, ABC tech & strats, 2018.

M. Armand, B. Grégoire, A. Spiwack, and L. Théry,

, Extending Coq with imperative features and its application to SAT verification, vol.6172, p.502496, 2010.

G. Barrett, Formal methods applied to a floating-point number system, IEEE Transactions on Software Engineering, vol.15, issue.5, pp.611-621, 1989.

Y. Bertot and P. Castéran, Coq'Art: The Calculus of Inductive Constructions. 472 pages. Texts in Theoretical Computer Science, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00344237

F. Bobot, É. Sylvain-conchon, M. Contejean, A. Iguernelala, A. Mahboubi et al., A Simplex-based extension of Fourier-Motzkin for solving linear integer arithmetic, 6th International Joint Conference on Automated Reasoning (IJCAR), vol.7364, pp.67-81, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00687640

S. Boldo, F. Clément, J. Filliâtre, M. Mayero, G. Melquiond et al., Formal proof of a wave equation resolution scheme: the method error, 1st Interactive Theorem Proving Conference (ITP), vol.6172, p.450789, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00450789

S. Boldo, F. Clément, J. Filliâtre, M. Mayero, G. Melquiond et al., Wave equation numerical resolution: a comprehensive mechanized proof of a C program, Journal of Automated Reasoning, vol.50, issue.4, pp.423-456, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00649240

S. Boldo, F. Clément, J. Filliâtre, M. Mayero, G. Melquiond et al., Trusting computations: A mechanized proof from partial differential equations to actual program, Computers & Mathematics with Applications, vol.68, issue.3, p.769201, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00769201

M. Brain, D. Vijay, A. Silva, L. Griggio, D. Haller et al., Deciding floating-point logic with abstract conflict driven clause learning. Formal Methods in System Design, vol.45, pp.213-245, 2014.

S. Boldo, M. Daumas, W. Kahan, and G. Melquiond, Proof and certification for an accurate discriminant, 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN), 2006.

N. Sergeï and . Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné, vol.4, pp.1-103, 1912.

F. Besson, Fast reflexive arithmetic tactics the linear case and beyond, International Workshop on Types for Proofs and Programs, vol.4502, pp.48-62, 2007.

S. Boldo, J. Filliâtre, and G. Melquiond, Combining Coq and Gappa for certifying floating-point programs, 16th Calculemus Symposium, vol.5625, p.432726, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00432726

F. Bobot, J. Filliâtre, C. Marché, G. Melquiond, and A. Paskevich, Preserving user proofs across specification changes, 5th International Conference on Verified Software: Theories, Tools, and Experiments (VSTTE), vol.8164, p.875395, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875395

F. Bobot, J. Filliâtre, C. Marché, and A. Paskevich, Why3: Shepherd your herd of provers, 1st International Workshop on Intermediate Verification Languages (Boogie), pp.53-64, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00790310

N. Brisebarre and M. Jolde?, Chebyshev interpolation polynomialbased tools for rigorous computing, 35th International Symposium on Symbolic and Algebraic Computation (ISSAC), pp.147-154, 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00472509

S. Boldo, J. Jourdan, X. Leroy, and G. Melquiond, A formally-verified C compiler supporting floating-point arithmetic
URL : https://hal.archives-ouvertes.fr/hal-00743090

A. Nannarelli, P. Seidel, and P. T. Tang, 21st IEEE Symposium on Computer Arithmetic (Arith), pp.107-115, 2013.

S. Boldo, J. Jourdan, X. Leroy, and G. Melquiond, Verified compilation of floating-point computations, Journal of Automated Reasoning, vol.54, issue.2, pp.135-163, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00862689

N. Brisebarre, M. Jolde?, É. Martin-dorel, M. Mayero, J. Muller et al., Rigorous polynomial approximation using Taylor models in Coq, 4th International Symposium on NASA Formal Methods (NFM), vol.7226, pp.85-99, 2012.
URL : https://hal.archives-ouvertes.fr/ensl-00653460

L. M. Beda, L. N. Korolev, N. V. Sukkikh, and T. S. Frolova, Programs for automatic differentiation for the machine BESM, Academy of Science, 1959.

S. Boldo, C. Lelay, and G. Melquiond, Improving real analysis in Coq: a user-friendly approach to integrals and derivatives, 2nd International Conference on Certified Programs and Proofs, vol.7679, p.712938, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00712938

S. Boldo, C. Lelay, and G. Melquiond, Coquelicot: A userfriendly library of real analysis for Coq, Mathematics in Computer Science, vol.9, issue.1, pp.41-62, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00860648

S. Boldo, C. Lelay, and G. Melquiond, Formalization of real analysis: A survey of proof assistants and libraries, Mathematical Structures in Computer Science, vol.26, issue.7, pp.1196-1233, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00806920

S. Boldo and G. Melquiond, When double rounding is odd, 17th IMACS World Congress on Computational and Applied Mathematics, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00070603

S. Boldo and G. Melquiond, Emulation of a FMA and correctlyrounded sums: Proved algorithms using rounding to odd, IEEE Transactions on Computers, vol.57, issue.4, p.80427, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00080427

S. Boldo and G. Melquiond, Flocq: A unified library for proving floating-point algorithms in Coq, 20th IEEE Symposium on Computer Arithmetic (Arith), p.534854, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00534854

S. Boldo and G. Melquiond, Arithmétique des ordinateurs et preuves formelles, Informatique Mathématique : une photographie en 2013, pp.189-220, 2013.

S. Boldo and G. Melquiond, Verifying Floating-point Algorithms with the Coq System. 326 pages, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01632617

H. Brönnimann, G. Melquiond, and S. Pion, The Boost interval arithmetic library, 5th Conference on Real Numbers and Computers (RNC), vol.ha, p.348711, 2003.

H. Brönnimann, G. Melquiond, and S. Pion, Bool set: multivalued logic, ISO C++ Standardization Committee, 2006.

H. Brönnimann, G. Melquiond, and S. Pion, The design of the Boost interval arithmetic library, Theoretical Computer Science, vol.351, pp.111-118, 2006.

H. Brönnimann, G. Melquiond, and S. Pion, A proposal to add interval arithmetic to the C++ standard library, ISO C++ Standardization Committee, 2006.

H. Brönnimann, G. Melquiond, and S. Pion, Proposing interval arithmetic for the C++ standard, 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN), 2006.

F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman, Magic sets and other strange ways to implement logic programs, 5th ACM SIGACT-SIGMOD Symposium on Principles of Database Systems (PODS), pp.1-15, 1986.

S. Boutin, Using reflection to build efficient and certified decision procedures, 3rd International Symposium on Theoretical Aspects of Computer Software (TACS), vol.1281, pp.515-529, 1997.

Y. Bertot, L. Rideau, and L. Théry, Distant decimals of ?: Formal proofs of some algorithms computing them and guarantees of exact computation, Journal of Automated Reasoning, vol.61, issue.1, p.1582524, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01582524

M. Brain, C. Tinelli, P. Rümmer, and T. Wahl, An automatable formal semantics for IEEE-754 floating-point arithmetic, 22nd IEEE Symposium on Computer Arithmetic, pp.160-167, 2015.

M. Bromberger and C. Weidenbach, Fast cube tests for LIA constraint solving, 8th International Joint Conference on Automated Reasoning (IJCAR), vol.9706, pp.116-132, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01403200

H. Cartan, Filtres et ultrafiltres. Comptes rendus hebdomadaires des séances de l'Académie des sciences, vol.205, pp.777-779, 1937.

H. Cartan, Théorie des filtres. Comptes rendus hebdomadaires des séances de l'Académie des sciences, vol.205, pp.595-597, 1937.

P. Cousot and R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL), pp.238-252, 1977.

M. Ceberio and L. Granvilliers, Horner's rule for interval evaluation revisited, Computing, vol.69, issue.1, pp.51-81, 2002.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, Counterexample-guided abstraction refinement for symbolic model checking, Journal of the ACM, vol.50, issue.5, pp.752-794, 2003.

M. Clochard, L. Gondelman, and M. Pereira, The Matrix reproved, Journal of Automated Reasoning, vol.60, issue.3, p.1617437, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01316902

M. Sylvain-conchon, K. Iguernlala, G. Ji, C. Melquiond, and . Fumex, A three-tier strategy for reasoning about floating-point numbers in SMT, 29th International Conference on Computer Aided Verification (CAV), vol.10427, pp.419-435, 2017.

M. Sylvain-chevillard, C. Jolde?, and . Lauter, Sollya: An environment for the development of numerical codes, 3rd International Congress on Mathematical Software (ICMS), vol.6327, pp.28-31, 2010.

W. D. Clinger, How to read floating-point numbers accurately, ACM SIGPLAN Notices, vol.25, issue.6, pp.92-101, 1990.

G. Sylvain-conchon, C. Melquiond, M. Roux, and . Iguernelala, Built-in treatment of an axiomatic floating-point theory for SMT solvers, 10th International Workshop on Satisfiability Modulo Theories (SMT), p.1785166, 2012.

A. Chaieb and T. Nipkow, Proof synthesis and reflection for linear arithmetic, Journal of Automated Reasoning, vol.41, issue.1, pp.33-59, 2008.

. Sylvain-conchon, SMT Techniques and their Applications: from Alt-Ergo to Cubicle. Habilitation thesis, 2012.

G. F. Corliss and L. B. Rall, Adaptive, self-validating numerical quadrature, SIAM Journal on Scientific and Statistical Computing, vol.8, issue.5, pp.831-847, 1987.

J. Luiz, D. Comba, and J. Stolfi, Affine arithmetic and its applications to computer graphics, 6th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), pp.9-18, 1993.

T. Coe and P. Tang, It takes six ones to reach a flaw, 12th IEEE Symposium on Computer Arithmetic, pp.140-146, 1995.

W. J. Cody, J. , W. Waite, and ;. A49]-jean-le-rond-d'alembert, Recherches sur la courbe que forme une corde tendue mise en vibrations, Histoire de l'Académie Royale des Sciences et Belles Lettres, vol.3, p.1749, 1747.

C. Florent-de-dinechin, G. Lauter, and . Melquiond, Assisted verification of elementary functions using Gappa, ACM Symposium on Applied Computing (SAC), pp.1318-1322, 2006.

C. Florent-de-dinechin, G. Lauter, and . Melquiond, Certifying the floating-point implementation of an elementary function using Gappa, IEEE Transactions on Computers, vol.60, issue.2, pp.242-253, 2011.

J. Theodorus and . Dekker, A floating-point technique for extending the available precision, Numerische Mathematik, vol.18, issue.3, pp.224-242, 1971.

D. Delahaye, A tactic language for the system Coq, 7th International Conference on Logic for Programming and Automated Reasoning (LPAR), vol.1955, p.1125070, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01125070

W. Edsger and . Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs, Communications of the ACM, vol.18, issue.8, pp.453-457, 1975.

M. Daumas and G. Melquiond, Generating formally certified bounds on values and round-off errors, 6th Conference on Real Numbers and Computers (RNC), p.70739, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02102116

M. Daumas and G. Melquiond, Certification of bounds on expressions involving rounded operators, ACM Transactions on Mathematical Software, vol.37, issue.1, p.127769, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00127769

M. Daumas, G. Melquiond, and C. Muñoz, Guaranteed proofs using interval arithmetic, 17th IEEE Symposium on Computer Arithmetic (Arith), p.164621, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00164621

W. Edmonson, G. Melquiond-;-andreas-fabri, G. Giezeman, L. Kettner, S. Schirra et al., On the design of CGAL, a computational geometry algorithms library. Software: Practice and Experience, IEEE interval standard working group -P1788: current status, vol.30, pp.1167-1202, 2000.

A. Samuel and . Figueroa, When is double rounding innocuous?, ACM SIGNUM Newsletter, vol.30, issue.3, pp.21-26, 1995.

J. , C. Filliâtre, and C. Marché, The Why/Krakatoa/Caduceus platform for deductive program verification, 19th International Conference on Computer Aided Verification (CAV), vol.4590, pp.173-177, 2007.

C. Fumex, C. Marché, and Y. Moy, Automated verification of floating-point computations in Ada programs, p.1511183, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01511183

J. , C. Filliâtre, and A. Paskevich, Why3 -where programs meet provers, 22nd European Symposium on Programming, vol.7792, p.789533, 2013.

B. Fu, Multivariate polynomial integration and differentiation are polynomial time inapproximable unless P=NP, Joint International Conference on Frontiers in Algorithmics and Algorithmic Aspects in Information and Management, vol.7285, pp.182-191, 2012.

S. Gao, J. Avigad, and E. M. Clarke, ?-complete decision procedures for satisfiability over the reals, 6th International Joint Conference on Automated Reasoning (IJCAR), vol.7364, pp.286-300, 2012.

B. Grégoire and A. Mahboubi, Proving equalities in a commutative ring done right in Coq, 18th International Conference on Theorem Proving in Higher Order Logics (TPHOLs), pp.98-113, 2005.

D. Goldberg, What every computer scientist should know about floatingpoint arithmetic, ACM Computing Surveys, vol.23, issue.1, pp.5-48, 1991.

E. Goubault and S. Putot, Static analysis of numerical algorithms, International Static Analysis Symposium (SAS), vol.4134, pp.18-34, 2006.

B. Grégoire and L. Théry, A purely functional library for modular arithmetic and its application to certifying large prime numbers, 3rd International Joint Conference on Automated Reasoning (IJCAR), vol.4130, pp.423-437, 2006.

F. Gramain and M. Weber, Computing an arithmetic constant related to the ring of Gaussian integers, Mathematics of Computation, vol.44, issue.169, pp.241-250, 1985.

T. Hales, M. Adams, G. Bauer, D. Dang, J. Harrison et al., , 2015.

J. Harrison, Metatheory and reflection in theorem proving: A survey and critique, 1995.

J. Harrison, Floating-point verification in HOL light: The exponential function, 1997.

J. Harrison, Verifying the accuracy of polynomial approximations in HOL, 10th International Conference on Theorem Proving in Higher Order Logics (TPHOLs), vol.1275, pp.137-152, 1997.

J. Harrison, A machine-checked theory of floating point arithmetic, 12th International Conference in Theorem Proving in Higher Order Logics (TPHOLs), vol.1690, pp.113-130, 1999.

J. Harrison, Formal verification of floating-point trigonometric functions, 3rd International Conference on Formal Methods in Computer-Aided Design (FMCAD), vol.1954, pp.217-233, 2000.

J. Harrison, Formal verification of IA-64 division algorithms, 13th International Conference on Theorem Proving in Higher Order Logics (TPHOLs), vol.1869, pp.233-251, 2000.

J. Harrison, Floating-point verification using theorem proving, 6th International School on Formal Methods for the Design of Computer, Communication, and Software Systems (SFM), vol.3965, pp.211-242, 2006.

J. Harrison, Verifying nonlinear real formulas via sums of squares, 20th International Conference on Theorem Proving in Higher Order Logics (TPHOLs), vol.4732, pp.102-118, 2007.

H. A. Helfgott, Major arcs for Goldbach's problem, 2014.

M. Heule, Schur number five, 32nd AAAI Conference on Artificial Intelligence, pp.6598-6606, 2018.

J. Hölzl, F. Immler, and B. Huffman, Type classes and filters for mathematical analysis in Isabelle/HOL, 4th International Conference on Interactive Theorem Proving (ITP), vol.7998, pp.279-294, 2013.

J. E. Holm, Floating-Point Arithmetic and Program Correctness Proofs, 1980.

J. Hass and R. Schlafly, Double bubbles minimize, Annals of Mathematics. Second Series, vol.151, issue.2, pp.459-515, 2000.

, IEEE standard for floating-point arithmetic, IEEE Computer Society, 2008.

, IEEE standard for interval arithmetic, IEEE Computer Society, 2015.

F. Immler, A verified ODE solver and the Lorenz attractor, Journal of Automated Reasoning, vol.61, issue.1, pp.73-111, 2018.

D. Ishii, G. Melquiond, and S. Nakajima, Inductive verification of hybrid automata with strongest postcondition calculus, 10th Conference on Integrated Formal Methods (iFM), vol.7940, p.806701, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00806701

, ISO. International standard ISO/IEC 9899:2011, Programming languages -C, 2011.

F. Immler and C. Traut, The flow of ODEs: Formalization of variational equation and Poincaré map, Journal of Automated Reasoning, vol.62, issue.2, pp.215-236, 2019.

C. Jeannerod and J. , Simultaneous floating-point sine and cosine for VLIW integer processors, 23rd International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp.69-76, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00672327

L. Jaulin, M. Kieffer, O. Didrit, and . Walter, Applied Interval Analysis. With Examples in Parameter and State Estimation, Robust Control and Robotics. 379 pages, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00845131

C. Jeannerod, H. Knochel, C. Monat, and G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, IEEE Transactions on Computers, vol.60, issue.2, pp.214-227, 2011.
URL : https://hal.archives-ouvertes.fr/ensl-00559236

F. Johansson, Numerical integration in arbitrary-precision ball arithmetic, 6th International Congress on Mathematical Software (ICMS), vol.10391, p.1714969, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01714969

M. Jolde?, Rigorous Polynomial Approximations and Applications, p.657843, 2011.

E. A. Karatsuba, Fast evaluation of transcendental functions, Problemy Peredachi Informatsii, vol.27, issue.4, pp.76-99, 1991.

O. Kupriianova and C. Q. Lauter, Metalibm: A mathematical functions code generator, 4th International Congress on Mathematical Software (ICMS), vol.8592, pp.713-717, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01513490

L. Kettner, K. Mehlhorn, S. Sylvain-pion, C. Schirra, and . Yap, Classroom examples of robustness problems in geometric computations, 12th European Symposium on Algorithms, vol.3221, pp.702-713, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00344515

O. Knüppel, PROFIL/BIAS-a fast interval library, Computing, vol.53, issue.3, pp.277-287, 1994.

D. E. Knuth, The Art of Computer Programming. Seminumerical Algorithms, vol.2, 1998.

C. Kaliszyk, O. Russell, and . Connor, Computing with classical real numbers, Journal of Formalized Reasoning, vol.2, issue.1, pp.27-39, 2009.

J. C. Lagarias, The Kepler conjecture and its proof, The Kepler Conjecture: The Hales-Ferguson Proof, pp.3-26, 2011.

C. Lee, Multistep gradual rounding, IEEE Transactions on Computers, vol.38, issue.4, pp.595-600, 1989.

K. and R. M. Leino, Developing verified programs with Dafny, 35th International Conference on Software Engineering (ICSE), pp.1488-1490, 2013.

C. Lelay, A new formalization of power series in Coq, 5th Coq Workshop, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00880212

C. Lelay, How to express convergence for analysis in Coq, 7th Coq Workshop, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01169321

C. Lelay, Repenser la bibliothèque réelle de Coq : vers une formalisation de l'analyse classique mieux adaptée, vol.ha, p.1228517, 2015.

X. Leroy, Formal verification of a realistic compiler, Communications of the ACM, vol.52, issue.7, pp.107-115, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00415861

P. Letouzey, A new extraction for Coq, International Workshop on Types for Proofs and Programs (TYPES), vol.2646, p.150914, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00150914

M. D. Linderman, M. Ho, D. L. Dill, T. H. Meng, and G. P. Nolan, Towards program optimization through automated analysis of numerical precision, 8th Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pp.230-237, 2010.

S. Linnainmaa, Taylor expansion of the accumulated rounding error, BIT Numerical Mathematics, vol.16, issue.2, pp.146-160, 1976.

C. Lelay and G. Melquiond, Différentiabilité et intégrabilité en Coq, 23èmes Journées Francophones des Langages Applicatifs, p.642206, 2012.

M. Leeser, S. Mukherjee, J. Ramachandran, and T. Wahl, Make it real: Effective floating-point reasoning via exact arithmetic, Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.1-4, 2014.

W. Lee, R. Sharma, and A. Aiken, On automatically proving the correctness of math.h implementations, 45th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), vol.32, 2018.

M. Mayero, Formalisation et automatisation de preuves en analyses réelle et numérique, 2001.

J. Muller, N. Brisebarre, C. Florent-de-dinechin, V. Jeannerod, G. Lefèvre et al., Handbook of Floating-Point Arithmetic. 572 pages. Birkhäuser, 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00379167

J. Muller, N. Brunie, C. Florent-de-dinechin, M. Jeannerod, V. Joldes et al., Handbook of Floating-Point Arithmetic. 627 pages, 2018.
URL : https://hal.archives-ouvertes.fr/ensl-00379167

V. Magron, G. Constantinides, and A. Donaldson, Certified roundoff error bounds using semidefinite programming, ACM Transactions on Mathematical Software, vol.43, issue.4, 2017.

É. Martin, -. Dorel, and G. Melquiond, Proving tight bounds on univariate expressions with elementary functions in Coq, Journal of Automated Reasoning, vol.57, issue.3, pp.187-217, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01086460

É. Martin-dorel, G. Melquiond, and J. Muller, Some issues related to double rounding, BIT Numerical Mathematics, vol.53, issue.4, p.644408, 2013.

M. Martin-dorel, I. Mayero, L. Pasca, L. Rideau, and . Théry, Certified, efficient and sharp univariate taylor models in Coq, 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), p.845791, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00845791

G. Melquiond, De l'arithmétique d'intervallesà la certification de programmes, p.1094485

G. Melquiond, Floating-point arithmetic in the Coq system, 8th Conference on Real Numbers and Computers (RNC), p.1780385, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01780385

G. Melquiond, Proving bounds on real-valued functions with computations, 4th International Joint Conference on Automated Reasoning (IJCAR), vol.5195, p.180138, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00180138

G. Melquiond, Floating-point arithmetic in the Coq system, Information and Computation, vol.216, pp.14-23, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01780385

M. Mezzarobba, NumGfun: A package for numerical and analytic computation with D-finite functions, International Symposium on Symbolic and Algebraic Computation (ISSAC), pp.139-145, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00456983

N. Moller and T. Granlund, Improved division by invariant integers, IEEE Transactions on Computers, vol.60, issue.2, pp.165-175, 2011.

C. Marché and J. Kanig, Bridging the gap between testing and formal verification in Ada development, ERCIM News, vol.100, pp.38-39, 2015.

J. Strother-moore, T. W. Lynch, and M. Kaufmann, A mechanically checked proof of the correctness of the kernel of the AMD5K86 floating point division algorithm, IEEE Transactions on Computers, vol.47, issue.9, pp.913-926, 1998.

A. Mahboubi, G. Melquiond, and T. Sibut-pinote, Formally verified approximations of definite integrals, 7th Conference on Interactive Theorem Proving (ITP), vol.9807, p.1289616, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01289616

A. Mahboubi, G. Melquiond, and T. Sibut-pinote, Formally verified approximations of definite integrals, Journal of Automated Reasoning, vol.62, issue.2, p.1630143, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01289616

C. Muñoz and A. Narkawicz, Formalization of Bernstein polynomials and applications to global optimization, Journal of Automated Reasoning, vol.51, issue.2, pp.151-196, 2013.

G. Melquiond, W. G. Nowak, and P. Zimmermann, Numerical approximation of the Masser-Gramain constant to four decimal digits: ? = 1.819
URL : https://hal.archives-ouvertes.fr/hal-00644166

, Mathematics of Computation, vol.82, p.644166, 2013.

D. Monniaux, The pitfalls of verifying floating-point computations, ACM Transactions on Programming Languages and Systems, vol.30, issue.3, pp.1-41, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00128124

R. E. Moore, Interval Analysis, 1963.

G. Melquiond and . Sylvain-pion, Formal certification of arithmetic filters for geometric predicates, 17th IMACS World Congress on Computational and Applied Mathematics, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00344518

G. Melquiond and . Sylvain-pion, Formally certified floating-point filters for homogeneous geometric predicates, Theoretical Informatics and Applications, vol.41, issue.1, pp.57-70, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00071232

G. Melquiond and . Sylvain-pion, Directed rounding arithmetic operations, ISO C++ Standardization Committee, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00345094

C. Mouilleron and G. Revy, Automatic generation of fast and certified code for polynomial evaluation, 20th IEEE Symposium on Computer Arithmetic, pp.233-242, 2011.
URL : https://hal.archives-ouvertes.fr/ensl-00531721

G. Melquiond and R. Rieu-helft, A Why3 framework for reflection proofs and its application to GMP's algorithms, 9th International Joint Conference on Automated Reasoning (IJCAR), vol.10900, p.1699754, 2018.

E. Makarov and B. Spitters, The Picard algorithm for ordinary differential equations in Coq, 4th International Conference on Interactive Theorem Proving (ITP), vol.7998, pp.463-468, 2013.

J. Muller, Elementary Functions. Algorithms and Implementation. 283 pages. Birkhäuser, 2016.
URL : https://hal.archives-ouvertes.fr/ensl-00989001

S. Nedialko and . Nedialkov, Simple floating-point filters for the two-dimensional orientation problem, 12th GAMM-IMACS International Symposium on Scientific Computing, vol.12, pp.729-749, 2006.

V. Pratt, Anatomy of the Pentium bug, 6th International Joint Conference CAAP/FASE, Theory and Practice of Software Development (TAPSOFT), vol.915, pp.97-107, 1995.

D. M. Priest, Algorithms for arbitrary precision floating point arithmetic, 10th IEEE Symposium on Computer Arithmetic, pp.132-143, 1991.

W. Pugh, The Omega test: a fast and practical integer programming algorithm for dependence analysis, ACM/IEEE Conference on Supercomputing, pp.4-13, 1991.

M. Rao, Exhaustive search of convex pentagons which tile the plane, 2017.

R. Rieu-helft, C. Marché, and G. Melquiond, How to get an efficient yet verified arbitrary-precision integer library, 9th Working Conference on Verified Software: Theories, Tools and Experiments (VSTTE), vol.10712, p.1519732, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519732

P. Roux, Innocuous double rounding of basic arithmetic operations, Journal of Formalized Reasoning, vol.7, issue.1, pp.131-142, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01091186

D. Richardson, B. Salvy, J. Shackell, and J. Van-der-hoeven, Asymptotic expansions of exp-log functions, International Symposium on Symbolic and Algebraic Computation (ISSAC), pp.309-313, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00073832

S. M. Rump, INTLAB -INTerval LABoratory, Developments in Reliable Computing, pp.77-104, 1999.

D. M. Russinoff, A mechanically checked proof of IEEE compliance of a register-transfer-level specification of the AMD-K7 floating-point multiplication, division, and square root instructions, LMS Journal of Computation and Mathematics, vol.1, pp.148-200, 1998.

D. M. Russinoff, A mechanically checked proof of correctness of the AMD K5 floating point square root microcode, Formal Methods in System Design, vol.14, issue.1, pp.75-125, 1999.

D. M. Russinoff, A case study in formal verification of register-transfer logic with ACL2: The floating point adder of the AMD Athlon processor, 3rd International Conference on Formal Methods in Computer-Aided Design (FMCAD), vol.1954, pp.3-36, 2000.

S. M. Rump, P. Zimmermann, S. Boldo, and G. Melquiond, Computing predecessor and successor in rounding to nearest, BIT Numerical Mathematics, vol.49, issue.2, pp.419-431, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00337537

A. Schrijver, Theory of Linear and Integer Programming. 484 pages. Wiley-Interscience series in discrete mathematics and optimization, 1998.

A. Solovyev, C. Jacobsen, Z. Rakamari?, and G. Gopalakrishnan, Rigorous estimation of floating-point round-off errors with symbolic Taylor expansions, 20th International Symposium on Formal Methods (FM), vol.9109, pp.532-555, 2015.

R. Skeel, Roundoff error cripples Patriot missile, SIAM News, vol.25, issue.4, p.11, 1992.

B. Speelpenning, Compiling fast partial derivatives of functions given by algorithms, 1980.

M. Sheeran, S. Singh, and G. Stålmarck, Checking safety properties using induction and a SAT-solver, 3rd International Conference on Formal Methods in Computer-Aided Design, vol.1954, pp.127-144, 2000.

V. Stahl, Interval Methods for Bounding the Range of Polynomials And Solving Systems of Nonlinear Equations, 1995.

P. H. Sterbenz, Floating-Point Computation, 1974.

M. M. Tmm-+-18]-laura-titolo, C. A. Moscato, A. Muñoz, F. Dutle, and . Bobot, A formally verified floating-point implementation of the compact position reporting algorithm, 22nd International Symposium on Formal Methods (FM), vol.10951, pp.364-381, 2018.

. John-von-neumann, First draft of a report on the EDVAC, 1945.

K. Chee, T. Yap, and . Dubé, The exact computation paradigm

F. K. Du and . Hwang, Computing in Euclidean Geometry, vol.4, pp.452-492, 1995.

A. Ziv, Fast evaluation of elementary mathematical functions with correctly rounded last bit, ACM Transactions on Mathematical Software, vol.17, issue.3, pp.410-423, 1991.

J. Zhang, K. H. Johansson, J. Lygeros, and S. Sastry, Zeno hybrid systems, International Journal of Robust and Nonlinear Control, vol.11, issue.5, pp.435-451, 2001.

R. Zumkeller, Formal global optimisation with Taylor models, 3th International Joint Conference on Automated Reasoning (IJCAR), vol.4130, pp.408-422, 2006.