Géochimie en milieu nanoporeux : Application aux verres nucléaires

Abstract : This work aims at understanding water interactions with the altered layer, called gel, formed during borosilicate nuclear glass corrosion. Specifically, we focus on the corrosion of the six oxides ISG. To better understand gel formation mechanisms, as well as gel passivating properties, experimental studies are combined to molecular dynamics simulations. First, this study focuses on the characterization of the pristine glass structure. Experimental analysis (NMR) provides some information to validate the simulated structure. As a result, an improved understanding of the pristine glass short- and medium-range orders is obtained. We also observe that network formers are homogeneously distributed, with no area enriched in boron for instance. Boron is known to be highly soluble, and tends to divide the silicate network, which would affect its reactivity. The gel formation is then studied experimentally in conditions favoring the passivating effect of the glass (90 °C, pH 7, silica-saturated solution). A strong effect of exogenous elements in solution, particularly weakly hydrated alkalis such as potassium and cesium, is observed, with a notable decrease of glass corrosion. To better understand this effect, all gels are characterized. A congruent release of boron and sodium is observed, while potassium and cesium are incorporated. They then act as charge compensator for [AlO4]- units. Calcium usually plays this role in gels formed in solutions with no alkali or containing strongly hydrated alkali such as lithium and sodium. The hydration degree differs for the various gels present, as confirmed by MD simulation of water diffusion in nanoporous amorphous silica in presence of alkali. These simulations highlight a combined impact of sterical effects (alkali size) and physicochemical effects (hydration energy) leading to a decrease of water quantity in the nanopores containing potassium and cesium. Moreover, all the gels formed in the above mentioned leaching conditions are highly polymerized, which indicates a reorganization of the network following the leaching of hydrolysable species such as boron. This reorganization happens without complete hydrolysis of silicon atoms, which invalidate the congruent dissolution/precipitation model in this case. Water speciation inside the gel is determined combining TGA and NMR, giving access to quantitative oxygen repartition in the gel (bridging oxygen, non-bridging oxygen or H2O). This data are then used for the interpretation of tracing experiments carried out in H218O rich solution on prealtered samples. The results demonstrate for the first time that the network reorganizes continuously over time, with a decrease of mobile species (H2O and hydroxyls) accessibility due to the maturation of the porosity within the gel. We determine various water diffusivities as a function of the gel topology and propose the hypothesis that this decreasing reactivity of the network is the source of the passivating nature of the gel.  
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-02195581
Contributor : Marie Collin <>
Submitted on : Friday, July 26, 2019 - 2:11:10 PM
Last modification on : Saturday, July 27, 2019 - 1:12:04 AM

File

Manuscrit_Marie_COLLIN.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : tel-02195581, version 1

Collections

CEA

Citation

Marie Collin. Géochimie en milieu nanoporeux : Application aux verres nucléaires. Chimie inorganique. Université de Montpellier; Ecole Doctorale Information Structures Systèmes, 2018. Français. ⟨tel-02195581⟩

Share

Metrics

Record views

125

Files downloads

36