U. J. Aarsnes and O. M. Aamo, Linear stability analysis of self-excited vibrations in drilling using an infinite dimensional model, Journal of Sound and Vibration, vol.360, pp.239-259, 2016.

U. J. Aarsnes and J. S. Roman, Torsional vibrations with bit off bottom: Modeling, characterization and field data validation, Journal of Petroleum Science and Engineering, vol.163, pp.712-721, 2018.

M. Ahmadi, G. Valmorbida, and A. Papachristodoulou, Dissipation inequalities for the analysis of a class of PDEs, Automatica, vol.66, pp.163-171, 2016.

Y. Ariba, F. Gouaisbaut, and D. Peaucelle, Stability analysis of time-varying delay systems in quadratic separation framework, ICNPAA-2008: Mathematical Problems in Engineering, Aerospace and Sciences, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00357766

Y. Ariba, F. Gouaisbaut, A. Seuret, and D. Peaucelle, Stability analysis of timedelay systems via Bessel inequality: A quadratic separation approach, International Journal of Robust and Nonlinear Control, vol.28, issue.5, pp.1507-1527, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01699172

B. Armstrong-helouvry, Stick-slip arising from stribeck friction, Proceedings., IEEE International Conference on Robotics and Automation, pp.1377-1382, 1990.

B. Armstrong-hélouvry, P. Dupont, and C. Wit, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, vol.30, issue.7, pp.1083-1138, 1994.

D. P. Atherton and D. R. Towill, Nonlinear control engineering-describing function analysis and design, IEEE Transactions on Systems, Man, and Cybernetics, vol.7, issue.9, pp.678-678, 1977.

J. Auriol, Robust design of backstepping controllers for systems of linear-hyperbolic PDEs. Theses, 2018.

J. J. Azar and G. R. Samuel, Drilling engineering. PennWell books, 2007.

M. Barreau, Stabilité et stabilisation de systèmes linéairesà l'aide d'inégalités matricielles linéaires. Quadrature, 2019.

M. Barreau, F. Gouaisbaut, and A. Seuret, Static state and output feedback synthesis for time-delay systems, European Control Conference (ECC), pp.1195-1200, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01639829

M. Barreau, F. Gouaisbaut, and A. Seuret, Pratical stability of a drilling pipe under friction with a pi-controller, IEEE Transaction on Control Systems Technologies, 2019.

M. Barreau, F. Gouaisbaut, A. Seuret, and R. Sipahi, Input/output stability of a damped string equation coupled with ordinary differential system, International Journal of Robust and Nonlinear Control, vol.28, issue.18, pp.6053-6069, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01690626

M. Barreau, A. Seuret, and F. Gouaisbaut, Wirtinger-based exponential stability for time-delay systems, IFAC World Congress, vol.50, pp.11984-11989, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01488920

M. Barreau, A. Seuret, and F. Gouaisbaut, Exponential Lyapunov stability analysis of a drilling mechanism, 57th Annual Conference on Decision and Control (CDC), pp.2952-2957, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01725416

M. Barreau, A. Seuret, and F. Gouaisbaut, Stabilization of an unstable wave equation using an infinite dimensional dynamic controller, 57th Annual Conference on Decision and Control (CDC), pp.2952-2957, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01845845

M. Barreau, A. Seuret, and F. Gouaisbaut, Lyapunov stability of a coupled ordinary differential system and a string equation with polytopic uncertainties, Advances on Delays and Dynamics, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01796803

M. Barreau, A. Seuret, F. Gouaisbaut, and L. Baudouin, Lyapunov stability analysis of a string equation coupled with an ordinary differential system, IEEE Transactions on Automatic Control, vol.63, issue.11, pp.3850-3857, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01548256

G. Bastin and J. Coron, Stability and boundary stabilization of 1-d hyperbolic systems, vol.88, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01449504

H. I. Basturk, Observer-based boundary control design for the suppression of stickslip oscillations in drilling systems with only surface measurements, Journal of Dynamic Systems, Measurement, and Control, vol.139, issue.10, p.104501, 2017.

R. E. Bellman and K. L. Cooke, Differential-difference equations, 1963.

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM Journal on Mathematical Analysis, vol.33, issue.5, pp.1144-1165, 2002.

S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Studies in Applied Mathematics. SIAM, 1994.

D. Breda, S. Maset, and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM Journal on Scientific Computing, vol.27, issue.2, pp.482-495, 2005.

D. Bresch-pietri and M. Krstic, Adaptive output feedback for oil drilling stick-slip instability modeled by wave PDE with anti-damped dynamic boundary, ACC, pp.386-391, 2014.

D. Bresch-pietri and M. Krstic, Output-feedback adaptive control of a wave PDE with boundary anti-damping, Automatica, vol.50, issue.5, pp.1407-1415, 2014.

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, 2010.

C. Briat, Convergence and equivalence results for the Jensen's inequality -application to time-delay and sampled-data systems, IEEE Transactions on Automatic Control, vol.56, issue.7, pp.1660-1665, 2011.

C. Briat, Linear parameter-varying and time-delay systems. Analysis, observation, filtering & control, vol.3, 2014.

C. Briat and A. Seuret, Robust stability of impulsive systems: A functional-based approach, 4th IFAC conference on Analysis and Design of Hybrid Systems (ADHS'2012), p.6, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00679207

C. Canudas-de-wit, F. Rubio, and M. Corchero, DOSKIL: A New Mechanism for Controlling Stick-Slip Oscillations in Oil Well Drillstrings, IEEE Transactions on Control Systems Technology, vol.16, issue.6, pp.1177-1191, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00394990

F. Castillo, E. Witrant, C. Prieur, and L. Dugard, Dynamic Boundary Stabilization of Linear and Quasi-Linear Hyperbolic Systems, 51st Annual Conference on Decision and Control (CDC), pp.2952-2957, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00718725

E. Cerpa and C. Prieur, Effect of time scales on stability of coupled systems involving the wave equation, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp.1236-1241, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01670643

N. Challamel, Rock destruction effect on the stability of a drilling structure, Journal of Sound and Vibration, vol.233, issue.2, pp.235-254, 2000.

A. P. Christoforou and A. S. Yigit, Fully coupled vibrations of actively controlled drillstrings, Journal of sound and vibration, vol.267, issue.5, pp.1029-1045, 2003.

R. M. Colombo, G. Guerra, M. Herty, and V. Schleper, Optimal control in networks of pipes and canals, SIAM Journal on Control and Optimization, vol.48, issue.3, pp.2032-2050, 2009.

J. M. Coron, Control and nonlinearity. Number 136 in Mathematical Surveys and Monographs, 2007.

J. M. Coron, B. , A. Novel, and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. on Automatic Control, vol.52, issue.1, pp.2-11, 2007.

R. Courant and D. Hilbert, Methods of mathematical physics, 1989.

R. F. Curtain and H. J. Zwart, An introduction to infinite-dimensional linear systems theory, Texts in Applied Mathematics, vol.21, 1995.

J. M. Silva and S. Tarbouriech, Antiwindup design with guaranteed regions of stability: an LMI-based approach, IEEE Transactions on Automatic Control, vol.50, issue.1, pp.106-111, 2005.

B. Novel, F. Boustany, F. Conrad, and B. P. Rao, Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane, Mathematics of Control, Signals and Systems, vol.7, issue.1, pp.1-22, 1994.

D. Dareing, J. Tlusty, and C. Zamudio, Self-excited vibrations induced by drag bits, Journal of Energy Resources Technology, vol.112, issue.1, pp.54-61, 1990.

R. Datko, An extension of a theorem of A. M. Lyapunov to semi-groups of operators, Journal of Mathematical Analysis and Applications, vol.24, issue.2, pp.290-295, 1968.

R. Datko, Extending a theorem of A. M. Lyapunov to Hilbert space, Journal of Mathematical analysis and applications, vol.32, issue.3, pp.610-616, 1970.

R. Datko, An algorithm for computing Lyapunov functionals for some differentialdifference equations, Ordinary differential equations, pp.387-398, 1972.

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM Journal on Control and Optimization, vol.26, issue.3, pp.697-713, 1988.

R. Datko, J. Lagnese, and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM Journal on Control and Optimization, vol.24, issue.1, pp.152-156, 1986.

C. A. Desoer and M. Vidyasagar, Feedback systems: input-output properties, vol.55, 1975.

F. , D. Meglio, and U. J. Aarsnes, A distributed parameter systems view of control problems in drilling, 2nd IFAC Workshop on Automatic Control in Offshore Oil and Gas Production OOGP, vol.48, pp.272-278, 2015.

G. Doetsch, Introduction to the theory and application of the Laplace transformation, 2012.

Y. Ebihara, D. Peaucelle, and D. Arzelier, S-Variable Approach to LMI-Based Robust Control, Communications and Control Engineering, vol.17, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01760625

N. Espitia, A. Girard, N. Marchand, and C. Prieur, Event-based control of linear hyperbolic systems of conservation laws, Automatica, vol.70, pp.275-287, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01309671

L. C. Evans, Graduate studies in mathematics, Partial Differential Equations, 2010.

F. Ferrante and A. Cristofaro, Boundary Observer Design for Coupled ODEs-Hyperbolic PDEs Systems, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02085133

G. Flores, Dynamics of a damped wave equation arising from MEMS, SIAM Journal on Applied Mathematics, vol.74, issue.4, pp.1025-1035, 2014.

P. Freitas and E. Zuazua, Stability Results for the Wave Equation with Indefinite Damping, Journal of Differential Equations, vol.132, issue.2, pp.338-352, 1996.

E. Fridman, Introduction to Time-Delay Systems, Analysis and Control. Birkhäuser, 2014.

E. Fridman, S. Mondié, and B. Saldivar, Bounds on the response of a drilling pipe model, IMA Journal of Mathematical Control and Information, vol.27, issue.4, pp.513-526, 2010.

T. Glad and L. Ljung, Control Theory. Control Engineering, 2000.

F. Gouaisbaut and D. Peaucelle, A note on stability of time delay systems, IFAC Proceedings Volumes, vol.39, pp.555-560, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00401031

F. Gouaisbaut and D. Peaucelle, Stability of time-delay systems with non-small delay, Proceedings of the 45th IEEE Conference on Decision and Control, pp.840-845, 2006.

J. M. Greenberg and L. T. Tsien, The effect of boundary damping for the quasilinear wave equation, Journal of Differential Equations, vol.52, issue.1, pp.66-75, 1984.

K. Gu, J. Chen, and V. L. Kharitonov, Stability of time-delay systems, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02294074

M. Gugat, Exponential stabilization of the wave equation by Dirichlet integral feedback, SIAM Journal on Control and Optimization, vol.53, issue.1, pp.526-546, 2015.

J. K. Hale, Theory of functional differential equations. Number vol 3 in Applied Mathematical Sciences Series, 1977.

J. K. Hale and S. M. Lunel, Introduction to functional differential equations. Applied mathematical sciences, 1977.

J. K. Hale and S. M. Lunel, Effects of small delays on stability and control, Operator theory and analysis, pp.275-301, 2001.

S. Hansen and E. Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass, SIAM journal on control and optimization, vol.33, issue.5, pp.1357-1391, 1995.

F. Hassine, Rapid Exponential Stabilization of a 1-D Transmission Wave Equation with In-domain Anti-damping, Asian Journal of Control, vol.19, issue.6, pp.2017-2027, 2017.

W. He, S. Zhang, and S. S. Ge, Adaptive control of a flexible crane system with the boundary output constraint, IEEE Transactions on Industrial Electronics, vol.61, issue.8, pp.4126-4133, 2014.

A. Helmicki, C. A. Jacobson, and C. N. Nett, Ill-posed distributed parameter systems: A control viewpoint, IEEE Trans. on Automatic Control, vol.36, issue.9, pp.1053-1057, 1991.

R. Hernandez-suarez, H. Puebla, R. Aguilar-lopez, and E. Hernandez-martinez, An integral high-order sliding mode control approach for stick-slip suppression in oil drillstrings, Petroleum Science and Technology, vol.27, issue.8, pp.788-800, 2009.

D. Hertz, E. Jury, and E. Zeheb, Simplified analytic stability test for systems with commensurate time delays, IEEE Proceedings D-Control Theory and Applications, vol.131, pp.52-56, 1984.

E. F. Infante and W. B. Castelan, A Lyapunov functional for a matrix differencedifferential equation, Journal of Differential Equations, vol.29, issue.3, pp.439-451, 1978.

T. Iwasaki and S. Hara, Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations, IEEE Transactions on Automatic Control, vol.43, issue.5, pp.619-630, 1998.

J. L. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta mathematica, vol.30, pp.175-193, 1906.

C. Jin, K. Gu, S. I. Niculescu, and I. Boussaada, Stability analysis of systems with delay-dependent coefficients, IEEE Access, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01781318

E. W. Kamen, On the relationship between zero criteria for two-variable polynomials and asymptotic stability of delay differential equations, IEEE Transactions on Automatic Control, vol.25, issue.5, pp.983-984, 1980.

D. Karnopp, Computer simulation of stick-slip friction in mechanical dynamic systems, Journal of dynamic systems, vol.107, issue.1, pp.100-103, 1985.

H. K. Khalil, Nonlinear Systems. Pearson Education, 1996.

V. Kharitonov and A. Zhabko, Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems, Automatica, vol.39, issue.1, pp.15-20, 2003.

V. Kolmanovskii and A. Myshkis, Introduction to the theory and applications of functional differential equations, vol.463, 2013.

V. B. Kolmanovskii and V. R. Nosov, Stability of functional differential equations, vol.180, 1986.

M. Krstic, Adaptive control of an anti-stable wave PDE, American Control Conference, 2009. ACC'09, pp.1505-1510, 2009.

M. Krstic, Delay compensation for nonlinear, adaptive, and PDE systems, 2009.

M. Krstic, B. Guo, A. Balogh, and A. Smyshlyaev, Output-feedback stabilization of an unstable wave equation, Automatica, vol.44, issue.1, pp.63-74, 2008.

M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and adaptive control design, 1995.

M. Krstic, J. W. Modestino, H. Deng, A. Fettweis, J. L. Massey et al., Stabilization of nonlinear uncertain systems, 1998.

M. Krstic and A. Smyshlyaev, Boundary control of PDEs: A course on backstepping designs, vol.16, 2008.

J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, Journal of Differential equations, vol.50, issue.2, pp.163-182, 1983.

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Applied Mathematics and Optimization, vol.25, issue.2, pp.189-224, 1992.

W. E. Lear and D. W. Dareing, Effect of drillstring vibrations on MWD pressure pulse signals, Journal of Energy Resources Technology, vol.112, issue.2, pp.84-89, 1990.

N. Levinson, Transformation theory of non-linear differential equations of the second order, Annals of Mathematics, pp.723-737, 1944.

L. Li, Q. Zhang, and N. Rasol, Time-varying sliding mode adaptive control for rotary drilling system, JCP, vol.6, issue.3, pp.564-570, 2011.

X. Liu, N. Vlajic, X. Long, G. Meng, and B. Balachandran, Coupled axialtorsional dynamics in rotary drilling with state-dependent delay: stability and control, Nonlinear Dynamics, vol.78, issue.3, pp.1891-1906, 2014.

J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, IEEE International Symposium on Computer Aided Control Systems Design, pp.284-289, 2005.

T. Louw, S. Whitney, A. Subramanian, and H. Viljoen, Forced wave motion with internal and boundary damping, Journal of applied physics, vol.111, p.2012

Z. Luo and B. Guo, Stability and stabilization of infinite dimensional systems with applications, 2012.

A. M. Lyapunov, The general problem of the stability of motion, International journal of control, vol.55, issue.3, pp.531-534, 1992.

S. Marx, E. Cerpa, C. Prieur, and V. Andrieu, Global stabilization of a kortewegde vries equation with saturating distributed control, SIAM Journal on Control and Optimization, vol.55, issue.3, pp.1452-1480, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01367622

A. Megretski and A. Rantzer, System analysis via integral quadratic constraints, IEEE Transactions on Automatic Control, vol.42, issue.6, pp.819-830, 1997.

T. Meurer, Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs, 2012.

T. Meurer and A. Kugi, Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness, vol.45, pp.1182-1194, 2009.

I. Miyadera, Nonlinear semigroups, vol.109, 1992.

Ö. , A dynamic control law for the wave equation, Automatica, vol.30, issue.11, pp.1785-1792, 1994.

Ö. , On the stabilization and stability robustness against small delays of some damped wave equations, IEEE Trans. on Automatic Control, vol.40, issue.9, pp.1626-1630, 1995.

Ö. , An exponential stability result for the wave equation, Automatica, vol.38, issue.4, pp.731-735, 2002.

A. D. Myshkis, Lineare differentialgleichungen mit nacheilendem argument, 1955.

E. Navarro-lópez, An alternative characterization of bit-sticking phenomena in a multi-degree-of-freedom controlled drillstring, Nonlinear Analysis: Real World Applications, vol.10, pp.3162-3174, 2009.

E. Navarro-lópez and D. Cortes, Sliding-mode control of a multi-DOF oilwell drillstring with stick-slip oscillations, Proceedings of the American Control Conference, pp.3837-3842, 2007.

E. Navarro-lópez and R. Suarez, Practical approach to modeling and controlling stick-slip oscillations in oil-well drill-strings, Proceedings of the 2004 IEEE International Conference on Control Applications, vol.2, pp.1454-1460, 2004.

S. I. Niculescu, Delay effects on stability: a robust control approach, vol.269, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02183198

N. Olgac and R. Sipahi, An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems, IEEE Transactions on Automatic Control, vol.47, issue.5, pp.793-797, 2002.

N. Olgac and R. Sipahi, A practical method for analyzing the stability of neutral type LTI-time delayed systems, Automatica, vol.40, issue.5, pp.847-853, 2004.

A. Packard and J. Doyle, The complex structured singular value, Automatica, vol.29, issue.1, pp.71-109, 1993.

A. Pazy, Semigroups of linear operators and applications to partial differential equations, vol.44, 1983.

D. Peaucelle, D. Arzelier, D. Henrion, and F. Gouaisbaut, Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation, Automatica, vol.43, issue.5, pp.795-804, 2007.

M. M. Peet, A new state-space representation for coupled PDEs and scalable Lyapunov stability analysis in the SOS framework, 57th Annual Conference on Decision and Control (CDC), pp.545-550, 2018.

M. M. Peet, Discussion paper: A new mathematical framework for representation and analysis of coupled PDEs, 2019.

C. Prieur, S. Tarbouriech, and J. M. Da-silva, Wave equation with conebounded control laws, IEEE Trans. on Automatic Control, vol.61, issue.11, pp.3452-3463, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01448483

B. S. Razumikhin, Application of Liapunov's method to problems in the stability of systems with a delay, Automat. i Telemeh, vol.21, 1960.

Z. V. Rekasius, A stability test for systems with delays, Proceedings of the joint automatic control conference, p.9, 1980.

T. Richard, C. Germay, and E. Detournay, A simplified model to explore the root cause of stick-slip vibrations in drilling systems with drag bits, Journal of Sound and Vibration, vol.305, issue.3, pp.432-456, 2007.

C. Roman, Boundary control of a wave equation with in-domain damping. Theses, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01943937

C. Roman, D. Bresch-pietri, E. Cerpa, C. Prieur, and O. Sename, Backstepping observer based-control for an anti-damped boundary wave PDE in presence of in-domain viscous damping, 55th IEEE Conference on Decision and Control (CDC), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01413025

M. Safi, Lyapunov stability of coupled systems involving a transport equation. Theses, Institut supérieur de l'aéronautique et de l'espace, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01975119

M. Safi, Stabilité de Lyapunov de systèmes couplés impliquant uneéquation de transport, 2018.

M. Safi, L. Baudouin, and A. Seuret, Tractable sufficient stability conditions for a system coupling linear transport and differential equations, Systems & Control Letters, vol.110, pp.1-8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01354073

M. Safi, A. Seuret, and L. Baudouin, Lyapunov stability analysis of a system coupled to a hyperbolic PDE with potential, European Control Conference (ECC 2018), 2018.
URL : https://hal.archives-ouvertes.fr/hal-01799391

C. Sagert, F. D. Meglio, M. Krstic, and P. Rouchon, Backstepping and flatness approaches for stabilization of the stick-slip phenomenon for drilling, IFAC Proceedings Volumes, vol.46, pp.779-784, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00873605

B. Saldivar, I. Boussaada, H. Mounier, and S. Niculescu, Analysis and Control of Oilwell Drilling Vibrations: A Time-Delay Systems Approach, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01123773

B. Saldivar, S. Mondié, and J. C. Vilchis, The control of drilling vibrations: A coupled PDE-ODE modeling approach, International Journal of Applied Mathematics and Computer Science, 2016.

B. Saldivar, S. Mondie, S. Niculescu, H. Mounier, and I. Boussaada, A control oriented guided tour in oilwell drilling vibration modeling, Annual Reviews in Control, vol.42, pp.100-113, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01425845

S. Saperstone, Semidynamical Systems in Infinite Dimensional Spaces. Applied mathematical sciences, 1981.

C. W. Scherer, LPV control and full block multipliers, Automatica, vol.37, issue.3, pp.361-375, 2001.

C. W. Scherer and J. Veenman, Stability analysis by dynamic dissipation inequalities: On merging frequency-domain techniques with time-domain conditions, Systems and Control Letters, 2018.

M. Serieye, Construction of observers for hyperbolic systems, 2018.

A. Serrarens, M. J. Molengraft, J. J. Kok, and L. Van-den-steen, H ? control for suppressing stick-slip in oil well drillstrings, IEEE Control Systems, vol.18, 1998.

A. Seuret and F. Gouaisbaut, Jensen's and Wirtinger's inequalities for time-delay systems, IFAC Proceedings Volumes, vol.46, pp.343-348, 2013.

A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, vol.49, issue.9, pp.2860-2866, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00855159

A. Seuret and F. Gouaisbaut, Hierarchy of LMI conditions for the stability analysis of time-delay systems, Systems & Control Letters, vol.81, pp.1-7, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01065142

A. Seuret, S. Marx, and S. Tarbouriech, Hierarchical estimation of the region of attraction for systems subject to a state delay and a saturated input, 2017 IEEE European Control Conference (CDC), 2019.
URL : https://hal.archives-ouvertes.fr/hal-02335058

R. Sipahi, S. I. Niculescu, C. T. Abdallah, W. Michiels, and K. Gu, Stability and stabilization of systems with time delay, IEEE Control Systems, vol.31, issue.1, pp.38-65, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00664367

R. Sipahi and N. Olgac, Degenerate cases in using the direct method, ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp.2201-2210, 2003.

O. J. Smith, A controller to overcome dead time, ISA J, vol.6, pp.28-33, 1959.

A. Smyshlyaev and M. Krstic, Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations, IEEE Transactions on Automatic Control, vol.49, issue.12, pp.2185-2202, 2004.

A. Smyshlyaev and M. Krstic, Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary, Systems & Control Letters, vol.58, issue.8, pp.617-623, 2009.

E. D. Sontag, The ISS philosophy as a unifying framework for stability-like behavior, vol.2, pp.443-467, 2000.

E. D. Sontag, Input to state stability: Basic concepts and results, Nonlinear and optimal control theory, pp.163-220, 2008.

S. Tang and C. Xie, State and output feedback boundary control for a coupled PDE-ODE system, Systems & Control Letters, vol.60, issue.8, pp.540-545, 2011.

Y. Tang and G. Mazanti, Stability analysis of coupled linear ODE-hyperbolic PDE systems with two time scales, Automatica, vol.85, pp.386-396, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01388874

Y. Tang, C. Prieur, and A. Girard, Stability analysis of a singularly perturbed coupled ODE-PDE system, 54th IEEE Conference on Decision and Control (CDC), pp.4591-4596, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01276239

S. Tarbouriech, G. Garcia, J. M. Da-silva, and I. Queinnec, Stability and stabilization of linear systems with saturating actuators, 2011.

A. Terrand-jeanne, Régulation des systèmesà paramètres distribués : application au forage, 2018.

A. Terrand-jeanne, V. Andrieu, M. Tayakout-fayolle, and V. , Dos Santos Martins. Regulation of inhomogeneous drilling model with a P-I controller, IEEE Transactions on Automatic Control, 2019.

A. Terrand-jeanne, V. Martins, and V. Andrieu, Regulation of the downside angular velocity of a drilling string with a P-I controller, pp.2647-2652, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02014813

K. Toh, M. J. Todd, and R. H. Tütüncü, SDPT3 -a MATLAB software package for semidefinite programming, version 1.3. Optimization methods and software, vol.11, pp.545-581, 1999.

W. R. Tucker and C. Wang, On the effective control of torsional vibrations in drilling systems, Journal of Sound and Vibration, vol.224, issue.1, pp.101-122, 1999.

M. Tucsnak, Wellposedness, controllability and stabilizability of systems governed by partial differential equations, 2004.

M. Tucsnak and G. Weiss, Observation and control for operator semigroups, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00590673

J. Veenman, C. W. Scherer, and H. Köroglu, Robust stability and performance analysis based on integral quadratic constraints, European Journal of Control, vol.31, pp.1-32, 2016.

T. Vyhlídal and P. Zítek, Quasipolynomial mapping based rootfinder for analysis of time delay systems, IFAC Proceedings Volumes, vol.36, pp.227-232, 2003.

W. Weaver, S. P. Timoshenko, and D. H. Young, Vibration problems in engineering, 1990.

H. Wu and J. Wang, Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE-beam systems, Automatica, vol.50, issue.11, pp.2787-2798, 2014.

G. Zames, On the input-output stability of time-varying nonlinear feedback systems part one: Conditions derived using concepts of loop gain, conicity, and positivity, IEEE Transactions on Automatic Control, vol.11, issue.2, pp.228-238, 1966.

Q. Zhang, Y. He, L. Li, and R. Nurzat, Sliding mode control of rotary drilling system with stick slip oscillation, 2nd International Workshop on Intelligent Systems and Applications, pp.1-4, 2010.

D. Zwillinger, Handbook of differential equations, vol.1, 1998.