C. Adams and H. J. Van-vuuren, Effect of timing of diammonium phosphate addition to fermenting grape must on the production of ethyl carbamate in wine, Am. J. Enol. Vitic, vol.61, pp.125-129, 2010.

F. Aguilera, R. A. Peinado, C. Millán, J. M. Ortega, M. et al., Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains, Int. J. Food Microbiol, vol.110, pp.34-42, 2006.

H. Albergaria, A. , and N. , Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions, Appl. Microbiol, 2016.

. Biotechnol, , vol.100, pp.2035-2046

E. Albers, C. Larsson, G. Lidén, C. Niklasson, and L. Gustafsson, Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation, Appl. Environ. Microbiol, vol.62, pp.3187-95, 1996.

H. Alexandre and C. Charpentier, Biochemical aspects of stuck and sluggish fermentation in grape must, J. Ind. Microbiol. Biotechnol, vol.20, pp.20-27, 1998.

J. Alonso-del-real, M. Lairon-peris, E. Barrio, and A. Querol, Effect of temperature on the prevalence of Saccharomyces non cerevisiae species against a S. cerevisiae Wine strain in wine fermentation: Competition, physiological fitness, and influence in final wine composition, Front. Microbiol, vol.8, 2017.

I. Andorrà, M. Berradre, A. Mas, B. Esteve-zarzoso, and J. M. Guillamón, Effect of mixed culture fermentations on yeast populations and aroma profile, LWT -Food Sci. Technol, vol.49, pp.8-13, 2012.

I. Andorrà, M. Berradre, N. Rozès, A. Mas, J. M. Guillamon et al., Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations, Eur. Food Res. Technol, vol.231, pp.215-224, 2010.

A. A. Andreasen and T. J. Stier, Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium, J. Cell. Comp. Physiol, vol.41, pp.23-36, 1953.

C. Andréasson and P. O. Ljungdahl, The N-terminal regulatory domain of Stp1p is modular and, fused to an artificial transcription factor, confers full Ssy1p-Ptr3p-Ssy5p sensor control, 2004.

, Mol. Cell. Biol, vol.24, pp.7503-7513

N. Anfang, M. Brajkovich, and M. R. Goddard, Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in sauvignon blanc, Aust. J. Grape Wine Res, vol.15, pp.1-8, 2009.

R. Ansell, K. Granath, S. Hohmann, M. Thevelein, J. Adler et al., The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation, EMBO J, vol.16, pp.2179-2187, 1997.

M. Arias-gil, T. Garde-cerdán, and C. Ancín-azpilicueta, Influence of addition of ammonium and different amino acid concentrations on nitrogen metabolism in spontaneous must fermentation, Food Chem, vol.103, pp.1312-1318, 2007.

Y. Arikawa, K. Enomoto, H. Muratsubaki, and M. Okazaki, Soluble fumarate reductase isoenzymes from Saccharomyces cerevisiae are required for anaerobic growth, FEMS Microbiol, 1998.

. Lett, , vol.165, pp.111-116

M. Azzolini, E. Tosi, M. Lorenzini, F. Finato, and G. Zapparoli, Contribution to the aroma of white wines by controlled Torulaspora delbrueckii cultures in association with Saccharomyces cerevisiae, World J. Microbiol. Biotechnol, vol.31, pp.277-293, 2014.

L. E. Backhus, J. Derisi, P. O. Brown, and L. F. Bisson, Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions, FEMS Yeast Res, vol.1, pp.111-125, 2001.

B. M. Bakker, K. M. Overkamp, A. J. Van-maris, P. Kötter, M. A. Luttik et al., Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae, FEMS Microbiol. Rev, vol.25, pp.15-37, 2001.

B. Bandyopadhyay, A. E. Humphrey, and H. Taguchi, Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems, Biotechnol. Bioeng, vol.9, pp.533-544, 1967.

A. Barata, M. Malfeito-ferreira, and V. Loureiro, The microbial ecology of wine grape berries, Int. J. Food Microbiol, vol.153, pp.243-259, 2012.

C. Barbosa, V. Falco, A. Mendes-faia, and A. Mendes-ferreira, Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains, J. Biosci. Bioeng, vol.108, pp.99-104, 2009.

C. Barbosa, J. García-martínez, J. E. Pérez-ortín, and A. Mendes-ferreira, Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability, PLoS One, vol.10, 2015.

C. Barbosa, A. Mendes-faia, and A. Mendes-ferreira, The nitrogen source impacts major volatile compounds released by Saccharomyces cerevisiae during alcoholic fermentation, Int. J. Food Microbiol, vol.160, pp.87-93, 2012.

B. Beauvoit, M. Rigoulet, O. Bunoust, G. Raffard, P. Canioni et al., Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells, Eur. J. Biochem, vol.214, pp.163-172, 1993.

A. A. Bell, C. S. Ough, and W. M. Kliewer, Effects on must and wine composition, rates of fermentation, and wine quality of nitrogen fertilization of Vitis vinifera Var. Thompson Seedless Grapevines, Am. J. Enol. Vitic, vol.30, pp.124-129, 1979.

S. J. Bell and P. Henschke, Implications of nitrogen nutrition for grapes, fermentation and wine, Aust. J. Grape Wine Res, vol.11, pp.242-295, 2005.

S. J. Bell and A. Robson, Effect of nitrogen fertilization on growth, canopy density, and yield of Vitis vinifera L. cv. Cabernet Sauvignon, Am. J. Enol. Vitic, vol.50, pp.351-358, 1999.

G. Beltran, B. Esteve-zarzoso, N. Rozès, A. Mas, and J. M. Guillamon, Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption, J. Agric. Food Chem, vol.53, pp.996-1002, 2005.

G. Beltran, N. Rozès, A. Mas, and J. M. Guillamón, Effect of low-temperature fermentation on yeast nitrogen metabolism, World J. Microbiol. Biotechnol, vol.23, pp.809-815, 2006.

S. Belviso, L. Bardi, A. B. Bartolini, and M. Marzona, Lipid nutrition of Saccharomyces cerevisiae in winemaking, Can. J. Microbiol, vol.50, pp.669-674, 2004.

M. Bely, A. Rinaldi, and D. Dubourdieu, Influence of physiological state of inoculum on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation, J. Int. des Sci. la Vigne du Vin, vol.39, pp.191-197, 2003.

M. Bely, J. Sablayrolles, and P. Barre, Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions, J. Ferment. Bioeng, vol.70, pp.246-252, 1990.

M. Bely, P. Stoeckle, I. Masneuf-pomar??de, and D. Dubourdieu, Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation, Int. J. Food Microbiol, vol.122, pp.312-320, 2008.

R. M. Ben-hassan, A. E. Ghaly, and M. H. Mansour, A microcomputer-based oxygen measurement and control system for fermentation processes, Appl. Biochem. Biotechnol, vol.30, pp.247-263, 1991.

L. F. Bisson, Stuck and sluggish fermentations, Am. J. Enol. Vitic, vol.50, pp.107-119, 1999.

S. Björkqvist, R. Ansell, L. Adler, G. Lidén, and S. Bjo, Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae, vol.63, pp.128-132, 1997.

V. M. Boer, S. L. Tai, Z. Vuralhan, Y. Arifin, M. C. Walsh et al., Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures, FEMS Yeast Res, vol.7, pp.604-620, 2006.

K. Bogard and L. Bisson, Persistence of vegetal characters in winegrapes and wine. Pract. Winer. Vineyard Mag, 2006.

J. C. Bohlscheid, J. K. Fellman, X. D. Wang, D. Ansen, and C. G. Edwards, The influence of nitrogen and biotin interactions on the performance of Saccharomyces in alcoholic fermentations, J. Appl. Microbiol, vol.102, pp.390-400, 2007.

R. .. Boulton, V. .. Singleton, L. Bisson, and R. Kunkee, Principles and practices of winemaking, 1996.

Y. Bouzas-cid, E. Díaz-losada, E. Trigo-córdoba, E. Falqué, I. Orriols et al., Effects of irrigation over three years on the amino acid composition of Albariño (Vitis vinifera L) musts and wines in two different terroirs, Sci. Hortic. (Amsterdam), vol.227, pp.313-325, 2017.

W. L. Bredie, J. Liu, C. Dehlholm, and H. Heymann, Flash Profile Method, Descr. Anal. Sens. Eval, pp.513-533, 2018.

C. Brice, F. A. Cubillos, S. Dequin, C. Camarasa, and C. Martínez, Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen, PLoS One, vol.13, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01837841

C. Brice, I. Sanchez, C. Tesnière, and B. Blondin, Assessing the mechanisms responsible for differences between nitrogen requirements of Saccharomyces cerevisiae wine yeasts in alcoholic fermentation, Appl. Environ. Microbiol, vol.80, pp.1330-1339, 2014.

P. Bruinenberg, The NADP (H) redox couple in yeast metabolism, vol.52, pp.411-429, 1986.

P. M. Bruinenberg, J. P. Van-dijken, and W. A. Scheffers, An enzymic analysis of NADPH production and consumption in Candida utilis, J. Gen. Microbiol, vol.129, pp.965-971, 1983.

O. Bunoust, A. Devin, N. Averet, N. Camougrand, and M. Rigoulet, Competition of Electrons to Enter the Respiratory Chain: a new regulatory mechanism of oxidative metabolism in Saccharomyces cerevisiae, J. Biol. Chem, vol.280, pp.3407-3413, 2005.

C. E. Butzke, Survey of yeast assimilable nitrogen status in musts from California, Oregon, and Washington, Am. J. Enol. Vitic, vol.49, pp.220-224, 1998.

C. Camarasa, J. P. Grivet, and S. Dequin, Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways of succinate formation in Saccharomyces cerevisiae during anaerobic fermentation, Microbiology, vol.149, pp.2669-2678, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00088168

L. Canonico, F. Comitini, L. Oro, and M. Ciani, Sequential fermentation with selected immobilized non-Saccharomyces yeast for reduction of ethanol content in wine, 2016.

. Microbiol,

C. Canoura, M. T. Kelly, and H. Ojeda, Effect of irrigation and timing and type of nitrogen application on the biochemical composition of Vitis vinifera L. cv. Chardonnay and Syrah grapeberries, Food Chem, vol.241, pp.171-181, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01837828

V. Capozzi, C. Garofalo, M. A. Chiriatti, F. Grieco, and G. Spano, Microbial terroir and food innovation: The case of yeast biodiversity in wine, Microbiol. Res, vol.181, pp.75-83, 2015.

P. Carrasco, J. E. Pérez-ortín, D. Olmo, and M. , Arginase activity is a useful marker of nitrogen limitation during alcoholic fermentations, Syst. Appl. Microbiol, vol.26, pp.471-479, 2003.

F. M. Carrau, K. Medina, L. Farina, E. Boido, P. A. Henschke et al., Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: Effects of yeast assimilable nitrogen on two model strains, FEMS Yeast Res, vol.8, pp.1196-1207, 2008.

M. Casal, S. Paiva, O. Queirós, and I. Soares-silva, Transport of carboxylic acids in yeasts, FEMS Microbiol. Rev, vol.32, pp.974-94, 2008.

M. J. Cejudo-bastante, F. Sonni, F. Chinnici, A. Versari, M. S. Perez-coello et al., Fermentation of sulphite-free white musts with added lysozyme and oenological tannins: Nitrogen consumption and biogenic amines composition of final wines, LWT -Food Sci. Technol, vol.43, pp.1501-1507, 2010.

Y. Cheng, Z. Du, H. Zhu, X. Guo, and X. He, Protective effects of arginine on Saccharomyces cerevisiae against ethanol stress, Sci. Rep, vol.6, pp.1-12, 2016.

I. Chiciuc, V. Farines, M. Mietton-peuchot, and A. Devatine, Effect of wine properties and operating mode upon mass transfer in micro-oxygenation, Int. J. Food Eng, vol.6, p.9, 2010.

V. Choudhary and R. Schneiter, Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins, Proc. Natl. Acad. Sci, vol.109, pp.16882-16887, 2012.

M. Ciani, F. Comitini, I. Mannazzu, and P. Domizio, Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking, FEMS Yeast Res, vol.10, pp.123-133, 2010.

M. Ciani, P. Morales, F. Comitini, J. Tronchoni, L. Canonico et al., Nonconventional yeast species for lowering ethanol content of wines, Front. Microbiol, vol.7, pp.1-13, 2016.

J. M. Clemente-jimenez, L. Mingorance-cazorla, S. Martínez-rodríguez, F. J. Las-heras-vázquez, and F. Rodríguez-vico, Influence of sequential yeast mixtures on wine fermentation, 2005.

, J. Food Microbiol, vol.98, pp.301-308

M. C. Coleman, R. Fish, and D. E. Block, Temperature-dependent kinetic model for nitrogenlimited wine fermentations, Appl. Environ. Microbiol, vol.73, pp.5875-5884, 2007.

S. Colombié, S. Malherbe, and J. M. Sablayrolles, Modeling alcoholic fermentation in enological conditions: Feasibility and interest, Am. J. Enol. Vitic, vol.56, pp.238-245, 2005.

M. Combina, A. El??a, L. Mercado, C. Catania, A. Ganga et al., Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina, Int. J. Food Microbiol, vol.99, pp.237-243, 2005.

J. M. Conner, L. Birkmyre, A. Paterson, and J. R. Piggott, Headspace concentrations of ethyl esters at different alcoholic strengths, J. Sci. Food Agric, vol.77, pp.121-126, 1998.

W. J. Conradie, Timing of nitrogen fertilisation and the effect of poultry manure on the performance of grapevines on sandy soil. Soil analysis , grape yield and vegetative growth, S. Afr. J. Enol. Vitic, vol.22, pp.53-59, 2001.

A. Contreras, C. Curtin, and C. Varela, Yeast population dynamics reveal a potential collaboration between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation, Appl. Microbiol. Biotechnol, vol.99, pp.1885-1895, 2014.

A. Contreras, C. Hidalgo, P. A. Henschke, P. J. Chambers, C. Curtin et al., Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine, Appl. Environ. Microbiol, vol.80, pp.1670-1678, 2014.

A. Contreras, C. Hidalgo, S. Schmidt, P. A. Henschke, C. Curtin et al., The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content, Int. J. Food Microbiol, vol.205, pp.7-15, 2015.

M. K. Conway, D. Grunwald, and W. Heideman, Glucose, nitrogen, and phosphate repletion in Saccharomyces cerevisiae : Common transcriptional responses to different nutrient signals. G3: Genes|Genomes|Genetics 2, pp.1003-1017, 2012.

T. G. Cooper, Nitrogen metabolism in Saccharomyces cerevisiae, 1982.

G. Cordero-bueso, B. Esteve-zarzoso, J. M. Cabellos, M. Gil-díaz, and T. Arroyo, Biotechnological potential of non-Saccharomyces yeasts isolated during spontaneous fermentations of Malvar (Vitis vinifera cv, L.). Eur. Food Res. Technol, vol.236, pp.193-207, 2013.

G. Cordero-bueso, N. Mangieri, D. Maghradze, R. Foschino, F. Valdetara et al., Wild grape-associated yeasts as promising biocontrol agents against Vitis vinifera fungal pathogens, Front. Microbiol, vol.8, 2017.

R. Costenoble, H. Valadi, L. Gustafsson, C. Niklasson, and C. J. Franzén, Microaerobic glycerol formation in Saccharomyces cerevisiae, Yeast, vol.16, pp.1483-1495, 2000.

H. G. Crabtree, Observations on the carbohydrate metabolism of tumours, Biochem. J, vol.23, pp.536-581, 1929.

L. Crépin, T. Nidelet, I. Sanchez, S. Dequin, and C. Camarasa, Sequential use of nitrogen compounds by Saccharomyces cerevisiae during wine fermentation: A model based on kinetic and regulation characteristics of nitrogen permeases, Appl. Environ. Microbiol, vol.78, pp.8102-8111, 2012.

L. Crépin, I. Sanchez, T. Nidelet, S. Dequin, and C. Camarasa, Efficient ammonium uptake and mobilization of vacuolar arginine by Saccharomyces cerevisiae wine strains during wine fermentation, Microb. Cell Fact, vol.13, pp.1-13, 2014.

L. Crépin, N. M. Truong, A. Bloem, I. Sanchez, S. Dequin et al., Management of multiple nitrogen sources during wine fermentation by S. cerevisiae, Appl. Environ. Microbiol, vol.83, 2017.

J. E. Cronan and J. C. Wallace, The gene encoding the biotin-apoprotein ligase of Saccharomyces cerevisiae, FEMS Microbiol. Lett, vol.130, issue.95, p.210, 1995.

F. A. Cubillos, C. Brice, J. Molinet, S. Tisné, V. Abarca et al., Identification of nitrogen consumption genetic variants in yeast through QTL mapping and bulk segregant RNASeq analyses. G3 (Bethesda), vol.7, pp.1693-1705, 2017.

T. S. Cunningham, V. V. Svetlov, R. Rai, W. Smart, and T. G. Cooper, Gln3p Is capable of binding to UASNTR elements and activating transcription in Saccharomyces cerevisiae, J. Bacteriol, vol.178, pp.3470-3479, 1996.

S. Dashko, N. Zhou, C. Compagno, and J. Pi??kur, Why, when, and how did yeast evolve alcoholic fermentation?, FEMS Yeast Res, vol.14, pp.826-832, 2014.

G. Daum, N. D. Lees, M. Bard, and R. Dickson, Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae, Yeast, vol.14, pp.1471-1510, 1998.

B. S. Davies, R. , and J. , A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae, Genetics, vol.174, pp.191-201, 2006.

R. C. Deed, N. K. Deed, and R. C. Gardner, Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation, Antonie Van Leeuwenhoek, vol.107, pp.1029-1048, 2015.

S. Dhingra and R. A. Cramer, Regulation of sterol biosynthesis in the human fungal pathogen Aspergillus fumigatus: Opportunities for therapeutic development, Front. Microbiol, vol.8, pp.1-14, 2017.

J. R. Dickinson, S. J. Harrison, J. A. Dickinson, and M. J. Hewlins, An investigation of the metabolism of isoleucine to active amyl alcohol in Saccharomyces cerevisiae, J. Biol. Chem, vol.275, pp.10937-10942, 2000.

J. R. Dickinson, M. M. Lanterman, D. J. Danner, B. M. Pearson, P. Sanz et al., , 1997.

, A C13 nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae, J. Biol. Chem, vol.272, pp.26871-26878

J. R. Dickinson, L. E. Salgado, and M. J. Hewlins, The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae, J. Biol. Chem, vol.278, pp.8028-8034, 2003.

H. Djelal, F. Larher, G. Martin, A. , and A. , Continuous culture for the bioproduction of glycerol and ethanol by Hansenula anomala growing under salt stress conditions, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00868964

. Microbiol, , vol.62, pp.49-54

A. Dmochowska, D. Dignard, R. Maleszka, and D. Y. Thomas, Structure and transcriptional control of the Saccharomyces cerevisiae POX1 gene encoding acylcoenzyme A oxidase, Gene, vol.88, pp.247-252, 1990.

V. Dommes, C. Baumgart, and W. H. Kunau, Degradation of unsaturated fatty acids in peroxisomes. Existence of a 2,4-dienoyl-CoA reductase pathway, J. Biol. Chem, vol.256, pp.8259-8262, 1981.

C. Duc, M. Pradal, I. Sanchez, J. Noble, C. Tesnière et al., A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation, PLoS One, vol.12, pp.1-22, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608237

E. Duchêne and C. Schneider, Grapevine and climatic changes: a glance at the situation in Alsace, Ital. J. Agron, vol.3, pp.77-78, 2008.

S. Dupont, G. Lemetais, T. Ferreira, P. Cayot, P. Gervais et al., Ergosterol biosynthesis: a fungal pathway for life on land?, Soc. Study Evol, vol.66, pp.2961-2968, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00698895

M. Eder, I. Sanchez, C. Brice, C. Camarasa, J. L. Legras et al., QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation, BMC Genomics, vol.19, pp.1-19, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01837846

W. Einerhand, T. M. Voorn-brouwer, R. Erdmann, W. H. Kunau, and H. F. Tabak, , 1991.

, Regulation of transcription of the gene coding for peroxisomal 3-oxoacyl-CoA thiolase of Saccharomyces cerevisiae, Eur. J. Biochem, vol.200, pp.113-122

V. Englezos, L. Cocolin, K. Rantsiou, A. Ortiz-julien, A. Bloem et al., Specific phenotypic traits of Starmerella bacillaris related to nitrogen source consumption and central carbon metabolite production during wine fermentation, Appl. Environ. Microbiol, vol.84, pp.1-16, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01918072

V. Englezos, F. Cravero, F. Torchio, K. Rantsiou, A. Ortiz-julien et al., Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae, Food Microbiol, vol.69, pp.179-188, 2018.

V. Englezos, S. Giacosa, K. Rantsiou, L. Rolle, and L. Cocolin, Starmerella bacillaris in winemaking: opportunities and risks, Curr. Opin. Food Sci, vol.17, pp.30-35, 2017.

V. Englezos, K. Rantsiou, F. Cravero, F. Torchio, A. Ortiz-julien et al., Starmerella bacillaris and Saccharomyces cerevisiae mixed fermentations to reduce ethanol content in wine, Appl. Microbiol. Biotechnol, vol.100, pp.5515-5526, 2016.

V. Englezos, K. Rantsiou, F. Cravero, F. Torchio, M. Pollon et al., Volatile profile of white wines fermented with sequential inoculation of Starmerella bacillaris and Saccharomyces cerevisiae, Food Chem, vol.257, pp.350-360, 2018.

V. Englezos, K. Rantsiou, F. Torchio, L. Rolle, V. Gerbi et al., Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations, Int. J. Food Microbiol, vol.199, pp.33-40, 2015.

V. Englezos, F. Torchio, F. Cravero, F. Marengo, S. Giacosa et al., Aroma profile and composition of Barbera wines obtained by mixed fermentations of Starmerella bacillaris (synonym Candida zemplinina) and Saccharomyces cerevisiae, LWT -Food Sci. Technol, vol.73, pp.567-575, 2016.

K. Enomoto, Y. Arikawa, and H. Muratsubaki, Physiological role of soluble fumarate reductase in redox balancing during anaerobiosis in Saccharomyces cerevisiae, FEMS Microbiol, 2002.

. Lett, , vol.215, pp.103-108

D. J. Erasmus, M. Cliff, and H. J. Van-vuuren, Impact of yeast strain on the production of acetic acid, glycerol, and the sensory attributes of icewine, Am. J. Enol. Vitic, vol.55, pp.371-378, 2004.

D. J. Erasmus, G. K. Van-der-merwe, and H. J. Van-vuuren, Genome-wide expression analyses: Metabolic adaptation of Saccharomyces cerevisiae to high sugar stress, FEMS Yeast Res, vol.3, pp.375-399, 2003.

P. Eriksson, L. Andre, R. Ansell, A. Blomberg, and L. Alder, Cloning and characterization of GPD2, a second gene encoding i-glycerol 3-phospahte dehydrogenase (NAD+) in Saccharomyces cerevisiae, Mol. Microbiol, vol.17, pp.95-107, 1995.

R. Escribano-viana, J. Portu, P. Garijo, A. R. Gutiérrez, P. Santamaría et al., , 2018.

, Evaluating a preventive biological control agent applied on grapevines against Botrytis cinerea and its influence on winemaking, J. Sci. Food Agric

R. Escribano, L. González-arenzana, J. Portu, P. Garijo, I. López-alfaro et al., Wine aromatic compound production and fermentative behaviour within different nonSaccharomyces species and clones, J. Appl. Microbiol, 2018.

A. Escudero, E. Campo, L. Fariña, J. Cacho, and V. Ferreira, Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines, J. Agric. Food Chem, vol.55, pp.4501-4510, 2007.

S. Fairbairn, A. Mckinnon, H. T. Musarurwa, A. C. Ferreira, and F. F. Bauer, The impact of single amino acids on growth and volatile aroma production by Saccharomyces cerevisiae strains, Front. Microbiol, vol.8, pp.1-12, 2017.

F. Faria-oliveira, S. Puga, and C. Ferreira, Yeast : World ' s Finest Chef. Food Ind, p.23, 2013.

M. Fayyad-kazan, A. Feller, E. Bodo, M. Boeckstaens, A. M. Marini et al., Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs, Mol. Microbiol, vol.99, pp.360-379, 2016.

W. J. Fernandes-lemos-junior, B. Bovo, C. Nadai, G. Crosato, M. Carlot et al., , 2016.

, Biocontrol ability and action mechanism of Starmerella bacillaris (synonym Candida zemplinina) isolated from wine musts against gray mold disease agent botrytis cinerea on grape and their effects on alcoholic fermentation, Front. Microbiol, vol.7, pp.1-12

L. Ferraro, F. Fatichenti, and M. Ciani, Pilot scale vinification process using immobilized Candida stellata cells and Saccharomyces cerevisiae, Process Biochem, vol.35, pp.1125-1129, 2000.

J. Ferreira, M. Du-toit, D. Toit, and W. J. , The effects of copper and high sugar concentrations on growth, fermentation efficiency and volatile acidity production of different commercial wine yeast strains, Aust. J. Grape Wine Res, vol.12, pp.50-56, 2006.

U. Fischer and A. Noble, The effect of ethanol, catechin concentration, and pH on sourness and bitterness of wine, Am. J. Enol. Vitic, vol.45, pp.6-10, 1994.

C. Fornairon-bonnefond, E. Aguera, C. Deytieux, J. Sablayrolles, and J. Salmon, Impact of oxygen addition during enological fermentation on sterol contents in yeast lees and their reactivity towards oxygen, J. Biosci. Bioeng, vol.95, pp.496-503, 2003.

J. F. Gallander and A. C. Peng, Lipid and fatty acid compositions of different grape types, Am, 1979.

, J. Enol. Vitic, vol.31, pp.24-27

A. Gamero, R. Quintilla, M. Groenewald, W. Alkema, T. Boekhout et al., Highthroughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation, Food Microbiol, vol.60, pp.147-159, 2016.

F. Garcia-ochoa and E. Gomez, Prediction of gas-liquid mass transfer coefficient in sparged stirred tank bioreactors, Biotechnol. Bioeng, vol.92, pp.761-772, 2005.

F. Garcia-ochoa and E. Gomez, Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview, Biotechnol. Adv, vol.27, pp.153-176, 2009.

F. Garcia-ochoa, E. Gomez, V. E. Santos, and J. C. Merchuk, Oxygen uptake rate in microbial processes: An overview, Biochem. Eng. J, vol.49, pp.289-307, 2010.

T. Garde-cerdán and C. Ancín-azpilicueta, Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation, LWT -Food Sci. Technol, vol.41, pp.501-510, 2008.

T. Garde-cerdan, C. Lorenzo, J. F. Lara, F. Pardo, C. Ancin-azpilicueta et al., Study of the evolution of nitrogen compounds during grape ripening. Application to differentiate grape varieties and cultivated systems, J. Agric. Food Chem, vol.57, pp.2410-2419, 2009.

R. Gawel, S. Van-sluyter, and E. J. Waters, The effects of ethanol and glycerol on the body and other sensory characteristics of Riesling wines, Aust. J. Grape Wine Res, vol.13, pp.38-45, 2007.

B. V. Geisbrecht, D. Zhu, K. Schulz, K. Nau, J. C. Morrell et al., Molecular characterization of Saccharomyces cerevisiae delta 3, delta 2, Enoyl-CoA Isomerase, vol.273, pp.33184-33191, 1998.

I. Georis, A. Feller, F. Vierendeels, and E. Dubois, The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation, Mol. Cell. Biol, vol.29, pp.3803-3815, 2009.

J. Gilbert, D. Van-der-lelie, and I. Zarraonaindia, Microbial terroir for wine grapes, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.5-6, 2014.

M. Gobbi, L. De-vero, L. Solieri, F. Comitini, L. Oro et al., Fermentative aptitude of non-Saccharomyces wine yeast for reduction in the ethanol content in wine, Eur. Food Res, 2014.

. Technol, , vol.239, pp.41-48

A. Gobert, R. Tourdot-maréchal, C. Morge, C. Sparrow, Y. Liu et al., , 2017.

, Non-Saccharomyces yeasts nitrogen source preferences: Impact on sequential fermentation and wine volatile compounds profile, Front. Microbiol, vol.8, p.2175

A. Gobert, R. Tourdot-maréchal, C. Sparrow, C. Morge, A. et al., Influence of nitrogen status in wine alcoholic fermentation, Food Microbiol, vol.83, pp.71-85, 2019.

A. Goelzer, B. Charnomordic, S. Colombié, V. Fromion, and J. M. Sablayrolles, Simulation and optimization software for alcoholic fermentation in winemaking conditions, Food Control, vol.20, pp.635-642, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00858545

A. Goffeau, B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon et al., Life with 6000 Genes, vol.274, pp.546-567, 1996.

P. R. Gogate and B. Pandit, Survey of measurement techniques for gas-liquid mass transfer coefficient in bioreactors, Biochem. Eng. J, vol.4, pp.33-42, 1999.

M. C. Goldner, M. C. Zamora, P. D. Lira, H. Gianninoto, and A. Bandoni, Effect of ethanol level in the perception of aroma attributes and the detection of volatile compounds in red wine, vol.24, pp.243-257, 2009.

A. K. Gombert and M. Moreira, Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae, J. Bacteriol, vol.183, pp.1441-1451, 2001.

B. González, J. Vázquez, M. Á. Morcillo-parra, A. Mas, M. J. Torija et al., The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability, Food Microbiol, vol.74, pp.64-74, 2018.

J. F. Görgens, W. H. Van-zyl, J. H. Knoetze, and B. Hahn-hägerdal, Amino acid supplementation improves heterologous protein production by Saccharomyces cerevisiae in defined medium, Appl. Microbiol. Biotechnol, vol.67, pp.684-691, 2005.

M. Grenson, Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae, Eur. J. Biochem, vol.133, pp.135-139, 1983.

M. Grenson, Amino acid transporters in yeast: Structure, function and regulation, New Compr. Biochem. Mol. Asp. Transp. proteins, vol.21, pp.219-245, 1992.

M. Grenson, E. Dubois, M. Piotrowska, R. Drillien, A. et al., Ammonia assimilation in Saccharomyces cerevisiae as mediated by the two glutamate dehydrogenases, Mol Gen Genet, vol.128, pp.73-85, 1974.

A. Gupta and G. Rao, A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor, Biotechnol. Bioeng, vol.84, pp.351-358, 2003.

A. Gurvitz, H. Rottensteiner, S. H. Kilpeläinen, A. Hartig, J. K. Hiltunen et al., , 1997.

, The Saccharomyces cerevisiae peroxisomal 2, 4-Dienoyl-CoA reductase is encoded by the oleate-inducible gene SPS19, J. Biol. Chem, vol.272, pp.22140-22147

G. Gutiérrez-gamboa, M. Carrasco-quiroz, A. M. Martínez-gil, E. P. Pérez-Álvarez, T. Garde-cerdán et al., Grape and wine amino acid composition from Carignan noir grapevines growing under rainfed conditions in the Maule Valley, Chile: Effects of location and rootstock, Food Res. Int, vol.105, pp.344-352, 2017.

G. Gutiérrez-gamboa, T. Garde-cerdán, A. Gonzalo-diago, Y. Moreno-simunovic, and A. M. Martínez-gil, Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard, LWT -Food Sci. Technol, vol.75, pp.147-154, 2017.

A. Gutiérrez, G. Beltran, J. Warringer, and J. M. Guillamón, Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains, PLoS One, vol.8, pp.1-13, 2013.

A. Gutiérrez, R. Chiva, G. Beltran, A. Mas, and J. M. Guillamon, Biomarkers for detecting nitrogen deficiency during alcoholic fermentation in different commercial wine yeast strains, Food Microbiol, vol.34, pp.227-237, 2013.

K. D. Hannam, G. H. Neilsen, D. Neilsen, A. J. Midwood, P. Millard et al., Amino acid composition of grape (Vitis vinifera L.) juice in response to applications of urea to the soil or foliage, Am. J. Enol. Vitic, vol.67, pp.47-55, 2016.

K. D. Hannam, G. H. Neilsen, D. Neilsen, W. S. Rabie, A. J. Midwood et al., Lateseason foliar urea applications can increase berry yeast-assimilable nitrogen in winegrapes (Vitis vinifera L.), Am. J. Enol. Vitic, vol.65, pp.89-95, 2014.

L. A. Hazelwood, J. M. Daran, A. J. Van-maris, J. T. Pronk, and J. R. Dickinson, The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism 74, Appl. Environ. Microbiol, vol.8, p.3920, 2008.

C. Hein, J. Y. Springael, C. Volland, R. Haguenauer-tsapis, A. et al., NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase, Mol. Microbiol, vol.18, pp.77-87, 1995.

P. Henschke, J. , and V. , Yeasts-metabolism of nitrogen compounds in Wine Microbiology and, Biotechnology. Aust. Wine Res. Inst, pp.77-164, 1993.

P. Herbert, M. J. Cabrita, N. Ratola, O. Laureano, and A. Alves, Free amino acids and biogenic amines in wines and musts from the Alentejo region. Evolution of amines during alcoholic fermentation and relationship with variety, sub-region and vintage, J. Food Eng, vol.66, pp.315-322, 2005.

P. Hernandez-orte, M. Bely, J. Cacho, and V. Ferreira, Impact of ammonium additions on volatile acidity, ethanol, and aromatic compound production by different Saccharomyces cerevisiae strains during fermentation in controlled synthetic media, Aust. J. Grape Wine Res, vol.12, pp.150-160, 2006.

P. Hernández-orte, M. J. Ibarz, J. Cacho, and V. Ferreira, Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine, Food Chem, vol.89, pp.163-174, 2004.

P. Hernández-orte, M. J. Ibarz, J. Cacho, and V. Ferreira, Addition of amino acids to grape juice of the Merlot variety: Effect on amino acid uptake and aroma generation during alcoholic fermentation, Food Chem, vol.98, pp.300-310, 2006.

S. Hohmann, Characterization of PDC6, a third structural gene for pyruvate decarboxylase in S accharomyces cerevisiae, J Bacteriol, vol.173, pp.7963-7969, 1991.

S. Hohmann and P. A. Meacock, Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation, Biochim. Biophys. ActaProtein Struct. Mol. Enzymol, vol.1385, pp.201-219, 1998.

J. Horák, Yeast nutrient transporters, Biochim. Biophys. Acta -Rev. Biomembr, vol.1331, pp.41-79, 1997.

Z. Hu, B. He, L. Ma, Y. Sun, Y. Niu et al., Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae, Indian J. Microbiol, vol.57, pp.270-277, 2017.

J. C. Igual, E. Matallana, C. Gonzalez-bosch, L. Franco, and J. E. Pérez-ortin, A new glucoserepressible gene identified from the analysis of chromatin structure in deletion mutants of yeast SUC2 locus, Yeast, vol.7, pp.379-389, 1991.

W. Ingledew, C. Magnus, and F. Sosulski, Influence of oxygen on proline utilisation during the wine fermentation, Am. J. Enol. Vitic, vol.38, pp.246-248, 1987.

. Inserm, Expertise collective : Alcool effets sur la santé, pp.1-358, 2001.

M. Jeppsson, B. Johansson, B. Hahn-hägerdal, and M. F. Gorwa-grauslund, Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose, Society, vol.68, pp.1604-1609, 2002.

E. Jiménez-martí, A. Aranda, A. Mendes-ferreira, A. Mendes-faia, and M. L. Olmo, The nature of the nitrogen source added to nitrogen depleted vinifications conducted by a Saccharomyces cerevisiae strain in synthetic must affects gene expression and the levels of several volatile compounds, Int. J. Gen. Mol. Microbiol, vol.92, pp.61-75, 2007.

V. Jiranek, P. Langridge, and P. A. Henschke, Amino acid and ammonium utilization by Saccharomyces cerevisiae wine yeasts from a chemically defined medium, Am. J. Enol. Vitic, vol.46, pp.75-83, 1995.

N. P. Jolly, C. Varela, and I. S. Pretorius, Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered, FEMS Yeast Res, vol.14, pp.215-237, 2014.

B. M. Jones, J. S. Pierce, and A. G. Son, Absorption of amnio acids from wort by yeasts, J. Inst. Brew, vol.70, pp.307-315, 1964.

G. V. Jones, M. A. White, O. R. Cooper, and K. Storchmann, Climate change and global wine quality, Clim. Change, vol.73, pp.319-343, 2005.

G. E. Joosten, J. G. Schilder, and J. J. Janssen, The influence of suspended solid material on the gas-liquid mass transfer in stirred gas-liquid contactors, Chem. Eng. Sci, vol.32, pp.87017-87023, 1977.

P. Junquera, J. R. Lissarrague, L. Jiménez, R. Linares, and P. Baeza, Long-term effects of different irrigation strategies on yield components, vine vigour, and grape composition in cv, 2012.

. Cabernet-sauvignon, Vitis vinifera L.). Irrig. Sci, vol.30, pp.351-361

K. Kapsopoulou, A. Mourtzini, M. Anthoulas, and E. Nerantzis, Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae, World J. Microbiol. Biotechnol, vol.23, pp.735-739, 2007.

M. Keller, R. M. Pool, and T. Henick-kling, Excessive nitrogen supply and shoot trimming can impair colour development in Pinot Noir grapes and wine, Aust. J. Grape Wine Res, vol.5, pp.45-55, 1999.

V. Kemsawasd, T. Viana, Y. Ardö, A. , and N. , Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation, 2015.

, Appl. Microbiol. Biotechnol, vol.99, pp.10191-10207

K. Kevvai, M. L. Kütt, I. Nisamedtinov, and T. Paalme, Simultaneous utilization of ammonia, free amino acids and peptides during fermentative growth of Saccharomyces cerevisiae, J. Inst. Brew, vol.122, pp.110-115, 2016.

E. S. King and H. Heymann, The effect of reduced alcohol on the sensory profiles and consumer preferences of white wine, J. Sens. Stud, vol.29, pp.33-42, 2014.

E. S. King, P. Osidacz, C. Curtin, S. E. Bastian, and I. L. Francis, Assessing desirable levels of sensory properties in Sauvignon Blanc wines -consumer preferences and contribution of key aroma compounds, Aust. J. Grape Wine Res, vol.17, pp.169-180, 2011.

W. M. Kliewer, Influence of temperature, solar radiation and nitrogen on coloration and composition of Emperor grapes, Am. J. Enol. Vitic, vol.28, pp.96-103, 1977.

D. Kontkanen, D. L. Inglis, G. J. Pickering, R. , and A. , Effect of yeast inoculation rate, acclimatization, and nutrient addition on icewine fermentation, Am. J. Enol. Vitic, vol.55, pp.363-370, 2004.

A. Kotyk, Enhancement of synthesis and activity of yeast transport proteins by metabolic substrates, Folia Microbiol. Off. J. Inst. Microbiol. Acad. Sci. Czech Repub, vol.39, pp.261-264, 1994.

W. H. Kunau, V. Dommes, and H. Schulz, B-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: A century of continued progress, Prog. Lipid Res, vol.34, pp.267-342, 1995.

M. G. Lambrechts and I. S. Pretorius, Yeast and its importance to wine aroma -A review, South African J. Enol. Vitic, vol.21, pp.97-129, 2000.

P. J. Large, Degradation of organic nitrogen compounds by yeasts, Yeast, vol.2, pp.1-34, 1986.

K. Larsson, R. Ansell, P. Eriksson, and L. Adler, A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae, 1993.

, Mol. Microbiol, vol.10, pp.1101-1111

B. Lasa, S. Menendez, K. Sagastizabal, M. E. Cervantes, I. Irigoyen et al., Foliar application of urea to "Sauvignon Blanc" and "Merlot" vines: Doses and time of application, Plant Growth Regul, vol.67, pp.73-81, 2012.

K. A. Lattey, B. R. Bramley, and I. L. Francis, Consumer acceptability, sensory properties and expert quality judgements of Australian Cabernet Sauvignon and Shiraz wines, Aust. J. Grape Wine Res, vol.16, pp.189-202, 2010.

E. Lauwers, A. , and B. , Association of yeast transporters with detergent-resistant membranes correlates with their cell-surface location, Traffic, vol.7, pp.1045-1059, 2006.

L. Liguori, P. Russo, D. Albanese, D. Matteo, and M. , Evolution of quality parameters during red wine dealcoholization by osmotic distillation, Food Chem, vol.140, pp.68-75, 2013.

V. Linek, V. Vacek, and P. Bene?, A critical review and experimental verification of the correct use of the dynamic method for the determination of oxygen transfer in aerated agitated vessels to water, electrolyte solutions and viscous liquids, Chem. Eng. J, vol.34, pp.85003-85010, 1987.

A. W. Linsenmeier, U. Loos, and O. Löhnertz, Must composition and nitrogen uptake in a long-term trial as affected by timing of nitrogen fertilization in a cool-climate riesling vineyard, Am. J. Enol. Vitic, vol.59, pp.255-264, 2008.

P. T. Liu, L. Lu, C. Q. Duan, Y. , and G. L. , The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation, LWT -Food Sci. Technol, vol.71, pp.356-363, 2016.

P. Liu, Y. Wang, D. Ye, L. Duan, C. Duan et al., Effect of the addition of branchedchain amino acids to non-limited nitrogen synthetic grape must on volatile compounds and global gene expression during alcoholic fermentation, Aust. J. Grape Wine Res, vol.24, pp.197-205, 2017.

Y. Liu, S. Rousseaux, R. Tourdot-maréchal, M. Sadoudi, R. Gougeon et al., Critical reviews in food science and nutrition wine microbiome, a dynamic world of microbial interactions, pp.37-41, 2015.

P. O. Ljungdahl, Amino-acid-induced signalling via the SPS-sensing pathway in yeast, Biochem. Soc. Trans, vol.37, pp.242-249, 2009.

P. O. Ljungdahl and B. Daignan-fornier, Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae, Genetics, vol.190, pp.885-929, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00703026

J. Lleixà, V. Martín, F. Giorello, M. C. Portillo, F. Carrau et al., Analysis of the NCR Mechanisms in Hanseniaspora vineae and Saccharomyces cerevisiae During Winemaking, Front. Genet, vol.9, pp.1-9, 2019.

M. A. Luttik, K. M. Overkamp, P. Kötter, S. De-vries, J. P. Van-dijken et al., The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH, J. Biol. Chem, vol.273, pp.24529-24534, 1998.

B. Magasanik and C. A. Kaiser, Nitrogen regulation in Saccharomyces cerevisiae, Gene, vol.290, pp.1-18, 2002.

I. Magyar, D. Nyitrai-sárdy, A. Leskó, A. Pomázi, and M. Kállay, Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts, Int. J. Food Microbiol, vol.178, pp.1-6, 2014.

I. Magyar and T. Tóth, Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae, Food Microbiol, vol.28, pp.94-100, 2011.

P. Maisonnave, I. Sanchez, V. Moine, S. Dequin, and V. Galeote, Stuck fermentation: Development of a synthetic stuck wine and study of a restart procedure, Int. J. Food Microbiol, vol.163, pp.239-247, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01506241

K. Malinska, J. Malinsky, M. Opekarova, and W. Tanner, Visualization of protein compartmentation within the plasma membrane of living yeast cells, Mol. Biol. Cell, vol.15, pp.3751-3737, 2003.

C. Manginot, J. L. Roustan, and J. M. Sablayrolles, Nitrogen demand of different yeast strains during alcoholic fermentation. Importance of the stationary phase, Enzyme Microb. Technol, vol.23, pp.511-517, 1998.

A. M. Marini, S. Soussi-boudekou, S. Vissers, A. , and B. , A family of ammonium transporters in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.17, pp.4282-93, 1997.

S. Martin and R. M. Pangborn, Taste interaction of ethyl alcohol with sweet, salty, sour and bitter compounds, J. Sci. Food Agric, vol.21, pp.653-655, 1970.

R. Martínez-moreno, P. Morales, R. Gonzalez, A. Mas, and G. Beltran, Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source, FEMS Yeast Res, vol.12, pp.477-485, 2012.

R. Martínez-moreno, M. Quirós, P. Morales, and R. Gonzalez, New insights into the advantages of ammonium as a winemaking nutrient, Int. J. Food Microbiol, vol.177, pp.128-135, 2014.

C. Martínez, A. Contreras, O. Aguilera, V. García, A. Ganga et al., The ICY1 gene from Saccharomyces cerevisiae affects nitrogen consumption during alcoholic fermentation, Electron. J. Biotechnol, vol.17, pp.150-155, 2014.

I. Masneuf-pomarede, E. Juquin, C. Miot-sertier, P. Renault, Y. Laizet et al., The yeast Starmerella bacillaris (synonym Candida zemplinina) shows high genetic diversity in winemaking environments, FEMS Yeast Res, vol.15, pp.1-11, 2015.

A. Massot, M. Mietton-peuchot, V. Peuchot, and V. Milisic, Nanofiltration and reverse osmosis in winemaking, Desalination, vol.231, pp.283-289, 2008.

Y. P. Maturano, M. Assof, M. P. Fabani, M. C. Nally, V. Jofré et al., Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition, Antonie van Leeuwenhoek, 2015.

. Microbiol, , vol.108, pp.1239-1256

K. Medina, E. Boido, E. Dellacassa, and F. Carrau, Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation, Int. J. Food Microbiol, vol.157, pp.245-250, 2012.

K. Medina, E. Boido, L. Fariña, O. Gioia, M. E. Gomez et al., Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae, Food Chem, vol.141, pp.2513-2521, 2013.

A. Mendes-ferreira, M. Del-olmo, J. García-martínez, E. Jiménez-martí, A. Mendes-faia et al., Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation, Appl. Environ. Microbiol, vol.73, pp.3049-3060, 2007.

A. Mendes-ferreira, A. Mendes-faia, and C. Leão, Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry, J. Appl. Microbiol, vol.97, pp.540-545, 2004.

K. Mengel, Alternative or complementary role of foliar supply in mineral nutrition, Acta Hortic, vol.594, pp.33-47, 2002.

M. V. Mestre-furlani, Y. P. Maturano, M. Combina, L. A. Mercado, M. E. Toro et al., Selection of non-Saccharomyces yeasts to be used in grape musts with high alcoholic potential: A strategy to obtain wines with reduced ethanol content, FEMS Yeast Res, vol.17, pp.1-10, 2017.

S. Michnick, J. Roustan, F. Remize, and P. Barre, Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase, vol.793, pp.783-793, 1997.

A. C. Miller, S. R. Wolff, L. F. Bisson, and S. E. Ebeler, Yeast strain and nitrogen supplementation: Dynamics of volatile ester production in chardonnay juice fermentations, Am. J. Enol. Vitic, vol.58, pp.470-483, 2007.

K. I. Minard, G. T. Jennings, T. M. Loftus, D. Xuan, and L. Mcalister-henn, Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae, J. Biol. Chem, vol.273, pp.31486-31493, 1998.

M. De-orduña and R. , Climate change associated effects on grape and wine quality and production, Food Res. Int, vol.43, pp.1844-1855, 2010.

A. P. Mitchell, The GLN1 locus of Saccharomyces cerevisiae encodes glutamine synthetase, Genetics, vol.111, pp.243-258, 1985.

M. Miyachi, A. Iguchi, S. Uchida, and K. Koide, Effect of solid particles in liquid-phase on liquid-side mass transfer coefficient, Can. J. Chem. Eng, vol.59, pp.640-641, 1981.

D. Mojzita and S. Hohmann, Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae, Mol. Genet. Genomics, vol.276, pp.147-161, 2006.

P. Morales, V. Rojas, M. Quirós, and R. Gonzalez, The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture, Appl. Microbiol. Biotechnol, vol.99, pp.3993-4003, 2015.

R. Mortimer and M. Polsinelli, On the origins of wine yeast, Res. Microbiol, vol.150, pp.80036-80045, 1999.

J. R. Mouret, M. Perez, M. Angenieux, P. Nicolle, V. Farines et al., Onlinebased kinetic analysis of higher alcohol and ester synthesis during winemaking fermentations, Food Bioprocess Technol, vol.7, pp.1235-1245, 2014.

, Climate Change : Vital Signs of the Planet : Global Temperature, NASA, 2015.

P. Niederberger, G. Miozzari, and R. Hütter, Biological role of the general control of amino acid biosynthesis in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.1, pp.584-593, 1981.

T. L. Nissen, U. Schulze, J. Nielsen, and J. Villadsen, Flux distribution in anaerobic, glucoselimited continuous cultures of Saccharomyces cerevisiae, Microbiology, vol.143, pp.203-218, 1997.

J. Nosek and H. Fukuhara, NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts, J. Bacteriol, vol.176, pp.5622-5630, 1994.

O. Noti, E. Vaudano, M. G. Giuffrida, C. Lamberti, L. Cavallarin et al., , 2018.

, Enhanced arginine biosynthesis and lower proteolytic profile as indicators of Saccharomyces cerevisiae stress in stationary phase during fermentation of high sugar grape must: A proteomic evidence, Food Res. Int, vol.105, pp.1011-1018

I. Nuñez-de-castro, M. Ugarte, A. Cano, M. , and F. , Effect of glucose, galactose, and different nitrogen-sources on the activity of yeast glutamate dehydrogenase (NAD and NADPlinked) from normal strain and impaired respiration mutant, Eur. J. Biochem, vol.16, pp.567-570, 1970.

C. Nurgel, G. J. Pickering, and D. L. Inglis, Sensory and chemical characteristics of Canadian ice wines, J. Sci. Food Agric, vol.84, pp.1675-1684, 2004.

T. Ochando, J. Mouret, A. Humbert-goffard, J. Sablayrolles, and V. Farines, Impact of initial lipid content and oxygen supply on alcoholic fermentation in champagne-like musts, Food Res. Int, vol.98, pp.87-94, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01603363

M. Ortega-heras, S. Pérez-magariño, V. Del-villar-garrachón, C. González-huerta, L. C. Moro-gonzalez et al., Study of the effect of vintage, maturity degree, and irrigation on the amino acid and biogenic amine content of a white wine from the Verdejo variety, J. Sci. Food Agric, vol.94, pp.2073-2082, 2014.

K. M. Overkamp, B. M. Bakker, P. Kötter, V. Tuijl, S. Vries et al., In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria in vivo analysis of the Mechanisms for Oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria, vol.182, 2000.

B. Özbek and S. Gayik, The studies on the oxygen mass transfer coefficient in a bioreactor, Process Biochem, vol.36, pp.729-741, 2000.

B. Ozturk, A. , and E. , Different techniques for reducing alcohol levels in wine: A review, BIO Web Conf. 3, 02012, 2014.

B. Padilla, L. Zulian, À. Ferreres, R. Pastor, B. Esteve-zarzoso et al., Sequential inoculation of native non-Saccharomyces and Saccharomyces cerevisiae strains for wine making, Front. Microbiol, vol.8, pp.1-12, 2017.

A. K. Påhlman, K. Granath, R. Ansell, S. Hohmann, and L. Adler, The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress, J. Biol. Chem, vol.276, pp.3555-3563, 2001.

F. Pérez-nevado, H. Albergaria, T. Hogg, and F. Girio, Cellular death of two nonSaccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae, 2006.

, Int. J. Food Microbiol, vol.108, pp.336-345

G. J. Pickering, Low-and Reduced-alcohol Wine: A Review, J. Wine Res, vol.11, pp.129-144, 2000.

G. J. Pickering, D. A. Heatherbell, and M. F. Barnes, Optimising glucose conversion in the production of reduced alcohol wine using glucose oxidase, Food Res. Int, vol.31, pp.685-692, 1998.

G. J. Pickering, D. A. Heatherbell, and M. F. Barnes, The production of reduced-alcohol wine using glucose oxidase-treated juice. Part I. Composition, Am. J. Enol. Vitic, vol.50, pp.307-316, 1999.

F. R. Pinu, P. J. Edwards, R. C. Gardner, and S. G. Villas-boas, Nitrogen and carbon assimilation by Saccharomyces cerevisiae during Sauvignon blanc juice fermentation, FEMS Yeast Res, vol.14, pp.1206-1222, 2014.

Y. Poirier, V. D. Antonenkov, T. Glumoff, and J. K. Hiltunen, Peroxisomal B-oxidation-A metabolic pathway with multiple functions, Biochim. Biophys. Acta -Mol. Cell Res, vol.1763, pp.1413-1426, 2006.

K. Pouliot, J. Thibault, A. Garnier, and G. Leiva, KL a Evaluation during the course of fermentation using data reconciliation techniques, Bioprocess Eng, vol.23, pp.565-573, 2000.

X. Qin, H. Xiao, C. Xue, Z. Yu, R. Yang et al., Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate, Postharvest Biol. Technol, vol.100, pp.160-167, 2015.

M. Quiros, V. Rojas, R. Gonzalez, and P. Morales, Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration, Int. J. Food Microbiol, vol.181, pp.85-91, 2014.

J. Ramos, H. Sychrová, and M. Kschischo, Yeast Membrane Transport, 2016.

A. Rapp and G. Versini, Influence of nitrogen compounds in grapes on aroma compounds of wines, Dev. Food Sci, vol.37, pp.80257-80265, 1995.

P. Raspor, D. Mikli, J. Polanc, and S. Smole, Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine-growing region, vol.109, pp.97-102, 2006.

M. Redón, J. M. Guillamón, A. Mas, and N. Rozès, Effect of lipid supplementation upon Saccharomyces cerevisiae lipid composition and fermentation performance at low temperature, 2009.

, Eur. Food Res. Technol, vol.228, pp.833-840

P. Ribéreau-gayon, Y. Glories, A. Maujean, and D. Dubourdieu, Handbook of Enology:The Microbiology of Wine and Vinifications, 2006.

P. Robert and Y. Escoufier, A unifying tool for linear multivariate statistical methods: The RVcoefficient, vol.25, pp.257-265, 1975.

A. L. Robinson, S. E. Ebeler, H. Heymann, P. K. Boss, P. S. Solomon et al., Interactions between wine volatile compounds and grape and wine matrix components influence aroma compound headspace partitioning, J. Agric. Food Chem, vol.57, pp.10313-10322, 2009.

J. Röcker, S. Strub, K. Ebert, and M. Grossmann, Usage of different aerobic nonSaccharomyces yeasts and experimental conditions as a tool for reducing the potential ethanol content in wines, Eur. Food Res. Technol, vol.242, pp.2051-2070, 2016.

A. J. Rodrigues, T. Raimbourg, R. Gonzalez, and P. Morales, Environmental factors influencing the efficacy of different yeast strains for alcohol level reduction in wine by respiration, LWT -Food Sci. Technol, vol.65, pp.1038-1043, 2016.

F. Rodrigues, P. Ludovico, and C. Leão, Sugar metabolism in yeasts : an overview of aerobic and anaerobic glucose catabolism, Biodivers. Ecophysiol. Yeasts, pp.101-121, 2006.

N. Rodrigues, G. Gonçalves, S. Pereira-da-silva, M. Malfeito-ferreira, and V. Loureiro, , 2001.

, Development and use of a new medium to detect yeasts of the genera Dekkera/Brettanomyces

, J. Appl. Microbiol, vol.90, pp.588-599

L. Rolle, V. Englezos, F. Torchio, F. Cravero, S. Río-segade et al., Alcohol reduction in red wines by technological and microbiological approaches: a comparative study, 2017.

, Aust. J. Grape Wine Res

S. Rollero, A. Bloem, A. Ortiz-julien, C. Camarasa, and B. Divol, Altered fermentation performances, growth, and metabolic footprints reveal competition for nutrients between yeast species inoculated in synthetic grape juice-like medium, Front. Microbiol, vol.9, pp.1-12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01837840

S. Rollero, J. R. Mouret, A. Bloem, I. Sanchez, A. Ortiz-julien et al., , 2017.

, Quantitative13C-isotope labelling-based analysis to elucidate the influence of environmental parameters on the production of fermentative aromas during wine fermentation, Microb. Biotechnol, vol.10, pp.1649-1662

S. Rollero, J. R. Mouret, I. Sanchez, C. Camarasa, A. Ortiz-julien et al., Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain, Microb. Cell Fact, vol.15, pp.1-15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01284656

G. Romagnoli, M. A. Luttik, P. Kötter, J. T. Pronk, and J. M. Daran, Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae, 2012.

, Appl. Environ. Microbiol, vol.78, pp.7538-7548

E. Rosenfeld, B. Beauvoit, B. Blondin, and J. Salmon, Oxygen Consumption by Anaerobic Saccharomyces cerevisiae under Enological Conditions : Effect on Fermentation Kinetics, Appl. Environ. Microbiol, vol.69, pp.113-121, 2003.

M. Rothe and R. Schrödter, Flavour Contribution of Ethanol, a Neglected Aroma Compound, Flavour Sci, pp.348-349, 1996.

D. W. Rowen, N. Esiobu, and B. Magasanik, Role of GATA factor Nil2p in nitrogen regulation of gene expression in Saccharomyces cerevisiae, J. Bacteriol, vol.179, pp.3761-3766, 1997.

M. Sadoudi, S. Rousseaux, V. David, H. Alexandre, and R. Tourdot-maréchal, , 2017.

, Metschnikowia pulcherrima influences the expression of genes involved in PDH bypass and glyceropyruvic fermentation in Saccharomyces cerevisiae, Front. Microbiol, vol.8, pp.1-11

M. Sadoudi, R. Tourdot-maréchal, S. Rousseaux, D. Steyer, J. Gallardo-chacón et al., Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts, Food Microbiol, vol.32, pp.243-53, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00782673

F. Salinas, F. A. Cubillos, D. Soto, V. Garcia, A. Bergström et al., The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae, PLoS One, vol.7, 2012.

J. M. Salmon, Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations, Appl. Environ. Microbiol, vol.55, pp.953-958, 1989.

J. M. Salmon, C. Fornairon, and P. Barre, Determination of oxygen utilization pathways in an industrial strain of Saccharomyces cerevisiae during enological fermentation, J. Ferment. Bioeng, vol.86, pp.80054-80062, 1998.

H. Schägger and K. Pfeiffer, Supercomplexes in the respiratory chains of yeast and mammalian mitochondria, EMBO J, vol.19, pp.1777-1783, 2000.

L. M. Schmidtke, J. W. Blackman, and S. O. Agboola, Production technologies for reduced alcoholic wines, J. Food Sci, vol.77, pp.25-41, 2012.

R. P. Schreiner, J. Osborne, and P. A. Skinkis, Nitrogen requirements of pinot noir based on growth parameters, must composition, and fermentation behavior, Am. J. Enol. Vitic, 2017.

E. Schweizer and J. Hofmann, Microbial Type I Fatty Acid Synthases (FAS): Major Players in a Network of Cellular FAS Systems, Am. Soc. Microbiol, vol.68, pp.501-517, 2004.

P. Seguinot, S. Rollero, I. Sanchez, J. M. Sablayrolles, A. Ortiz-julien et al., Impact of the timing and the nature of nitrogen additions on the production kinetics of fermentative aromas by Saccharomyces cerevisiae during winemaking fermentation in synthetic media, Food Microbiol, vol.76, pp.29-39, 2018.

S. Sentheshanmuganathan and S. R. Elsden, The mechanism of the formation of tyrosol by Saccharomyces cerevisiae, Biochem. J, vol.69, pp.210-218, 1958.

S. Sentheshanuganathan, The mechanism of the formation of higher alcohols from amino acids by Saccharomyces cerevisiae, Biochem. J, vol.74, pp.568-576, 1960.

M. Shakoury-elizeh, O. Protchenko, A. Berger, J. Cox, K. Gable et al., , 2010.

, Metabolic response to iron deficiency in Saccharomyces cerevisiae, J. Biol. Chem, vol.285, pp.14823-14833

K. Shekhawat, F. F. Bauer, and M. E. Setati, Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae, 2016.

. Microbiol and . Biotechnol, , vol.101, pp.2479-2491

S. Simonin, H. Alexandre, M. Nikolantonaki, C. Coelho, and R. Tourdot-maréchal, Inoculation of Torulaspora delbrueckii as a bio-protection agent in winemaking, Food Res. Int, vol.107, pp.451-461, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01895361

. Soden, I. L. Francis, H. Oakey, and H. , Effects of co-fermentation with Candida stellata and Saccharomyces cerevisiae on the aroma and composition of Chardonnay wine, 2000.

, Aust. J. Grape Wine Res, vol.6

S. E. Spayd, R. L. Wample, R. G. Evans, R. G. Stevens, B. J. Seymour et al., Nitrogen fertilization of White Riesling grapes in Washington. Must and wine composition, Am. J. Enol. Vitic, vol.45, pp.34-42, 1994.

S. E. Spayd, R. L. Wample, R. G. Stevens, R. G. Evans, and A. K. Kawakami, Nitrogen fertilization of White Riesling in Washington: Effects on petiole nutrient concentration, yield, yield components, and vegetative growth, Am. J. Enol. Vitic, vol.44, pp.378-386, 1993.

J. F. Spencer and T. A. Larue, The utilization of purines and pyrimidines by yeasts, 1968.

G. F. Sprague and J. E. Cronan, Isolation and characterization of Saccharomyces cerevisiae mutants defective in glycerol catabolism, J. Bacteriol, vol.129, pp.1335-1342, 1977.

M. Stanbrough and B. Magasanik, Transcriptional and post-translational regulation of the general amino acid permease of Saccharomyces cerevisiae, J. Bacteriol, vol.177, pp.94-102, 1995.

P. F. Stanbury, A. Whitaker, and S. J. Hall, Principles of fermentation technology, J. Chem. Inf. Model, vol.53, pp.1689-1699, 2013.

P. Stines, J. Grubb, H. Gockowiak, P. Henschke, P. B. Høj et al., Proline and arginine accumulation in developing berries of Vitis vinifera L. in Australian vineyards: Influence of vine cultivar, berry maturity and tissue type, Aust. J. Grape Wine Res, vol.6, pp.150-158, 2000.

M. Stock, F. Gerstengarbe, T. Kartschall, and P. Werner, Reliability of climate change impact assessments for viticulture, Acta Hortic, vol.689, pp.29-40, 2004.

M. L. Strauss, N. P. Jolly, M. G. Lambrechts, and P. Van-rensburg, Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts, J. Appl, 2001.

. Microbiol, , vol.91, pp.182-190

G. Styger, D. Jacobson, and F. F. Bauer, Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols, Appl. Microbiol, 2011.

. Biotechnol, , vol.91, pp.713-730

M. Subileau, R. Schneider, J. M. Salmon, and E. Degryse, Nitrogen catabolite repression modulates the production of aromatic thiols characteristic of Sauvignon Blanc at the level of precursor transport, FEMS Yeast Res, vol.8, pp.771-780, 2008.

S. Suresh, V. C. Srivastava, and I. M. Mishra, Techniques for oxygen transfer measurement in bioreactors: A review, J. Chem. Technol. Biotechnol, vol.84, pp.1091-1103, 2009.

J. H. Swiegers and I. S. Pretorius, Yeast modulation of wine flavor, Adv. Appl. Microbiol, vol.57, pp.57005-57014, 2005.

P. Taillandier, F. Ramon-portugal, A. Fuster, and P. Strehaiano, Effect of ammonium concentration on alcoholic fermentation kinetics by wine yeasts for high sugar content, Food Microbiol, vol.24, pp.95-100, 2007.

E. A. Tehrany, F. Fournier, and S. Desobry, Simple method to calculate octanol-water partition coefficient of organic compounds, J. Food Eng, vol.64, pp.315-320, 2004.

C. Tesnière, C. Brice, and B. Blondin, Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation, Appl. Microbiol. Biotechnol, vol.99, pp.7025-7034, 2015.

C. Tesnière, P. Delobel, M. Pradal, and B. Blondin, Impact of nutrient imbalance on wine alcoholic fermentations: Nitrogen excess enhances yeast cell death in lipid-limited must, PLoS One, vol.8, 2013.

C. Tesnière, M. Pradal, C. Bessière, I. Sanchez, B. Blondin et al., Relief from nitrogen starvation triggers a transient destabilization of glycolytic mRNAs in Saccharomyces cerevisiae cells, Mol. Biol. Cell, vol.29, p.490, 2017.

C. Thibon, P. Marullo, O. Claisse, C. Cullin, D. Dubourdieu et al., Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation, FEMS Yeast Res, vol.8, pp.1076-1086, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00287616

R. Tofalo, F. Patrignani, R. Lanciotti, G. Perpetuini, M. Schirone et al., , 2016.

, Aroma profile of montepulciano d'abruzzo wine fermented by single and co-culture starters of autochthonous Saccharomyces and non-Saccharomyces yeasts, Front. Microbiol, vol.7, pp.1-12

R. Tofalo, M. Schirone, S. Torriani, K. Rantsiou, L. Cocolin et al., Diversity of Candida zemplinina strains from grapes and Italian wines, Food Microbiol, vol.29, pp.18-26, 2012.

D. Torrea, C. Varela, M. Ugliano, C. Ancin-azpilicueta, I. Leigh-francis et al., Comparison of inorganic and organic nitrogen supplementation of grape juice -Effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast, Food Chem, vol.127, pp.1072-1083, 2011.

M. T. Treeby, B. P. Holzapfel, R. R. Walker, and P. R. Nicholas, Profiles of free amino acids in grapes of grafted Chardonnay grapevines, Aust. J. Grape Wine Res, vol.4, pp.121-126, 1998.

J. Tronchoni, J. A. Curiel, M. P. Sáenz-navajas, P. Morales, A. De-la-fuente-blanco et al., Aroma profiling of an aerated fermentation of natural grape must with selected yeast strains at pilot scale, Food Microbiol, vol.70, pp.214-223, 2017.

M. Ugliano, B. Fedrizzi, T. Siebert, B. Travis, F. Magno et al., Effect of nitrogen supplementation and Saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in Shiraz fermentation and wine, J. Agric. Food Chem, vol.57, pp.4948-4955, 2009.

M. Ugliano, T. Siebert, M. Mercurio, D. Capone, and P. A. Henschke, Volatile and color composition of young and model-aged shiraz wines as affected by diammonium phosphate supplementation before alcoholic fermentation, J. Agric. Food Chem, vol.56, pp.9175-9182, 2008.

M. Ugliano, B. Travis, I. L. Francis, and P. A. Henschke, Volatile composition and sensory properties of Shiraz wines as affected by nitrogen supplementation and yeast species: Rationalizing nitrogen modulation of wine aroma, J. Agric. Food Chem, vol.58, pp.12417-12425, 2010.

A. Urrestarazu, S. Vissers, I. Iraqui, and M. Grenson, Phenylalanine-and tyrosineauxotrophic mutants of Saccharomyces cerevisiae impaired in transamination, Mol. Gen. Genet, vol.257, pp.230-237, 1998.

H. Valadi, C. Larsson, and L. Gustafsson, Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol, vol.50, pp.434-439, 1998.

J. P. Van-dijken, . Van-den, E. Bosch, J. J. Hermans, L. R. De-miranda et al., Alcoholic fermentation by 'non-fermentative'yeasts, Yeast, vol.2, pp.123-127, 1986.

C. Van-leeuwen, P. Friant, J. P. Soyer, C. Molot, X. Chone et al., , 2000.

, Measurement of total nitrogen and assimilable nitrogen in grape juice to asses vine nitrogen status, J. Int. des Sci. la Vigne du Vin, vol.34, pp.75-82

C. W. Van-roermund, H. R. Waterham, L. Ijlst, and R. J. Wanders, Fatty acid metabolism in Saccharomyces cerevisiae, Cell. Mol. Life Sci, vol.60, pp.1838-1851, 2003.

G. C. Vanlerberghe and L. Mcintosh, Alternative oxidase: from gene to function, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.48, pp.703-734, 1997.

C. Varela, The impact of non-Saccharomyces yeasts in the production of alcoholic beverages, 2016.

, Appl. Microbiol. Biotechnol, pp.9861-9874

C. Varela, F. Pizarro, A. , and E. , Biomass content governs fermentation rate in nitrogendeficient wine musts, Appl. Environ. Microbiol, vol.70, pp.3392-3400, 2004.

J. Varela and C. Varela, Microbiological strategies to produce beer and wine with reduced ethanol concentration, Curr. Opin. Biotechnol, vol.56, pp.88-96, 2019.

C. Verduyn, Physiology of yeast in relation to biomass yields, pdf. Biomed. Life Sci, vol.60, pp.325-353, 1991.

C. Verduyn, E. Postma, W. A. Scheffers, and J. P. Van-dijken, Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures, J. Gen. Microbiol, vol.136, pp.395-403, 1990.

M. Vilanova, T. E. Siebert, C. Varela, I. S. Pretorius, and P. A. Henschke, Effect of ammonium nitrogen supplementation of grape juice on wine volatiles and non-volatiles composition of the aromatic grape variety Albariño, Food Chem, vol.133, pp.124-131, 2012.

M. Vilanova, M. Ugliano, C. Varela, T. Siebert, I. S. Pretorius et al., , 2007.

, Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts, Appl. Microbiol

. Biotechnol, , vol.77, pp.145-157

G. Von-jagow and M. Klingenberg, Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis, Eur. J. Biochem, vol.12, pp.583-592, 1970.

C. Wang, A. Mas, and B. Esteve-zarzoso, Interaction between Hanseniaspora uvarum and Saccharomyces cerevisiae during alcoholic fermentation, Int. J. Food Microbiol, vol.206, pp.67-74, 2015.

X. Wang, D. A. Glawe, E. Kramer, D. Weller, and P. A. Okubara, Biological control of Botrytis cinerea: interactions with native vineyard yeasts from Washington State, Phytopathology, pp.1-40, 2018.

B. Watson, M. Godard, C. , and H. , Manipulating soil moisture and nitrogen availability Part II : Effects on pinot noir must and wine composition, 2000.

M. E. Whitener, J. Stanstrup, S. Carlin, B. Divol, M. Du-toit et al., Effect of non-Saccharomyces yeasts on the volatile chemical profile of Shiraz wine, Aust. J. Grape Wine Res, 2017.

Y. Yang, T. Yamashita, E. Nakamaru-ogiso, T. Hashimoto, M. Murai et al., Reaction mechanism of single subunit NADH-ubiquinone oxidoreductase, 2011.

, Saccharomyces cerevisiae: Evidence for a ternary complex mechanism, J. Biol. Chem, vol.286, pp.9287-9297

K. Yunoki, Y. Yasui, S. Hirose, and M. Ohnishi, Fatty acids in must prepared from 11 grapes grown in Japan: Comparison with wine and effect on fatty acid ethyl ester formation, Lipids, vol.40, pp.361-367, 2005.

J. M. Zaborske, X. Wu, R. C. Wek, and T. Pan, Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae, BMC Biochem, vol.11, p.29, 2010.

P. Zhang, X. Wu, S. Needs, D. Liu, S. Fuentes et al., The influence of apical and basal defoliation on the canopy structure and biochemical composition of Vitis vinifera cv. Shiraz grapes and wine, Front. Chem, vol.5, pp.1-9, 2017.

W. Zhang, G. Du, J. Zhou, C. , and J. , Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol, Mol. Biol. Rev, vol.82, pp.1-29, 2018.

Y. Q. Zhang, S. Gamarra, G. Garcia-effron, S. Park, D. S. Perlin et al., Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs, PLoS Pathog, vol.6, 2010.