ(x)P[X = x] = ∑
x∈{0,1}m

ψ(x)
m

∏
i=1

(qi(1− xi)+(1−qi)xi),

where x= (x1, ...,xm), P is the original probability law of the network and E is the expectation

under P.

The state space having 2m possible configurations will require an exponentially increasing

time to calculate the u from the above formula. The exact evaluation is an NP-hard problem

in general [80], so approximation techniques like MC simulations are required in such cases.

The performance of the proposed methodology is studied by parameterizing qi (under the

condition qi −→ 0) as a polynomial function of a rarity parameter ε ≪ 1. As explained in

[29], for each i ∈ N , there are independent constants ai > 0 and bi ≥ 0 such that qi = aiε
bi .

The overall u is a finite sum of products of such possibilities. It is then a polynomial in ε and

u = u(ε) = Θ(εc), (3.1)

for a constant c ≥ 0 and Θ is a mathematical notation. The different mathematical notations

for the asymptotic analysis here are:

• For Θ: f (ε) = Θ(g(ε)), if f (ε) = O(εd) and f (ε) = O(εd),

• For O: f (ε) =O(g(ε)) if | f (ε)|≥ c2g(ε) for some constant c2 > 0 for all ε sufficiently

small,

• For O: f (ε) =O(g(ε)) if | f (ε)|≤ c1g(ε) for some constant c1 > 0 for all ε sufficiently

small.

For estimation of u using the CMC method, independent samples of X are generated to

form an unbiased estimator (similar to the one for the continuous case in Equation 2.2) for

which the s and t is disconnected [29]. In this case it is given by :

U
(n)
MC =

1

n

n

∑
j=1

ψ(X ( j)). (3.2)

The accuracy of the estimator U
(n)
MC is measured by its empirical variance (lower value means

better accuracy):

(S
(n)
MC)

2 =
U

(n)
MC(1−U

(n)
MC)n

(n−1)
, (3.3)

and the CI on the estimation of u is given by:

h
U

(n)
MC − cαS

(n)
MC/

√
n, U

(n)
MC + cαS

(n)
MC/

√
n
i
. (3.4)
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The relative half-width of the CI:

cα
((S

(n)
MC)

2/n)1/2

E[ψ(X)]
= cα

�

1−u

un

�1/2

,

for a confidence level α increases to ∞ when u −→ 0 (i.e., rare-event) for a fixed n [14, 29],

as previously explained in Section 2.1. Thus, it is required to have a more efficient technique

than the CMC method for rare-event analysis of static networks as considered here.

3.3 Zero-Variance Importance Sampling Approximation

The generic idea of IS methods as presented in Section 2.3 was to change the probability

laws driving the model to increase the occurrence of the rare event (here s-t nodes being

disconnected) and recover the bias by multiplying the estimator with the likelihood ratio.

Similarly here, the original probabilities P of the 2m possible configurations of X are

replaced by a new probability eP which gives

u = E[ψ(X)] = ∑
x∈{0,1}m

ψ(x)P[X = x] = ∑
x∈{0,1}m

ψ(x)L(x)eP[X = x],

where the likelihood ratio L(x) = P[X = x]/eP[X = x]. The condition eP[X = x] > 0, when

P[X = x]> 0 must be met when ψ(x)> 0.

The unreliability is now u = eE[ψ(X) L(X)] and the unbiased estimator obtained from IS

takes the form of:

U
(n)
IS =

1

n

n

∑
j=1

ψ(X ( j))L(X ( j)),

where X (1), ...,X (n) are s-independent copies of X distributed according to eP. The CI over

u under the new probability law eP can be obtained from Equation 3.4, by replacing the

sample mean U
(n)
MC with U

(n)
IS , and the variance (S

(n)
MC)

2 with the sample variance (S
(n)
IS )2 of

ψ(X ( j)) L(X ( j)).

As explained in [29], if eP is the optimal probability (i.e., the optimal change of measure as

explained for the continuous case in Equation 2.8) for which the variance is reduced to zero

(i.e., ideal zero-variance estimator), all the probabilities are inflated by a factor proportional

to ψ(x) and:

eP[X = x] =
ψ(x)P[X = x]

u
,

for all the configurations of x ∈ {0,1}m. This above equation means that, for the realizations

for which the system does not fail (i.e., P[X = x]), the sampling eP[X = x] = 0, while for

the other realizations where system fails (i.e., u > 0), the original P is to be divided by u to

obtain the optimal eP. However, this method is impractical because it requires the knowledge

of u, the value that is to be computed actually.
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Under the zero-variance IS method, as described in [29], but considering the sampling

of nodes instead of links, node states are sampled sequentially given the state of previously

sampled nodes. Formally, if qi = P[Xi = 0] = 1−P[Xi = 1] under P, then qi is changed at

each step depending on the previously generated values X1, ...,Xi−1. The unreliability of the

graph G ′, conditional on the already sampled nodes 1 to i−1 is given by:

ui(x1, ...,xi−1) = E[ψ(X) | X1 = x1, ...,Xi−1 = xi−1],

which also means

ui(x1, ...,xi−1) = qi ui+1(x1, ...,xi−1,0)+(1−qi) ui+1(x1, ...,xi−1,1),

and the overall unconditional unreliability of the graph can be written as u = u1( /0)[29].

If for i = (1, ...,m), qi is replaced by

eqi
de f
= eP[Xi = 0|X1 = x1, ...,Xi−1 = xi−1] = qi

ui+1(x1, ...,xi−1,0)

ui(x1, ...,xi−1)
, (3.5)

as shown in [29], following the same arguments for the proof, this sequential IS gives a

zero-variance estimator. However, it (again) requires the exact knowledge of all the functions

of ui and specifically u1( /0) = u, which is not practical.

Following [29], it is proposed to replace ui(.) in Equation 3.5 by an approximation ûi(.),
which gives

eqi = eP[Xi = 0] =
qiûi+1(x1, ...,xi−1,0)

qiûi+1(x1, ...,xi−1,0)+(1−qi)ûi+1(x1, ...,xi−1,1)
. (3.6)

If ûi+1(.) is not too far from ui+1(.) for each i, then the variance would be reduced by a

large factor. It is important to note that the network unreliability u will not change according

to the order in which the nodes (or vertices) are numbered in the graph but the change of

measure would depend on the ordering in the proposed algorithm. In the analysis, it is found

that certain enumeration of nodes does vary the estimated unreliability û by a very small

factor and so does the value of RE. However, we do not have yet a robust heuristic to choose

the ordering of the nodes which could evaluate the optimum unreliability estimate û possible,

or a correlation between the estimation or RE with the ordering.

Using this IS scheme, we can prove in an asymptotic regime where ε −→ 0, while the

graph topology is fixed, that some condition on the approximation ûi(.) guarantees that BRE

or even VRE are satisfied. Recall that BRE means the standard deviation of the estimator

divided by the mean value σ/u is kept bounded as ε → 0; in other words the sample size to

get a predefined RE is independent of the rarity parameter ε . VRE means that σ/u tends to

zero with ε −→ 0: asymptotically the estimator is perfect. The conditions are the same as in

[29], with nodes considered instead of links but again the arguments are exactly the same.

The impact of considering nodes is more in the computation of the chosen approximation

that will be described later.
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• Let us suppose that for each i and (x1, ...,xi) ∈ {0,1}i,1 ≤ i ≤ m, there is a constant

ai+1(x1, ...,xi) independent of ε such that

ûi+1(x1, ...,xi) = ai+1(x1, ...,xi)ui+1(x1, ...,xi)+o(ui+1(x1, ...,xi)). (3.7)

If this condition is satisfied, then BRE holds.

• Let us define

S1 = {x ∈ {0,1}m : ψ(x) = 1 and eP[X = x] = Θ(1)},

and

S0 = {x ∈ {0,1}m : ψ(x) = 1 and eP[X = x] = o(1)}.

The union S0 ∪ S1 is the set of possible configurations where the system fails. The

configurations in S1 are not rare under IS, while the ones in S0 are still rare. The required

additional condition for VRE involves x ∈ S1 only. Assuming the assumptions defined for

BRE hold, VRE property holds if at least one of the following three conditions is satisfied

∀x = (x1, .....,xm) ∈ S1 and for each i:

ûi+1(x1, ...xi−1,1)

ui+1(x1, ...,xi−1,1)
=

û(x1, ...,xi−1,0)

ui+1(x1, ...,xi−1,0)
+o(1), (3.8)

or
xi = 0, ai+1(x1, ...,xi) = 1, and

(1−qi) ûi+1(x1, ...,xi−1,1) = o(qi ûi+1(x1, ...,xi−1,0)),
(3.9)

or
xi = 1, ai+1(x1, ...,xi) = 1, and

qi ûi+1(x1, ...,xi−1,0) = o((1−qi) ûi+1(x1, ...,xi−1,1)).
(3.10)

3.4 Static Network Reliability Simulations: Application and

Results

In this section we illustrate the various topologies considered in our analysis along with the

DCS structure. Also, we show the results obtained from the application of the approximate

zero-variance IS method based on mincuts. For the purpose of our study, we modified the

maxflow-mincut algorithm proposed by Ford-Fulkerson [78] for considering flow through

nodes. The algorithm used thereafter is explained in the next Section 3.4.1, where the

computation based on node failures is presented.



42 Static Network Reliability Estimation of Passenger Rail Systems

3.4.1 Approximation based on Mincuts computed from Ford-Fulkerson

Maxflow-Mincut Algorithm

The proposed approximation of ûi is to consider the probability of a mincut with a maximal

probability where nodes (and associated links) sampled as failed are removed from the graph,

and nodes sampled operational are compacted. Recall that a cut of a graph is defined as

the partition of nodes of the graph into two disjoint subsets of G while a mincut C is a cut

whose capacity is minimum over all the cuts of G . A mincut with a maximal probability is a

mincut whose probability that all nodes are failed, is computed as the product of the failure

probabilities of those nodes. With such an approximation, the condition for BRE are always

satisfied (similarly to [29]), and VRE can be satisfied in some cases.

The question is now, how to compute such an approximation in the case of nodes? As

explained in Section 3.2 by Equation 3.1, we parameterize the system unreliability in an

asymptotic regime with respect to a rarity parameter ε −→ 0 such that qi → 0 ∀i. Define

ε = maxi qi such that ∀i,

qi = εci , (3.11)

with ci =
logqi

logε ≥ 1. Calling ci the capacity of node i, and c the capacity of the graph

obtained from maxflow-mincut algorithm proposed by Ford-Fulkerson based on links, we get

c = ∑i∈C ci for C , a mincut with a maximal probability, and the corresponding probability is

qC = εc =∏i∈C εci =∏i∈C qi. The trick is to use the log to switch from the sum of capacities

to the product of probabilities.

The Ford-Fulkerson algorithm [78] adapted for nodes differs from the case of links such

that: if a node i fails (i.e., xi = 0), all its associated links are useless and removed, and if a

node i is considered working (i.e., xi = 1) then it is removed from the graph model and its

associated nodes are mutually linked to each other. This makes the algorithm for the node

failure case more complex compared to link failure where a failed link can be just removed

and the connecting nodes of a perfectly working link are merged. The Algorithm 1 proposed

illustrates the adapted Ford-Fulkerson algorithm.

Algorithm 1 Adapted Ford-Fulkerson Maxflow-Mincut Algorithm

1: use nodelist (list) to store node names of any random graph G ′ or G

2: for i = 1 to size.nodelist() do

3: assign capacity ci to node i using Equation 3.11

4: end for

5: initialize cap; initialize apath (array) and flow (array) for all nodes i

6: use Breadth First Search (BFS) to find a path apath between s and t passing apath and flow argument

Ensure: BFS finds path only where flow can be assigned and return a value P > 0 if found a path

7: while P > 0 do

8: find node with minimum ci (mincap) in apath

Ensure: remaining capacity in all the nodes in apath is greater than mincap

9: assign flow equal to the mincap to all nodes in apath

10: cap+= mincap

11: initialize apath and use BFS to find another path where flow can be assigned and return P > 0

12: end while

13: return cap
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The mincut with maximal probability problem is Θ(u) as explained in [29] and as a

consequence the BRE property is satisfied in the case of node failures too. With more

stricter conditions (one of the Equations 3.8 or 3.9 or 3.10) satisfied, the VRE property is

also observed as illustrated in [29] for link failures. The overall procedure is illustrated by

Algorithm 2.

Algorithm 2 Approximate Zero-Variance IS using Ford-Fulkerson adapted algorithm

1: L ←− 1; Starting with original graph G

2: for i = 1 to m until s are directly connected or completely disconnected i.e., BFS find direct path or no path

3: Compress node i corresponding to G (x1, ...,xi−1,1) of Step 2 and mutually connect its neighbors in G ′

4: find cap (mincut of maximal probability in the set Ci) using Algorithm 1

5: ûi+1(x1, ...,xi−1,1)←− P[E(cap)];
6: Erase node i corresponding to G (x1, ...,xi−1,1) of Step 2 and remove it everywhere in G ′

7: find cap (mincut of maximal probability in the set Ci) using Algorithm 1 again

8: ûi+1(x1, ...,xi−1,0)←− P[E(cap)];
9: compute eqi via Equation 3.6

10: generate Ui a random variate over (0,1);
11: if Ui < eqi then

12: xi ←− 0; Li ←− qi/eqi;

13: else

14: xi ←− 1; Li ←− (1−qi)/(1− eqi);
15: end if

16: L ←− L×Li;

17: end for

18: return Y = ψ(x1, ...,xm)×L

3.4.2 Numerical Results

We considered four topologies for illustrating the mincut-maxprob approximation. In all

the studied topologies, the nodes are sampled by order of their numbers from s to t. The

nodes are homogeneous with unreliability qi = ε for i = 1,2,3, ...,m, where ε ∈ R. For three

examples, we also show the application of the methodology for a heterogeneous case where

the unreliability of all the nodes in the graph model is not the same and are selected according

to random heuristics. The metric of interest is the probability that s and t are disconnected in

the following networks.

Example 1: First we consider a graph with 21 nodes and 36 links as shown in Figure 3.1.

The two cases considered for this example are as follows:

Figure 3.1 Graph with 21 nodes.
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• Homogeneous case: In this case, all the nodes in the graph model of Figure 3.1 have

the same unreliability. It means, qi = ε ∀i (i = 1,2,3, ...,m and ε ∈ R). Computing

recursively, its exact solution of the unreliability is:

u = 1− (1− ε)7[(1− ε)3 −3(1− ε)2 +3−2ε]4,

where u is the exact unreliability of the graph.

Results from simulations (with n = 106) using the IS scheme and the CMC method are

presented in Tables 3.1 & 3.2, respectively.

Table 3.1 Static Network: Simulation results from IS scheme for 21 Nodes graph (Homogeneous).

ε Exact Soln Estimate 95 % CI STD R.E. Time (s)

10−3 3.0010×10−3 3.0005×10−3 (2.9986×10−3 ,3.0025×10−3) 1.01×10−3 0.34 147.21

10−5 3.0000×10−5 2.9995×10−5 (2.9975×10−5 ,3.0015×10−5) 1.00×10−5 0.33 147.54

10−7 3.0000×10−7 2.9995×10−7 (2.9975×10−7 ,3.0014×10−7) 1.00×10−7 0.33 145.41

10−9 3.0000×10−9 2.9995×10−9 (2.9975×10−9 ,3.0014×10−9) 1.00×10−9 0.33 144.02

10−11 3.0000×10−11 2.9995×10−11 (2.9975×10−11 ,3.0014×10−11) 1.00×10−11 0.33 147.22

Table 3.2 Static Network: Simulation results from CMC for 21 Nodes graph (Homogeneous).

ε Estimate 95 % CI STD R.E. Time (s)

10−3 2.9720×10−3 (2.8653×10−3 ,3.0787×10−3) 5.44×10−2 18.32 4.87

10−5 2.9000×10−5 (1.8445×10−5 ,3.9555×10−5) 5.39×10−3 185.69 5.00

10−7 0.0 (0.0,0.0) 0.0 − 4.96

• Heterogeneous case: In this case, we consider the unreliability of nodes in Figure

3.1 as: qi = ε (for i = 1,6,11,16), qi = ε1.15 (for i = 2,7,12,17), qi = ε1.35 (for i =
3,8,13,18), qi = ε1.5 (for i = 4,9,14,19) , qi = ε0.85 (for i = 5,10,15) and ε ∈ R.

Again computing recursively the exact unreliability u of the graph, we have:

u = 1−
�

�

1− ε(ε1.15 + ε3 − ε4)
�4

(1− ε0.85)3

�

.

Results from simulations using the IS scheme and the CMC method are shown in Tables 3.3

& 3.4 for n = 106 iterations in all cases.

Table 3.3 Static Network: Simulation results from the IS scheme for 21 Nodes graph (Heterogeneous).

ε Exact Soln Estimate 95 % CI STD R.E. Time (s)

10−3 8.4327×10−3 8.4313×10−3 (8.4258×10−3 ,8.4368×10−3) 2.81×10−3 0.33 156.44

10−5 1.6869×10−4 1.6866×10−4 (1.6855×10−4 ,1.6877×10−4) 5.62×10−5 0.33 154.27

10−7 3.3661×10−6 3.3655×10−6 (3.3633×10−6 ,3.3677×10−6) 1.12×10−6 0.33 160.66

10−9 6.7162×10−8 6.7150×10−8 (6.7106×10−8 ,6.7194×10−8) 2.24×10−8 0.33 156.34

10−11 1.3401×10−9 1.3398×10−9 (1.3389×10−9 ,1.3407×10−9) 4.47×10−10 0.33 158.55

The IS scheme adapted for the case of node failures suggest that the BRE property holds

while we also obtain a tight confidence interval over the estimation of u as ε −→ 0, as shown

in Tables 3.1 & 3.3, for both the homogeneous and heterogeneous cases, respectively. The

exact analytical solution (for both the cases) is also bounded in the 95% CI we obtain from

the simulations, thus proving the accuracy of the adapted IS scheme.
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Table 3.4 Static Network: Simulation results from CMC for 21 Nodes graph (Heterogeneous).

ε Estimate 95 % CI STD R.E. Time (s)

10−3 8.4170×10−3 (8.2379×10−3 ,8.5961×10−3) 9.14×10−2 10.85 5.02

10−5 1.6000×10−4 (1.3521×10−4 ,1.8479×10−4) 1.26×10−2 79.05 5.35

10−7 1.0000×10−6 (−9.6000×10−7 ,2.9600×10−6) 1.00×10−3 1000.00 5.46

10−9 0.0 (0.0,0.0) 0.0 − 5.16

For the homogeneous case, comparing it with CMC method (see Table 3.2), for the same

topology the proposed IS scheme average simulation time was 1.4628×10−4 seconds per

iteration while for the CMC method it was 4.9433×10−6 seconds per iteration. However,

the CMC method didn’t record any failure event for ε < 10−6. Also, the work normalized

variance ( ˜varwn) (variance multiplied by the expected computing time per iteration) in

the IS scheme is much lower and reduces much rapidly as ε −→ 0 for any value of ε
as compared to the one obtained from CMC simulations. For example, for a rare event

ε = 10−7, (S
(n)
MC)

2 = û(1− û) and CMC method’s varwn is 1.4827×10−12. But with zero-

variance approximation based on mincuts, ˜varwn for same case is 1.4628× 10−18 which

is much lower. The gain in such a case (as given in Equation 2.25), is the ratio given by

varwn/ ˜varwn and in this case would be approximately 1.01 million times. This means for this

particular example when ε = 10−7, the IS scheme is 1.01 million times more efficient than

the CMC method.

For the heterogeneous case, the results are similar in terms of BRE property and accuracy

as ε → 0. The average time for the IS scheme was 1.5725× 10−4 seconds per iteration

while for the CMC method (see Table 3.4) it was 5.2470× 10−6 seconds per iteration.

For a very rare event with ε = 10−9, with (S
(n)
MC)

2 = û(1− û), the CMC method has a

varwn = 3.5234×10−13. On the other hand, for proposed IS scheme the work-normalized

variance is ˜varwn = 7.8813×10−20. The gain with the IS method, again using Equation 2.25,

in such a case would be approximately 4.47 million times. Also, similar to the homogeneous

case, here also the ˜varwn from the IS scheme decreases faster as compared to the CMC

method’s as ε → 0.

It is to be noted that in Table 3.4, for ε = 10−7, even with n = 106 iterations, we are able

to get a point estimate because the unreliability u = 3.3661×10−6 for this case (see Table

3.3, ε = 10−7). In such a case, there is always a possibility of a single or more failure events

occurring in n = 106 samples. Also, the lower bound of the 95% CI in it is shown as negative,

as the CI is built around the point estimate (see Equation 3.4) and the values can go in the

negative region when the point estimate itself is inaccurate.

Example 2: We now take a Dodecahedron topology having 20 nodes and 30 links, as

shown in Figure 3.2, which is often used as a benchmark for network reliability estimation

techniques [27].

For this example also, both the homogeneous and heterogeneous cases are considered. In

the homogeneous case, all nodes are assigned same probability of failure, i.e., qi = ε ∀i. In the

heterogeneous case for this example, we considered qi = ε for all the even numbered nodes

and qi = ε0.65 for all the odd numbered nodes in the Figure 3.2, respectively. Results are
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Figure 3.2 Dodecahedron.

presented in Tables 3.5 & 3.6 for both the homogeneous and heterogeneous cases respectively,

with n = 106 in all cases.

Table 3.5 Static Network: Simulation results from the IS scheme for a Dodecahedron (Homogeneous).

ε Estimate 95 % CI STD R.E. Time (s)

10−3 2.0061×10−9 (2.0058×10−9 ,2.0064×10−9) 1.50×10−10 7.45×10−2 269.17

10−5 2.0001×10−15 (2.0000×10−15 ,2.0001×10−15) 1.31×10−17 6.56×10−3 270.39

10−7 2.0000×10−21 (2.0000×10−21 ,2.0000×10−21) 2.00×10−28 1.00×10−7 270.06

10−9 2.0000×10−27 (2.0000×10−27 ,2.0000×10−27) 2.00×10−36 1.00×10−9 268.21

10−11 2.0000×10−33 (2.0000×10−33 ,2.0000×10−33) 2.00×10−44 1.00×10−11 269.44

Table 3.6 Static Network: Simulation results from the IS scheme for a Dodecahedron (Heterogeneous).

ε Estimate 95 % CI STD R.E. Time (s)

10−3 1.3916×10−7 (1.3904×10−7 ,1.3927×10−7) 5.78×10−8 4.16×10−1 118.76

10−5 3.2204×10−12 (3.2193×10−12 ,3.2216×10−12) 5.86×10−13 1.82×10−1 75.50

10−7 7.9720×10−17 (7.9706×10−17 ,7.9734×10−17) 7.05×10−18 8.84×10−2 66.45

10−9 1.9967×10−21 (1.9965×10−21 ,1.9968×10−21) 8.93×10−23 4.47×10−2 63.30

10−11 5.0125×10−26 (5.0123×10−26 ,5.0127×10−26) 1.14×10−27 2.27×10−2 63.90

We considered different ways of ordering of nodes in our analysis for the homogeneous

case in the graph model of Figure 3.2 and in all the cases of enumerations the VRE property

was observed, as is also shown in Table 3.5 for this particular enumeration. Also, for the

heterogeneous case, VRE property is also observed, as is shown in Table 3.6. However, it

is noticeable in both Tables 3.5 & 3.6 that the rate of decrease of the RE is slower in the

specific heterogeneous case tried here as compared to the homogeneous case. For both the

cases, the CMC method failed to record a single failure event for ε < 10−2, hence yielding a

useless (0,0) empirical 95% CI.

Comparing the results with CMC method, the average per unit computation time for the

proposed IS scheme in the homogeneous case is 2.6945×10−4 seconds, while CMC method

took approximately 4.7000×10−6 seconds per iteration. From the estimated û, for example

for a rare event ε = 10−7, varwn obtained from CMC method is 9.4000×10−27 and with the

proposed IS scheme is much lower ( ˜varwn = 1.0778×10−59). As ε −→ 0, varwn of the IS

scheme decreases much faster than the CMC method.

Similarly, in the heterogeneous case, the proposed IS scheme took 7.7582×10−5 sec-

onds per iteration while the CMC method took 5.1000×10−6 seconds per iteration. Now,
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for ε = 10−7, the varwn obtained from the CMC method is 4.0657× 10−22 and for the IS

scheme it is ˜varwn = 3.8563× 10−39. It is clear that ˜varwn << varwn and along with the

VRE property being observed, the proposed IS scheme works very well to estimate rare event

probabilities here.

Example 3: The third network considered is a much larger network [29] where three dodeca-

hedrons of Figure 3.2 are juxtaposed in a parallel configuration as shown in Figure 3.3. The

source s and terminal t of Figure 3.2 are merged and represented by a single node, s and t

respectively. The topology has 56 nodes and 90 links.

Figure 3.3 Three dodecahedrons connected in parallel.

For the purpose of conciseness of the document here, only the homogeneous case is

considered here. It is assumed that qi = ε for all nodes in the Figure 3.3, and the goal is to

compute the unreliability that the s and t are not connected. The unreliability obtained here is

a cube of the unreliability of a single dodecahedron for the case of node failures [29]. Results

from simulations using the proposed IS scheme based on mincuts is presented in Table 3.7.

Table 3.7 Static Network: Simulation results from the IS scheme for three Dodecahedrons in parallel configuration (Homogeneous).

ε Estimate 95 % CI STD R.E. Time (s)

10−3 8.0739×10−27 (8.0714×10−27 ,8.0764×10−27) 1.27×10−27 1.57×10−1 5406.23

10−5 8.0005×10−45 (8.0003×10−45 ,8.0007×10−45) 1.03×10−46 1.28×10−2 5572.21

10−7 8.0000×10−63 (8.0000×10−63 ,8.0000×10−63) 8.00×10−66 1.00×10−3 5585.42

10−9 8.0000×10−81 (8.0000×10−81 ,8.0000×10−81) 1.39×10−89 1.73×10−9 5492.28

10−11 8.0000×10−99 (8.0000×10−99 ,8.0000×10−99) 1.38×10−109 1.72×10−11 5617.49

It is observable that the unreliability estimates in the case of node failures, as shown in

Table 3.7 are of the same order of magnitude for both Example 2 (single dodecahedron) and

Example 3 (three parallel dodecahedrons) as it is for the case of link failures obtained by [29].

The empirical results from Table 3.7 show that the VRE property holds for this example. The

CMC method again failed to record any failure event for all ε ≤ 10−1. Comparing with CMC

method, for example for ε = 10−7 rare event, varwn for CMC method is 1.1770× 10−67

(average per run computation time = 1.4713×10−5 seconds). For the same case, with the

IS scheme ˜varwn is 3.5422× 10−133 (average per run computation time = 5.5347× 10−3

seconds). The ˜varwn for IS scheme decreases (as ε −→ 0) much rapidly compared to the one

that is obtained from CMC method and with the VRE property observed here, the gain → ∞

with the IS scheme as compared to the CMC method. Also, the order of magnitude of the û

for all ε ≤ 10−3 are unrealistically low if practicality is considered, however, it also proves

that the IS scheme here would be able to estimate a very high accuracy in relatively lesser

number of samples than n = 106 here.
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3.4.3 Practical Case Study: Data Communication System
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Figure 3.4 The DCS structure with the outermost and the innermost node representing the train (source) and the Zone Controller (terminal)

respectively.

We now consider a real Data Communication System (DCS), a part of a large scale

passenger rail system Communication Based Train Control (CBTC). The role of a DCS is

to carry without hindrance the data between various other rail systems ensuring end-to-end

communication. It consists of reliable and redundant communication paths, as shown by

RED and BLUE in Figure 3.4. More detailed description is provided in the following section.

Description of the DCS system

In Figure 3.5, the idea behind the structure of the DCS is represented for a small section

between two stations and comprising of subsystems. In both the Figures 3.4 & 3.5, the links

represent wired or wireless communication channels between ground-to-ground or ground-to-

rolling stock (train), respectively. The nodes represent ethernet or electrical switches, routers,

servers, radio equipment, modems, etc. The red and blue components (links and nodes) are
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in pairs, and are in UP state all the time (active redundancy) such that there is no switching of

functioning if one of them fails. This also adds a complexity of undetected failure. However,

the redundancy of red and blue makes certain that there are two independent communication

paths available all the time.

�

��� ������ ���

����������
�����������

������� �������

����������

��������������������

������������

������������

���������������

����������������

����������

��������������������

Figure 3.5 Schematic representation of a DCS section.

For this case study, the train is considered as the source s (outermost node) and the

Zone Controller server is considered as the terminal t (innermost node), as shown in Figure

3.4. The circular topology is for the purpose of simplicity for the readers. The nodes are

enumerated start from the source (s) as 0 up to the terminal (t) as 163, counter-clockwise

for each ring. In the DCS, the outer circle of nodes represent the trackside equipment

which communicates directly with the train through overlapping wireless radio access points’

coverage, as represented in Figure 3.5. A failure of more than three consecutive pairs of red

and blue nodes will make the s and t disconnected. Also, another important characteristic of

it is that there is an interconnection between the red and blue rings by connecting the two

respective red and blue nodes just before the terminal together, as also shown in Figure 3.5.

This way, a red ring can also use the blue ring and vice-versa in case of failure of a particular

ring.

In the analysis, for simplicity, there is only one train and it is considered to be at a

fixed position as shown in Figure 3.4. Practically there are more than one train present (i.e.,

multiple sources s) along the outer circle. Also, both the homogeneous and heterogeneous

cases are considered, where in the first case all the nodes have the same unreliability ε while
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in the second case, their unreliability is not the same. There are 164 nodes and 169 links in

the graph model.

Results of the case study

The empirical results (with n = 106 iterations for each simulation) for the homogeneous

case using the proposed IS scheme are shown in Table 3.8 and the results from simple CMC

simulations are presented in Table 3.9. Results from Table 3.8 show that the BRE property

holds when ε −→ 0, and we obtain tight bounds over the estimated û. The results from

this static model give the steady-state availability of the system. From the estimated û, for

example when ε = 10−7, the varwn for CMC method is 5.6367× 10−18 (average per run

computation time being 3.5300×10−5 seconds, see Table 3.9). For the proposed IS scheme,

the varwn is 8.4406×10−28 (average per run computation time being 7.3882×10−3 seconds,

in Table 3.8), which is much lower and also decreases much rapidly as ε −→ 0.

Table 3.8 Static Network: Simulation results from the IS scheme for the DCS (Homogeneous).

ε Estimate 95 % CI STD R.E. Time (s)

10−3 1.5954×10−5 (1.5888×10−5 ,1.6020×10−5) 3.38×10−5 2.12 7327.19

10−5 1.5968×10−9 (1.5902×10−9 ,1.6034×10−9) 3.38×10−9 2.11 7417.07

10−7 1.5968×10−13 (1.5902×10−13 ,1.6034×10−13) 3.38×10−13 2.11 7433.32

10−9 1.5968×10−17 (1.5902×10−17 ,1.6034×10−17) 3.38×10−17 2.11 7378.22

10−11 1.5968×10−21 (1.5902×10−21 ,1.6034×10−21) 3.38×10−21 2.11 7385.41

Table 3.9 Static Network: Simulation results from CMC for the DCS (Homogeneous).

ε Estimate 95 % CI STD R.E. Time (s)

10−3 7.0000×10−6 (1.8143×10−6 ,1.2186×10−5) 2.65×10−3 377.96 35.64

10−5 0.0 (0.0,0.0) 0.0 − 34.96

The analysis for the heterogeneous case assumes the following for the unreliability of

nodes:

• Nodes that are enumerated as multiples of 5 are considered to have unreliability ε1.15.

• Nodes that are enumerated as multiples of 11 and are not a multiple of 5 are considered

to have unreliability ε0.85.

• Rest all other nodes are considered to have unreliability of ε0.65.

The nodes of the graph model DCS network are assigned unreliabilities as per the above

assumptions and the results from simulations (with n = 106 iterations for each simulation)

are shown for the IS scheme (in Table 3.10) and the CMC simulations (in Table 3.11).

Table 3.10 Static Network: Simulation results from the IS scheme for the DCS (Heterogeneous).

ε Estimate 95 % CI STD R.E. Time (s)

10−3 1.1530×10−3 (1.1497×10−3 ,1.1564×10−3) 1.69×10−3 1.47 7428.98

10−5 2.8523×10−6 (2.8442×10−6 ,2.8603×10−6) 4.13×10−6 1.45 7994.68

10−7 7.1495×10−9 (7.1292×10−9 ,7.1697×10−9) 1.03×10−8 1.44 7432.22

10−9 1.7956×10−11 (1.7905×10−11 ,1.8006×10−11) 2.59×10−11 1.44 7976.21

10−11 4.5102×10−14 (4.4974×10−14 ,4.5229×10−14) 6.51×10−14 1.44 7762.18
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Table 3.11 Static Network: Simulation results from CMC for the DCS (Heterogeneous).

ε Estimate 95 % CI STD R.E. Time (s)

10−3 1.0940×10−3 (1.0292×10−3 ,1.1588×10−3) 3.31×10−2 30.22 35.26

10−5 0.0 (0.0,0.0) 0.0 − 34.35

The empirical results for this heterogeneous case using the IS scheme show that the BRE

property holds (see Table 3.10) as ε → 0 while a tight 95% CI is obtained for each ε too.

Comparing the results with the CMC method (see Table 3.11), the CMC method took on

average 3.4805× 10−5 seconds per iteration while the IS scheme proposed here took on

average 7.7189×10−3 seconds per iteration. Now as for previous examples, if we consider a

possible rare event with ε = 10−7, the IS scheme has ˜varwn = 8.2322×10−19, while on the

other hand, the CMC method would have varwn = 2.4884×10−13. Again, ˜varwn << varwn

here too and the ˜varwn decreases much rapidly as compared to varwn of the CMC method as

the EOI becomes rarer (i.e., ε → 0).

From the results presented for Examples 1-4 for both the homogeneous and the heteroge-

neous cases, it can be concluded that the proposed zero-variance IS scheme based on mincuts

with maximal probability efficiently estimates rare event probabilities. The IS scheme here

also adheres to the measures of accuracy (BRE property and in some cases VRE also), as

previously discussed in Section 2.5. In terms of the quantified measure of efficiency using

the work-normalized variance, the proposed IS scheme is highly efficient as compared to a

standard CMC simulation when ε → 0.

3.5 Conclusions from the Chapter

The motivation of the work (as discussed in Section 3.1) in the first place was to be able to

estimate the unreliability u efficiently in static networks using IS for rare event probabilities.

Considering the optimal change of measure in IS is unknown, an approximate zero-variance

IS scheme based on mincuts is extended here for the case of node failures using the basis laid

out in [29] for the case of link failures originally. The sequential sampling of nodes, as done

by [29], reduces the variance by a large factor. We prove that the methodology explained

here and by [29], works for the case of node failures also and illustrate its efficiency on a real

network, a Data Communication System used in urban train control.

It is also important to observe that the zero-variance IS scheme is more computationally

burdensome compared to CMC methods, as it needs to find two mincuts with maximal prob-

ability at each step of the sampling process [29] using a Ford-Fulkerson adapted algorithm.

However, the method estimates the unreliability u with a higher accuracy (variance reduction)

at the expense of increased computation time. This is a trade off between choosing a more

precise estimate or a faster estimate with huge variance. With respect to rare event analysis,

the quantified efficiency measure of work normalized variance varwn, which gives the esti-

mate of variance reduction with respect to the cost (i.e., time), the proposed zero-variance IS

scheme is highly efficient compared to the CMC method.





Chapter 4

Cross-Entropy Application to Highly

Reliable Markovian Systems

In this chapter, the focus is on the estimation of the steady-state unavailability of Highly

Reliable Markovian Systems (HRMS). The chapter illustrates the use of Stochastic Petri Nets

(SPNs) to represent complex systems conveniently, while also explaining how Markovian

SPNs represent the underlying continuous-time Markov Chains (CTMCs). In the examples

considered here, we also include complex logistic aspects for representing real passenger rail

systems closely. The optimization technique based on Cross-Entropy (CE) minimization is

proposed to optimize/find the IS rates of Markovian SPNs’ failure transitions and efficiently

estimate the steady-state unavailability via simulations.

4.1 Motivation and Objectives

In the previous chapter, we discussed the application of the approximate zero-variance

IS scheme based on mincuts for static networks, where time plays no role. The earlier

assumptions considered that the components of the systems could only be in working or

failed states and their respective states are independent of time. In this chapter, we examine

dynamic systems where the state of the system changes over time.

In dynamic systems, contrary to static networks, components can be repaired (or restored)

to operational states, while protocols of logistics, maintenance, etc., can also play a role.

These systems are repairable such that the internal components or even the entire system, after

undergoing a failure can be restored to fully satisfactory performance by a method other than

the replacement of the entire system [81, 82]. In addition to this, in literature, maintenance

actions which aim at servicing the systems for better performance are also included [82].

Other practical aspects in such systems that can be considered are: timed inspections,

maintenance actions (preventive or corrective), availability of spares and (or) repair personnel

in the depot, travel time for on-site operations of maintenance/repair/inspection, etc. All

these practical aspects, when considered together, make the system under consideration (and

the resulting mathematical models) very complex.
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In the analysis of the complex systems with repair or maintenance possibilities, the

choice of an appropriate reliability metric is essential. As we discussed before, for rail system

suppliers (such as Alstom), the chosen reliability metric should be helpful in determining

the LCC (Life Cycle Cost) of the offered solutions. The reliability metric can also help in

making well-informed purchasing decisions for performance-based contracting, as previously

discussed [1]. When we consider the case where the total duration of failures is crucial, the

choice of the appropriate reliability metric for RAM analysis would be the availability of a

system [7]. Also, the metric of availability (or unavailability) is very helpful in estimating

costs associated with the loss of income due to the outage of a system [3]. Thus, here we can

consider the availability of a system as a useful metric of interest in determining the LCC.

The definition of availability from a qualitative point of view is the ability of a compo-

nent/system to be operational when required for sure [75]. From a quantitative point of view,

it is a probability of finding a component/system in the operational state at an arbitrary point

in time [75]. Some well-known availability metrics of interest are steady-state availability,

time-dependent availability, mission availability, overall availability, etc. In the current work,

the focus is on the estimation of the cumulative steady-state unavailability (or contrarily the

availability) which is the equilibrium behavior of the system. In mathematical terminology,

the steady-state unavailability (let’s say U) of a system is the long-run fraction of time the

system is in the down (i.e., failed) state [10], such that:

U = lim
t→∞

1

t

Z t

0
1{X(t) ∈ D}dt,

where X(t) represents a specific state of the system at a given time t and 1{·} is an indicator

function when X(t) (i.e., the system) is in a failed state D . We explain this definition in more

detail in the later sections.

In the current work, we consider highly reliable complex systems with Markovian

assumptions (i.e., HRMS), where exponential laws govern the distribution of holding times

in any state. The exponential distributions are memoryless, the quintessential property of

any Markov chain. The approach of Markov modeling can overcome the limitation of

dependencies encountered when using RBDs or FTAs. However, Markov modeling also

suffers from a significant drawback: the largeness of their state space [83]. Generalized

Stochastic Petri Nets (GSPNs) can be used in such cases to generate a large underlying

Markov process automatically starting from a concise description [83]. Also, Petri Nets

(PNs) in general are useful to model and visualize different behaviors [12]. For this purpose,

Markovian SPN models are used in the current work to conveniently represent the complex

systems and their respective underlying CTMCs [84].

When studying/analyzing HRMS models, the system failures are rare events and justify

the use of IS techniques, where the optimal change of measure is unknown. For this purpose,

in the current chapter, we propose a multi-level CE optimization scheme (as previously

mentioned for optimization within a parametric class in Section 2.4.1). The idea is to

exploit the regenerative structure of the underlying CTMC and our proposed method aims

to determine the optimal IS rates for rare event simulations. The CE scheme is used in a

pre-simulation and applied to failure transitions of the Markovian SPN models only. The
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proposed CE method divides a rare problem into a series of less rare sub-problems by first

increasing the failure rates of the components at the first stage, and thus, creating an unstable

system. In the subsequent stages, we decrease the failure rates of the first sub-problem,

forming new and gradually rarer sub-problems, until we reach the original rare problem.

During the first stage, we perform a standard regenerative simulation for the non-rare system

failures, where IS rates are same as the rates of the first sub-problem (likelihood ratio being

one in this case). The CE update equation proposed here captures the contributions of the

respective transitions towards the system failure (i.e., the EOI). At each subsequent stage, we

progressively increase the rarity as mentioned above, while using the IS rates of transitions

obtained from the previous sub-problem in the current stage. The final pre-simulation stage

provides a vector of IS rates that are optimized, and we use them in the main simulation.

In general, empirical results show the BRE property as the rarity of the original problem

increases, and as a consequence a considerable variance reduction and gain also.

The next sections explain the idea and specifics of our proposed method in more detail.

Section 4.2 describes the mathematical model for the HRMS considered here, while also

explaining the reliability metric of steady-state unavailability in the current context. Also,

it briefly illustrates the use of regenerative IS simulations for estimation of the steady-state

unavailability here and lays the foundation of the present work in terms of Cross-Entropy

optimization. In Section 4.3, we discuss the use of SPNs for a compact representation of

complex systems and the underlying CTMCs, while also explaining the computation of the

likelihood ratio for different cases of the IS change of measure. The section also presents the

update equation used for the multi-level CE optimization scheme and the algorithm that we

propose for this work. We present the numerical results obtained for different examples in

Sections 4.4-4.6, and finally draw the conclusions of the chapter in Section 4.7.

4.2 Mathematical Model of HRMS

The mathematical model for the HRMS considered here are in the form of discrete space

CTMCs. We specifically use the regenerative structure of the CTMC models here to perform

the stochastic simulations [25]. In a Markov chain, the associated random variable is a

function of the sample path of a Markov chain [22].

Let us consider a system with c types of components with a total nl number of components

of each type. The total number of components are N= ∑
c
l=1 nl . A system can fail if sufficient

combination of components of each type fail [85, 86]. The system can be modeled as a

CTMC where the state of the chain at time t is given by the vector:

X(t) = (X1(t),X2(t),X3(t), ...,Xc(t)).

Here, X(t) is a vector of the number of failed components of type l = 1, ...,c at time t.

The states are denoted by c-dimensional vectors x = (x1,x2,x3, ...,xc). The perfect state is

{0} = (0,0,0,0, ...,0) representing all components of all types are working and zero failed

components [85, 86, 87]. We also assume that the finite state space K is divided into set
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of UP states U and set of DOWN (failed) states D , such that K = U ∪D , D ̸= /0 and

U ∩D = /0. This is a general formulation of a CTMC model as given in [10, 85, 86, 87].

Some other general assumptions are:

A.1 There is no failure propagation.

A.2 The CTMC {X(t) : t ≥ 0} is irreducible over its state space.

A.3 From the state {0}, there is at least one failure transition and from any other state of

K except {0}, there is at least one repair transition with a positive probability.

A.4 From any UP state U of the system, there is a positive probability to have a failure

transition.

From the above formulation, the continuous-time stochastic process given by {X(t) : t ≥
0}, evolves in continuous-time over the finite state space K . It is obvious that every state of

a CTMC is a regenerative state due to the memoryless property of exponential distributions of

holding times in a given state. As per the regenerative process theory [10, 33], the evolution

of the process from {0} and back to {0} is called a cycle. The stochastic evolution of the

system is independent of its past, has the same distribution as if the system actually started in

the state {0} and we can obtain independent and identically distributed (iid) samples [17].

Thus, assuming the system to return to {0} infinitely often [17] and visited the most (i.e.,

more regeneration in highly reliable systems), we base our choice of {0} as the regeneration

state. This is the basic notion behind regenerative simulations.

Let us also consider:

Xi = X(t+i ), and {i = 0,1,2, ...,τ −1}, (4.1)

where the process is assumed to be right continuous and we consider the embedded discrete

times of the CTMC {X(t) : t ≥ 0}. The state is Xi at a given time and ti is the time of the

i− th change of state. We adopt the convention that t+0 = 0 [88]. From this, a single cycle (or

the sample path) of this CTMC can be written as:

ω = (X0,V0),(X1,V1), ...,(Xτ−1,Vτ−1).

Here, Xi is as given in Equation 4.1 denoting the state of the CTMC at a given time, starting

always from {0}, and τ −1 corresponds to the last change of state before re-entering back into

{0}. Vxi
is the sojourn time in a given state Xi. The last state (Xτ) is in fact the regeneration

state Xτ = {0}, so the change of state from Xτ−1 −→ Xτ = {0} would be caused by only a

repair action of a failed component at t+τ−1. For any CTMC, we also consider the system

to be balanced or unbalanced in terms of the probability of a sample path from the initial

state {0} to the failure set of state {D} of the system. The formal definition is given in the

following section.
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4.2.1 Balanced or Unbalanced Systems

In an asymptotic regime, let us consider that the rarity of the EOI is increased by a rarity

parameter λ (i.e., λ → 0). Let us consider a system starting from the initial state {0} has

two different paths to the system failure state {D}. The probability of the two paths is a

function of the rarity parameter given by failure rates of components λ . Formally, we can

say p1(λ ), p2(λ ) : (0,1)→ R. We define below a system to be balanced or unbalanced in

terms of the relative growth of the functions p1(λ ) and p2(λ ) asymptotically (i.e., λ → 0+).

• For a balanced system: p1(λ ) = O(p2(λ )) if |p1(λ )| ≤ c1 p2(λ ) for some constant

c1 > 0 or p1(λ ) = O(p2(λ )) if |p1(λ )| ≥ c2 p2(λ ) for some constant c2 > 0. For

a balanced system, we can say p1(λ ) = Θ(p2(λ )), where p1(λ ) = O(p2(λ )) and

p1(λ ) = O(p2(λ )) both for c1,c2 > 0. (Here Θ(·) is not to be confused with the

parameter space Θ used before).

• For an unbalanced system: p1(λ ) = o(p2(λ )) if limλ→0+ p1(λ )/p2(λ ) = 0. This

means the probability of a path given by p1(λ ) decreases much faster as compared to

p2(λ ).

The above description of a balanced or unbalanced system is slightly different from the

one given in literature. For example, in [47, 87, 89] systems are considered to be balanced

(or unbalanced) if the failure rates of components are of the same order of magnitude (or not).

Another description of balanced (or unbalanced) systems is given in [10], where balanced

systems are those in which components have the same amount of redundancy, i.e., same

number of components of a particular type must fail for a system failure (such as 1oo2 of

one type or 2oo3 of another type). In the current work, the term balanced or unbalanced are

used for systems as per the formal definition given above.

4.2.2 Steady-State Measure

The goal here is to compute the steady-state measure, namely the cumulative steady-state

unavailability (U). Steady-state measures are independent of the starting state of the system

(here it is specifically {0}) and the system unavailability is the long run fraction of time the

system is in the down state [10]. Formally:

U = lim
t→∞

1

t

Z t

0
1{X(t) ∈ D}dt,

where 1{·} is an indicator function when X(t) is in the failure set D . Let us define another

random variable Z which is a (measurable) function of X(t), given as:

Z =
Z τ

0
1(X(t) ∈ D)dt,

and means the time spent by X(t) in the set D during a cycle [87].
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If W is the length of a cycle, then E[W ] is the expected (or average) time (or length) of a

cycle. Then U is a ratio of two expectations [10]:

U =
E[Z]

E[W ]
=

R τ
0 1(X(t) ∈ D)dt

E[W ]
. (4.2)

A.5 Let us assume that E[Z] < ∞ and E[W ] < ∞ where E is the expectation under the

original measure P having a generator matrix Q [10, 17].

4.2.3 Steady-State Unavailability Estimation of HRMS

The focus of the study is to estimate the steady-state unavailability U of HRMS via simu-

lations. As already explained previously (see Sections 2.1 & 2.3), the following sections

re-introduces the background in the context of regenerative process theory. Also, we discuss

the use of standard regenerative MC method and the regenerative IS for simulations of

CTMCs.

Standard regenerative MC simulations of CTMC

The iid structure of the regenerative processes and the Equation 4.2 together form the basis of

the regenerative method [17]. The standard estimator of the U from a regenerative standard

MC simulation is given by:

Û =
Ẑn

Ŵn

,

where Ẑn and Ŵn are the respective averages over n cycles [10]. As per the law of large

numbers, if n is large enough, then Û → U as n → ∞. Cycles are of particular interest to

build CI (due to their stochastic independence) which in this case using the CLT [17] is given

as:
√

n
Ûn −U

σ̂/Ŵn

,

and is asymptotically distributed as a normal distribution N (0,1) with mean 0 and variance

1 [14]. The steady-state simulation is to efficiently estimate U by its estimator Û and to

develop the associated CI [90].

However, when a system is highly reliable (i.e., failures are very rare), then the standard

MC simulation’s estimator Û would not be an accurate estimate as the occurrence of rare

event (e.g., 1(X(t) ∈ D) would not happen, and Z = 0 in most cycles for this case. This lack

of useful samples could result in a huge variance (sometimes even bad or no estimation at all)

or an increasingly high RE (relative error) for the estimator (recall the measures of accuracy

in rare event simulations, see Section 2.5). The denominator E[W ] is the expected time of

the regenerative cycles which is easier to estimate by a standard simulation even.

IS is a viable option in such cases to obtain an alternative estimator of E[Z] by changing

the original probability measure P with a new one P̃ for sampling and increasing the occur-
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rence of rare failure events in the HRMS during simulations. We present the basics of the

regenerative IS simulations in the next section.

Importance sampling simulations of CTMC

In the introductory Section 2.3.1, we explained the concept of IS in a general context. Let us

consider here that the density of the sample path of the CTMC defined here is f (x;θ), with

parameter vector θ under the original measure P. The vector θ is in the parameter space Θ,

and for CTMCs, it is composed of the transition rates between different states of the CTMC.

The density (or likelihood) of a sample path of the CTMC for regenerative simulation can be

written as [22]:

f (x;θ) =

τ−1

∏
i=0

qxi,xi+1
exp

"
−

τ−1

∑
i=0

qxi
vxi

#
. (4.3)

Here, the term q denotes the rate. The probability of moving from a generic state xi −→ xi+1

is given by the ratio of the jump rate from xi to xi+1 and the sum of all the departure rates

from state xi. The density for moving from state xi to xi+1 would be: qxi
exp[−qxi

·vxi
], where

vxi
is the time spent in the particular state xi for each transition. The density of the entire

sample path is thus the product of density of each transition from i = 0 to τ −1.

For application of IS within the CTMC formulation given here, we generally replace the

original probability measure P by a new one P̃. Here, we apply the IS change of measure

within the same parametric family ( f ) by changing the parameter vector from θ (under P) to

θ̃ (under P̃). The condition that any non-zero sample under f (x;θ) also remains a non-zero

possibility under f (x; θ̃) must be met. The general equation for the likelihood ratio of a

sample path ω is then:

L(ω) =
f (x;θ)

f (x; θ̃)
=

τ−1

∏
i=0

qxi,xi+1

q̃xi,xi+1

exp

"
τ−1

∑
i=0

(q̃xi
−qxi

)vxi

#
. (4.4)

The density of each transition and the entire sample path (cycle) under the change of measure

f (x; θ̃) is computed the same way as for the original measure (as given in Equation 4.3). The

likelihood ratio L(ω) is computed as the ratio of the original and new densities at each state

change [17, 22].

The expectation under IS is now given as:

Eθ̃ [Z Lω ] = Eθ [Z] = Z, (4.5)

under the assumption that Eθ̃ [W ] < ∞ under P̃. For clarity, the expectation operator is

suffixed with the parameter vector under which the expectation is taken. Here, Eθ is the

expectation under the original density f (x;θ) (under probability measure P) and Eθ̃ is under

the IS density f (x; θ̃) (under new probability measure P̃). Obviously, the goal of using IS is

to obtain variance reduction in the final estimation of U , which here depends on accurate



60 Cross-Entropy Application to Highly Reliable Markovian Systems

estimation of Z, the numerator in Equation 4.2. This leads us to the possibility of a zero-

variance estimator of Z also.

Zero-Variance Estimator: The theoretical optimal change of measure (i.e., the zero-

variance density), as explained by Equation 2.8 previously, in this case is:

g∗(x) =
f (x;θ) · |Z|

Z
. (4.6)

This g∗(x) is the conditional density given the rare event occurs (i.e., |Z| > 0) but again

requires the knowledge of Z, the original problem to be estimated accurately.

To solve this problem of approximating the optimal change of measure, we use the idea

of minimizing the CE distance between the zero-variance density and the IS density used, as

explained in the following section.

4.2.4 Cross-Entropy for HRMS

The CE method, as previously discussed in a general context in Section 2.4.1, could be

utilized to find a density closest to the zero-variance IS density g∗(x) in Equation 4.6. The

main objective is to reduce the variance of the final estimator of U , by accurately estimating

the numerator Z using IS. Previously in Section 2.4.1, we discussed that the IS density closest

to g∗(x) in terms of CE distance (let us say with the optimizing parameter vector θ̃ ∗
ce) is also

the one for which the asymptotic variance of the estimator is minimum [32]. We employ this

idea here.

The same parametric family as the original measure (represented by the notation f ) is used

with the idea to minimize the CE distance between g∗(x) and the IS density f (x; θ̃). Following

the same analogy as previously presented (in Section 2.4.1, see Equations 2.15−2.19), the

CE distance between the two densities here is given by [18, 22, 31]:

D(g∗(x), f (x; θ̃)) = Eg∗

�

log
g∗(x)

f (x; θ̃)

�

. (4.7)

Replacing g∗(x) by its true value, it is equivalent to [22]:

D(g∗(x), f (x; θ̃)) = Eθ

�

|Z|

Eθ [|Z|]
log

�

|Z|

Eθ [|Z|]
f (x;θ)

��

− 1

Eθ [|Z|]
Eθ

�

|Z| log f (x; θ̃)
�

| {z }
to maximize

,

(4.8)

where the expectations are taken with respect to the density f (·;θ). To minimize the CE

distance between g∗(x) and f (x; θ̃) in the above Equation 4.8, it means to maximize the term

Eθ [|Z| log f (x; θ̃)] (all other terms are constants) depending on the f (·; θ̃). The optimizing

parameter vector, lets say θ̃ ∗
ce, forms the density f (x; θ̃ ∗

ce) that is closest to g∗(x) in CE

distance [22]. The problem is now transformed to a maximization problem, as shown below:

max
θ̃∈Θ

υ(θ̃) = max
θ̃∈Θ

Eθ

�

|Z| log f (x; θ̃)
�

, (4.9)
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where υ is implicitly defined.

For the purpose of sampling, let us consider an IS density within the same parametric

family, f (x; θ̌) with the arbitrary reference parameter vector θ̌ [31]. Now, the above Equation

4.9 can be re-written as:

max
θ̃∈Θ

υ(θ̃) = max
θ̃∈Θ

Eθ̌

�

|Z| L(X ;θ ; θ̌) log f (x; θ̃)
�

. (4.10)

The expectation is now taken under the IS density f (·; θ̌) and the likelihood ratio is the ratio

of the respective densities f (·;θ) and f (·; θ̌). Similar to Equation 2.19, the optimizer θ̃ ∗
ce is

given by [31]:

θ̃ ∗
ce = argmax

θ̃∈Θ

Eθ̌

�

|Z| L(X ;θ ; θ̌) log f (x; θ̃)
�

. (4.11)

The above Equation 4.11 can not be solved analytically [31]. However, the vector θ̃ ∗
ce

can be estimated by sample average approximation (the stochastic part) [31], as given below:

θ̃ ∗
ce = argmax

θ̃∈Θ

1

n

n

∑
m=1

�

Zm(ωm) L(ωm;θ ; θ̌) log f (ωm; θ̃)
�

. (4.12)

As long as the above equation is convex and differentiable with respect to θ̃ and Zm > 0, the

above equation can be solved through the following system of equations [31]:

1

n

n

∑
m=1

�

Zm(ωm) L(ωm;θ ; θ̌)
∂ log f (ωm; θ̃)

∂ θ̃

�

= 0. (4.13)

Necessity of multi-level CE schemes

The CE optimization solution given by Equation 4.12 is applicable in case of non-rare event

problems when Zm > 0 under θ̌ [31] via sample average approximation. In case of rare

event problems, Zm would be zero in most cycles for a small n. Also, since the CE scheme

is supposed to be used in a pre-simulation to find the optimal IS rates that can be used for

main simulations, the number of samples n can not be too large. Another important issue is

the selection of the density f (x; θ̌) with the parameter vector θ̌ . As previously discussed in

Section 2.4.1, a good choice of θ̌ is the one which leads to a sufficiently reliable optimizer of

Equation 4.12 with less variance.

In order to overcome the above problem, we can use a multilevel CE scheme [22, 31].

The idea of the multi-level CE scheme is usually applied in an iterative manner, where at

the start a model is solved that does not suffer from rare-event problems and subsequently

the rarity is increased [22]. In a multilevel scheme (involving many pre-simulation stages),

a sequence of θ̌ ( j) = θ̌
( j=1,2,..)
ce are chosen for sampling (where θ̌

( j)
ce ⊂ Θ) in several stages

(e.g., j number of stages) and Equation 4.12 can be used to obtain:

θ̌
( j+1)
ce = argmax

θ̃∈Θ

1

n j

n j

∑
m=1

Z j,m(ω j,m) L(ω j,m;θ ; θ̌
( j)
ce ) log f (ω j,m; θ̃). (4.14)
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At each subsequent stage ( j+1), n j number of cycles (ω j,m,m= 1,2, ...,n j) are simulated

using θ̌
( j+1)
ce obtained from the current stage j as the parameter vector for the IS density. At

each stage j, the sample size n j is supposed to be smaller than N (the number of cycles to be

simulated for the main simulation), but it should be large enough so that Equation 4.14 can

be solved [86].

Our goal is to propose an algorithm based on the multi-level CE scheme given by Equation

4.14. Next sections discuss the modeling of the HRMS models using Markovian SPNs that

represent large complex systems conveniently, and the use of the multi-level CE scheme

(using the general Equation 4.14 as the basis) to find optimal IS rates.

4.3 Stochastic Petri Nets (SPN) Application

We previously discussed the mathematical formulation of CTMC models, in Section 4.2, that

we use in the current work. RBDs and FTAs are the two main frameworks widely considered

at the modeling phase for quantitative estimation of reliability metrics [91]. However, they

can not represent dependencies occurring in real systems [83, 92]. To overcome this, Markov

modeling approach is capable of capturing different kind of dependencies occurring in

complex systems [83, 93, 94], but they also suffer from largeness of the state space [83] when

used for even slightly large models. Since passenger rail systems are complex and large scale,

it would be practically unfeasible to model such systems using Markov modeling approach.

Also, when considering testing of various protocols for logistics and maintenance and its

effect on the system unavailability, Markov modeling approach becomes too cumbersome.

Therefore, for the purpose of accurate, concise and convenient representation of the complex

models as well as the underlying CTMCs, as discussed in Section 4.2, we use Markovian

Stochastic Petri Nets (SPNs) here. The objective is to first model complex systems using

Markovian SPNs that also comprise of the underlying CTMC models and then to use the CE

pre-simulation scheme (of Section 4.2.4) to find the optimal IS rates for the transitions of

Markovian SPN models. The optimal IS rates are then used in a main simulation to estimate

steady-state unavailability U .

In the next sections, we introduce various constructs of SPNs that make them very useful

as a modeling tool. Also, the discussion focuses on the computation of the likelihood ratio

when using regenerative IS method for simulations, and specifically when applying IS on

the failure transitions of components in Markovian SPN models only, as we propose here.

Finally, the update equations for the multi-level CE scheme are given and we propose an

algorithm based on them.

4.3.1 SPN modeling for CTMC models

A Petri Net (PN) is an abstract and formal model of information flow, and is a powerful

method for describing and analyzing the flows of information and controls in a system [95]. A

PN is a directed graph whose nodes are partitioned into two disjoint sets, places (represented

by circles) and transitions (represented by bars) [34]. Arcs are used for connecting places
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to transitions (input arcs) and transitions to places (output arcs) [34]. Places can contain

tokens that are represented by black dots within places [95]. The state of a PN is given

by the configuration of tokens in different places, where each specific configuration is

called a marking [34]. A SPN is obtained from a PN model by assigning probability

distribution function to the firing time of each transition [34]. In Markovian SPNs, there

are only transitions with exponential distributions (timed transitions), whereas an extension

of such SPNs is to have transitions with distributions having zero holding time (immediate

transitions), called as Generalized SPNs (GSPN) [83]. To avoid any confusion, we use the

term SPN for both here.

SPNs also have other important constructs such as marking dependencies, arc cardinality,

guards (enabling conditions for transitions), etc., that make modeling of complex systems

easier. For example, in SPNs, places can be used to represent an individual component (one

token in the place) or multiple components of a sub-system (multiple tokens in a place).

Similarly, transitions can be assigned firing rates (according to the exponential distributions)

for a component failure or a system failure, depending on the model. Also, guards can be

used to control the firings of transitions.

In SPNs, the reachability graph is the graph representing all the reachable markings, i.e.,

the various configurations of tokens representing the state of a system [34]. For Markovian

SPNs, the reachability graph can be directly mapped to represent the underlying stochastic

processes (here the CTMC). In GSPNs, as there are both timed and immediate transitions, the

reachability graph is called as the Extended Reachability Graph (ERG), where the vanishing

markings (markings in which the process spends zero time due to the firing of an immediate

transition) are eliminated to obtain the underlying CTMC.

In literature, GSPNs have been shown to be the same as the underlying CTMCs and

steady-state solutions have also been proved [83]. Simulations of SPNs also overcome the

problem of largeness of the reachability graphs (they are not generated in such cases) and

steady-state measures can be thus estimated using regenerative simulations [34]. These

Markovian SPNs make it easier for a practitioner to model complex systems with relative

ease. Due to this, we consider Markovian SPN models for simulations in the current work.

Without going into further details of SPNs, interested readers can consult [34, 91, 92, 95, 96]

for a deeper insight. In the current work, we use the Stochastic Petri Nets Package (SPNP)

developed at the Duke University [34, 83], for analysis and modeling. An introduction of the

tool is also given in the Appendix A.

4.3.2 Regenerative IS simulations in Markovian SPNs

The general formulation of the CTMC model in Section 4.2 considered a parametric density

(under original measure P) as f (x;θ) with a parameter vector θ containing the transitions

rates among different states of the CTMC. Since we model the HRMS using Markovian SPNs

here, let us consider that the vector θ contains the rate parameters of different transitions in a

SPN. Each transition of the SPN can represent a single transition of a CTMC state change

or a family of CTMC transitions too. The likelihood of a sample path ω in a cycle is still
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computed the same way as given in Equation 4.3 at the firing of each transition (i.e., state

change in the CTMC).

Let us consider all the transitions are represented by a set � with their respective rates

forming the parameter vector θ . We consider � to be a superset of transitions of interest (i.e.,

where the original distribution is to be replaced by a change of measure in IS later on) and

any other transitions. Therefore,

�= F ∪R and {θ = θF ∪θR}. (4.15)

Now, � is the set of all transitions of the model (with parameter vector θ ), F is the subset of

all transitions of interest (with subset parameter vector θF ) and R is the subset of all other

transitions not in F (with subset parameter vector θR).

Let there be a total finite number tr of transitions in the subset F , such that:

F = {T R1|{z}
k=1

,T R2|{z}
k=2

,T R3|{z}
k=3

, ...,T Rtr|{z}
k=tr

} with vector of rates θF = {λ1,λ2,λ3, ...,λtr}, (4.16)

comprising of their respective rate parameters and each transition is indexed uniquely by

k = {1, ..., tr}, as shown by Equation 4.16. Here k is considered as an identification parameter

for grouping of the transitions in subset F (consequently in θF also), that is explained later

on.

From any given state xi, let λ (i) be the total rate out of that state. The total rate out of the

state xi is then λ (i) = ∑
tr
k=1 λk(i)+∑R(i), where ∑R(i) is the sum of the rates of transitions

in subset R that are possible out of xi and ∑
tr
k=1 λk(i) is the sum of rates of transitions in

subset F that are possible out of xi.

Now, we define two important parameters that are later on used in the current work:

• Parameter ak: Let ak be the number of times a k-th transition from subset F occurs

(i.e., fires in the SPN model) in a cycle. Here, ak is a random integer counter ≥ 0 for

each transition that is updated each time a transition fires over the entire cycle.

• Parameter bxi,k: Let bxi,k be the number of transitions from group k in subset F that

are possible (i.e., enabled in the SPN model) at a given state xi. Here, bxi,k is also a

random integer counter that can be only 1 or 0 (for this case) at a given state xi for k-th

transition (recall unique identification parameter k). A specific transition can be only

enabled (1) or disabled (0) in this case. This parameter is updated at each state change

(i.e., firing of a transition in the SPN)

From the above explanation, we can rewrite the Equation 4.3 of the likelihood of a sample

path as:

f (x;θ) =
tr

∏
k=1

(λk)
ak ·Γ · exp

"
−

τ−1

∑
i=0

�

bxi,1 ·λ1 + ....+bxi,tr ·λtr +∑Rxi

�

vxi

#
, (4.17)
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where Γ is the product of rates of transitions belonging to the subset R that have occurred

(fired) in a sample path and ΣRxi
is the sum of the rates for transitions from subset R enabled

at a given state xi. Separating the terms, the likelihood (or density) of a sample path is now:

f (x;θ) =

tr

∏
k=1

(λk)
ak ·Γ · exp

"
−

τ−1

∑
i=0

(bxi,1 ·λ1 + ....+bxi,tr ·λtr)vxi

#
· exp

"
−

τ−1

∑
i=0

(ΣRxi
)vxi

#
.

(4.18)

As explained in Section 4.2.3, we want to apply IS within the same parametric family and

thus, by changing the parameter vector from θ (under P) to θ̃ (under P̃). This means we have

the original density f (x;θ) and the importance density f (x; θ̃). In the current context, we

discussed applying IS only on a subset of transitions of the model (i.e., F ∈�) by changing

the parameter vector θF to θ̃
F̃

. This means that the rates of the transitions in the original

subset F (e.g., θF = {λ1,λ2, ...λtr}) are changed to form a new IS subset F̃ with new IS

rates vector (e.g., θ̃
F̃

= {λ̃1, λ̃2, ...λ̃tr}).

However, a question arises regarding the reason behind the application of IS only on the

transitions of the subset F ∈�, and not on the entire set �. There are two logical reasons

involved that we consider important in this context, and are discussed below.

1. The issue of likelihood ratio degeneracy could be avoided by this application. In

[37, 97], it has been discussed to not use IS for high dimensional problems due to

the likelihood degeneracy issue. This is due to the reason that in high-dimensional

simulation models, the CE optimization schemes becomes useless, as the likelihood

ratio term becomes the product of a large number of marginal likelihoods and the IS

estimator based on the likelihood ratio would degenerate (i.e., having a large variance)

[97]. This would mar the entire objective of using IS to obtain variance reduction.

Particularly, the CE method (and also the VM approach) is susceptible to likelihood

ratio degeneracy issue [31, 97]. The screening method as proposed in [97], focuses on

reducing the dimension of the likelihood ratio by application of IS only on a subset of

� (i.e., the bottleneck parameters) to form the subset F .

2. We assume to apply IS only to the failure transitions of a Markovian SPN, selecting the

subset F out of � based on failure transitions (or not failure transition for subset R).

The notion behind it is that increasing the failures of individual components would also

increase the probability of a system failure (i.e., the target event to estimate Z using IS)

in a cycle. For moderately sized problems, we can choose F =�,R = /0 to contain

all the transitions of the model.

From the aforementioned discussions, using parameters ak and bxi,k we apply IS within

the same parametric family on a subset F ∈� of transitions of the Markovian SPN. Note, the

subsets in the original density and the IS density are equivalent, except the values. The likeli-

hood ratio being the ratio of the two densities, L(ω) = f (x;θ)/ f (x; θ̃) = f (x;θF )/ f (x; θ̃
F̃
)
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here, the general equation (see Equation 4.4) can be re-written as:

L(ω) =
f (x;θF )

f (x; θ̃
F̃
)
=

tr

∏
k=1

�

λk

λ̃k

�ak

· exp

"
τ−1

∑
i=0

�

bxi,1(λ̃1 −λ1)+ ...+bxi,tr(λ̃tr −λtr)
�

vxi

#
.

(4.19)

In the above equation, the ratio of the terms from subset R would be by default one, as θR

remains unchanged in f (x;θ) and f (x; θ̃).

Grouping/ One-dimensional change of measure

Let us consider a specific case where a particular group of components in the Markovian SPN

model have similar behavior in a sample path towards the target set (i.e., rare system failure).

In such a case, the transition rates of that particular group (in subset F ) could be replaced

by common IS rates in subset F̃ for that particular group. This approach of grouping is

specifically dependent on the model under consideration and the knowledge of the model for

the practitioner. However, such a grouping of transitions is of particular interest as in the case

of large models having many transitions in the subset F , when IS is applied individually on

each transition by changing their rates, it is possible that some transitions are not sampled

even for a large number of cycles simulated. This would be undesirable when used for CE

optimization, as such non-sampled transitions would provide a zero value. Also, in practice,

it could be simpler to find a common value for IS rates of the transitions grouped together.

We consider two cases here: first, when we apply IS on the transitions of the subset F by

dividing them in groups within the subset F̃ ; second when we apply IS on the subset F by

using a single common IS value for all the transitions in F̃ .

Let us suppose that the transitions in subsets F̃ and F , are grouped in g number of

groups (having trk number of transitions (l = 1, ..., trk) in group k = 1, ...,g). Here, we

consider that each group has a unique k and for each group we have a common IS rate λ̃k for

all the transitions within that group. This is explained by the following equation:

Original subset: F = {T R1,T R2| {z }
k=1

,T R3,T R4,T R5| {z }
k=2

, ...,T Rtr|{z}
k=g

}

with θF = {λ1,1,λ2,1,λ3,2,λ4,2,λ5,2, ...,λtr,g} and

IS subset: F̃ = {T R1,T R2| {z }
k=1

,T R3,T R4,T R5| {z }
k=2

, ...,T Rtr|{z}
k=g

}

with θ̃
F̃

= {λ̃1, λ̃1| {z }
k=1

, λ̃2, λ̃2, λ̃2| {z }
k=2

, ..., λ̃tr,g|{z}
k=g

}.

(4.20)

Here, the original subset F is grouped and the same grouping is followed for the IS subset F̃ .

For example, the transitions T R3,T R4,T R5 are in group k = 2 above, having three transitions

(trk = 3) and are replaced by a common value of IS rate λ̃2 for all the transitions within the

group.
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In this case, the Equation 4.15 still holds true, however, the elements in subsets F and

F̃ are grouped. Each transition of a particular group has a common IS rate value λ̃k. Now,

the likelihood ratio given in Equation 4.19 can be written as:

L(ω) =
f (x;θF )

f (x; θ̃
F̃
)
=

"
g

∏
k=1

trk

∏
l=1

�

λl,k

λ̃k

�al,k
#
· exp

"
τ−1

∑
i=0

 
g

∑
k=1

trk

∑
l=1

bxi,l,k(λ̃k −λl,k)

!
vxi

#
,

(4.21)

where λl,k are the original rates of the transitions in subset F and similarly in subset F̃ as

per their respective groups identified by k = 1, ...,g. The number of transitions within each

group k are l = 1, ..., trk.

Another possibility is a one-dimensional change of measure such that all the rates of

transitions in subset F are replaced by a single common IS rate λ̃ for all transitions in subset

F̃ as explained in Equation 4.22 below.

Original subset: F = {T R1,T R2,T R3,T R4,T R5, ...,T Rtr| {z }
k=1

}

with θF = {λ1,λ2,λ3,λ4, ...,λtr} and

IS subset: F̃ = {T R1,T R2,T R3,T R4,T R5,T Rtr| {z }
k=1

}

with θ̃
F̃

= {λ̃ , λ̃ , λ̃ , λ̃ , λ̃ , ..., λ̃}.

(4.22)

In such a case, there is only one group and k = g = 1, trk = tr and likelihood ratio is

written as:

L(ω) =
f (x;θF )

f (x; θ̃
F̃
)
=

"
tr

∏
l=1

�

λl

λ̃

�al

#
· exp

"
τ−1

∑
i=0

 
tr

∑
l=1

bxi,l

�

λ̃ −λl

�

vxi

!#

=
tr

∏
l=1

�

λl

λ̃

�al

· exp

"
τ−1

∑
i=0

�

bxi,1(λ̃ −λ1)+ ...+bxi,tr(λ̃ −λtr)
�

vxi

#
,

(4.23)

where l is the corresponding index in subset F , and all the transitions in both the subsets F

& F̃ are considered to be in the same group (i.e., k = 1). If there is no grouping such that

rate of each transition in subset F is replaced by unique IS rates in F̃ , then we can consider

that there are tr number of groups and g = 1, trk = tr,k = l in Equation 4.21. The likelihood

ratio is then given as:

L(ω) =
f (x;θF )

f (x; θ̃
F̃
)
=

tr

∏
k=1

�

λk

λ̃k

�ak

· exp

"
τ−1

∑
i=0

�

bxi,1(λ̃1 −λ1)+ ...+bxi,tr(λ̃tr −λtr)
�

vxi

#
.

(4.24)

The above Equation 4.24 is the same as Equation 4.19. Equations 4.21 and 4.23 are specific

cases of Equation 4.19 in which the transition rates for IS are grouped in specific number
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of groups or one whole group (one-dimensional change of measure). In all the cases, the

expectation of Z is still computed by Eθ̃ [Z Lω ]. In the next section, we explain how CE

optimization can be performed as per grouping of transitions (or no grouping).

4.3.3 CE Optimization of SPN Transitions: Update Equation

The problem presented in Section 4.2 was to estimate the cumulative steady-state unavail-

ability U , where IS is required to solve the problem of estimating the numerator Z efficiently

in the Equation 4.2. The expectation of Z under IS change of measure is given by Equation

4.5. The IS density closest to the zero-variance importance density g∗(x) (see Equation 4.6)

regarding CE distance is possible to be approximated by the CE optimization technique. The

update equation for the multi-level CE optimization scheme can be obtained from Equation

4.13.

In the context of the current work, we propose update equations for the multi-level CE

scheme in two cases: first, when all the transitions of interest are to be optimized separately;

second, transitions are grouped (either in multiple groups or a single one). In the following

sections, we propose the update equations for these cases and also a general equation that we

use in the multi-level CE scheme later on.

Multi-dimensional optimization

In the case of multi-dimensional optimization, the intent is to find the best rate parameters for

IS application for each specific transition of interest individually, and form the CE optimized

IS parameter vector θ̃ ∗
ce with those values (i.e., solution of Equation 4.12). This is the general

case considered here for multi-dimensional optimization, where transitions are not grouped

within subset F̃ (or contrarily each single transition is a group made of itself having a single

element). Let us consider Equation 4.13 again here:

1

n

n

∑
m=1

Zm(ωm) L(ωm;θ ; θ̌)
∂ log f (ωm; θ̃)

∂ θ̃
= 0. (4.25)

We can solve the system of equations given by Equation 4.25 above for each transition within

the subset F̃ . This can be done by solving Equation 4.25 for each transition (separately

in this case of multi-dimensional optimization) with respect to the IS change of measure

f (ωm; θ̃) (with vector θ̃ ). Recall that {θ̃ = θ̃
F̃
∪θR}. The vector θ̃

F̃
comprises the IS rates

of the transitions of interest (in the subset F̃ ) and θR comprises of unchanged rates (in the

subset R).

For the above purpose, we can take the partial derivative of log f (ωm; θ̃) with respect to

a single element (i.e., the rate of a specific single transition as shown by Equation 4.16) from

the subset vector θ̃
F̃

. By plugging in the partial derivative in Equation 4.25 and equating it to

zero for that particular transition, we can obtain the CE optimized IS rate for that transition.

In order to form the optimized IS vector θ̃ ∗
ce (the solution of the problem given in Equation

4.12), this computation is done for each transition in the subset F̃ .
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Let us consider the density of a sample path given by Equation 4.18, where there is no

grouping of transitions. Similarly, the density of a sample path under a change of measure

f (·; θ̃), with parameter vector θ̃ , such that (s.t.) {θ̃ = θ̃
F̃
∪θR} is given by:

f (·; θ̃) =
tr

∏
k=1

�

λ̃k

�ak

·Γ · exp

"
−

τ−1

∑
i=0

(bxi,1 · λ̃1 + ....+bxi,tr · λ̃tr)vxi

#
· exp

"
−

τ−1

∑
i=0

(ΣRxi
)vxi

#
.

(4.26)

Taking log of f (·; θ̃) and simplifying:

= log

"
tr

∏
k=1

�

λ̃k

�ak

#
+ log Γ + log

"
exp

"
−

τ−1

∑
i=0

(bxi,1 · λ̃1 + ....+bxi,tr · λ̃tr)vxi

##

+ log

"
exp

"
−

τ−1

∑
i=0

(ΣRxi
)vxi

##

=
h
log

�

λ̃1

�a1

+ log
�

λ̃2

�a2

+ log
�

λ̃3

�a3

+ ...+ log
�

λ̃tr

�atr
i
+ log Γ

+

"
−

τ−1

∑
i=0

(bxi,1 · λ̃1 + ....+bxi,tr · λ̃tr)vxi

#
+

"
−

τ−1

∑
i=0

(ΣRxi
)vxi

#
.

Now, partially differentiating the above equation with respect to one of the IS rate (e.g.,

λ̃1 of let’s say a transition T R1 in subset F̃ , as shown in Equation 4.16):

∂ log( f (·; θ̃))

∂ λ̃1

=
a1

λ̃1

−
"

τ−1

∑
i=0

bxi,1 · vxi

#
. (4.27)

Similarly for any other transition of interest (e.g., a failure transition) indexed by k (as shown

in Equation 4.16), the partial derivative would be :

∂ log( f (·; θ̃))

∂ λ̃k

=
ak

λ̃k

−
"

τ−1

∑
i=0

bxi,k · vxi

#
. (4.28)

Substituting Equation 4.28 in Equation 4.25:

1

n

n

∑
m=1

Zm(ωm) L(ωm;θ ; θ̌)

 
a
(m)
k

λ̃k

−
"

τ−1

∑
i=0

b
(m)
xi,k

vxi

#!
= 0 (4.29)
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λ̃k =
∑

n
m=1

h
Zm(ωm) L(ωm;θ ; θ̌) a

(m)
k

i

∑
n
m=1

"
Zm(ωm) L(ωm;θ ; θ̌)

"
τ−1

∑
i=0

b
(m)
xi,k

vxi

## .
(4.30)

The above equation solves the system of equations given by Equation 4.25 with respect

to a single transition’s IS rate, where there are no multi-levels of CE used. As CE opti-

mization needs a multi-level scheme (see Section 4.2.4), let us consider j number of stages

of optimization, where in each stage n j number of cycles are simulated and use the above

Equation 4.30 for a multi-level scheme. We use the IS density θ̌
( j)
ce at each stage for sampling,

where it is also divided in subsets F̃ and R as done for θ̃ . Plugging the above value of the

solution of the maximization problem for a single transition’s IS rate in Equation 4.14, where

λ̌
( j+1)
ce,k = λ̃

( j)
k , we have the updating equation as:

λ̌
( j+1)
ce,k =

n j

∑
m=1

h
Z j,m(ω j,m) L(ω j,m;θ ; θ̌

( j)
ce ) a

( j,m)
k

i

n j

∑
m=1

"
Z j,m(ω j,m) L(ω j,m;θ ; θ̌

( j)
ce )

"
τ−1

∑
i=0

b
( j,m)
xi,k

vxi

## . (4.31)

Here, the likelihood ratio is L(ω j,m;θ ; θ̌
( j)
ce ) at a given stage j, with the original measure

under θ and the IS change of measure under θ̌
( j)
ce . It is the computed the same way as given

by Equation 4.19. For optimizing multiple transitions having different k indexes, the new

parameter vector θ̌
( j+1)
ce is constructed for each subsequent stage j+1 by using Equation

4.31 separately for each transition at the current stage j. Thus from this, we can construct an

optimized CE parameter vector θ̃ ∗
ce in j number of stages where θ̃ ∗

ce = θ̌
( j+1)
ce obtained after

the final pre-simulation stage.

Grouping/ One-dimensional optimization

In this section, we explain the special case presented in Section 4.3.2 for grouped or one-

dimensional change of measure. Recall that in this case, the transitions of interest (i.e., in

subset F and consequently in subset F̃ ) have their transition rates replaced by either a

common value for a group of transitions (grouped change of measure) or a single value (one-

dimensional change of measure) in the vector θ̃
F̃

. Let us consider the two cases separately

in the following text.

Case 1 (Grouped Optimization): Here we assume that the transitions are grouped in the

subsets F and F̃ as shown by Equation 4.20. There are g number of groups indexed by k,

trk number of transitions within each group. The likelihood ratio L(ω) is given by Equation
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4.21, as the ratio of the original density (with vector θ containing θF ) and the IS density

(with vector θ̃ containing θ̃
F̃

).

The density of the sample path under a change of measure ( f (·; θ̃)) is given by:

f (·; θ̃)=

"
g

∏
k=1

(λ̃k)
∑

trk
l=1 al,k

#
· Γ · exp

"
−

τ−1

∑
i=0

 
g

∑
k=1

 
λ̃k

trk

∑
l=1

bxi,k,l

!!
vxi

#
· exp

"
−

τ−1

∑
i=0

(ΣRxi
)vxi

#
,

(4.32)

where f (·; θ̃) is with parameter vector {θ̃ = θ̃
F̃
∪θR}, s.t. θ̃

F̃
contains IS rates in grouped

form as shown in Equation 4.20.

Now taking the log of f (·; θ̃) again and simplifying:

= log

"
g

∏
k=1

(λ̃k)
∑

trk
l=1 al,k

#
+ log Γ+ log

"
exp

"
−

τ−1

∑
i=0

 
g

∑
k=1

 
λ̃k

trk

∑
l=1

bxi,k,l

!!
vxi

##

+ log

"
exp

"
−

τ−1

∑
i=0

(ΣRxi
)vxi

##

=

�

log(λ̃1)

�

∑
tr1
l=1 al,1

�

+ log(λ̃2)

�

∑
tr2
l=1 al,2

�

+ ...+ log(λ̃g)

�

∑
trg
l=1 al,g

��

+ log Γ

+

"
−

τ−1

∑
i=0

 
g

∑
k=1

 
λ̃k

trk

∑
l=1

bxi,k,l

!!
vxi

#
+

"
−

τ−1

∑
i=0

(ΣRxi
)vxi

#
.

In this case, the partial derivative is taken in the above equation, with respect to a group

k’s common element λ̃k. Let’s suppose we take the partial derivative with respect to a group

k = 1 (i.e., with respect to the element λ̃1 ) in above the equation and we get:

∂ log( f (·; θ̃))

∂ λ̃1

=
∑

tr1

l=1 al,1

λ̃1

−
"

τ−1

∑
i=0

 
tr1

∑
l=1

bxi,1,l

!
vxi

#
. (4.33)

Similarly for any other group indexed by k, the partial derivative is:

∂ log( f (·; θ̃))

∂ λ̃k

=
∑

trk

l=1 al,k

λ̃k

−
"

τ−1

∑
i=0

 
trk

∑
l=1

bxi,k,l

!
vxi

#
. (4.34)

Again, substituting Equation 4.34 in Equation 4.25:

1

n

n

∑
m=1

Zm(ωm) L(ωm;θ ; θ̌)





∑
trk

l=1 a
(m)
l,k

λ̃k

−
"

τ−1

∑
i=0

 
trk

∑
l=1

b
(m)
xi,k,l

!
vxi

#
= 0

λ̃k =
∑

n
m=1 Zm(ωm) L(ωm;θ ; θ̌) (∑

trk

l=1 a
(m)
l,k )

∑
n
m=1 Zm(ωm) L(ωm;θ ; θ̌)

h
∑

τ−1
i=0

�

∑
trk

l=1 b
(m)
xi,k,l

�

vxi

i .

(4.35)
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The above equation solves the system of equations formed by the Equation 4.25 with

respect to a group’s multiple elements indexed by k (see grouping as shown in Equation 4.20),

having a common value of IS rate λ̃k. As previously done for multi-dimensional optimization,

let us consider for a multi-level CE scheme j number of stages of optimization where in each

stage, n j number of cycles are simulated and the above equation is used for each group at

each stage. We use the IS density given by parameter vector θ̌
( j)
ce at stage j for sampling,

where it is also divided in subsets F̃ and R. Plugging the above value of Equation 4.35 in

Equation 4.14, for λ̌
( j+1)
ce,k = λ̃

( j)
k (i.e., common IS rate for a single group of transitions), we

have:

λ̌
( j+1)
ce,k =

n j

∑
m=1

h
Z j,m(ω j,m) L(ω j,m;θ ; θ̌

( j)
ce ) (∑

trk

l=1 a
( j,m)
l,k )

i

n j

∑
m=1

h
Z j,m(ω j,m) L(ω j,m;θ ; θ̌

( j)
ce )
h
∑

τ−1
i=0

�

∑
trk

l=1 b
( j,m)
xi,k,l

�

vxi

ii . (4.36)

Here, λ̌
( j+1)
ce,k for the next stage (or λ̌

( j)
ce,k at the current stage), is a common value of the rate

for all transitions in group k in subset F̃ . The θ̌
( j+1)
ce is now constructed by using the above

Equation 4.36 for each group k having multiple transitions within it. The parameters a in

the sum (∑
trk

l=1 a
( j,m)
l,k ) is computed if any of the transition in a group k (having trk number of

transitions in that group) has fired in sample path m at stage j. Similarly, the parameter b in

the sum ∑
trk

l=1 b
( j,m)
xi,k,l

is also computed if any transition of group k is enabled at state xi in the

sample path m simulated at stage j. The final stage j allows us to obtain the CE optimized IS

rates λ̌
( j+1)
ce,k to form the vector θ̃ ∗

ce = θ̌
( j+1)
ce .

Case 2 (One-Dimensional Optimization): In the last special case, the transitions in the

subset F of � are to be replaced by a single value of IS rates as explained by Equation

4.22. There is only a single group k = g = 1 containing trk = tr number of transitions.

The likelihood ratio is as given by Equation 4.23 with the original density (with vector θ
containing θF ) and IS density (with vector θ̃ containing θ̃

F̃
). The density of the sample

path ( f (·; θ̃)) is now given by:

f (·; θ̃) = λ̃ (∑tr
l=1 al) · Γ · exp

"
−

τ−1

∑
i=0

 
tr

∑
l=1

bxi,l

!
λ̃vxi

#
· exp

"
−

τ−1

∑
i=0

(ΣRxi
)vxi

#
, (4.37)

where f (·; θ̃) is defined by parameter vector {θ̃ = θ̃
F̃
∪ θR}, s.t. θ̃

F̃
contains IS rates

with a single common value for all transitions in F̃ (as shown in Equation 4.22). As done

previously for the multi-dimensional and grouped optimization cases, we first take the log of
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f (·; θ̃) and simplify, as shown below.

= log
h
λ̃ (∑tr

l=1 al)
i
+ log Γ + log

"
exp

"
−

τ−1

∑
i=0

 
tr

∑
l=1

bxi,l

!
λ̃vxi

##

+ log

"
exp

"
−

τ−1

∑
i=0

(ΣRxi
)vxi

##

= log
h
λ̃ (∑tr

l=1 al)
i
+ log Γ −

"
τ−1

∑
i=0

 
tr

∑
l=1

bxi,l

!
λ̃vxi

#
−
"

τ−1

∑
i=0

(ΣRxi
)vxi

#
.

Since there is only one group that contains only a common value λ̃ in the subset F̃ , the

partial derivative of the above equation is taken with respect to λ̃ for all the transitions in

subset vector θ̃
F̃

:

∂ log( f (·; θ̃))

∂ λ̃
=

∑
tr
l=1 al

λ̃
−
"

τ−1

∑
i=0

 
tr

∑
l=1

bxi,l

!
vxi

#
. (4.38)

Substituting the above in Equation 4.25:

1

n

n

∑
m=1

Zm(ωm) L(ωm;θ ; θ̌)

 
∑

tr
l=1 a

(m)
l

λ̃
−
"

τ−1

∑
i=0

 
tr

∑
l=1

b
(m)
xi,l

!
vxi

#!
= 0

λ̃ =
∑

n
m=1 Zm(ωm) L(ωm;θ ; θ̌)

�

∑
tr
l=1 a

(m)
l

�

∑
n
m=1 Zm(ωm) L(ωm;θ ; θ̌)

h
∑

τ−1
i=0

�

∑
tr
l=1 b

(m)
xi,l

�

vxi

i .
(4.39)

The above Equation 4.39 would provide a single common value of IS rate λ̃ when all the

transitions in F and consequently in F̃ are grouped together in a single group and it solves

the Equation 4.25. For a multi-level CE scheme, having j number of stages, n j number of

cycles simulated at stage j, we can use the above equation. Let us consider again we use IS

density given by θ̌
( j)
ce at stage j for sampling. Now for λ̌

( j+1)
ce = λ̃ ( j) in Equation 4.39 and

using Equation 4.14 we obtain:

λ̌
( j+1)
ce =

n j

∑
m=1

h
Z j,m(ω j,m) L(ω j,m;θ ; θ̌

( j)
ce ) ∑

tr
l=1 a

( j,m)
l

i

n j

∑
m=1

h
Z j,m(ω j,m) L(ω j,m;θ ; θ̌

( j)
ce )

�

∑
τ−1
i=0

�

∑
tr
l=1 bxi,l

�

vxi

�

i . (4.40)

Here λ̌
( j+1)
ce for the next stage (or λ̌

( j)
ce at the current stage), is a common value for all the

transitions in subset F̃ . Here, the parameter vector θ̌
( j+1)
ce for the next stage is constructed
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by using the above Equation 4.40 for the all the transitions in subset F̃ grouped together in a

single group.

Selection of CE update equation

In the previous sections, we proposed update equations for a multi-level CE scheme for three

different cases. Equation 4.31 is for optimizing transitions of interest separately as shown by

Equation 4.16. Equation 4.36 is for optimizing transitions in groups as shown by Equation

4.20. Finally, Equation 4.40 is for optimizing all transitions as a single group as shown by

Equation 4.22. The main difference between these update equations is in the computation

part. For the purpose of simplicity, Equation 4.36 can be considered as our main update

equation for a multi-level CE scheme. The case given by Equation 4.16 can be assumed in

Equation 4.20 as each transition being a group itself (i.e., k = 1, .., tr). The one-dimensional

change of measure given by Equation 4.22 can also be assumed in Equation 4.20 as the case

when there is a single group k = 1 having tr number of transitions within it. The likelihood

ratio is computed at each state change (i.e., firing of a transition in the Markovian SPN) and

Equation 4.21 is used, where the transitions are either uniquely identified or in groups or as a

single group using index k in the subsets F and F̃ .

4.3.4 Application of CE Optimization Scheme for Markovian SPNs:

Algorithm

In the current work, Markovian SPNs are used to conveniently represent the HRMS models

and previously it was discussed how Markovian SPNs can be used to estimate U via IS in

the current context. Also, we showed how a multi-level CE update equation can be used

for optimizing the IS rates of transitions in a SPN. The CE scheme is supposed to be used

in a pre-simulation to obtain CE optimized IS rates for the transitions of interest (i.e., the

transitions in the subset F of �). We now propose a multi-level CE algorithm where the

problem defined by f (x;θ), where {θ = θF ∪θR}, is broken down into a series of less rare

problems.

Description of the Algorithm (3)

In the Algorithm 3, it is considered that the problem is defined by the original density f (x;θ).
Certain assumptions of the algorithm are:

1. Subsets: It is assumed that original vector θ (with set � containing all transitions)

contains rates of transitions of interest θF (subset F ∈ �) and rates of transitions

of non-interest θR (subset R ∈ �). Same is true for the IS density and the vectors

forming it (divided in subsets F̃ and R) similarly.

2. Grouping: The grouping is defined for subset F̃ (and F ) by giving unique value

of k index for each group. Transitions within a group have the same k values and

consequently optimized together to obtain common value of IS rates for that group.
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Algorithm 3 Cross Entropy Algorithm for Markovian SPNs

1: Inputs: Original problem f (x;θ), transitions of interest or not (F and R subsets), grouping

strategy by k in subsets F and F̃ , no. of pre-simulation stages j = 1, ...,S and number of cycles

(n j) at stage j

2: Output: Vector of CE optimized IS rates for the problem f (x;θ)
3: Procedure:

4: Redefine problem: Create an unstable system by increasing rates in subset F to form a new

easy sub-problem f (x;θ ( j=1)) s.t. {θ ( j=1) = θ
( j=1)
F

∪θR}

5: Initial IS vector: Same as the new target problem θ̌
( j=1)
ce = θ ( j=1). ▷ standard regenerative

simulation

6: for each pre-simulation stage from j = 1 to S

7: simulate n j cycles using θ ( j) as new sub-problem and θ̌
( j)
ce as IS change of measure.

8: for each cycle at stage j

9: Initialize: sum of parameter a
( j,m)
l,k to zero for all groups.

10: for each state change in a cycle: i = 0 to τ −1

11: Initialize: sum of parameter b
( j,m)
xi,k

to zero for all groups at each state change.

12: At each firing: Compute the sum for a
( j,m)
l,k for each group k

13: At each state: Compute the sum of b
( j,m)
xi,k

and multiply with sojourn time vxi
in that

state for each group k

14: At each state change: Compute downtime Z j(·) as a sum and the likelihood ratio

L(·;θ ( j); θ̌
( j)
ce )

15: end for

16:

17: Compute the sum of numerator and denominator for each group k using Equation 4.36

18: end for

19:

20: For each group k of transitions: Compute next stage common IS rate λ̌
( j+1)
ce,k to form {θ̌

( j+1)
ce =

θ̌
( j+1)

F̃
∪θR} via Equation 4.36

21: Progressive rarity shifting: Decrease the rates in θ
( j)
F

to form θ
( j+1)
F

22: if θ
( j+1)
F

≤ θF then ▷ If failures rates go below the values in original problem θF

θ
( j+1)
F

← θF

23: end if

24: New rarer problem for j+1 stage: f (x;θ ( j+1)) s.t. {θ ( j+1) = θ
( j+1)
F

∪θR}
25: j ← j+1

26: end for

27: return θ̃ ∗
ce = θ̌

( j+1)
ce obtained after final pre-simulation stage j = S.

28: Use θ̃ ∗
ce as IS change of measure to estimate Z for original problem given by f (x;θ).
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3. Arithmetic operations: All arithmetic operations denoted for a set (or a vector) denotes

the same arithmetic operation on each element (i.e., the rates in this case) of that set

(or vector).

4. Other inputs: The number of pre-simulation stages j are pre-defined and the number

of regenerative IS cycles n j to be simulated at each j are also given.

With the above assumptions, the algorithm firstly redefines the original problem given

by θ , s.t. {θ = θF ∪ θR}, into a new sub-problem {θ ( j=1) = θ
( j=1)
F

∪ θR} for the first

stage j = 1. Since IS is to be applied only on failure transitions in our case, θ
( j=1)
F

can

be formed by increasing the failure rates given in the original vector θF . The IS vector

θ̌
( j=1)
ce is considered to be the same as the new sub-problem to be solved at this stage, s.t.

{θ̌
( j=1)
ce = θ̌

( j=1)

F̃
∪θR} and θ̌

( j=1)

F̃
= θ

( j=1)
F

. Assuming this makes the system unstable, a

standard regenerative simulation is performed (likelihood ratio would be one in such case)

and Equation 4.36 is used to find the IS rates (for each group in F̃ ) of transitions for the next

stage j+1.

In the subsequent stages, we create a a newer and rarer sub-problem {θ ( j+1) = θ
( j+1)
F

∪
θR}. This is done by decreasing the failure rates of components considered in the current

stage given by {θ ( j) = θ
( j)
F

∪θR} (i.e., the rates in vector θ
( j)
F

). The algorithm uses the IS

vector {θ̌
( j+1)
ce = θ̌

( j+1)

F̃
∪θR} obtained from the current stage j (for the next stage j+1) as

a solution of Equation 4.36 for each group of transitions. In the final stage of pre-simulation,

the original problem {θ = θF ∪θR} is solved using the IS rates obtained from the previous

stage. The solution obtained from the final stage is the CE optimized IS vector of rates θ̃ ∗
ce

that can be used in main simulations as a IS change of measure for the original problem

f (x;θ).

Remark: It is to be noted that at Step 12 of Algorithm 3, the parameter al,k is computed

over a cycle as a sum of number of times any of the transitions within the group k have fired

in the Markovian SPN. Similarly, at Step 13, the parameter bxi,k,l is computed at each state

change (in the cycle) as a sum of all the transitions of a group k that are enabled at a current

state xi.

From the above discussion, some questions arise regarding how to shift the original

problem to a series of less rare sub-problems, the selection of number of pre-simulation

stages ( j = 1, ..,S) and the number of cycles to be simulated at each stage n j. For this purpose,

we used certain heuristic rules that are described as follows.

• Progressive shifting of problem: We co-relate the original problem θ with the number

of stages S used to solve it. Starting from {θ = θF ∪θR}, for the first stage j = 1,

we take the 1/Sth root of the failure rates of all elements in the vector θF to form a

new vector θ
( j=1)
F

containing same elements but with higher failure rates. This way

we form the new sub-problem {θ ( j=1) = θ
( j=1)
F

∪ θR}. At each subsequent stage,

we raise each element of θ
( j=1)
F

to the power equal to the number of current stage

(i.e., j = 2,3,4, ...,S) to form θ
( j+1)
F

and consequently {θ ( j+1) = θ
( j+1)
F

∪θR}. With
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this heuristic, the failure rates are slowly decreased at each new stage forming a

new increasingly rarer sub-problem to be solved using the IS rates obtained from the

previous stage. We increase the choice of the total number of stages S depending on

the rarity of the failure rates in original problem θ for each new main simulation. Also,

for moderately sized problems, repair transitions can also be considered as transitions

of interest and the same heuristic can be used, except for the condition in Step 22 of

the Algorithm 3 repair transitions should be exempted.

The simplicity of this heuristic approach helps in creating an unstable system at first

by increasing failure rates (and decreasing repair rates, if chosen). Then we gradually

create a more stable system with increasingly rare failures by decreasing failure rates

(and increasing repair rates, if chosen) from the first stage onward until the original

problem is reached.

• Number of cycles n j at each stage j: The number of cycles at each stage j should

be enough to be able to solve the problem at that stage. This can be easily chosen

according to the IS rates used at a given stage j for the failure transitions such that it is

sufficient to sample the firing of the transitions of interest within the chosen value of

n j number of cycles.

In the next sections, we present the numerical results of using the Algorithm 3 to find

CE optimized IS rates of Markovian SPNs and using those IS rates in main simulations to

estimate the steady-state unavailability U . The main focus is on the gain obtained compared

to a standard regenerative MC simulation and also the RE property as the rarity of the original

problem is increased. Also, in all the examples where the proposed CE algorithm is applied,

each problem is solved by breaking it down into smaller sub-problems as per the heuristic

rule defined above for progressive shifting of rarity in each problem.

4.4 Example 1: A 3 State Birth-and-Death Process

Let us consider a three state simple birth-and-death process where the sample space {K =
{0,1,2} = U ∪D} s.t. {D = {2}} is the state when the system is failed. Figure 4.1

represents a SPN model of such a small system, even though a CTMC model can be directly

evaluated for such a small example. However, our goal is to show the usefulness of the

Algorithm 3 to optimize Markovian SPN’s transitions. In this example, the underlying CTMC

model is also exactly the same as in Figure 4.1.

4.4.1 Model Description

The model in Figure 4.1 can be considered equivalent to a repairable system with 2-out-of-3

(2oo3) redundancy, where if 2 or more components are failed, the system is failed. The

initial state of the system is {0} (token in place {0} in Figure 4.1) where no components are

failed. The transition fail1 represents failure of one component and fail2 transition represents
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Figure 4.1 Birth & Death Process: SPN model of a 3 state simple birth-and-death process.

failure of second component. Repair actions are represented by firing of transitions repair1

or repair2. We consider the original parameter vector of rates out of each state (denoting

an event of failure or repair of a component) for the four possible transitions fail1, fail2,

repair2 and repair1 as {θ = (λ1,λ2,µ2,µ1)} respectively. Firing of transitions results

in movements of tokens between places {0},{1} and {2}, where each place represents a

state of the underlying CTMC in this model. The objective is to estimate the steady-state

unavailability U , i.e., the long run fraction of time spent in place {2} by the above system.

The probability of the respective transitions between different states and the holding times in

states (places in the above model), are shown in the Table 4.1.

The value of the rates (per hour) with exponential distribution of holding times are:

λ1 = λ2 and µ2 = µ1 = 2.0. For this model, the exact numerical value of the steady-state

unavailability is also obtained numerically.

4.4.2 Empirical Results and Interpretations

Results from a standard regenerative simulation for estimation of U with N = 106 cycles

simulated are shown in Table 4.2, when λ1 = λ2 → 0. As expected from standard simulations,

the RE increases rapidly with the rarity. For λ2 ≤ 10−05, the point estimates Û become

inaccurate compared to U and the relative 95% CI width is also increased by a huge margin.

When λ1 = λ2 < 10−5, we start getting empirical values of 0.0 for the estimators and 95%

CI bounds. This is the general problem in estimation of rare events using standard methods.

It is to be noted that we are able to obtain estimates Û by the standard regenerative

simulation for magnitudes Û ≤ 10−7 (for λ1 = λ2 ≤ 10−3) even with just N = 106 runs

because Û depends on µ2 that remains a constant. For example, when λ1 = λ2 = 10−5, the

probability p(1,2) = λ2/(λ2 +µ1)≈ 5.0×10−6 (see Table 4.1) and hence probability of a

token reaching place {2} (equivalent to the CTMC in state 2) is possible in 106 cycles. The

holding time in h{2} = 0.5 remains a constant.

Progressive rarity shifting and choice of parameters of Algorithm 3: In this small exam-

ple, IS is considered to be applied on the two transitions fail2 and repair1. The probability of

other transitions fail1 and repair2 is one (see Table 4.1) so IS is not needed for them. The

subsets of the parameter vector θ are: {θF = (λ2,µ1)} and {θR = (λ1,µ2)}.



4.4 Example 1: A 3 State Birth-and-Death Process 79
T

ab
le

4
.1

B
ir

th
&

D
ea

th
P

ro
ce

ss
:

T
ra

n
si

ti
o

n
p

ro
b

ab
il

it
ie

s
an

d
h

o
ld

in
g

ti
m

es
.

P
ro

b
ab

il
it

y
p
(0
,1
)
=

p
(2
,1
)
=

1
p
(1
,2
)
=

λ
2
/(

λ
2
+

µ
1
)

p
(1
,0
)
=

µ
1
/(

λ
2
+

µ
1
)

H
o

ld
in

g
T

im
e

h
{0
}
=

1
/λ

1
h
{1
}
=

1
/(

λ
2
+

µ
1
)

h
{2
}
=

1
/

µ
2

T
ab

le
4

.2
B

ir
th

&
D

ea
th

P
ro

ce
ss

:
S

ta
n

d
ar

d
re

g
en

er
at

iv
e

si
m

u
la

ti
o

n
(N

=
1

0
6
).

λ
1
=

λ
2

E
x

ac
t

S
o

ln
.

(U
)

P
o

in
t

E
st

.
(Û
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The original problem is defined by the choice of λ1 = λ2. For each λ2, the values of

the rates of transitions fail2 and repair1 are changed at each stage of the pre-simulation

(progressively decreasing the rate of fail2 transition and increasing the rate of repair1

transition from first pre-simulation stage onward) as per the heuristic rule given in Section

4.3.4.

Each transition of interest is considered as a group itself and Equation 4.36 is used in

Algorithm 3 at any stage with different k index for fail2 and repair1 in the IS vector θ̌
( j)
ce .

There are j = 1, ...,S pre-simulation stages, with n j = 104 cycles simulated at each stage,

and the main simulation uses N = 106 cycles for estimation. Also, we increase the number of

stages S as λ1 = λ2 −→ 0 to break down rare problems into higher number of smaller easily

solvable sub-problems in S stages. Results are presented in Table 4.3 and we compare the

performance of the estimators asymptotically in terms of rarity (i.e., λ1 = λ2 −→ 0) obtained

by simulation using the CE Algorithm 3.

As it is evident from the results obtained, the CE optimized values of the IS rates (for

each λ1 = λ2) are obtained from the proposed CE scheme (λ̃
( j=S)
ce2

and µ̃
( j=S)
ce1

) from the final

pre-simulation stage ( j = S), as shown in Table 4.3. Using the specific IS rates obtained,

we compare the results for any specific value of λ1 = λ2 with the standard regenerative

simulation. The empirical values of RE and the variance of the estimator (σ̂2), obtained via

CE scheme is comparatively far better (i.e., lower) than a standard regenerative simulation

(for each λ1 = λ2), see Tables 4.2 & 4.3. Also, using the CE scheme, the RE (or the relative

width of the 95% CI) is bounded as the rarity increases (i.e., the BRE property). In terms of

gain (previously defined by Equation 2.25), for example when λ1 = λ2 = 10−5, the ratio of

the σ̂2
wn obtained from a standard regenerative simulation and the CE optimization scheme

with regenerative IS, we obtain a gain of 811 times approximately.

Application of CE scheme on failure transitions only: Previously, we also discussed

application of the CE scheme only on the failure transitions. In Table 4.4, we compare the

results (in terms of estimated values of RE and variance) when applying the CE scheme

on both fail2 and repair1 or only on fail2 transitions. The values of S, n j and N are the

same for each λ1 = λ2 as was used in the results shown in Table 4.3. It is observable from

the empirical results in Table 4.4, that when the CE scheme is applied only on the fail2

transition, we still observe a BRE property asymptotically. In terms of the values of RE and

estimated variance σ̂2, optimizing both fail2 and repair1 results in slightly more accuracy

(i.e., lower RE and σ̂2) as compared to optimizing only fail2. This is possible as optimizing

more number of transitions via CE scheme also improves the application of IS in estimations,

as we also obtain a higher dimensional optimizer. However, as the number of transitions

of interest increases (in larger models), this can result in more statistical noise with same

number of cycles simulated. A solution to this problem would be to either increase the

number of pre-simulation cycles (n j) or to use a grouping approach.

CE scheme leads to Variance Minimization: The entire objective of the application of

IS and CE scheme in conjunction is to obtain variance reduction of the final estimator Û .

It was previously discussed in Section 2.4.1, that the optimal VM and CE densities are
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asymptotically (in terms of rarity of EOI) identical or very close. The f (·; θ̃ ∗
ce) density which

is closest to g∗(x) in terms of CE distance is also the one for which the asymptotic variance

of the estimator is minimum [32]. From Algorithm 3, the optimized CE density (given by
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Figure 4.2 Birth & Death Process: Variance (σ̂2) & CE function υ̂ with respect to IS rates (λ̃2 = µ̃1) for λ1 = λ2 = 10−05.

θ̃ ∗
ce) contains the optimized IS rates λ̌

( j=S)
ce2

and µ̌
( j=S)
ce1

for this example. Let us consider

Equation 4.10 where the goal is to maximize a CE function to reduce the CE distance with

respect to IS change of measure θ̃ . For θ̌ = θ̃ , the Equation 4.10 can be rewritten as:

max
θ̃∈Θ

υ(θ̃) = max
θ̃∈Θ

Eθ̃

�

|Z| L(X ;θ ; θ̃) log f (x; θ̃)
�

, (4.41)

where υ(θ̃) is the CE function that can be estimated by:

υ̂(θ̃) =
1

N
ΣN

m=1 Zm(ωm) L(ωm;θ ; θ̃) log f (ωm; θ̃). (4.42)

In the above equation, N is the total number of cycles simulated and sampling is done from

the IS density given by θ̃ .

We try to maximize the above Equation 4.42, by trial and error using a simple regenerative

IS simulation technique. In the current example, for λ1 = λ2 = 10−05, we try to estimate

υ̂ for different values of λ̃2 = µ̃1, where {θ̃ = θ̃
F̃
∪θR} and {θ̃

F̃
= (λ̃2, µ̃1)}. Figure 4.2

shows the result of the empirical values of υ̂(θ̃) and the estimated variance σ̂2 of Û for

different values of λ̃2 = µ̃1 tried. In this case there is no pre-simulation and N = 106.

For a specific value of λ1 = λ2 = 10−05, from Algorithm 3, we previously obtained the

optimized IS rates λ̌
( j=4)
ce2

= µ̌
( j=4)
ce1

= 1.0292 (in Table 4.3). In Figure 4.2 we can see the
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results obtained by changing the values of λ̃2 = µ̃1 over a specific range of values (between

0.01 and 2.3), beyond that, the σ̂2 continues to increase. It is observed in Figure 4.2 that the

approximated maxima for the Equation 4.42 is around λ̃2 = µ̃1 ≈ 1.0 which is very close

to the values obtained from Algorithm 3 (where λ̌
( j=4)
ce2

= µ̌
( j=4)
ce1

= 1.0292). The value of

estimated variance obtained from the trial and error scheme here (σ̂2 = 7.46×10−27) is also

approximately the one obtained using the IS rates from the CE scheme (σ̂2 = 7.47×10−27).

Thus, from this small example, we can conclude that the proposed CE scheme based on

progressive shifting of rarity, is able to estimate U efficiently and also leads to minimized

variance asymptotically. Also, the progressive shifting within each problem f (x;θ) leads to

BRE property asymptotically, when the original problem rarity increases λ1 = λ2 → 0.

4.5 Example 2: A 2oo3 System with Logistics

In this case, a more complex example of a 2oo3 (2-out-of-3) system is considered where

logistics aspects are included. The Markovian SPN has 273 different markings in the

reachability graph (i.e., states of the underlying CTMC). The model is briefly described in

the following section.

4.5.1 Model Description of a 2oo3 System

The SPN model used in this example is a model of a 2oo3 redundant subsystem that can be

considered as part of a larger system. The model includes logistics to represent some practical

aspects of real passenger rail systems. Logistics aspects included here are availability of

spares, a restoration team in a depot (one repair person in this case), timed inspection of

components for any failures and travel time to the site of components for repair/inspection.

The Markovian SPN model of this system consists of immediate transitions also (along with

exponential transitions) and the reachability graph is obtained after eliminating the markings

due to the immediate transitions (also called as vanishing markings). A detailed description

of the Markovian SPN model of the system is given in Appendix B. The down state {D} (i.e.,

system failure) is reached if 2 or more components are failed. Each components (A, B or

C) have two kind of failure modes: detected and undetected. There is also a common cause

failure (ccf) mode that causes all the components of the 2oo3 module to fail simultaneously.

There are seven failure transitions (transitions of interest), namely, detected failures of

components (detA, detB and detC), undetected failures of components (udetA, udetB and

udetC) and the ccf. Following rates are the ones used for all other transitions:

• Rate at which spares become available = 5.0

• Rate at which spares become unavailable = 0.1

• Rate at which undetected failures are detected = 10.0

• Rate at which on-site technicians start inspections = 3.0
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• Rate of timed inspections = 0.1

• Travel rate for technicians = 1.0

• Repair rate = 1.0

In this example, for all the detected and undetected failures of all components (i.e., A, B

or C), the failure rate used is λ . There is also a ccf transition considered that can fire from

any given marking of the SPN. This ccf transition is important to be considered for a real

passenger rail system. For example, a power supply failure in certain rail systems can act as

a common cause that brings all the inherent components of a system down simultaneously

(and consequently the system too). The ccf transition (event) in this case can be triggered at

any instant of time from any given marking of the SPN in a cycle, including the initial state

{0} for this example, and its firing brings the system to the down state {D} directly. In this

example, we consider a system can be balanced or unbalanced depending on the failure rate

chosen for the cc f transitions relative to the failure rate chosen for individual component

failures. The general definition is given in Section 4.2.1.

In the current example, let us consider p1(λ ) is probability of a path to failure due to

component failures in a cycle and p2(λ ) be the probability of a path to failure due to a ccf

event. We exclude the possibility of a ccf event occurring after a failure of an individual

component within a cycle. The rate of a ccf is usually lower than the one of individual

components. If we consider for a balanced system, where ccf occurs with a rate of λ 2 and

individual components fail with a rate λ , then in such a case, p1(λ ) = Θ(p2(λ )) as λ → 0

(as presented in Section 4.2.1). In an unbalanced system, where we consider ccf occurs with

a rate of 0.01λ , then p1(λ ) = o(p2(λ )) asymptotically (as presented in Section 4.2.1). For

an unbalanced case here, the possibility of a ccf transition firing would become increasingly

higher asymptotically as compared to the rate of failures of two components in a cycle. This

would result in ccf being the most dominant transition in the current example bringing the

system to a failed state {D} as compared to any two components failing in a cycle. Under

this assumption of ccf being a dominating transition or not, we consider the system to be

balanced or unbalanced respectively.

It is to be noted that generally, in HRMS models, a direct path to failure from an initial

state is not considered. In our case here, we consider the ccf as they are more representative

of real passenger rail systems where ccf is considered for redundant subsystems, like the

current example. In the next sections, we discuss the results obtained via application of the

CE Algorithm 3 on the current 2oo3 system with logistics when it is balanced and unbalanced.

The rarity of a system failure is increased by reducing the value of λ (i.e., λ → 0). An exact

numerical solution of the steady-state unavailability U is also obtainable due to the moderate

size of the problem here.

4.5.2 Empirical Results and Interpretations: A Balanced 2oo3 system

In this case of a balanced 2oo3 module, the failure rates for the transitions in subset vector

θF are considered as:
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• Failure of individual components (detA, detB, detC,udetA, udetB, udetC): = λ

• Common cause failure (ccf ): = λ 2

In Table 4.5, results are presented from a standard regenerative simulation for N = 107

cycles. As it is expected from standard simulations, the results are increasingly inaccurate

as λ → 0. The RE and the 95% CI is increased as λ → 0. For λ < 10−05, the standard

simulation gives 0.0 values for point estimates and no failures are sampled.

Table 4.5 Balanced 2oo3 system: Standard regenerative simulation (N = 107).

λ Exact Soln. (U) Point Est. (Û) 95% CI Variance Est. (σ̂2) Time(s) σ̂2
wn RE

10−3 8.6716×10−04 9.0961×10−04 [8.7905×10−04 , 9.4017×10−04 ] 2.4312×10−10 230.759 5.6102×10−08 0.01714

10−5 9.3715×10−08 1.1976×10−07 [−1.1497×10−07 , 3.5448×10−07 ] 1.4342×10−14 217.508 3.1195×10−12 1.00000

10−7 9.3790×10−12 0.00 [0.00, 0.00] 0.00 − − −

Application of IS with regenerative simulation scheme is expected to provide variance

reduction and more accurate results as compared to standard regenerative simulations. For

the current example, IS is applied by changing the failure rates of all transitions in original

vector θF (i.e., the transitions detA, detB, detC, udetA, udetB, udetC, ccf ).

Table 4.6 Balanced 2oo3 system: Regenerative IS simulation with λ̃ = 0.01.

λ Exact Soln. (U) Point Est. (Û) 95% CI Variance Est. (σ̂2) Time(s) σ̂2
wn RE

10−3 8.6716×10−04 8.5484×10−04 [8.3583×10−04 , 8.7384×10−04 ] 9.4004×10−11 78.642 7.3926×10−09 0.01134

10−5 9.3715×10−08 9.2455×10−08 [9.0104×10−08 , 9.4805×10−08 ] 1.4384×10−18 76.747 1.1039×10−16 0.01297

10−7 9.3790×10−12 9.2529×10−12 [9.0173×10−12 , 9.4885×10−12 ] 1.4449×10−26 77.316 1.1171×10−24 0.01299

10−9 9.3790×10−16 9.2530×10−16 [9.0174×10−16 , 9.4886×10−16 ] 1.4450×10−34 75.209 1.0868×10−32 0.01299

10−11 9.3790×10−20 9.2530×10−20 [9.0174×10−20 , 9.4886×10−20 ] 1.4450×10−42 79.711 1.1518×10−40 0.01299

At first, by trial-and-error, a one-dimensional change of measure λ̃ = 0.01 is obtained,

meaning all the failure rates of transitions in the original vector θF are replaced by a common

value (λ̃ ) in the IS vector θ̃
F̃

, as previously explained in Section 4.3.2. This one-dimensional

change of measure is found by attempting to reduce the variance of the final estimator Û

by manually tuning the value of λ̃ . The empirical results shown in Table 4.6 show that

the variance (σ̂2) is reduced by a large factor in comparison to the standard regenerative

simulation. It is worth noticing that as λ → 0, with λ̃ = 0.01, the empirical value of the RE

is bounded (≈ 0.01). However, it is not feasible to find the change of measure by trial and

error always. For this purpose, we show the usefulness of the proposed CE Algorithm 3 to

approximate optimal IS rates for transitions in subset vector θF .

Progressive shifting of rarity and choice of parameters in Algorithm 3: The proposed

algorithm is applied to each original problem defined by λ and the growth of the RE and the

estimation of the gain are considered as measures of accuracy/efficiency. For each original

problem given by λ , the system is first made unstable by increasing the rates of the failure

transitions of subset F for the first stage and then gradually decreasing these failure rates

until the problem reaches the original problem defined by λ (as per the heuristic rule given

in Section 4.3.4).
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In this case, we use n j = 5× 104 for each pre-simulation stage and for the final pre-

simulation stage where the original problem (given by λ ) is considered, we simulate higher

number of cycles (2×105) so that the IS rates obtained from final stage have less statistical

noise. The main simulation uses N = 106 cycles.

It is to be noted that if repair or inspection transitions (that have values of rates relatively

higher than failure transitions) are considered to be part of subset F , then these rates are

actually first decreased in the first pre-simulation stage and then gradually increased to reach

the original rates. This way, we can also create an unstable system by increasing failure rates

and decreasing repair rates and then gradually increasing the stability of the system (i.e.,

increasing the rarity of system failure) by decreasing failure rates and increasing repair rates,

until all of them reach the original values for that problem.

We use the above heuristics for the progressive shifting of the rarity (within each problem)

and with the choice of the given parameters, we show the usefulness of the proposed CE

Algorithm 3 with three different grouping strategies. The strategies and their results are

discussed as follows.

Strategy 1 for balanced case: One-dimensional optimization of failure transitions

In this strategy, we try applying the CE scheme to find a one-dimensional change of measure

on only failure transitions and we compare the results with the standard regenerative simu-

lation (as given in Table 4.5). We also compare the results to the results obtained from the

trial and error method as previously discussed (see Table 4.6). The results obtained from this

strategy are shown in Table 4.7.

With the specific assumptions of Strategy 1, all the failure transitions are considered to be

part of the subset F and F̃ . The grouping is done as shown in Equation 4.22 with a common

k index for all transitions of interest. In such a case, the IS rate is computed via CE scheme

taking into account the combined contribution of all the transitions in the group towards the

failure state. The results of this strategy using the proposed CE scheme show a BRE property

as λ → 0. Comparing the results with the standard regenerative simulation, for example for

λ = 10−5, through the CE scheme we obtain a RE= 0.01591 (see Table 4.7) while standard

simulation gave a large RE= 1.0. In terms of gain, the CE scheme proves to be ≈ 11,095

times better than a standard simulation. If we compare the results of the CE scheme with the

trial and error method (in Tables 4.6 & 4.7), for example when λ = 10−9, we obtain from the

CE scheme the optimized one-dimensional IS rate λ̌
( j=S)
ce = 0.018 (with RE= 0.015), while

the trial and error method using λ̃ = 0.01 provided a RE estimate of 0.013. We can say from

these empirical values that the CE scheme approximates the CE optimized IS rates and we

obtain large variance reductions.

Strategy 2 for balanced case: Multi-dimensional optimization of failure transitions

In this strategy, we try applying the CE scheme to find the CE optimized IS rates of each

failure transition separately. Therefore, each transition is a group within itself as shown by

Equation 4.16. The results are presented in Table 4.8.
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In this case also we observe the BRE property as λ → 0. Also, the gain in terms of

work-normalized variance, for example when λ = 10−5 is ≈ 28,178 times as compared to

a standard regenerative simulation (see Table 4.5). The values of the estimated RE in this

case is lower than the one-dimensional strategy as the IS rates of the failure transitions are

optimized separately and hence their contributions are captured more accurately, in sufficient

n j number of cycles.

1 2 3 4 Final Stage
10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 -4

10 -3

10 -2

10 -1

Figure 4.3 Progressive shifting of the problem and IS rates with One-D & Multi-D optimization.

Representation of Progressive Shifting of the Problem for One-D and Multi-D case:

We present the generic idea of the Algorithm 3 in Figure 4.3 in context of this example for

the original problem where λ = 10−5. The figure shows how a one-dimensional IS change

of measure for all failure transitions (as given in Table 4.7) and multi-dimensional IS change

of measure for each failure transition (as given in Table 4.8) are obtained in 4 pre-simulation

stages. At j = 1 stage, the failure rates of components as well as the ccf transition are

increased and an unstable system is obtained. The IS rates for each transition are chosen to

be the same as their original rates, in both one-dimensional and multi-dimensional strategies.

In the subsequent stages ( j = 2 and 3), the rates of both component failures and ccf transition

are decreased gradually as per the heuristic rules discussed in Section 4.3.4. The last stage of

pre-simulation is at j = 4 in the Figure 4.3, where the original problem (where components

failure rates are λ = 10−5 and ccf transition is λ 2 = 10−10) is solved using the IS rates from

the previous stage. Finally, the final stage is the main simulation which uses the IS rates

obtained from the stage j = 4.
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Strategy 3 for balanced case: Multi-dimensional optimization of all transitions

In this final strategy, all the transitions, including the ones of failures, repairs and inspections

of the model are considered to be transitions of interest. Thus, all these transitions are

considered to be in subsets F and F̃ and the CE optimization scheme is applied on each of

these transitions uniquely, meaning each transition being a group within itself. The results

obtained via this strategy are shown in Table 4.9 and the RE is bounded in this case also

(≈ 0.004) as λ → 0. In this case, for λ = 10−5, the gain is the maximum ≈ 72,422 times

and also the specific values of RE (for each λ ) are much lower as compared to the results

obtained from the first two strategies.

Again, the model being of moderate size, more number of transitions can be included

to be optimized and results are better. However, as previously discussed, application of IS

on large dimensional problems could lead to likelihood degeneracy issues and also in larger

models it could result in more statistical noise in the solution of the equation used for the

Algorithm 3. Nevertheless, the CE scheme works efficiently for this example, and we obtain

the desired BRE property as well as huge variance reduction (and gains) using the proposed

CE Algorithm 3 here.

4.5.3 Empirical Results and Interpretations: An Unbalanced 2oo3 Sys-

tem

The second case considered here is that of an unbalanced 2oo3 system. In this case, the

failure rates for the transitions in subset vector θF are considered as:

• Failure of individual components (detA, detB, detC, udetA, udetB, udetC): = λ

• Common cause failure (ccf ): = 0.01λ

Here, when λ → 0, p1(λ ) = o(p2(λ )), where p1(λ ) is sample path probability due to

component failures, and p2(λ ) is due to a possible ccf event. Due to this, p2(λ ) relatively

increases as compared to p1(λ ) asymptotically. The effect of this in the current example is

that asymptotically (λ → 0), ccf becomes the most dominating transition towards failure set

{D}; while individual component failures contribution towards {D} is relatively very low

(or even negligible).

Table 4.10 Unbalanced 2oo3 system: Standard regenerative simulation (N = 107).

λ Exact Soln. (U) Point Est. (Û) 95% CI Variance Est. (σ̂2) Time(s) σ̂2
wn RE

10−3 8.8784×10−04 9.2871×10−04 [8.9807×10−04 , 9.5934×10−04 ] 2.4428×10−10 209.205 5.1105×10−08 0.01683

10−5 3.3239×10−07 2.4840×10−07 [−1.5285×10−08 , 5.1209×10−07 ] 1.8100×10−14 205.643 3.7220×10−12 0.54160

10−7 2.3994×10−09 0.00 [0.00, 0.00] 0.00 − − −

For this unbalanced case also we first performed standard regenerative simulations, results

of which are shown in Table 4.10. As a commonly known observation, the RE increases as

λ → 0 and for λ < 10−05, the standard simulation gives useless empirical values of 0.0 for

point estimations as no system failure event occurs even for N = 107 cycles simulated.
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As previously done for the balanced case, here also a one-dimensional change of measure

(λ̃ = 0.01) was used (by trial and error). Experimental results showed a huge variance

reduction (and BRE property), similar to the balanced case. However, our objective is to find

the optimal IS rates using CE Algorithm 3.

The progressive shifting of rarity and the choice of the parameters for Algorithm 3 for

this case have the same reasoning as explained for the balanced case previously. In this

unbalanced case also, we apply the three different strategies as done previously for the

balanced module of this 2oo3 system.

Strategy 1 for unbalanced case: One-dimensional optimization of failure transitions

In this case, we apply the proposed CE scheme on all failure transitions (divided in subsets

F and F̃ ) and a one-dimensional change of measure is obtained where all failure transitions

are considered to be in a single group (as shown in Equation 4.22). The results of using

Strategy 1 are shown in Table 4.11, where it is observable that even in this unbalanced system,

the RE is approximately 0.009 value as λ → 0. In fact, the slight increase in RE as λ → 0

can be resolved by using more number of pre-simulation stages to break down the original

problems further or by using more number of cycles at each stage. In terms of gain with

respect to standard simulation (see Table 4.10), for example when λ = 10−05, we see that the

CE scheme applied using the one-dimensional change of measure provides approximately

3,928 times better results. Also, the exact U is bounded within the 95% CI.

Strategy 2 for unbalanced case: Multi-dimensional optimization of failure transitions

In the second strategy, the CE scheme is applied on all failure transitions and they are

optimized separately as shown in Equation 4.16. Results are shown in Table 4.12. The results

from Strategy 2 are less accurate (in terms of higher RE and σ̂2) as compared to the results

obtained through one-dimensional strategy. The RE is still bounded (≈ 0.05). Compared

to a standard simulation, we do obtain better results due to the BRE property. For example,

when λ = 10−05, the gain obtained by using this strategy is ≈ 3150 times.

Remark: In this strategy, we observe that the RE values for higher values of λ (less rarity)

are better compared to the one-dimensional Strategy 1 used above. However, as λ → 0,

the RE values obtained are worse than the ones of the one-dimensional strategy. Figure

4.4 shows this trend between Strategy 1 and Strategy 2. As previously presented for the

balanced case, the Strategy 2 (results from Table 4.12) must provide better accuracy and

lower RE as optimizing each failure transition is better in terms of optimization, as compared

to optimizing them in a group to find an averaged value of IS rates common for all of

them. However, in Figure 4.4, as λ → 0, the system becomes increasingly imbalanced, i.e.,

p1(λ ) = o(p2(λ )). The effect of this imbalance in Algorithm 3 is that the ccf becomes

the most dominating transition and the contribution of individual failures of components

becomes relatively negligible as λ → 0. This would result in the component failure transitions

providing zero values for the update Equation 4.36 and only the ccf transition would be
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Figure 4.4 2oo3 Unbalanced System: Estimated RE with increasing imbalance.

accounted for. Thus, here we can conclude that when applying the proposed CE scheme on

failure transitions only, it should be kept in mind if there exist a single SPN transition in the

failure subset that dominates all other failure transitions or not. One-Dimensional change

of measure (i.e., grouping) is a good strategy in such a case to find averaged values of CE

optimized IS rates. Grouping helps in this case to take into account a combined contribution

of all failure transitions, even if this optimization approach is lower dimensional (i.e., more

restrictive) than a multi-dimensional one. Nevertheless, we observe a BRE property in this

case too and the exact values of U are also bounded within the 95% CI.

Strategy 3 for unbalanced case: Multi-dimensional optimization of all transitions

In this strategy, the CE Algorithm 3 is used for optimizing the IS rates of all the transitions

of the SPN model (except immediate transitions). Results of using this strategy are shown in

Table 4.13. It is observable that optimizing all the transitions results in the lowest estimator

variance σ̂2 and RE obtained when compared to any other IS strategy used in results in

Tables 4.10-4.12. The RE is bounded (≈ 0.004) while the σ̂2 is also lowest. In this case also,

as λ → 0, we observed failure transitions of individual components not being accounted for

in the CE scheme due to the increasing imbalance of the system. It is also likely that since

individual component failures are not contributing to reach the failure set as λ → 0, IS is not

supposed to be applied on them. However, the optimization of other non-failure transitions

along with the ccf failure transition, provides better results. Here, for λ = 10−05, we obtain a

gain of approximately 6,228 times as compared to the standard regenerative simulation.

To summarize, there are several possible conclusions that can be drawn from this example

where specifically we considered the performance of the CE scheme for a balanced and

unbalanced system. For any system (balanced or unbalanced), optimizing all transitions

with the CE scheme in the Markovian SPN provides best results due to a higher dimensional
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optimization (less restrictive optimizer θ̃ ∗
ce). However, as previously discussed, it is only

possible in case of moderately sized systems. In large systems it could result in likelihood

ratio degeneracy and more statistical noise. Application of the CE scheme on only failure

transitions, both one-dimensional and multi-dimensional strategies provide very good results

for a balanced system. However, in case of unbalanced systems (especially large scale) where

all transitions can not be included for the optimization scheme, and there is a single failure

transition that dominates all other failure transitions, the best strategy is to use grouping.

Grouping helps to reduce the statistical noise, and consider the combined contributions of

all failure transitions, even though the optimizer θ̃ ∗
ce would be lower dimensional (more

restrictive). In case of large systems, this grouping could be useful for each redundant

subsystem module, like the 2oo3 considered here.

Another important conclusion that can be drawn from this example is that for a sufficient

number of cycles n j in each pre-simulation stage, the CE Algorithm 3 here is able to capture

the contributions of each transition towards the failure set {D}. For the balanced system,

since both component failure transitions and ccf contribute towards reaching {D}, the

proposed algorithm optimizes all the failure transitions. However, in an unbalanced system

where individual components do not contribute towards failure set (as λ → 0), the algorithm

is able to capture that IS is not supposed to be applied to the failure transitions of individual

components, as ccf is the most contributing transition.

4.6 Example 3: Multiple 2oo3 System Modules in Series

Configuration

In this example, we consider 3 modules of the 2oo3 system (as discussed in Example 2)

connected in a series configuration. It is equivalent to having three SPN models of Appendix

B in series. The reachability graph of this Markovian SPN has 20,346,417 markings (i.e.,

states of the underlying CTMC). There are 51 discrete places, 51 timed transitions, 9

immediate transitions and 21 failure transitions (18 components and 3 ccf) in the SPN model.

In terms of logistics, each module has its own team of repair personnel considered, with

a single repair person for each module. Also, each 2oo3 module in this example has its own

spares (to represent different kind of spares needed for different modules) and the spare

availability is modeled the same way as in Example 2, for each module here. The system is

considered down if any of the 2oo3 module is failed, where any individual module fails if

2 or more components within it are failed. Here again, we analyze the performance of the

simulation methods discussed in previous sections with respect to rarity, that is increased as

λ → 0. The rates of different transitions (exponential distribution of holding times) in the

SPN are considered as:

• Module 1 failure rates: Detected (λ ), undetected (λ ) and common cause (λ 2)

• Module 2 failure rates: Detected (1.3λ ), undetected (1.3λ ) and common cause (1.3λ 2)

• Module 3 failure rates: Detected (1.5λ ), undetected (1.5λ ) and common cause (1.5λ 2)
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• Repair rates : Module 1 (4.0), Module 2 (3.0) and Module 3 (3.5) respective compo-

nents within each module

• Rate at which spares become available = 5.0

• Rate at which spares become unavailable = 0.1

• Rate at which undetected failures are detected = 10.0

• Rate at which on-site technicians start inspections = 3.0

• Rate of timed inspections = 0.1

• Travel rate for technicians = 1.0

4.6.1 Empirical Results and Interpretations: Three 2oo3 Modules in

Series Configuration

The system is considered balanced in this case because within each module, the contribution

of the different failure transitions (detected, undetected and ccf) are similar towards the target

set {D}. Each module has different failure rates and repair rates for the components within

it. A standard regenerative simulation (with N = 106 cycles) yields increasingly inaccurate

results as λ → 0 (see Table 4.14) and the RE increases rapidly. For λ < 10−05, we get the

undesired empirical value of 0.0 for the point estimates as no failure of the system is recorded.

Table 4.14 Three 2oo3 system: Standard regenerative simulation (N = 106).

λ Exact Soln. (U) Point Est. (Û) 95% CI Variance Est. (σ̂2) Time(s) σ̂2
wn RE

10−3 3.6167×10−03 3.6379×10−03 [3.3861×10−03 , 3.8896×10−03 ] 1.6501×10−08 181.071 2.9878×10−06 0.03531

10−5 4.0139×10−07 1.1009×10−06 [−7.5173×10−07 , 2.9535×10−06 ] 8.9345×10−13 162.744 1.4540×10−10 0.85858

10−7 4.0182×10−11 0.00 [0.00, 0.00] 0.00 − − −

Progressive shifting of rarity and choice of parameters in Algorithm 3: For this

example, the CE scheme is applied only on the failure transitions, thus forming the subsets

F and F̃ . For each value of λ that forms the original problem to be solved, it is broken

down in smaller and easily solvable sub-problems according to the heuristic rule previously

defined for progressive shifting of rarity within each problem (in Section 4.3.4). This is

simply done by first increasing the failure rates of all the failure transitions (in subset F ) to

create an unstable system and then gradually decreasing their failure rates until the original

problem is reached, which is solved in the final pre-simulation stage. The choice of n j is

the same as that for the Example 2 previously. When the system does not have rare event

problem, for example when λ = 10−3, we use only one pre-simulation stage where only a

standard regenerative simulation is performed. There are three different grouping strategies

used and we observe the results obtained from these strategies. The results are as discussed

in the following text.
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Strategy 1 (Three 2oo3 in series): Grouped one-dimensional CE optimization for each

module

In this strategy, failure transitions of each module are grouped together and we use the

proposed CE Algorithm 3 to find a common value of CE optimized IS rates for all failure

transitions within each module (as represented by Equation 4.20). The results are presented

in Table 4.15. With this strategy, the empirical results show that we obtain a BRE property

(RE ≈ 0.05) as λ → 0. Also, in terms of gain, we obtain a gain of ≈ 78 times as compared

to the standard simulation (see Table 4.14), for λ = 10−5. The progressive shifting of rarity

for each λ in Algorithm 3, thus helps in obtaining large variance reduction.

Strategy 2 (Three 2oo3 in series): One-dimensional CE optimization for all failure

transitions grouped together

The second strategy groups all failure transitions of all three modules in a single group. It

thus attempts to use the CE Algorithm 3 to find a common CE optimized IS rate for all of

the failure transitions (i.e., a single IS rate value). The results are shown in Table 4.16. Here

also the RE is bounded (≈ 0.05) as λ → 0 and we obtain an even larger variance reduction

compared to standard simulation. In this case, the gain is ≈ 236 times for λ = 10−5, when

compared to the standard simulation.

Strategy 3 (Three 2oo3 in series): Multi-dimensional CE optimization for each failure

transition

Finally, we apply the CE Algorithm 3 by optimizing each failure transition separately (as

previously shown by Equation 4.16). In this case, optimizing each failure transition separately

gives better results and the RE is bounded (at ≈ 0.03), as shown by the results in Table 4.17.

The gain is also maximum (≈ 256 times) in this case, for λ = 10−5 and obviously due to the

BRE property, it will be increasingly higher as λ → 0.

Thus, from this example of a large system, we observe that the CE scheme provides CE

optimized IS rates. When these IS rates are used in the main regenerative IS simulations, we

finally obtain estimates of U with the BRE property (as λ → 0), in terms of empirical values.

It is to be noted that in terms of gain using the CE schemes, for very high values of λ = 10−03,

we do not see enough gain (see Table 4.15-4.17) as compared to standard simulation. The

gain is lesser than one because even though the proposed CE Algorithm 3 reduces the σ̂2

and the RE, the algorithm is based on pre-simulations that uses more computation time as

compared to standard simulation. However, since the RE is bounded in all the three strategies

used for the CE scheme (in Tables 4.15-4.17), the gain will obviously be increasingly higher

as λ → 0.

Figure 4.5 also shows the evolution of the empirical values of the RE obtained when

rarity is increased (i.e., λ → 0). In Figure 4.5, it is observable that as λ → 0, the RE from the

three strategies used for CE optimization (grouped one-dimensional, one-dimensional and

multi-dimensional optimization of failure transitions) are bounded. The slight oscillations
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Figure 4.5 Three 2oo3 System: Evolution of estimated RE as λ → 0.

are due to stochasticity. Application of the CE scheme on all transitions (except immediate

transitions) resulted in more statistical noise in the given number of n j used at the specific

stages. Since the CE scheme is based on sample average approximation, increasing the

number of cycles in the pre-simulation should be able to overcome the issue of statistical

noise. However, the possibility of likelihood degeneracy [31, 97] needs to be also checked

and avoided in such cases, as previously discussed.

4.6.2 A Large Example of 4 Modules of 2oo3 Subsystems with Logis-

tics

In the previous examples, we showed the efficiency of the CE Algorithm 3 for various

cases. However, in all the previously presented examples, an exact solution of the underlying

CTMC was obtainable (via SPNP). Our goal is to also show the effectiveness of the proposed

algorithm on very large systems, where the exact solution is not obtainable.

For the above purpose, we now consider 4 modules of the 2oo3 subsystem connected in a

series configuration. The first three modules have the same specifics (in terms of rates and

logistical aspects) as presented for the previous example of three 2oo3 modules in series. We

add a fourth module with the same SPN, but with different failure and repair rates. These

rates are as given by:

• Module 4 failure rates: Detected (0.5λ ), undetected (0.5λ ) and common cause (0.5λ 2)

• Module 4 repair rate : 5.0

The SPN of this model has 5,554,571,841 markings in the reachability graph. For such a

large system, we were unable to obtain the exact numerical solution (in SPNP). The model
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has 28 failure transitions, 7 for each of the 4 modules. We use the CE Algorithm 3, to find

the optimal IS rates for these failure transitions of the Markovian SPN model here.

First, we performed a standard regenerative simulation (with N = 106 cycles) and as

expected, as the rarity increases (i.e., λ → 0), we start obtaining increasingly erroneous

estimations (see Table 4.18). For λ < 10−5, we obtain the useless 0.0 empirical values for

the point estimates as no failure event is recorded. 1

Table 4.18 Four 2oo3 systems: Standard regenerative simulation (N = 106).

λ Point Est. (Û) 95% CI Variance Est. (σ̂2) Time(s) σ̂2
wn RE

10−3 3.6100×10−03 [3.3571×10−03 , 3.8630×10−03 ] 1.6657×10−08 365.76 6.0926×10−06 0.03575

10−5 6.8052×10−08* [−6.5330×10−08 , 2.0143×10−07 ]* 4.6310×10−15* 306.85 1.4210×10−12* 1.00

10−7 0.00 [0.00, 0.00] 0.00 − − −

To show the effectiveness of our proposed Algorithm 3, we consider to apply IS on

the 28 failure transitions using three different strategies: a grouped change of measure for

each module, a one-dimensional change of measure with a common value of IS rate, and a

multi-dimensional optimization for each transition individually. The progressive shifting of

rarity is done in the same way as explained for the previous examples. Since here we consider

a very large system, we use a higher number of pre-simulation cycles in the Algorithm 3 to

reduce the statistical noise. Here, we use n j = 105 cycles for all pre-simulation stages, while

using n j=S = 4×105 cycles for the final pre-simulation stage, where the original problem is

solved. The final simulation uses N = 106 cycles. Also, the number of stages S are increased

as the rarity of the original problem increases, to break down rarer problems into higher

number of sub-problems. .

Table 4.19 Four 2oo3 systems: Regenerative IS simulation with CE One-D optimization (for each module grouped together) on failure

subset only.

nj = 1×105(n(j=S) = 4×105), N = 106

λ S Point Est. (Û) 95% CI Variance Est. (σ̂2) Time(s) σ̂2
wn RE Gain

10−3 1 3.7473×10−03 [3.5432×10−03 , 3.9515×10−03 ] 1.0845×10−08 2303.27 2.4979×10−05 0.02779 0.24

10−5 3 3.7299×10−07 [3.3612×10−07 , 4.0985×10−07 ] 3.5385×10−16 4158.76 1.4716×10−12 0.05043 10.51

10−7 4 3.9732×10−11 [3.3754×10−11 , 4.5710×10−11 ] 9.3014×10−24 3700.87 3.4423×10−20 0.07676 −
10−9 5 4.2733×10−15 [3.4875×10−15 , 5.0592×10−15 ] 1.6076×10−31 4134.88 6.6473×10−28 0.09383 −
10−11 6 3.7774×10−19 [3.4349×10−19 , 4.1200×10−19 ] 3.0543×10−40 3183.56 9.7235×10−37 0.04627 −

In the first case, grouping failure transitions of each module in a single group, we obtain

a large variance reduction as λ → 0. From the empirical results presented in Table 4.19,

we observe that the RE is bounded, approximately between 0.05 to 0.09 estimated values

(oscillation due to stochasticity). In terms of gain compared to the standard regenerative

1*The empirical values obtained in Table 4.18 for λ = 10−5 are erroneous due to stochasticity. Using

a different seed, we obtained empirical values of 0.0 with N = 106 cycles. For this purpose, we increased

that number of cycles N = 107 to obtain a slightly better estimator. The empirical values obtained using

N = 107, larger sample size were: Û = 1.0968×10−7, 95%CI as [−2.7916×10−08, 2.4728×10−07], σ̂2 =
4.9286×10−15, computation time (s) = 3138.030, σ̂2

wn = 1.5466×10−11, and RE= 0.64006. We use these

values for any comparisons (of gain or work-normalized variance) with the CE method later on for this example,

when λ = 10−5.
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simulation, we observe for λ = 10−5, a gain of approximately 10 times using this CE

algorithm with this strategy.

In the second case, we group all the 28 failure transitions in a single group to obtain a

common value of IS rates for all of them using the proposed CE algorithm. Results presented

in Table 4.20, show the RE is bounded (≈ 0.07 to 0.09) as λ → 0. In this case also, we

observe that a gain of ≈ 3 times for λ = 10−5, when we compared it to the result from the

standard method. Here, the gain is lesser than the first strategy as a one-dimensional change

of measure is very low dimensional optimization (highly restrictive) and thus variance is

reduced to a lesser extent.

Table 4.20 Four 2oo3 systems: Regenerative IS simulation with CE One-D optimization on failure subset only.

nj = 5×104(n(j=S) = 2×105), N = 106

λ S Point Est. (Û) 95% CI Variance Est. (σ̂2) Time(s) σ̂2
wn RE Gain

10−3 1 3.6219×10−03 [3.3929×10−03 , 3.8510×10−03 ] 1.3658×10−08 2187.18 2.9872×10−05 0.03227 0.20

10−5 3 3.6723×10−07 [2.9903×10−07 , 4.3542×10−07 ] 1.2106×10−15 4034.22 4.8836×10−12 0.09475 3.17

10−7 4 4.0185×10−11 [3.3816×10−11 , 4.6555×10−11 ] 1.0561×10−23 3247.76 3.4301×10−20 0.08087 −
10−9 5 3.8717×10−15 [3.3286×10−15 , 4.4149×10−15 ] 7.6790×10−32 3277.80 2.5170×10−28 0.07157 −
10−11 6 4.6983×10−19 [3.8664×10−19 , 5.5303×10−19 ] 1.8018×10−39 3320.71 5.9832×10−36 0.09035 −

In the final strategy, we use the proposed CE algorithm to obtain the CE optimized IS

rates for each of the 28 failure transitions individually. In this case (see results in Table

4.21), we observe the lowest values of the RE, also bounded (between ≈ 0.04 to 0.06) when

λ → 0. However, this multi-dimensional optimization uses a higher computation time when

comparing to the previous two grouping strategies, but with a higher dimensional (less

restrictive) optimizer θ̃ ∗
ce. In terms of gain, for λ = 10−5, this multi-dimensional strategy

using the proposed CE Algorithm 3 is ≈ 4 times better than the standard method. Again, for

Table 4.21 Four 2oo3 systems: Regenerative IS simulation with CE Multi-D optimization on failure subset only.

nj = 1×105(n(j=S) = 5×105), N = 106

λ S Point Est. (Û) 95% CI Variance Est. (σ̂2) Time(s) σ̂2
wn RE Gain

10−3 1 3.7679×10−03 [3.6366×10−03 , 3.8992×10−03 ] 4.4883×10−09 2569.06 1.1531×10−05 0.01778 0.53

10−5 3 4.3421×10−07 [3.8254×10−07 , 4.8589×10−07 ] 6.9515×10−16 5308.18 3.6900×10−12 0.06072 4.19

10−7 4 3.9577×10−11 [3.4587×10−11 , 4.4566×10−11 ] 6.4798×10−24 4176.15 2.7061×10−20 0.06432 −
10−9 5 3.7599×10−15 [3.4590×10−15 , 4.0608×10−15 ] 2.3566×10−32 4169.59 9.8261×10−29 0.04083 −
10−11 6 4.3979×10−19 [3.9374×10−19 , 4.8584×10−19 ] 5.5201×10−40 3922.33 2.1652×10−36 0.05342 −

higher values of λ = 10−3, the system does not suffer from rare event issues. Due to this we

obtain a gain less than one using the proposed CE algorithm, due to a higher computation

time even if it reduces the variance slightly.

4.7 Conclusions from the Chapter

The motivation of the work (as discussed in Section 4.1) was to estimate the steady-state

unavailability U of HRMS that also include complex logistics. We used SPNs to conveniently

represent these HRMS in the form of Markovian SPNs (from which the underlying CTMCs

can be extracted). The main objective was to develop a multi-level pre-simulation scheme

based on minimizing the CE distance between the zero-variance IS density and the IS change
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of measure used. The approach provided CE optimized IS rates (within the same parametric

family) that could we used in main simulations.

We proposed an efficient Algorithm 3, that exploited the regenerative structure of the un-

derlying CTMCs of the Markovian SPNs. Also, we proposed the novel idea of progressively

shifting the rarity within each problem itself, by changing failure rates (in some cases repair

rates also) to create a sequence of easily solvable sub-problems with increasing rarity until

reaching the original problem.

Another idea applied in the proposed algorithm was to use grouping for the IS change

of measure. Grouping is helpful in the practical application of the algorithm to reduce the

statistical noise and consider combined effect of transitions in a group towards the system

failure. However, grouping also provides a lower dimensional (i.e., more restrictive) CE

optimizer θ̃ ∗
ce. A multi-dimensional strategy is better in terms of a higher dimensional (less

restrictive) optimizer θ̃ ∗
ce, but it also takes a higher computation time in the algorithm. We

do not yet have a robust heuristic to select the best possible grouping strategy in general

problems.

Another applicability issue that the proposed CE scheme solves in the examples presented

is the choice of the IS vector for the first pre-simulation stage. In the proposed algorithm,

this is done based on the number of pre-simulations stages (S), where in the first stage we

perform only a standard regenerative simulation for a system which is unstable (i.e., non-rare

system failures). This approach only attempts to capture the contribution of the respective

transitions of interest as per the update equation used in the Algorithm 3 (the likelihood ratio

being one).

Finally, we tried four different examples (with increasing size of the models) where

complex logistics was also considered. The proposed CE scheme provided accurate results

while also adhering to the desired BRE property (in terms of empirical values) as the rarity

of a problem increased. The gain (in terms of work-normalized variance) when compared

to standard regenerative simulations was increasingly higher, due to the BRE property, as

rarity of system failure increased. In practical applications, for analysis of large scale and

highly reliable Markovian SPNs, the proposed CE scheme can be very helpful in performing

automated IS simulations with only few inputs required.





Chapter 5

Conclusions

The objective of the current work and the entire dissertation was to propose efficient algo-

rithms for use of IS methods that can accurately estimate RAM metrics of interest, especially

in case of highly reliable systems where system failures are rare events. The work has focused

on two RAM metrics: first, unreliability (or reliability) of static networks; second, steady-

state unavailability (or contrarily the availability) of dynamic systems (under Markovian

assumptions). These RAM metrics are helpful in determining the LCC of systems and thus

can help rail system suppliers, such as Alstom, to make well-informed decisions and policies

(e.g., maintenance, spares availability and inspection policies, to name a few). Usually, when

standard MC simulations become impractical due to rare event issues, IS techniques are

helpful. IS techniques help to accelerate these simulations (the notion of obtaining less

variance in same computational budget) while providing accurate and efficient estimation

of the metrics. However, since the use of IS techniques require to know specifically a good

change of measure that reduces the variance of the final estimator, the objective of the current

work tapered towards algorithms that can approximate or find these good (or even optimal)

change of measures to apply IS in real problems.

5.1 Conclusions of the thesis

The first work in this dissertation focused on approximating the zero-variance IS change

of measure scheme, where the networks (or systems) are static in nature and nodes in a

graph model are the failing components. We proposed an efficient algorithm [11] in this

context (in Chapter 3) that adapted the work on link failure case of static networks [29]. The

usefulness of the proposed algorithm was shown for different networks and a real case of

a DCS subsystem of Alstom was also studied. The second work as presented in Chapter 4,

focused on using a multi-level CE scheme to find optimal IS rates of failure transitions in

Markovian SPN models. We developed this idea for the underlying CTMCs of Markovian

SPNs and showed application on various examples. In both the works, in terms of measures

of accuracy, the results obtained from the respective algorithms showed BRE properties (for

some static networks even VRE property) asymptotically (i.e., when the event of interest
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became rarer). In the following paragraphs, we describe the main conclusions of the current

work and the algorithms therein.

An approximate zero-variance IS algorithm for static networks reliability estimation

with node failures: This Algorithm 2, namely the Approximate Zero-Variance IS using Ford-

Fulkerson adapted Algorithm 1, considered node failures in static networks and sequentially

sampled the nodes. The main idea behind the algorithm was to find mincuts with maximal

probabilities between the source-and-terminal nodes and sequentially sample the state of each

node in those paths. The RAM metric of interest here was the unreliability between the source-

and-terminal nodes of a static network. The unreliability metric could also be considered

as the steady-state unavailability of such systems. From the results shown in Chapter 3 for

various examples, we obtained BRE as well as VRE properties in an asymptotic regime (in

terms of rarity). Taking into account a BRE (or VRE) property, the gain with respect to a

standard simulation increased as the event of interest became rarer. The practical aspect of

this work was to compute the reliability of systems like the DCS, where communication

between a set of nodes is critically important for real passenger rail systems. The proposed

algorithm was able to estimate the reliability of a DCS network, with a BRE property (as

probability of failure became rarer) in both homogeneous and heterogeneous cases.

Availability estimation of Markovian reliability systems with logistics using CE: The

Algorithm 3 proposed here, namely Cross Entropy Algorithm for Markovian SPNs, utilized

the idea of minimizing the CE distance between the zero-variance IS density and the IS

density used as a change of measure. The novelty of the proposed Algorithm 3 lied in the

breakdown of difficult (i.e., rarer) problems into a set of easily solvable sub-problems in a

multi-level CE scheme, where rarity was slowly increased in each sub-problem that is being

solved. The modeling of HRMS in the form of Markovian SPNs conveniently represented

the underlying CTMCs and made it relatively easier to model systems, as is the general

reasoning behind the use of SPNs. Also, the proposed CE algorithm was able to find the

optimal IS rates, specifically for failure transitions, in Markovian SPN models. Results from

various examples that tried to mimic certain subsystems of a real passenger rail system (while

also including complex logistics) showed BRE property being observed. Consequently, a

considerable variance reduction and gain is obtained in the results.

The aforementioned work attempted to address the problems of application of IS methods

for static and dynamic systems (under Markovian assumptions). However, as any scientific

research is an evolutionary stride, there is always a room for improvement. Keeping in

mind the future possibilities of the current work, we propose certain ideas that are worth

considering.

5.2 Perspectives: Directions for Future work

Previously in Chapter 3 where static network reliability was estimated using approximate

zero-variance IS scheme, we discussed that in our examples, certain enumerations of nodes

provided slightly lower values of RE. As the goal is to estimate RAM metrics with lowest
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possible values of variance and RE as the event of interest becomes rarer, it could be a

valuable contribution to co-relate the RE with the ordering of nodes in the graph models.

Another aspect is the trade-off between accuracy and computation time. The proposed

Algorithm 2 provided highly accurate results but at each step it computed two mincuts with

maximal probability, resulting in a significant more computation time (bounded when ε → 0)

than a standard MC simulation. Even though the proposed method, due to BRE and VRE

properties, is always better (in terms of gain) than a standard MC simulation, it is also a

trade-off between choosing a more accurate estimation or a faster estimation with huge

variance. Best case obviously being the accurate estimation with lowest possible computation

time. In order to reduce the issue of computational effort, graph reduction techniques could

prove to be very useful.

The second method for dynamic systems discussed in Chapter 4 also has certain room

for improvements. In the Algorithm 3, we increased the number of pre-simulation stages

(S) as the original problem became rarer. This was done to breakdown rarer problems into

higher number of easier sub-problems, where less rarer problems required lower S and more

rarer problems required a higher S. Finding a robust heuristic to be able to automatically find

the required minimum number of pre-simulation stages S for a particular original problem

could be a useful idea for the future work. This would also make it possible to optimize the

computational effort during the pre-simulation stages.

The above ideas for future possibilities of research provide a very general direction for

improvement of the proposed methods here. However, there are two following main ideas

that we consider are specifically useful for future work, and can improve the methods for

real applications to analyze passenger rail systems.

5.2.1 Application of CE to Non-Markovian SPN transitions

In the Algorithm 3 proposed in Chapter 4 for CE optimization of transitions of Markovian

SPNs, we exploited the regenerative structure of the underlying CTMCs. Due to the re-

generative property, each cycle provided iid samples. However, in Non-Markovian SPNs,

the transitions are not limited to exponential distributions of holding times only. There are

several distributions like Weibull, log-normal, triangular etc., that can be used in SPNs. This,

would result in Non-Markovian SPNs. In Non-Markovian systems, the regenerative structure

is lost and the samples from simulation are not iid. In this context, the proposed CE method

could be useful in finding the optimal IS change of measures for transitions with general

distributions by exploring further.

Steady-state measures, as discussed in Chapter 4, are usually represented by a ratio

(expected downtime and expected length of a cycle in Markovian systems) [36]. In non-

Markovian systems, this ratio representation for steady-state quantities can be in terms of

"A-cycles", where "A" is a set of some states (e.g., all components operational) [17, 36].

However, these A-cycles are not iid and hence application of IS and estimation of variance

becomes complicated [36]. In literature, a "splitting" technique (not to be confused with

splitting technique for rare events simulation discussed previously) is suggested where IS is

applied for estimating the numerator (expected downtime in a A-cycle). The denominator
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(expected length of a A-cycle) is estimated under the original measure [17, 36]. This method

is similar to Measure Specific Dynamic Importance Sampling (MSDIS). For application of

IS to estimate the denominator, the system is allowed to reach the steady-state, discarding

the initial samples (e.g., Di being downtime in a A-cycle) [36]. The variance in such cases

can be estimated by the method of Batch Means [36]. Also, CE optimization has been used

for non-exponential distributions like the Weibull distribution for parameter updating in IS

context [31]. Integrating and obtaining a CE update equation for optimizing parameters of

general distributions in Non-Markovian SPNs, while using A-cycles could be an important

direction for future research. This could also make it very useful for RAM practitioners to

model and analyze real passenger rail systems with less assumptions.

5.2.2 Description of Failure Modes

When modeling systems with inherent components in SPNs, it is easier to model when

specific components can be considered as working, failed or working in degraded mode.

However, the failure mode for the entire system needs to be specified in SPNs (in general for

any Markov modeling approach too). The approximate zero-variance IS method in Chapter 3

used mincuts with maximal probabilities to estimate reliability efficiently. Extracting those

mincuts in a dynamic system and defining the failure modes of SPN models based on the

components included in those mincuts having maximal probability of failure, could prove

useful in easier modeling of SPNs for the practitioners.



Publications from the thesis

In the current work, we proposed mainly two algorithms [11, 30] for estimation of reliability

metrics of highly reliable (static and dynamic) systems in context of rare events simulations.

For static network reliability estimation, the metric of interest was the probability of the

source-and-terminal nodes being disconnected. For dynamic systems, we included complex

logistics, while modeling the systems as Markovian SPNs, and using a Cross-Entropy

optimization scheme to find optimal IS rates of the failure transitions of the SPN. The

empirical results from the two algorithms in their respective context (static and dynamic)

showed a large variance reduction and also Bounded Relative Error (in some cases Vanishing

Relative Error) property too. Results obtained from the current work are also published as

shown below.

Peer-reviewed International Conferences

• [11] Ajit Rai, Rene C. Valenzuela, Bruno Tuffin, Gerardo Rubino, and Pierre Dersin.

"Approximate zero-variance importance sampling for static network reliability estima-

tion with node failures and application to rail systems." In Proceedings of the 2016

Winter Simulation Conference (WSC), Washington D.C., USA., pp. 3201-3212., 2016.

• [30] Ajit Rai, Bruno Tuffin, Rene C. Valenzuela, Gerardo Rubino, and Pierre Dersin.

"Availability estimation of Markovian reliability systems with logistics via cross-

entropy." In Proceedings of the 13th International Conference in Monte Carlo &

Quasi-Monte Carlo Methods in Scientific Computing (MCQMC), Rennes, France, July

2018 (Abstract presented).
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Acronyms

Important Acronyms used
BRE Bounded Relative Error
CBTC Communication Based Train Control
ccf Common Cause Failure
CE Cross Entropy
CI Confidence Interval (by default 95%)
CLT Central Limit Theorem
CMC Crude Monte-Carlo
CSPL C-based Stochastic Petri Nets Language
CTMC Continuous Time Markov Chain
DCS Data Communication System
DES Discrete Event Simulations
DTMC Discrete Time Markov Chain
EOI Event Of Interest
ERG Extended Reachability Graph
FTA Fault Tree Analysis
GSPN Generalized Stochastic Petri Nets
GUI Graphical User Interface
HRMS Highly Reliable Markovian Systems
IS Importance Sampling
LCC Life Cycle Cost
LDT Large Deviations Theory
LE Logarithmic Efficiency
MC Monte Carlo simulation
MDT Mean Down Time
MRM Markov Reward Models
MSDIS Measure Specific Dynamic Importance Sampling
MTBF Mean Time Between Failures
MTTF Mean Time To Failure
Multi-D Multi-Dimensional
One-D One-Dimensional
pdf Probability Density Function
PN Petri Nets
RAM Reliability, Availability and Maintainability
RAMS Reliability, Availability, Maintainability and Safety
RBD Reliability Block Diagram
RE Relative Error
r.v. Random Variable
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SOR Successive Over-Relaxation
SPNP Stochastic Petri Nets Package
SPN Stochastic Petri Nets
SRN Stochastic Reward Nets
VM Variance Minimization
VRE Vanishing Relative Error



Appendix A

Stochastic Petri Nets Package

Stochastic Petri Nets Package (SPNP) [34] is a powerful and versatile tool developed at the

Duke University. The input language for SPNP is C-based Stochastic Petri Nets Language

(CSPL), an extension of the C programming language with additional constructs to facilitate

easy modeling of Stochastic Petri Net (SPN) models [96]. The SPN models’ definition is

based on SPN Reward Models or Stochastic Reward Nets (SRNs) which itself is based on the

Markov Reward Models (MRM) paradigm [34, 83, 84, 95, 98, 99]. The solution methods for

various SPN models can be classified into the following two broad categories:

A.1 Analytic Numeric Methods

The steady-state measures for CTMC or DTMC can be solved using numerical techniques

like Steady-State SOR (Successive Overrelaxation), Steady-State Gauss-Seidel and Steady-

State Power methods [96]. For evaluation of transient measures of a CTMC, standard

uniformization and uniformization using the Fox and Glynn method for computing the

Poisson probabilities is available [96]. The numeric solutions of the CTMC or DTMC is

possible for not very big models, when the state space is too large.

A.2 Simulation

Simulation methods are commonly used when the state spaces are too large to be solved

analytically. In SPNP, there are many options to solve Markovian and Non-Markovian SRNs.

Some of them are:

• Independent Replications: to compute cumulative or average instantaneous measures

up to a fixed simulation time.

• Batch Means: to compute steady-state measures and building of CI.

• Regenerative simulations to estimate steady-state measures for Markov models.
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• Importance Sampling: Restart and Splitting, standard IS by modifying the distributions

(or probabilities) of transitions and IS simulations using Regenerative simulations in

Markovian context.

A complete discussion of the SPNP tool is beyond the scope of this study, however,

Figure A.1 gives a brief idea of the capabilities available in the SPNP tool (version 6.0 and

after). In the version 6.1 used in the current study, there is no Graphical User Interface (GUI)

available as mentioned for version 6.0 in [34]. Readers are advised to refer to [34] for a

complete explaination of this tool.

Figure A.1 Classification and analysis methods in SPNP.

A.3 Methodologies Added

We added a new methodology in the SPNP package based on multi-level CE Algorithm 3 for

performing regenerative IS simulations in Markovian SPNs, while using the IS rates obtained

for transitions of interest (to be defined by the user) from the CE algorithm. The CE scheme

is used as a pre-simulation method.
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SPN Models

The following SPN models have been considered in the current work.

B.1 A single 2-out-of-3 Model with Logistics

We are going to present the case with one technician and its associated spares, but this block

can be repeated as much as desired without a significant effort to represent several depots.

Several technicians in a depot would mean several tokens in the place "TechHome". Similarly,

a single 2-out-of-3 (2oo3) system will be analyzed, but the block can be repeated at will.

We decompose the Petri net presentation in several sub-figures for an easier visualization.

B.1.1 The Technician(s) and the Spares Modeling

The logistics aspects of the model is represented as in Figure B.1. In Figure B.1, we can see

that the blocks when the technician leaves can be copied for each site (that is, for each 2oo3

system). There is a guard function on the immediate transitions Detected failure "unit" (unit

being the number of 2oo3 systems) and an inhibitor arc meaning that the technician cannot

leave if there is no spare available (should wait then). The guard function for Detected failure

"unit" is requiring that one of the components of the 2oo3 system unit has a detected failure,

i.e., one of the places "Pdetected_a", "Pdetected_b" or "Pdetected_c" has a token (those

places are defined in next section). The availability of spares is described by the independent

Petri net at the top of the Figure B.1. A possible extension could be that if all fails before

restoration in an undetected mode, then we probably need to move to the detected mode and

not wait for the next inspection (would require a new immediate transition to be added). Next,

we describe the description of what is between the places "OnSiteTech" and "RestOver".

B.1.2 The 2oo3 System

We present here the Petri net for a single 2oo3 systems (the junction with the previous Petri

net is via places "OnSiteTech" and "RestOver"). To simplifiy the graph, we avoid inhibitor
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Figure B.1 Logistics part of the 2oo3 model.

arcs and rather define guard functions described after the graph. We first present some

subparts, and then the whole graph of the 2oo3. Each of the three components (A, B and C)

can be up, failed and detected, or failed and undetected. There is a common cause failure

(CCF) that makes the 3 components fail at the same time. To be restored, the technician has

to be there. When the technician inspects (place "Inspect"), the undetected failure becomes

detected, and when the inspection is over, restoration starts (a token at place "Restore"

meaning that the technician is working on the restoration). This is summarized as follows

for component A (the same thing is extended for the other two components B and C, with

corresponding arcs).

Next, we describe the Petri subnet for the 2oo3. On this graph we have put three

components, plus the time to start the inspection, and an immediate transition readyRestore,

which fires when the inspections of all components is over and all undetected failures are

detected.
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Figure B.2 Component level model.

We have introduced the immediate transition noRestorationNeeded to account for timed

inspection for which there was actually no need to repair. then, after inspection, the technician

can actually return immediately to the depot.

General Comments:

1. Guard function "gReady": On immediate transition readyRestore: transition can not fire

if there are still some undetected failures, i.e., if one of the three places "UndetectedA",

"UndetectedB" or "UndetectedC" has a token.
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Figure B.3 Entire 2oo3 model with logistics in Figure B.1

2. For the transition restoration, the cardinality of the input and output arcs from "De-

tectedc" and to "Upc" (c ∈ {A,B,C}) is the number of tokens in "Detectedc" (1 or 0).

In other words, when restoration, the detected failed components are repaired (we do

not need all the components to be failed).

3. Guard function "gNorestoration": the immediate transition noRestorationNeeded is

enabled if all three components are up and the technician is ready to restore (that is,

place "Restore" contains a token). No need for restoration in this case.
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In the present model, as soon as the technician starts inspection, the potential component

hidden failures are tried to be identified in parallel (the three transitions retrieveA, retrieveB

and retrieveC are in competition). This maybe correct if the technician runs some software

working simultaneously at all components, but probably not if the technician does it manually.

In that case, a sequential treatment would be more relevant.

This model of a single 2oo3 system unit has 7 failure transitions of three different types:

Detected Failures of components (detA, detB and detC), undetected failures of components

(udetA, udetB and udetC) and a common cause failure (ccf ). Other transitions for which

distributions are needed to be defined in the model are:

• Rate at which spares become available

• Rate at which spares become unavailable

• Rate at which undetected failures are detected

• Rate at which on-site technicians start inspections

• Rate of timed inspections

• Travel rate for technicians

• Repair rate
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ferroviaires. Ces systèmes sont hautement fiables et 
présentent une logistique complexe. Les simulations 
Monte Carlo dans leur forme standard sont inutiles 
dans l'estimation efficace des paramètres des FDM à 
cause de la problématique des événements rares. 
C'est ici que l'échantillonnage préférentiel joue son 
rôle. C'est une technique de réduction de la variance 
et d'accélération de simulations. Cependant, 
l'échantillonnage préférentiel inclut un changement de 
lois de probabilité (changement de mesure) du 
modèle mathématique. Le changement de mesure 
optimal est inconnu même si théoriquement il existe 
et fournit un estimateur avec une variance zéro. 
Dans cette thèse, l'objectif principal est d'estimer deux 
paramètres pour l'analyse des FDM: la fiabilité des 
réseaux statiques et l'indisponibilité  asymptotique  

pour les systèmes dynamiques. Pour ce faire, la 
thèse propose des méthodes pour l'estimation et 
l'approximation du changement de mesure optimal et 
l'estimateur final. Les contributions se présentent en 
deux parties: la première partie étend la méthode de 
l'approximation du changement de mesure de 
l'estimateur à variance zéro pour l'échantillonnage 
préférentiel. La méthode estime la fiabilité des 
réseaux statiques et montre l'application à de réels 
systèmes ferroviaires. La seconde partie propose un 
algorithme en plusieurs étapes pour l'estimation de 
la distance de l'entropie croisée. Cela permet 
d'estimer l'indisponibilité asymptotique pour les 
systèmes markoviens hautement fiables avec des 
contraintes logistiques.  
Les résultats montrent une importante réduction de 
la variance et un gain par rapport aux simulations 
Monte Carlo. 

 

Title : Availability Estimation by Simulation for Systems including Logistics.  

Keywords : reliability metrics, rare events simulations, cross-entropy optimization.  

Abstract: RAM analysis forms an integral part in 
estimation of Life Cycle Costs (LCC) of passenger rail 
systems. These systems are highly reliable and 
include complex logistics. Standard Monte-Carlo 
simulations are rendered useless in efficient 
estimation of RAM metrics due to the issue of rare 
events. Systems failures of these complex passenger 
rail systems can include rare events and thus need 
efficient simulation techniques.   
Importance Sampling (IS) are an advanced class of 
variance reduction techniques that can overcome the 
limitations of standard simulations. IS techniques can 
provide acceleration of simulations, meaning, less 
variance in estimation of RAM metrics in same 
computational budget as a standard simulation. 
However, IS includes changing the probability laws 
(change of measure) that drive the mathematical 
models of the systems during simulations and the 
optimal IS change of measure is usually unknown, 
even though theoretically there exist a perfect one 
(zero-variance IS change of measure).  

In this thesis, we focus on the use of IS techniques 
and its application to estimate two RAM metrics : 
reliability (for static networks) and steady state 
availability (for dynamic systems). The thesis 
focuses on finding and/or approximating the optimal 
IS change of measure to efficiently estimate RAM 
metrics in rare events context. The contribution of
the thesis is broadly divided into two main axis : first, 
we propose an adaptation of the approximate zero-
variance IS method to estimate reliability of static 
networks and show the application on real 
passenger rail systems ; second, we propose a 
multi-level Cross-Entropy optimization scheme that 
can be used during pre-simulation to obtain CE 
optimized IS rates of Markovian Stochastic Petri 
Nets (SPNs) transitions and use them in main 
simulations to estimate steady state unavailability of 
highly reliable Markovian systems with complex 
logistics involved. Results from the methods show 
huge variance reduction and gain compared to MC 
simulations. 

 


