, This immediately leads to formula (6.21) in the main text, Here ? is defined in Eq, issue.6

B. Derrida, Random-energy model: An exactly solvable model of disordered systems, Phys. Rev. B, vol.24, p.2613, 1981.

W. Feller, Introduction to Probability Theory and Its Applications, vol.1, p.1, 1950.

N. G. Van-kampen, Stochastic processes in physics and chemistry, 2007.

A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik, vol.322, pp.549-560, 1905.

H. S. Wio, R. R. Deza, and J. M. López, An Introduction to Stochastic Processes and Nonequilibrium Statistical Physics, Series on adv. in stat. mech, 2012.

G. Uhlenbeck and L. Ornstein, On the Theory of the Brownian Motion, Phys. Rev, vol.36, pp.823-841, 1930.

I. Eliazar and J. Klafter, Markov-breaking and the emergence of long memory in Ornstein-Uhlenbeck systems, J. Phys. A: Mathematical and Theoretical, vol.41, issue.12, p.1, 2008.

R. García-garcía, A. Rosso, and G. Schehr, Longest excursion of fractional Brownian motion: Numerical evidence of non-Markovian effects, Phys. Rev. E, vol.81, issue.1, p.102, 2010.

I. Eliazar and M. F. Shlesinger, Langevin unification of fractional motions, J. Phys. A: Mathematical and Theoretical, vol.45, issue.16, p.2, 2012.

P. Lévy, Sur certains processus stochastiques homogènes, Compositio Mathematica, vol.7, pp.283-339, 1940.

Y. Nikitin and E. Orsingher, The intermediate arc-sine law, Stat. & Proba. Letters, vol.49, issue.2, pp.119-125, 2000.

S. N. Majumdar, A. Rosso, and A. Zoia, Time at which the maximum of a random acceleration process is reached, J. Phys. A, vol.43, p.1, 2010.

H. J. Boutcheng, T. B. Bouetou, T. W. Burkhardt, A. Rosso, A. Zoia et al., Occupation time statistics of the random acceleration model, J. Stat. Mech.: Theory and Experiment, vol.2016, issue.5, p.213, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01349615

J. Bouchaud and A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep, vol.195, pp.127-293, 1990.

J. Chuang, Y. Kantor, and M. Kardar, Anomalous dynamics of translocation, Phys. Rev. E, vol.65, p.802, 2001.

I. M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: A century after Einstein's Brownian motion, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.15, issue.2, 2005.

A. Amitai, Y. Kantor, and M. Kardar, First-passage distributions in a collective model of anomalous diffusion with tunable exponent, Phys. Rev. E, vol.81, p.107, 2010.

S. N. Majumdar, A. Rosso, and A. Zoia, Hitting Probability for Anomalous Diffusion Processes, Phys. Rev. Lett, vol.104, p.602, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00450033

Y. G. Sinai, Self-Similar Probability Distributions, Theory Probab. Appl, vol.21, issue.1, pp.63-80, 1976.

J. Krug, Origins of scale invariance in growth processes, Advances in Physics, vol.46, pp.139-282, 1997.

B. B. Mandelbrot, How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension, Science, vol.156, pp.636-638, 1967.

B. B. Mandelbrot, The fractal geometry of nature, 1983.

E. Gumbel, Statistics of Extremes, 1958.

J. Bouchaud and M. Mézard, Universality classes for extreme-value statistics, J. Phys. A, vol.30, pp.7997-8015, 1997.

P. , L. Doussal, and K. J. Wiese, Driven particle in a random landscape: Disorder correlator, avalanche distribution, and extreme value statistics of records, Phys. Rev. E, vol.79, p.105, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00350688

G. Schehr and P. L. , Extreme value statistics from the real space renormalization group: Brownian motion, Bessel processes and continuous time random walks, J. Stat. Mech, vol.2010, issue.01, p.9, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00432442

B. Derrida and H. Spohn, Polymers on disordered trees, spin glasses, and traveling waves, J. Stat. Phys, vol.51, issue.5, pp.817-840, 1988.

S. N. Majumdar and P. L. Krapivsky, Extremal paths on a random Cayley tree, Phys. Rev. E, vol.62, pp.7735-7742, 2000.

D. S. Dean and S. N. Majumdar, Extreme-value statistics of hierarchically correlated variables deviation from Gumbel statistics and anomalous persistence, Phys. Rev. E, vol.64, p.121, 2001.

C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Communications in Mathematical Physics, vol.159, pp.151-174, 1994.

S. N. Majumdar and G. Schehr, Top eigenvalue of a random matrix: large deviations and third order phase transition, J. Stat. Mech, vol.2014, issue.1, p.12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00952902

C. Texier, Individual energy level distributions for one-dimensional diagonal and offdiagonal disorder, J. Phys. A, vol.33, issue.35, p.6095, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00003896

C. Texier and C. Hagendorf, The effect of boundaries on the spectrum of a onedimensional random mass Dirac Hamiltonian, J. Phys. A, vol.43, issue.2, p.2, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00441069

S. N. Majumdar, Persistence in nonequilibrium systems, Curr. Sci, vol.77, p.370, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00843539

A. J. Bray, S. N. Majumdar, and G. Schehr, Persistence and first-passage properties in nonequilibrium systems, Advances in Physics, vol.62, issue.3, pp.225-361, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843539

F. Aurzada and T. Simon, Persistence probabilities & exponents, 2012.

B. Derrida, V. Hakim, and R. Zeitak, Persistent Spins in the Linear Diffusion Approximation of Phase Ordering and Zeros of Stationary Gaussian Processes, Phys. Rev. Lett, vol.77, pp.2871-2874, 1996.

B. Derrida, V. Hakim, and V. Pasquier, Exact First-Passage Exponents of 1D Domain Growth: Relation to a Reaction-Diffusion Model, Phys. Rev. Lett, vol.75, pp.751-754, 1995.

M. Ding and W. Yang, Distribution of the first return time in fractional Brownian motion and its application to the study of on-off intermittency, Phys. Rev. E, vol.52, pp.207-213, 1995.

J. Krug, H. Kallabis, S. N. Majumdar, S. J. Cornell, A. J. Bray et al., Persistence exponents for fluctuating interfaces, Phys. Rev. E, vol.56, pp.2702-2712, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00004860

J. Bertoin, The inviscid Burgers equation with Brownian initial velocity, Commun. Math. Phys, vol.193, pp.397-406, 1998.

C. Sire, S. N. Majumdar, and A. Rüdinger, Analytical results for random walk persistence, Phys. Rev. E, vol.61, pp.1258-1269, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00004866

C. Sire, Probability Distribution of the Maximum of a Smooth Temporal Signal, Phys. Rev. Lett, vol.98, p.601, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00079084

C. Sire, Crossing intervals of non-Markovian Gaussian processes, Phys. Rev. E, vol.78, p.121, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00305336

G. Molchan, Survival exponents for some Gaussian processes, 2012.

J. Krug, Records in a changing world, J. Stat. Mech.: Theory and Experiment, vol.07, issue.07, p.1, 2007.

S. N. Majumdar and R. M. Ziff, Universal Record Statistics of Random Walks and Lévy Flights, Phys. Rev. Lett, vol.101, issue.5, p.601, 2008.

J. Franke, G. Wergen, and J. Krug, Correlations of Record Events as a Test for HeavyTailed Distributions, Phys. Rev. Lett, vol.108, issue.6, p.101, 2012.

G. Wergen, D. Volovik, S. Redner, and J. Krug, Rounding Effects in Record Statistics, Phys. Rev. Lett, vol.109, issue.16, p.102, 2012.

G. Wergen, A. Hense, and J. Krug, Record occurrence and record values in daily and monthly temperatures, Climate Dynamics, vol.42, pp.1275-1289, 2014.

A. Dieker, Simulation of fractional Brownian motion, 2004.

B. Mandelbrot and J. Van-ness, Fractional Brownian Motions, Fractional Noises and Applications, SIAM Review, vol.10, issue.4, pp.422-437, 1968.

B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas, Log-correlated Gaussian fields: an overview, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01252004

Y. V. Fyodorov and P. L. Doussal, Moments of the Position of the Maximum for GUE Characteristic Polynomials and for Log-Correlated Gaussian Processes, Journal of Statistical Physics, vol.164, issue.1, pp.190-240, 2016.

Y. Sinai, Distribution of the maximum of a fractional Brownian motion, Russian Mathematical Surveys, vol.52, issue.2, p.359, 1997.

G. Molchan, Maximum of a Fractional Brownian Motion: Probabilities of Small Values, Communications in Mathematical Physics, vol.205, issue.1, pp.97-111, 1999.

I. Nourdin, Selected Aspects of Fractional Brownian Motion, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01314412

J. Krug, Persistence of non-Markovian Processes Related to Fractional Brownian Motion, Markov Processes And Related Fields, vol.4, pp.509-516, 1998.

F. Aurzada, On the one-sided exit problem for fractional Brownian motion, Electron. Commun. Probab, vol.16, issue.36, pp.392-404, 2011.

F. Aurzada and C. Baumgarten, Persistence of fractional Brownian motion with moving boundaries and applications, J. Phys. A Math. G, vol.46, issue.12, p.7, 2013.

A. N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im. Hilbertschen Raum, Acad. Sci. URSS, vol.26, issue.2, pp.115-118, 1940.

H. E. Hurst, Long term storage capacity in reservoirs, Trans. Amer. Soc. civil Eng, vol.116, pp.770-799, 1951.

P. L. Krapivsky, K. Mallick, and T. Sadhu, Large Deviations in Single-File Diffusion, Phys. Rev. Lett, vol.113, p.101, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01021288

P. L. Krapivsky, K. Mallick, and T. Sadhu, Tagged Particle in Single-File Diffusion, J. Stat. Phys, vol.160, issue.4, pp.885-925, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01304701

P. L. Krapivsky, K. Mallick, and T. Sadhu, Dynamical properties of single-file diffusion, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01304779

V. Kukla, J. Kornatowski, D. Demuth, I. Girnus, H. Pfeifer et al., NMR studies of single-file diffusion in unidimensional channel zeolites, Science, vol.272, pp.702-704, 1996.

Q. Wei, C. Bechinger, and P. Leiderer, Single-File Diffusion of Colloids in One-Dimensional Channels, Science, vol.287, pp.625-627, 2000.

D. Panja, Probabilistic phase space trajectory description for anomalous polymer dynamics, Journal of Physics: Condensed Matter, vol.23, issue.10, p.103, 2011.

J. Walter, A. Ferrantini, E. Carlon, and C. Vanderzande, Fractional Brownian motion and the critical dynamics of zipping polymers, Phys. Rev. E, vol.85, p.120, 2012.

S. Gupta, A. Rosso, and C. Texier, Dynamics of a Tagged Monomer: Effects of Elastic Pinning and Harmonic Absorption, Phys. Rev. Lett, vol.111, p.601, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00907495

A. Zoia, A. Rosso, and S. N. Majumdar, Asymptotic Behavior of Self-Affine Processes in Semi-Infinite Domains, Phys. Rev. Lett, vol.102, issue.12, p.120602, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00377943

J. Dubbeldam, V. Rostiashvili, A. Milchev, and T. Vilgis, Fractional Brownian motion approach to polymer translocation: The governing equation of motion, Phys. Rev. E, vol.83, p.802, 2011.

V. Palyulin, T. Ala-nissila, and R. Metzler, Polymer translocation: the first two decades and the recent diversification, Soft Matter, vol.10, pp.9016-9037, 2014.

N. J. Cutland, P. E. Kopp, and W. Willinger, Stock Price Returns and the Joseph Effect: A Fractional Version of the Black-Scholes Model, Seminar on Stochastic Analysis, vol.36, pp.327-351, 1995.

L. C. Rogers, Arbitrage with fractional Brownian motion, Mathematical Finance, vol.7, issue.1, pp.95-105, 1997.

S. Rostek and R. Schöbel, A note on the use of fractional Brownian motion for financial modeling, Economic Modelling, vol.30, pp.30-35, 2013.

N. Savy, Mouvement Brownien fractionnaire, applications aux télécomunication, p.1, 2003.

A. L. Sellerio, D. Mari, and G. Gremaud, Fractional Brownian motion and anomalous diffusion in vibrated granular materials, J. of Stat. Mech, vol.2012, issue.01, p.2, 2012.

B. B. Mandelbrot, J. R. Wallis, J. Noah, and O. Hydrology, Water Resources Research, vol.4, issue.5, pp.909-918, 1968.

F. Molz, H. Liu, and J. Szulga, Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions, Water Resources Research, vol.33, issue.10, pp.2273-2286, 1997.

A. B. Dieker and M. Mandjes, On spectral simulation of fractional Brownian motion, Proba. in the Engineering and Informational Sciences, vol.17, pp.417-434, 2003.

L. B. Andersen and V. I. Piterbarg, Interest Rate Modeling, Foundations and Vanilla Models, vol.1, 2010.

A. W. Van-der and . Vaart, Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics, 1998.

V. I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields, Memoirs of the AMS, 1996.

J. Pickands, Maxima of stationary Gaussian processes, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.7, pp.190-223, 1967.

C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math, vol.30, pp.207-216, 1976.

J. Rambeau, S. Bustingorry, A. Kolton, and G. Schehr, Maximum relative height of elastic interfaces in random media, Phys. Rev. E, vol.84, p.131, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00619319

V. I. Piterbarg, Discrete and Continuous Time Extremes of Gaussian Processes, Extremes, vol.7, issue.2, pp.161-177, 2004.

Z. Michna, Remarks on Pickands theorem, 2009.

K. D?bicki, E. Hashorva, L. Ji, and K. Tabi?, Extremes of vector-valued Gaussian processes: exact asymptotics, 2015.

K. D?bicki, S. Engelke, and E. Hashorva, Generalized Pickands constants and stationary max-stable processes, 2016.

A. J. Harper, Pickands' constant H_? does not equal 1/?(1/?), for small ?, 2014.

K. Burnecki and Z. Michna, Simulation of Pickands constants, Proba. and Math. Stat, vol.22, issue.1, 2002.

A. Dieker and B. Yakir, On asymptotic constants in the theory of extremes for Gaussian processes, Bernoulli, vol.20, pp.1600-1619, 2014.

A. Dobrinevski, Field theory of disordered systems -Avalanches of an elastic interface in a random medium, 2013.

H. Barkhausen, Zwei mit Hilfe der neuen Verstärker entdeckte Erscheinungen, Phys. Ztschr, vol.20, pp.401-403, 1919.

S. Zapperi, P. Cizeau, G. Durin, and H. Stanley, Dynamics of a ferromagnetic domain wall: Avalanches, depinning transition, and the Barkhausen effect, Phys. Rev. B, vol.58, pp.6353-6366, 1998.

G. Durin and S. Zapperi, Scaling Exponents for Barkhausen Avalanches in Polycrystalline and Amorphous Ferromagnets, Phys. Rev. Lett, vol.84, issue.20, pp.4705-4708, 2000.

G. Bertotti, Hysteresis in magnetism: for physicists, materials scientists, and engineers, 1998.

P. L. Doussal, K. J. Wiese, S. Moulinet, and E. Rolley, Height fluctuations of a contact line: A direct measurement of the renormalized disorder correlator, EPL, vol.87, p.1, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00663987

D. Bonamy, S. Santucci, and L. Ponson, Crackling Dynamics in Material Failure as the Signature of a Self-Organized Dynamic Phase Transition, Phys. Rev. Lett, vol.101, issue.4, p.501, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00260014

J. Antonaglia, W. Wright, X. Gu, R. Byer, T. Hufnagel et al., Bulk Metallic Glasses Deform via Slip Avalanches, Phys. Rev. Lett, vol.112, p.501, 2014.

D. S. Fisher, Collective transport in random media: From superconductors to earthquakes, Phys. Rep, vol.301, pp.113-150, 1998.

S. Papanikolaou, F. Bohn, R. Sommer, G. Durin, S. Zapperi et al., Universality beyond power laws and the average avalanche shape, Nature Physics, vol.7, pp.316-320, 2011.

K. Dahmen and J. Sethna, Hysteresis, avalanches, and disorder-induced critical scaling: A renormalization-group approach, Phys. Rev. B, vol.53, p.905, 1996.

T. Nattermann, S. Stepanow, L. Tang, and H. Leschhorn, Dynamics of interface depinning in a disordered medium, J. Phys. II (France), vol.2, pp.1483-1491, 1992.
URL : https://hal.archives-ouvertes.fr/jpa-00247744

O. Narayan and D. S. Fisher, Threshold critical dynamics of driven interfaces in random media, Phys. Rev. B, vol.48, pp.7030-7072, 1993.

K. J. Wiese and P. L. Doussal, Functional Renormalization for Disordered Systems, Basic Recipes and Gourmet Dishes, Markov Processes Relat. Fields, vol.13, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00172132

P. Chauve, P. L. Doussal, and K. J. Wiese, Renormalization of pinned elastic systems: How does it work beyond one loop?, Phys. Rev. Lett, vol.86, pp.1785-1788, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00138796

P. , L. Doussal, and K. J. Wiese, Size distributions of shocks and static avalanches from the Functional Renormalization Group, Phys. Rev. E, vol.79, p.106, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00350684

P. and L. Doussal, Exact results and open questions in first principle functional RG, Annals of Physics, vol.325, pp.49-150, 2009.

P. , L. Doussal, and K. J. Wiese, First-principle derivation of static avalanche-size distribution, Phys. Rev. E, vol.85, p.102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00663979

T. Thiery, P. L. Doussal, and K. J. Wiese, Universal correlations between shocks in the ground state of elastic interfaces in disordered media, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02168799

T. Thiery and P. L. Doussal, Universality in the mean spatial shape of avalanches, 2016.

P. , L. Doussal, and K. J. Wiese, Distribution of velocities in an avalanche, EPL, vol.97, p.4, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00663981

A. Dobrinevski, P. L. Doussal, and K. Wiese, Non-Stationary Dynamics Of The Alessandro-Beatrice-Bertotti-Montorsi Model, Phys. Rev. E, vol.85, p.105, 2012.

P. , L. Doussal, and K. J. Wiese, Avalanche dynamics of elastic interfaces, Phys. Rev. E, vol.88, p.106, 2013.

B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi, Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. I. Theory, J. Appl. Phys, vol.68, p.2901, 1990.

B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi, Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. II. Experiments, J. Appl. Phys, vol.68, issue.6, p.2908, 1990.

F. Colaiori, Exactly solvable model of avalanches dynamics for Barkhausen crackling noise, Advances in Physics, vol.57, p.287, 2008.

A. Middleton, Asymptotic Uniqueness Of The Sliding State For Charge-Density Waves, Phys. Rev. Lett, vol.68, pp.670-673, 1992.

T. Thiery, P. L. Doussal, and K. J. Wiese, Spatial shape of avalanches in the Brownian force model, J. Stat. Mech, vol.08, p.19, 2015.

M. Delorme and K. Wiese, The maximum of a fractional Brownian Motion: Analytic Results from Perturbation Theory, Phys. Rev. Lett, vol.115, p.601, 2015.

M. Delorme and K. J. Wiese, Perturbative expansion for the maximum of fractional Brownian motion, Phys. Rev. E, vol.94, p.134, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02168800

K. J. Wiese, S. N. Majumdar, and A. Rosso, Perturbation Theory for Fractional Brownian Motion in Presence of Absorbing Boundaries, Phys. Rev. E, vol.83, p.141, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00630703

S. N. Majumdar and C. Sire, Survival Probability of a Gaussian Non-Markovian Process: Application to the T = 0 Dynamics of the Ising Model, Phys. Rev. Lett, vol.77, pp.1420-1423, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00004854

K. Oerding, S. Cornell, and A. Bray, Non-Markovian persistence and nonequilibrium critical dynamics, Phys. Rev. E, vol.56, pp.25-28, 1997.

J. Coeurjolly, Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study, Journal of Statistical Software, vol.05, issue.i07, p.7, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00383120

J. Bertrand, Solution d'un problème, Comptes Rendus de l'Académie des Sciences, vol.105, p.369, 1887.

M. Delorme and K. J. Wiese, Extreme-Value Statistics of Fractional Brownian Motion Bridges, vol.4, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02168798

T. S. Gasbarra and E. Valkeila, Gaussian bridges, Abel Symposium, 2005.

N. H. Abel, Auflösung einer mechanischen Aufgabe, Journal für Die Reine und Angewandte Mathematik, vol.1, pp.153-157, 1826.

R. Bracewell, The Fourier Transform and its Applications, 1965.

B. ,

M. Delorme, P. L. Doussal, and K. J. Wiese, Distribution of joint local and total size and of extension for avalanches in the Brownian force model, Phys. Rev. E, vol.93, p.142, 2016.

A. Larkin, Sov. Phys. JETP, vol.31, issue.6, p.784, 1970.

I. Dornic, H. Chaté, and M. Muñoz, Integration of Langevin Equations with Multiplicative Noise and the Viability of Field Theories for Absorbing Phase Transitions, Phys. Rev. Lett, vol.94, p.601, 2005.

M. Abramowitz and A. Stegun, Pocketbook of Mathematical Functions, vol.6, 1984.

P. L. Krapivsky, K. Mallick, and T. Sadhu, Dynamical properties of single-file diffusion, J. Stat. Mech, vol.2015, issue.9, p.7, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01304779

O. Narayan and D. Fisher, Nonlinear fluid flow in random media: critical phenomena near threshold, Phys. Rev. B, vol.49, pp.9469-502, 1993.

Y. V. Fyodorov, P. L. Doussal, and A. Rosso, Statistical Mechanics of Logarithmic REM: Duality, Freezing and Extreme Value Statistics of 1/f Noises generated by Gaussian Free Fields, J Stat. Mech. p, p.10005, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00423366

P. L. Doussal and K. J. Wiese, An exact mapping of the stochastic field theory for Manna sandpiles to interfaces in random media, Phys. Rev. Lett, vol.114, p.601, 2014.

O. Benichou, P. L. Krapivsky, C. Mejia-monasterio, and G. Oshanin, Temporal correlations of the running maximum of a Brownian trajectory, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01369477

I. Blake and W. Lindsey, Level-crossing problems for random processes, IEEE Trans. Inf. Th, vol.19, issue.3, pp.295-315, 1973.

P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev, vol.109, pp.1492-1505, 1958.

E. Ben-naim, L. Frachebourg, and P. L. Krapivsky, Coarsening and persistence in the voter model, Phys. Rev. E, vol.53, pp.3078-3087, 1996.

S. Atis, S. Saha, H. Auradou, D. Salin, and L. Talon, Self-Sustained Reaction Fronts in Porous Media, 2012.

S. N. Majumdar, C. Sire, A. J. Bray, and S. J. Cornell, Nontrivial Exponent for Simple Diffusion, Phys. Rev. Lett, vol.77, pp.2867-2870, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00004855

S. N. Majumdar, A. J. Bray, S. J. Cornell, and C. Sire, Global Persistence Exponent for Nonequilibrium Critical Dynamics, Phys. Rev. Lett, vol.77, pp.3704-3707, 1996.

S. N. Majumdar, Universal first-passage properties of discrete-time random walks and Lévy flights on a line: Statistics of the global maximum and records, Physica A Stat. Mech, vol.389, pp.4299-4316, 2010.

B. Yakir, Extremes in Random Fields: A Theory and its Applications, Wiley Series in Probability and Statistics, 2013.

P. M. Centres and S. Bustingorry, Effective Edwards-Wilkinson equation for single-file diffusion, Phys. Rev. E, vol.81, p.101, 2010.