W. L. Kraushaar, High-Energy Cosmic Gamma-Ray Observations from the OSO-3 Satellite, Astrophys. J, vol.177, p.341, 1972.

T. Kifune, Ground-based gamma-ray astronomy : general remarks, Nuovo Cimento C Geophysics Space Physics C, vol.19, pp.953-957, 1996.

J. Bregeon, Contribution to the GLAST-LAT energy calibration and benchmarking of hadronic cascade models under GEANT4. Theses, Université Sciences et Technologies -Bordeaux I, 2005.
URL : https://hal.archives-ouvertes.fr/tel-00011356

B. Lott, Response of the GLAST LAT calorimeter to relativistic heavy ions, Nuclear Instruments and Methods in Physics Research A, vol.560, pp.395-404, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00026029

H. W. Bertini, Low-energy intranuclear cascade calculation, Phys. Rev, vol.131, pp.1801-1821, 1963.

L. Baldini, Preliminary results of the LAT Calibration Unit beam tests, of Physics Conference Series, vol.921, pp.190-204, 2007.

W. B. Atwood, The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission, Astrophys. J, vol.697, pp.1071-1102, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00378934

L. Baldini, J. Bregeon, and C. Sgrò, The online monitor for the GLAST Calibration Unit beam test, Science with the New Generation of High Energy Gamma-Ray Experiments, pp.209-212, 2007.

J. Bregeon, Design and performance of the silicon strip tracker of the Fermi Large Area Telescope, Journal of Instrum, vol.6, issue.12, p.12043, 2011.

A. A. Abdo, The fermi gamma-ray space telescope discovers the pulsar in the young galactic supernova remnant CTA 1, Science, vol.322, p.1218, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00339110

L. Rochester and . For-the-fermi, An investigation of alternative configurations of the read controllers of the Fermi LAT tracker, 2012.

A. A. Abdo, The on-orbit calibrations for the Fermi Large Area Telescope, Astropart. Phys, vol.32, p.193, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00379324

J. Bregeon, E. Charles, M. Wood, and . Fermi, Fermi-LAT data reprocessed with updated calibration constants, vol.121028, p.325, 2012.

M. Ackermann, The Fermi Large Area Telescope on Orbit : Event Classification, Instrument Response Functions, and Calibration, Astrophys. J. Supp. Series, vol.203, p.4, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00767693

M. Ackermann, Determination of the Point-spread Function for the Fermi Large Area Telescope from On-orbit Data and Limits on Pair Halos of Active Galactic Nuclei, Astrophys. J, vol.765, p.54, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00823282

E. Thébault, International geomagnetic reference field : the 12th generation, Earth, Planets and Space, vol.67, p.79, 2015.

D. Smart and M. Shea, A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft, Solar Wind-Magnetosphere-Ionosphere Dynamics and Radiation Models, vol.36, 2005.

M. Ackermann, In-flight measurement of the absolute energy scale of the Fermi Large Area Telescope, Astropart. Phys, vol.35, pp.346-353, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00684886

J. Allison, Recent developments in geant4, Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, vol.835, pp.186-225, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01412626

L. Rochester, T. Usher, R. P. Johnson, and B. Atwood, Upgrades to the Event Simulation and Reconstruction for the Fermi Large Area Telescope, 2010.

R. Terrier, Calorimetrie et recherche de sources en astronomie gamma spatiale. Theses, 2002.
URL : https://hal.archives-ouvertes.fr/tel-00002636

P. Bruel and F. Collaboration, Gamma rays, electrons and positrons up to 3 TeV with the Fermi Gamma-ray Space Telescope, Journal of Physics Conference Series, vol.404, p.12033, 2012.

V. Pelassa, The LAT Low-Energy technique for Fermi Gamma-Ray Bursts spectral analysis, 2010.

M. Ackermann, Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D, vol.91, p.122002, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02017076

A. Desai, Probing the EBL Evolution at High Redshift Using GRBs Detected with the Fermi-LAT, Astrophys. J, vol.850, p.73, 2017.

T. Desgardin, Performances of the Fermi gamma-ray telescope at low energy and impact on low energy science, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01254356

T. Desgardin, A Fermi-LAT view of the sky below 100 MeV, 34th International Cosmic Ray Conference (ICRC2015), vol.34, p.839, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02017089

M. Ackermann, Fermi-LAT Observations of the Diffuse ?-Ray Emission : Implications for Cosmic Rays and the Interstellar Medium, Astrophys. J, vol.750, p.3, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00685261

A. A. Abdo, Fermi LAT observations of LS I +61 ? 303 : First detection of an orbital modulation in GeV gamma rays, Astrophys. J. Lett, vol.701, pp.123-128, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00410616

G. Dobler, D. P. Finkbeiner, I. Cholis, T. Slatyer, and N. Weiner, The Fermi Haze : A Gamma-ray Counterpart to the Microwave Haze, Astrophys. J, vol.717, pp.825-842, 2010.

M. Su, T. R. Slatyer, and D. P. Finkbeiner, Giant Gamma-ray Bubbles from Fermi-LAT : Active Galactic Nucleus Activity or Bipolar Galactic Wind, vol.724, pp.1044-1082, 2010.

M. Ackermann, The Spectrum and Morphology of the Fermi Bubbles, vol.793, p.64, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02017063

T. Bringmann, X. Huang, A. Ibarra, S. Vogl, and C. Weniger, Fermi LAT search for internal bremsstrahlung signatures from dark matter annihilation, JCAP, vol.7, p.54, 2012.

C. Weniger, A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope, JCAP, vol.1208, p.7, 2012.

T. S. Cherenkov-;-b, I. Acharya, I. A. Agudo, R. Samarai, J. Alfaro et al., Science with the Cherenkov Telescope Array, 2017.

J. Glicenstein and M. Shayduk, NectarCAM, a camera for the medium sized telescopes of the Cherenkov telescope array, 6th International Symposium on High Energy Gamma-Ray Astronomy, vol.1792, p.80009, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01815314

M. De-naurois, Opening of a new astronomical window on the non-thermal Universe. Habilitation à diriger des recherches, Very High Energy astronomy from H, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00687872

T. Hassan, Monte Carlo performance studies for the site selection of the Cherenkov Telescope Array, Astroparticle Physics, vol.93, pp.76-85, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582902

M. Gaug, Calibration strategies for the Cherenkov Telescope Array, of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol.9149, p.914919, 2014.

G. Vacanti, Muon ring images with an atmospheric ?erenkov telescope, Astropart. Phys, vol.2, pp.1-11, 1994.

K. Bernlöhr, Impact of atmospheric parameters on the atmospheric Cherenkov technique*, Astroparticle Physics, vol.12, pp.255-268, 2000.

J. Bregeon, M. Compin, S. Rivoire, M. Sanguillon, and G. Vasileiadis, An elastic lidar system for the, Nuclear Instruments and Methods in Physics Research A, vol.819, pp.60-66, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02017062

A. Bucholtz, Rayleigh-scattering calculations for the terrestrial atmosphere, Appl. Opt, vol.34, pp.2765-2773, 1995.

J. D. Klett, Stable analytical inversion solution for processing lidar returns, Appl. Opt, vol.20, pp.211-220, 1981.

J. D. Klett, Lidar inversion with variable backscatter/extinction ratios, Appl. Opt, vol.24, pp.1638-1643, 1985.

F. G. Fernald, Analysis of atmospheric lidar observations : some comments, Appl. Opt, vol.23, pp.652-653, 1984.

P. Chazette, Comparative lidar study of the optical, geometrical, and dynamical properties of stratospheric post-volcanic aerosols, following the eruptions of el chichon and mount pinatubo, Journal of Geophysical Research : Atmospheres, vol.100, issue.D11, pp.23195-23207, 1995.

J. Devin, Spectro-morphological and multi-wavelength studies of gamma-ray supernova remnants and Galactic TeV sources, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02078545

M. Mayer, Rapid Gamma-Ray Flux Variability during the 2013 March Crab Nebula Flare, Astrophys. J. Lett, vol.775, p.37, 2013.

G. Vasileiadis, Raman LIDARs and atmospheric calibration for the Cherenkov Telescope Array, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02024239

G. Lamanna, Cherenkov Telescope Array Data Management, Proceedings, 34th International Cosmic Ray Conference, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01194814

J. L. Contreras, Data model issues in the Cherenkov Telescope Array project, Proceedings, 34th International Cosmic Ray Conference (ICRC 2015), 2015.
URL : https://hal.archives-ouvertes.fr/hal-02017112

M. Sanguillon, M. Servillat, M. Louys, F. Bonnarel, C. Boisson et al., IVOA Provenance data model : hints from the CTA Provenance prototype, ADASS XXV proceedings, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01876812

L. Arrabito, Prototype of a production system for Cherenkov Telescope Array with DIRAC, Proceedings, 21st International Conference on Computing in High Energy and Nuclear Physics, vol.664, p.32001, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01584676

L. Arrabito, The Cherenkov Telescope Array production system for Monte Carlo simulations and analysis, Journal of Physics Conference Series, vol.898, p.52013, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01648198

J. Knödlseder, GammaLib and ctools. A software framework for the analysis of astronomical gamma-ray data, Astronomy and Astrophysics, vol.593, p.1, 2016.

C. , Gammapy -A prototype for the CTA science tools, 2017.

H. Abdallah, Galactic plane survey, Astronomy and Astrophysics, vol.612, p.1, 2018.

G. Maier, Monte Carlo Performance Studies of Candidate Sites for the Cherenkov Telescope Array, Proceedings, 34th International Cosmic Ray Conference, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02024215

T. Hassan, Second large-scale Monte Carlo study for the Cherenkov Telescope Array, Proceedings, 34th International Cosmic Ray Conference, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02024228

P. Cumani, Baseline telescope layouts of the Cherenkov Telescope Array, PoS, vol.2017, p.811, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01903440

Q. Rémy, BLOBFind, 2018.

M. and D. Mauro, Theoretical Interpretation of Pass 8 Fermi-LAT e + + e ? Data, vol.845, p.107, 2017.

M. Aguilar, The Alpha Magnetic Spectrometer (AMS) on the International Space Station : Part I -results from the test flight on the space shuttle, Phys. Rep, vol.366, pp.331-405, 2002.
URL : https://hal.archives-ouvertes.fr/in2p3-00011810

A. W. Strong, I. V. Moskalenko, and O. Reimer, Diffuse Galactic Continuum Gamma Rays : A Model Compatible with EGRET Data and Cosmic-Ray Measurements, Astrophys. J, vol.613, pp.962-976, 2004.

J. Chang, An excess of cosmic ray electrons at energies of 300-800GeV, Nature, vol.456, pp.362-365, 2008.

S. Torii, High-energy electron observations by PPB-BETS flight in Antarctica, 2008.

F. Aharonian, Energy Spectrum of Cosmic-Ray Electrons at TeV Energies, Phys. Rev. Lett, vol.101, p.261104, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00341406

O. Adriani, An anomalous positron abundance in cosmic rays with energies 1.5-100GeV, Nature, vol.458, pp.607-609, 2009.

M. Ackermann, Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV, Phys. Rev. D, vol.82, p.92004, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00585122

A. A. Abdo, Measurement of the cosmic ray e + + e ? spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett, vol.102, p.181101, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00392444

C. Sgrò, J. Bregeon, and L. Baldini, Instrument simulation for the analysis of cosmic ray electron with the Fermi LAT, 2009.

G. , A multidimensional unfolding method based on Bayes' theorem, Nucl. Instrum. Meth. A, vol.362, pp.487-498, 1995.

D. Grasso, On possible interpretations of the high energy electron-positron spectrum measured by the Fermi Large Area Telescope, Astropart. Phys, vol.32, pp.140-151, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00498975

M. Ackermann, Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope, Phys. Rev. Lett, vol.108, p.11103, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00665926

M. Ackermann, Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope, Phys. Rev. D, vol.82, p.92003, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00585107

M. Aguilar, Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett, vol.113, p.121102, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01066028

M. Aguilar, Precision Measurement of the (e + +e ? ) Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett, vol.113, p.221102, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01088104

S. Abdollahi, Search for Cosmic-Ray Electron and Positron Anisotropies with Seven Years of Fermi Large Area Telescope Data, Phys. Rev. Lett, vol.118, p.91103, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01554882

M. N. Mazziotta, Search for features in the cosmic-ray electron and positron spectrum measured by the Fermi Large Area Telescope, Phys. Rev. D, vol.98, p.22006, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01839753

G. Ambrosi, Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons, Nature, vol.552, pp.63-66, 2017.

O. Adriani, Extended Measurement of the Cosmic-Ray Electron and Positron Spectrum from 11 GeV to 4.8 TeV with the Calorimetric Electron Telescope on the International Space Station, Phys. Rev. Lett, vol.120, p.261102, 2018.

A. Archer, Measurement of Cosmic-ray Electrons at TeV Energies by VERI-TAS, 2018.

D. Band, BATSE observations of gamma-ray burst spectra. I -Spectral diversity, Astrophys. J, vol.413, pp.281-292, 1993.

B. P. Abbott, GW170817 : Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett, vol.119, p.161101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645859

T. Piran, Gamma-ray bursts and the fireball model, Phys. Rept, vol.314, pp.575-667, 1999.

F. Piron, Gamma-ray bursts at high and very high energies, Comptes Rendus Physique, vol.17, pp.617-631, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01553915

A. A. Abdo, Fermi observations of high-energy gamma-ray emission from GRB 080916C, Science, vol.323, p.1688, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00377697

M. Ackermann, Detection of a Spectral Break in the Extra Hard Component of GRB 090926A, Astrophys. J, vol.729, p.114, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00587734

Y. Kaneko, R. D. Preece, M. S. Briggs, W. S. Paciesas, C. A. Meegan et al., The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts, Astrophys. J. Supp. Series, vol.166, pp.298-340, 2006.

W. Cash, Parameter estimation in astronomy through application of the likelihood ratio, Astrophys. J, vol.228, pp.939-947, 1979.

Y. Zou, Y. Fan, and T. Piran, A Revised Limit of the Lorentz Factors of Gamma-ray Bursts with Two Emitting Regions, Astrophys. J. Lett, vol.726, p.2, 2011.

R. Hascoët, F. Daigne, R. Mochkovitch, and V. Vennin, Do Fermi Large Area Telescope observations imply very large Lorentz factors in gamma-ray burst outflows ?, Monthly Notices of the Royal Astronomical Society, vol.421, pp.525-545, 2012.

M. Yassine, F. Piron, R. Mochkovitch, and F. Daigne, Time evolution of the spectral break in the high-energy extra component of GRB 090926A, Astronomy and Astrophysics, vol.606, p.93, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02120310

M. Ackermann, Multiwavelength Observations of GRB 110731A : GeV Emission from Onset to Afterglow, Astrophys. J, vol.763, p.71, 2013.

R. A. Chevalier and Z. Li, Wind Interaction Models for Gamma-Ray Burst Afterglows : The Case for Two Types of Progenitors, Astrophys. J, vol.536, pp.195-212, 2000.

A. Panaitescu and P. Kumar, Analytic Light Curves of Gamma-Ray Burst Afterglows : Homogeneous versus Wind External Media, Astrophys. J, vol.543, pp.66-76, 2000.

J. Granot and R. Sari, The Shape of Spectral Breaks in Gamma-Ray Burst Afterglows, Astrophys. J, vol.568, pp.820-829, 2002.

B. Zhang, Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves : Theoretical Implications from the Swift X-Ray Telescope Observations, Astrophys. J, vol.642, pp.354-370, 2006.

J. Bregeon, Broadband observations of GRB110731A with Fermi, Swift, GROND and MOA, Gamma-Ray Bursts 2012 Conference, p.20, 2012.

H. Lü, X. Wang, R. Lu, L. Lan, H. Gao et al., A Peculiar GRB 110731A : Lorentz Factor, Jet Composition, Central Engine, and Progenitor, Astrophys. J, vol.843, p.114, 2017.

F. Piron and V. Connaughton, The Fermi view of gamma-ray bursts, Comptes Rendus Physique, vol.12, pp.267-275, 2011.

L. Nava, High-energy emission from gamma-ray bursts, International Journal of Modern Physics D, vol.27, p.1842003, 2018.

A. A. Abdo, Fermi observations of GRB 090902B : A distinct spectral component in the prompt and delayed emission, Astrophys. J. Lett, vol.706, pp.138-144, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00436385

M. Ackermann, The First Fermi-LAT Gamma-Ray Burst Catalog, Astrophys. J. Supp. Series, vol.209, p.11, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00918323

N. Gehrels and S. Razzaque, Gamma-ray bursts in the swift-Fermi era, Frontiers of Physics, vol.8, pp.661-678, 2013.

R. Preece, The First Pulse of the Extremely Bright GRB 130427A : A Test Lab for Synchrotron Shocks, Science, vol.343, pp.51-54, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-02019633

M. Ackermann, Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A, Science, vol.343, pp.42-47, 2014.

A. A. Abdo, A limit on the variation of the speed of light arising from quantum gravity effects, Nature, vol.462, pp.331-334, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00436584

V. Vasileiou, Constraints on Lorentz invariance violation from Fermi-Large Area Telescope observations of gamma-ray bursts, Phys. Rev. D, vol.87, p.122001, 2013.

B. P. Abbott, Multi-messenger Observations of a Binary Neutron Star Merger, Astrophys. J. Lett, vol.848, p.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01646052

M. Ajello, Fermi-LAT Observations of LIGO/Virgo Event GW170817, Astrophys. J, vol.861, p.85, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01846606

H. Abdallah, First Ground-based Measurement of Sub-20 GeV to 100 GeV ?-rays from the Vela Pulsar with, 2018.

C. Hoischen, International Cosmic Ray Conference, vol.35, p.636, 2017.

A. Bouvier, R. Gilmore, V. Connaughton, N. Otte, J. R. Primack et al., Prospects of GRB observations for CTA from a phenomenological model, 2011.

S. Inoue, Gamma-ray burst science in the era of the Cherenkov Telescope Array, Astropart. Phys, vol.43, pp.252-275, 2013.

E. Bissaldi, T. D. Girolamo, F. Longo, P. Vallania, and C. Vigorito, Prospects for Gamma-Ray Bursts detection by the Cherenkov Telescope Array, 2015.

X. Wang, Z. Li, and P. Mészáros, GeV-TeV and X-Ray Flares from Gamma-Ray Bursts, Astrophys. J. Lett, vol.641, pp.89-92, 2006.

R. Sari and T. Piran, Predictions for the very early afterglow and the optical flash, The Astrophysical Journal, vol.520, issue.2, p.641, 1999.

A. A. Abdo, Fermi Observations of GRB 090510 : A Short-Hard Gammaray Burst with an Additional, Hard Power-law Component from 10 keV TO GeV Energies, Astrophys. J, vol.716, pp.1178-1190, 2010.

Y. Fan, T. Piran, R. Narayan, and D. Wei, High-energy afterglow emission from gamma-ray bursts, Monthly Notices of the Royal Astronomical Society, vol.384, pp.1483-1501, 2008.

A. Abramowski, Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken on MJD 53944, Astroparticle Physics, vol.34, pp.738-747, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00561756

C. Romoli, Observation of the extremely bright flare of the FSRQ 3C279 with, International Cosmic Ray Conference, vol.35, p.649, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01903375

H. Abdallah, Measurement of the EBL spectral energy distribution using the VHE ?-ray spectra of H, Astronomy and Astrophysics, vol.606, p.59, 2017.

J. Wei, The Deep and Transient Universe in the SVOM Era : New Challenges and Opportunities -Scientific prospects of the SVOM mission, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01576530

B. Cordier, The SVOM mission, a pathfinder for THESEUS, Mem. S.A.It, vol.89, p.266, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02058457

, PICS' France-Italie pour une mission de collaboration d'une semaine avec le groupe Fermi de l'INFN de Pise avec pour but la mise à jour du système de monitorage de la qualité des données dans le cadre de la mise en production de la reconstruction Pass 8, En 2015, j'ai obtenu un financement de type

, Projet Labex OCEVU

, le projet CTASci, de collaboration entre les laboratoires CPPM, IRAP et LUPM a été retenu avec pour objectif la préparation de la science de CTA : ? j'ai été le esponsable scientifique du projet pour le LUPM de 2015 à 2019. ? 2 postdocs d'une durée de 2 ans chacun ont été recrutés à l'IRAP, 2015.

, Calcul et données" de l'IN2P3 afin d'organiser et de promouvoir le projet DIRAC au sein de l'IN2P3. L'idée est née de la collaboration forte existante entre A. Tsaregorodtsev (IR, CPPM) et L. Arrabito et moi même, autour du développement de DIRAC pour CTA. Le projet a été rapidement accepté et a pu démarrer officiellement en 2017 avec un financement annuel à hauteur de 7000 euros, Nous avons réussi à regrouper des participants au-delà de l'IN2P3, les membres actuels sont les suivants : ? CPPM : A. Tsaregorodtsev (IR), responsable scientifique du projet ? LUPM : L. Arrabito (IR), J. Bregeon (CR) ? CC-IN2P3 : F. Hernandez (IR)

, Le projet est organisé via les outils informatiques suivant

, Les bénéfices attendus pour les expériences utilisatrices de DIRAC sont multiples : ? Simulations et traitement des données plus stables et efficaces ? Moins d'ETP nécessaires pour le suivi des productions ? Temps réduit entre acquisition des données (ou production des simulations) et distribution des produits scientifiques ? Gestion des données en masse plus efficace

, ? Accès simplifié et efficace à de nouveaux types de ressources de calcul et de stockage

, Ces échanges s'avèrent extrêmement bénéfiques pour tous. Nous tenons de plus deux réunions en face à face par an pour approfondir certains points et planifier nos actions futurs. Du point de vue du code, les développements suivants ont été réalisés dans le cadre du projet : ? Transformation System : association des fichiers aux transformations correspondantes dès leur enregistrement dans le catalogue de fichier ? Production System : nouveau système orchestrant un ensemble de transformation pour une production donnée ? intégration de ressources cloud, La première réussite du projet DIRAC @IN2P3 est sans doute qu'il s'apprête à rentrer dans sa troisième année d'existence

H. ?-intégration-de-ressources, . Amu, . Le-centre, and . Hpc, Workload management for heterogeneous multi-community grid infrastructures ? CHEP 2018, Sofia L. Arrabito et al, The Cherenkov Telescope Array production system for data-processing and Monte Carlo simulation F. Stagni, A. Tsaregorodtsev et al, LHCb and DIRAC strategy towards the LHCb upgrade ? Grid, Govorun à Dubna ? intégration de ressources GPU au CREATIS Nos actions et résultats ont été présentés à plusieurs conférences, en particulier en 2018 : ? ISGC 2018, Taipei A. Tsaregorodtsev, vol.2, 2018.

?. Calcul, S. Données, and . Pop, Exploiting GPUs for medical imaging applications with VIP and Dirac Le projet s'est appuyé jusqu'à présent sur l'engagement fort du CPPM et du LUPM, engagement qui devrait rester stable et même se renforcer à court terme. Pour sa péren-nisation, il est cependant indispensable que d'autres laboratoires, de l'IN2P3 notamment, puissent s'impliquer dans le projet, ce qui sera réalisable si de nouvelles expériences de l