T. Bodineau, The Wulff construction in three and more dimensions, Comm. Math. Phys, vol.207, issue.1, pp.197-229, 1999.

R. Cerf, Large deviations for three dimensional supercritical percolation, Astérisque, issue.267, p.177, 2000.

M. Campanino, D. Ioffe, and Y. Velenik, Ornstein-zernike theory for finite range ising models above tc. Probability Theory and Related Fields, vol.125, pp.305-349, 2003.

R. Cerf and S. Louhichi, The initial drift of a 2d droplet at zero temperature. Probability Theory and Related Fields, vol.137, pp.379-428, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00134727

R. Cerf and A. Pisztora, On the Wulff crystal in the Ising model, Ann. Probab, vol.28, issue.3, pp.947-1017, 2000.

L. Chayes, R. H. Schonmann, and G. Swindle, Lifshitz' law for the volume of a two-dimensional droplet at zero temperature, Journal of Statistical Physics, vol.79, issue.5, pp.821-831, 1995.

R. Cerf and W. Zhou, A new look at the interfaces in percolation, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02100893

R. Cerf and W. Zhou, There is no isolated interface edge in very supercritical percolation, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02100894

H. Duminil-copin, A. Raoufi, and V. Tassion, Sharp phase transition for the random-cluster and Potts models via decision trees, Ann. of Math, vol.189, issue.2, pp.75-99, 2019.

R. Dobrushin and O. Hryniv, Fluctuations of the phase boundary in the 2d ising ferromagnet, Communications in Mathematical Physics, vol.189, issue.2, pp.395-445, 1997.

R. Dobrushin, R. Kotecký, and S. Shlosman, A global shape from local interaction, Translations of Mathematical Monographs, vol.104, 1992.

A. De-masi, E. Orlandi, E. Presutti, and L. Triolo, Glauber evolution with kac potentials. i. mesoscopic and macroscopic limits, interface dynamics, Nonlinearity, vol.7, issue.3, p.633, 1994.

R. Dobrushin, The Gibbs state that describes the coexistence of phases for a three-dimensional Ising model, Teor. Verojatnost. i Primenen, vol.17, pp.619-639, 1972.

J. Deuschel and A. Pisztora, Surface order large deviations for high-density percolation, Probab. Theory Related Fields, vol.104, issue.4, pp.467-482, 1996.

R. Edwards and A. Sokal, Generalization of the fortuinkasteleyn-swendsen-wang representation and monte carlo algorithm, Phys. Rev. D, vol.38, 1988.

S. Friedli and Y. Velenik, Statistical Mechanics of Lattice Systems : A Concrete Mathematical Introduction, 2017.

G. Gielis and G. Grimmett, Rigidity of the interface in percolation and random-cluster models, Journal of Statistical Physics, vol.109, issue.1, pp.1-37, 2002.

L. Greenberg and D. Ioffe, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.41, pp.871-885, 2005.

R. Gheissari and E. Lubetzky, Maximum and shape of interfaces in 3d ising crystals, 2019.

G. Grimmett, The stochastic random-cluster process and the uniqueness of random-cluster measures, Ann. Probab, vol.23, issue.4, pp.1461-1510, 1995.

G. Grimmett, Percolation. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 1999.

G. Grimmett, The random-cluster model, Grundlehren der Mathematischen Wissenschaften

. Springer-verlag, , 2006.

O. Häggström, Y. Peres, and J. Steif, Dynamical percolation, vol.33, pp.497-528, 1997.

E. Ising, Beitrag zur theorie des ferromagnetismus, Zeitschrift für Physik, vol.31, issue.1, pp.253-258, 1925.

D. Ioffe and Y. Velenik, Low temperature interfaces : Prewetting, layering, faceting and ferrari-spohn diffusions, Mark. Proc. Rel. Fields, vol.24, issue.1, pp.487-537, 2018.

F. Kelly, Reversibility and Stochastic Networks, 2011.

H. Kesten, InÉcole d'été de probabilités de Saint-Flour, XIV-1984, Lecture Notes in Math, vol.1180, pp.125-264, 1986.

M. A. Katsoulakis and P. E. Souganidis, Generalized motion by mean curvature as a macroscopic limit of stochastic ising models with long range interactions and glauber dynamics, Comm. Math. Phys, vol.169, issue.1, pp.61-97, 1995.

H. Lacoin, F. Simenhaus, and F. Toninelli, The heat equation shrinks ising droplets to points, Communications on Pure and Applied Mathematics, vol.68, issue.9, pp.1640-1681
URL : https://hal.archives-ouvertes.fr/hal-00863460

H. Lacoin, F. Simenhaus, and F. L. Toninelli, Zero-temperature 2 d stochastic ising model and anisotropic curve-shortening flow, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00656387

O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel Journal of Mathematics, vol.118, issue.1, pp.221-288, 2000.

S. Smirnov, Critical percolation in the plane : conformal invariance, cardy's formula, scaling limits, Comptes Rendus de l'Académie des Sciences -Series I -Mathematics, vol.333, issue.3, pp.239-244, 2001.

S. Smirnov, Towards conformal invariance of 2D lattice models, International Congress of Mathematicians, vol.II, pp.1421-1451, 2006.

R. B. Sowers, Hydrodynamical limits and geometric measure theory : Mean curvature limits from a threshold voter model, Journal of Functional Analysis, vol.169, issue.2, pp.421-455, 1999.

H. Spohn, Interface motion in models with stochastic dynamics, Journal of Statistical Physics, vol.71, issue.5, pp.1081-1132, 1993.

J. Steif, A survey of dynamical percolation, Fractal geometry and stochastics IV, vol.61, pp.145-174, 2009.

A. Timar, Bondary-connectivity via graph theory, 2007.

W. Zhou, The localisation of low-temperature interfaces in d dimensional ising model, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02100895