J. W. Choi and D. Aurbach, Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities, Nature Reviews Materials, vol.2016, issue.4

M. Armand and J. Tarascon, Building Better Batteries, Nature, issue.7179, p.451, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00258391

J. Tarascon and M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, vol.414, issue.6861, pp.359-367, 2001.

V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the Development of Advanced Li-Ion Batteries: A Review, Energy & Environmental Science, vol.4, issue.9, 2011.

J. Tarascon, Is Lithium the New Gold?, Nature Chemistry, vol.2010, issue.6

D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo et al., Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy, Advanced Science, vol.2017, issue.1

D. Lin, Y. Liu, and Y. Cui, Reviving the Lithium Metal Anode for High-Energy Batteries, Nature Nanotechnology, vol.12, issue.3, pp.194-206, 2017.

X. Cheng, R. Zhang, C. Zhao, F. Wei, J. Zhang et al., A Review of Solid Electrolyte Interphases on Lithium Metal Anode, Advanced Science, vol.2016, issue.3

R. Chen, W. Qu, X. Guo, L. Li, and F. Wu, The Pursuit of Solid-State Electrolytes for Lithium Batteries: From Comprehensive Insight to Emerging Horizons, Materials Horizons, vol.2016, issue.6, pp.487-516

P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. Tarascon, -. Li et al., Batteries with High Energy Storage, Nature Materials, vol.2012, issue.1

J. C. Bachman, S. Muy, A. Grimaud, H. Chang, N. Pour et al., Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction, Chemical Reviews, vol.116, issue.1, pp.140-162, 2016.

J. Schnell, T. Günther, T. Knoche, C. Vieider, L. Köhler et al., All-Solid-State Lithium-Ion and Lithium Metal Batteries-Paving the Way to Large-Scale Production, Journal of Power Sources, vol.382, pp.160-175, 2018.

K. Kerman, A. Luntz, V. Viswanathan, Y. Chiang, and Z. Chen, Review-Practical Challenges Hindering the Development of Solid State Li Ion Batteries, Journal of the Electrochemical Society, vol.2017, issue.7

D. E. Fenton, J. M. Parker, and P. V. Wright, Complexes of Alkali Metal Ions with Poly(Ethylene Oxide), vol.14, pp.90146-90154, 1973.

P. V. Wright, Electrical Conductivity in Ionic Complexes of Poly(Ethylene Oxide), British Polymer Journal, vol.7, issue.5, pp.319-327, 1975.

, Fast Ion Transport in Solids: Electrodes and Electrolytes

P. Vashishta and J. N. Mundy, Proceedings of an International Conference, 1979.

M. Armand, The History of Polymer Electrolytes, Solid State Ionics, vol.69, issue.3, 1994.

Z. Xue, D. He, X. Xie, and . Poly, Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries, Journal of Materials Chemistry A, vol.2015, issue.38

C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno et al., Microscopic Investigation of Ionic Conductivity in Alkali Metal Salts-Poly(Ethylene Oxide) Adducts. Solid State Ionics, vol.11, pp.90068-90069, 1983.

N. Molinari, J. P. Mailoa, and B. Kozinsky, Effect of Salt Concentration on Ion Clustering and Transport in Polymer Solid Electrolytes: A Molecular Dynamics Study of PEO-LiTFSI, Chemistry of Materials, vol.30, issue.18, pp.6298-6306, 2018.

B. K. Wheatle, N. A. Lynd, and V. Ganesan, Effect of Polymer Polarity on Ion Transport: A Competition between Ion Aggregation and Polymer Segmental Dynamics, ACS Macro Letters, vol.7, issue.10, 2018.

D. Devaux, R. Bouchet, D. Glé, and R. Denoyel, Mechanism of Ion Transport in PEO/LiTFSI Complexes: Effect of Temperature, Molecular Weight and End Groups, Solid State Ionics, vol.227, pp.119-127, 2012.

P. E. Rouse, A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers, The Journal of Chemical Physics, vol.21, issue.7, 1953.

S. Lascaud, M. Perrier, A. Vallee, S. Besner, J. Prud'homme et al., Phase Diagrams and Conductivity Behavior of Poly(Ethylene Oxide)-Molten Salt Rubbery Electrolytes, Macromolecules, vol.27, issue.25, 1994.

M. Watanabe, M. Kanba, H. Matsuda, K. Tsunemi, K. Mizoguchi et al., High Lithium Ionic Conductivity of Polymeric Solid Electrolytes. Die Makromolekulare Chemie, Rapid Communications, vol.2, issue.12, 1981.

Y. Kitazawa, K. Iwata, S. Imaizumi, H. Ahn, S. Y. Kim et al., Gelation of Solvate Ionic Liquid by Self-Assembly of Block Copolymer and Characterization as Polymer Electrolyte, Macromolecules, vol.47, issue.17, 2014.

J. H. Shin, S. Passerini, and . Peo/lin, Polymer Electrolytes: V. Effect of Fillers on Ionic Transport Properties, Journal of the Electrochemical Society, vol.2, issue.SO2CF2CF3, 2004.

G. B. Appetecchi, A New Class of Advanced Polymer Electrolytes and Their Relevance in Plastic-like, Rechargeable Lithium Batteries, Journal of the Electrochemical Society, vol.1996, issue.1

C. Arbizzani, M. Mastragostino, T. Hamaide, and A. Guyot, An All Solid-State Polymer-Polymer Electrolyte-Lithium Rechargeable Battery for Room Temperature Applications, Electrochimica Acta, vol.35, issue.11-12, pp.1781-1785, 1990.

M. Watanabe, S. Nagano, K. Sanui, and N. Ogata, Ionic Conductivity of Network Polymers from Poly(Ethylene Oxide) Containing Lithium Perchlorate, Polymer Journal, vol.18, issue.11, 1986.

C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno et al., Microscopic Investigation of Ionic Conductivity in Alkali Metal Salts-Poly(Ethylene Oxide) Adducts. Solid State Ionics, vol.11, pp.90068-90069, 1983.

A. Vallée, S. Besner, and J. Prud'homme, Comparative Study of Poly(Ethylene Oxide) Electrolytes Made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal Properties and Conductivity Behaviour, Electrochimica Acta, vol.37, issue.9, pp.1579-1583, 1992.

S. Seki, K. Takei, H. Miyashiro, and M. Watanabe, Physicochemical and Electrochemical Properties of Glyme-LiN(SO2F)2 Complex for Safe Lithium-Ion Secondary Battery Electrolyte, Journal of the Electrochemical Society, vol.2011, issue.6

H. Zhang, C. Liu, L. Zheng, F. Xu, W. Feng et al., Lithium Bis(Fluorosulfonyl)Imide/Poly(Ethylene Oxide) Polymer Electrolyte, Electrochimica Acta, vol.133, pp.529-538, 2014.

G. B. Appetecchi, W. Henderson, P. Villano, M. Berrettoni, S. Passerini et al., Polymer Electrolytes: I. XRD, DSC, and Ionic Conductivity Characterization, Journal of the Electrochemical Society, vol.148, issue.SO2CF2CF3, 2001.

G. B. Appetecchi, S. Passerini, and . Peo/lin, Polymer Electrolytes: II. Characterization and Interface with Lithium, Journal of the Electrochemical Society, vol.2, issue.SO2CF2CF3

P. Villano, M. Carewska, G. B. Appetecchi, S. Passerini, and . Peo/lin, Polymer Electrolytes: III. Test in Batteries, Journal of the Electrochemical Society, vol.149, issue.SO2CF2CF3, 2002.

C. Capiglia, N. Imanishi, Y. Takeda, W. A. Henderson, S. Passerini et al., Polymer Electrolytes: IV. Raman Characterization, Journal of the Electrochemical Society, vol.150, issue.SO2CF2CF3, 2003.

J. B. Goodenough and Y. Kim, Challenges for Rechargeable Li Batteries, Chemistry of Materials, vol.22, issue.3, pp.587-603, 2010.

K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, vol.104, issue.10, pp.4303-4418, 2004.

J. Popovic, D. Höfler, J. P. Melchior, A. Münchinger, B. List et al., High Lithium Transference Number Electrolytes Containing Tetratriflylpropene's Lithium Salt, The Journal of Physical Chemistry Letters, vol.2018, issue.17

P. R. Chinnam and S. L. Wunder, Self-Assembled Janus-like Multi-Ionic Lithium Salts Form NanoStructured Solid Polymer Electrolytes with High Ionic Conductivity and Li + Ion Transference Number, Journal of Materials Chemistry A, vol.2013, issue.1

M. Huang, S. Feng, W. Zhang, L. Giordano, M. Chen et al., Fluorinated Aryl Sulfonimide Tagged (FAST) Salts: Modular Synthesis and Structure-Property Relationships for Battery Applications, Energy & Environmental Science, vol.11, issue.5, 2018.

L. Yang, D. Wei, M. Xu, Y. Yao, and Q. Chen, Transferring Lithium Ions in Nanochannels: A PEO/Li + Solid Polymer Electrolyte Design, Angewandte Chemie International Edition, vol.53, issue.14, 2014.

L. Yang, X. Fu, T. Chen, L. Pan, P. Ji et al., Ionic Conductivity of ?-Cyclodextrin-Polyethylene-Oxide/Alkali-Metal-Salt Complex, Chemistry -A European Journal, vol.21, issue.17, 2015.

X. Fu, G. Yang, J. Wu, J. Wang, Q. Chen et al., Fast Lithium-Ion Transportation in Crystalline Polymer Electrolytes, ChemPhysChem, vol.19, issue.1, 2018.

M. Du, B. Guo, and D. Jia, Newly Emerging Applications of Halloysite Nanotubes: A Review, Polymer International, vol.59, issue.5, 2010.

Y. Lin, X. Wang, J. Liu, and J. D. Miller, Natural Halloysite Nano-Clay Electrolyte for Advanced All-SolidState Lithium-Sulfur Batteries, Nano Energy, vol.31, pp.478-485, 2017.

P. G. Khalatur and A. R. Khokhlov, Nonconventional Scenarios of Polymer Self-Assembly. Soft Matter, vol.2013, issue.46

L. Leibler, Theory of Microphase Separation in Block Copolymers, Macromolecules, vol.13, issue.6, 1980.

F. S. Bates and G. H. Fredrickson, Block Copolymers-Designer Soft Materials, Physics Today, vol.52, issue.2, pp.32-38, 1999.

C. M. Bates and F. S. Bates, 50 th Anniversary Perspective : Block Polymers-Pure Potential, Macromolecules, vol.2017, issue.1, pp.3-22

W. Young, W. Kuan, T. H. Epps, and . Block, Copolymer Electrolytes for Rechargeable Lithium Batteries, Journal of Polymer Science Polymer Physics, vol.52, issue.1, pp.1-16, 2014.

Z. Guo, G. Zhang, F. Qiu, H. Zhang, Y. Yang et al., Discovering Ordered Phases of Block Copolymers: New Results from a Generic Fourier-Space Approach, Physical Review Letters, vol.101, issue.2, 2008.

G. Jo, H. Ahn, and M. J. Park, Simple Route for Tuning the Morphology and Conductivity of Polymer Electrolytes: One End Functional Group Is Enough, ACS Macro Letters, vol.2013, issue.11

G. Jo, O. Kim, H. Kim, U. Hyeok-choi, S. Lee et al., End-Functionalized Block Copolymer Electrolytes: Effect of Segregation Strength on Ion Transport Efficiency, Polymer Journal, vol.48, issue.4, 2016.

H. Y. Jung, P. Mandal, G. Jo, O. Kim, M. Kim et al., Modulating Ion Transport and Self-Assembly of Polymer Electrolytes via End-Group Chemistry, Macromolecules, vol.2017, issue.8

Y. Kambe, C. G. Arges, S. Patel, M. P. Stoykovish, and P. F. Nealey, Ion Conduction in MicrophaseSeparated Block Copolymer Electrolytes. The Electrochemical Society Interface, vol.26, pp.61-67, 2017.

C. G. Arges, Y. Kambe, M. Dolejsi, G. Wu, T. Segal-pertz et al., Interconnected Ionic Domains Enhance Conductivity in Microphase Separated Block Copolymer Electrolytes, Journal of Materials Chemistry A, vol.2017, issue.11

A. Panday, S. Mullin, E. D. Gomez, N. Wanakule, V. L. Chen et al., Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes, Macromolecules, vol.42, issue.13, 2009.

E. D. Gomez, A. Panday, E. H. Feng, V. Chen, G. M. Stone et al., Effect of Ion Distribution on Conductivity of Block Copolymer Electrolytes, Nano Letters, vol.9, issue.3, 2009.

R. Yuan, A. A. Teran, I. Gurevitch, S. A. Mullin, N. S. Wanakule et al., Ionic Conductivity of Low Molecular Weight Block Copolymer Electrolytes, Macromolecules, vol.46, issue.3, 2013.

R. Bouchet, T. N. Phan, E. Beaudoin, D. Devaux, P. Davidson et al., Charge Transport in Nanostructured PS-PEO-PS Triblock Copolymer Electrolytes, Macromolecules, vol.47, issue.8, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01460498

B. Zheng, X. Man, Z. Ou-yang, M. Schick, and D. Andelman, Orienting Thin Films of Lamellar Block Copolymer: The Combined Effect of Mobile Ions and Electric Field, Macromolecules, vol.2018, issue.19, pp.7881-7892

M. J. Park and N. P. Balsara, Anisotropic Proton Conduction in Aligned Block Copolymer Electrolyte Membranes at Equilibrium with Humid Air, Macromolecules, vol.2010, issue.1, pp.292-298

P. W. Majewski and K. G. Yager, Rapid Ordering of Block Copolymer Thin Films, Journal of Physics: Condensed Matter, vol.28, issue.40, 2016.

C. Sinturel, F. S. Bates, and M. A. Hillmyer, High ?-Low N Block Polymers: How Far Can We Go? ACS Macro Letters, vol.4, 2015.

S. Woo, S. Jo, D. Y. Ryu, S. Choi, Y. Choe et al., Molecular Tailoring of Poly(Styrene-b-Methyl Methacrylate) Block Copolymer Toward Perpendicularly Oriented Nanodomains with Sub-10 Nm Features, ACS Macro Letters, vol.6, issue.12, 2017.

K. S. Lee, J. Lee, J. Kwak, H. C. Moon, and J. K. Kim, Reduction of Line Edge Roughness of PolystyreneBlock -Poly(Methyl Methacrylate) Copolymer Nanopatterns By Introducing Hydrogen Bonding at the Junction Point of Two Block Chains, ACS Applied Materials & Interfaces, vol.2017, issue.37, pp.31245-31251

E. Chen, G. Xue, S. Jin, S. Lee, I. Mann et al., Defect Orientation on the Chain Folded Surfaces of Two-Arm Poly(Ethylene Oxide) Lamellar Crystals. Macromolecular Rapid Communications, vol.20, pp.431-434, 1999.

Y. Golitsyn, M. Pulst, J. Kressler, and D. Reichert, Molecular Dynamics in the Crystalline Regions of Poly(Ethylene Oxide) Containing a Well-Defined Point Defect in the Middle of the Polymer Chain, The Journal of Physical Chemistry B, vol.2017, issue.17, p.121

M. H. Samiullah, M. Pulst, Y. Golitsyn, K. Busse, S. Poppe et al., Solid State Phase Transitions in Poly(Ethylene Oxide) Crystals Induced by Designed Chain Defects, Macromolecules, vol.51, issue.11, pp.4407-4414, 2018.

M. Pulst, C. Schneemann, P. Ruda, Y. Golitsyn, A. Grefe et al., Chain Tilt and Crystallization of Ethylene Oxide Oligomers with Midchain Defects, ACS Macro Letters, vol.6, issue.11, 2017.

Y. Luo, D. Montarnal, N. J. Treat, P. D. Hustad, M. D. Christianson et al., Enhanced Block Copolymer Phase Separation Using Click Chemistry and Ionic Junctions, ACS Macro Letters, vol.2015, issue.12, pp.1332-1336
URL : https://hal.archives-ouvertes.fr/hal-01388665

T. Wen, J. Lee, M. Li, J. Tsai, and R. Ho, Competitive Interactions of ?-? Junctions and Their Role on Microphase Separation of Chiral Block Copolymers, Chemistry of Materials, vol.29, issue.10, pp.4493-4501, 2017.

D. Fish and J. Smid, Solvation of Lithium Ions in Mixtures of Tetraethylene Glycol Dimethyl Ether and Propylene Carbonate, Electrochimica Acta, vol.37, issue.11, p.87120, 1992.

R. J. Blint, Binding of Ether and Carbonyl Oxygens to Lithium Ion, Journal of the Electrochemical Society, vol.1995, issue.3

M. Adams, V. Richmond, D. Smith, Y. Wang, F. Fan et al., Decoupling of Ion Conductivity from Segmental Dynamics in Oligomeric Ethylene Oxide Functionalized Oxanorbornene Dicarboximide Homopolymers, vol.116, pp.218-225, 2017.

J. Mindemark, M. J. Lacey, T. Bowden, and D. Brandell, Beyond PEO-Alternative Host Materials for Li + -Conducting Solid Polymer Electrolytes. Progress in Polymer Science, vol.81, pp.114-143, 2018.

C. R. Yang, J. T. Perng, Y. Y. Wang, and C. C. Wan, Conductive Behaviour of Lithium Ions in Polyacrylonitrile, Journal of Power Sources, vol.62, issue.1, pp.89-93, 1996.

Y. Chen-yang, Polyacrylonitrile Electrolytes 1. A Novel High-Conductivity Composite Polymer Electrolyte Based on PAN, LiClO4 and ?-Al2O3, Solid State Ionics, vol.150, issue.3-4, pp.327-335, 2002.

Y. T. Chen, Y. C. Chuang, J. H. Su, H. C. Yu, and Y. W. Chen-yang, High Discharge Capacity Solid Composite Polymer Electrolyte Lithium Battery, Journal of Power Sources, vol.196, issue.5, pp.2802-2809, 2011.

X. Bogle, R. Vazquez, S. Greenbaum, A. W. Cresce, and K. Xu, Understanding Li + -Solvent Interaction in Nonaqueous Carbonate Electrolytes with 17

O. Nmr, The Journal of Physical Chemistry Letters, vol.2013, issue.10

M. T. Ong, O. Verners, E. W. Draeger, A. C. Van-duin, V. Lordi et al., Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First-Principles and Classical Reactive Molecular Dynamics, The Journal of Physical Chemistry B, vol.119, issue.4, 2015.

J. Mindemark and T. Bowden, Synthesis and Polymerization of Alkyl Halide-Functional Cyclic Carbonates, Polymer, vol.52, issue.25, 2011.

D. S. Rosa, I. C. Neto, M. R. Calil, A. G. Pedroso, C. P. Fonseca et al., Evaluation of the Thermal and Mechanical Properties of Poly(?-Caprolactone), Low-Density Polyethylene, and Their Blends, Journal of Applied Polymer Science, vol.91, issue.6, 2004.

Y. Takahashi and H. Tadokoro, Structural Studies of Polyethers, (-(CH2)m-O-)n. X. Crystal Structure of Poly(Ethylene Oxide), Macromolecules, vol.6, issue.5, 1973.

P. Fonseca, C. Neves, and S. , Electrochemical Properties of a Biodegradable Polymer Electrolyte Applied to a Rechargeable Lithium Battery, Journal of Power Sources, vol.159, issue.1, 2006.

C. P. Fonseca, D. S. Rosa, F. Gaboardi, and S. Neves, Development of a Biodegradable Polymer Electrolyte for Rechargeable Batteries, Journal of Power Sources, vol.155, issue.2, pp.381-384, 2006.

B. Sun, J. Mindemark, K. Edström, and D. Brandell, Polycarbonate-Based Solid Polymer Electrolytes for Li-Ion Batteries, Solid State Ionics, vol.262, pp.738-742, 2014.

B. Sun, J. Mindemark, K. Edström, and D. Brandell, Realization of High Performance PolycarbonateBased Li Polymer Batteries, Electrochemistry Communications, vol.52, 2015.

J. Mindemark, L. Imholt, and D. Brandell, Synthesis of High Molecular Flexibility Polycarbonates for Solid Polymer Electrolytes, Electrochimica Acta, vol.175, pp.247-253, 2015.

J. Mindemark, E. Törmä, B. Sun, and D. Brandell, Copolymers of Trimethylene Carbonate and ?-Caprolactone as Electrolytes for Lithium-Ion Batteries, Polymer, vol.63, pp.91-98, 2015.

J. Mindemark, B. Sun, E. Törmä, and D. Brandell, High-Performance Solid Polymer Electrolytes for Lithium Batteries Operational at Ambient Temperature, Journal of Power Sources, vol.298, pp.166-170, 2015.

Y. Tominaga, K. Yamazaki, and V. Nanthana, Effect of Anions on Lithium Ion Conduction in Poly(Ethylene Carbonate)-Based Polymer Electrolytes, Journal of the Electrochemical Society, vol.2015, issue.2

L. Meabe, N. Lago, L. Rubatat, C. Li, A. J. Müller et al., Polycondensation as a Versatile Synthetic Route to Aliphatic Polycarbonates for Solid Polymer Electrolytes, Electrochimica Acta, vol.237, pp.259-266, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01560388

L. Meabe, T. V. Huynh, N. Lago, H. Sardon, C. Li et al., Ethylene Oxide Carbonates) Solid Polymer Electrolytes for Lithium Batteries, Electrochimica Acta, vol.264, pp.367-375, 2018.

Y. Wang, F. Fan, A. L. Agapov, T. Saito, J. Yang et al., Examination of the Fundamental Relation between Ionic Transport and Segmental Relaxation in Polymer Electrolytes, Polymer, vol.55, issue.16, pp.4067-4076, 2014.

K. E. Thomas, S. E. Sloop, J. B. Kerr, and J. Newman, Comparison of Lithium-Polymer Cell Performance with Unity and Nonunity Transference Numbers, Journal of Power Sources, vol.89, issue.2, pp.132-138, 2000.

C. Wang and A. Goto, Solvent-Selective Reactions of Alkyl Iodide with Sodium Azide for Radical Generation and Azide Substitution and Their Application to One-Pot Synthesis of Chain-EndFunctionalized Polymers, Journal of the American Chemical Society, vol.2017, issue.30

H. Willcock and R. K. O'reilly, End Group Removal and Modification of RAFT Polymers, Polymer Chemistry, vol.2010, issue.2, pp.149-157

K. Satoh, J. E. Poelma, L. M. Campos, B. Stahl, and C. J. Hawker, A Facile Synthesis of Clickable and AcidCleavable PEO for Acid-Degradable Block Copolymers, Polymer Chemistry, vol.2012, issue.7

A. B. Lowe, CHAPTER 2. End-group Functionalization of RAFT-prepared Polymers Using Thiol-X Chemistries, In Polymer Chemistry Series

A. Lowe and C. Bowman, Royal Society of Chemistry: Cambridge, 2013.

G. Johansson, Ethylene Glycol) Two-Phase Systems Containing Charged Poly(Ethylene Glycol) I. Partition of Albumins, Studies on Aqueous Dextran-Poly, vol.222, pp.381-389, 1970.

M. Sépulchre, G. Paulus, and R. Jérôme, Specific Functionalization of Polyoxirane by Amino, Carboxyl, Sulfo, and Halogeno End Groups. Die Makromolekulare Chemie, vol.184, pp.1849-1859, 1983.

T. Hamaide and C. L. Deore, Cationic Conductivity and Relaxation Processes in Solid Polymer Electrolytes with Lithium Perfluoroalkyl Sulfonate or Sulfonato End-Capped Poly(Ethylene Oxide), vol.34, pp.90227-90229, 1993.

K. Xu and C. A. Angell, Synthesis and Characterization of Lithium Sulfonates as Components of Molten Salt Electrolytes, Electrochimica Acta, vol.40, p.203, 1995.

H. Ohno, K. Ito, and . Poly, Ethylene Oxide)s Having Carboxylate Groups on the Chain End, Polymer, vol.36, issue.4, 1995.

K. Ito and H. Ohno, Ionic Conductivity of Poly(Ethylene Oxide) Having Charges on the Chain End, Solid State Ionics, vol.79, pp.300-305, 1995.

K. Ito, N. Nishina, and H. Ohno, High Lithium Ionic Conductivity of Poly(Ethylene Oxide)s Having Sulfonate Groups on Their Chain Ends, Journal of Materials Chemistry, vol.7, issue.8, 1997.

K. Ito, Y. Tominaga, and H. Ohno, Effect of Benzenesulfonate Group(s) and PEO Molecular Weight on the Bulk Ionic Conductivity, Electrochimica Acta, vol.42, issue.10, 1997.

Y. Tominaga, K. Ito, H. Ohno, and . Polyether, Salt Hybrid: 6. Effect of Sulfonamide Ends Having Different Alkyl Groups on the Bulk Ionic Conductivity. Polymer, vol.38, pp.726-730, 1997.

Y. Nakai, K. Ito, and H. Ohno, Ion Conduction in Molten Salts Prepared by Terminal-Charged PEO Derivatives, Solid State Ionics, issue.1-2, pp.199-204, 1998.

Y. Tominaga, High Ionic Conductivity of PEO/Sulfonamide Salt Hybrids, Solid State Ionics, vol.124, issue.3-4, 1999.

Y. Tominaga, T. Mizumo, and H. Ohno, Ionic Conductivity of PPO-Sulfonamide Salt Hybrids and Their Network Polymers, Polymers for Advanced Technologies, vol.11, issue.8-12, 2000.

T. Mizumo and H. Ohno, Molten Lithium Sulfonimide Salt Having Poly(Propylene Oxide) Tail. Polymer, vol.45, 2004.

K. Ito, N. Nishina, Y. Tominaga, and H. Ohno, Effect of Terminal Groups on the Ionic Conductivity of ?,?-Dicharged Poly(Ethylene Oxide) Oligomers. Solid State Ionics, pp.86-88, 1996.

Y. Nakai, K. Ito, and H. Ohno, Ion Conduction in Molten Salts Prepared by Terminal-Charged PEO Derivatives, Solid State Ionics, issue.1-2, pp.199-204, 1998.

K. Ito and H. Ohno, Design of Highly Ion Conductive Polyether/Salt Hybrids, Electrochimica Acta, vol.43, pp.10-11, 1998.

B. B. Hallac, O. E. Geiculescu, R. V. Rajagopal, S. E. Creager, and D. D. Desmarteau, Lithium-Conducting Ionic Melt Electrolytes from Polyether-Functionalized Fluorosulfonimide Anions, Electrochimica Acta, vol.53, issue.20, pp.5985-5991, 2008.

M. B. Herath, S. E. Creager, R. V. Rajagopal, O. E. Geiculescu, and D. D. Desmarteau, Ionic Conduction in Polyether-Based Lithium Arylfluorosulfonimide Ionic Melt Electrolytes, Electrochimica Acta, vol.54, issue.24, pp.5877-5883, 2009.

E. Tsuchida, H. Ohno, N. Kobayashi, and H. Ishizaka, Poly[(?-Carboxy)Oligo(Oxyethylene) Methacrylate] as a New Type of Polymeric Solid Electrolyte for Alkali-Metal Ion Transport, Macromolecules, vol.22, issue.4, 1989.

S. Dou, S. Zhang, R. J. Klein, J. Runt, and R. H. Colby, Synthesis and Characterization of Poly(Ethylene Glycol)-Based Single-Ion Conductors, Chemistry of Materials, vol.18, issue.18, 2006.

D. Fragiadakis, S. Dou, R. H. Colby, and J. Runt, Molecular Mobility and Li+ Conduction in Polyester Copolymer Ionomers Based on Poly(Ethylene Oxide), The Journal of Chemical Physics, vol.130, issue.6, 2009.

N. H. Lafemina, Q. Chen, R. H. Colby, and K. T. Mueller, The Diffusion and Conduction of Lithium in Poly(Ethylene Oxide)-Based Sulfonate Ionomers, The Journal of Chemical Physics, vol.145, issue.11, 2016.

G. S. Doerk and K. G. Yager, Beyond Native Block Copolymer Morphologies. Molecular Systems Design & Engineering, vol.2, pp.518-538, 2017.

W. Zhang, X. Yu, C. Wang, H. Sun, I. Hsieh et al., Molecular Nanoparticles Are Unique Elements for Macromolecular Science: From "Nanoatoms" to Giant Molecules, Macromolecules, vol.47, issue.4, 2014.

W. Zhang, M. Huang, H. Su, S. Zhang, K. Yue et al., Toward Controlled Hierarchical Heterogeneities in Giant Molecules with Precisely Arranged Nano Building Blocks, ACS Central Science, vol.2016, issue.1, pp.48-54

X. Yu, K. Yue, I. Hsieh, Y. Li, X. Dong et al., Giant Surfactants Provide a Versatile Platform for Sub-10-Nm Nanostructure Engineering, Proceedings of the National Academy of Sciences, issue.25, p.110, 2013.

X. Yu, W. Zhang, K. Yue, X. Li, H. Liu et al., Giant Molecular Shape Amphiphiles Based on Polystyrene-Hydrophilic [60]Fullerene Conjugates: Click Synthesis, Solution Self-Assembly, and Phase Behavior, Journal of the American Chemical Society, vol.2012, issue.18

Z. Lin, P. Lu, C. Hsu, J. Sun, Y. Zhou et al., HydrogenBonding-Induced Nanophase Separation in Giant Surfactants Consisting of Hydrophilic [60]Fullerene Tethered to Block Copolymers at Different Locations, Macromolecules, vol.48, issue.16, pp.5496-5503, 2015.

X. Dong, B. Ni, M. Huang, C. Hsu, Z. Chen et al., Chain Overcrowding Induced Phase Separation and Hierarchical Structure Formation in Fluorinated Polyhedral Oligomeric Silsesquioxane (FPOSS)-Based Giant Surfactants, Macromolecules, vol.48, issue.19, pp.7172-7179, 2015.

K. Yue, M. Huang, R. L. Marson, J. He, J. Huang et al., Geometry Induced Sequence of Nanoscale Frank-Kasper and Quasicrystal Mesophases in Giant Surfactants, Proceedings of the National Academy of Sciences, issue.50, p.113, 2016.

K. Yue, C. Liu, M. Huang, J. Huang, Z. Zhou et al., Self-Assembled Structures of Giant Surfactants Exhibit a Remarkable Sensitivity on Chemical Compositions and Topologies for Tailoring Sub-10 Nm Nanostructures, Macromolecules, vol.2017, issue.1, pp.303-314

Y. Li, X. Dong, Y. Zou, Z. Wang, K. Yue et al., Polyhedral Oligomeric Silsesquioxane Meets "Click" Chemistry: Rational Design and Facile Preparation of Functional Hybrid Materials, vol.125, pp.303-329, 2017.

M. Huang, K. Yue, J. Huang, C. Liu, Z. Zhou et al., Highly Asymmetric Phase Behaviors of Polyhedral Oligomeric Silsesquioxane-Based Multiheaded Giant Surfactants, ACS Nano, vol.12, issue.2, 2018.

G. K. Sethi, X. Jiang, R. Chakraborty, W. S. Loo, I. Villaluenga et al., Anomalous SelfAssembly and Ion Transport in Nanostructured Organic-Inorganic Solid Electrolytes, ACS Macro Letters, vol.7, issue.9, 2018.

T. S. Thomas, W. Hwang, and L. R. Sita, End-Group-Functionalized Poly(?-Olefinates) as Non-Polar Building Blocks: Self-Assembly of Sugar-Polyolefin Hybrid Conjugates, Angewandte Chemie International Edition, vol.55, issue.15, 2016.

S. R. Nowak, W. Hwang, and L. R. Sita, Dynamic Sub-10-Nm Nanostructured Ultrathin Films of SugarPolyolefin Conjugates Thermoresponsive at Physiological Temperatures, Journal of the American Chemical Society, vol.2017, issue.15

N. Seiki, Y. Shoji, T. Kajitani, F. Ishiwari, A. Kosaka et al., Rational Synthesis of Organic Thin Films with Exceptional Long-Range Structural Integrity, Science, vol.348, issue.6239, pp.1122-1126, 2015.

F. Ishiwari, G. Okabe, H. Ogiwara, T. Kajitani, M. Tokita et al., Terminal Functionalization with a Triptycene Motif That Dramatically Changes the Structural and Physical Properties of an Amorphous Polymer, Journal of the American Chemical Society, vol.140, issue.41, 2018.

V. G. Lafitte, A. E. Aliev, P. N. Horton, M. B. Hursthouse, K. Bala et al., Quadruply Hydrogen Bonded Cytosine Modules for Supramolecular Applications, Journal of the American Chemical Society, vol.128, issue.20, 2006.

C. Cheng, J. Wang, W. Chuang, Z. Liao, J. Huang et al., Dynamic Supramolecular Self-Assembly: Hydrogen Bonding-Induced Contraction and Extension of Functional Polymers, Polymer Chemistry, vol.8, issue.21, 2017.

B. J. Rancatore, B. Kim, C. E. Mauldin, J. M. Fréchet, and T. Xu, Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing, Macromolecules, vol.2016, issue.3, pp.833-843

K. H. Lee, P. Bai, B. J. Rancatore, B. He, Y. Liu et al., Improved Hierarchical Ordering in Supramolecules via Symmetrically Bifunctionalized Organic Semiconductor, Macromolecules, vol.2016, issue.7, pp.2639-2645

C. Sinturel, F. S. Bates, and M. A. Hillmyer, High ?-Low N Block Polymers: How Far Can We Go? ACS Macro Letters, vol.4, 2015.

H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo et al., Single Lithium-Ion Conducting Solid Polymer Electrolytes: Advances and Perspectives, Chemical Society Reviews, vol.46, issue.3, 2017.

P. W. Atkins, J. De-paula, J. Keeler, and . Atkins, Physical Chemistry, vol.11, 2018.

C. Breitkopf and K. Swider-lyons, , 2017.

, Guide to Experiments and Applications, 2010.

G. S. Fulcher, Analysis of Recent Measurements of the Viscosity of Glasses, Journal of the American Ceramic Society, vol.8, issue.6, pp.339-355, 1925.

G. Tammann and W. Hesse, Die Abhängigkeit Der Viscosität von Der Temperatur Bie Unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, vol.156, pp.245-257, 1926.

K. Ito, N. Nishina, and H. Ohno, High Lithium Ionic Conductivity of Poly(Ethylene Oxide)s Having Sulfonate Groups on Their Chain Ends, Journal of Materials Chemistry, vol.7, issue.8, 1997.

K. Ito, Y. Tominaga, and H. Ohno, Effect of Benzenesulfonate Group(s) and PEO Molecular Weight on the Bulk Ionic Conductivity, Electrochimica Acta, vol.42, issue.10, 1997.

B. K. Wheatle, N. A. Lynd, and V. Ganesan, Effect of Polymer Polarity on Ion Transport: A Competition between Ion Aggregation and Polymer Segmental Dynamics, ACS Macro Letters, vol.7, issue.10, 2018.

P. G. Bruce and C. A. Vincent, Steady State Current Flow in Solid Binary Electrolyte Cells, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.225, issue.1-2, pp.80001-80004, 1987.

P. G. Bruce and C. A. Vincent, Polymer Electrolytes, Journal of the Chemical Society, vol.89, issue.17, pp.3187-3203, 1993.

P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. Tarascon, -. Li et al., Batteries with High Energy Storage, Nature Materials, vol.2012, issue.1

J. Mindemark, J. Lacey, M. J. Bowden, T. Brandell, and D. , Beyond PEO-Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science, vol.281, pp.114-143, 2018.

R. H. Beaumont, B. Clegg, G. Gee, J. B. Herbert, D. J. Marks et al., Heat Capacities of Propylene Oxide and of Some Polymers of Ethylene and Propylene Oxides, Polymer, vol.7, issue.8, pp.90055-90058, 1966.

C. P. Buckley and A. J. Kovacs, Melting Behaviour of Low Molecular Weight Poly (Ethylene-Oxide) Fractions. In Polymere Aspekte, vol.58, pp.44-52, 1975.

C. P. Buckley and A. J. Kovacs, Melting Behaviour of Low Molecular Weight Poly (Ethylene-Oxide) Fractions: 2. Folded Chain Crystals. Colloid and Polymer Science, vol.254, 1976.

H. Tadokoro, Y. Chatani, T. Yoshihara, S. Tahara, and S. Murahashi, Molecular Structure of Polyethylene Oxide. Die Makromolekulare Chemie, Structural Studies on Polyethers, vol.73, issue.1, 1964.

O. V. Romankevich and S. Y. Frenkel, Equilibrium Melting Point of Polyethylene Oxide, Polymer Science U.S.S.R, vol.22, issue.11, pp.2647-2654, 1980.

M. Cyrot, A Possible Origin for the Vogel-Fulcher Law, Physics Letters A, vol.83, issue.6, pp.90982-90990, 1981.

W. Wang, G. J. Tudryn, R. H. Colby, and K. I. Winey, Thermally Driven Ionic Aggregation in Poly(Ethylene Oxide)-Based Sulfonate Ionomers, Journal of the American Chemical Society, vol.133, issue.28, pp.10826-10831, 2011.

B. K. Wheatle, N. A. Lynd, and V. Ganesan, Effect of Polymer Polarity on Ion Transport: A Competition between Ion Aggregation and Polymer Segmental Dynamics, ACS Macro Letters, vol.7, issue.10, 2018.

K. Ito, N. Nishina, and H. Ohno, High Lithium Ionic Conductivity of Poly(Ethylene Oxide)s Having Sulfonate Groups on Their Chain Ends, Journal of Materials Chemistry, vol.7, issue.8, 1997.

L. H. Sperling, Introduction to Physical Polymer Science, 2006.

K. Arnold, A. Herrmann, L. Pratsch, and K. Gawrisch, The Dielectric Properties of Aqueous Solutions of Poly(Ethylene Glycol) and Their Influence on Membrane Structure, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.815, issue.3, 1985.

, Thermal Characterisation by Differential Scanning Calorimetry (DSC), Physical Characterisation by High Performance Liquid Chromatography-Time-of-Flight Mass Spectroscopy

, 171 3. Variation of Polymer Mn According to Poly(ethylene oxide) monomethyl ether, p.174

M. Synthesis-of and .. .. Mono-salts, Synthesis of aminonaphthalene-end-capped poly(ethylene oxide) monomethyl ether, mPEOn-N(Li)Naph

, Synthesis of Sulfonate-end-capped poly(ethylene oxide) monomethyl ether, mPEOn-SO3Li, p.182

.. .. Naph, Synthesis of Benzene Sulfonate-End-Capped poly(ethylene oxide) monomethyl ether, mPEOn-OC(O)PhSO3Li, Synthesis of N-(naphthyl)sulfonamide-end-capped poly(ethylene oxide) monomethyl ether, mPEOn-SO2N(Li)

. .. O)phso3li, Synthesis of naphthalene-1-sulfonyl(methylsulfonyl)imide lithium salt end-capped poly(ethylene oxide) monomethyl ether, Chemical Characterisation of ANSO3Li and its derivatives AzNSO3Na, AzNSO2Cl, AzNSI(K), and ANSI(K), vol.5

, Synthesis of the Zwitterionic polymer mPEO20-? + NSI(LiTFSI)

, Chemical Characterisation of the Zwitterionic polymer mPEO20-? + NSI(LiTFSI)

, Double-Salt" 4-sulfonylaminonaphthalene-1-sulfonyl(methylsulfonyl)imideend-capped poly(ethylene oxide) monomethyl ether, mPEO55-SANSI(Li2)

I. .. Bibliography-of-chapter,

, HPLC grade, contains amylenes, pp.60-89

. Hplc-grade, S. Inhibitor-free, and . Dimethyl,

, Sample preparation of ANSO3Li was carried out as follows: the acid ANSO3H was mixed with water and neutralised with LiOH. The solution of the Li-salt was filtered of remaining insoluble acid and dried under reduced pressure (< 10 mbar, 100°C, 72 h) to obtain the target compound at quantitative yield. AzNSO3Li, AzNSO2Cl and AzNSIK were recrystallised prior to the measurement, Aryl C-Hoop). AzNSI(K), vol.3, p.2117

?. and N. Bending, NH2); 1437 (S=O stretching); 1377 (?, C-N stretching

, (?, -SO2-asymmetric stretching, 1106.

, SO2-symmetric stretching

?. and S. Stretching, , vol.756

, For FTIR and NMR spectroscopy, and representative examples of spectra, pp.55-57

K. Fischer, Neues Verfahren zur maßanalytischen Bestimmung des Wassergehaltes von Flüssigkeiten und festen Körpern, Angewandte Chemie, vol.48, issue.26, pp.394-396, 1935.

G. S. Fulcher, Analysis of recent measurements of the viscosity of glasses, Journal of the American Ceramic Society, vol.8, issue.6, 1925.

M. Cyrot, A Possible Origin for the Vogel-Fulcher Law, Physics Letters A, vol.83, issue.6, 1981.

G. Tammann and W. Hesse, Die Abhängigkeit Der Viscosität von Der Temperatur Bie Unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, vol.156, pp.245-257, 1926.

K. M. Diederichsen, H. G. Buss, and B. D. Mccloskey, The Compensation Effect in the VogelTammann-Fulcher (VTF) Equation for Polymer-Based Electrolytes, Macromolecules, vol.2017, issue.10

Z. Xue, D. He, X. Xie, and . Poly, Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries, Journal of Materials Chemistry A, vol.2015, issue.38

R. Appel, Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P-N Linkage, Angewandte Chemie International Edition, vol.14, issue.12, pp.801-811, 1975.

T. W. Baughman, J. C. Sworen, and K. B. Wagener, The Facile Preparation of Alkenyl Metathesis Synthons, Tetrahedron, vol.60, issue.48, 2004.

K. Lukin, V. Kishore, and T. Gordon, Development of a Scalable Synthesis of Oxadiazole Based S1P1 Receptor Agonists. Organic Process Research & Development, vol.17, 2013.

K. Ito, N. Nishina, and H. Ohno, High Lithium Ionic Conductivity of Poly(Ethylene Oxide)s Having Sulfonate Groups on Their Chain Ends, Journal of Materials Chemistry, vol.7, issue.8, 1997.

G. Johansson, Studies on Aqueous Dextran-Poly(Ethylene Glycol) Two-Phase Systems Containing Charged Poly(Ethylene Glycol) I. Partition of Albumins, Biochimica et Biophysica Acta (BBA) -General Subjects, vol.222, issue.2, pp.381-389, 1970.

A. F. Bückmann, M. Morr, and G. Johansson, Functionalization of Poly(Ethylene Glycol) and Monomethoxy-Poly(Ethylene Glycol), vol.182, pp.1379-1384, 1981.

Y. Tominaga, High Ionic Conductivity of PEO/Sulfonamide Salt Hybrids, Solid State Ionics, vol.124, issue.3-4, 1999.

H. H. Bosshard, R. Mory, M. Schmid, and H. Zollinger, Eine Methode Zur Katalysierten Herstellung von Carbonsäure-Und Sulfosäure-Chloriden Mit Thionylchlorid, Helvetica Chimica Acta, vol.42, issue.5, 1959.

K. Ito, Y. Tominaga, and H. Ohno, Effect of Benzenesulfonate Group(s) and PEO Molecular Weight on the Bulk Ionic Conductivity, Electrochimica Acta, vol.42, issue.10, 1997.

Z. Dai, Y. Chen, M. Zhang, S. Li, T. Yang et al., Synthesis and Antifungal Activity of 1,2,3-Triazole Phenylhydrazone Derivatives. Organic and Biomolecular Chemistry, vol.13, pp.477-486, 2015.

H. T. Clarke, R. R. Read, and . O-tolunitrile-and-p-tolunitrile, Organic Syntheses, vol.4, 1925.

J. Clayden, N. Greeves, and S. G. Warren, Organic Chemistry

M. M. Obadia, B. P. Mudraboyina, I. Allaoua, A. Haddane, D. Montarnal et al., Accelerated Solvent-and Catalyst-Free Synthesis of 1,2,3-Triazolium-Based Poly(Ionic Liquid)s. Macromolecular Rapid Communications, vol.35, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00989335

D. C. Batesky, M. J. Goldfogel, and D. J. Weix, Removal of Triphenylphosphine Oxide by Precipitation with Zinc Chloride in Polar Solvents. The Journal of Organic Chemistry, vol.82, pp.9931-9936, 2017.

V. X. Truong, M. P. Ablett, H. T. Gilbert, J. Bowen, S. M. Richardson et al., Ethylene Glycol) Hydrogels Prepared by Copper-Free AzideAlkyne Click Reaction for Tissue Engineering, Situ-Forming Robust Chitosan-Poly, vol.2, 2014.

C. Shao, X. Wang, J. Xu, J. Zhao, Q. Zhang et al., Carboxylic Acid-Promoted Copper(I)-Catalyzed Azide?Alkyne Cycloaddition. The Journal of Organic Chemistry, vol.75, 2010.

. Mots-clés, Chimie macromoléculaire

, Macromolecular Chemistry, Polymer, Electrolyte