, La courbe LI (Fig. 6.13 b)) a été obtenue avec un laser pulsé à 50 kHz avec des impulsions de 400 ns et la courbe IV (Fig. en DC. b) Caractéristique signal-densité de courant à 10 K pour le même laser pulsé à 2 %, c'est-à-dire à 50 kHz, Les courbes expérimentales typiques LIV des lasers de diamètre 30 µm sont montrées dans la Fig. 6.13

. Dans-le-schéma-de-mesure, oscilloscope utilisé est un oscilloscope de la marque Tektronix TDS2014 de sensibilité minimale de 2 mV. Or, les intensités seuils pour les lasers de 30 µm sont de 0.9 mA et en convertissant avec la sonde 5 mV/1 mA, on obtient des valeurs très faibles rapidement bruitées. Le seul moyen d'obtenir une courbe propre est d

, En réalité, I dispositif est extrêmement faible par rapport au courant qui passe par la résistance de 50 ? et cette conversion souffre donc d'une erreur assez large. Pour cette raison, on a opté pour ne pas représenter LI et VI sur la même échelle. Les différentes courbes IV de tous les dispositifs à 30 µm (Fig. 6.13 a)) se superposent ce qui montre qu

, 14 a) montre l'intensité lumineuse du laser en fonction de la tension appliquée aux bornes du dispositif

K. Comme, 99 et 3.02 THz (voir figures 6.14 c) et d)), dédoublés du fait de la présence de l'antenne. On observe deux modes "en oreilles de lapin" cohérents avec les deux modes TM 12 , et décalé vers les fréquences hautes, Ceci est démontré aussi par les intensités égales cohérentes avec les facteurs de qualité très proches théoriquement, vol.12

B. Paulillo, Circuit-tunable subwavelength terahertz devices, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01544686

É. Strupiechonski, Confinement photonique extrêmement sub-longueur d'onde pour les lasers à cascade quantique térahertz, 2013.

C. Sirtori, Bridge for the terahertz gap, Nature, vol.417, issue.6885, p.132133, 2002.

M. Cooke, Pushing semiconductor detectors into the terahertz gap, III-Vs Review, vol.19, issue.8, pp.71881-71887, 2006.

J. B. Johnson, Thermal agitation of electricity in conductors, Physical Review, vol.32, issue.97, 1928.

A. Al-ibadi, Spectro Imagerie terahertz de tissues biologiques : application à la détection de cancers du sein, 2018.

J. Guillet, M. Roux, and K. Wang, Art painting diagnostic before restoration with terahertz and millimeter waves, Millimeter, and Terahertz Waves, vol.38, pp.369-379, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01437051

C. Kulesa, Terahertz spectroscopy for astronomy : From comets to cosmology, IEEE Transactions on Terahertz Science and Technology, vol.1, issue.1, 2011.

J. A. Mark-s-pearce, . Salotti, and . Mark-p-little, Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours : a retrospective cohort study, The Lancet, vol.380, issue.9840, pp.499-505, 2012.

J. David, E. J. Brenner, and . Hall, Computed tomography -an increasing source of radiation exposure, The New England Journal of Medecine, vol.357, pp.2277-2284, 2007.

H. Peter and . Siegel, Terahertz technology in biology and medicine, IEEE Transactions on Microwave Theory and Techniques, vol.52, issue.10, 2004.

A. Markelz, E. Roitberg, and . Heilweil, Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz, Chemical Physics Letters, vol.320, issue.1-2, pp.42-48, 2000.

K. Kawase, Terahertz imaging for drug detection and large-scale integrated circuit inspection, Optics and Photonics News, vol.15, issue.10, p.34, 2004.

F. Wooten, Optical properties of solids, 1972.

R. H. Lyddane, R. G. Sachs, and E. Teller, On the Polar Vibrations of Alkali Halides, Physical Review, vol.59, issue.673, 1941.

E. D. Palik, Handbook of Optical Constant of Solids, 1997.

M. A. Ordal, L. L. Long, and R. J. Bell, Optical properties of the metals Al, Ti, and W in the infrared and far infrared, 1983.

P. , Y. Turpin, and T. Fouchet, Lumière et couleurs I, 2009.

C. Multiphysics and . Rf-module, Comsol, 2007.

V. Rosencher and . Optoelectronics, , 2004.

. Kittel, Introduction to Solid State Physics, 2004.

L. Esaki and . Tsu, Superlattice and negative differential conductivity in semiconductors, IBM Journal of Research and Development, vol.14, issue.1, pp.61-65, 1970.

S. Sze and M. Lee, Semiconductor devices : Physics and Technology, 2012.

J. Davies, The Physics of Low-Dimensional Semiconductors, 1998.

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells : Physics and Devices Applications I, 2000.

. Bastard, Wave mechanics applied to semiconductor heterostructures, 1991.

A. Jollivet, Dispositifs infrarouges à cascade quantique à base de semiconducteurs GaN/AlGaN et ZnO/ZnMgO, 2019.
URL : https://hal.archives-ouvertes.fr/tel-02114588

D. J. Bendaniel and C. B. Duke, Space-charge effects on electron tunneling, Physical Review, vol.152, issue.2, pp.683-692, 1966.

M. Nisoli, Semiconductor photonics : Principles and Applications. Società Editrice Esculapio, 2016.

O. Offranc, Composants pour la génération et la détection d'impulsions térahertz, 2010.

F. Sizov and A. Rogalski, THz detectors, Progress in Quantum Electronics, vol.34, pp.278-347, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00954522

J. Coutaz, Optoélectronique THz. EDP Sciences, 2008.

J. E. Marcel and . Golay, A pneumatic infra-red detector, Review of Scientific Instruments, vol.18, issue.5, pp.357-362, 1947.

L. Jeffrey, T. W. Hesler, and . Crowe, Responsivity and noise measurements of zero-bias schottky diode detectors, 18th International Symposium on Space Terahertz Technology, 2007.

A. Lisauskas, S. Boppel, and D. Seliuta, Terahertz detection and coherent imaging from 0.2 to 4.3 THz with silicon CMOS field-effect transistors

, S International Microwave Symposium Digest, 2012.

B. Paulillo, S. Pirotta, and H. Nong, Ultrafast terahertz detectors based on threedimensional meta-atoms, Optica, vol.4, issue.12, pp.1451-1456, 2017.

D. Palaferri, Y. Todorov, and Y. N. Chen, Patch antenna terahertz photodetectors, Applied Physics Letters, 2015.

B. F. Levine, K. K. Choi, and C. G. Bethea, New 10 µm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices, Applied Physics Letters, vol.50, issue.16, pp.1092-1094, 1987.

H. Hc-liu and . Schneider, Quantum Well Infrared Photodetectors : Physics and Applications, 2007.

H. C. Liu, C. Y. Song, and A. J. Springthorpe, Terahertz quantum-well photodetector, Applied Physics Letters, vol.84, issue.20, 2004.

E. Rosencher, B. Vinter, and B. Levine, Intersubband Transitions in Quantum Wells, 1992.

J. Bou-sleiman, Imagerie et spectroscopie térahertz : application aux probléma-tiques de défense et de sécurité, 2016.

, Active two-terminal devices as sources at THz frequencies : Concepts, performance, and trends, ICONO 2005 Conference, vol.6257, 2006.

T. Maekawa, H. Kanaya, and S. Suzuki, , vol.1, p.92

, THz in resonant tunneling diode by reduced conduction loss, Applied Physics Express, vol.9, issue.2, 2016.

T. El-fatimy, . Suemitsu, and . Otsuji, Tunable room temperature terahertz sources based on two dimensional plasma instability in GaN HEMTs, Journal of Physics : Conference Series, vol.193, issue.1, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00546387

P. Hillger, J. Grzyb, and R. Lachner,

, THz SiGe HBT source for active illumination in terahertz imaging applications, European Microwave Integrated Circuits Conference, 2015.

D. Wu, P. Li, and P. Zhang, Preliminary measurement of the characters of CAEP THz free electron laser, 9th International Symposium on Ultrafast Phenomena and Terahertz Waves, 2018.

T. W. Crowe, J. L. Hesler, and S. A. Retzloff, Higher power terahertz sources based on diode multipliers, International conference on Infrared, Millimeter and Terahertz Waves, 2017.

H. Shang, M. Yang, and . Jarrahi, Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers, Applied Physics Letters, vol.107, 2015.

H. Peter and . Siegel, Terahertz technology, IEEE Transactions on Microwave Theory and Techniques, vol.50, issue.3, 2002.

J. Faist, F. Capasso, and D. L. Sivco, Quantum cascade laser, Science, pp.264-553, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00156810

R. Köhler, A. Tredicucci, and F. Beltram, Terahertz semiconductor-heterostructure laser, Nature, pp.417-156, 2002.

S. Fathololoumi, E. Dupont, and C. W. Chan, Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling, Optics Express, vol.20, issue.4, 2012.

M. Wienold, L. Schrottke, and M. Giehler, Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions, Electronics Letters, vol.45, issue.20, 2009.

M. Bahriz, Lasers à cascade quantique et leurs applications aux cristaux photoniques, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00285503

G. Scalari, L. Ajili, and J. Faist, Far-infrared bound-tocontinuum quantum-cascade lasers operating up to 90 K, Applied Physics Letters, vol.82, issue.19, 2003.

B. S. Williams, H. Callebaut, and S. Kumar, 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation, Applied Physics Letters, vol.82, issue.7, pp.1015-1017, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00348893

Y. Chassagneux, J. Palomo, and R. Colombelli, Low threshold THz QC lasers with thin core regions, Electronics Letters, vol.43, issue.5, p.285, 2007.

E. Strupiechonski, D. Grassani, and D. Fowler, Vertical sub-wavelength mode confinement in THz quantum cascade lasers, CLEO :2011 -Laser Applications to Photonic Applications. OSA, 2011.

C. A. Balanis, Antenna theory : analysis and design, 2016.

H. David and . Staelin, Electromagnetic Waves. Pearson Education, 1993.

R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science, vol.292, issue.5514, pp.77-79, 2001.

J. B. Pendry, A. J. Holden, and D. J. Robbins, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw.Theory Tech, vol.47, issue.11, pp.2075-2084, 1999.

C. S. Lim, M. H. Hong, and Z. C. Chen, Hybrid metamaterial design and fabrication for terahertz resonance response enhancement, Optics Express, vol.18, issue.12, 2010.

A. Benz, M. Krall, and S. Schwarz, Resonant metamaterial detectors based on THz quantum-cascade structures, Scientific Reports, vol.4, issue.1, 2014.

K. Fan, A. C. Strikwerda, and H. Tao, Stand-up magnetic metamaterials at terahertz frequencies, Optics Express, vol.19, issue.13, p.12619, 2011.

B. Ozbey and O. Aktas, Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers, Optics Express, vol.19, issue.7, p.5741, 2011.

D. Palaferri, Y. Todorov, and A. Bigioli, Room-temperature nineµm-wavelength photodetectors and GHz-frequency heterodyne receivers, Nature, vol.556, issue.7699, pp.85-88, 2018.

K. Steinberg, M. Scheffler, and M. Dressel, Microwave inductance of thin metal strips, Journal of Applied Physics, vol.108, issue.096102, 2010.

H. Luo, H. C. Liu, and C. Y. Song, Background-limited terahertz quantum-well photodetector, Applied Physics Letters, vol.86, issue.23, p.231103, 2005.

A. Piotrowska, Ohmic contacts to GaAs : Fundamentals and practice, Acta Physica Polonica A, vol.84, issue.3, pp.491-504, 1993.

A. Physica-polonica-a, Ohmic contact to GaAs : fundamentals and practice, number 84. XXII international School of Semiconducting Compounds, 1993.

J. Vincent, S. Hodges, and J. Vampola, Fundamentals of Infrared and Visible Detector Operation and Testing, 2015.

B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, 2011.

D. Maystre, Theory of Wood's anomalies, Plasmonics, pp.39-83, 2012.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano resonances in nanoscale structures, Reviews of Modern Physics, vol.82, 2010.

C. Genet and T. W. Ebbesen, Light in tiny holes, Nature, vol.445, 2007.

D. Chastanet, A. Bousseksou, and G. Lollia, High temperature, single mode, long infrared (=17.8 µm) InAs-based quantum cascade lasers, Applied Physics Letters, vol.105, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01623717

S. Jeannot, Développement de matériaux déposés par PECVD pour les interconnexions optiques dans les circuits intégrés par une approche "back-end, 2006.

. Yj-han, . Li, and . Grier, Extraction-controlled terahertz frequency quantum cascade lasers with a diagonal LO-phonon extraction and injection stage, Optics Express, 2016.

C. H. Ng, K. W. Chew, and S. F. Chu, Characterization and comparison of PECVD Silicon Nitride and Silicon Oxynitride Dielectric for MIM capacitors, IEEE Electron Device Letters, vol.24, issue.8, 2003.

A. Baranov and R. Teissier, Quantum Cascade Lasers in the InAs/AlSb Material System, IEEE Journal of Selected Topics in Quantum Electronics, vol.21, issue.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01427143

G. Cataldo, J. A. Beall, and H. Cho, Infrared dielectric properties of low-stress silicon nitride, IEEE Electron Device Letters, vol.37, issue.20, pp.4200-4202, 2012.

D. Sameoto, S. Lee, and M. Parameswaran, Electrical interconnection through optimized wirebonding onto SU-8 structures and actuators, Journal of Micromechanics and Microengineering, vol.18, issue.7, 2008.

N. Klein and H. Gafni, The maximum dielectric strength of thin silicon oxide films, IEEE Transactions on Electron Devices, vol.13, issue.12, 1966.

G. Cataldo, E. J. Wollack, and A. D. Brown, Infrared dielectric properties of low-stress silicon oxide, Optics Letters, vol.41, issue.7, pp.1364-1367, 2016.

J. Kolodzey, A. Enam, T. N. Chowdhury, and . Adam, Electrical conduction and dielectric breakdown in aluminum oxide insulators on silicon, IEEE Transactions on Electron Devices, vol.47, issue.1, 2000.

Z. Khalid, M. Rajab, E. H. Naftaly, and . Linfield, Broadband dielectric characterization of aluminum oxide, Journal of Microelectronics and Electronic Packaging, vol.5, issue.1, pp.2-7, 2008.

B. Paulillo, J. M. Manceau, and A. Degiron, Circuit-tunable sub-wavelength THz resonators : hybridizing optical cavities and loop antennas, Optics Express, vol.22, issue.18, 2014.

C. Benjamin and P. Bonzon, Phase and mode control of structured semiconductor lasers, 2016.

Y. Chassagneux, Photonique pour les lasers à cascade quantique térahertz, 2009.

A. Zijun-chen, J. Megrant, and . Kelly, Fabrication and characterization of aluminum airbridges for superconducting microwave circuits, Applied Physics Letters, vol.104, 2014.

G. D. Smit, S. Rogge, and T. M. Klapwijk, Scaling of nano-schottky-diodes, Applied Physics Letters, vol.81, issue.3852, 2002.

R. Kirt, K. Williams, M. Gupta, and . Wasilik, Etch rates for micromachining processing-Part II, Dé-cembre, vol.12, 2003.

T. S. Kim, H. Y. Yang, and Y. H. Kil, Dry Etching of Germanium by Using Inductively Coupled CF 4 Plasma, Journal of Korean Physical society, vol.54, issue.6, pp.2290-2296, 2009.

H. Nyquist, Thermal agitation of electric charge in conductors, Physical Review, vol.32, issue.110, p.1928

P. H. Hao, L. C. Deng, and S. S. Lau, On the low resistance Au/Ge/Pd ohmic contact to n-GaAs, Journal of Applied Physics, vol.79, issue.4211, 1996.

K. Dieter and . Schroder, Semiconductor material and device characterization, 2006.

W. Shockley, Research and investigation of inverse epitaxial UHF power transistors, 1964.

, Intersubband Transitions in Quantum Wells : Physics and Device Applications II, vol.66, p.134, 1999.

A. E. Siegman, Lasers. University Science Books, 1986.

E. Strupiechonski, D. Grassani, and D. Fowler, Vertical subwavelength mode confinement in terahertz and mid-infrared quantum cascade lasers, Applied Physics Letters, vol.98, issue.10, p.101101, 2011.

C. Z. Ning, Semiconductor nanolasers, Physica status solidi B, vol.247, issue.4, pp.774-788, 2011.

T. Martin, M. C. Hill, and . Gather, Advances in small lasers, Nature Photonics, 2014.

K. Iga, Surface-emitting laser-its birth and generation of new optoelectronics field, Novembre/Décembre, vol.6, 2000.

S. L. Mccall, A. F. Levi, and R. E. Slusher, Whispering gallery mode microdisk lasers, Applied Physics Letters, vol.60, issue.3, pp.289-291, 1992.

H. Park, S. Kim, and S. Kwon, Electrically driven singlecell photonic crystal laser, Science, vol.305, issue.5689, pp.1444-1447, 2004.

K. Ding, M. T. Hill, and Z. C. Liu, Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature, Optics Express, vol.21, issue.4, 2013.

M. A. Noginov, G. Zhu, and A. M. Belgrave, Demonstration of a spaser-based nanolaser, Nature, vol.460, issue.7259, pp.1110-1112, 2009.

J. David, M. I. Bergman, and . Stockman, Surface plasmon amplification by stimulated emission of radiation : Quantum generation of coherent surface plasmons in nanosystems, Physical Review Letters, vol.90, issue.2, 2003.

L. , A. Dunbar, R. Houdré, and G. Scalari, Small optical volume terahertz emitting microdisk quantum cascade lasers, Applied Physics Letters, vol.90, 2007.

Y. Chassagneux, J. Palomo, and R. Colombelli, Thz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range, Applied Physics Letters, vol.90, 2007.

F. Pb-vigneron, N. Joint, and . Isac, Advanced and Reliable GaAs/AlGaAs ICP-DRIE etching for Optolectronic, Microelectronic and Microsystem applications, Microelectronic Engineering, vol.202, pp.42-50, 2018.

G. Guisbiers, . Herth, and . Legrand, Materials selection procedure for RF-MEMS, Microelectronic Engineering, vol.87, issue.9, pp.1792-1795, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00549627

F. Joint, C. Abadie, and P. Vigneron, GaAs Manufacturing Technology Towards Nanoscale features using a Reliable Plasma Etching. submitted, 2019.

D. Dey, W. Wu, and O. G. Memis, Injectorless quantum cascade laser with low voltage defect and improved thermal performance grown by metalorganic chemical-vapor deposition, Applied Physics Letters, vol.94, 2009.