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Abstract

In order to reduce greenhouse gas emissions and shipping costs, the use of kites as an auxiliary

propulsion device for ships is promising. In fact, compared to the use of classic sails, a kite does not

reduce the pay load storage capacity and generates a greater towing force thanks to dynamic flights.

Assuming that the interactions between a ship and a kite are negligible, the literature has shown

by solving the mean equilibrium of the system that fuel savings are significant. These assumptions

are strong since the kite induces ship motions and due to sea state the ship motion may change the

kite flight. In order to estimate more accurately the performance and the operability of a kite-towed

vessel, a dynamic modeling of the system is implemented.

A classical kite modeling is used. This model neglects the mass of the kite and assumes straight

and inelastic tethers. These assumptions lead to a kinematic model depending on the lift coefficient

and the aerodynamic lift to drag ration angle. A linear evolution of these aerodynamic coefficients

as a function of the curvature of the flight path is proposed. In addition, by developing a quasi-

analytical line model, it is shown that from 2 m.s-1 of relative wind the straight tether assumption

is reasonable. Based on the tether model, an analytical criterion assessing the minimum wind speed

to enable a quasi-static kite flight is developed. In particular, it is shown that for a kite surfing

kite, the minimum wind launch for quasi-static fly is 3.4 m.s-1. In order to solve all the interaction

terms between the kite and the ship, a time domaine seakeeping model based on the linearized ship

equation of motion assuming a potential flow is developed. The convolution product of the impulse

response of the ship is computed with state-space systems. This method has the advantage to run

fast. However, since horizontal ship motions are not well represented by such theories, a coupling

with a maneuverability model is presented. Comparisons to front sea basin tests and gyration and

zigzagging tests show rather good results.

To study the interactions between the kite and the ship a monolithic coupling and a dissociated

coupling are compared. The dissociated coupling neglects the influence of ship motions on the

kite flight. In a calm water case, results obtained by the two types of coupling are very close. In

regular waves, ship motions are dominated by the wave influence. Thus, a network of low frequency

subharmonic appears in the kite excitation spectrum. The fundamental frequency of the subharmonic

is given by the difference between the wave frequency and the frequency of the nearest kite excitation

harmonic. When this difference is small enough, a lock-in phenomenon appears. This kite lock-

in phenomenon is a benefit for the kite and the ship when the shift of the excitation harmonics

corresponds to an increase. The kite towing is increased up to 34% and the kite efficiency is increased

up to 4% compared to a calm water case. The roll amplitude is reduced by 20% compared to a flight

configuration at the boundary of the kite lock-in phenomenon. This phenomenon as it is not visible

with the dissociated approach shows the interest of a monolithic coupling. Furthermore, a course

keeping stability study shows that the rudder needs to be actively controlled.
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Résumé

Afin de réduire les émissions de gaz à effet de serre et le coût du transport maritime, l’utilisation

des cerfs-volants comme système de propulsion auxiliaire des navires est prometteuse. Un cerf-

volant réduit très peu la capacité d’emport et à surface égale permet en vol dynamique de générer

une traction importante. En supposant que les interactions entre un navire et un cerf-volant sont

négligeables, la littérature a montré en résolvant l’équilibre moyen du système que les économies

de carburant pouvaient être significative. Ces hypothèses sont fortes car le cerf-volant impose des

mouvements au navire qui lui même, en étant soumis aux vagues, peut modifier le vol du cerf-volant.

Pour estimer plus précisément les performances et l’opérabilité d’un navire tracté par cerf-volant,

une modélisation dynamique du système est alors mise en œuvre.

Une modélisation analytique de cerf-volant est utilisée. Ce modèle néglige la masse du cerf-volant et

suppose que les lignes sont droites et indéformablee. Ces hypothèses conduisent à un modèle ciné-

matique dépendant du coefficient de portance et de la finesse aérodynamique. Une évolution linéaire

des coefficients aérodynamiques en fonction de la courbure de la trajectoire de vol est proposée. Par

ailleurs, en développant un modèle quasi-analytique de ligne, il est montré qu’à partir de 2 m.s-1de

vent relatif que l’hypothèse de ligne droite est raisonnable. En se basant sur un modèle de ligne, un

critère analytique de vitesse de vent minimum permettant un vol quasi-statique est présenté. Dans

le but de résoudre l’ensemble des termes d’interaction entre le cerf-volant et le navire, un modèle

linéarisé de tenue à la mer temporelle est développé. Le produit de convolution de la réponse impul-

sionnelle du navire est calculé avec des systèmes d’états. Cette méthode à l’avantage d’être rapide

à calculer. Cependant comme celle-ci représente mal les mouvements horizontaux des navires, le

modèle développé est alors couplé à un modèle de manœuvrabilité.

Pour étudier les interactions entre le cerf-volant et le navire un couplage monolithique et un couplage

dissocié sont comparés. Le couplage dissocié néglige l’influence des mouvements du navire sur le

vol du cerf-volant. En cas de mer calme, les résultats obtenus par les deux types de couplage sont

très proches. En cas de houle régulière les mouvements du navires sont principalement causés par

la vague. Un réseau de sous-harmoniques basse fréquence apparait alors dans le spectre d’excitation

du navire. La fréquence fondamentale des sous-harmoniques est donnée par la différence entre la

fréquence de vague et la fréquence de l’harmonique la plus proche de l’excitation du kite. Quand

cette différence est suffisamment petite, un phénomène d’accrochage apparait. Ce phénomène est

bénéfique pour le cerf-volant et le navire quand le décalage des harmoniques d’excitation correspond

à une augmentation. La traction du cerf-volant est augmentée jusqu’à 34% et l’efficacité du kite est

augmenté jusqu’ 4% par rapport au cas en mer calme. L’amplitude de roulis est diminuée de 20% par

rapport à une configuration de vol en limite du phénomène d’accrochage. Ce phénomène n’est pas

visible avec l’approche dissociée ce qui montre l’intérêt d’un couplage monolithique. Par ailleurs,

une étude de la stabilité de route montre qu’il est nécessaire de contrôler activement le safran.
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tether length L̃t for different values of m̃ from 0.01 to 0.05, Ũa = 0 and
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Reference frames and parameterizations

In this thesis, if no simplifications are mentioned, following notations hold by default:

• a: represents a vector.

• a: represents a matrix.

• a: represents an orthogonal frame. The origin of the frame is denoted Oa, and each

vector are denoted by xa, y
a

and za.

• a(b): denotes the vector a expressed in the frame b. In this case a(b) ∈ R
3.

• Tb

a
: represents the square transformation matrix from the a frame to the b frame.

Consequently, any vector n(a) expressed in a can be transformed in b as follows:

n(b) = Tb

a
n(a). Moreover, Tb

a
is orthogonal, consequently

(
Tb

a

)T
=
(
Tb

a

)−1
=

T a

b
.

• a · b: denotes the scalar product.

• ×: denotes the cross product.

• ◦: denotes the Hadamard product.

• Two matrices side by side means a matrix product

• ẋ: denotes the time derivative of the scalar x.

• ȧ: denotes the time derivative of a. If it is not precised, the time derivative is per-

formed with respect to a Galilean frame.

Earth fixed frame: n-frame

The mathematical developments assume that the orthogonal reference frame n is Galilean.

n is centered on On, somewhere on the mean sea level surface. The three unit vectors of n
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Reference frames and parameterizations

baseline

Lpp

Aft perpendicular Midship Forward perpendicular

lz

xs
Os

A

z
s

R

H

P

Figure 1.: Ship reference frame s and parameterization

are denoted by xn, y
n

and zn. zn is pointing downward with respect to the earth gravity.

Consequently, the earth gravity g can be expressed as follows:

g = gzn, (1)

where g = 9.81 m.s-2. Moreover, any other frame experiencing a rectilinear and uniform

motion with respect to the n is assumed to be Galilean as well.

Current reference frame: c-frame

The current reference c centered on Oc is translating at the constant velocity U c. The three

unit vectors of c are denoted xc, yc and zc. Consequently, at any time we have:

[
xc, yc, zc

]
=
[
xn, yn, zn

]
. (2)

The current velocity is assumed to be horizontal, thus we have U c · zc = 0.

Ship reference frame: s-frame

s is the ship fixed frame, xs is pointing forward in the ship symmetry plane, zs is pointing

downward and y
s

completes the direct orthogonal basis. zs is normal to the free surface

when the ship is at the hydrostatic equilibrium. The origin of s denoted by Os is in the ship

symmetry plane at mid-ship and at a vertical distance up to the baseline lz . The mid-ship

is a plane normal to xs positioned at the half distance between aft perpendicular and the

forward perpendicular. The aft perpendicular is normal to xs at the transom. The forward

perpendicular is the intersection of the stern with the free surface when the ship is at the

hydrostatic equilibrium. Figure 1 illustrates the ship reference frame.
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Reference frames and parameterizations

The generalized position vector of the ship denoted by S = [sx, sy, sz, φs, θs, ψs]
T
c

is

the assembly of the position of Os and the ship Euler’s angles with respect to the c frame.

The generalized ship velocity at Os expressed in s with respect to the c frame is denoted by

V s = [us, vs, ws, ps, qs, rs]
T , where the first three components are the linear velocities

U
(s)
s and the last three components are the turning rates Ω

(s)
s/c.

The transformation of a vector expressed in the s frame denoted by n(s) can be expressed is

the c frame with n(c) = T c

s
n(s), where T c

s
is the direct cosine matrix (cf. Eq. (3)).

T c

s
=




cψscθs −sψscφs + cψssθssφs sψssφs + cψscφssθs
sψscθs cψscφs + sφssθssψs −cψssφs + sθssψscφs
−sθs cθssφs cθscφs


 (3)

where, c and s denote the cosine and the sine functions. The turning rates and the time

derivatives of the ship Euler’s angles satisfy the following relationship:



ps
qs
rs


 = Rs

c



φ̇s
θ̇s
ψ̇s


 , (4)

where,

Rs

c
=



1 0 −sθs
0 cφs cθssφs
0 −sφs cφscθs


 . (5)

The point A is the tether attachment point. The position of A with respect to Os is OsA =[
a
(s)
x , a

(s)
y , a

(s)
z

]T
expressed in s. R denotes the rudder position, OsR =

[
r
(s)
x , r

(s)
y , r

(s)
z

]T

expressed in s. P denotes the propeller position, OsP =
[
p
(s)
x , p

(s)
y , p

(s)
z

]T
expressed in s

Seakeeping reference frame: h-frame

The seakeeping reference frame, h =
(
Oh, xh, yh, zh

)
, is centered on Oh. This frame is

translating at the constant mean ship forward speed Uh and the following relationship holds

at any time:

zh = zc (6)
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Reference frames and parameterizations

At the reference ship position, Oh coincides with a point H fixed to the ship (Fig. 1). The

position of H is defined with respect to Os in the ship reference frame as follows:

OsH = [hx, 0, hz]
T (7)

At the mean ship heading in the reference position, xh = xs.

Wind reference frames

tw-frame

tw denotes the true wind basis. In this study the true wind speed is assumed to be horizontal,

consequently zn = ztw holds. The true wind speed is orientated by xtw =
U tw

‖U tw‖ and y
tw

completes the orthogonal basis. The true wind velocity U tw may depend on the position

within the wind field and notably due to the wind friction with the free surface. However,

in this thesis, the true wind speed is assumed to vary only with the altitude with respect to

the n frame in terms of magnitude. Therefore, the true wind direction is independent of the

altitude and the associated tw frame is constant with the altitude. Assuming the true wind

direction xtw is equal to xn or xn, the true wind angle βtw is defined as follows:

βtw = π − ψs (8)

rw-frame

The relative wind speed is a composition of the true wind velocity and the ship speed with

respect to the current frame c. Consequently, the relative wind speed depends on a position

within the wind field and on a position on the ship. At a point X , the relative wind speed

referring to a position on the ship Y can be written as follows:

U rw (X,Y ) = U tw (X)− Uy − U c, (9)

where Uy denotes the velocity of the point Y fixed to the ship with respect to the c frame.

The notation of U rw (X,Y ) can be simplified by U rw,xy. The relative wind basis is denoted

rwxy. Since Uy is not necessarily horizontal, zrw,y can be different from zn, the orthogonal

basis of the rwxy frame is defined as follows: xrw,xy =
Urw,xy
∥

∥

∥
Urw,xy

∥

∥

∥

, y
rw,xy

=
zn×xrw,xy
∥

∥

∥
zn×xrw,xy

∥

∥

∥

and zrw,xy = xrw,xy × y
rw,xy

.
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Figure 2.: Schema of the kite reference frame kn

The apparent wind speed Uaw is the wind speed relative to the kite:

Uaw = U tw (K)− Ua − U c − Uk (10)

where, Ua is the velocity of the tether attachment point on the ship and Uk is the relative

velocity of the kite K with respect to A.

Kite reference frame: kn-frame

kn is a kite reference frame (Fig. 2) centered on K with zkn = AK
‖AK‖ , y

kn
=

zkn×zn
‖zkn×zn‖

and

xkn = y
kn

× zkn. The direction of the velocity K with respect to On is denoted by xvkn.

The projection of xvkn on the plane
(
xkn, ykn

)
is denoted by x̃vkn. The angle of x̃vkn with

respect to xkn is denoted byγn.

k is a kite reference frame (Fig. 3) centered on K and zk = AK
‖AK‖ , y

k
=

zk×zrw,ka
∥

∥

∥
zk×zrw,ka

∥

∥

∥

and

xk = y
k
× zk. The kite velocity is directed by xvk. The kite elevation angle is given by:

θk =
π

2
− arccos

(
zk · zrw,ka

)
(11)

The kite azimuth angle is defined as follows:

φk = arccos
(
y
k
· y

rw,ka

)
(12)
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1. Context

1.1. Preliminaries

To reduce the carbon footprint and the fuel consumption, the beyond the sea® project at-

tempts to set up kites on commercial ships as an auxiliary propulsion device for fuel savings.

The concept was first introduced by Pocock (1827) to tow ships and buggys. Then, this

concept of kite towing of ship was revisited for pleasure purposes by a group of four friends

from United Kingdom and notably by Ian Day and Martin Rayment with the Jacob’s Ladder

project1 in 1978. They started the project setting up a ram air kite called at this time a

“flexifoil”. In order to increase the power they added kites to form a stack. Then, they tried

the concept on different catamaran boats to increase the speed. In 1982, in Portland UK at

the Speed Week event, on a 30 ft hull, they performed their best speed, 25 knots. Figure

1.1b is picture of Ian Day and Martin Rayment during their record. Figure 1.1a shows how

the launching phase can be sensitive.

(a) Launching phase (b) Speed record at Portland during the Speed Week in

1982: 25 knots

Figure 1.1.: The first project of ship towed by kite: the Jacob’s Ladder project

In the literature, the concept of kite towing was introduced by Duckworth (1983) and Welli-

come and Wilkinson (1984). Duckworth (1983) argued that the installation of a kite on ship

requires less modification than for a classical rig, and that a kite can be recovered in case

1http://www.panduj.plus.com/jladder/jl.htm
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1. Context

of storm insuring the ship safety. This study was focused on the use of axi-symmetric sta-

ble parachutes. Consequently, the operabilty of the kite was focused on downwind sailing

only. Latter, Wellicome and Wilkinson (1984) performed a theoretical study about kite and

introduced the so-called zero-mass kite model. In (Wellicome, 1985), Wellicome provides

an analysis of the performance of different wind devices, such as conventional soft sail rig,

Prossl rig, rigid wings and static kite classified into the passive device category, and flettner

rotor, wind turbine and active maneuvered kite into the active category. His study leads to

the conclusion that the kite is one of the best candidate. The benefits of a kite can be listed

as follows:

• For a refitted ship, a kite requires less general arrangement modifications than a clas-

sical rig.

• Since the tether attachment point is at the deck level, the mean heeling angle induced

by a kite is small compared to a classical rig.

• With an active maneuvered kite performing a dynamic flight, the towing forces are

greater than the force developed by a classical rig of the same area (Leloup et al.,

2014).

• Depending on the tether length, the kite can catch faster winds thanks to the wind

gradient.

Fuel saving predictions have been carried out in the literature by Naaijen et al. (2006),

Leloup et al. (2016) and Podeur et al. (2016). They all predicts significant fuel saving pre-

dictions. The most realistic fuel predictions has been performed by Podeur et al. (2016) on

a 2200 TEU container ship towed by a kite of 800 m2. Indeed, in that case using the 4 years

weather database provided by the European Center for Medium range Weather Forecast

(ECMWF), the mean fuel saving is 12.1 % for a ship forward speed of 8.2 m.s-1 and 6.7 %

for a ship forward speed of 9.8 m.s-1.

Figure 1.2.: A Skysails kite of 320 m2 on a 90 m long cargo ship

Despite all the advantages offer by a kite, quite few ships have been equipped with a kite.

The most advanced project dedicated to the use of kites as an auxiliary propulsion device
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1.2. Ecological interests

for merchant ship was led by the Skysail® company2 (cf. Fig. 1.2). In 2008, this company

equipped a bulk carrier of 90 m long with a ram air kite of 320 m2 (Erhard and Strauch,

2012). Actually, two experimental vessels promoting the energy transition are equipped

with a kite. The first vessel is the Race For Water3 vessel (cf. Fig. 1.3a) launched in spring

2017. The second vessel is Energy Observer4, launched during the summer 2017 and is

equipped with a kite provided by the beyond the sea® project (cf. Fig. 1.3b).

(a) Vessel of the Race For Water project (b) Vessel of the Energy Observer project

Figure 1.3.: Experimental vessels equipped with a kite

1.2. Ecological interests

The seaway is one of the most efficient way of transport in terms of CO2 emmissions.

Figure 1.4 shows that a ship emits regarding the payload less than 10% of CO2 emitted

by a truck and 2% of CO2 emitted by an airplane. According to (Smith et al., 2014), the

overall maritime emission of CO2 per year over the period 2007-2012 is 810 million tonnes,

which represents 2.6% of the global emission. For a ship, Ronen (2011) shows that the fuel

consumption may represent more than 75% of the operating costs. In addition, the CO2

emissions could be considered as proportional to the fuel consumption. An estimation of

the ratio of the fuel consumption and CO2 emissions can be found in Corbett et al. (2009).

Consequently, the ecological and economical interests are joint.

According to the International Maritime Organisation (Smith et al., 2014), CO2 emissions

could increase drastically due to an important raise of gross domestic products. Indeed,

depending on the socioeconomic scenario considered in Smith et al. (2014), the gross do-

mestic production should be multiplied between three and seven. An important effort should

be performed by the shipping industry to improve the fuel-efficiency of the world fleet. The

effect of improving the fuel efficiency is investigated in (Smith et al., 2014). 16 scenarios

2http://www.skysails.info
3www.raceforwater.com
4http://www.energy-observer.org/
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1. Context

Figure 1.4.: Typical CO2 emission in grams per ton kilometers for different modes of trans-

port; Source: (Buhaug et al., 2009)

for the period 2012-2050 were considered. These scenarios assume different input parame-

ters such as the Representative Concentration Pathways (RCP, see (Moss et al., 2008)), the

Shared Socioeconomic Pathway (SSP, see (Ebi et al., 2014)), a Fuel-Efficiency Improve-

ment (FEI) compared to fleet average in 2012, the roll out of Emission Control Area (ECA)

and the use of Liquefied Natural Gas (LNG) engine.

RCP is a resultant radiative forcing in W.m-2 due to greenhouse gas. For instance, an RCP

of 2.6 W.m-2 corresponds to a raise of the mean temperature on earth of 1.5° and is the

most optimistic scenario. The most pessimistic RCP considered is 8.5 W.m-2. According

to a RCP level, Smith et al. extrapolated the oil and coal demand. Five SSP were con-

sidered from 1 to 5, respectively named sustainability, middle of the road, fragmentation,

inequality and conventional development. A SSP is a qualitative parameter. A narrative

description of different SSP can be found in (Kriegler et al., 2012; Smith et al., 2014). For

instance, the SSP middle of the road corresponds to “A world that sees the trends typical

of recent decades continuing, with some progress towards achieving development goals.

Dependency on fossil fuels is slowly decreasing. Development of low-income countries pro-

ceeds unevenly.” The full method of combining RCP and SSP is detailed in (Smith et al.,

2014) according to the method proposed by Kriegler et al. (2012).

Here only 4 scenarios are reported. For each scenario, the development of the LNG and

ECA are not considered. The best and the worst combination of RCP and SSP are consid-

ered, respectively RCP2.6 with SSP2 and RCP8.5 with SSP5. For this two combinations of

RCP and SSP, two fuel-efficiency improvement are considered, 40% and 60%. Figure 1.5

shows for this 4 scenarios the CO2 emissions projections.

The RCP and SSP combination are relatively independent of the maritime industry since the

maritime industry represents only 2.6% of the total CO2 emissions. For the most optimistic

scenario, an increasing of 35% of CO2 emissions is expected in 2050, with the combination

RCP2.6, SSP2 and FEI 60%. For the worst case, RCP8.5, SSP5 and FEI 40%, an increase of

245% of CO2 is expected in 2050. Comparing the two equivalent combinations of RCP and

SSP, the effect of the fuel-efficiency improvement can be assessed. In 2050, the effect of an

improvement of the fuel efficiency from 40% to 60% leads to a drop of the CO2 emissions

between 400 and 900 million of tons depending on the scenario.
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Figure 1.5.: CO2 emissions projections between 2012 and 2050; results of Smith et al.

(2014)

These CO2 emissions forecasts show how it is important to improve the fuel efficiency of

the shipping industry. Therefore, the development of new devices and notably kites in order

to decrease the carbon footprint of ships is important. As highlighted by Traut et al. (2014),

the use of kite on merchant ships is one of the most promising wind device for fuel saving

and a kite is compatible with most of other saving fuel devices, for instance with LNG

engine or flettner rotor.

1.3. Economical interest

The interest of a kite for fuel saving has been investigated in the past by (Naaijen et al., 2006;

Naaijen and Koster, 2010; Leloup, 2014; Leloup et al., 2016). They showed that the kite

towing could provide significant fuel savings without compromising the safety of merchant

ship in terms of mean equilibrium of the system. Their studies have been performed on a

225 m long cargo ship, the British Bombardier. Leloup et al. (2016) investigated the fuel

saving with a kite of 320 m2 , the biggest ever manufactured at the time, with a tether length

of 300 m. This kite area were considered since the Skysail® company had already proven

the validity of the kite towing concept on a bulk carrier of 90 m long. The expected fuel

saving ratio were estimated from 10% with a true wind speed of 9.8 m.s-1and up to 60 %

with a true wind speed of 15 m.s-1. Later, Podeur et al. (2016) investigated the fuel saving

along an ocean trip between Halifax (Canada, Nova Scotia) and Le Havre (France), back

and forth over 4 years.

However in these studies, the kite and its operability costs have not been considered. Here

a very simple approach is proposed. It can be defined an effective saving Ce as follows:
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Ce = Csa − Ck (1.1)

where Ck is the kite cost and the Csa is the fuel saving. The fuel saving can be expressed

as follows:

Csa = η̄kf tdCs,t (1.2)

where η̄kf is the mean fuel saving ratio, td is kite lifetime and Cs,t is ship operating cost per

unit of time.

Meyer et al. (2012) investigated the effect of the ship speed on the profit and operating

cost of a container ship. They show the existence of an optimal speed taking into account

economical aspects. It should be possible to perform the same work to determine an optimal

ship speed with a kite. The ship operating cost can be represented as an increasing function

of the fuel price cf .

The kite cost is directly function of the material cost. The kite cost and the lifetime of a kite

are very important to assess the economical interests of a kite. It can be assumed that the

higher the wind loading considered for the design is, the higher the retail cost of the kite will

be. Consequently, the kite retail cost can be expressed by an increasing function of the wind

loading specs for kite design Ck (σd). The kite lifetime is dependent on many parameters,

but probably the most important one is the following factor of safety, σd/σk which is the

kite wind loading compared to its wind loading of design. Then it can be assumed that the

kite lifetime can be given by a decreasing function of the factor of safety, td (σd/σk).

The counterpart of an important kite wind loading design, is that for given materials used for

the kite and the tether, the weight of the kite system increases. Additionally the minimum

operating wind speed required increases with the kite weight Wk. Consequently, the mean

kite power saving ratio is a function of the kite wind load design as well. Moreover, as

shown by the kite fuel saving studies, the kite fuel saving ratio depends on the weather

condition and on the ship speed.

According to previous discussion studies, the ship profit without kite can be expressed as

follows:

Cp = [Ci,t (Us)− Cs,t (Us, cf )] td (σd/σk) (1.3)

where, Ci,t is the operating income of the merchant per unit of time represented as an

increasing function of the ship speed, which means more round trips per annum. The ship

profit with kite C̃p can be expressed as follows:

C̃p = Cp + η̄kf tdCs,t (Us, cf )− Ck (σd) (1.4)
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1.3. Economical interest

Thus a kite profit ratio ηp = C̃p/Cp, being the profit with kite divided by the profit without

kite can be expressed as follows:

ηp = 1 +
1

Ci,t (Us)− Cs,t (Us, cf )

[
η̄kf (Utw, Us, σd)Cs,t (Us, cf )−

Ck (σd)

td (σd/σk)

]

(1.5)

This kite ratio profits makes sense only if Ci,t (Us) > Cs,t (Us, coil). The kite towing

technology has an economical interest if the kite profit ratio ηp is higher than 1. This

economical criteria can be simplified as follows:

η̄kf (Utw, Us, σd)Cs,t (Us, cf )
td (σd/σk)

Ck (σd)
> 1 (1.6)

Results presented by Podeur et al. (2016) show that the kite fuel saving ratio decreases with

the ship speed. The evolution of the kite profit ratio with the ship speed are less obvious

since the ship operating cost per day increases with the speed. According to Meyer et al.

(2012), the ship operating costs of a 8000 TEU container ship is around 50 k$ per day at a

ship speed of 10 m.s-1. Figure 1.6 shows the minimum kite fuel saving ratio to make profits

as function of the kite cost and for different kite lifetime is day. For instance, with a kite

cost of 200k$, the kite should have at least an efficiency of 11.5% and a lifetime of 35 days

or five days of lifetime with 80 % of fuel saving efficiency.
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Figure 1.6.: Minimum required kite fuel saving ratio as function of the kite cost and different

kite lifetime for a 8000 TEU container ship with ship operating cost of 50k$ per

day.

Moreover an increase of the fuel price is a benefit for the kite towing technology. Figure

1.7 shows the oil price evolution over the period 2005-2017. The oil price was stabilized
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around 90-100 USD between 2011 and 2014 and dropped drastically around 45-50 USD

since 2015. This important price drop was caused by output growth of the OPEP and Rus-

sia to protect their market from the oil shale producers. Since 2017, the oil shale producers

improved their process, now they make profit from an oil price per barrel of 30 USD. Con-

sequently, the oil price per barrel may stay relatively low for a while. The kite towing

technology might be delayed since its profits are dependent of the oil price.
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Figure 1.7.: Oil price per barrel since 2005

1.4. Beyond the sea® project

The beyond the sea® project began in 2007 under the initiative of the french navigator Yves

Parlier. In 2014, a consortium of industrial partners and research center joined the beyond

the sea® project with the sponsorship of the French Environment and Energy Management

Agency (ADEME). ADEME ranked the beyond the sea® project as the more convincing

project to succeed in the call for project “ship of the future”. This consortium is composed

of french industrial and academic partners able to offer expertise and technology to develop

the system. The industrial and academic partners of the beyond the sea company are:

• Cousin Trestec, manufacturer of innovative ropes and braids.

• Porcher Industries, manufacturer of innovative fabrics.

• Bopp, designer and manufacturer of hydraulic and electrical winches and deck equip-

ment for marine applications.

• CMA-CGM, worlwide shipping group.

10



1.4. Beyond the sea® project

• ENSTA Bretagne, a french national graduate engineering institute and the Dupuy de

Lôme Research Institute.

• DAAM, a company handling a fleet of competition sailing boats. DAAM is in charge

of trials carried out at sea.

The Beyond the sea® company is in charge of the practical knowledge for the kite design,

control, launching and recovery procedures. To solve the associated technological chal-

lenges, the company works in close cooperation with research laboratories. The launching

and recovery procedures have been investigated by Du Pontavice (2016) at the Ladhyx the

research laboratory of the Ecole Polytechnique. The control of the kite is investigated by

the IMS laboratory by Cadalen et al. (2017).

The theoretical understanding of the ship towed by a kite system is managed by the ENSTA

Bretagne laboratory IRDL in close cooperation with the industrial partner and the ENSM

(Ecole Nationale Supérieure Maritime), with trains merchant ship officers. Leloup (2014)

developed the first theoretical knowledge on the fuel saving predictions and the fluid struc-

ture interaction on the kite for the Beyond the sea® project. The research program managed

at the ENSTA Bretagne can be split into three fields. The kite is a very flexible structure, its

geometry is highly dependent on its aerodynamic loading. The prediction of the kite flying

shape, deformations and stresses constitute one a of the major scientific and technical issue

to address. A second major scientific issue concerns the influence of the kite on the ship,

both in terms of fuel savings and in terms of ship motions and operability. The third field of

research concerns the experimental study of the dynamic kite flight and ship towed by kite.

Since 2014, these three fields are the purpose of three PhD programs. Among these scien-

tific challenges, the present PhD dissertation deals with the prediction of the ship motions

induced by a towing kite and its operability.
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2. Position of the problem and strategy

2.1. State of the art

The state of the art section is focused on the theoretical knowledge of the ship towed by a

kite system. A more extensive literature review could have been achieved for each subsys-

tems but it was preferred to provide these reviews in each dedicated chapters.

The first theoretical work about a kite can be found early in the eighties with Loyd (1980).

This work was focused on the wind power production. Then Wellicome and Wilkinson

(1984) used a zero mass kite model to estimate the kite towing force during a dynamic kite

flight. This model neglects the mass of the kite and assumes straight and inelastic tethers.

Then, in (Wellicome, 1985), they compared different wind system for the propulsion of

ship. They showed that the kite is one of the most promising technology for fuel savings.

Later, Naaijen et al. (2006); Naaijen and Koster (2010) applied the mean kite towing force

obtained with a zero mass kite model to solve the ship equilibrium in terms of surge, sway

and yaw motions. The promising fuel savings were confirmed despite the induced resistance

due to the ship drift. Their work was the first theoretical result predicting the fuel saving for

different sailing conditions. Moreover, they argued that a kite should be attached at the bow

to limit the rudder angle to counteract the kite yaw moment. Dadd (2013) paid attention

to the validation of the zero mass kite model, and to the associated fuel saving solving

only the surge equilibrium. The comparison of the zero mass kite model with experiments

is presented in (Dadd et al., 2010). Results show, despite the simplicity of the modeling,

a good agreement. Consequently, Leloup et al. (2014) used the zero mass kite model to

compare a kite with a classical rig on a sailing yacht. Leloup (2014) solved the longitudinal

equilibrium of a cargo ship over a transatlantic trip to estimate the mean fuel savings.

The most advanced work in terms of ship modeling were achieved by Ran et al. (2013) us-

ing the SEAMAN maneuvering and seakeeping in-house code of the Swedish Ship Testing

Institute (SSPA) described in (Ottoson and Bystrom, 1991). The kite force was estimated

with a zero-mass kite model on a predefined trajectory. The coupling between the ship and

the kite was partially taken into account by means of the instantaneous horizontal ship ve-

locity. The considered position to compute the ship velocity was not detailed. The influence

of the vertical ship velocity were neglected. Their results have been presented in terms of

mean equilibrium. This work was a first attempt to study the dynamic motions of a ship

towed by kite and only few details on the methodology were provided,which are too few to
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be useful. Unfortunately, no further work from the authors was published on the topic, as

far we know.

2.2. Scientific issue and objectives of the thesis

As shown by the literature review, the existing knowledge about ships towed by kites had

been motivated by the demonstration of the economical interest of the kite by solving the

equilibrium of the ship according to a mean kite towing force. To consider a mean towing

force is a strong assumption. A kite performing a dynamic a flight imposes to the ship

an oscillatory excitation. The coupling between a ship and a kite may modify the mean

equilibrium of the system. The dynamic motions of the system, may have an impact on the

fuel saving estimation. Moreover, the kite oscillatory excitation may represent a risk for the

ship safety in terms of seakeeping and maneuverability, and crews must be trained about

how the kite system works and interacts.

From the kite design point of view, ship motions due to the kite and the sea state may modify

the kite flight leading to an increase of the wind loading applied on the kite. The dynamic

loading will probably leads to a heavier design. Consequently, the wind velocity required

to launch the kite will increase. As discussed in Sec. 1.3, the kite cost increases with the

wind loading and may have a significant impact on the kite profit.

The aim of this thesis is therefore to investigate the effect of the dynamic motions of a ship

towed by kite on safety, profits and fuel savings. The dynamic motions of a ship towed

by kite depends on parameters such as the kite area, tether length and tether attachment

point. The scientific issue is to determine the influence of these parameters on the dynamic

motions of the systems and on its operability.

The chosen strategy is to investigate this problematic with quasi-analytical and numerical

modeling approaches. As much as possible, employed methods should be transferable as

in-house code to provide dedicated tools to design kite towing systems for ships. There-

fore, the modeling must be open for different types of ship. Moreover, in applied physics,

numerical methods are generally developed to describe an identified phenomenon. On the

contrary, for this scientific issue, the practical knowledge on the kite towing of large ship is

almost nonexistent or confidential1 Consequently, methods developed in this study should

be fast enough to run a large number of configurations and accurate enough to represent the

important physics phenomena related to the system. The trade off between computational

time and accuracy associated to this work is therefore arbitrary.

1Cargo ship, MS Beluga Skysails
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2.3. Organization of the thesis

The thesis is organized in three major parts:

• The part II deals with the kite system modeling including the tether. The zero mass

kite model is presented in Chap. 3. In this chapter a comparison with experimental

data at full scale is performed. Since the zero mass kite model assumes straight and

inelastic tether, the Chap. 4 investigates the relevancy of these assumptions with a

quasi-analytical model based on the catenary equation. Thanks to the quasi-analytical

tether model, a low wind limit to enable a static kite flight is developed in Chap. 5.

• The part III focuses on the development of a dynamic ship model in time domain

to perform a monolithic coupling with the kite model. Chapter 6 introduces a time

domain method to take into account seakeeping motions. The model is compared to

towing tank experimental results. Chapter 7 presents a method mixing the maneuver-

ing equations of motions with the presented time domain seakeeping modeling. The

mixed model is compared to free sailing results and other empirical methods.

• The part IV is dedicated to the coupling of the kite modeling with the ship modeling.

First, based on the presented ship model, the mean equilibrium of a ship is performed

in Chap. 8. The influence of the sailing condition, the tether attachment position and

the windage force are investigated. In Chapter 9, the interactions between the kite

and the ship are studied in both calm water and waves conditions with the presented

ship modeling limited to heave, roll and pitch motions. To take into account the 6

degrees of freedom (dof) of the ship, the course keeping stability is investigated in

Chap. 10. The last chapter 11 presents results of free sailing simulations in calm

water and regular waves. The influence of the dynamic motions on ship and kite

performances are compared to the mean equilibrium approach. The interactions phe-

nomenon highlighted in Chap. 9 are studied modeling the 6 dof with different tether

lengths.

The conclusion summarizes the results of each chapter and proposes several recommenda-

tions to continue and enhance the presented work.

15





Part II.

Kite modeling

17





3. Zero-mass kite model

Résumé: Modélisation du kite sans masse

Un cerf-volant est une structure légère et flexible. La canopée du cerf-volant est générale-

ment fabriquée en toile légère. La structure du cerf-volant peut être renforcée par des

boudins gonflables et un réseau de brides. Sa forme en vol est très dépendente du charge-

ment aérodynamique et de façon réciproque le chargement aérodynamique est très dépen-

dent de la forme en vol. Ainsi, pour calculer les performances en vol du cerf-volant il

faudrait en toute rigueur résoudre le problème couplé : fluide et structure. Cependant de

telles méthodes sont coûteuses en termes de temps de calcul. D’autres méthodes plus sim-

ples ont été développées dans la littérature pour estimer les performances d’un cerf-volant

: vitesse et force de traction. La plus simple d’entre-elles fait l’hypothèse d’un cerf-volant

sans masse avec des lignes droites et inélastiques (Wellicome and Wilkinson, 1984; Dadd

et al., 2011; Leloup et al., 2016). Cette approche est utilisée dans l’ensemble de la thèse.

Dans ce chapitre l’équation cinématique du vol du cerf-volant est introduite, cf. Eq.

3.1.Cette équation analytique est ensuite analysée pour mettre en évidence un majorant

analytique du maximum de traction (Eq. 3.18) ainsi que le maximum de force propulsive

(Eq. 3.19) en tenant compte d’une loi d’évolution de la vitesse du vent avec l’altitude en

puissance 1/7. Il est ensuite montré qu’au vent arrière, un cerf-volant peut fournir par exem-

ple 3.67 fois plus d’effort propulsif qu’une voile de Laser (dériveur olympique), à support

nautique identique.

L’équation cinématique du cerf-volant dépend de la finesse aérodynamique du cerf-volant

et la traction du cerf-volant dépend du coefficient de portance. Il est donc important d’es-

timer correctement ces deux paramètres. Précédemment, à travers la littérature consacrée,

ces deux coefficients ont été considérés constants au cours du vol de façon à obtenir en

moyenne la même vitesse de cerf-volant et la même force de traction. Ici, en suivant la

même démarche, une comparaison avec des essais de vol de cerf-volant instrumenté ont

permis de montrer que les amplitudes de vitesse et de force de traction ne pouvait être

correctement représentées avec un modèle à coefficient constant, cf. Fig. 3.5.

Pour l’étude des mouvements dynamiques d’un navire tracté par cerf-volant, l’estimation

des amplitudes d’effort est pourtant cruciale. En effet, en théorie linéaire, les amplitudes

de mouvement d’un navire sont proportionnelles aux amplitudes d’excitation. Ainsi, une

formulation linéaire de l’angle de finesse et du coefficient de portance en fonction de la
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3. Zero-mass kite model

valeur absolue de la dérivée de la direction de la vitesse est proposée. Les coefficients

de la loi linéaire sont adimensionnés par le rapport entre une longueur caractéristique du

cerf-volant et la vitesse du vent relatif perçue par le navire. La longueur caractéristique du

cerf-volant choisie est la racine carrée de sa surface. A dérivée de la direction constante,

la perte de performance aérodynamique en virage augmente avec la taille du cerf-volant et

diminue avec la vitesse du vent. Comparé au cas de vol dynamique choisi, la correction

est satisfaisante, cf. Fig. 3.6. Cependant afin de valider cette approche, une étude traitant

plusieurs cas de vol dynamique serait nécessaire.

3.1. Introduction

A kite is mainly composed of flexible and light materials such as fabric. The canopy is made

with a very light fabric. Eventually, a kite is also composed of inflatable tubes as battens in

the chord direction and at the leading edge. The bridle lines connect the kite structure to the

tethers. A kite is controlled by the variations of the bridle line length or tether lengths. This

adjustement of bridle line can be performed by a control pod below the kite (cf. Fig. 3.1a)

or directly with the back tethers (cf. Fig. 3.1b). Since only a small part of the aerodynamic

force is distributed to the back tethers or the bridle lines closed to the trailing edge (around

20-30%), they are controlled to modify the kite flying shape. In this way, the actuator has

low energy consumption. This modification of the kite flying shape leads to a dissymetric

aerodynamic loading which enables a modification of the kite heading.

The most advanced kite models take into account the complete kite Fluid Structure In-

teraction (FSI). The kite FSI problem is usually solved by iterative processes coupling a

structural solver, generally a Finite Element (FE) model, and a fluid solver in order to de-

scribe the aerodynamic pressure distribution (Bosch et al., 2014; Chatzikonstantinou, 1989;

Breukels et al., 2013). These methods are very usefull to evaluate the stress in the fabric

and in the inflatable tubes.

However, all these approaches are time consuming. Consequently, many studies focusing

on the global kite system performance use simpler approaches. These simple approaches

can be classified into three groups: zero-mass model (Wellicome and Wilkinson, 1984;

Dadd et al., 2011; Leloup et al., 2016), point-mass model (Williams et al., 2008) and rigid

body model (Williams et al., 2008; Terink, 2009; Terink et al., 2011). The zero-mass model

neglects the mass of the kite and assumes that the tether is straight and inelastic. These

assumptions lead to a kinematic equation of the kite motion. The influence of the ship

motions on the kite flight can then be taken into account trough the tether attachment point

velocity. This model has the advantage of being very fast to compute.

First, the zero-mass model such as formulated by Leloup et al. (2016), dynamic kite trajec-

tory and the control of the kite are detailed. According to the zero mass model, a convenient

upper bound of the tether tension during a dynamic flight is developed. Then, a comparison
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Canopy

Inflatable Batten

Tether

Control pod

Bridle lines

Inflatable leading edge

(a) Schema of an inflatable kite with a single tether con-

trolled by a pod

Bridle lines

Front tether
Back tether

Canopy

Inflatable Batten

Inflatable leading edge

(b) Schema of an inflatable kite controlled by the

two back tethers

Figure 3.1.: Tether and bridle lines

with experimental data is provided. Based on experimental data, a correction of the lift to

drag angle and lift coefficient as functions of the kite yaw turning rate are proposed.
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3. Zero-mass kite model

3.2. Kite velocity and force

This section summarizes the development of the zero-mass model as formulated in (Leloup,

2014; Leloup et al., 2016). The masses of the tether and the kite are neglected. The tether

is assumed to be straight and of constant length Lt. Consequently, the kite velocity is

normal to zk and for any configurations the tether tension is opposed to the aerodynamic

kite force. Assuming that the apparent wind velocity is in its symmetry plane, Leloup et al.

(2016) expressed the kite velocity Uk, with respect to tether attachment point velocity Ua,

as follows:

Uk = Urw,ka


xvk · xrw,ka +

√
(
xvk · xrw,ka

)2
+

(
zk · xrw,ka

sin ǫk

)2

− 1


xvk, (3.1)

where U rw,kadenotes the relative wind speed, U rw,ka = U tw (K)−Ua−U c and xvk is the

kite velocity direction with respect toA. ǫk denotes the lift to drag ratio angle. This equation

constitutes the kite kinematic equation of motion and can be integrated numerically.The kite

velocity is a real number if the following condition is satisfied:

(
xvk · xrw,ka

)2
+

(
zk · xrw,ka

sin ǫk

)2

− 1 > 0. (3.2)

Then, the tether tension is given by the following formula:

T k = −ρaClkAkU
2
aw

2 cos ǫk
zk (3.3)

The generalized tether force vector acting on the ship at OS with respect to the s frame is

expressed as follows:

F k =
[
T
(s)
k OSA

(s) × T
(s)
K

]T
(3.4)

According to this model, the kite flight is modified by the ship motions through the tether

attachment point velocity with the expression of the relative wind speed:

U rw,ka = U tw (K)− Ua − U c (3.5)
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3.3. Wind gradient

The wind above the sea increases with the altitude due to the friction stress on the free

surface within the atmospheric boundary layer. This phenomenon, called wind gradient

can have a significant effect on the kite performance. A common way to take into account

this effect is to use a wind gradient power law as investigated by Peterson and Hennessey

(1978):

U tw = U ref

(
x
(n)
z

zref

)nv

(3.6)

where U ref denotes the true wind speed at the altitude of reference zref . According to

a multi-site study Peterson and Hennessey (1978) suggested that a power law exponent

nv = 1/7 is realistic. This simple formulation of the wind gradient is suggested by the Ittc

(2014) as well.

3.4. Kite trajectory and control

3.4.1. Control

The kite velocity direction xvk is controlled in order to follow a trajectory denoted by C .

The kite velocity direction is defined by the target point K̃ expressed as follows:

K̃ = C (λ+ ‖Uk‖ dt) , (3.7)

where λ is the curvilinear abscissa of Cλ the closest point of the trajectory from the current

kite position K. Hence, the kite velocity direction xvk is defined as follows:

xvk =

(
KK̃ · xk

)
xk +

(
KK̃ · yk

)
y
k∥∥∥

(
KK̃ · xk

)
xk +

(
KK̃ · yk

)
y
k

∥∥∥
(3.8)

The point Cλ is determined according to the following equation:

KCλ · tλ = 0, (3.9)

where tλ is the tangent vector to the trajectory at curvilinear abscissa λ. Equation (3.9) is

solved numerically with a Newton-Raphson algorithm.

Any trajectory can be considered thanks to the use of a numerical solver to determine Cλ.

Hence, the trajectory C can be experimental or theoretical.
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K̃

Cλ

ds =

∥

∥

∥U
k

∥

∥

∥ dt

K
U

k

C

t
λ

Figure 3.2.: Schema describing the target point to control the kite direction xvk

3.4.2. Trajectory

To perform a dynamic flight, the considered theoretical trajectory is the eight shape Lis-

sajous curve as used by Argatov et al. (2009) and Leloup (2014). This type of trajectory has

the advantage to avoid twists of the tether system. The Lissajous trajectories, is defined by

the elevation θC and the azimuth φC as follows:

{
θC = ∆θ8 sin (2α) + θ8

φC = ∆φ8 sin(α) + φ8
, (3.10)

where, α ∈ [0; 2π]. θ8 and φ8 are the elevation and the azimuth of the center of the trajectory

denoted by C8. The trajectory is defined with respect to rwra, the relative wind basis with

accordingly to the tether attachment positionA at the reference wind measurement altitude1.

On a sphere of radius Lt, a point C of the trajectory is defined as a function of elevation θC
and azimuth φC with respect to rwra frame as follows:

C =



Lt cos θC cosφC
Lt cos θC sinφC

−Lt sin θC




rwra

, (3.11)

As shown in Fig. 3.3, the Lissajous trajectories can be rotated by an angle χ8 around C8A.

Any point of the trajectory must agree with Eq. (3.2) insuring the realness the kite velocity.

The benefit to define the trajectory with respect to the relative wind basis is that the realness

of the kite velocity along the trajectory does not depend significantly on the ship motions.

Nevertheless, ship motions may modify significantly the shape of the trajectory with respect

to the earth fixed frame n. Consequently, two trajectory definitions are investigated further

in the paper. The first definition takes into account all components of the tether attachment

point velocity. The second definition takes only the horizontal components of the tether

attachment point velocity with respect to the earth fixed frame n to compute the relative

1The subscript r in rwra denotes the altitude of wind measurement and should not be confused with the

subscript r for the rudder.
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C

U
re fθC

φC
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y
rw,ra

χ8

C8

C

Figure 3.3.: Schema of the Lissajous trajectory parameterization

wind basis. This modified relative wind basis of trajectory definition is denoted by r̃wra

and is given as follows:

Ũ
(n)
rw,ra = U

(n)
tw (zref )−

[
u(n)a , v(n)a , 0

]T
(3.12)

3.5. An upper bound of the kite force

For design purposes, maximizing the traction provided by a given kite could be interesting.

Leloup et al. (2016) showed that the apparent wind speed can be expressed as follows:

Uaw = Urw,ka
xrw · zk
sin ǫk

, (3.13)

which can be written in terms of elevation and azimuth as follows:

Uaw = Urw,ka
cos (φk) cos (θk)

sin ǫk
(3.14)

In the case of a zero ship speed with no current U c, the apparent wind speed limit is driven

by:

Uaw ≤ Utw (K)
cos θk
sin ǫk

(3.15)

The true wind speed vary with the altitude due to the wind gradient. Consequently, it exists

a kite elevation to maximize the apparent wind speed. Using the wind gradient expression
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in Eq. 3.6, and assuming that the altitude tether attachment point is zero, Eq. (3.15) can be

expressed as a function of the kite elevation:

Uaw ≤ Uref

(
Lt sin θk
|zref |

)nv cos θk
sin ǫk

(3.16)

The maximum of sinnv θk cos θk is reached for θk = arctan
√
nv. As recommended by

the Ittc (2014), typical value for the power law parameter above the sea is nv = 1
7 , which

leads to an optimal elevation angle of 20.7°. According to the trigonometrical relationship,

cos θk =
√

1
nv+1 and sin θk =

√
nv

nv+1 , the upper bound of the apparent wind velocity is:

Uaw ≤ Uref



Lt
√

nv

nv+1

|zref |



nv
√

1
nv+1

sin ǫk
(3.17)

In terms of kite force magnitude, the upper bound is:

Tk ≤
ρaClkAk

2 cos ǫk sin
2 ǫk (nv + 1)

U2
ref

[
L2
tnv

z2ref (nv + 1)

]nv

(3.18)

The maximum of kite towing force is obtained for θk = arctan
√

2nv/3, consequently

T k · xtw is maximized by:

T k · xtw ≤ ρaClkAk

2 cos ǫk sin
2 ǫk

(
2
3nv + 1

)3/2U
2
ref

[
L2
tnv

z2ref
(
nv +

2
3

)
]nv

(3.19)

Just by the way as an illustrative example, the performance of a kite can be compared to the

sail performance of the Olympic Laser Class at downwind. Performing s-turn maneuvers,

Schutt and Williamson (2017) showed that the downwind force coefficient can reach a value

of Cdc = 2.5. The s-turn is a maneuver performed by the athlete combining an oscillating

yaw motion with an oscillating roll motion to increase the downwind force coefficient. Ne-

glecting, the benefit from the wind gradient for the kite, and considering the same sail area,

the ratio of propulsive force between a kite and a Olympic Laser Class rig is at downwind

is written as follows:

T k · xtw
1
2ρaCdcAkU

2
ref

<
Clk
Cdc

1

2 cos ǫk sin
2 ǫk

(3.20)

Referring to the literature, Dadd et al. (2010) measured on a classical kite a lift to drag angle

of 12° and a lift coefficient of 0.776. This example leads then to the statement that a kite is

up to 3.68 times more powerful than a classical rig at downwind. A more comprehensive
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comparison was performed by Leloup et al. (2014). They compared the performance of a

keel yacht Beneteau First Class 8 and its classical rig with the same keel yacht but equipped

with a kite of 25 m2. The classical sail area of the Beneteau First Class 8 is 34 m2 at upwind

and 65 m2 at downwind. With the kite, the authors argued that the ship performance is

increased by 40% at upwind and by 250% at downwind.

3.6. Comparison with experimental data

The zero-mass kite model is compared to the experimental data obtained by Behrel et al.

(2017). As shown in this section, the zero mass kite model dependends on two parameters,

the kite lift coefficient Clk and the lift to drag angle ǫk. These coefficients must be adapted

in order to fit the data. The onshore full scale trials (Behrel et al., 2017) was performed with

a classical kite Cabrinha® Switchblade of 5 m2 designed for kite-surfing. The tether length

was 80 m long. During the run, the kite performed eight shape trajectories controlled by

an autopilot based on the algorithm proposed in (Fagiano et al., 2013). The experimental

kite position is determined with a 3D load cell assuming that the tethers are straight, which

seems reasonable as a first approach. The evolution of the wind velocity with the altitude

was identified thanks to a SOnic Detection And Ranging (SODAR). Experimental results

presented here correspond to a phase averaging post-processing of a 5 minutes kite flight

run.

Figure 3.4 shows the evolution of the wind velocity with respect to kite altitude on the

average trajectory. The SODAR measured the wind velocity at altitudes of 48 m, 53 m and

58 m. The cross represents the wind velocity at kite positions during the run. Hence, for the

presented case, the wind velocity has been fitted with a linear function such as:

Utw = 3.16− 0.035k(n)z (3.21)

The wind gradient function in Eq. (3.21) was therefore used for following simulation re-

sults.
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Figure 3.4.: Linear evolution of the wind velocity along the altitude of the average trajectory

3.6.1. Comparison with the zero-mass model

The zero-mass model presented in (Leloup et al., 2016) assumes a constant lift to drag angle

and a constant kite lift coefficient. The kite velocity is only dependent of ǫk. Consequently,

zero-mass model results presented are obtained with a lift to drag angle which enables kite

trajectories to be done in the same time of 5.86 seconds than the experimental data. The

kite towing force is dependent on the kite lift coefficient. Hence, the kite lift coefficient is

adjusted in order to obtain the same mean towing force. Note that the kite trajectory used

for the simulation is the same than the kite trajectory of the experimental measurements.

The position of the kite is integrated with the 4th order Runge-Kutta scheme with a time

step of 0.1 s. According to the convergence time step performed in Annex B.1, a time step

of 0.1 s is small enough.

Figure 3.5 shows the evolution of the kite velocity and the evolution of the tether tension

at point A on the average trajectory. The experimental velocity is obtained by finite differ-

entiation, which induces some noise in the signal sampled at 50 Hz. This noise in terms

of speed and tension for the simulated results still exists since the simulation uses the av-

erage kite trajectory of the experimental data. However, this noise is barely visible as the

sampling frequency of the simulation is only 10 Hz. The kite lift to drag angle and the lift

coefficient used for the zero-mass model are respectively 12.45° and 0.855. Relative mar-

gins in terms of tension and velocity between simulation results and average experimental

data are respectively around 1% and 0.1%.

The main difference between experiments and results concerns the tether tension and kite

velocity oscillatory amplitudes. Amplitude predicted by the simulation is slightly underes-

timated for velocity results but is less satisfying for tension results. The error in terms of

amplitude of tether tension is more significant.

The tether tension given by Eq. 3.3 is a linear function of the square of the apparent wind

velocity, consequently a tension error is linearly dependent on the square of the kite velocity
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error. In order to perform an eight pattern trajectory, the back tether are steered. The

difference of the two back tether lengths leads to an important deformation of the kite flying

shape. Hence, a modification of the kite lift coefficient and of kite lift to drag ratio angle

can be expected.
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Figure 3.5.: Evolution of the kite velocity and the evolution of the tether tension at point

A along the average trajectory: comparison of the zero mass model set with

constant lift to drag angle and lift coefficient with the average phasing of the

experimental data.

3.6.2. Modification of the kite aerodynamic specs

When the back tethers are steered to impose a yaw rate to the kite, the flying shape is

highly modified. This shape modification leads to an evolution of the aerodynamic specs

of the kite. Even without considering tip vortices, the yaw rate induces an evolution of

the local inflow velocity along the kite span. According to Eq. (3.1), the kite velocity is

independent of its area. Consequently, for a given radius of curvature of the trajectory, the

evolution of the local inflow along the span and the effect of the flying shape deformation

are more consequent with larger kites. Here it is assumed that the evolution of the kite lift

to drag angle ǫk = arctan (Cdk/Clk) and lift coefficient are proportional to the ratio of a

characteristic length of the kite with the radius of curvature of the trajectory. For a given
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aspect ratio, the characteristic length of the kite can be
√
Ak. To be more precise, the radius

of curvature to consider is the radius of curvature of the projected trajectory on the plane(
K,xk, yk

)
. Let us denote this radius of trajectory R̃C . The lift to drag angle and the lift

coefficient could written as follows:




ǫk = ǫ0 + κ

′

ǫ

√
Ak

R̃C

Clk = Cl0 + κ
′

l

√
Ak

R̃C

(3.22)

where, κ
′

ǫ and κ
′

l are two coefficients. Eq. (3.22) can be rewritten in terms of heading

rate according to the relationship between the radius of curvature of the trajectory and the

kite velocity. Using the Fresnet’s relationships, R̃C can be rewritten as function of the

turning rate of the kite velocity direction around the axis zkn denoted γ̇n, where γn is the

angle of xvkn with respect to xkn. Furthermore, according to Eq. (3.1), the kite velocity

is proportional to the relative wind speed, thus the correction proposed can be rewritten as

function of γ̇n and the relative wind speed as follows:

{
ǫk = ǫ0 +

√
Ak

Urw
κǫ |γ̇n|

Clk = Cl0 +
√
Ak

Urw
κl |γ̇n|

(3.23)

The determination of coefficients ǫ0, κǫ, Cl0 and κl can be evaluated by comparison with

the experimental data set. First, ǫ0 and κǫ are identified in order to obtain respectively the

same maximum and minimum speed than the experiments. Then, Cl0 and κl are identified

in order to obtain respectively the same maximum and minimum tether tension than the

experiments. According to this method, following values were identified:





ǫ0 = 0.2013 rad

κǫ = 0.0422

Cl0 = 0.9856

κl = −0.3718

(3.24)

The results in terms of kite velocity and tether tension are plotted in Fig. 3.5. With the

modification introduced for the lift to drag angle and the lift coefficient, the noise in the kite

velocity and the tether tension time series is more significant. Indeed, the computation of

the kite yaw rate requires two finite differences of the kite position. However, as expected

with the identification method of ǫ0, κǫ, Cl0 and κl, the amplitude of the kite velocity and

the amplitude of the tether tension are respected.

An overall good agreement is found in terms of velocity but a slight phase difference exists

between simulation results and experimental data. Results presented by the modified model,
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Figure 3.6.: Evolution of the kite velocity and the evolution of the tether tension at A along

the average trajectory: comparison of the zero mass model with a lift to drag

angle and a lift coefficient linarly depedent of the kite yaw rate with the average

phasing of the experimental data.

are almost in the range of the ±2σ of the tether tension. The linear modifications of the lift

to drag angle and of the lift coefficient with the kite yaw rate lead to a main inprovement of

the zero mass model. However, these modifications should be tested for more experimental

cases. Finally, since at the first order ship motions are proportional to the amplitude of

excitation forces, these modifications ,as they enhance the prediction of the kite excitation

amplitude, are very crucial.

Moreover, the minimum allowable radius of curvature of the trajectory can be estimated

according to Eq. (3.22). Indeed, during a kite flight Clk must be positive. This means that

the trajectory radius of curvature must satisfy the following condition:

R̃C > − κ
′

l

Cl0

√
Ak (3.25)

As for numerical application, the maximum trajectory radius of curvature of the 5 m2

Cabrinha® Switchblade is 2.23
√
Ak ≈ 5.0 m, which is approximately its span length. This

is consistent with observations on kites dedicated to kite-surfing.
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3. Zero-mass kite model

Coefficients ǫ0, κǫ, Cl0 and κl are dimensionless quantities. Consequently, modifications

presented in Eqns. (3.23) and (3.24) were kept for the next steps of this study.

3.7. Conclusion

In this chapter, the zero-mass kite model with straight and inelastic tether has been intro-

duced. According to this model, an upper bound of the tether tension has been identified.

Its classical version assumes a constant lift to drag angle and a constant lift coefficient. A

comparison with experimental data have shown that this assumption is not realistic in terms

of velocity amplitude and tether tension. Since ship motions are theoretically proportional

to excitation forces, a correction of the classical zero mass model has been proposed. This

modification assumes that the kite lift to drag angle and the kite lift coefficient are linearly

dependent of the kite yaw rate. The resulting model is then dependent on four parameters. A

good agreement is found between the experimental data and the modified zero mass model.

However a phase difference is observed. This phase difference is probably due to the tether

effect and the kite mass.

Tether effects are neglected with this kite model. Since the tether system is the link between

the kite and the ship, it appears necessary to investigate the importance of the tether in such

a system. Consequently, a tether analysis is provided in the next chapter.
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4. Static analysis of tethers

Résumé: Analyse statique des lignes

Dans le chapitre précédent, pour obtenir une équation cinématique de vol de cerf-volant,

une hypothèse de ligne droite et inélastique a été employée. Cette hypothèse est forte et

mérite d’être discutée. Dans ce chapitre, un modèle analytique de ligne de cerf-volant est

développé dans le cas d’un vol statique.

Le modèle de ligne se base sur l’équation de la chainette qui suppose une ligne inélastique

et un chargement linéique constant. Ce modèle présente l’avantage d’être analytique. La

forme de la ligne et la tension aux extrémités dépendent de la position du cerf-volant et du

chargement aérodynamique sur la ligne. Ce problème peut également être résolu de façon

inverse si la force aérodynamique du cerf-volant est connue. Le chargement aérodynamique

varie le long de la ligne à cause du gradient de vent et de la direction locale de la ligne. Un

modèle de chargement aérodynamique équivalent constant est donc proposé. Par ailleurs,

la force aérodynamique du cerf-volant dépend de sa position, le problème est donc couplé.

Ainsi, l’équation d’équilibre entre le cerf-volant et la ligne est résolue numériquement.

Dans un premier temps l’implémentation du modèle est vérifiée sur un cas académique

d’une ligne soumis à son poids propre. Dans un second temps, le modèle de chargement

équivalent est discuté au travers d’une comparaison avec une modélisation de ligne par

éléments finis. Les résultats montrent que le fait de supposer un chargement aérodynamique

constant n’est pas significatif sur les différences de tension et de direction entre les deux

extrémités. En effet, les différences relatives entre les deux modèles en termes de tension et

de direction sont respectivement inférieures à 2% et 1.2%.

Par la suite, avec le modèle de ligne présenté, les différences de tension et d’angle aux deux

extrémités de la ligne sont étudiées en fonction du vent pour un cas de vol statique au zénith

i.e. angle d’azimuth nul par rapport à la direction du vent. Pour se rapprocher d’un cas de

vol dynamique, des vitesses de vent allant jusqu’à 65 m.s-1 sont considérées. La différence

de tension entre les deux extrémités tend vers zéro avec l’augmentation de la vitesse du vent.

La différence d’angle entre les deux extrémités tend vers une valeur constante non nulle. En

effet, la force aérodynamique du cerf-volant ainsi que le chargement aérodynamique de la

ligne augmentent avec la vitesse du vent. Pour le cas considéré, à partir de 10 m.s-1 de vent

les lignes peuvent être considéré droites. En se basant sur le modèle cinématique de kite
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4. Static analysis of tethers

sans masse, en vol dynamique, un vent apparent de 10 m.s-1 correspond à un vent réel de 2

m.s-1.

Par cette analyse on peut considérer que si les effets d’accélération sur lignes sont nég-

ligeables dans le cadre d’un vol dynamique, l’hypothèse de ligne droite nécessaire au

développement du modèle cinématique de cerf-volant sans masse est raisonnable. Il serait

alors intéreressant de poursuivre cette investigation pour quantifier l’effet de l’accélération

sur les lignes en vol dynamique de cerf-volant.

4.1. Introduction

The tether is the interface between the kite and the ship. It seems crucial to investigate the

role played by the tether in such a system. Using a classical kite, it can be observed that the

tether sag is particularly important for a static kite flight configuration in a case of low wind

speed. In a case of a dynamic kite flight, the tether sag may be quite small and the tether

may be almost straight. This chapter is a first approach to investigate the effect of the tether

on the kite flight. The benefit of the zero mass model (cf. Chap. 3) is its simplicity which

is however due to some strong assumptions. The weight of the kite and the weight of the

tether are neglected and the tether is assumed to be straight. Here, through a static analysis,

the effect of the tether weight and shape on static kite flight configuration are investigated.

Tethers are currently made of fiber materials such as Dyneema® (Ultra-high-molecular-

weight polyethylene, UHMWPE). This means that compression, transverse shear, bending

and torsional stiffness of the tether can be neglected compared to the tensile stiffness. In

addition, the tether shape is highly dependent on aerodynamic loading acting on the tether

surface and tether gravity acting on the tether volume. This kind of structure has been

studied for other industrial applications such as electrical power lines, anchored offshore

structures, tethered underwater vehicles or sling loads. Tether models for airborne wind

energy applications were inspired by these applications. Williams et al. (2007) developed a

so-called lumped mass model for dynamic flight. The mass of each element is concentrated

on each node and the distance between each node remains constant. Breukels and Ockels

(2007) used discrete element modelling with inelastic bar elements. Argatov et al. (2011)

took into account sag due to wind load and tether weight, assuming that the tension along

the tether is constant. They proposed a method to calculate wind load by neglecting the

tangential wind component relatively to the line. They showed how tether effects decrease

the electric power production for a dynamic flight. A model considering the tether as a

single straight elastic spring to account for material stiffness has been used in order to

study the stability of the kite during a dynamic flight by Terink et al. (2011). All these

tether models have been developed for dynamic flight and are still valid for static flight.

Nevertheless, for discrete models, an artificial structural damping needs to be added to

reach the static equilibrium as reported by Breukels and Ockels (2007).
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4.2. Mathematical model

Considering low wind velocities, tether sag could be important, therefore a single straight

elastic spring modelling the tether (Terink et al., 2011) could not become a realistic enough

assumption. Varma and Goela (1982) developed a soft kite tether model for static kite flights

at zero azimuth angle. Their model is based on the catenary curve. They considered a

flexible tether of constant length and mass per unit length. Indeed, the average aerodynamic

loading applied on the tether is not significantly modified by increasing the length of the

tether due to its tensile stiffness. Hobbs (1986) studied the influence of the wind velocity

gradient effect on the tether shape for static kite flights at zero azimuth angle. He concluded

his study on the wind profile influence arguing that the main factor influencing the tether

shape is the mean quadratic wind velocity according to the altitude. On the other hand,

being quasi-analytical, the model proposed by (Varma and Goela, 1982) has the potential to

sufficiently reduce computation times in order to perform tether analysis at the early stage

of the design.

This chapter provides a quasi-analytical formulation of the catenary curve (Irvine, 1981;

Varma and Goela, 1982) to model a flexible tether of a constant length for any static kite

flight position, with an arbitrary attachment point altitude on the ship deck, and with a wind

velocity gradient law for kite towing forces estimation. The determination of tether’s shape

and tension only requires the solution of a one-dimensional transcendental equation with a

fixed-point algorithm. This procedure improves the reliability and the convergence rate of

2D Newton’s method suggested in (Irvine, 1981). A closed-form solution is presented to

evaluate a mean aerodynamic loading on the tether according to the wind velocity gradient

effect.

4.2. Mathematical model

4.2.1. Reformulation of the catenary

The tether model is based on the well-known catenary curve (Irvine, 1981). A constant

load per unit length is applied on the tether. A and K points denote joint connections at

each extremities of the tether, respectively for ship attachment point and kite position. The

tether is assumed to be flexible, of a constant length and with no transverse shear and no

bending stiffness. Consequently, the tether remains in a plane defined by (A, xt, zt) of the

reference frame t. It is assumed that the ship is sailing at a constant speed on a straight

course. Consequently, the ship fixed frame s is Galilean and
[
xs, ys, zs

]
=
[
xn, yn, zn

]
.

The unit vector zt is defined by the load per unit length q in Eq. (4.1).

q = −
∥∥q
∥∥ zt = −qzt (4.1)

The unit vector y
t

is defined as y
t
= (zt ×AK) /‖AK‖, where "×" denotes the cross

product operator. In order to obtain a direct orthonormal coordinate system, the unit vector

xt is given by xt = y
t
× zt. Figure 4.1 illustrates the coordinate systems s and t.
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Figure 4.1.: Tether reference frame t and notations used for the development of the catenary

equation

With the tension T along the tether and s the curvilinear abscissa, Eqns. (4.2) and (4.3)

define respectively the static equilibrium of an infinitesimal tether length ds projected on xt
and zt. T

(t)
x and T

(t)
z denote respectively T · xt and T · zt.

dT
(t)
x

ds
=0 (4.2)

dT
(t)
z

ds
− q =0 (4.3)

According to Eqns. (4.2) and (4.3), a catenary function C must verify the following equa-

tion:

q

T
(t)
x

=
C

′′

(xt)√
1 + C ′ (xt)

2
(4.4)

Therefore, by integration of Eq. (4.4), C could be expressed as follows:

C (xt) =
T
(t)
x

q
cosh

(
q

T
(t)
x

xt +K1

)
+K2 (4.5)

where K1 and K2 are two constants of integration. They are determined by the boundary

conditions: constant tether lengthLt, coordinates ofA = [0, 0, 0]T
t

andK =
[
k
(t)
x , 0, k

(t)
z

]T
t

,

which leads to:

36



4.2. Mathematical model

0 =
T
(t)
x

q
cosh (K1) +K2 (4.6)

k(t)z =
T
(t)
x

q
cosh

(
q

Tyt
k(t)x +K1

)
+K2 (4.7)

Lt =

∫ k
(t)
x

0

√
1 + [C ′ (xt)]

2
dxt =

T
(t)
x

q

[
sinh

(
q

T
(t)
x

k(t)x +K1

)
− sinh (K1)

]
(4.8)

Using trigonometric identities, constants K1 and K2 can be expressed thanks to the bound-

ary conditions in order to obtain the function C. The function C can be expressed by

following Eq. (4.9):

Ct (xt) =
k
(t)
z sinh (κxt) + λ

{
sinh (κyt)− sinh

(
κk

(t)
x

)
+ sinh

[
κ
(
k
(t)
x − xt

)]}

sinh
(
κk

(t)
x

)

(4.9)

where λ and κ are defined by Eqns. (4.10) and (4.11):

λ =
Lt sinh

(
κk

(t)
x

)
− k

(t)
z

[
cosh

(
κk

(t)
x

)
− 1
]

2
[
cosh

(
κk

(t)
x

)
− 1
] (4.10)

κ2
[(
k(t)x

)2
− L2

t

]
= 2

[
1− cosh

(
κk(t)x

)]
(4.11)

It can be noticed that the catenary function does not depend on the load per unit length, q.

Equation (4.11) can be rearranged in order to compute the value of κ. With u = κ2
(
k
(t)
x

)2
,

L̄t =
Lt

k
(t)
x

and β = k
(t)
z

k
(t)
x

, Eq. (4.11) becomes:

u =



argcosh



u
(
L̄t

2 − β2
)

2
+ 1








2

(4.12)

The value of u is computed by applying the fixed-point algorithm to Eq. (4.12). The

convergence is achieved for all positive values of u. Thus, for a given kite position K
and a given ship attachment point position A, tether tension can be expressed by:
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4. Static analysis of tethers

T (xt) =
[ q
κ
, 0,

q

κ
C

′

t (xt)
]T
t

(4.13)

It can be noticed that the inverse of κ is directly proportional to the tension in the xt direction

with the factor q. Consequently, tether shape and tension along the tether are determined

for any kite and ship attachment point.

By contrast to the previous approach, an expression giving the kite location K, for a known

tension at K, could be relevant in order to determine the minimal wind velocity required

for a static flight. This expression is then developed. The tension is tangential to the tether,

which means at K:

C
′

t

(
k(t)x

)
= sinh

(
q

T
(t)
x

k(t)x +K1

)
=
T
(t)
z

T
(t)
x

(4.14)

Then, using Eqns. (4.6), (4.7) and (4.8), expressions for the kite location K with a given

tether tension at K are:

k(t)x =
T
(t)
x

q

[
argsinh

(
T
(t)
z

T
(t)
x

)
− argsinh

(
T
(t)
z − qLt

T
(t)
x

)]
(4.15)

k(t)z =
T
(t)
x

q




√√√√1 +

(
T
(t)
z

T
(t)
x

)2

−

√√√√1 +

(
T
(t)
z − qLt

T
(t)
x

)2

 (4.16)

Equations (4.15) and (4.16) are similar to Eqns. (1.27) and (1.28) given by Irvine Irvine

(1981) in case of a flexible tether of a constant length and with a very large Young’s modu-

lus.

4.2.2. Tether Load Model

The load per unit length on the tether is given by Eq. (4.17), where q
w

denotes the load per

unit length due to wind and q
g

denotes weight distribution, along the curvilinear abscissa.

q (s) = q
w
(s) + q

g
= q

w
(s) +mtgzn (4.17)

where mt denotes the mass per unit length of tether and g the acceleration due to gravity

(g = 9.81 m s-2).

Aerodynamic tether loading modeling qw is rather tricky since a tether can encounter a

wide range of Reynolds number. The flow around a circular cylinder has been widely stud-

ied in the past and is still a research topic as mentioned by Sarpkaya in his literature review
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(2004). In addition, a textile rope has not exactly a circular section. Jung in (2009) per-

formed wind tunnel experiments for various rope sections and various roughness surface at

a Reynolds, Re = 84.0 103. According to his measurements the drag coefficient can vary

from 0.76 to 1.56 with orthogonal flow. Nevertheless, since the Reynolds effect and the

surface roughness are out of the scope of the thesis, the Hoerner formulation (1965) was

chosen similarly to many other authors involved in airborne wind energy. U rw depends on

altitude, and therefore q
w

as well. Since the catenary tether model requires only constant

load per unit length (cf. Sect.4.2.1), an approximation of constant wind tether load must be

achieved. The determination of an equivalent altitude z̃n to evaluate q
w

is proposed here. It

is assumed that the tether is a straight line between A and K.

zt

xt

Urw (z̃n)

K

A

q
d

q
l

αt

xt Tether

Figure 4.2.: Diagram of the tether wind load model

As illustrated in Fig. 4.2, wind load q
w

can be decomposed into drag force q
d

and lift force

q
l

(cf. Eq. (4.18)).

q
w
= q

l
+ q

d
(4.18)

q
d

and q
l

are determined thanks to Hoerner formulas (Hoerner, 1965), Eqns. (4.19) and

(4.20), where a base drag coefficient of 1.1 is assumed for orthogonal flows (αt = π/2). ρa
is the air density, dt is the tether diameter and αt is the angle of attack between the wind

and the tether as described in Fig. 4.2.

q
d
=

1

2
ρadt

[
1.1 sin3 (αt) + 0.02

]
‖U rw (z̃n)‖U rw (z̃n) (4.19)

q
l
=

1

2
ρadt

[
1.1 sin2 (αt) cos (αt)

]
‖U rw (z̃n)‖

U rw (z̃n)× [U rw (z̃n)×AK]

‖U rw (z̃n)×AK‖ (4.20)

With respect to the ship velocity U s and according to Eq. (3.6) , the relative wind velocity

at the altitude z̃n is given by Eq. (4.21).

U rw (z̃n) = U ref

(
z̃n
zref

)nv

− Ua (4.21)
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In order to conserve approximately the total force acting on the tether, z̃n is defined such

that Eq. (4.22) is verified.

‖U rw (z̃n)‖2 =
1(

k
(n)
z − a

(n)
z

)
∫ k

(n)
z

a
(n)
z

‖U rw (z)‖2 dz (4.22)

This equation leads to Eq. (4.23), a second degree polynomial equation in z̃nv
n . Only the

greatest root, which has a physical meaning is kept.

0 =

∥∥U ref
∥∥2

z2nv

ref

z̃2nv
n − 2

U s.U ref
znv

ref

z̃nv
n −

∥∥U ref
∥∥2
(
k
(n)
z

)2nv+1
−
(
a
(n)
z

)2nv+1

(2nv + 1)
(
k
(n)
z − a

(n)
z

)
z2nv

ref

+ 2U s.U ref

(
k
(n)
z

)nv+1
−
(
a
(n)
z

)nv+1

(nv + 1)
(
k
(n)
z − a

(n)
z

)
znv

ref

(4.23)

It must be noticed that the definition of the equivalent altitude z̃n, Eq. (4.22) is not correct

to conserve the total force acting on the tether. Indeed, the load direction varies with the

altitude which is not considered in Eq. (4.22). A better definition could have been:

U rw (z̃n) =
U2√
‖U2‖

(4.24)

with,

U2 =
1(

k
(n)
z − a

(n)
z

)
∫ Kz0

Sz0

‖U rw‖U rwdz (4.25)

However, the previous proposition in Eq. (4.22) should be reasonable enough in order to

achieve a closed-form formulation of the equivalent altitude z̃n.

4.2.3. Aerodynamic Kite Model

For a static flight, forces acting on the kite must be opposed to the tether tension and vary

with altitude due to the wind velocity gradient. Applying the first Newton’s law to the kite,

Eq. (4.26) is obtained:

0 = −T
(
k(t)x

)
+ Lk +Dk +W k (4.26)

where:
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• T
(
k
(t)
x

)
is the tether tension at kite location.

• Lk is the lift kite aerodynamic force.

• Dk is the drag kite aerodynamic force.

• W k is the kite weight, W k = +MKgzn where MK is the kite mass.

Kite weight is completely known. Dk is by definition in the direction of the relative wind

and can be determined as follows:

Dk =
1

2
ρaAkClk tan (ǫk) ‖U rw‖U rw, (4.27)

where, ρa is the air density, Ak is the kite area and Clk is the kite lift coefficient. According

to the assumption of a constant lift-to-drag ratio, the magnitude of the lift, ‖L‖ can be

determined by Eq. (4.28). In addition, by definition, the kite lift is orthogonal to the drag,

which is expressed by Eq. (4.29).

‖Lk‖ =
‖Dk‖
tan (ǫk)

(4.28)

Lk ·Dk = 0 (4.29)

One more equation is needed to determine the lift. As a balance is expected between kite

forces and tether tension, we know that at least they must stay in the
(
A, y

t
, zt

)
plane.

This is a consequence of the projection of Eq. (4.26) on axis y
t
, which is expressed by the

following Eq. (4.30):

(Lk +Dk +W k) · yt = 0 (4.30)

Thanks to the scalar Eq. (4.30), L
(t)
x,k is given by Eq. (4.31):

L
(t)
y,k = −

(
D

(t)
y,k +W

(t)
y,k

)
(4.31)

Equations (4.28) and (4.29) lead to a second order polynomial equation in L
(t)
z,k. L

(t)
z,k solu-

tion is given by Eq. (4.32):

L
(t)
z,k =

√
∆− L

(t)
y,kD

(t)
y,kD

(t)
z,k[(

D
(t)
x,k

)2
+
(
D

(t)
z,k

)2] , (4.32)

∆ =

(
D

(t)
x,k

)2
‖Dk‖2

tan2 (ǫk)

[(
D

(t)
x,k

)2
+
(
D

(t)
z,k

)2
−
(
L
(t)
y,k

)2
tan2 (ǫk)

]
, (4.33)
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where ∆, Eq. (4.33) is the discriminant of the second order polynomial equation in L
(t)
z,k.

Finally, L
(t)
x,k is expressed in Eq. (4.34) using Eq. (4.29):

L
(t)
x,k = −

L
(t)
y,kD

(t)
y,k + L

(t)
z,kD

(t)
z,k

D
(t)
x,k

(4.34)

The condition ∆ ≥ 0 is a necessary condition to allow a static kite flight.

4.2.4. Kite static equilibrium

The equilibrium equation of the kite, Eq. (4.26), can be solved by coupling these models.

Since the tether force depends on the kite position into the plane (xt, zt), the equilibrium

must be searched in a plane. The plane (xt, zt) is defined with the tether loading q depending

on the kite position cf. Eqns. (4.19) and (4.20). The equilibrium solution can be searched in

a arbitrary plane. Here, the equilibrium is searched into the plane (A, xt̃, z t̃) where, xt̃ and

z t̃ are defined with the tether loading corresponding to the static kite position K̃ according

to the zero mass modeling:





φ̃k = ± arccos
(

sin ǫk
cos θ̃k

)

K̃
(rw)

= Lt

[
cos θ̃k cos φ̃k, cos θ̃k sin φ̃k, sin θ̃k

]T
+A(rw)

z t̃ =
−q
∥

∥

∥
q
∥

∥

∥

y
t̃

=
(
z t̃ ×AK̃

)
/
∥∥∥AK̃

∥∥∥
xt̃ = y

t̃
× z t̃

(4.35)

Then, this plane remains constant and can be denoted by (A, xt̃, z t̃). A Newton-Raphson

algorithm, is used to solve the kite static equilibrium. The initial condition of the algorithm

is defined by Eqns. (4.15) and (4.16), where the tension T is equal to the aerodynamic

forces applied to the kite at position K̃
(rw)

and t is equal to t̃. After each iteration of the

algorithm the frame t changes until convergence.

4.2.5. Verification of the implementation

The implementation of the presented model is verified thanks to experimental data provided

by Irvine and Sinclair in Irvine and Sinclair (1976). In this experiment, the two extremities

of a cable were horizontally attached. The cable length was 1.20 m, the cable cross sectional

area was 1.58 10−6 m2 and the Young’s modulus of the cable was 1.00 1011 N.m-2. The

horizontal distance between the attachment points was 1.00 m. A total of 20 weights of 2.45
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4.3. Case of Study

N were added to the cable with ferrules in order to neglect the cable bending stiffness. From

the attachment point, the weights were attached with a distance of 0.03 m and the weights

were equally spaced each other by a distance of 0.06 m. The weight of the cable, ferrules

plus weights were 50 N. Figure 4.3 shows the cable corresponding to the experiment in

(Irvine and Sinclair, 1976) (dashed line) and the corresponding cable shape predicted by the

model, Eqns. (4.9 - 4.12). The experimental cable shape from (Irvine and Sinclair, 1976)

has been graphically reported (digitized with a dedicated software).

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

xt [m]

z t
[m

]

Catenary model

Experimental data (Irvine and Sinclair, 1976)

Figure 4.3.: Tether shape; comparison of the presented model with experimental data of

Irvine and Sinclair (1976)

The presented model fits pretty well with the experimental data Irvine and Sinclair (1976)

and can be considered as being validated. Nevertheless, a comparison between the whole

presented model and static kite flight must be investigated as well.

4.3. Case of Study

The following application is based on the case study of Dadd (2013) where kite parameters

have been extrapolated from experimental data measured on a Flexifoil Blade III in (Dadd

et al., 2010). Kite and tether characteristics are presented in table 4.1. Tether features, line

mass and diameter (cf. table 4.1), have been estimated using maximum wing loading of

1.103 N.m-2 with a safety coefficient of 2.

The ship attachment point altitude, a
(n)
z , is 10 m and the true wind speed is measured at an

altitude of zref = 10 m. According to (Ittc, 2014), the wind velocity gradient parameter is

n = 1/7. The air density is ρa = 1.2 kg.m-3.
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4. Static analysis of tethers

Flexifoil Blade III specs extrapolated by Dadd 2013

Kite surface 320 m2

Kite mass* 150 kg

Tether length 300 m

Kite lift coefficient 0.776 [−]
Lift to drag ratio angle 12◦

Tether specs (estimation)

Line mass* 0.45 kg.m-1

Diameter* 30.0 mm

Drag coefficient for orthogonal flow 1.1

Table 4.1.: Kite and tether characteristics for the study; (*) denotes estimation

4.4. Comparison with a finite element tether modeling

With the model presented in this study, the aerodynamic load is assumed to be constant

along the tether. This section aims to assess the importance of neglecting the evolution of

the aerodynamic load with the altitude and the angle between U rw,ka and the local tangent

vector direction of the tether. The modeling is compared with a finite element analysis of

the tether where the evolution of the aerodynamic load is taken into account.

The finite element modeling is performed using quasi-elastic bars (linear truss) of constant

length with the software Abaqus (Hibbett et al., 1998). A backward Euler implicit numerical

scheme is used. The initial position corresponds to the catenary solution. The aerodynamic

loading is gradually applied to the tether with a linear ramp. It is assumed that the static

equilibrium is reached when the ratio between kinetic energy and the strain energy is less

than 10−4. For practical reasons, it was easier to apply an aerodynamic loading transversaly

to the elements according to the Morison formula:

ql =
1

2
ρadtU

2
rw · 1.1 sin2 αt (4.36)

The comparison is performed with kite specs presented in Sec. 4.3 with no ship speed

and an attachment point at zero altitude. The tether is considered to be in Dyneema® SK78.

According to the manufacturers data and a linear regression in Annex B.2.3, the relationship

between the mass per unit of length [kg.m-1] and the diameter [m] can be expressed as

follows:

d2t = 1.98 · 10−3mt (4.37)

The two tether diameters tested are 30 · 10−3 mm and 60 · 10−3 mm corresponding respec-

tively to 0.455 kg.m-1 and 1.82 kg.m-1. Since the presented model assumes the tether to
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4.4. Comparison with a finite element tether modeling

be inelastic, a Young modulus convergence is performed in Annex B.2.1 for making each

element quasi-inelastic. Then, a mesh convergence is performed in Annex B.2.2. These

convergence procedures lead to a Young’s modulus of 104Esk78 (where Esk78 = 65.7 GPa)

and to 30 elements of equal length.

The equilibrium between the kite and the tether is performed with the presented model for

different wind speed and different kite azimuth. All cases presented assume no ship forward

speed. True wind speeds tested are {5, 7.5, 10} m.s-1. Three azimuth angles are tested, a

first one at zero azimuth angle, a second one around 40° and 50° azimuth angle and a third

one around 70° and 75°. The angles of azimuth are not identical as they are resulting from

the equlibrium (cf. § 4.2.4). Boundary conditions applied to the finite element model are

the position of the tether extremities computed with the presented model. The comparison

between the two models is focused on the direction of the tether tension at the attachment

point A and at the kite extremity K, both in terms of direction and magnitude. The differ-

ence of tension direction ∆ν is expressed as follows:

∆ν = arccos

(
T cat · T fem

‖T cat‖
∥∥T fem

∥∥

)
, (4.38)

where T cat and T fem denote respectively the tether tension obtained with the presented

model and the finite element method. The relative difference of tension magnitude is ex-

pressed as follows:

∆T =
T cat − T fem∣∣T fem

∣∣ (4.39)

Figure 4.4 contains plots of the difference of tension direction in degree and plots of the rel-

ative difference of tension magnitude in percentage. denotes the results at the attachment

point on the deck A and denotes the results at the kite location. Each column corresponds

to a true wind speed and each group of two rows corresponds to a tether diameter, 0.03 m

and 0.06 m.

It can be noticed that the difference in terms of tension direction remains within a range of

± 1.2° and the relative difference of magnitude remains within a range of ± 2%. These dif-

ferences are acceptable. The effect of the evolution of the aerodynamic wind load with the

altitude is not very significant on the final equilibrium compared to an equivalent constant

aerodynamic wind load obtained according to the method developed in the § 4.2.3. This

comparison confirms the statement given by Hobbs (1986) arguing that the main factor

influencing the tether shape is the mean quadratic wind velocity according to the altitude.
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Figure 4.4.: Comparison of the presented model with a finite element tether simulations

4.5. Tether effect on static kite flight configurations

4.5.1. Results

Figure 4.5 represents static kite flight positions for different azimuth angles at wind condi-

tion U ref = [7.5, 0, 0]T
n

m.s-1 and ship velocity U s = [0, 7.5, 0]T
n

m.s-1. Static kite flight

positions define the flight window edge. Two models are compared: the zero mass model

in dashed line and the catenary formulation in solid line.

The top of Figs. 4.6 and 4.7 show the angle between the tether tension at positionsA and

K:

ν = arctan
(
C

′

(
k(t)x

))
− arctan

(
C

′

(
a(t)x

))
(4.40)

The bottom of Fig. 4.6 and the middle of Fig. 4.7 show the relative difference between the

magnitude of the tether tension at K and A in percentage:
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4.5. Tether effect on static kite flight configurations

Figure 4.5.: Kite flight position for azimuth angles from -78° to 78° calculated with the

catenary formulation in solid line and with the zero mass model in dashed line.

∆T =

∥∥∥T
(
k
(t)
x

)∥∥∥−
∥∥∥T
(
a
(t)
x

)∥∥∥
∥∥∥T
(
k
(t)
x

)∥∥∥
(4.41)

Fig. 4.6 compares ν and ∆T for azimuth angles from -78° to 78° in the same wind speed

and ship velocity as in Fig. 4.5. Fig. 4.6 compares ν and ∆T with zero ship speed and zero

azimuth angle for different wind speeds from 0 m.s-1 to 65 m.s-1. With this kite flight condi-

tion, the true wind speed, the relative wind speed and the apparent wind speed are the same.

Neglecting the effect of the altitude of the tether attachment point and assuming straight

lines, the apparent wind speed for a dynamic flight case can be maximized as follows (cf.

Eq. (3.17)):

Uaw ≤ Uref



Lt
√

nv

nv+1

zref



nv
√

1
nv+1

sin ǫk
(4.42)
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Figure 4.6.: Difference of tether tension between A and K for different kite azimuth angle;

in terms of direction on the top; in terms magnitude on the bottom

At the bottom, Fig. 4.7 plots U eqvref the equivalent true wind velocity corresponding to the

highest apparent wind speed for a dynamic flight case according to the Eq. (4.42). Conse-

quently, U eqvref can be expressed as follows:

U eqvref =
Uref(

lt
√

nv
nv+1

zref

)nv √
1

nv+1

sin ǫk

(4.43)
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Figure 4.7.: Difference of tether tension between positions A and K for different wind

speeds at the altitude of measurement zref . At the top side: angle between

the tension direction at A and K. At the middle: relative difference of tension

between A and K. At the bottom: equivalent reference wind speed in case of

dynamic flight, cf. Eq. (4.43).

4.5.2. Analysis

Figures 4.5 and 4.6 investigates the influence of the kite position along the wind window

edge. According to Fig. 4.5, the wind window obtained with the catenary formulation

is smaller than the wind window obtained with the zero mass model. According to Fig.

4.6, the evolution of ν the angle between the tether tension at A and K, and the relative

difference ∆T between the magnitude of the tension at K and A, are almost symmetrical

with respect to zero azimuth angle and remains almost constant between -70° and 70° of

azimuth angle. ν has a minimal value of 2.58° at zero azimuth angle. Near the extreme

azimuth angles, -78° and 78°, ν is slightly superior to 4°. The maximal value of ∆T is 4.3%

for a zero azimuth angle. The relative difference decreases for the extreme azimuth angles

and tends to 0%.

Figure 4.7 investigates the influence of the true wind speed for a zero azimuth angle position

and zero ship speed. The lower wind speed allowing a static flight is around 3 m.s-1. For

Uref = 3.27 m.s-1, ν is maximal and reaches 18.75°. ∆T is maximum (43.14%) at Uref =
3.27 m.s-1. ν and ∆T decreases when the wind speed increases. ν tends to a non zero value

1.7°. ∆T tends to zero.
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4. Static analysis of tethers

4.5.3. Discussion

At extreme azimuth values the tether is almost horizontal and the kite is low in terms of

altitude. For these kite positions, the tether load per unit length is almost normal to AK.

Consequently, the difference of the tether tension norm at A and K tends to zero. The

aerodynamic kite forces and the aerodynamic part of the tether load per unit length are

lower due to the wind gradient. For a constant kite tension, the lower the tether load is

, the lower the angle between the tether tension at A and K is . On the contrary, for a

constant tether load per unit length, the lower the tether tension is, the more important is ν.

At extreme azimuth angles the two phenomenon are in competition. For this case of study,

results show that the decrease of aerodynamic forces is more significant than the decrease

of tether load per unit length. Near zero azimuth angle, ∆T is maximum whereas ν is

minimum. Here again, the increase of the aerodynamic kite force is more significant than

the increase of tether load per unit length.

Concerning the effect of the true wind speed, Fig. 4.7 shows the more important the wind

speed is, the less significant is the tether effect in terms of tension. The relative difference

between the tether tension norm at A and K tends towards zero and the angle between the

tether tensions converges to a constant value. This shows that there is a balance between the

increase of kite aerodynamic loading and the increase of the tether aerodynamic load per

unit length. Nevertheless, at high wind speed, the constant angle between the tether tension

is small, 1.7°. This shows that for high wind velocities (greater than 10 m.s-1for static

flight) a straight tether assumption is reasonable. Moreover the bottom of Fig. 4.7 shows

the equivalent true wind speed for a dynamic flight. For instance, with a true wind speed of

10 m.s-1 at the reference altitude for static flight, the equivalent reference wind velocity is

around 2 m.s-1 for dynamic flight. Consequently, if the effects of the tether acceleration are

supposed negligible, even for reasonable true wind speed (greater than 2 m.s-1), the straight

tether assumption remains reasonable in case of a dynamic flight. However, a dynamic

analysis of the tether should be carried out to confirm this assumption.

At low wind speed lower than 10 m.s-1, in case of a static kite flight, the tether cannot be

considered as a straight line. The difference of tension between positionsA andK becomes

significant. Under Uref = 3.27 m.s-1, no solution of kite equilibrium are found above the

sea level. Kite and tether weights dominate the aerodynamic forces. However, since the

kite launch step begins with a quasi static kite flight, a low wind limit of operability could

be investigated according to the catenary formulation.

4.6. Conclusion

A static tether analysis has been performed according to an analytical modeling. The tether

model was based on the well-known catenary equation. The tether load per unit length

was assumed constant in order to be consistent with the catenary model requirements. The

50



4.6. Conclusion

kite was modeled assuming a constant lift to drag ratio and lift coefficient and taking into

account its weight. Since the catenary model requires that the tether remains in a plane, an

analytical method to determine the kite forces has been developed in order to complete this

requirement. The determination of the kite position was performed in agreement with tether

and kite models.

Results show that tether effects could be important at extreme azimuth angles. However, for

high wind speed the effect of the tether on the difference of tension between the tether at-

tachment point and the kite are not significant. Consequently, the straight tether assumption

as used in the zero mass model should be reasonable for high wind speed greater than 10

m.s-1. In a case of dynamic kite flight the straight tether assumption is relevant for reference

wind speed greater than 2 m.s-1. At low wind speed, the tether tension at the kite is clearly

different from the tether tension at the attachment point. The tether weight can dominate

the aerodynamic load on the tether.

Furthermore, this first approach shows that a low wind limit criterion enabling a static kite

flight could be developed with this model by neglecting the aerodynamic load on the tether.

Moreover, even if this model shows that the tether is almost straight for high wind speed

and that a straight tether assumption seems reasonable, an investigation of the acceleration

effect of the tether should be conducted.
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5. Low wind limit of kite operability

Résumé: Vent minimum d’utilisation d’un cerf-volant

Le vol d’un cerf-volant pendant les procédures de lancement et de récupération peut être

considéré comme quasi-statique. La flèche de la ligne peut être alors importante et ce d’au-

tant plus que le vent est faible. Afin d’éviter l’accrochage et le ragage de la ligne qui pourrait

entrainer une perte de control du cerf-volant, les lignes doivent malgré tout rester au-dessus

du pont du navire. Dans ce chapitre cette contrainte d’utilisation en termes de vitesse de

vent minimum est formalisée mathématiquement au travers du modèle de ligne chainette

introduit au chapitre précédent.

En négligeant le chargement aérodynamique de la ligne devant son poids propre, un critère

analytique dépendant des caractéristiques du cerf-volant et de la ligne est développé, cf. Eq.

(5.9). En considérant un cerf-volant de 0.5 kg.m-2 avec un coefficient de portance de 0.7,

la vitesse de vent minimum de lancement d’un cerf-volant en vol quasi-statique est de 3.4

m.s-1.

L’hypothèse négligeant le chargement aérodynamique est discutée. Il est montré qu’en util-

isant une ligne en Ultra-High-Molecular-Weight Polyethylene, la proportion entre l’effort

aérodynamique et le poids propre de la ligne diminue en fonction du diamètre de la ligne.

En considérent un vent de 3.4 m.s-1, l’effort aérodynamique sur la ligne ne représente plus

que 20% du poids propre à partir de 7 mm de diamètre.

5.1. Introduction

Most kite launch steps begin by a quasi-static flight at zero azimuth angle. Therefore, the

low wind limit in terms of velocity for static kite flight at zero azimuth angle is an important

parameter. It has been shown in Sec. 4, that at low wind speed, the tether weight dominates

the aerodynamic tether load. Consequently, neglecting the aerodynamic load on the tether,

an analytical criterion to estimate the low wind limit of operability is developed in this

section.
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5. Low wind limit of kite operability

5.2. An analytical criterion

Obviously, a tether should not touch the ship deck or the water. In that case, friction with

the ship deck or the water could have a dramatic effect on the material durability and kite

control. This leads to the mathematical condition that all points of the tether must be above

the attachment point, as shown in Fig. 5.1. The mathematical expression of this limit is

given by Eq. (5.1).

z
n

xn

z
t

xt

K

On

q

k
(n)
z

A

T (0)

Urw

η

Horizontal tangency

Figure 5.1.: Diagram of the lower limit static flight case

T (0) · zn = 0 (5.1)

In the static kite flight case at zero azimuth angle, the first Newton’s law applied to the tether

and projected on axis zn, in accordance with the condition given by Eq. (5.1), leads to Eq.

(5.2).

L
(n)
z,k +W

(n)
z,k + ltq

(n)
z = 0 (5.2)

Therefore, the relative wind at the kite location is given by Eq. (5.3).

Urw =

√√√√2
∣∣∣W (n)

z,k + ltq
(n)
z

∣∣∣
ρaAkCL,k

(5.3)
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In the static kite flight at zero azimuth angle, the kite position in frame n, compared to the

position in frame t, is defined by the angle η = arctan
(
q · xn/q · zn

)
. Kite altitude in n is

given by:

k(n)z = a(n)z − k(t)x sin (η)− k(t)z cos (η) (5.4)

Then, assuming U rw and Ua are co-linear, the wind velocity at the measurement altitude is

given by Eq. (5.5) by inserting Eqns. (5.2) and (5.3) into Eq. (4.21) and reorganizing:

Uref,min =
(−zref )nv

[
−a(n)z + k

(t)
x sin (η) + k

(t)
z cos (η)

]nv




√√√√2
(
W

(n)
z,k + ltq · zn

)

ρaAkCL,k
+ Ua




(5.5)

Since q depends on Uref,min (cf. Eqns. (4.17 - 4.21)), this last equation needs to be solved.

Thus, rather than to give a numerical solution of the problem, a closed-form approximation

of the minimal wind velocity required for a static flight is provided assuming that the load

per unit length on the tether is only due to the gravity. Therefore, zt is equal to zn, η is

equal to zero and the load per unit length, q = q
g
, is constant. Then, the closed-form Eq.

(5.3) becomes:

Urw =

√
2g (Mk +mtlt)

ρaAkCL,k
(5.6)

where g = 9.81 m.s-2 is the acceleration due to gravity. Using Eqns. (4.16) and (4.21), the

lower limit is:

Uref,min =
(−zref )nv

(√
2g(Mk+ltmt)
ρaAkCL,k

+ Ua

)

{
−a(n)z + tan (ǫk)

(
lt +

Mk

mt

)[√
1 +

(
mtlt

(mtlt+Mk) tan(ǫk)

)2
− 1

]}nv
(5.7)

For dimensional analysis, this last equation becomes non-dimensional, with:





Ũ = Uref,min

√
AkρaCLK

2gMk

l̃t = mtlt
Mk

ãz = a
(n)
z

zref

Ũa = Ua

√
AkρaCLK

2gMk

m̃ =
−zrefmt

Mk

(5.8)
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Then Ũ could be expressed as follows:

Ũ =

√
1 + l̃t + Ũa


ãz + tan (ǫ)

(

1+l̃t
)

m̃




√√√√1 +

[
l̃t

tan(ǫ)
(

1+l̃t
)

]2
− 1








nv
(5.9)

5.3. Analysis

The parameter L̃t can be considered as the dimensionless tether length. The attachment

point altitude is non-dimensional using the wind measurement altitude, which leads to the

parameter ãz . The parameter m̃ characterizes the tether mass per unit length compared to

the kite mass. This last parameter provides information on the structural and material design

priority between the tether and the kite, it increases when the ratio of safety factors between

the line and the kite increases. Ũ and Ũa denote respectively the low wind limit parameter

and the ship speed parameter.

Ũ increases with the parameter m̃. Analyzing the derivative of Ũ with respect to ǫk, it can

be shown that Ũ increases with the lift to drag angle. On the contrary, Ũ decreases with ãz .
At the beginning of a launch step, L̃t = 0, and Ũ becomes:

Ũ =
1 + Ũa
ãnv
z

(5.10)

As expected, with no tether, the low wind limit is only dependent of the tether attachment

point altitude and of the kite mass, area and lift coefficient. The derivative of Ũ with respect

to L̃t at L̃t = 0 is:

∂Ũ

∂L̃t

∣∣∣∣∣
l̃t=0

=
1

2ãnv
z

(5.11)

Since ãz is always positive for kite applications, near L̃t = 0, the required wind speed

increases with the tether length. When the tether length tends towards infinity, the non-

dimensional low wind limit is equivalent to:

lim
L̃t→+∞

Ũ =

(
m̃ cos ǫk
1− sin ǫk

)nv

L̃
( 1
2
−nv)

t (5.12)

m̃ is always positive, consequently if nv < 1/2, the required wind speed tends towards

infinity. If nv > 1/2 the required wind speed tends towards zero. In the special case
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ãz = 0.5
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Figure 5.2.: Surface plots, for 3 fixed values of ãz , 0.1, 0.5 and 1, of the non-dimensional

minimum wind velocity Ũ versus m̃ and l̃t

nv = 1/2, the non-dimensional limit tends towards the constant
√
m̃/tan ǫk. However, for

a realistic wind gradient, the typical value of nv is 1/7, therefore the required wind speed

should tend toward infinity.

For intermediate values of the tether length, the variation of the low wind limit according to

the tether length is less obvious. Consequently a numerical analysis has been carried out.

Figure 5.2 represents three surface plots of the non-dimensional minimal wind velocity Ũ
defined in Eq. (5.9) versus the two non-dimensional parameters m̃ and L̃t, for Ũa = 0 and

fixed values of ãz , 0.1, 0.5 and 1. The wind gradient parameter is taken to the classical

value nv = 1/7. An optimal tether length can appear to minimize Ũ . Finally the effective

minimal wind velocity Uref,min is obtained by dividing Ũ by the factor
√
AkρaClk/2Wk.

According to the specs of kite dedicated to the kite-surf with an inflatable leading edge and

kites built within the beyond the sea® project, the ratio between the kite mass and the kite

area is around 0.5 kg.m-2. According to the experimental data in (Dadd et al., 2010) and

(Behrel et al., 2016), the kite lift coefficient can be estimated around 0.7. Consequently,

with an existing kite, the low wind limit is around Uref,min ≈ 3.4Ũ . Assuming a wind

measurement altitude of 10 m above the sea level, values of m̃ between 0.01 and 0.05 are

investigated in Fig. 5.3.

In Fig. 5.3, the evolution of the non-dimensional low wind limit Ũ with the non-dimensional

tether length is plotted for different values of m̃ and ãz = 1. Taking ãz = 1 makes sense

with a wind measurement on the top of the launching mast. As expected, near L̃t = 0,

Ũ = 1. Then, Ũ increases of less than 1% for m̃ = 0.05, which is not very significant.

A minimum can be observed near L̃t = 0.53. This minimum, depends quasi-linearly on
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Figure 5.3.: Evolution of the non-dimensional low wind limit Ũ with the non-dimensional

tether length L̃t for different values of m̃ from 0.01 to 0.05, Ũa = 0 and ãz = 1.

the parameter m̃. By curve fitting, the linear relationship giving the optimal tether length is

identified as follows:

L̃t,min = −2.2m̃+ 0.6 (5.13)

In order to obtain a practical result, Eq. (5.13) can be expressed, reminding ãz = 1, as

follows:

L̃t,min = 0.6
Mk

mt
+ 2.2a(n)z (5.14)

Beyond this minimum, since nv < 1/2, the value of Ũ increases to infinity.

In order to obtain a closed-form low wind limit criterion, the aerodynamic load on the

tether has been neglected. Consequently, it can be expected than the low wind limit is

underestimated. According to the characteristics of diameter and mass per unit of length

of dyneema® SK78 provided by tether manufacturer, the ratio, ηa/g, between the tether

aerodynamic force per unit of lenght and the tether gravity per unit of length is plotted on

Fig. (5.4). ηa/g is estimated as follows:

ηa/g =
1
2ρadtCdtU

2
ref,min

mtg
, (5.15)

where, Uref,min ≈ 3.4Ũ
(
L̃t = 0

)
= 3.4 m.s-1 and Cdt = 1.1. Figure (5.4) shows that

tether aerodynamic forces are of the same order for low tether mass per unit of length.
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Figure 5.4.: Ratio of the tether wind loading with the tether weight as function of the tether

mass per unit of length

Above mt > 25 g.m-1 the tether aerodynamic load is less than 20% of the tether gravity

load and above mt > 0.15 kg.m-1, the aerodynamic load is less then 10% of the tether

gravity load. According to this result, the assumption of neglecting the aerodynamic force

can be considered as being reasonable for a heavy tether.

5.4. Conclusion

A closed-formula has been developed in order to estimate the low wind limit to operate

the kite in a static flight mode. A mathematical analysis has been perform to study the

influence of parameters such as the tether mass per unit of length, the tether length, the

kite mass, the aerodynamic specs of the kite and the tether attachment point altitude. This

low wind limit increases with the ratio between the tether mass per unit of length and the

kite mass and with the lift to drag ratio angle. However, the low wind limit decreases with

the tether attachment point altitude. The effect of tether length are less obvious, but it has

been shown that the low wind limit increases near zero tether length for any tether and kite

characteristics. Performing a numerical analysis, with classical value of kite design, it has

been shown that the low wind limit decreases to a minimum and finally increases to infinity

for an infinite tether length.

Finally, since the criterion is based on the assumption that the aerodynamic load on the

tether is negligible at low wind, the validity of this mathematical development is limited to

heavy tether with small diameter. For instance, for a tether made of dyneema® the tether

aerodynamic load is less than 20% of the gravity load for line mass per unit of length

superior to 25 g.m-1 corresponding to 7 mm in diameter
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6. Time domain seakeeping modeling

Résumé: Modélisation de la tenue à la mer dans le domaine

temporel

La dynamique des navires est traditionnellement scindée entre mouvement de manœuvrabil-

ité et mouvement de tenue à la mer. Pour étudier la manœuvrabilité, généralement unique-

ment les mouvements horizontaux du navire en mer calme sont modélisés. La tenue à la

mer traite plus généralement des mouvements oscillants des corps flottants soumis à un état

de mer. L’objectif de cette thèse est notamment de modéliser les mouvements d’un navire

tracté par kite dans son environnement, i.e. état de mer et de vent. L’objectif global de cette

partie est de modéliser les mouvements d’un navire seul dans son environnement. Cepen-

dant le kite peut représenter un risque pour la manœuvrabilité et la tenue à la mer d’un

navire et par conséquent, une modélisation couplant la tenue à la mer et la manœuvrabil-

ité des navires devra être mise en œuvre. Dans un premier temps, ce chapitre traite de la

modélisation des mouvements de tenue à la mer par une approche temporelle. La méthode,

doit pouvoir être étendue pour prendre en compte les mouvements de manœuvrabilité et

permettre de rendre compte des interactions entre le navire et le cerf-volant.

Une façon courante et performante de modéliser les mouvements d’un navire soumis aux

vagues est de faire l’hypothèse de fluide parfait irrotationnel et d’une réponse linéaire du

navire par rapport à son excitation. Par l’hypothèse de linéarité, les mouvements d’un navire

dû aux vagues sont obtenus par le principe de superposition : ils correspondent à la somme

des mouvements dû aux potentiels des vitesses incidentes, diffractées et de radiées. En pra-

tique, ce problème fluide est souvent résolu dans le domaine fréquentiel en supposant des

mouvements harmoniques de petite amplitude. Les codes commerciaux résolvent l’ampli-

tude et le déphasage du mouvement du navire par rapport à une vague monochromatique.

Par fréquence, il est également possible de connaitre les efforts de vague, de diffraction et de

radiation. Par ailleurs, en connaissant le spectre d’excitation du cerf-volant, il est alors pos-

sible de connaitre les mouvements du navire. Cependant, les mouvements du navire peuvent

modifier le vol du cerf-volant et donc son spectre d’excitation. Une approche fréquentielle

se limiterait donc à un couplage faible entre le cerf-volant et le navire. De plus, il n’est pas

possible d’étendre une telle modélisation pour prendre en compte la manœuvrabilité.

Pour étudier les interactions entre un cerf-volant et un navire, une approche temporelle ap-

parait donc nécessaire. Les méthodes temporelles résolvant les mouvements de tenue à
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la mer peuvent être décomposées en trois types (Skejic, 2013): les méthodes CFD (Com-

putational Fluid Dynamics), les méthodes potentielles temporelles et les méthodes basées

sur les réponses impulsionnelles. Les méthodes CFD peuvent être précises mais requièrent

d’importantes ressources informatiques et/ou de temps de calcul. Les méthodes potentielles

temporelles présentent de l’intérêt car elles sont plus rapides que les méthodes CFD. Cepen-

dant, le développement d’un tel code dans le temps imparti d’une thèse a semblé être trop

ambitieux. Les méthodes basées sur les réponses impulsionnelles peuvent être très rapide en

termes de temps de calcul. Ces méthodes demandent des développements plus raisonnables.

Ces méthodes ont été introduites par Cummins Cummins (1962) pour modéliser l’effet de

n’importe quel type d’excitation sur la tenue à la mer des navires. Plus tard, Bailey et al.

(1997) et Fossen (2005) ont étendu cette méthode pour prendre en compte la manoeuvra-

bilité des navires dans un état de mer formé. Une méthode proche de celle de Bailey et al.

(1997) est mise en oeuvre dans ce chapitre.

Avec les méthodes basées sur les réponses impulsionnelles, les efforts de radiation sont

calculés en temporel par des produits de convolution ce qui peut être coûteux en termes de

temps de calcul. Pour contourner ce problème, Kristiansen et al. (2005) et Fossen et Smogeli

(2004) ont introduit l’utilisation de systèmes d’état pour calculer le produit de convolution.

Cette méthode est mathématiquement équivalente au calcul du produit de convolution tant

que la fonction de transfert du navire est analytiquement connue. Ici, les fonctions de trans-

fert du navire sont calculées au moyen de la méthode des tranches (Salvesen et al., 1970)

avec le logiciel de tenue à la mer Shipmo développé par le Marin® qui résout le problème

de tenue à la mer en fréquentiel. Ainsi la fonction de transfert du navire est connue pour

des fréquences de mouvements particuliers. Il est donc nécessaire de réaliser une identifi-

cation des fonctions de transfert sous forme de fractions rationnelles afin d’en obtenir une

expression analytique. Différentes méthodes d’identification des fonctions de transfert ont

été étudiées en détail par Pérez and Fossen (2008). Cependant, leurs travaux se sont limités

aux fonctions de transferts de navires sans vitesse d’avance. Il est montré dans ce chapitre

que la forme des fractions rationnelles doit être modifiée pour répondre aux propriétés des

fonctions de transfert avec vitesse d’avance de navire. Une forme adaptée de fraction ra-

tionnelle est donc proposée dans ce chapitre. Une méthode d’indentification fréquentielle

est utilisée. Cette méthode est initialisée par une méthode temporelle (Kung, 1978).

Un exercice de validation de l’ensemble de la méthode est par la suite proposé avec un navire

militaire de surface le DTMB 5512. L’Université d’Iowa a mis à disposition en accès libre

des données d’essais en bassin décrites par Irvine et al. (2008). Ces données concernent

les mouvements de pilonnement et tangage avec et sans vitesse d’avance soumis à une

houle régulière de face. Plusieurs, fréquence de vagues ont été investiguées. La résolution

fréquentiel du problème de tenue à la mer avec la méthode des tranches de Salvesen et al.

(1970) montre des résultats satisfaisant par rapport à l’expérimental. La transformation dans

le domaine temporel du modèle de tenue à la mer est très satisfaisante car une excellente

équivalence est trouvée avec la méthode de Salvesen et al. (1970).

Cette méthode qui est linéaire et qui se base sur une hypothèse de fluide parfait est connu

pour ne pas être très adéquate pour modéliser les mouvements de roulis des navires. Cela
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peut s’expliquer par le fait que le roulis est fortement non linéaire et visqueux par nature.

Une façon de corriger la méthode est d’ajouter un amortissement de roulis supplémentaire

à celui calculé par la résolution de l’écoulement potentiel. Les mouvements de roulis sont

alors comparés aux prédictions du modèle de Ikeda et al. (1978).

6.1. Introduction

The aim of this thesis is to model the motions of a ship towed by kite under the influences

of sea state and wind. The dynamic ship motions are traditionally split between maneuver-

ability and seakeeping. To study the maneuverability of a ship, the modeling is restrained to

the horizontal ship motions in calm water. Seakeeping motions concern the oscillating mo-

tions of floating bodies exposed to waves. The overall objective of this part is to model the

ship motions since the kite may represent a risk for the ship safety in terms of seakeeping

and maneuverability. Consequently, a modeling coupling the seakeeping and the maneuver-

ability of ships is required. More specifically, the objective of this chapter is to develop a

seakeeping modeling being able to be extended to take into account maneuvering motions

and to study the interactions with the kite.

The seakeeping of ship is commonly studied with seakeeping codes based on the potential

flow theory under the assumption of linear response of the ship to a given perturbation on a

mean path. These studies are usually performed into the frequency domain in order to take

benefit from the linear formulation to sum the motions. Nevertheless, since the kite and

the ship may be strongly coupled, their interactions cannot be directly computed through a

spectral description of the kite excitation. Consequently, the computation of ship motions

due to a kite into the frequency domain is limited to a weak coupling between the kite and

the ship. Here, the semantics of a weak and a strong coupling is based on the work of

Markert (2010). A weak coupling can be performed by a segregated numerical scheme. In

order to perform a strong coupling between the kite and the ship, a monolithic scheme into

the time domain formulation is required.

As highlighted by Skejic in (2013), time-domain methods enabling to compute the 6 de-

grees of freedom (dof) combining horizontal and vertical motions of a ship are the linear

convolution based methods (Bailey et al., 1997), the two time scale models (Skejic and

Faltinsen, 2008) and the CFD methods. According to Skejic and Faltinsen (2008) the two

time scale models are more appropriate to take into account the second order wave drift

motion. However, this phenomenon is beyond the scope of the thesis. The linear convolu-

tion based methods are preferred since they are based on more widespread seakeeping tools.

The linear convolution based methods applied to the ship motions have been introduced by

Cummins (1962) in order to take into account any type of excitation. Later, Bailey et al.

(1997) developed a method based on the linear convolution method and unifying the ma-

neuvering and seakeeping coordinates systems. Thanks to this unified coordinate system,

the formulation of the kite force into the ship coordinate system is more straight forward.
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Nevertheless, the computation of a linear convolution product is time consuming. Conse-

quently, Kristiansen et al. (2005) and Fossen and Smogeli (2004) introduced the state-space

modeling to compute quickly the linear convolution integral of the Cummins equation of

ship motion. Based on these developments, the linear convolution based method is faster

than the real-time on a classical computer. Therefore, the convolution based method per-

formed with state-space systems is suitable for design purposes. The identification of the

state-space systems (Pérez and Fossen, 2008) has been detailed only for the zero forward

speed case. Consequently, a slight modification of the structure of the state-space system is

proposed to take into account the effects of the forward speed on the state-space systems.

First the dynamic ship equation of motion according to the classical frequency domain

approach is introduced. Secondly, the time domain equation of motion based on the con-

volution method is presented. This section is an overview of the work achieved by Fossen

(2005). Thirdly, the identification of the state-space systems and their new structure are

introduced. Finally, a validation of the method in head waves regarding heave and pitch

motions is presented. These comparisons are based on the experimental fluid dynamics

(EFD) of the surface vessel combatant DTMB 5512 provided by the University of Iowa and

studied by Irvine et al. (2008). The roll motion modeling is compared to the method of

Ikeda et al. (1978).

6.2. Frequency domain solution

Assuming moderate sea states, the starting point of the mathematical model is the linearized

equation for small amplitude ship motions in regular waves used notably by Salvesen et al.

(1970):

[
M∗

S
+A∗

]
ξ̈ +

[
B∗ +B∗

φ

]
ξ̇ + C∗ξ = F ∗ − F̄

∗
, (6.1)

where, M∗
S

, A∗, B∗ and C∗ denote respectively the generalized mass matrix, added mass

matrix, damping matrix and the restoring matrix with respect to the h frame. B∗
φ

is an extra

generalized damping matrix accounting only for the roll motion as proposed in (Salvesen

et al., 1970). F ∗ denotes the sum of the generalized external forces (forces and moments)

applied to the ship expressed in the h frame. F̄
∗

is the mean value of F ∗.

6.3. Time domain solution

This section is an overview of the work of Fossen (2005).
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6.3.1. Transformation into the s and c frames: unified coordinates systems

Since Eq. (6.1) is linear, the ship motions can be summed with respect to a sum of excitation

forces. Since, A∗and B∗ are frequency dependent matrices, Eq. (6.1) holds only for a

given frequency of excitation, ω. Consequently, this assumption leads to the following

relationship:

ξ̈ = −ω2ξ (6.2)

And, the direct cosine matrix between the h frame and the s frame is equal to the direct

cosine matrix between the earth fixed frame n and the ship fixed frame s for small angles

defined in Eq. (3). Thus, the direct cosine matrix can be simplified considering small angles

of oscillations:

Th

s
=




1 −ξ6 ξ5
ξ6 1 −ξ4
−ξ5 ξ4 1


 (6.3)

Under the assumption of small amplitude of motions, the expression of the ship speed vari-

ation can be approximated by δV s = [us − Uh, vs, ws, ps, qs, rs]
T
s

with respect to the s

frame. ξ can be expressed in terms of δV s with Eq. (6.4). The detail of this transformation

was presented in Fossen (2005) and is reported in Annex C.1.

{
ξ̇ = JδV s − Uh

ω2
e
LδV̇ s

ξ̈ = JδV̇ s + UhLδV s

, (6.4)

where,

J =




1 0 0 0 zH 0
0 1 0 −zH 0 xH
0 0 1 0 −xH 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, (6.5)

and,

L =




0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(6.6)
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Then, using Eq. (6.4), the ship equation of motion, Eq. (6.1), can be expressed in terms of

δV s as follows:

[
M

S
+A

]
δV̇ s +

[
B +B

φ
+D

]
δV s + C ξ = F − F̄ , (6.7)

where,





M
S

= JTM∗
S
J

A = JTA∗J

D = JTM∗
S
L

B = JT
[
B∗ + UhA

∗L
]
J

B
φ

= B∗
φ

C = JTC∗

F = JTF ∗

(6.8)

6.3.2. Impulse response function

Since a kite and a ship may have strong coupled motions, it is more convenient recom-

mended to transform Eq. (6.7) into the time domain using the impulse response function as

Cummins (1962), Ogilvie (1964) and Fossen and Smogeli (2004). Moreover, it is more con-

venient to use the parameterization for V s instead of δV s. The steady state corresponds to

us = Uh and δV s = 0. Due to the special structure of C, it can be noticed that C ξ = C S.

Consequently, the ship equation of motion for arbitrary motions and using the parameteri-

zation in V s is:

[
M

S
+ Ã

]
V̇ s +

[
B̃ +B

φ
+D

]
Vs + µ+ C S = F , (6.9)

where, Ã = lim
ω→+∞

A (ω) and B̃ = lim
ω→+∞

B (ω). µ is defined as follows:

µ =

t
ˆ

−∞

K (t− τ) δVs (τ) dτ, (6.10)

where K denotes the retardation matrix. Strictly speaking, the left boundary of the convo-

lution term should be −∞. However, for a causal system the left boundary can be replaced

by 0. The expression of the retardation matrix is given in Eq. (6.11) and can be obtained by

comparing Eq. (6.1) and Eq. (6.9) assuming sinusoidal motions. Mathematical details are

developed in Annex C.2.
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K (jω) = B (ω)− B̃ + jω
[
A (ω)− Ã

]
, (6.11)

where j2 = −1.

Reciprocally, the added mass and the damping matrix can be obtained with the Laplace

transform of the retardation matrix as follows:

{
Aij =

1
ωℑ (Kij) + Ãij

Bij = ℜ (Kij) + B̃ij
, (6.12)

where, ℑ and ℜ denote respectively the imaginary part and the real part.

The computation of the convolution product is time consuming. However, each convolution

component µi∈J1,6K can be approximated by a state space system in Eq. (6.13), as introduced

by Kristiansen et al. (2005) for the radiation forces. The mathematical justification of this

transformation can be found in (Sontag, 2013).

µi ≈





µi =
6∑
j=1

µij

ẏ
ij

= A
′

ij
y
ij
+B

′

ijδVs,j

µij = C
′

ijyij

, (6.13)

where,
{
A

′

ij
, B

′

ij , C
′

ij

}
represents a state-space model corresponding to a rational transfer

function denoted by Hij fitting the Kij (jω) data, for i, j ∈ J1, 6K. µi denotes the ith com-

ponent of the vector µj . yij is the state vector of the state space system. In order to clarify

the notation which might be slightly confusing, it should be mentioned that Eq. (6.13) does

not use the Einstein summation convention.

6.4. Identification of the state-space systems

6.4.1. Structure of the state-space systems

Direct equivalences exist between a rational transfer function and a state-space system. For

instance, for single input and output system, the corresponding canonical state-space system

of a transfer function is given as follows:
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



ẏ
ij

=




−bn−1 −bn−2 −bn−3 · · · −b0
1 0 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 1 0




y
ij
+ δVs,j




1

0
...

0

0




µij =
[
an−1 · · · a0

]
y
ij

. (6.14)

Where the coefficient ai and bi are respectively the numerator and denominator coefficient

of the following transfer function:

Hij =
an−1p

n−1 + . . .+ a1p+ a0
pn + bn−1pn−1 + . . .+ b0

(6.15)

Form of the transfer function at zero forward speed At zero forward speed, properties

of the retardation function as described in Pérez and Fossen (2008) impose the form of the

transfer function as follows:

Hij =
Kij (t = 0) pn−1 + . . .+ a1p

pn + bn−1pn−1 + . . .+ b0
(6.16)

Moreover according to the Riemann-Lebesgue Lemma, the transfer functions must be sta-

ble. The denominator should respect the Routh-Hurwitz criterion.

Form of the transfer function with forward speed With forward speed, the retardation

function may not tend towards zero at zero frequency. Indeed Bij (ω = 0) can be different

from Bij (ω = ∞), consequently:

lim
p→0

Hij 6= 0 (6.17)

This condition is not satisfied with the form given in Eq. (6.16). In case of forward speed,

Hij should have the following form:

Hij =
Kij (t = 0) pn−1 + . . .+ a1p+ a0

pn + bn−1pn−1 + . . .+ b0
, (6.18)

where the coefficient a0 and b0 should respect the following condition:

a0
b0

= Bij (ω = 0)−Bij (ω = ∞) (6.19)
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Computation of the hydrodynamic data and extrapolation towards zero and infinite

frequency The data Kij (jω) are obtained with the added mass and damping obtained

according to the STF strip theory (Salvesen et al., 1970). The 3D added mass and damping

are expressed in terms of sectional added mass and damping. For instance, the STF strip

theory expressed A∗
33and B∗

33 in terms of sectional added mass a33 and damping b33 as

follows:

{
A∗

33 (ω) =
´

Lpp
a33 (ω, x) dx− Uh

ω2 b33 (ω, xa)

B∗
33 (ω) =

´

Lpp
b33 (ω, x) dx+ Uha33 (ω, xa)

, (6.20)

where xa is the longitudinal position of the aft perpendicular section.

The sectional added mass and damping are obtained with the Shipmo seakeeping software

developed by the Marin® assuming an infinite depth. The frequency range of the data

depends on the ship size, but for a commercial ship, the low frequency limit is generally

0.1 rad.s-1 and the high frequency limit does not generally exceed 3 rad.s-1. To improve the

quality of the identification method an extrapolation of the hydrodynamic data towards the

asymptotic value is necessary.

As shown by Newman (1977), assuming a potential flow, at zero and infinite frequency, the

2D sections damping is zero. At infinite frequency, the 2D sections infinite added mass are

approximated with the highest frequency computed, which is justified since the added mass

remain almost constant at high frequency. Each sectional added mass and damping are then

extrapolated at high frequency with the function in Eq. 6.21, as used in (Pérez and Fossen,

2008) and originally proposed by Greenhow (1986):

fe (ω) =
β1
ω4

+
β2
ω2
, (6.21)

where β1 and β2 are two constants chosen in order to provide continuity and differentiabil-

ity.

Transfer function identification method The identification of Hij can be identified ei-

ther into the frequency domain or into the time domain, see Pérez and Fossen (2008). Here,

a time domain identification method is used to initialize the frequency domain identification

method.

A first identification of Hij into the time domain is performed with the the singular value

decomposition method proposed by Kung (1978). This step is performed with a modified

Matlab® function “imp2ss” to impose the order. This method is efficient but the identified

transfer function has the following form:

Hij =
anp

n + . . .+ a1p+ a0
pn + bn−1pn−1 + . . .+ b0

. (6.22)
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Consequently, to comply with the form imposed by Eq. (6.18), an is set to zero, an−1 is set

to Kij (t = 0) and a0 is set to a0 = b0 [Bij (ω = 0)−Bij (ω = ∞)].

This first estimation of the transfer function is used as initial solution of the frequency do-

main identification method. The frequency identification step is performed with the “oe”

function of the Matlab® system identification toolbox. This function uses a local optimiza-

tion scheme based on gradient methods and constraints can be added. The structure of

the transfer function, as proposed in Eq. (6.18), can be imposed to the frequency domain

optimization algorithm.

These two steps are repeated for several transfer function orders, for instance from 2 to 10.

Then, the best transfer function order is selected according to the normalized mean square

error from:





etot = 1
2 (ew + et)

ew =
∑

k[|Hij(jωk)−Kij(jωk)|]2
∑

k|Kij(jωk)|2

et =
∑

k[Hij(tk)−Kij(tk)]
2

∑

kKij(tk)
2

(6.23)

As an illustration of the identification method Annex C.4 provides the details about the

David Taylor Model Basin (DTMB) 5512 for the term K33. After the time domain iden-

tification, the best order found is 4 with an error etot = 10.4 %. After the frequency

identification step, the error etot dropped to 1.87 %.

6.5. Incoming waves and diffraction

The Froude-Krilov and diffraction forces are obtained with the STF 2D strip theory Salvesen

et al. (1970). Assuming an infinite depth, the dispersion relationship is kwg = ω2
w, where

k is the wave-number and g the gravity. ωw and βw denote respectively the wave angular

frequency in rad.s-1 and the angle of the waves with respect to the ship heading. βw is given

by βw = ψs − ψw, where ψw denotes the wave angle with respect to xn. With i ∈ J1; 6K,

each component fwi of the Froude-Krilov and diffraction forces generated by a single unit

wave can be expressed by the following expression:

fwi (us, βw, ωw, t) = Ei (us, βw, ωw) cos
(
kw cos (ψw) s

(n)
x

+k sin (ψw) s
(n)
y − ωwt− φw (us, βw, ωw) + ǫw

)
(6.24)

where Ei is the amplitude of the ith component of f
w

and ǫ is a random initial wave phase.

φw is the reflection phase change of the Froude-Krylov and diffraction force with respect

72



6.6. Time domain equation of motion

to the free surface elevation. According to Eq. 6.24, the wave frequency of encounter is

obtained by time derivation of the cosine function argument:

ωe = ωw − Us
g
ω2
v cosβw (6.25)

For any wave spectrum Sw (ωw, ψw), the Froude-Krilov and diffraction forces can be ex-

pressed as follows:

Fw (us, ψs) =
N∑

i=1

√
2Sw (ωw,i, ψw,i)∆ψw∆ωw fw (us, ψs − ψw,i, ωi) (6.26)

where ǫi is a random phase equidistributed between 0 and 2π to obtain a Gaussian wave

spectrum.

6.6. Time domain equation of motion

Equations describing the motion of the system can be transformed into a system of first

order differential equations Eq. (6.27). This system is deduced from Eqns. (3, 4, 6.9, 6.13).





Ṡ =

[
T c

s
0

0 Rc

s

]
V s + [U c 03]

T

V̇ s =
[
M

S
+ Ã

]−1 [
F −

[
B̃ +B

φ
+D

]
V s − µ− C S

]

ẏ
ij

= A
′

ij
y
ij
+B

′

ijδVs,j , ∀i, j ∈ J1; 6K

(6.27)

Equation (6.27) represents 12 scalar equations for the ship and 75 scalars equations for

the state-space systems assuming that the order of each state space system is 5 and taking

into account the ship symmetry. Thus, with the presented model, a ship towed by kite is

described by approximately 90 scalar equations depending on the state space model orders.

This system of differential equations is numerically integrated with a Runge-Kutta scheme

of order 4 with a fixed time step.

6.7. Time domain validation case

The presented ship model is compared to experimental fluid dynamics (EFD) data and with

STF strip theory results on the David Taylor Model Basin (DTMB) 5512. The DTMB

73



6. Time domain seakeeping modeling

model 5512 is a 1:46.6 scale model. The hull form and its specs are respectively plotted in

Fig. 6.1 and summarized in Tab 6.1. The experimental data are provided by the University

of Iowa The University of Iowa (2013) and are presented in Irvine et al. Irvine et al. (2008).

The EFD data concern the heave and pitch motions in regular head waves, with and without

forward speed.

−0.2 −0.1 0 0.1 0.2

0

0.1

0.2

y [m]

x
[m

]

Figure 6.1.: DTMB 5512 hull sections at the scale of 1:46.6.

Parameter Units 5512 Full Scale

Scale ratio - 46.6 1

Length, Lpp m 3.048 142.04

Beam, B m 0.405 18.87

Draft, T m 0.132 6.15

Weight Kg - t 86.6 8763.5

LCG m 1.536 71.58

VCG m 0.162 7.55

Pitch radius of gyration, k5 m 0.764 35.6

Table 6.1.: DTMB 5512 hull and full scale characteristics

6.7.1. Results

The computation of ship motions is performed at zero forward speed and at a Froude

number of 0.28 which corresponds to Uh = 1.53 m.s-1 and with frequency head waves,

ω0, ranging from 1 rad.s-1 to 7.5 rad.s-1. Figures 6.2 and 6.3 plot the heave and pitch

transfer function obtained with the experimental data, with the STF strip theory and with

the presented model. The experimental data are obtained for different wave steepness

sw = {0.025, 0.05, 0.075}. The amplitude of the transfer function for heave motion is

directly the ratio of the heave amplitude motion to the wave amplitude. The RAO ampli-

tude for the pitch motion is given by the ratio of the pitch motion amplitude (in radian) to the
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6.7. Time domain validation case

wave amplitude multiplied by the wave number k. The phase angle of the presented model

is obtained by cross correlation between the free surface elevation and the ship motion time

series.
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Figure 6.2.: Heave and pitch transfer function at Uh = 0.0 m.s-1as function of the wave

frequency of encounter we. The results are obtained with the frequency domain

and time domain approaches, experimental data for different wave steepnesses

sw and with the STF strip theory.

The results presented in Fig. 6.4 shows the predicted roll motion with the strip theory using

the damping predicted by the method of Ikeda et al. (1978). The results of Ikeda et al.

(1978) are considered as a reference.

6.7.2. Analysis and Discussion

Concerning the amplitude, an overall good agreement is found with and without forward

speed between the EFD data, the STF strip theory and the presented time domain seakeeping
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Figure 6.3.: Heave and pitch transfer function at Uh = 1.53 m.s-1 as function of the wave

frequency of encounter we. The results are obtained with the frequency domain

and time domain approaches, experimental data for different wave steepnesses

sw and with the STF strip theory.

model. For the considered waves, the influence of the wave steepness on the EFD data is

not significant.

As it is theoretically expected, the STF strip theory and the time domain approach match

perfectly for the amplitude. Very small differences can be observed in terms of phase angle,

but these differences are caused by the accuracy of the post-processing method. The very

small differences with the STF strip theory are due to the approximations performed with

the identification method of the transfer functions Hij .

As a conclusion for the heave and pitch motions, the very small differences between the STF

strip theory and the presented time domain seakeeping model in Figs. 6.2 and 6.3 show that

the transformation of the equation of motion into the s frame and the the state-space model

identification method is consistent and accurate enough.
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Figure 6.4.: Roll response amplitude operator and phase at U = 7.716 m.s-1 as function

of the frequency of encounter we with DTMB 5512 at full scale. The results

are obtained with the presented model and the STF strip theory with the roll

damping modeled with the method proposed by Ikeda et al. (1978).

The roll motion is much more difficult to predict with a linear model. With the DTMB at

full scale, results presented in Fig. 6.4 show the predicted roll motion with the strip theory

using the damping predicted by the method of Ikeda et al. (1978). The results of Ikeda et al.

(1978) are considered as a reference.

The extra roll damping is determined to obtain approximately the same roll motion ampli-

tude at the natural roll ship frequency as the model of Ikeda et al. (1978). For the presented

simulation the extra roll damping is set to 1.53 · 108 kg.m.s-1. As shown in Fig. 6.4, at

the natural roll ship frequency, ωroll = 0.56 rad.s-1, the roll motion is well predicted. At

high frequency, greater than 1 rad.s-1, the roll motion amplitude is well predicted, only a

slight difference in terms of phase is observable. Nevertheless, for the wave frequency in

the range ] 0; 1] rad.s-1, predictions appear to be less accurate.

6.8. Conclusion

A time domain seakeeping model based on the Cummin’s equation has been implemented

with respect to the ship fixed coordinate system. The convolution product has been per-

formed using state-space models. The state-model models have been identified with the
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6. Time domain seakeeping modeling

STF strip theory data. The structure of the state-space system has been modified to comply

with the forward speed requirements.

A validation using EFD data has been performed on the DTMB 5512 in regular head waves.

The results show that the heave and pitch motions predicted by the STF strip theory and the

time domain approaches are consistent. Their comparisons with the EFD data are satis-

factory. The approximations performed using state-space models are negligible. The ship

model and its implementation give satisfactory results for the vertical ship motions. The

predicted roll motion is less satisfactory, nevertheless the roll amplitude at the natural roll

frequency of the ship is correctly estimated.

The STF strip theory (Salvesen et al., 1970) is based on the potential flow assumption and

the horizontal ship motions dominated by viscous effects therefore the presented model is

not adequate for the horizontal motions. The hydrodynamic model needs to be modified to

take into account horizontal motions.
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for the maneuvering motions

Résumé: Prise en compte des mouvements de manœuvrabilité

dans le modèle temporel de tenue à la mer

Ce chapitre présente une façon d’étendre le modèle de tenue à la mer pour modéliser les

mouvements de manœuvrabilité. Les mouvements de manœuvrabilité sont des mouvements

à basse fréquence. Ils correspondent aux efforts de radiation basse fréquence du modèle de

tenue à la mer. Seulement, l’influence de la viscosité est significative sur les mouvements de

manœuvrabilité. Comme le modèle de tenue à la mer suppose un écoulement non visqueux,

il est nécessaire de modifier la formulation des efforts hydrodynamiques liés aux mouve-

ments horizontaux du modèle temporel de tenue à la mer.

Deux types de modèles de manœuvrabilité peuvent être reconnus dans la littérature : les

modèles du type Abkowitz (1980) et les modèles modulaires proposés par Kobayashi et al.

(1995) également connu sous le nom de modèle MMG (Japanese research Mathematical

Modeling Group). Les modèles du type Abkowitz (1980) représentent les efforts du safran,

de l’hélice et de la coque sous forme de série de Taylor pour chaque composante de mou-

vement considéré. Les modèles modulaires se distinguent car le safran, l’hélice, la coque et

leurs interactions sont modélisés de façon indépendante.

L’approche modulaire est préférée car elle s’implémente facilement en programmation

orientée objet, ce qui présente un avantage pour la maintenance et l’évolution du code

comme l’indique Sutulo and Soares (2005). Dans ce chapitre, les efforts correspondant

aux composantes horizontales de mouvements sont remplacés par le modèle modulaire de

Yoshimura and Masumoto (2012). Ce modèle a été choisi car Yoshimura and Masumoto

(2012) propose une formulation paramétrique qui permet donc d’adapter le modèle pour

différents types de navire. L’incorporation de ces modèles dans le modèle de tenue à la mer

temporel est similaire à la méthode suivie par Sutulo and Guedes Soares (2006).

De plus le modèle temporel de tenue à la mer est valide autour d’une vitesse d’avance

moyenne alors que la variation de vitesse d’avance au cours d’une manœuvre peut grande-

ment varier. Plus précisément, les systèmes d’état correspondent à une vitesse d’avance.

Ainsi, pour avoir une formulation continue en vitesse d’avance, les systèmes d’états cor-

respondant à deux vitesses d’avance sont calculés au cours de la simulation. L’effort de

radiation est ensuite linéairement interpolé.
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Une validation de cette approche est proposée avec le porte conteneur KCS. Des essais zig-

zag 15°/1° de navigation libre à l’échelle 1:52.667 effectué au bassin de Potsdam (Mofidi

and Carrica, 2014; Shen et al., 2015) et des essais de giration avec un angle de barre à 35° et

des essais zig-zag 20°/20° (Fukui et al., 2015, 2016) ont été utilisé comme cas de validation.

De plus, en utilisant les résultats de manoeuvrabilité disponibles dans (Toxopeus and Lee,

2008; Stern et al., 2011) obtenus par différents codes et différents essais en bassin offrent

des points de comparaisons supplémentaires.

L’extension du modèle temporel de tenue à la mer donne des résultats satisfaisants par

rapport aux essais en bassin et aux autres codes.

7.1. Introduction

The aim of this chapter is to enhance and to complete the model developed in Chap. 6 to

predict horizontal motions of a ship towed by a kite, since a kite might have an important

impact on the maneuverability of the ship. The kite must be small enough to lead to small

horizontal amplitude of ship motions in order to guarantee the ship safety. This require-

ment complies with the small amplitude of ship motions around a mean ship forward speed

assumed by the time domain seakeeping model developed in chapter 6.

As highlighted by Bailey et al. (1997) the damping relative to the horizontal motions is

dominated by viscous effects at low frequency. Hence, at low frequency, horizontal ship

motions predicted with the time domain seakeeping model based on the potential flow the-

ory introduced in Chap. 6 are overestimated. At least, the damping relative to the horizontal

ship motion must be corrected to represent the viscous effects. An inclusion of the viscous

effects into the time domain seakeeping model has been proposed by Bailey et al. (1997)

and Fossen and Smogeli (2004). They suggested to add a viscous decaying ramp or viscous

exponential decay to the frequency damping data. Their proposition has been implemented

but results are not satisfactory as shown in Annex C.6. Another manner to model the 6

degrees of freedom of a ship is to mix time domain seakeeping equations of motion with

maneuvering equations of motion. The mixed approach is introduced in this chapter. In

addition, the ship forward speed may vary during a maneuver whereas the ship model of

Chap. 6 is defined around a mean ship forward speed. Consequently, the formulation of the

model must be transformed into a forward speed continuous model, which is proposed in

this chapter.

To predict horizontal motions of a ship, rudder, propeller and hull advance resistance models

should be introduced. In the literature, horizontal motions are basically studied by the

maneuverability of ships. The maneuvering model can be classified into two groups. The

first group of models is proposed by Abkowitz (1980), where the hydrodynamic forces of

the bare hull, rudder and propeller are described by a single Taylor expansion for each

component of the motion. The second type of model is the MMG model (Kobayashi et al.,
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7.2. Maneuvering apparatus and other external forces modelings

1995) proposed by the Japanese research Mathematical Modeling Group (MMG). MMG

models are implemented in a modular way. The bare hull, the rudder, the propeller and their

interactions are described by dedicated models. The bare hull is usually represented by

Taylor expansions. The coefficients of the Taylor’s expansions can be obtained with captive

model tests, Computational Fluid Dynamics (Toxopeus, 2011) or parametric models such

as (Clarke et al., 1983; Yoshimura and Masumoto, 2012).

Here, a modular approach such as proposed by the MMG model is preferred in order to

offer an easier maintenance and future developments (Sutulo and Soares, 2005). Indeed,

this approach offers the advantage to implement each model in a separated manner. Among

MMG models proposed in the literature, the model of Yoshimura and Masumoto (2012)

has the advantage to proposed a parametric description of the hull, rudder and propeller

built with regressions based on differents types of ship, from fishing vessels to container

ships. In addition, a parametric description of the interaction coefficient between the hull,

propeller and rudder is also proposed. Consequently, in this thesis, in order to develop a

tool dedicated to a wide variety of ships, the rudder, the propeller and their interactions are

modeled with the parametric model proposed by Yoshimura and Masumoto (2012).

Firstly, the propeller, rudder and windage models are introduced. Secondly, the approach

adding a viscous modification of the damping data is introduced with the equations of mo-

tion for a varying forward speed. Thirdly, the mixed maneuvering and seakeeping approach

is introduced. Then, a validation exercise is proposed for the two approaches with free

sailing EFD data performed by the Hokkaido University and by the Potsdam Model Basin

(SVA). Results are then analyzed and discussed.

7.2. Maneuvering apparatus and other external forces modelings

7.2.1. Propeller model

The expression of the propeller thrust is given by Eq. (7.1).

XP = (1− tp) ρwKTD
4
Pn

2
p (7.1)

The open water propeller thrust factor is denoted by KT . The thrust deduction factor is

denoted by tp. The thrust deduction factor represents the decrease of the propeller thrust

due to the presence of the hull. The thrust factor is a function of the propeller advance ratio,

denoted by J and expressed with the wake fraction w in Eq. (7.2).

J = (1− w)
uS

nPDP
(7.2)
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The thrust deduction factor and the wake fraction can be determined with a semi-empirical

formula such as the one formulated by Harvald (1983) and Journée (1976).

The propeller torque is given by:

KP = ρwKQD
5
Pn

2
p (7.3)

whereKQ is the propeller torque factor. The generalized force vector of the propeller thrust

is given by:

Fp = [Xp, 0, 0, Kp, 0, 0]
T (7.4)

The pitch moment due to the propeller thrust is not taken into account since the induced

trim angle is small and no coupling with the other motion mode is further considered. This

assumption holds for the following rudder and hull advance resistance sub-model.

7.2.2. Rudder model

According to Yoshimura and Masumoto (2012) rudder forces are expressed as follows:





Xr = −kh (1− tr)F
′

r sin δ

Yr = −kh (1 + ah)F
′

r cos δ

Nr = −kh
(
x

′

r + ahx
′

h

)
F

′

r cos δ

, (7.5)

where tr, ah and x
′

h are coefficients representing the interactions of the rudder with the hull

and the propeller. The symbol
′

denotes that a parameter is non-dimensional. Parametric

expressions of these coefficients are provided in (Yoshimura and Masumoto, 2012). The

non-dimensional rudder force F
′

r is expressed as follows:

F
′

n =
Ar

LppTm
fλrU

′2
r sinαr, (7.6)

where, Ar is the lateral rudder area. fλr is a coefficient modeling the effect of the rudder

aspect ratio λr on the rudder lift coefficient. Yoshimura and Masumoto (2012) expressed

this coefficient as follows:

fλr =
6.13λr

2.25 + λr
(7.7)

U ′
r is the non-dimensional rudder inflow velocity:
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U
′

r =
Ur
Us

=
√
u′2
r + v′2

r . (7.8)

The determination of the rudder inflow velocity is not an easy task. Indeed, the inflow

depends on the hull, propeller and rudder configuration and on the interactions between

them. However, the determination of the exact inflow velocity in the whole fluid domain is

out of the scope of this work. But, the modeling of these interactions cannot be avoided.

It can be found in the literature several empirical formulas to describe this phenomenon.

Here, the formulation provided in Yoshimura and Masumoto (2012), Eq. (7.9) is chosen in

order to obtain a parametric formulation of the interaction coefficients.




u

′

r = ǫ (1− w)
√
η
[
1 + κ

(√
1 + Cth − 1

)]2
+ (1− η)

v′r = γr

(
v
′

s + l
′

rr
′

s

) (7.9)

The dependency of the rudder inflow velocity with the propeller thrust is modeled thanks

to the interactions coefficients ǫ and κ and the geometric ratio between the propeller diam-

eter and the rudder span, η = Dp/br. Parametric expressions of ǫ and κ are provided in

(Yoshimura and Masumoto, 2012). Downstream to the propeller the axial flow is increased,

which can be noticed in Eq. 7.9. The axial rudder inflow velocity increases with the pro-

peller thrust loading coefficient Cth = 8KT /πJ
2. The transverse rudder inflow velocity

v
(s)
R depends on the ship turning rate and ship transverse velocity. The hull tends to de-

crease the absolute value of the transverse rudder inflow velocity. This effect is represented

by Yoshimura and Masumoto with the flow rectification factors, γr and l
′

r in Eq. 7.9. The

propeller walk effect can be take into account using a different value of γr according to

the sign of
(
v
′

s + l
′

rr
′

s

)
. According to Fukui et al. (2016), the flow rectification factor may

depend on the heeling angle. A correction can be given to the γr as follows:

γr = γr (φs = 0) [1 + cγ |φs|] (7.10)

The generalized force vector of the rudder is given by:

Fr =
[
Xr, Yr, 0, −r(s)z Yr, 0, Nr

]T
(7.11)

where r
(s)
z is the componant along the zs axis of the geometric center of the rudder.

7.2.3. Hull advance resistance

The hull advance resistance can be split into two parts: the steady hull advance resistance

with no drift and the hull resistance due to drift and yaw rate. Since the propeller force is
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already multiplied by (1− t), where t is the thrust deduction factor, only the bare hull resis-

tance must considered. The hull resistance due to drift and yaw rate is non-linear. Here this

part of the hull resistance can be expressed with the non-linear Taylor expansion proposed

by Yoshimura and Masumoto (2012). The hull advance resistance force is assumed to be

oriented by the longitudinal ship axis xs, F hi = [Xh, 0, 0, 0, 0, 0]
T :

Xhi = Xbh (us) + kh

{
X

′

β2
s
β2s +X

′

βsr
′

s
βsr

′

s +X
′

r′2s
r
′2
s +X

′

β4
s
β4s

}
(7.12)

where kh = 1
2ρwLppTmU

2
s , withLpp and Tm denoting respectively the waterline ship length

and the draft at midship. The non-dimensional ship turning rate is expressed as follows:

r′s =
Lpp
Us

rs. (7.13)

The hull resistance part due to drift and yaw rate can be replaced by any other formulation

of induced resistance due to the drift.

7.2.4. Windage model

The windage model used here is an empirical model proposed by Blendermann (1994).

According to wind tunnel tests performed on various types of ships, Blendermann (1994)

proposed a formulation of the windage force as follows:





Xwa = 1
2ρaAfU

2
rw (Hm)


−D′

l
Al

Af

cosβrw

1− δw
2

(

1−D
′

l

D
′

t

)

sin2 2βrw




Ywa = 1
2ρaAlU

2
rw (Hm)


−D′

t
sinβrw

1− δw
2

(

1−D
′

l

D
′

t

)

sin2 2βrw




Kwa = 1
2ρaAlHmU

2
rw (Hm)


−κ sh

Hm
D

′

t
sinβrw

1− δw
2

(

1−D
′

l

D
′

t

)

sin2 2βrw




Nwa = Loa
Al

Af

[
sl
Loa

− 0.18
(
βrw − π

2

)]
Ywa

(7.14)

In this formulation, Loa denotes the overall ship length. Hm = Al/Loa defines mean height

of the windage lateral surface. Al and Af denote respectively the lateral and the windage

frontal area. sl denotes the distance of the windage lateral-plane centroid from the main

section. sh is the height of the windage lateral plane centroid. The other parameters are

tabulated dependenig on the type of ship.
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7.2. Maneuvering apparatus and other external forces modelings

Kwa and Nwa are expressed at Owa defined by the intersection of the ship symmetry plane,

midship section and the free surface. The generalized windage force can be expressed atOs
as follows:

Fwa =
[
[Xwa, Ywa, 0] [Kwa, 0, Nwa] +OsOwa × [Xwa, Ywa, 0]

T
]T

(7.15)

7.2.5. Modeling of a varying forward speed

The time domain seakeeping model is defined with respect to a given forward speed (cf.

Chap. 6). To take into account a varying forward speed, a new formulation of the added

mass and damping at infinite frequency and of the fluid memory force µ is proposed here.

Assuming that the ship forward speed is within the range
[
U

(1)
h ; U

(2)
h

]
, the added mass, the

damping and the expression of the fluid memory force are approximated by linear interpo-

lations. According to mean forward speeds U
(1)
h and U

(2)
h , the ratio τ is defined as,

τ =
us − U

(1)
h

U
(2)
h − U

(1)
h

(7.16)

Each components of the fluid memory force are then calculated as follows:

µi = (1− τ)µ
(1)
i + τµ

(2)
i (7.17)

where,





µ
(1)
i =

6∑
j=1

µ
(1)
ij

µ
(1)
ij = C

′(1)
ij y

(1)
ij

µ
(2)
i =

6∑
j=1

µ
(2)
ij

µ
(2)
ij = C

′(2)
ij y

(2)
ij

, (7.18)

The interpolated added mass matrix is given from:

Ã = (1− τ) Ã
(1)

+ τÃ
(2)

(7.19)

Finally, the damping matrix is given from:

B̃ = (1− τ) B̃
(1)

+ τB̃
(2)

(7.20)
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The ship equations of motion is then transformed as follows:





Ṡ =

[
T c

s
0

0 Rc

s

]
V s

V̇ s =
[
M

S
+ Ã

]−1 [
F −

[
B̃ +D

]
V s − µ− C S

]

ẏ
(1)
ij = A

′(1)
ij
y
(1)
ij +B

′(1)
ij V

(1)
s,j , ∀i, j ∈ J2; 6K

ẏ
(2)
ij = A

′(2)
ij
y
(2)
ij +B

′(2)
ij V

(2)
s,j , ∀i, j ∈ J2; 6K

(7.21)

The expression of the external forces, denoted by F , can be precised as the sum of the first

order wave force, rudder force, propeller force, hull advance resistance and windage forces,

which leads to:

F = Fw + F r + F p + F hi + Fwa + F hnl (7.22)

7.3. A mixed seakeeping and maneuvering model

7.3.1. Maneuvering equations of motion

The maneuvering motion may lead to large horizontal ship motions: surge, sway and yaw.

The maneuvering motions are at low frequency. Consequently, it is assumed that the ma-

neuvering derivatives can be taken constant and that the zero frequency added mass are

constant too. Consequently, ship equations of motion considered for the ship maneuvering

can be written as follows:





Ṡ = mh ◦
[
T c

s
0

0 Rc

s

]
V s

V̇ s = mh ◦
[
M

s
+A

s
(ω ∽ 0)

]−1 [
F − C

rb,s
V s

] (7.23)

where mh is the degree of freedom vector and ◦ denotes the Hadamard product. Gen-

erally, maneuvering models consider only the surge sway and yaw motion, consequently

mh = [1, 1, 0, 0, 0, 1]T . The matrix C
rb,s

is the Coriolis and centripetal matrix defined

as follows (Perez, 2006):

C
rb,s

=


 ∆sI3 −∆sS

(
G

(s)
s

)

∆sS
(
G

(s)
s

)
I
s


 . (7.24)
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7.3. A mixed seakeeping and maneuvering model

where Gs is the ship center of gravity. The matrix S denotes the three-by-three skew-

symmetric matrix, for instance:

S
(
G(s)
s

)
=




0 −g(s)sz g
(s)
sy

g
(s)
sz 0 −g(s)sx

−g(s)sy g
(s)
sx 0


 (7.25)

Into the sum the generalized external forces F , the generalized hydrodynamic force of the

hull F h is taken into account. The hydrodynamic force of the hull can be expressed as series

expansion of the ship velocity parameterization. For instance, the hull derivatives proposed

in the MMG model of Yoshimura and Masumoto (2012) are given as function of the yaw

turning rate rs and the ship drift angle βs = − arctan vs
us

:




Yh = kh

{
Y

′

βs
βs + Y

′

r′s
r
′

s + Y
′

β2
sr

′

s

β2sr
′

s + Y
′

βsr
′2
s

βsr
′2
s + Y

′

β3
s
β3s + Y

′

r′3s
r
′3
s

}

Nh = khLpp

{
Y

′

βs
βs + Y

′

r′s
r
′

s + Y
′

β2
sr

′

s

β2sr
′

s + Y
′

βsr
′2
s

βsr
′2
s + Y

′

β3
s
β3s + Y

′

r′3s
r
′3
s

} ,

(7.26)

where kh = 1
2ρwLppTmU

2
s . The non-dimensional yaw turning rate is defined as r′s =

Lpp

Us
rs.

To take into account the heeling moment due to the drift, it is assumed that the heeling mo-

ment is zero at Tm/3 below the free surface. Consequently, the generalized hydrodynamic

force of the hull is written as follows:

F h = [0, Yh, 0, zmYh, 0, Nh]
T (7.27)

where it is assumed that zm = lz − 2
3Tm.

7.3.2. 6 dof mixed equations of motion

The mixed approach is based on the maneuvering equations of motion for horizontal mo-

tions and the seakeeping time domain equations of motion for the vertical motions. Equa-

tions of motions can then be written as follows:
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7. Extension of the time domain seakeeping for the maneuvering motions





Ṡ =

[
T c

s
0

0 Rc

s

]
V s

V̇ s =
[
M

S
+A

hv

]−1 {
F −

[
mv ◦

(
B
hv

+D
)
+mh ◦ Crb,s

]
V s − µ− C S

}

ẏ
(1)
ij = A

′(1)
ij
y
(1)
ij +B

′(1)
ij V

(1)
s,j , ∀ (i, j) ∈ J2; 6K2 \ {(4, 2) , (4, 6)}

ẏ
(2)
ij = A

′(2)
ij
y
(2)
ij +B

′(2)
ij V

(2)
s,j , ∀ (i, j) ∈ J2; 6K2 \ {(4, 2) , (4, 6)}

(7.28)

µ is determined according to Eq. (7.17), where transfer functions H22, H26, H62 and H66

are set to zero. The degree of freedom vectors are defined as follows: mv = [0, 0, 1, 1, 1, 0]T

and mh = [1, 1, 0, 0, 0, 1]T . The added mass matrix A
hv

is a mix between Ã, the infinite

frequency added mass for the vertical ship motion and A
s
(0), the zero frequency added

mass for the horizontal ship motion. A
hv

is defined as follows:

A
hv

=




A11 (0) 0 0 0 0 0

0 A22 (0) 0 Ã24 0 A26 (0)

0 0 Ã33 0 Ã35 0

0 0 0 Ã44 0 0

0 0 Ã53 0 Ã55 0

0 A62 (0) 0 Ã64 0 A66 (0)




(7.29)

The damping matrix B
hv

defined as follows:

B
hv

=




B̃11 0 0 0 0 0

0 B̃22 0 B̃24 0 B̃26

0 0 B̃33 0 B̃35 0

0 0 0 B̃44 0 0

0 0 B̃53 0 B̃55 0

0 B̃62 0 B̃64 0 B̃66




(7.30)

Since A
hv

and B
hv

vary with the ship speed, these matrices are defined by linear interpola-

tion between two ship speeds as achieved in Eqns (7.19) and (7.20).

The sum of the generalized external forces F is expressed as follows:

F = Fw + F r + F p + F hi + Fwa + F h (7.31)

7.4. Case of study

The Kriso Container Ship was chosen as a case of study because this ship model is well

documented in the literature.
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7.4. Case of study

7.4.1. Kriso Container Ship modeling

The case of study is the Kriso Container Ship (KCS) at test conditions used during the

SIMMAN 2008 workshop. A summary of the hull particulars and test conditions is given in

Tab. 7.1 and the hull sections are represented in Fig. Open water propeller curves are given

in Annex C.7.1. The hull advance resistance is approximated with the regression model of

Holtrop and Mennen (1982), the data are given in Annex C.7.2.

Hull Rudder Propeller Test conditions

Lpp 230 m Ar 54.5 m2 Dp 7.9 m GMt 0.60 m

Bs 32.2 m λr 1.8 p
(s)
x -110.8 m izz ≈ iyy 57.5 m

Tm 10.8 m δ̇r 2.32 °/s p
(s)
z 10.4 m ixx 12.9 m

∇s 52030 m3 r
(s)
x -115 m Open water propeller curve Us 24 knots

Cb 0.651 r
(s)
z 7.7 m cf. Annex C.7.1 LCB -3.4 m

Table 7.1.: Kriso Container Ship (KCS) particulars and test conditions
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Figure 7.1.

Added masses at zero frequency have been estimated with the STF strip theory Salvesen

et al. (1970) data at ω = 0.1. The hull maneuvering derivatives of the KCS are taken from

(Fukui et al., 2015). This model has the advantage to take into account the heel influence.

The Taylor expansion modeling the surge, sway and yaw hydrodynamic force of the hull is

given from:
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7. Extension of the time domain seakeeping for the maneuvering motions



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khLpp
= N

′

φs
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′
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(1 + cnβs |φs|)βs +N

′

rs (1 + cnrs |φs|) r
′

s

Nβsβsφsβ
2
sφ+N

′

βsrsφs
βsrsφs +N

′

rsrsφs
r2sφs

N
′

βsβsβs
(1 + cnβsβsβs |φs|)β3s +N

′

βsβsrs
(1 + cnβsβsrs |φs|)β2srs

N
′

βsrsrs
(1 + cnβsrsrs |φs|)βsr
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s +N

′

rsrsrs (1 + cnrsrsrs |φs|) r
′3
s

(7.32)

where kh = 1
2ρwLppTmU

2
s . The hull derivatives are given in Annex C.7.3. The interaction

coefficients modeling the interaction between the hull, the propeller and the rudder are given

in Annex C.7.4.

According to the STF strip theory and the considered maneuvering model in Eq. (7.32),

transfer functions Hij for the fluid memory forces can be estimated. Expressions of the

transfer functions are given in Annex C.7.6. Corresponding impulse responses, added

masses and damping are fitted with good agreement.

In following results, the mean ship speeds of reference are
[
U

(1)
h ; U

(2)
h

]
= [10.29; 12.86]

m.s-1 for the zig-zag tests and
[
U

(1)
h ; U

(2)
h

]
= [5.15; 12.86] m.s-1 for the turning circle.

7.4.2. Benchmark results

Two benchmark results are used to compare and to validate the two approaches with time

series of maneuvering motions. Free sailing tests of zig-zag 15°-1° were performed at the

Potsdam Model Basin (SVA) with a KCS model at the scale of 1:52.667. These results can

be found in (Mofidi and Carrica, 2014; Shen et al., 2015). Fukui et al. (2015) and Fukui et al.

(2016) investigated the effect of the roll motion on the KCS maneuverability. Turning circle

with a rudder angle of 35° and zig-zag 20°/20° maneuvers were carried out with a KCS

scale model of 1:105 at the tank of the Japan Marine United Corporation (JMUC). These

two free sailing results are used to compare the time series of the standard maneuvering

motions obtained with the presented 6 dof dynamic ship models. The ship speed entry

is 12.35 m.s-1(Froude number 0.26) according to the Simman 2008 workshop cases Stern

et al. (2011) and the rudder angle is zero at the beginning of the test maneuvers. Free sailing

maneuver results are digitized from (Fukui et al., 2016) and (Shen et al., 2015).
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7.5. Validation of the mixed seakeeping and maneuvering model

A turning circle maneuver consists in turning the rudder at a given angle with ship mo-

tions let free. Generally, the considered rudder angle for a turning circle is ±35°. A zigzag

Xδr/Xψs
test maneuver consists in turning the rudder at the angle Xδr until the ship expe-

riences a heading modification of Xψs
and reversing the rudder angle until the ship experi-

ences a heading deviation of −Xψs
from the initial course and so on. A standard definition

of this maneuver is provided in (ITTC, 2002).

Moreover standard KCS maneuvering results were presented in (Toxopeus and Lee, 2008;

Stern et al., 2011). These results were obtained with experiments and empirical methods.

Moreover, in (Toxopeus and Lee, 2008) statistical maneuvering results obtained with similar

ship are presented.

7.5. Validation of the mixed seakeeping and maneuvering model

7.5.1. Results

During a turning circle maneuver with a rudder angle of 35°, Figs. 7.2 and 7.3 show re-

spectively the ship path in the plane
(
xn, yn

)
and time series of the drift angle βs, surge

velocity us, heel angle φs, surge velocity us and yaw turning rate rs. Figs. 7.2 and 7.3

compare the results obtained thanks to the mixed seakeeping and maneuvering model (solid

line) with the EFD data of the free running test at the JMUC (dashed line).

−800 −600 −400 −200 0 200 400 600 800

0

200

400
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y [m]

x
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]

Mixed seakeeping and

maneuvering model

Experimental free running

JMUC

Figure 7.2.: Turning circle path with rudder angle δr = 35° . The results obtained with the

mixed seakeeping and maneuvering model ( ) are compared with the free

sailing EFD data of the JMUC ( ).
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Figure 7.3.: Time history during a 35° turning circle maneuver of the: drift angle βs, surge

velocity us, heel angle φs, surge velocity us and yaw turning rate rs. The

results obtained with the mixed seakeeping and maneuvering model ( ) are

compared with the free sailing EFD data of the SVA ( ).

Figure 7.4 shows, during a KCS zigzag 20/20° test maneuver, the time history of: the rudder

angle δr, the ship heading ψs, the ship drift angle βs = − arctan (vs/us), the heeling angle

φs and the ship longitudinal speed us. Solid lines correspond to the mixed seakeeping

and maneuvering model. Dashed lines correspond to the free sailing data performed by

the JMUC. Figure 7.5 shows, during a KCS zigzag 15/1° test maneuver, the time history

of: the rudder angle δr, the ship heading ψs, the ship drift angle βs, the heeling angle

φs and the ship longitudinal speed us. Solid lines correspond to the mixed seakeeping

and maneuvering model. Dashed lines correspond to the experimental free sailing data

performed by the SVA.
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Figure 7.4.: Time history during a zigzag 20/20° maneuver of : rudder angle δr, heading ψs,
drift angle βs, heel angle φs and surge velocity us. Results obtained with the

mixed seakeeping and maneuvering model ( ) are compared with the free

sailing EFD data of the JMUC ( ).
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Figure 7.5.: Time history during a zigzag 15/-1° maneuver of : rudder angle δr, heading ψs,
drift angle βs, heel angle φs and surge velocity us. Results obtained with the

mixed seakeeping and maneuvering model ( ) are compared with the free

sailing EFD data of the SVA ( ).
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7.5.2. Analysis and discussion

According to Figure 7.2, the transient part of the ship path is correctly estimated for both

turning circles. The turning radius of gyration is correctly estimated. The only difference is

the maximum transfer distance. In Figure 7.3, it can be shown that the transient part of the

yaw turning rate and the surge velocity are accurately predicted until 50 seconds. However,

transient parts of the drift angle and heeling angle are less well predicted. The predicted

drift angle increases more rapidly than during the free sailing tests. Amplitudes of roll are

more important and slower. Regarding steady states, the drift angle and the loss of surge

velocity are overestimated. The turning rate is underestimated which is consistent with the

predicted ship speed that is lower. The heeling angle seems to converge towards the same

value.

According to the zig-zag maneuvers 20/20° and 15/-1°, respectively in Figs. 7.4 and 7.5,

the predicted turning period is slightly longer. The predicted heading for both maneuvers

is slightly longer. However, concerning the amplitude of the motions, observations are

different. The loss of surge velocity and the drift angle are underestimated for the zig-zag

test 15/-1° and overestimated for the zig-zag test 20/20°. For the zig-zag 15/-1°, the roll

amplitude is overestimated and overshoot angles are underestimated, whereas for the zig-

zag 20/20°, these motions are correctly predicted in terms of amplitude. Concerning the

evolution of ship motions during these two zig-zag maneuvers, the same patterns than for

the free sailing data are observed.

Despite the difference noticed between the predicted motions and the free sailing data of

the SVA basin and JMUC basin, the mixed maneuvering and seakeeping approach shows

a significant improvement compared to the direct extension of the time domain seakeeping

model. The mixed seakeeping and maneuvering approach is satisfying. Finally, according

to maneuvering results from different other empirical methods, PMM tests and free sailing

results available in (Toxopeus and Lee, 2008; Stern et al., 2011) and compiled in Tab. 7.2,

the mixed seakeeping and maneuvering approach is validated for the KCS.
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Overshoot Tactical

angles diameter

Type Source
10/10° 10/-10° 10/10° 10/-10° 20/20° δr = 35°

1st 2nd

Empirical

methods

SurSim 3.8° 4.2° 9.1° 3.88 Lpp

SurSim sb 10.1° 15.1° 20.0° 2.77 Lpp

FreSim 4.2° 5° 9.7° 4.36 Lpp

FreSim sb 9.6° 13.0° 18.5° 2.96 Lpp

MPP Marin 6.3° 7.7° 13.3° 3.01 Lpp

Force SY Adv - - 16.7° 19.1° - -

Force SY Sim - - 24.2° 29.8° - -

Circular

Motion Tests

Hiroshima CMT - - 29.1° 18.7° - -

MOERI CMT - - 8.0° 6.7° - -

NMRI CMT - - 12.0° 9.2° - -

Hokkaido Univ.

CMT

- - 12.0° 9.0° - -

Free Sailing

Tests

SVA - - 17.0° 20.0° - -

BSHC - - 20.3° 21.6° - 2.74 Lpp

Hokkaido Univ.

(quasi 3dof)

- - 11.7° 11.97° - 3.34 Lpp

Statistics (Toxopeus and Lee, 2008) 10° 15° 23.70° 2.8 Lpp

Presented model 11.65° 9.65° 17.5° 21.05° 24.60° 2.82 Lpp

Table 7.2.: Compilation of KCS standard maneuvering results from (Toxopeus and Lee,

2008; Stern et al., 2011)

7.6. Conclusion

The time domain seakeeping approach developed in Chap. 6 has been enhanced to model

the horizontal ship motion. First, rudder, propeller, windage models have been introduced.

Parametric models, suitable with the presented approach have been introduced to enable

the study of different ships. An approach mixing the modeling of the horizontal motion

with a maneuvering model and the modeling of the vertical motion with the time domain

seakeeping model has been developed. A validation exercise with experimental free sailing

data and other empirical method was successfully performed.

The mixed approach uses constant maneuvering derivatives which is suitable for low fre-

quency motions. Therefore, the evolution of the linear damping with the frequency of the

motion is not represented. To verify this effect a second approach modifying the potential

damping with viscous exponential decay such as proposed in (Bailey et al., 1997; Fossen

and Smogeli, 2004) has been implemented in Annex C.6. At this time, results are not satis-

factory and need further investigations.
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Résumé: Equilibre moyen d’un navire tracté par cerf-volant

Afin d’étudier les paramètres qui ont de l’importance sur les performances d’un navire

tracté par cerf-volant, une étude de l’équilibre du navire est menée en considérant la force

de traction moyenne au cours d’une trajectoire.

Dans un premier temps, la méthode de résolution de l’équilibre des 6 degrés de libertés est

introduite. Dans un second temps, deux indicateurs permettant d’estimer la performance

du système sont introduits. Le premier indicateur est le ratio d’économie de puissance. Le

second indicateur est le facteur d’efficacité du cerf-volant correspondant au rapport entre

l’effort propulsif du cerf-volant et la norme de la force de traction. Il est suggéré que

pour optimiser le profit apporté par un cerf-volant, il est plus intéressant de maximiser

l’efficacité du cerf-volant plutôt que le coefficient d’économie de puissance. En effet le

facteur d’efficacité du cerf-volant est un compromis entre maximisation des économies de

puissance et minimisation de la charge alaire pour augmenter la durée de vie du kite et

diminuer son prix. Ensuite, l’influence du fardage, de la position longitudinale du point

d’attache et de la vitesse du vent sont étudiés sur le porte conteneur KCS de 230 m tracté

par un kite de 500 m2 avec 500 m de ligne.

L’influence du fardage est prépondérante devant celle du cerf-volant sur l’équilibre du navire

en lacet et est du même ordre sur la dérive. Le fardage rend le navire ardent. Quand le point

d’attache du cerf-volant est proche de l’étrave, l’influence du cerf-volant sur l’équilibre en

lacet du navire est neutre. En revanche, en reculant le point d’attache, le navire devient plus

ardent et l’angle de dérive diminue. La position longitudinale du point d’attache n’a que

très peu d’effet sur la gîte et l’économie de puissance réalisée.

Sans surprise, la vitesse du vent augmente l’économie de puissance, l’angle de dérive, l’an-

gle de barre et la gîte. L’allure la plus risquée pour l’équilibre du navire est le vent de

travers. L’allure permettant de réaliser la plus grande économie de puissance hélice évolue

du petit largue vers le grand largue quand la vitesse du vent augmente. L’efficacité du

kite est maximale au vent arrière tant que la vitesse du vent est supérieure à la vitesse du

navire. Si la vitesse du vent est plus faible que la vitesse du navire, le vent arrière n’est

pas réalisable à moins de tirer profit du gradient de vent. Cependant, ces configurations

n’ont pas été étudiées pour des restrictions d’implémentation. Dans ce cas, plus la vitesse

du vent diminue plus le maximum d’efficacité est obtenu pour des allures proche du vent.
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Le facteur d’efficacité du cerf-volant favorise donc les allures portantes où la charge allaire

est minimale. On peut en déduire que la vitesse d’utilisation du navire est décisive pour

définir l’intervalle de vent d’utilisation du cerf-volant et donc sa charge allaire nominale de

conception.

8.1. Introduction

An important step of this thesis is to determine the mean equilibrium of a ship towed by

a kite. Considering, the mean kite towing force, Naaijen and Koster (2010); Leloup et al.

(2016) have investigated the mean equilibrium of a ship towed by a kite. Their analysis

focused on the fuel saving prediction. In (Naaijen and Koster, 2010), the mean equilib-

rium was solved for the surge, sway and yaw motions. They showed that the additional

resistance caused by the drift imposed by the transverse force of the kite is not significant.

Consequently, Leloup et al. (2016) solved only the surge equilibrium. A short comment

on the heeling equilibrium and mean rudder angle showed that the kite preserves the ship

safety. Naaijen and Koster (2010) and Leloup et al. (2016) developed their analysis on

the British Bombardier tanker (Leeuwen and Journée, 2001) with a given kite area, tether

length and tether attachment point. A kite of 320 m2 and a kite of 500 m2 were used in these

studies.

The ship modeling used in (Naaijen and Koster, 2010; Leloup et al., 2016), was simplified:

windage and interactions between the hull, the propeller and the rudder were neglected. As

shown in Chap. 7 the ship maneuvering is dependent on the interactions between the hull,

the propeller and the rudder due to a modification of the local inflow velocity. Since, the

kite towing force decreases the propeller thrust, the local inflow velocity at the rudder is

modified. The first aim of this chapter is to assess the mean equilibrium of a ship towed by

a kite, taking into account the windage and these interactions.

Moreover, the interest of these previous studies was to assess the fuel saving ratio. As

highlighted in Sec. 1.3, the fuel saving ratio is important. Nonetheless, to evaluate the

profits, the kite cost and the lifetime of the kite should also be regarded. The assessment of

the cost and the lifetime of a kite is beyond the scope of the thesis. However, a criteria taking

into account global parameters influencing the lifetime and the cost of a kite is developed

and studied.

Consequently, in this chapter, the mean equilibrium of a ship towed by kite is solved con-

sidering its 6 degrees of freedom and the interactions between the hull, the propeller and

the rudder. In this first approach, the coupling between the kite and the ship is neglected.

Indeed, a mean kite towing force is computed considering that the tether attachment point

is moving at a constant velocity. This first approach is fast and enable the study of a wide

range of design parameters.
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Firstly, the 6 dof equations of balance of a ship towed by a kite are introduced. Secondly,

the criteria taking into account the fuel saving ratio, the lifetime and the cost of a kite is

developed. With the case of study detailed in sections 8.4 and 8.5, investigations of the

influence of the windage effect, longitudinal tether attachment point and true wind speed

on the mean ship equilibirum are performed. In section 8.6 the evolution of the mean

aerodynamic pressure and the kite efficiency criteria are investigated for different sailing

conditions.

8.2. Equations of the mean equilibrium of a ship towed by kite

8.2.1. Equilibrium equation

The equation of balance is independent from ship positions in the horizontal plane s
(n)
x and

s
(n)
y . The mean vertical velocity of the ship is zero, hence ṡ

(n)
z = 0. At the equilibrium

the ship turning rate is zero,
[
φ̇s, θ̇s, φ̇s

]T
= 0. Hence, the 6 scalar equations in Eq.

8.1 depend on the horizontal linear ship velocities, the vertical ship position and the three

attitude angles of the ship:
[
ṡ
(n)
x , ṡ

(n)
y , s

(n)
z , φs, θs, φs

]T
. Hence, using ship equations of

motion Eq. (7.28), the balance equations of the ship is:

0 = F
(
ṡ(n)x , ṡ(n)y , s(n)z , φs, θs, φs

)
− C

[
0, 0, s(n)z , φs, θs, 0

]T
(8.1)

Since the aim of this chapter is to solve the mean equilibrium of a ship towed by kite, the

mean kite force over a loop trajectory is considered. The mean generalized kite force is

denoted by F̄ k. Since only the first order wave load is considered for the ship modeling, the

mean generalized wave force is 0. Hence, the wave force is not represented in Eq. (8.1).

Here, the equilibrium is solved for a given ship speed Us =

√(
ṡ
(n)
x

)2
+
(
ṡ
(n)
y

)2
and a

given true wind angle βtw. The surge balance, the sway balance and the yaw balance are

adjusted respectively by the propeller rotational speed np, the ship drift βs and the rudder

angle δr. The heave, roll and pitch balances depend on the vertical position of the ship and

on heeling and trim angles. Consequently, Eq. (8.1) can be transformed as follows:

0 = F
(
np, βs, s

(n)
z , φs, θs, δr

)
− C

[
0, 0, s(n)z , φs, θs, 0

]T
(8.2)

Equation (8.2) is solved with a Newton-Raphson algorithm. The initial solution is (ñp, 0, 0, 0, 0, 0),
where ñp corresponds to a propeller advance ratio J of 0.6:

ñp = (1− w)
Us

0.6Dp
(8.3)
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8.2.2. Kite efficiency

In (Naaijen et al., 2006; Naaijen and Koster, 2010; Leloup et al., 2016), the kite efficiency

was studied through the fuel saving ratio. The fuel saving ratio is defined as the difference

between the fuel consumption without and with the kite divided by the fuel consumption

without the kite. To estimate this fuel saving ratio, transmission efficiency and the brake

specific fuel consumption are required. Here, the power saving ratio is preferred, since it

does not depend on the ship engine efficiency. The power saving ratio is defined from:

ηk =
np,wokKp,wok − np,wkKp,wk

np,wokKp,wok
(8.4)

where np and Kp are respectively the propeller rotational speed and the propeller torque.

Subscripts wk and wok denote respectively the corresponding quantity with and without

the kite. This power saving ratio expresses the relative decrease of the power delivered by

the shaft to the propeller.

As it has been shown in Sec. 1.3, the kite profit is also dependent of the lifetime and the cost

of the kite. It is assumed that the kite lifetime can be represented by an increasing function

of the ratio σd/σk, where σd and σk are respectively the aerodynamic pressure specs for

the design and the kite aerodynamic pressure at flight. The kite cost is supposed to be an

increasing function of σd. Assuming that the lifetime and the cost of a kite are linear, the

criteria in Eq. (1.6) can be rewritten as:

ktd
kCk

η̄kf (Utw, Us, σd)

σk
Cs,t (Us, cf ) > 1 (8.5)

where ktd and kCk are the linear positive coefficient of the lifetime and cost functions of the

kite. This criteria has to be maximized. Neglecting the propeller and the engine efficiency,

at a given speed, the criteria can be expressed as follows:

κ
T k · xs
‖T k‖

> 1 (8.6)

where κ is a positive constant and the kite efficiency ηx is defined by:

ηx =
T k · xs
‖T k‖

(8.7)

The kite efficiency ηx has to be maximized. ηx enables to represent the trade off between a

high kite power saving ratio and a high wind loading safety factor to extend the kite lifetime.
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8.3. Case of study

The ship studied here is the Kriso Container Ship (KCS). The specs of the KCS are detailed

in Sec. 7.4.1. The propeller, rudder, windage models and the modeling of the interaction

with the hull is detailed in 7.2. The hydrodynamic model of the hull uses the Taylor ex-

pansions and the derivatives presented in Fukui et al. (2015). Coefficients required by the

modeling of the ship are given in Annex C.7. The tether attachment point A is in the ship

symetry plane at a height of 25 m above the baseline.

The kite model used to compute the mean kite towing force has been developed in Chap.

3. This model is based on the so-called zero-mass kite model. This model depends on

two parameters, the lift to drag angle ǫk and the lift coefficient Clk. Based on full scale

experiments, significant evolution of ǫk and Clk have been noticed according to the turning

rate of the kite along a trajectory. Consequently, in 3.6.2 a linear modification with the kite

turning rate has been proposed as follows:

{
ǫk = ǫ0 +

√
Ak

Urw
κǫ |γ̇n|

Clk = Cl0 +
√
Ak

Urw
κl |γ̇n|

(8.8)

ǫ0, κǫ, Cl0 and κl have been identified on a kite of 5 m2 with an inflatable leading edge

dedicated to kite surfing. Same coefficients were taken and are reminded below:





ǫ0 = 0.2013 rad

κǫ = 0.0422

Cl0 = 0.9856

κl = −0.3718

(8.9)

The mean kite towing force is computed over a Lissajous trajectory as defined in Sect. 3.4.

Trajectory amplitudes are arbitrarily set to ∆φ8 = 20° and ∆θ8 = 8°. The center of the

trajectory [φ8, θ8] and the angle of the trajectory χ8 around the axis C8A are determined

by the optimization of the longitudinal kite towing force with a code similar to the one

used by Leloup et al. (2016). A database of the optimized trajectory parameters φ8, θ8 and

χ8 according to different wind conditions, ship velocities and tether lengths is then used.

Results presented in next sections use a linear interpolation of this database to determine

the trajectory parameters. A part of this database is plotted in Fig. 8.1 for Lt = 500 m.

It can be noticed that the optimal trajectory at downwind, i.e. βtw > 150°, is an horizontal

Lissajous trajectory, i.e. χ8 = 180°. With χ8 = 180°, at the extremities of the trajectory,

the kite is going down. When the ship heading is closer to the wind, i.e. βtw < 100°, the

kite orientation decreases down to χ8 = 90°. The faster the true wind speed is, the more

the transition between the two orientations is pronounced and the closer to the wind the
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Figure 8.1.: For different true wind speed Utw ∈ {7.5, 10.0, 12.5, 15.0} m.s-1, optimum

kite flight trajectory parameters versus true wind angle βtw: trajectory angle

χ8, azimuth of the center of the trajectory φ8, elevation of the center of the

trajectory θ8.

transition is. The azimuth of the trajectory center decreases with the true wind angle. The

evolution of the elevation trajectory center is less pronounced and remains within the range

θ8 ∈ [19°, 26°].
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8.4. Influence of the windage force

Figures 8.2 and 8.3 show results of mean equilibrium, with and without considering the

windage on the ship. Figure 8.2 shows the evolution of the mean equilibrium with re-

spect to the true wind angle with the configuration Lt = 500 m, Ak = 500 m2, A(s) =
[110, 0, −10.6]T m and Utw = 12.5 m.s-1. Figure 8.3 shows the evolution of the mean

equilibrium with the longitudinal tether attachment position with the configuration Lt =
500 m, Ak = 500 m2, Utw = 12.5 m.s-1 and βtw = 90°. The mean equilibrium are de-

picted in terms of power saving ratio ηk, drift angle βs, rudder angle δr and heel angle

φs.
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Figure 8.2.: Mean evolution of the kite power saving ratio ηk, drift angle βs, rudder angle

δr and heel angle φs with the true wind angle βtw. The solid line is the mean

equilibrium with the windage taken into account. The dashed line is the mean

equilibrium without the windage effect. Configuration: Lt = 500 m,Ak = 500
m2, A(s) = [110, 0, −10.6]T m and Utw = 12.5 m.s-1

In Figure 8.2, the power saving ratio increases with the true wind angle to a maximum at

broad reach and then decreases slightly until βtw = 180°. The windage does not modify

this evolution. The windage effect on the power saving ratio reduces significantly the kite

power saving ratio until βtw = 140°. For higher true wind angle, the windage has almost no

effect on the power saving ratio. The windage causes an increase of the propeller demand
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whereas the power supplied by the kite remains constant, which explains the loss of power

saving ratio.

In Figure 8.2, the drift angle is defined as βs = − arctan (vs/us). Since, the drift motion

is symmetrical with respect to the true wind angle, the results are discussed in terms drift

angle modulus. The drift angle modulus increases slightly up to βtw = 90°. Then, the drift

angle modulus decreases continuously to zero until βtw = 180°, which is trivial since the

mean kite transverse force is zero at downwind. This evolution is directly driven by the

evolution of the transverse windage and kite force. The windage effect is significant on the

drift angle. Indeed, for βtw = 90°, the drift angle is doubled by the effect of the wind load

on the ship.

In Figures 8.2 and 8.3, it can be noticed that the windage effect is even more significant

on the yaw equilibrium. With windage, the rudder angle becomes always negative for a

starboard course. This results shows that the longitudinal tether attachment position leads

to a weather helm ship. Indeed, according to the wind load model (Blendermann, 1994),

the center of the wind load pressure is around 20 m, which is almost at mid-ship. Results

shows that the windage effect dominates the yaw equilibrium of the ship.

The maximum heel angle with and without windage are respectively -2.9° and -2.25°. The

windage increases the heel angle. The heel angle modulus reach a maximum value at βtw =
90°. For the considered sailing conditions, the heel angle seems reasonable. The influence

of the windage is less significant than the kite on the heel angle.

In figure 8.3, the effect of the longitudinal tether attachment position, a
(s)
x , on the mean

equilibrium is studied. a
(s)
x = 0 m, corresponds to a tether attachment point at mid-ship and

a
(s)
x = 115 m corresponds to a tether attachment point at the bow. The longitudinal position

of A does not modify significantly the power saving ratio, as it stays at less than 2% of

variation. However, the power saving ratio increases with a
(s)
x and observed a maximum

near the bow. The windage does not modify the evolution of the power saving ratio with the

longitudinal position of A. The drift angle modulus increases with the longitudinal position

of A. The rudder angle modulus decreases with the longitudinal position of A. The heel

angle modulus increases slightly with the longitudinal position of A.

The evolution of the rudder angle confirms the fact that the KCS is a weather helm ship.

As a consequence, with a backwards longitudinal position of A, the yaw generates a more

important rudder angle modulus leading to a higher transverse force in opposition to the

transverse kite towing force. Consequently, the ship drift angle decreases with backwards

tether attachment position. The increase of rudder angle modulus with backward tether

attachment position increases the rudder heeling moment. On the contrary, the decrease

of drift angle modulus with backwards tether attachment position decreases the heeling

moment. As shown by the results in terms of heel angle, the decrease of drift angle is slightly

predominant over the increase of drift angle. Nevertheless, this effect may be different with

a different ship.
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Figure 8.3.: For Utw = 12.5 m.s-1, βtw = 90°, Lt = 500 m and Ak = 500 m: mean

evolution of the kite power saving ratio ηk, drift angle βs, rudder angle δr and

heel angle φs with the longitudinal position of the tether attachment point a
(s)
x .

The solid line is the mean equilibrium with the windage taken into account.

The dashed line is the mean equilibrium without the windage effect.

As a partial conclusion, the windage effect is not negligible with respect to the kite towing

force and particularly for the yaw equilibrium.
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8.5. Influence of the true wind speed

The effect of the true wind speed is investigated in this section. Figure 8.4 shows the evo-

lution of the mean equilibrium with true wind direction βtw for different true wind speed

Utw ∈ {7.5, 10, 12.5, 15} m.s-1. For this results the windage effect is taken into account.
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Figure 8.4.: For different true wind speed Utw ∈ {7.5, 10, 12.5, 15}m.s-1: mean evolution

of the kite power saving ratio ηk, drift angle βs, rudder angle δr and heel angle

φs with the true wind angle.

In Figure 8.4, the global evolution of the kite power efficiency, drift angle, rudder angle and

heel angle is similar for each true wind speed. As expected, the kite power efficiency, and

the modulus of the drift, rudder and heel angles increase with the true wind speed. The

optimum true wind angle in terms of kite power efficiency increases with the true wind

speed. The optimal true wind angle with Utw = 7.5 m.s-1 is around βtw = 115°, whereas

the optimal true wind angle with Utw = 15 m.s-1 is around βtw = 145°. Similarly, the true

wind angle to obtain the maximum angle modulus of the drift, rudder and heel increases

with the true wind speed. The evolution of the most critical true wind angle is not very

significant and stay within a range of 20° around βtw = 90°. With Utw = 15 m.s-1, the

drift, rudder and heel angles are respectively βs = −3°, δr = −4° and φs = −4°.
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8.6. Remarks on the kite efficiency and the mean aerodynamic

pressure

In this section, the same navigation conditions as in Sec. 8.5 are used: the tether length is

Lt = 500 m, the kite area Ak = 500 m2. Figure 8.5 shows the mean aerodynamic pressure

σk and the kite efficiency ηk as function of the true wind angle for different true wind speed.
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Figure 8.5.: For different true wind speed Utw ∈ {7.5, 10, 12.5, 15}m.s-1: evolution with

the true wind angle of the mean aerodynamic pressure σk and of the kite effi-

ciency ηx.

The mean aerodynamic pressure σk is given by the tether tension divided by the kite area.

It can be shown that σk has a maximum between 100° and 90° of true wind angle. The

minimum of σk is obtained at downwind. Consequently the safety factor of kite design is

maximum at downwind. Even if, the dead downwind is not the optimal wind condition in

terms of power saving ratio, the lifetime of the kite is increased, as discussed in Sec. 1.3.

The trade off between the kite power saving ratio and the kite lifetime should be indicated

by the kite efficiency ηk.

For all true wind speeds superior to the ship speed, the maximum of kite efficiency is ob-

tained at dead downwind. In these cases, the kite efficiency is an increasing function of the

true wind angle. For the true wind speed Utw = 7.5 m.s-1, the kite efficiency is maximum

at βtw = 145°. According to the definition of the kite efficiency ηk, the dead downwind is

the best trade off between the kite power saving and the kite lifetime to make profits in the

case of a true wind speed superior to the ship speed. When the true wind speed is less than

the ship speed, the best trade off is shifted to lower true wind angle.
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8.7. Conclusion

In section 8.4, the influence of the windage force has been investigated. It has been shown

that the windage is not negligible at for kite sailing conditions. The windage effect is par-

ticularly important for a beam reach course. The ship drift angle is almost doubled. The

windage effect on the yaw equilibrium dominates the kite effect.

The effect of the longitudinal tether attachment point is more pronounced on the ship drift

and on the rudder angle than on the kite power saving ratio and the heel angle. Indeed

a backwards tether attachment position decreases the ship drift angle. On the contrary, a

forwards tether attachment position reduces the rudder angle. For a container ship, the

general arrangement imposes a tether attachment point at the bow. The results complies

with the analysis of Naaijen and Koster (2010). Even if the ship drift is maximum for an

attachment position at the bow, the ship drift angle remains reasonable, less than 3° for the

cases investigated in this study. As a first approximation, the ship drift angle and the rudder

angle can be considered as linear with the transverse force. Consequently, it would mean

that for a kite of 1000 m2, the drift angle should be around 6°. From a more general point

of view, the more critical sailing condition for the ship safety are obtained close to a beam

reach sailing.

Through a brief economical analysis it has been shown that ηk, the ratio between the kite

towing force along the ship axis and the kite force modulus, could be more relevant. The

kite efficiency indicates the best trade off between power saving and kite lifetime. The

results shows that this ratio is maximum at dead downwind in case of a true wind speed

greater than the ship speed. In case of a true wind speed lower than the ship speed, the

maximum is obtained at lower true wind angles. Eventually, despite a ship speed faster than

the wind, the benefit from the wind gradient could enable a kite flight. However, these very

special cases have not been considered. According to the kite efficiency criteria, it could

be more relevant to design a kite only for downwind sailing courses. In this case, the use

of kites is less critical for the ship safety and larger kites could be used. Consequently, the

ship speed is decisive in defining the kite wind range for design and the aerodynamic wind

loading for design σd.

This study considers the mean kite towing force to solve the static equilibrium of the ship.

The amplitudes of the dynamic ship motions induced by a dynamic kite flight have not been

considered. Since the kite induces ship motions, the kite flight can be modified, which can

lead to a modification of the mean equilibrium. The kite power saving ratio and efficiency

may be altered by dynamic motions. Consequently dynamic motions of a ship towed by kite

and kite-ship interactions should be investigated. This work is the aim of the next chapters.
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9. Interactions between a kite and a ship

Résumé: Etude des interactions navire-kite

Dans ce chapitre les interactions entre un cerf-volant et un navire sont étudiées. Pour mettre

en évidence ces interactions, deux types de couplage entre le modèle de cerf-volant sans

masse et le modèle de navire sont comparés : un couplage monolithique et un couplage dis-

socié. Le couplage dissocié intègre la force du kite comme une série temporelle prédéter-

minée en ne considérant que la vitesse moyenne du navire. Le couplage monolithique prend

en compte le terme de couplage entre les deux modèles qui est la vitesse du point d’attache

des lignes.

Le cas d’étude utilisé pour cette étude est un navire militaire de surface, le DTMB 5512 à

pleine échelle. Ce navire a été choisi pour cette étude plutôt que le KCS car sa fréquence

de résonnance en roulis (0.56 rad.s-1) est plus proche des fréquences d’excitation du cerf-

volant. Seuls les mouvements de roulis, pilonnement et tangage sont étudiés sur une route

au travers. Un cas de navigation en mer calme et trois cas de navigation en houle régulière de

travers sont étudiés avec les fréquences de vague 0.4, 0.56 et 0.8 rad.s-1. En conservant les

mêmes amplitudes angulaires de trajectoire, plus les lignes sont courtes plus les fréquences

des harmoniques sont élevées. Ainsi en faisant varier la longueur de ligne, le domaine

fréquentiel est balayé.

Sans interactions (couplage dissocié), le spectre d’excitation du kite en roulis est composé

de plusieurs harmoniques. Les harmoniques paires ont le plus d’amplitudes. Le second har-

monique est le plus important. En cas en mer calme, les interactions entre le kite et le navire

sont faibles. On peut toutefois remarquer que le couplage diminue l’amplitude d’excitation

du kite et l’amplitude de roulis du navire. Le couplage dissocié est alors conservatif par

rapport au couplage monolithique en cas de mer calme.

En cas de houle régulière le mouvement de roulis est principalement causé par la vague.

Dans ce cas il est préférable pour définir la trajectoire de vol du cerf-volant de négliger la

vitesse verticale du point d’attache. Comme le mouvement de roulis du navire est quasi-

harmonique à la fréquence de vague, un réseau de sous-harmoniques basse fréquence appa-

rait. La fréquence fondamentale des sous-harmoniques est donnée par la différence entre la

fréquence de vague et la fréquence de l’harmonique d’excitation la plus proche. Quand cette

différence est suffisamment petite, un phénomène d’accrochage apparait. Les harmoniques
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9. Interactions between a kite and a ship

d’excitation du cerf-volant sont alors décalés à la fréquence de vague et le réseau de sous-

harmoniques n’apparait pas. Ce phénomène d’accrochage de fréquence est bénéfique pour

le cerf-volant et le navire quand le décalage des harmoniques d’excitation correspond à une

augmentation. Le cerf-volant parcourt alors la trajectoire plus rapidement, et ainsi la force

de traction est plus importante. Par ailleurs, le mouvement de roulis est atténué. L’am-

plitude de roulis peut dans certain cas devenir légèrement plus faible que sans cerf-volant.

Avec un état de mer, le couplage monolithique apparait alors alors comme incontournable.

9.1. Introduction

Considering the mean kite towing force, Leloup et al. (2016) and Naaijen et al. (2006)

solved the horizontal equations of balance of a ship towed by a kite to determine the fuel

savings. Ran et al. (2013) studied the contribution of a kite to the mean ship thrust, drift

angle and rudder angle. In the previous chapter, the 6 dof mean equilibrium has been solved.

All these previous studies neglected the interactions between the kite and the ship. The kite

force was imposed as a predefined external force to the ship. Nevertheless, motions of such

a system are highly dynamic since a kite experiences a periodic dynamic flight. In Bigi

et al. (2016), the influence of the kite attachment point on the deck was investigated on a

fishing vessel equipped with a kite. This study was limited to horizontal ship motions, surge,

sway and yaw, by means of a maneuvering model in calm water with a monolithic coupling

approach between the ship and the kite. Nevertheless, even if the water was supposed

to be calm, Bigi et al. (2016) did not take into account the effect of radiated waves on

ship motions. Thus, the influence of the kite excitation frequency on the added mass and

damping of the ship was neglected. Since hydrodynamic added mass and damping depend

strongly on the frequency of the motion (Newman, 1977; Molin, 2002; Faltinsen, 2005;

Bertram, 2012), this assumption is questionable.

The aim of this chapter is to investigate the interaction between a ship and a kite. Con-

sequently a segregated coupling approach is compared to a monolithic coupling approach

between the ship model (cf. Chap. 6) and the kite model (cf. Chap. 3). The term monolithic

approach refers to the semantic developed in (Markert, 2010; Lewis et al., 1984) where the

two interacting models are solved simultaneously in time with the same numerical scheme

of integration. The monolithic approach solves the coupled system. By contrast, the segre-

gated approach solves the motions of the whole system assuming that ship motions have no

influence on the kite flight, consequently the kite flight is calculated considering only the

mean tether attachment point velocity.

Section 9.2 presents the two coupling methods, the segregated approach and the monolithic

approach. Section 9.3 presents the case of study. Sections 9.4 and 9.5 investigate respec-

tively through a calm water case and a regular beam wave case, the coupling between ship

and kite. The influence of the kite excitation frequencies is investigated with different tether
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9.2. Coupling methods

lengths and constant angular amplitudes of trajectory. In these sections Results are pre-

sented analyzed and discussed. A general discussion about methods and results is finally

provided in Section 9.7.

9.2. Coupling methods

The tether tension induces motions to the ship. The expression of generalized kite force

acting on the ship is expressed as follows:

F k =
[
T
(s)
k OSA

(s) × T
(s)
k

]T
(9.1)

In addition, according to the zero-mass kite model (cf. Chap. 3 and Eq. (3.5)), the ship

motions can modify the kite flight and the tether tension through the relative wind speed at

the kite altitude with respect to the tether attachment point A:

U rw

(
k(n)z

)
= U tw

(
k(n)z

)
− Ua (9.2)

Two coupling approaches are investigated: a monolithic and a segregated approaches. The

monolithic approach takes into account all the coupling terms between kite and ship models.

As for the considered segregated approach, it assumes a predefined kite force and then

solves ship equations of motion separately.

9.2.1. A monolithic approach

The whole system of equations ruling the motion of a ship towed by kite are obtained with

Eqns. (6.27) and 3.1 as follows:





Ṡ =

[
T c

s
0

0 Rc

s

]
V s

V̇ s =
[
M

S
+ Ã

]−1 [
F −

[
B̃ +B

φ
+D

]
V s − µ− C S

]

ẏ
ij

= A
′

ij
y
ij
+B

′

ijδVs,j , ∀i, j ∈ J1; 6K

K̇
(c)

= U
(c)
A + Urw

[
xvk · xrw +

√
(xvk · xrw)2 +

(
zk·xrw
sin ǫk

)2
− 1

]
x
(c)
vk

(9.3)

Equation (9.3) includes 3 scalar equations for the kite. With the monolithic approach, the

fully coupled system between ship and kite motions is solved. This monolithic system of

differential equations is numerically integrated with the 4th order Runge-Kutta scheme with

fixed time step.
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9. Interactions between a kite and a ship

9.2.2. A segregated approach

By contrast to the monolithic approach, the segregated approach considers only the mean

tether attachment point velocity on the ship. Ship motions are computed by applying the

time series of the kite towing force as an external force. Thus, ship equations of motion can

be expressed as follows:





Ṡ =

[
T c

s
0

0 Rc

s

]
V s

V̇ s=
(
M

S
+ Ã

)−1 [
F k (t) + F

′ −
(
B̃ +B

φ
+D

)
V s − µ− C S

]

ẏ
ij
= A

′

ij
y
ij
+B

′

ijδVs,j , ∀i, j ∈ J1; 6K

(9.4)

where F
′

denotes external forces such as rudder, propeller and windage forces only and

does not include the kite force applied as a time series F k (t).

This segregated approach could be very practical to study the motions of ship towed by kite.

Even if here, this approach is performed into the time domain, the segregated approach can

be performed into the frequency domain by applying the kite excitation spectrum directly

in Eq. (6.1). The validity of such an approach for the ship and kite system in comparison

with the monolithic approach must however be assessed.

9.3. Case of study

In order to simplify the analysis, only vertical ship motions (heave, roll and pitch) of the

DTMB 5512 at full scale are considered here. The analysis is focused on the roll motion.

Thus, in the scope to observe significant roll motion, a true wind angle βtw = 90° is chosen.

A true wind speed of reference Uref =10 m.s-1 at the altitude z
(n)
ref =10 m corresponding to

the high range of a fresh breeze from the Beaufort scale is considered. The wind gradient

parameter used here is nv = 1/7. The ship speed is set toUh =7.5 m.s-1 since it corresponds

to a common sailing speed condition of the world merchant ship fleet (Smith et al., 2014).

A kite with an area ofAk =500 m2 and with the aerodynamic specs determined in Eq. (8.9)

is used. The tether attachmentpoint A is 7.9 m above the water line.

The kite flight trajectory corresponds to a Lissajous trajectory as defined in Sec. 3.4.2.

The amplitudes of the trajectory are arbitrarily set to ∆φ8 = 20° and ∆θ8 = 8°. The

critical radius of curvature of this trajectory is given by Lt∆θ8. Keeping a constant angular

trajectory size and varying the tether length, the influence of the kite excitation frequency

can be studied. Tether lengths between 360 m and 1000 m are investigated.

The center of the trajectory [φ8, θ8] and the angle of the trajectory χ8 around the axis C8A
are determined by the optimization of the longitudinal kite towing force with a code similar
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9.4. Calm water case

to the one used by Leloup et al. (2016). Figure 9.1 (a), (b) and (c) show respectively the

evolution of φ8, θ8 and χ8 with the tether length for the sailing condition mentioned before

in this section.
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Figure 9.1.: Kite flight trajectory parameter versus tether length. (a): Trajectory angle χ8;

(b) Azimuth of the center of the trajectory; (c): Elevation of the center of the

trajectory.

A calm water case and three regular beam wave cases of 2.5 m high consistent with a fresh

breeze are considered. Three wave frequencies investigated are{0.4, 0.56, 0.8} rad.s-1.

The 0.56 rad.s-1 wave frequency corresponds to the natural roll ship frequency.

For all following results, the simulation time is 1640 s with a time step of 0.3 s. Results

are mainly studied into the frequency domain. Consequently, in order to correctly represent

power spectrum results, the Fast Fourier Transform (FFT) is performed with a signal zero-

padded 5 times longer than the initial data. In order to avoid the representation of the

sine cardinal due to this numerical method, the signal is filtered with an Hamming window

(Hamming, 1989).

9.4. Calm water case

9.4.1. Kite excitation spectrum

Figure 9.2 (a) and (b) respectively show the time series and the spectrum of the kite roll

excitation moment obtained with the segregated approach for a tether length Lt = 500
m. Only the varying part of the kite excitation is taken into account to compute the kite

excitation spectrum.
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9. Interactions between a kite and a ship
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Figure 9.2.: With a tether length Lt = 500 m; (a): spectrum of the kite excitation moment

around the longitudinal ship axis xs; (b): Time history of the kite excitation

moment around the longitudinal ship axis xs over the last loop.

With the segregated approach, the kite flight is not modified by the ship motions. It can

be noticed in Fig. 9.2 (a) that the roll excitation moment is mainly composed of several

harmonics. For convenience, harmonics are denoted ωki where i is a positive integer. Only

the first, the second and the fourth harmonics are significant. The whole spectrum is not

represented but harmonics at higher frequencies are not significant. The second and the

fourth harmonics are the most powerful ones. The second harmonics appears to be the most

critical for the ship motions due to its proximity with the natural roll ship frequency.

9.4.2. Comparison of the segregated approach with the monolithic approach

Figure 9.3 shows the evolution of the roll amplitude (a), of the first kite excitation har-

monic frequency (b), and of the amplitude kite moment of excitation (c) with respect to the

tether length. Three methods are compared: the segregated approach in dashed-dotted line

and the two monolithic approaches with the kite trajectories defined in r̃wra and in rwra

respectively in solid and dashed lines.

As expected, the first kite excitation harmonic ωk1 decreases with the tether length since the

angular amplitude of the Lissajous trajectories is kept constant. No major difference can be

noticed between the three approaches in terms of harmonics frequencies.
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Figure 9.3.: (a) Amplitude of the ship roll motion, (b) first kite harmonic frequency and (c)

amplitude of the kite moment of excitation for different tether lengths from 360

m to 990 m by step length of 10 m in calm water.

The roll amplitude ∆φs and the amplitude of the kite roll moment ∆Kk predicted by the

segregated are higher than those predicted by the two monolithic approaches. The two

trajectory definitions in r̃wra and rwra give almost the same results both in terms of roll

amplitude and kite roll moment amplitude.

For all the approaches presented, the evolution of the roll amplitude is similar. The kite

moment amplitude increases quasi linearly with the tether length. Three ruptures can be

observed on the evolution the kite moment amplitude. These ruptures correspond to the

evolution of the trajectory with the tether length as shown in Fig. 9.1.

Due to the wind gradient, the longer the tether is, the larger the kite roll moment is. This

raise in terms of the kite roll moment explains the continuous raise in terms of roll ampli-

tude. However, two important slope variations can be noticed between Lt = 360 m and

Lt = 500 m and around Lt = 790 m which do not correspond to any particular event in

the kite roll moment curve. In fact, these two increases are due to the proximity of the two

most powerful kite roll excitation harmonics from the natural roll ship frequency. Indeed,

for Lt = 440 m the second harmonic frequency is almost equal to the natural roll frequency
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9. Interactions between a kite and a ship

of the ship. And for Lt = 790 m, the fourth harmonic frequency approaches the natural roll

ship frequency.

In case of a slower true wind speed, the increase of the kite roll moment with the tether

length would be less significant. In such a case, it could be observed a maximum of roll

amplitude for tether length corresponding to a match between a kite harmonic frequency

and the natural roll frequency of the ship.

According to these results, in calm water, the segregated apporach and the monolithic ap-

proaches lead to versy similar results. However, the segregated approach is slightly conser-

vative in comparison to the monolithic approache.

9.5. Regular beam wave case

To investigate a case closer to a real ocean environment, the influence of regular beam waves

is studied. The wave considered is 2.5 m high at frequencies of ωw of 0.4 rad.s-1, 0.56

rad.s-1 and 0.8 rad.s-1. As for the calm water case, the frequency domain of kite excitation

is scanned with different tether lengths ranging from Lt = 360 m to Lt = 990 m with a

tether length step of 10 m.

9.5.1. Comparison between the trajectory definitions in r̃wra and rwra

As outlined at the end of section 3.4.2, the definition of the kite trajectory with respect

to the relative wind basis rwra may represent an issue. The trajectory definition in r̃wra

takes only horizontal components of the tether attachment point velocity into account. The

previous case of study in calm water did not highlight any major difference between the

trajectory defined in r̃wra and the trajectory defined in rwra. Indeed, in calm water the

vertical amplitude of the ship motions is not significant. Nevertheless, in case of regular

beam wave of 2.5 m high, the effects of the vertical ship motion on the trajectory definition

is more important.

Figure 9.4 shows the trajectory defined in r̃wra in solid line and the trajectory defined in

rwra in dashed line with respect to the n frame. A very clear difference of trajectory shape

can be noticed between the two definitions. The local minimums of the radius of curvature

along the trajectory defined in rwra are much smaller than those along the trajectory defined

in r̃wra.

Performing such a sharp trajectory represents no difficulty since the kite yaw motion is

imposed. However, a real kite may be not able to perform such a trajectory with short radius

of curvature. Therefore, a particular attention must be paid to the trajectory definition for

the design of a kite auto-pilot dedicated to the towing of ship, as it has to be realistic. In the

rest of the study, all the trajectories will be defined in r̃wra.
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Figure 9.4.: Kite and ship path with respect to n for Lt = 390 m with a wave of 2.5 m high

at the frequency ωw = 0.8 rad.s-1.

9.5.2. Interactions with regular beam waves

Figures 9.5, 9.6 and 9.7 show respectively for wave frequencies ωw of 0.4, 0.56 and 0.8

rad.s-1, the roll amplitude of the ship (a), the first kite harmonic frequency (b) and the roll

moment amplitude of the kite (c). For each wave cases, the monolithic approach with the

trajectory defined in r̃wra in solid line is compared to the segregated approach in dashed

line. The dashed-dotted line corresponds to the roll amplitude of the ship due to the wave

excitation without kite.

For all wave cases, the roll amplitude and the amplitude of the kite roll moment increases

globally with the tether length as for the calm water case. In contrary to the calm water case,

the amplitude of the kite roll moment obtained with the monolithic approach is globally

larger than the amplitude of the kite roll moment obtained with the segregated approach.

However, it should be noticed that the evolution of the roll amplitude and the evolution

of the amplitude of the kite roll moment are sharp compared to the calm water case. For

instance, in Fig. 9.6 (a), for the tether length Lt = 440 m, a significant drop of the roll

amplitude of the ship can be noticed in the segregated case.

Concerning the evolution of the first harmonic frequency, no major difference can be noticed

between the two approaches except locally at some tether length range. Indeed, for some

ranges of tether length, harmonic frequencies obtained with the monolithic approach remain

constant. For instance, on Fig. 9.5 (b), the first harmonic frequency remains constant at a

value of 0.4/2 = 0.2 for tether lengths within the range [645; 710] m and on Fig. 9.6 (b),

the first harmonic frequency remains constant at a value of 0.56/2 for tether lengths within

the range [390; 470] m.

Focusing on the segregated approach, brutal drops in terms of roll amplitude of the ship
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Figure 9.5.: (a) Amplitude of the ship roll motion, (b) first kite harmonic frequency and (c)

amplitude of the kite moment of excitation for different tether lengths from 360

m to 990 m by step length of 10 m with a beam regular wave of 2.5 m high at a

frequency of ωw = 0.4 rad.s-1.

are explained by the proximity of a kite harmonic frequency from the wave frequency. For

the case with the wave frequency ωw = 0.56 rad.s-1, at Lt = 440 m, the second kite

harmonic frequency is ωk2 = 0.562 rad.s-1. Consequently, depending on initial conditions,

a difference in phase between the kite frequency and the wave frequency remains constant

and has a significant effect. Longer simulations should be considered in order to be able

to neglect the effect of initial conditions on the roll amplitude obtained with the segregated

approach.

The sharp evolution of the roll amplitude of the ship concerns also results obtained with the

monolithic approach. In contrary to the segregated approach, this phenomenon does not oc-

cur only when an harmonic frequency of the kite corresponds to the wave frequency. For the

case with a wave frequency of 0.4 rad.s-1 and a tether length Lt = 840 m, a drop of the ship

roll amplitude can be noticed. Indeed, Fig. 9.8 shows that no principal kite harmonic fre-

quency corresponds to the wave frequency. However, due to the coupling between kite and

ship motions, secondary harmonic network appears. The secondary harmonic frequencies

are denoted ω
′

ki and are given by:
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Figure 9.6.: (a) Amplitude of the ship roll motion, (b) first kite harmonic frequency and (c)

amplitude of the kite moment of excitation for different tether lengths from 360

m to 990 m by step length of 10 m with a beam regular wave of 2.5 m high at a

frequency of ωw = 0.56 rad.s-1.

ω
′

ki = i min
j∈N+∗

|ωw − ωkj | (9.5)

This phenomenon occurs when the frequency difference between the closest principal har-

monic frequency and the wave frequency is a submultiple of the first kite harmonic fre-

quency. For the case presented in Fig. 9.8, ωk1 = 3ω
′

k1. With the monolithic approach,

these drops are independent of the initial conditions. The most important drops of the roll

amplitude occur when ωk1 = ω
′

k1 or ωk1 = 2ω
′

k1. The importance of the phenomenon

occurring at ωk1 = nω
′

k1 decreases with the increase of the integer value n. Moreover,

the importance of the phenomenon decreases when the interaction with the wave concerns

high harmonic orders. Indeed, the higher the order of the harmonic is, the less the harmonic

intensity is.

This phenomenon of interaction between the kite and the ship can be explained by the

fact that the monolithic approach predicts a smaller roll amplitude despite a larger kite

roll moment amplitude compared to the segregated approach. Indeed, the secondary kite
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Figure 9.7.: (a) Amplitude of the ship roll motion, (b) first kite harmonic frequency and (c)

amplitude of the kite moment of excitation for different tether lengths from 360

m to 990 m by step length of 10 m with a beam regular wave of 2.5 m high at a

frequency of ωw = 0.8 rad.s-1.

harmonic at the wave frequency has a relative phase with the ship motion. As an example,

for the case plotted in Fig. 9.8, the difference in phase angle between the ship motion

and the kite excitation at ω = 0.4 rad.s-1 is 60.7°. For the case with the frequency wave

ωw = 0.8 rad.s-1, the interaction between the kite and the ship is less significant since the

wave frequency is far from the most powerful kite harmonic frequency. According to these

results, a ship and a kite are strongly in interaction when the ship experiences the effect

of a wave. Moreover, in contrary to the calm water case, the segregated approach is not

necessarily conservative with respect to the monolithic approach as shown by Fig. 9.7 (a).
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Figure 9.8.: With a tether length Lt = 840 m at the wave frequency ωw = 0.4 rad.s-1;

(a) spectrum of the roll motion of the ship; (b) spectrum of the kite excitation

moment around the longitudinal ship axis xs.

9.5.3. kite lock-in phenomenon

As shown in the previous section, an important interaction phenomenon between the kite

and the ship occurs with the apparition of secondary harmonics ω
′

ki. The interaction is

particularly important when ωk1 = ω
′

k1 or ωk1 = 2ω
′

k1. The plateaus of the first kite

harmonic with the tether length corresponds to these conditions. It can be shown in Figs.

9.5 (a) and 9.6 (a), respectively at Lt = 650 m and Lt = 470 m, that the drop of the roll

amplitude predicted by the monolithic approach is important enough to lead to smaller roll

amplitude than the case without kite.

A particular attention is paid to the case with wave frequency ωw = 0.56 rad.s-1 and

Lt = 470 m because the interaction between the kite and the ship is a win-win one. In-

deed, for this case the mean kite towing force predicted by the monolithic approach is 8.0%

more important than the mean kite towing force predicted with the segregated approach. In

addition, the ship roll amplitude is 1.4% less important than the case without kite.

Figure 9.9 shows the spectrum of the roll motion (a) and the spectrum of the kite excitation

(b). It can be noticed that the second harmonic of the kite roll moment is attracted towards

the wave frequency. Since the kite harmonic frequency is increased towards the wave fre-

quency, the kite performed the whole trajectory faster. The time to perform the trajectory

is decreased by 5.7%. This leads to a higher apparent wind speed and therefore to a higher

mean kite towing force. Moreover, the difference in phase angle between the roll motion

and the kite roll moment is 18.2° leading to a reduction of the roll amplitude.
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Figure 9.9.: With a tether length Lt = 470 m at the wave frequency ωw = 0.56 rad.s-1;

(a) spectrum of the roll motion of the ship; (b) spectrum of the kite excitation

moment around the longitudinal ship axis xs.

This attraction towards the wave frequency can be noticed also on the secondary harmonic

corresponding to the case ωk1 = 2ω
′

k1. Indeed the kite harmonics can be shifted towards

the wave frequency in order to fulfill the condition ωk1 = 2ω
′

k1. However, the effects are

less significant than for the condition ωk1 = ω
′

k1.

This phenomenon is similar to the lock-in phenomenon happening with the vortex-induced

vibrations (Bearman, 1984; Sarpkaya, 2004). Henceforth, this phenomenon is called the

kite lock-in.

9.6. Discussion

9.7. Discussion

A method coupling a time domain seakeeping model and a zero-mass kite model has been

developed to investigate the dynamic motion of a ship towed by a kite. The zero-mass kite

model neglects the inertial forces, its deformation and the dynamic behavior of the tether.

The ship model is based on the linear seakeeping STF strip theory (Salvesen et al., 1970),

cf. Chap.6. A monolithic approach coupling the kite and ship models has been compared

to a segregated approach which neglects the coupling term. The two methods enable a fast

computing method. Implemented in Python, the monolithic approach is computed faster

than the real-time. The computation of the considered cases are five time faster than the real
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time on a processor Intel(R) Xeon(R) CPU E3-1220 v3 with a CPU frequency of 3.10 GHz

and 8 Go Ram.

The ship model provides satisfactory results in terms of heave and pitch motions. Since

the roll motion is highly nonlinear, the linear prediction of the roll motion is less accurate.

However, in Chap. 6 a similar evolution of the predicted roll motion is noticed between

the proposed roll motion modeling and the Ikeda et al. (1978) modeling used as a reference

in this study. Consequently, a good confidence in the kite influence on the roll motion

prediction could be attributed in terms of evolution. Nevertheless, the absolute value of

the ship roll motion should be regarded with caution. Moreover, ship motions have been

restricted to heave, pitch and roll motions, and existing couplings, such as roll and sway

coupling, have been neglected.

In case of a dynamic flight, as shown in Chap. 4, the considered tether tensions lead to a

small tether sag, which justifys the assumption of the tether as a straight inelastic line. How-

ever, the tether plays the role of interface between the kite and the ship. The acceleration of

the tether may have a significant influence on the interaction between the kite and the ship.

Further theoretical investigations should be performed to study the tether effects on the kite

lock-in phenomenon.

Moreover, in order to validate the modeling approach proposed in this chapter, several

strategies can be performed. Full scale experiments on a dinghy towed by kite has been

performed by Behrel et al. (2017). However, measurement of the environment is challeng-

ing at full scale. In a towing tank test with a reduced scale model, similitude issues are

also challenging to solve as it was highlighted by Martin et al. (2014) for offshore floating

wind turbines. To get around the problem of similitude and to take benefit from the towing

tank test conditions, the kite could be modeled like a hardware in the loop method such as

proposed by Giberti and Ferrari (2015) for classical sailing yacht.

9.8. Conclusion

Different tether lengths have been tested with a constant angular trajectory size leading to an

evolution of the kite excitation frequencies. In the case of calm water, the coupling between

the ship and the kite decreases the kite towing force, consequently the segregated approach

is conservative in comparison to the monolithic approach.

In case of regular beam waves, the interactions between the kite and the ship are more

significant. The definition of the kite trajectory into the relative wind basis taking into

account the vertical ship velocity can lead to unrealistic trajectories with very short radius

of curvature. This issue is avoided by defining the kite trajectory into a relative wind basis

neglecting the influence of the vertical ship motion. Moreover, strong interaction between

kite flight and ship motions at the wave frequency is shown. A kite lock-in phenomenon
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9. Interactions between a kite and a ship

at the wave frequency has been discovered. However, the kite lock-in phenomenon can be

win-win. Indeed, for some configurations of the kite lock-in phenomenon, the mean kite

towing force is increased whereas the ship roll amplitude is getting smaller in comparison

with no kite.
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10. Course keeping stability

Résumé: Stabilité de route

Un navire tracté par cerf-volant peut être considéré comme un système proche d’un navire

remorqué. La différence entre les deux systèmes est que le kite impose des perturbations

harmoniques. Ainsi, les méthodes consacrées à la stabilité de route des bateaux remorqués

ne peuvent pas être directement appliquées. Malgré tout en utilisant un critère de stabilité

linéaire des navires remorqués, il est montré, en considérant uniquement la partie linéaire

des forces hydrodynamiques de la carène, que le KCS ne peut être stable qu’à condition

que le point d’attache soit légèrement en avant de l’étrave. Cependant, plusieurs positions

de point d’attache du cerf-volant ont été testées numériquement au vent arrière, au grand

largue et au travers. La seule configuration stable réaliste est au vent arrière. Pour les

autres allures, le navire est instable. Des configurations de point d’attache plus en avant

que l’étrave ont été testées par intérêt théorique. Quand le point d’attache est suffisamment

devant, la stabilité de route est garantie, et pour des positions intermédiaires un phénomène

de fishtailing est mis en évidence.

Ainsi pour garantir la stabilité de route il est nécessaire de contrôler activement le safran

ou bien d’ajouter une dérive. Etant donné que les navires sont équipés de pilotes automa-

tiques plusieurs conceptions de régulateur PID (Proportionnel Intégral Dérivé) ont été inves-

tiguées. Un régulateur qui rejoint rapidement le cap de consigne impose de forte amplitude

de safran à cause des perturbations harmoniques du cerf-volant. Le filtrage de la partie

dérivée permet d’atténuer les amplitudes de barre. En cas de mer de travers, les amplitudes

de barre sont largement augmentées. Les perturbations du cerf-volant sur le lacet du navire

deviennent alors négligeables.

10.1. Introduction

The course keeping stability of a ship towed by kite and the control of the heading with the

rudder are investigated in this chapter.

A ship towed by kite is almost a similar system to a ship towed by tug boat. The course

keeping of towed ships has been studied in the literature with differents levels of sophis-

tication. A first investigation has been achieved by Strandhagen (1950) assuming that the
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10. Course keeping stability

ship is towed at a constant towing force. Usually, the towed ship is modeled with the 3 dof

of maneuverability where the tug boat follows a prescribed motion (Bernitsas and Kekridis,

1985, 1986; Lee, 1989). More recently, the tug has been also modeled with a 3 dof maneu-

vering model in (Yasukawa, 2007; Fitriadhy and Yasukawa, 2011; Fitriadhy et al., 2013).

The elasticity of the line was taken into account in (Bernitsas and Kekridis, 1986). Of-

ten, ship forces are modeled in terms of Taylor expansion in order to use analytical stability

analysis methods. Depending on the hydrodynamics of the towed ship, of the towline length

and attachment position, the towed ship may be subjected to horizontal divergent motions

and/or oscillatory motions called fishtailing. Furthermore, Fitriadhy et al. (2013); Sinibaldi

and Bulian (2014) investigated the windage effect on the stability. Their results showed

that a tug-ship system is significantly influenced by the relative wind direction. In case of a

weak course keeping stability, the ship heading must be controlled with the rudder.

Due to a dynamic kite flight, no equilibrium of the ship towed by kite system can be found.

Therefore, the stability analysis proposed in the literature as mentioned before is a priori

not directly applicable. However, based on a first numerical approach with the monolithic

coupling method, the course keeping stability of a ship towed by a kite is investigated in

section 10.2. The influence of the longitudinal tether attachment position at different true

wind angle is studied with the KCS container ship. Results are analyzed and discussed.

Then in Sec. 10.3, the course keeping stability is studied with an active control of the

rudder. Different Proportional Integrator Derivator (PID) designs are investigated in calm

water and in case of a regular beam wave.

The study is performed with the Kriso Container Ship in the same conditions as presented

in Chap. 8.

10.2. Self course keeping stability

10.2.1. Analytical requirements

Assuming a constant speed of the tug boat, an inelastic towline and no wind, Fitriadhy and

Yasukawa (2011) investigated the parameters influencing the course keeping stability of the

towed ship according to the Routh-Hurwitz criterion. This criterion leads to six inequalities:

{
D0, D1, D2, D3, D4 > 0

D1D2D3 −D2
1D4 −D0D

2
3 > 0

(10.1)

where,
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and,
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This criteria is questionable since the windage and the rudder forces are neglected. In-

deed, Fitriadhy et al. (2013) and Sinibaldi and Bulian (2014) showed that the windage may

decrease the course keeping stability. They highlighted that under some configurations a

fishtailing phenomenon can occur.

Since the windage force cannot be neglected for a ship towed by a kite especially for the

yaw motion, only the condition D4>0 is investigated. The condition D4 = 0 is equivalent

to the condition leading to a yaw equilibrium without rudder. In other words, this condition

gives the hydrodynamic lever arm X
′

usus which is always negative. Consequently, to get a

stable configuration, the tether attachment point should be at least forwards LppN
′

vs/Y
′

vs .

Using the KCS, this condition imposes that the tether attachment point should be located

at 0.5421Lpp. Therefore, according to this linear criteria, no stable tether attachment con-

figuration exists for the KCS. Adding a centerboard appendage could be investigated to

obtain a stable configuration. A centerboard would increase the value of Y
′

vs and may not

increase N
′

vs . The ideal position of the centerboard could be determined to increase the

ratio N
′

vs/Y
′

vs . However this study is beyond the scope of this thesis.

10.2.2. Results

The case of study is the KCS towed by a kite of 500 m2 and a tether length of 500 m. For

the following results, the ship speed is 10 m.s-1 and the true wind speed is 12 m.s-1. True
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10. Course keeping stability

wind angle βtw ∈ {180°, 135°, 90°} and tether attachment point a
(s)
x ∈ {0.5, 1, 2}Lpp are

tested.

First, for each configurations, the mean equilibrium of the ship towed by kite is solved to

obtain the rudder angle and the propeller speed. Then, in calm water, 6 dof time domain

simulations of the KCS are performed. The time step is 0.2 s and simulations are done over

10000 s. The rudder angle and the propeller rotational speed are summarized according to

the tested sailing condition in Tab. 10.1. For information, the kite mean power saving ratio

is also reported in Tab. 10.1.

a
(s)
x = 0.5Lpp a

(s)
x = Lpp a

(s)
x = 2Lpp

βtw = 180°

δr = 0.00° δr = 0.01° δr = 0.02°

np = 1.24 rps np = 1.24 rps np = 1.24 rps

ηk = 35.4% ηk = 35.4% ηk = 35.4%

βtw = 135°

δr = −0.81° δr = 1.94° δr = 7.42°

np = 1.23 rps np = 1.23 rps np = 1.25 rps

ηk = 40.7% ηk = 40.2% ηk = 36.1%

βtw = 90°

δr = −1.94° δr = 1.52° δr = 8.44°

np = 1.38 rps np = 1.38 rps np = 1.41 rps

ηk = 21.4% ηk = 20.9% ηk = 14.7%

Table 10.1.: Mean rudder angle, propeller rotational speed and kite power efficiency for

different true wind angle βtw and longitudinal tether attachment point a
(s)
x

Figures 10.1a, 10.1b and 10.1c show respectively the time series of the ship heading for

the tether attachment point a
(s)
x =0.5Lpp, Lpp and 2Lpp. From the top to the bottom, the

heading times corresponding to true wind angles βtw =180°, 135° and 90° are represented.
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Figure 10.1.: From the top, heading time series ψs for the true wind angles βtw =180°, 135°

and 90°
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10.2.3. Analysis and discussion

For each configuration it can be noticed a transitory phase since initial conditions for the

time domain simulation are zero for the heave, heel and pitch instead of the mean equilib-

rium value. Moreover, as shown in the previous chapter (Chap. 9), the coupling between the

kite and the ship leads to a different mean equilibrium than the one predicted by the mean

equilibrium solver which neglects the coupling. For the 9 configurations tested, 3 types of

behavior can be observed.

Stable configurations correspond to the cases
(
a
(s)
x ; βtw

)
= (0.5Lpp, 180°),

(
a
(s)
x ; βtw

)
=

(Lpp; 180°) and
(
a
(s)
x ; βtw

)
= (0.5Lpp; 180°, 135°, 90°). For these cases, after a transi-

tory phase, the ship heading oscillation corresponds to the kite excitation. For a bounded

excitation the response is bounded at the same frequencies of the excitation. At βtw = 180°,

the amplitude of the ship heading for a
(s)
x =0.5Lpp, Lpp and 2Lpp are respectively 0.05°

0.09° and 0.132°. The amplitude the ship heading increases with the longitudinal tether at-

tachment point a
(s)
x . With a

(s)
x =2Lpp, the amplitude of ship heading for βtw =180°, 135°

and 90° are respectively 0.132°, 0.32° and 0.17°. The effect of the true wind angle on the

ship heading amplitude is less obvious. Nonetheless, the ship heading amplitude increases

with the yaw excitation amplitude of the kite.

Diverging configurations correspond to configurations
(
a
(s)
x ; βtw

)
= (0.5Lpp, 135°) and

(
a
(s)
x ; βtw

)
= (Lpp; 90°). For the case

(
a
(s)
x ; βtw

)
= (0.5Lpp, 135°) , the ship heading

diverges from the initial equilibrium state and found a stable mean equilibrium at ψs =

−227.5°. For the case
(
a
(s)
x ; βtw

)
= (0.5Lpp; 90°), no new equilibrium was found and the

ship performs turning circles.

Fishtailing phenomenon can be noticed for the configuration
(
a
(s)
x ; βtw

)
= (Lpp, 90°).

The ship is subjected to oscillations at a frequency different from the kite excitation. This

phenomenon is well-known for the ship towing operation with a tug boat. For the configu-

ration
(
a
(s)
x ; βtw

)
= (Lpp, 135°), it seems that the fishtailing phenomenon can be noticed.

Nevertheless, the amplitude of the heading is still decreasing after 10 · 104 s of simulation.

The cases with a
(s)
x =Lpp and 2Lpp are purely theoretical. However, thanks to these cases,

the existence of stable and fishtailing configuration is highlighted. Results gives a good con-

fidence to apply the same analysis methods as those used for the tug-ship studies (Sinibaldi

and Bulian, 2014; Fitriadhy et al., 2013) to a ship towed by kite.

Globally, a very poor course keeping stability is noticed for the KCS. Consequently, in order

to perform free sailing simulations the rudder angle must be actively controlled. Hence,

the next section investigates ship motions with an active control of the rudder angle. An

alternative solution to the active control would have been to add a centerboard as mentioned

before.
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10.3. Ship active control

10.3.1. Controller

10.3.1.1. Rudder autopilot

The Proportional Integral Derivative (PID) controller is widely used in many applications.

The development of this type of controller is well depicted in (Bennett, 1993). Just for the

anecdote, one of the first theoretical developments of the PID controller was done in 1922

by Minorsky (1922) and was based on the observation of an helmsman steering a ship. For

the ship heading control, the mathematical form of PID controller is given by:

δr = Kp (Ψs − ψs + βs) +Ki

t
ˆ

0

(Ψs − ψs + βs) dτ +Kd
d (Ψs − ψs + βs)

dt
, (10.3)

where, Kp, Ki and Kd are respectively the proportional, integrator and derivative terms1.

Ψs denotes the heading target. Hence, the quantity ψs − Ψs is the heading error. It is

assumed here that the heading taget value is constant. Neglecting the time derivative of the

drift, the heading error derivative is approximated to rs.

The determination of coefficients Kp, Ki and Kd depends on the ship. For this purpose, a

simplified yaw equation of motion is used:

MA66ψ̈s −Nrsψ̇s = κrδr (10.4)

κr is evaluated during the simulation with:

κr =
Nr

αr
(10.5)

Here, the PID controller is designed with the Matlab® function “pidtune”. Different 0 dB

gain crossover frequency ωc can be chosen. The proportional term and the rudder angle

amplitude increase with the crossover frequency. However, the response time decreases

with the increase of the crossover frequency. The choice of the crossover frequency is a

trade off between the response time and the amplitude of the rudder angle.

The derivative term amplified the noise of the signal. Since the kite may induced some

noise, it could be interesting to filter the derivatives term with a low pass filter as proposed

by Yun Li et al. (2006). Thus the rudder control can be rewritten as follows:

1In this chapter Kp should not be confused with the propeller moment around the xs axis.
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δr = Kp (Ψs − ψs + βs) +Ki

t
ˆ

0

(Ψs − ψs + βs) dτ +KdFLP

(
d (Ψs − ψs + βs)

dt

)
,

(10.6)

where, FLP denotes a low pass filter function.

10.3.1.2. Propeller autopilot

The propeller rotational speed is controlled by a PI controller to reach a target speed over

ground:

np = Kp (Ud − Us) +Ki

t
ˆ

0

(Ud − Us) dτ (10.7)

10.3.2. Calm water case

Results presented aim to show the effect of the crossover frequency on the time response,

rudder angle and heel angle. The sailing condition chosen is a case close to the most critical

case for the course keeping stability studied in the first part of this chapter. The true wind

angle is βtw = 90°. The true wind speed is Utw = 12 m.s-1. The longitudinal tether

attachment point is a
(s)
x = 110 m. The kite area is Ak = 500 m2. The tether length is

Lt = 500 m. The corresponding proportional, integrator and derivatives terms are reported

in Tab. 10.2. The simulation time is 3000 s and the time step is 0.2 s. The initial condition is

us = 10 m.s-1 and the initial heading angle is 90° with respect to the true wind speed. Four

PID controllers are tested for the KCS, with the crossover frequency {0.4, 0.3, 0.2, 0.1}
rad.s-1 and with the “Design-focus” option set to “reference-tracking”.

ωc [rad.s-1] 0.1 0.2 0.3 0.4

Kp 3.15 · 108 3.54 · 108 7.96 · 108 1.41 · 109
Ki 4.75 · 105 6.19 · 105 2.09 · 106 4.95 · 106
Kd 2.52 · 1010 5.05 · 1010 7.58 · 1010 1.01 · 1011

Table 10.2.: Rudder PID controller for the crossover frequency 0.1, 0.2, 0.3 and 0.4 assum-

ing κr = 1; “Design focus” option: “reference-tracking”.

Figure 10.2 shows the heading error time series, ψs − βs − Ψs for the 4 PID controller

designs. Figures 10.3 and 10.4 are the amplitude of the Fourier transform of the rudder

angle and heel angle.
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Figure 10.2.: Heading error time series for PID designs with crossover frequencies ωc, 0.1,

0.2, 0.3 and 0.4 in calm water; “Design focus” option: “reference-tracking”.

For all PID controller designs, the evolution the heading error is similar. First the error

decreases to reach a minimum around -2°. Then the heading error increases to reach a

maximum. Afterwards the heading error decreases gently to reach a zero mean value. The

yaw kite excitation induced small heading oscillations. Differences between PID designs

can be noticed on the maximum error value and on the time reach a zero mean heading

error. The maximum heading error and the time to reach a zero mean error increase with

the decrease of the crossover frequency. According to the heading error time series, a higher

crossover frequency should be preferred. Regarding the rudder angle, it can be noticed, that

all PID controllers react at kite harmonic frequencies. A clear evolution of the rudder angle

amplitude with the crossover frequency can be noticed. Indeed, the rudder angle amplitude

response increases with the crossover frequency. In figure 10.4, it can be noticed that the

heel angle decreases with the increase of the crossover frequency.

An usual manner to decrease perturbation effects is to filter derivative error terms with a low

pass filter. Here, this method is not required, but it might be necessary for smaller ships. For

illustrative purpose, Fig. 10.5 shows the heading error and rudder time series, with such a

method whereKp = 2.07·109,Ki = 2.15·107 andKd = 5.00·1010. The controller design,

is obtained with the “Design-focus” option set to “balanced” and crossover frequency of 0.2

rad.s-1. The low pass filter is a Butterworth filter of order 1 with a cutoff angular frequency

of 0.1 rad.s-1.

Compared to the standard PID controller with a crossover frequency of 0.4 rad.s-1, the

response time is divided by 2 with the filtered derivatives term. The rudder angle amplitude

after 200 s of simulation is around 0.5°. The rudder angle amplitude and the time response

are significantly reduced with the low pass filtering of the derivative term.

To sum up the analysis, a high crossover frequency is preferable for time response and the

heel angle, and to limit the ruder angle amplitude a low crossover frequency is preferable.
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However, the worse rudder angle amplitude is around 1° and heel angle amplitudes are

small. To decrease the rudder angle amplitude, derivative terms have been filtered with a

low pass filter. This usual method provides a significant improvement to the course keeping

stability of the ship. Both the response time and the rudder angle amplitude are decreased.
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Figure 10.5.: Heading error and rudder time series with a low pass filter of the derivative

term in calm water; “Design focus” option: “balanced”.

10.3.3. Regular beam wave case

To investigate a more realistic case, a regular beam wave case is studied. A regular beam

wave with a frequency of 0.4 rad.s-1 and with an amplitude of 2.5 m is considered. As

shown in Chap. 9, the wave excitation dominates the kite excitation. The course keeping

stability may be affected by a wave. Two wave cases are investigated, a beam reach course

βtw = ψw = 90° and a broad reach course βtw = ψw = 135°. Four PID controller

designs with the “design focus” option set to “balanced” are tested. They are obtained with

following crossover frequencies {0.05, 0.075, 0.1, 0.2} rad.s-1 and their coefficients are

summarized in Tab. 10.3.

ωc [rad.s-1] 0.05 0.075 0.1 0.2

Kp 1.81 · 108 4.39 · 108 7.60 · 108 2.07 · 109
Ki 6.55 · 105 2.60 · 106 5.84 · 106 2.15 · 107
Kd 1.24 · 1010 1.85 · 1010 2.47 · 1010 5.00 · 1010

Table 10.3.: Rudder PID controller for the crossover frequency 0.1, 0.2, 0.3 and 0.4 assum-

ing κr = 1. “Design focus” option: “balanced”.

Figure 10.6 shows the rudder angle an heading error time series. The plotted heading error

is shifted of +20° to make the plot more reader-friendly. As for the calm water case the

crossover frequency decreases the response time and increases the rudder angle amplitude.

The case in Fig. 10.6d is particular compared to the three others. For this case, to follow

the rudder command, the maximum rudder turning rate is not high enough. Consequently,

the rudder angle amplitude is important as it reaches 15°. For the three other cases, the

rudder angle amplitude decreases with the crossover frequency. The rudder angle ampli-

tude is notably reduced for the case in Fig. 10.6a with the crossover frequency ωc = 0.05
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10. Course keeping stability

rad.s-1 compared to the case in Fig. 10.6b with the crossover frequency ωc = 0.075 rad.s-1.

Nevertheless, the heading error is barely reached after 1000 s with ωc = 0.05 rad.s-1

whereas the convergence is reached after only 300 s with ωc = 0.075 rad.s-1. The case

with the crossover frequency ωc = 0.1 rad.s-1 is not significantly faster than the case with

ωc = 0.075 rad.s-1 whereas the rudder angle amplitude is significantly increased. The au-

topilot with the crossover frequency ωc = 0.075 rad.s-1 appears to be a good trade off to

reduce the response time and the rudder angle amplitude.

Compared to the calm water case, the wave effect increases drastically the rudder angle am-

plitude and the heading error amplitude. The wave perturbation dominates significantly the

kite perturbation on the course keeping stability. This shows that a kite does not represent a

significant extra risk to the ship maneuvering safety.
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(c) ωc = 0.1 rad.s-1
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Figure 10.6.: Heading error and rudder angle time series for PID designs with crossover

frequencies ωc, 0.05, 0.075, 0.1 and 0.2 in regular wave on a beam reach case

βtw = ψw = 90°; “Design focus” option: “reference-tracking”.
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10.4. Conclusion

In this chapter, a simple investigation of the course keeping stability of a ship towed by

a kite was performed. The self course keeping stability has been investigated performing

simulations with a constant rudder angle and with active control of the rudder. The results

on the KCS show that the self course keeping stability is very small with a tether attachment

point at the bow. A self course keeping stability is only noticed at downwind. As theoret-

ical study, tether attachment positions beyond the bow have been investigated. It has been

highlighted that a fishtailing phenomenon can occur. When the tether attachment point is

forwards enough, the ship towed by kite becomes stable. To increase the course keeping

stability, the rudder could be actively controlled or a centerboard could be added to the ship.

The self course keeping stability analysis deserves to be investigated for ships with shorter

hydrodynamic lever harm. If the hydrodynamic lever arm is small enough, a study similar to

the investigation performed on the ship towed by a tug boat (Fitriadhy et al., 2013; Sinibaldi

and Bulian, 2014) could be interesting.

In the second part of this chapter the active control of the rudderwas investigated. PID

controllers with different crossover frequencies have been investigated. The higher the

crossover frequency is, the shorter the heading time response is. However, the higher the

crossover frequency is, the higher the rudder amplitude is. To decrease the rudder angle

amplitude due to kite perturbations, the method consisting in filtering the derivative term of

the PID controller is successful. A case with a regular beam wave on a beam reach course

has been investigated. It was shown that the wave perturbation dominates the kite pertur-

bation on the heading. It means that modifications of the rudder and autopilot could be

unnecessary for the refit of a merchant ship with a kite.

Secondarily, the presented study on the course keeping have led to the determination of a

PID controller effective enough to simulate free sailing navigations of a ship towed by kite.

Consequently, the next chapter investigates the free sailing performance of a ship towed by

kite.
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towed by kite

Résumé: Simulation 6 degrés de liberté autopiloté

L’influence des mouvements dynamiques sur les performances du porte conteneur KCS

tracté par un cerf-volant de 500 m et des lignes de 500 m est étudiée dans ce chapitre en

prenant en compte les 6 degrés de libertés du navire. Dans le cas d’une force de traction

constante, l’équivalence entre la résolution de l’équilibre statique et lemodèle dynamique

est vérifiée avec succès.

Dans une première partie, pour une vitesse de vent de 12.5 m.s-1 et une vitesse de navire de

10 m.s-1, et pour des angles de vent réel allant de 70° à 180°, l’équilibre moyen obtenu par le

modèle dynamique est comparé à la résolution de l’équilibre statique. Avec un état de mer

calme, les deux approches donnent des résultats similaires. Avec une vague régulière de

pulsation 0.4 rad.s-1 et d’une hauteur de 2.5 m dans la direction du vent. L’équilibre moyen

n’est pas significativement affecté. Il faut cependant noter que si l’équilibre moyen n’est que

peu affecté par une vague, c’est que ne sont considérés que les efforts de vague du premier

ordre. Avec le niveau de modélisation du système, le modèle dynamique ne présente qu’un

intérêt limité pour calculer l’équilibre moyen. En revanche, le modèle dynamique permet

d’obtenir les amplitudes de mouvement. En mer calme, les amplitudes des mouvements sont

maximums pour des navigations travers au vent. En cas de houle régulière, les amplitudes

des maximales des mouvements sont obtenues au largue, ce qui correspond ici à une mer

de trois quart arrière.

Dans une deuxième partie, le phénomène d’accrochage est investigué par une mer trois

quart arrière. Les fréquences d’excitations du cerf-volant sont balayées par variation de

la longueur de ligne en gardant une amplitude angulaire de trajectoire constante. Le

phénomène d’accrochage est bien présent à la fréquence de rencontre de la vague. Dans

un intervalle de 200 m de ligne les harmoniques d’excitation du kite sont accrochées par

la fréquence de vague. Dans cette configuration, la traction du cerf-volant est augmen-

tée jusqu’à 34% et l’efficacité du kite est augmenté jusqu’ 4% par rapport au cas en mer

calme. L’amplitude de roulis est diminuée de 20% par rapport à une longueur en limite du

phénomène d’accrochage.
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11. 6 dof free sailing simulations of ships towed by kite

11.1. Introduction

The aim of this chapter is to investigate the performance of a ship towed by a kite in case of

6 dof free dynamic sailing as predictedby the monolithic approach.

In Chap. 8, the mean equilibrium of a ship towed by a kite have been investigated. However,

it has been shown in Chap. 9 that the dynamic motion of the ship may affect the kite flight.

Since the study was focused on the roll motion only, the effect of the interactions between

the ship and the kite with horizontal ship motions should be investigated. In Sec. 11.2, the

mean equilibrium of a ship towed by kite obtained with the static approach is compared

to the dynamic approach. First, assuming a constant towing force, the consistency of the

two approaches are compared. Then, in calm water, the influence of dynamic motions on

the mean performance are investigated. In Sec. 11.3 a similar analysis is performed to

investigate the influence of a regular wave.

In Chap. 9, a kite lock-in phenomenon has been highlighted, but only the heave, roll and

pitch motions were free. The kite lock-in phenomenon modifies the kite flight frequency

towards the wave frequency. In Chap. 10 it has been shown that the influence of a wave

induced significant rudder angle amplitude. The effect of the rudder angle on the roll mo-

tion, and more generally horizontal motions, may modify the kite lock-in phenomenon.

Consequently, the kite lock-in phenomenon is studied in Sec. 11.4.

The case of study for this chapter is the Kriso Container Ship as presented before in Chap.

7.

11.2. Calm water case

11.2.1. Consistence of the dynamic modeling with the static modeling

This section aims to verify the consistency between, the mean equilibrium solution obtained

with the static approach developed in Sec. 8.2.1 and the mean equilibrium obtained with

the dynamic approach developed in Chap. 7. To perform this analysis, the mean kite towing

force along a trajectory is applied to the ship. This mean kite towing force is a constant

with respect to earth fixed frame n. The two approaches are compared in terms of absolute

relative margin defined as follows:

δE =

∣∣∣∣
Ed − Es
Es

∣∣∣∣ (11.1)

where E stands for δr or βs or φs.
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11.2. Calm water case

Utw = 12.5 m.s-1

Us = 10 m.s-1

Absolute relative margin

βtw = 90° βtw = 135° βtw = 180°

δr 9.4 · 10−8 3.8 · 10−8 5.2 · 10−8

βs 1.5 · 10−8 5.2 · 10−8 3.4 · 10−8

φs 9.6 · 10−6 7.6 · 10−6 8.2 · 10−6

Table 11.1.: Relative margins between the static and the dynamic approach in case of con-

stant kite towing force

In Tab. 11.1 the relative margin between the two approaches is summarized in terms of

rudder angle, drift angle and heel angle. Different true wind angle βtw with a ship speeds

of Us = 10 m.s-1 and Utw = 12.5 m.s-1 have been tested: beam reach, broad reach and

downwind. For each cases the absolute relative margin are less than 10−5, which gives an

indication of the consistency of the two approaches.

11.2.2. Influence of the kite and ship interaction on the performance

With no wave, the true wind speed considered in this section is Utw = 12.5 m.s-1. Figure

11.1 shows the evolution with the true angle βtw of the mean kite efficiency ηx, mean drift

angle βs, mean rudder angle δr and mean heel angle φs. The 6 dof dynamic approach

and the static approach are compared. The amplitudes obtained with the 6 dof dynamic

approach are plotted in dashed lines.

The static approach and the dynamic 6 dof dynamic approach are very closed for the mean

value of all considered quantities. Relative margins are greater than to 10−5, which shows

that the differences are due to the modeling and not to the numerical accuracy. However,

the relative margins are small enough, to consider that dynamic effects are negligible on

the mean equilibrium. Consequently, the static approach is consistent to assess the mean

equilibrium of a ship towed by kite.

Extreme values obtained with the 6 dof dynamic approach show the importance to consider

the dynamic system. Kite efficiency ηx and drift angle βs amplitudes are significant. Rudder

angle and heel angle amplitudes are not significant. The kite efficiency amplitude reaches

its maximum around a beam reach course βtw = 135°. The minimum of kite efficiency

amplitude is obtained at downwind. The drift angle is maximum at upwind and decreases

with the increase of the true wind angle. These evolution in terms of amplitudes are partially

dependent on the ship heading control strategy. As described in Sec. 10.3.1.1, the rudder

is controlled with respect to the course over ground. A different heading control strategy

could reduce the amplitude of drift angle and increase the heading amplitude.

This analysis shows that a static analysis approach is good enough for kite profit studies.

However, to determine the kite design requirements regarding target specs, dynamic mo-

tions are important to investigate. Results give priority to the downwind sailing to limit

dynamic effects and to increase kite efficiency.
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Figure 11.1.: For the calm water case, evolution of the mean kite efficiency ηx, mean drift

angle βs, mean rudder angle δr and mean heel angle φs with the true wind an-

gle βtw. The 6 dof dynamic approach ( ) is compared to the static approach

( ) in terms of mean equilibrium. The dashed-dotted lines correspond to the

amplitudes obtained with the 6 dof dynamic approach ( ). Kite configura-

tion: Lt = 500 m, Ak = 500 m2, A(s) = [110, 0, −10.6]T m. Sailing

condition: Utw = 12.5 m.s-1.

11.3. Regular wave case

With a regular wave of Aw = 2.5 m high and an angular frequency of ωv = 0.4 rad.s-1,

the true wind speed considered in this section is Utw = 12.5 m.s-1. Figure 11.2 shows

the evolution with the true angle βtw of the mean kite efficiency ηx, mean drift angle βs,
mean rudder angle δr and mean heel angle φs. The 6 dof dynamic approach and the static

approach are compared. Amplitudes obtained with the 6 dof dynamic approach are plotted

in dashed lines.

According to the results, the wave has no significant effect on the mean kite efficiency. The

kite efficiency amplitude reach a maximum between a beam reach and a broad reach course.

The minimum of kite efficiency amplitude is obtained at downwind. The ship drift angle
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Figure 11.2.: For the regular wave case, evolution of the mean kite efficiency ηx, mean

drift angle βs, mean rudder angle δr and mean heel angle φs with the true

wind angle βtw. The 6 dof dynamic approach ( ) is compared to the static

approach ( ) in terms of mean equilibrium. The dashed-dotted lines cor-

respond to the amplitudes obtained with the 6 dof dynamic approach ( ).

Kite configuration: Lt = 500 m, Ak = 500 m2, A(s) = [110, 0, −10.6]T m.

Sailing condition:Utw = 12.5 m.s-1, wave amplitude Aw = 2.5 m and wave

angular frequency ωw = 0.4 rad.s-1.

amplitude is maximum at beam reach course and is zero at downwind. The rudder angle

evolution follows a sharp evolution. This sharp evolution could be explained by the kite

and ship interactions as highlighted in Chap. 9. However, according to a global evolution,

the rudder angle amplitude is maximum between a beam reach and a broad reach course.

Comparing the rudder amplitude obtained in calm water to the one obtained with a regular

wave, it can be noticed that the rudder angle amplitude is driven by the wave effect. The

maximum heel angle amplitude is obtained for a broad reach course. As for the rudder

angle, the heel angle is dominated by the wave force.

The wave effect dominates the kite effect. Consequently, as for the calm water case, Results

are in favor to the downwind sailing. However, at downwind, the ship heading and heel

stability can suffer from the parametric roll. The ship modeling used here is not accurate
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11. 6 dof free sailing simulations of ships towed by kite

enough to account for the parametric roll. Indeed, the parametric roll can be explained by

the instantaneous modification of the metacentric height (Shin et al., 2004). Here, the hy-

drostatic is simply taken into account by a linear stiffness matrix, therefore the metacentric

height is assumed constant.

A questionable result concerns the mean ship drift angle. The ship modeling does not take

into account the mean second order wave drift load. Only the first order part of the incoming

wave force is taken into account which is a zero mean value. Consequently, the mean ship

drift angle due to a wave is zero which explains that almost no difference can be noticed

between the calm water case and the regular wave case.

11.4. Influence of the kite lock-in phenomenon on the

performance

This section aims to investigate the kite lock-in phenomenon revealed in Sec. 9.5.3 in case of

a 6 dof free sailing. The kite excitation of a dynamic flight following a Lissajous trajectory

is composed of several harmonics. When one of the kite excitation harmonic is close to the

wave frequency, the interactions between the kite and the ship shifts this harmonic close to

the ship main motion frequency. Since the ship motion is dominated by the wave effect,

in case of a regular wave, the closest kite excitation harmonic is shifted towards the wave

frequency. In Chap. 9 the considered ship degrees of freedom were the heave, roll and pitch

motions. Consequently, the existence of this phenomenon has to be verified by modeling

the 6 degrees of freedom of the ship.

The kite lock-in phenomenon is investigated on a broad reach course βtw = 135° with a true

wind speed Utw = 12.5 m.s-1. The harmonics of the kite excitation are shifted from high

frequencies to low frequencies by varying the tether length and keeping a constant angular

amplitude of trajectory. In Figures 11.3, 11.4 and 11.5, the first kite roll excitation frequency

ωk1 is plotted as function of the tether length. Globally, ωk1 decreases with the tether length.

The wave frequency of encounter is obtained according to the following relationship:

ωe = ωw − us
g
ω2
w cosβw (11.2)

According to the sailing condition, the frequency of encounter is ωe = 0.285 rad.s-1. As

it can be noticed in Fig. 11.3, the first harmonic of the kite roll excitation ωk1 observes a

plateau at ωk1 = ωe between Lt = 455 m and Lt = 665 m. This particular evolution of the

first kite harmonic shows that the kite lock-in phenomenon still exists in case of a 6 dof free

sailing simulation. In Fig. 11.4, ωk1 is plotted with wave (in solid line) and in calm water

(dashed line). The dashed lines shows the evolution of the first kite harmonic without the

influence of a wave. The influence of the ship motion due to the wave is significant on the

kite frequency.
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Figure 11.3.: With a regular wave in the wind direction, evolution of the first kite roll exci-

tation harmonic frequency ωk1, drift angle amplitude ∆βs, rudder angle am-

plitude ∆δr and heel angle amplitude ∆φs with different tether lengths and

a constant angular amplitude of trajectory. A configuration with kite ( ) is

compared to a configuration without kite ( ). Kite configuration: Ak = 500
m2, A(s) = [110, 0, −10.6]T m. Sailing condition: βtw = 135°, Utw = 12.5
m.s-1, wave amplitude Aw = 2.5 m and wave angular frequency ωw = 0.4
rad.s-1.

As shown in Sec. 11.4, the kite lock-in phenomenon could be profitable as it can decrease

the roll motion amplitude. In Fig. 11.3, the drift angle amplitude ∆βs, the rudder angle

amplitude ∆δr and heel angle amplitude ∆φs are plotted as a function of the tether length.

To make the analysis easier, the evolution of ωk1, the first kite harmonic, with the tether

length is plotted to identify the formation of the kite lock-in phenomenon. For short tether

length, the heel angle amplitude is increased by the kite excitation. On the contrary, for long

tether lengths and with the presence of the lock-in phenomenon and notably for Lt = 660
m, the heel angle is decreased compared to the case without kite. For Lt = 660 m, the

heel angle is decreased by 20% compared to the case with Lt = 665 m. Consequently, the

kite lock-in phenomenon is favorable in terms of roll motion. The same observation can be

achieved for the drift angle amplitude. For all tether lengths concerned by the kite lock-in

phenomenon the drift angle amplitude is lower than for the case without kite.
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11. 6 dof free sailing simulations of ships towed by kite

The rudder angle amplitude ∆δr without wave is 8.1°. The rudder angle amplitude varies

from 8.7° for Lt = 455 m to 9.7° for Lt = 700 m. For the considered tether lengths, the

kite heading perturbation is responsible for 20% of the rudder angle amplitude compared to

the wave perturbation.
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Figure 11.4.: With a regular wave in the wind direction, evolution of the first kite roll

excitation harmonic frequency ωk1, kite wind loading amplitude ∆σk, kite

efficiency amplitude ∆ηx with different tether lengths and a constant angu-

lar amplitude of trajectory. A configuration with wave ( ) is compared

to a configuration without wave ( ). Kite configuration: Ak = 500 m2,

A(s) = [110, 0, −10.6]T m. Sailing condition: βtw = 135°, Utw = 12.5
m.s-1, wave amplitude Aw = 2.5 m and wave angular frequency ωw = 0.4
rad.s-1.

The influence of the lock-in phenomenon on the kite performance is investigated through

the kite efficiency and the kite wind loading in Figs. 11.4 and 11.5. As a function of the

tether length, the wind loading and the kite efficiency are plotted in solid lines in terms

of amplitude and mean value respectively in Fig. 11.4 and in Fig. 11.5. For comparison

purpose, these quantities without the effect of a regular wave are plotted in dashed lines.

Globally, the amplitude of the wind loading amplitude increases with the tether length in

case of calm water (Fig. 11.4). The kite lock-in phenomenon decreases the kite wind

loading amplitude. The minimum of wind loading amplitude is obtained for Lt = 660
m. Compared to the calm water case, with Lt = 660 m, the wind loading amplitude is

decreased by 16%. Compared to the configuration with Lt = 665 m, the wind loading

amplitude is decreased by 35% with Lt = 660 m.
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11.4. Influence of the kite lock-in phenomenon on the performance

In calm water, the kite efficiency remains almost constant with the tether length. The kite

lock-in phenomenon decreases the kite efficiency amplitude (Fig. 11.4). The minimum of

kite efficiency amplitude is obtained for Lt = 660 m. Compared to the calm water case,

with Lt = 660 m, the kite efficiency amplitude is decreased by 14%. Compared to the

configuration with Lt = 665 m, the kite efficiency is decreased by 26% with Lt = 660 m.
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Figure 11.5.: With a regular wave in the wind direction, evolution of the first kite roll excita-

tion harmonic frequency ωk1, mean kite wind loading σk, mean kite efficiency

ηx with different tether lengths and a constant angular amplitude of trajectory.

A configuration with wave ( ) is compared to a configuration without wave

( ). Kite configuration: Ak = 500 m2, A(s) = [110, 0, −10.6]T m. Sail-

ing condition: βtw = 135°, Utw = 12.5 m.s-1, wave amplitude Aw = 2.5 m

and wave angular frequency ωw = 0.4 rad.s-1.

As it can be noticed in Fig. 11.5, the mean kite efficiency, increased with the tether length.

This tendency is not modified with the kite lock-in phenomenon. However, the increase

of the mean wind loading is less significant within the tether length corresponding to the

lock-in. For short tethers, the mean wind loading is increased by 7 % compared to the calm

water case for Lt = 455 m. For long tethers, the mean wind loading is decreased by 8 %

compared to the calm water case for Lt = 660 m.

The kite efficiency increases slightly with the tether length, 3% between Lt = 400 m and

Lt = 700 with the calm water case (Fig. 11.5). The presence of waves increases the kite

efficiency. Within the lock-in phenomenon, the increase of the kite efficiency increases

significantly. Then, for longer tether than Lt = 575 m, the kite efficiency remains almost

constant. For Lt = 660 m, the kite efficiency is increased by 4%.
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11. 6 dof free sailing simulations of ships towed by kite

Frequencies of the kite harmonics have been shifted with the tether length and keeping a

constant angular amplitude of trajectory. This phenomenon could have been investigated by

varying the angular amplitude of the trajectory and keeping a constant tether length. Within

the range of the tether lengths concerned by the lock-in phenomenon, a long tether is a

benefit. Indeed, for the case studied, the configuration Lt = 660 m is the best. The kite

efficiency is maximum (Fig. 11.5), the kite wind loading amplitude and the kite efficiency

amplitude are minimum (Fig. 11.4). The mean kite wind loading is smaller than in the calm

water case. For the global kite performance this configuration seems to be favorable from a

fatigue and a profit point of view. This configuration is also favorable for the ship. Indeed,

the heel angle amplitude and the drift angle amplitude are decreased.

11.5. Conclusion

In this chapter, 6 dof free sailing simulations have been performed. In a first part, the

influence of the true wind angle has been investigated in calm water and with a regular wave

with the KCS container ship. The dynamic model with the monolithic coupling was first

compared to the static approach in case of a constant kite towing force. The mean results

are consistent, the relative margin between the two approaches being lower than 10−5.

In calm water, the mean value of the kite efficiency, drift angle, rudder angle and heel angle

obtained with the 6 dof dynamic approach are very close to those obtained with the static

approach. Consequently, with the aim to obtain the mean performance of a ship towed by

kite in calm water, a static approach is accurate enough since the interaction between the kite

and the ship is small. In the presence of a wave, mean performances are slightly affected,

but not significantly. On the contrary, the amplitudes of the performances are modified by

the wave, especially for the ship heading and the rudder angle. The perturbations on the ship

due to the wave dominate the perturbations due to the kite. Consequently, the ship safety is

not significantly affected by the kite.

In a second part, the kite lock-in phenomenon highlighted in Chap. 9 has been investigated

on broad reach course. The phenomenon still occurs leaving free the 6 dof of the ship.

When this phenomenon occurs kite harmonic frequencies are attracted towards the wave

frequency of encounter. When harmonic frequencies are increased to the wave frequency

of encounter (compared to the calm water case), the kite lock-in phenomenon is a benefit

for the ship and the kite. The heel angle amplitude can be smaller compared to the case

without kite. The kite wind loading may be increased up to 34% and the kite efficiency may

be increased up to 4% compared to the calm water case, within the investigated case.

Nevertheless, even if the kite lock-in phenomenon is verified in case of 6 dof free sail-

ing, this phenomenon may be purely theoretical. This phenomenon has not been reported

somewhere else and the existence of this phenomenon is entirely based on the presented

kite and ship modeling. Consequently, a next step would be to verify the existence of this

phenomenon by taking into account more physics into the tether and kite modeling.
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Part V.

General conclusion and perspectives
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12. Conclusion

The aim of this study was to investigate the operability of a ship towed by a kite through

theoretical studies of the dynamic motions of the system. The first part of the thesis was

dedicated to the kite modeling. The second part was dedicated to the ship modeling. The

third part was dedicated to the coupling between the kite and ship modelings.

The zero mass kite model was presented. This model neglects the mass of the kite and as-

sumes a straight and inelastic tether. Thanks to the analytical formulation of the zero mass

kite model, an upper bound of the kite towing has been identified. A comparison of the kite

model with full scale on-shore experiments was performed with a fixed tether attachment

point. The comparison has shown that the kite velocity amplitude and the kite towing force

over an eight pattern trajectory are underestimated with a constant lift to drag ratio angle and

lift coefficient. Consequently, a correction of the lift to drag ratio angle and lift coefficient

was proposed as a function of the kite velocity turning rate and this improvement provided

satisfactory results. A more comprehensive validation should be performed on several kite

trajectories and with a moving tether attachment point. Nevertheless, the proposed correc-

tion is conservative compared to a classical zero mass kite model with constant coefficients.

Indeed, ship motions amplitude are in a first approximation proportional to the excitation

amplitude.

The assumption of straight tether is a strong assumption. Therefore, the validity of this

hypothesis was investigated with a quasi-analytical tether model based on the catenary. The

catenary model assumes a constant tether load per unit length. In case of a static kite flight,

the kite balance equation was solved numerically. Since the tether load varies with the alti-

tude due to the wind gradient, an equivalent tether load was proposed. A comparison with a

finite element method was performed to assess the effect of the varying tether aerodynamic

load. Comparisons were performed for different wind directions, wind speeds and different

tether mass per unit length. Relatives differences between the finite element method and the

presented model remains within a range of ± 1.2° for tension direction and remains within

a range of ± 2% for tension magnitude. Then, the influence of the tether is investigated on

a 320 m2 kite. Results show that the tether effects could be important at extreme azimuth

angles. For high wind speed the effect of the tether on the difference in tension between

the tether attachment point and the kite are not significant. Consequently, the straight tether

assumption used in the zero mass model should be reasonable at high wind speeds greater

than 10 m.s-1for the static flight case. In a case of dynamic kite flight the straight tether

assumption is relevant for reference wind speed greater than 2 m.s-1.
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12. Conclusion

According to the quasi-analytical tether model, a closed-form formula was developed in

order to estimate the low wind limit to operate the kite in a static flight mode. Since the kite

launching step begins by quasi-static flight at zero azimuth angle, the developed formula

provides a practical and useful criterion. The development of th is criterion is based on

the assumption that the aerodynamic load on the tether is negligible at low wind. The

validity of this mathematical development is limited to heavy tether with small diameter.

For instance, for a tether made of dyneema® the tether aerodynamic load is less than 20%

of the gravity load for line mass per unit length greater than 25 g.m-1 which corresponds to 7

mm in diameter for instance. According to this criterion, for a ship sailing at downwind, the

launching step of kite can be impossible whereas the dynamic kite flight provides significant

fuel savings. Therefore, first the ship should maneuver to increase the relative wind speed

to launch the kite and start by a dynamic kite flight mode and then go back to downwind

condition, following the planned route .

To perform a dynamic coupling of the zero mass kite model with a ship modeling, a time

domain approach is required. Consequently, a time domain seakeeping model was devel-

oped. The developed ship model is based on linearized equations for small amplitude ship

motions. The hydrodynamic problem was solved under the assumption of a potential flow

into the frequency domain, the STF strip theory. Then, using the impulse response function

of the ship, the ship modeling was transformed into the time domain. This method requires

the computation of convolution products, which can be time consuming. To speed up the

computation, convolution products are evaluated with the integration of state space models.

A state space model identification is required. Identification methods were developed in

the literature but only in case of zero ship forward speed. Consequently, the method was

slightly modified to fit with the forward speed requirements. The method is compared to

EFD data of the DTMB, a free surface combatant vessel, sailing in regular head wave. Re-

sults show that the transformation of the problem into the time domain is consistent and

that the STF strip theory provides a good assessment of ship motions in terms of heave and

pitch.

The time domain seakeeping model is suitable for vertical ship motions, however the hori-

zontal ship motions are not well predicted. Indeed, the viscous effects are significant on the

horizontal ship motions. Thus, a mixed approach was developed. Horizontal ship motions

are modeled with a maneuvering model. The maneuvering model considered is based on a

parametric MMG model. Hull, rudder, propeller and hydrodynamic interactions are repre-

sented by individual sub-models. The mixed approach was then compared to EFD data of

free running turning circles and zig-zag tests with a container ship KCS. Comparisons gave

satisfactory results.

Prior to perform a dynamic coupling between the kite model and the ship model, the mean

equilibrium of a ship towed by kite was investigated considering the mean kite towing force.

This approach is fast to compute and enables the study of a wide range of sailing configura-

tions. The study was performed on the KCS. Windage effects were compared to kite towing

effects on the mean equilibrium. The windage is not negligible for the lateral and yaw equi-

librium. The effect of the longitudinal tether attachment point is more pronounced on the
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ship drift and on the rudder angle than on the kite power saving ratio and the heel angle.

To limit the mean rudder angle, the tether should be attached to the bow. In terms of mean

rudder angle, drift angle and heel angle, the most critical sailing conditions are obtained on

beam reach courses. The maximum of kite power saving ratio is obtained on broad reach

courses. The maximum of kite efficiency is obtained on downwind courses if the true wind

speed is faster than the ship speed, otherwise the maximum of kite efficiency is obtained at

lower true angle. Finally, to minimize CO2 emissions, the kite power saving ratio should be

maximized whereas to maximize the profit, the kite efficiency has to be maximized.

Focusing on vertical ship motions (heave roll and pitch), a first study of the interactions be-

tween the kite and the ship was performed. The analysis was achieved in terms of spectrum

of ship motion and kite excitation. The kite excitation is composed of the several harmonics

ωki where i is a positive integer. The first harmonic is the most powerful one. Segregated

and monolithic couplings were performed. The segregated approach consists in applying

a predefined kite force time serie to the ship. The two coupling approaches were com-

pared. In calm water, no significant difference between the two coupling approaches was

found. Nevertheless, the segregated coupling is conservative compared to the monolithic

approach. In case of a regular wave, ship motions are dominated by the wave excitation.

Consequently, the ship motions spectrum is mainly composed of one harmonic at the wave

frequency. With the monolithic coupling approach a sub-harmonic network appears with

a fundamental frequency ω
′

k1 corresponding to ω
′

k1 = min
i

|ωw − ωki|. In case of a small

ω
′

k1, a strong interaction phenomenon was highlighted. The principal kite harmonic net-

work is shifted towards the wave frequency. This phenomenon has been called kite lock-in.

Only the monolithic coupling approach catches this phenomenon. Consequently, only the

monolithic coupling was considered in the rest of the study.

To perform 6 degrees of freedom simulations, the course keeping stability of the ship was

studied. According to an analytical linear criterion developed for the course keeping stabil-

ity of ship towed by a tug boat, it was shown that the KCS container ship is not stable in that

case. However, non-linear terms, the windage and the oscillatory towing force are not taken

into account by this criterion. Consequently, the course keeping stability of the KCS towed

by a kite of 500 m2 was studied. Results have shown that the only stable configuration is

at dead downwind with a longitudinal tether attachment position at the bow, otherwise the

system is unstable. However, for theoretical interests longitudinal positions beyond the bow

were tested. The ship is stable, when the tether attachment position is far enough above the

bow which is unrealistic. Intermediate longitudinal position showed that a fishtailing phe-

nomenon can appear. Nevertheless, the stable configuration is not realistic. Consequently, a

design of a rudder autopilot based on a PID controller was investigated. The rudder autopi-

lot is perturbed by the kite oscillatory excitation. A manner to decrease this effect is to filter

the derivative term of the error with a low pass. This classical control method decreases the

response time and the rudder angle amplitude. In calm water, the perturbations imposed by

the kite are not significant. However, in case of a regular wave, the rudder angle amplitude

increases drastically. The wave perturbation dominates the kite perturbation. Consequently,

no modification of the existing rudder autopilot should be required.
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12. Conclusion

In the final chapter, 6 dof simulations in calm water and regular waves were performed for

different true wind angles. The mean equilibrium obtained with the dynamic coupling is

not significantly modified compared to the static approach for both calm water and regular

wave cases. Since only the first order wave loads have been taken into account, the average

wave load is zero. The second order mean wave drift load may modify the mean equilibrium

of the system. However, the static approach appears to be an accurate enough method for

the mean effect of a kite regarding economic and fuel saving studies. Amplitudes of the

rudder angle and heel angle are maximum on a broad reach course whereas the maximum

of drift angle is maximum on a beam reach course. The apparition of the kite lock-in

phenomenon was verified in case of a 6 dof simulations. An evolution of the frequencies

of the kite harmonic network were performed with different tether lengths and keeping a

constant angular trajectory size. On a broad reach course the kite lock-in phenomenon was

noticed over a tether length range of 200 m. This phenomenon is a benefit for both kite

and ship when kite harmonic frequencies are increased towards wave frequency. The best

configuration is just at the boundary of the phenomenon. Indeed, the kite wind loading and

the kite efficiency are increased respectively by 34% and 4%, and the roll amplitude of the

ship is decreased by 23%. The kite lock-in phenomenon suggests that the tether and/or the

kite trajectory should be chosen in relation to the sea state. However, this phenomenon has

only been noticed with the presented modeling approach.
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13. Perspectives

When it was possible, the modeling has been compared to experimental data or to more

refined model, however, the validation of each sub-model can be enhanced.

The zero mass kite model should be compared to a larger number of kite flight cases to as-

sess the validity of the linear modification of the kite aerodynamic specs. This investigation

should be investigated on several kite shapes, at different scales and for different positions

of the eight shaped trajectory.

A static analysis of the tether influence on the kite flight was conducted with catenary model.

The effect of the tether acceleration was neglected. Since both tether attachment point and

kite are subjected to large displacements, the assumption of straight and inelastic tether

might be the strongest and most questionable assumption of the study. The existence of the

kite lock-in phenomenon should be verified with a more sophisticated kite model.

Only the first order of wave force has been taken into account, therefore the mean equilib-

rium is not perturbed by the effect of a wave. At least the mean second order wave drift

load should be taken into account. Moreover, a non-linear model should be considered to

improve the roll prediction.

No validation of the whole ship towed by kite system modeling was performed. Using the

real-scale experimental database acquired by Behrel et al. (2017), a validation of the ship

towed by kite system modeling could be performed. However, some data are missing such

as the sea state and the current. Therefore an exhaustive analysis of the comparison could

be challenging. A promising alternative could be to use the so-called Hardware In the Loop

(HIL) simulation method (Giberti and Ferrari, 2015; Johansen et al., 2005). This method is

useful to validate complex systems. For the ship towed by kite application, two strategies

could be employed:

• to simulate in real time and impose to the tether attachment the ship motions during

kite flight experiments.

• to simulate in real time and impose to a ship sailing in a basin the kite towing force.

Nevertheless, the design of such experimental set-ups could also be challenging.

Moreover, the presented study shows that downwind sailings are favorable to the use of

kite. In view of container ship speeds and of kite operating wind speeds, the sea state
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13. Perspectives

should be significant. With these conditions, the ship might be subjected to a parametric

rolling. Therefore, to study this critical ship motion, the instantaneous wetted hull surface

should be known to compute the non-linear hydrostatic forces in an accurate manner.
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A. Onshore and offshore measurement

set-up

This annex introduces the experimental set-up for the onshore and offshore measurements

performed by Behrel et al. (2017). The description of the experimental set-up is directly

taken from (Behrel et al., 2017).

The experimental set-up used for this measurement campaign is based on a kite control box

with sensors and actuators, and two additional boxes containing batteries and data acquisi-

tion and control system. This trio can be deployed onshore, fixing the kite control box into

the ground (Fig. A.2), or on board, embedding the system on the boat specifically designed

for this purpose (Fig. A.1). The kite used for this study is a Cabrinha Switchblade®, with

an area of 5 square meters, usually used by kite surfers for leisure sport. Other kites have

been tested on the kiteboat. This kite has four tethers, two on each side of the kite: the first

two are called front tethers, and have constant length. The two others, called back tethers,

have variable length and are used for control purpose. Various length of tethers were tested

during trials, from 25 meters to 80 meters.
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A. Onshore and offshore measurement set-up

Figure A.1.: Picture of the Kitelab, the experimental plateform specificaly designed to car-

ried out measurements on effects and performances of kite propulsion. The

5-meter wind measurement mast is visible on the rear of the boat. The inflat-

able kite flying over the boat is a 5 m² one. Source: Behrel et al. (2017)

A.1. Main sensors

A.1.1. Forces Measurements

The major sensor of the experimental device is a three dimensional load cell, providing

intensity and direction of the force into the front tethers. The load cell is a TR3D-B-1K
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A.1. Main sensors

built by Michigan Scientific, with a range on each axis of 1,000 pounds (4,448 N), and

a safe overload of 300% of the full scale. This product is similar to the one used on a

previous study (Behrel et al., 2016), but with an smaller range of measurement suitable

for forces generated by a 5 m² kite. This sensor has a non-linearity error specified by

manufacturer as being under 0.5% of full scale, and hysteresis and repeatability errors under

0.05% of full scale each. A complete calibration of the measurement chain was not carried

out before the trials, and sensibilities provided by manufacturer have been used. However

a calibration control set-up is under development, using test machines available at ENSTA

Bretagne’s laboratory, and the sensitivity and accuracy of the sensor will be compared with

manufacturer ones.

For back tethers, due to their variable lengths, another measurement system must be used.

This one is based on two simple load cells (Futek LCM200) measuring forces after a return

pulley. These load cells have a full scale load of 4,500 N, with a specified non-linearity

error under 0.5% of full scale, an hysteresis error under 0.5% of full scale and repeatability

error under 0.1% of full scale. Various set-ups for return pulley have been tested, leading

to various return angles. These angles were all the time carefully measured to be able to

retrieve the real load in tethers.
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A. Onshore and offshore measurement set-up

Figure A.2.: Kite control and measurement device deployed on shore. The two winches are

visible , as well as the 3D front tether load cell (blue ellipse) and the two 1D

back tether load cells (red rectangle). Source: Behrel et al. (2017)

A.1.2. Onshore Wind Measurements

Intensity and direction of the wind at kite altitude are important informations to get, in order

to realize a valuable post processing, as it has been shown in previous work (Behrel et al.,

2016). However with a kite flying between 10 and 80 meters above the ground, it is difficult

to get a wind measurement with a good accuracy at any position of the kite. To deal with

this problem, it was decided to use a wind profiler, based on sonic technology (Fig. A.3).

This type of device is called SODAR, for SOnic and Detection And Ranging. In our case,

the SODAR was able to measure a profile from 13 meters above the ground to 108 meters,

with one point every 5 meters, and averaging data over a 5-minute-period. For each point

of measurement, the direction, the intensity and the vertical component were available, but

also the standard deviations for each data. It was particularly important to have a wind

profiler for these onshore measurements because of the topographic configuration of the

field where the trials were carried out. Indeed, it has been observed some variations of the
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A.2. Kite control system

intensity and/or direction and/or vertical intensity of the wind along the altitude that could

not have been easy to model.

Figure A.3.: The SODAR (SOnic and Detection And Ranging) device used fo the onshore

kite measurements. Source: Behrel et al. (2017)

To catch higher rate wind variation, an ultrasonic three dimensional anemometer METEK

USA-1 was also used. This anemometer was put in place on a mast at 8 meter above the

ground, and had an acquisition rate of 20 hertz.

A.2. Kite control system

A.2.1. Control And Data Acquisition System

All the control system and the data acquisition system is driven by a National Instruments

compactRIO motherboard, with additionally I/O modules, ensuring that all the recorded

data are sampled synchronously. These modules provides analog and digital inputs, serial

ports, and full bridge analog inputs for load cells data acquisition. The whole system is

completely programmed using the National Instruments software LabVIEW.
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A. Onshore and offshore measurement set-up

The kite can be steered by applying a difference between the back tether lengths. For this

purpose, each back tether is attached to an electric winch, and the winches are controlled in

position, thanks to optical encoders with an accuracy of 4096 counts per revolution. Thus,

for a given differential set-point δ, one winch shall shift by a value δ/2 and the other winch

by a value of −δ/2. Each winch has a power of 800 watt, and are able to roll in or roll out

tethers at a speed of 0.7 m.s-1. The maximum differential speed is then 1.4 m.s-1. A power

card interfaces the compactRIO and the winches.

A.2.2. Dynamic Flight Automatic Pilot

The winches can be controlled by 2 joysticks for a manual control of the kite, but an au-

tomatic pilot can be also engaged, enabling the steering of 8-pattern trajectories with good

reproducibility. This autopilot is mainly based on Fagiano work (Fagiano et al., 2014). To

get a proper functioning of the autopilot, the kite position in the wind window has to be

known at any time to ensure a feedback to the controller. More specifically, motions of

the kite has to be known, because the kite is undergoing dynamic flight. That means that

the kite position data shall be not too noisy to allow the computation of the first order time

derivative process leading to the velocity. In our case, the kite position is obtained thanks to

the 3D load cell, assuming that front tethers are straight, their lengths having been carefully

measured. To reduce noise level on position data, load cell acquisition is done at 10 kHz,

and then the signal is averaged at a frequency of 200 Hz. After the derivative process, the

derivative signal is filtered with a 40 ms running average filter.

A.3. Kiteboat specific sensors

In addition to the experimental setup already described in the previous part, sensors are

added to get the specific measurements associated with a moving platform, namely the

KiteLab boat at sea.

A.3.1. Inertial Measurement Unit (IMU)

An IMU combined with a two GPS receivers provides boat orientations and velocity. This

sensor is VectorNav VN-300 Rugged. Thanks to the MEMs inertial sensors, associated to

advanced Kalman filtering algorithms provided by manufacturer, the heel and pitch orien-

tation can be obtained. Data from MEMs (angular rate and acceleration) are also recorded

at any time. The two GPS receivers, in addition to provide position and velocity of the boat,

give also an accurate heading measurement, apart from any magnetic disturbance. With this

accurate measurement of heading, it becomes possible to estimate the drift of the boat, rel-

atively to the ground, comparing heading of the boat and course over ground obtained from
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A.3. Kiteboat specific sensors

GPS receivers. The drift relatively to the sea water can be estimated taking into account

currents. According to the specification sheet, the orientation static accuracies are under

0.5° RMS, and under 0.3° RMS in dynamic case. Velocity accuracy is 0.05 m.s-1. It is

planned for future work to benchmark the VN-300 with higher IMU grade.

A.3.2. Rudder Angle

A fully sealed linear potentiometer is set up into the steering system to get the rudder angle.

This sensor was calibrated in the laboratory and the accuracy is lower than 0.5°.

A.3.3. Onboard Wind Measurements

As it has been recalled in part 2.1.2, wind estimation at kite altitude is one of the most

important data required to get proper post processed data. However during sea trials, it

is not possible to embedded the SODAR on board, due to insufficient room and techno-

logical issues (the SODAR needs to be set up in perfect horizontal position for a accurate

measurements). Moreover, due to operational constraints, it was not relevant to set up a

wind measurement mast higher than 5m. However wind gradient above the sea surface is

less disturbed than onshore, and can be reasonably estimated using statistical formulas. To

check the evolution of wind gradient, three sonic anemometers are fixed on the mast at three

different elevations. This assembly provides also a redundancy of wind measurement. The

three sonic anemometer are manufactured by Gill, but are different models. The higher one,

with a measurement altitude of 5.5m above the sea level is a WindMaster, a three dimen-

sional anemometer, fixed on the head of the mast. The second one is a 2D anemometer

WindSonic placed at 4.2m above the sea level and deported from the mast by 0.6m. The

last anemometer is a MaxiMet 500. This is also a 2D anemometer, and combines wind

measurements with pressure, temperature and relative humidity measurements. This sensor

is also fitted with a GPS sensor and a compass, and can provide the velocity of the wind

into axis system attached to the earth, corrected from the boat velocity. This measurement

is redundant when the measurement mast is set up on the kiteboat. The MaxiMet is located

at 3.0m above sea level, and is also deported from the mast by 0.6m (see Fig. 1).

The misalignment angles of the sensors with respect to the axis of the mast have been

measured in laboratory, as well as the misalignment angle of the mast with respect to the

longitudinal boat axis. Data werer corrected accordingly during post processing.
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B. Kite modelling

B.1. Zero-mass kite model: time step convergence

The influence of the time step on the mean simulated tether tension at A and the mean

simulated kite velocity is investigated according to the following relative margins:





δUk =
U

(exp)
k −U(sim)

k

U
(exp)
k

δTa = T
(exp)
a −T (sim)

a

T
(exp)
a

(B.1)

The superscripts (sim) and (exp) denote respectively the results from simulation with the

zero-mass model and the experimental results. Figure B.1 shows the evolution of the relative

margins for differents sampling frequency.
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Figure B.1.: Evolution of the relative tether tension margin and relative kite velocity margin

for different sampling frequency

It can be noticed that above 5 Hz, the relative margins are almost constant. For lower

sampling frequency, the relative margins increase drastically. Finally according to these

results a sampling frequency of 10 Hz is chosen.
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B. Kite modelling

B.2. Static analysis

B.2.1. Finite element method: Young modulus convergence

The aim of this convergence is to model a inelastic tether. An enoughly high tether Young

modulus must be used. The air density is 1.225 kg.m-3. The true wind speed is Uref = 10
m.s-1 at the altitude of reference, zref , 10 m above the sea. The true wind velocity follows

a wind gradient according to the power low Utw = Uref

(
z

zref

)1/7
. The tether length is

300 m, the tether diameter is 0.03 m. The tether attachment point is at [0, 0, 0]T , the kite

position is set at [78.89, 0, −289.31]T m with respect to the relative wind frame rw. The

tether is supposed to be in Dyneema SK78 and to have a Young modulus Esk78 = 102 GPa.

Here, the Young modulus convergence consists in increasing the Young modulus by a coef-

ficient 10λ. In figure B.2, the relative difference tether tension for each components vertical

and horizontal at the tether attachment point on the deck and at the kite is plotted for differ-

ent value of λ from 1 to 5. The relative difference is defined as follows:

∆Tλ =
T (λ)− T (λ− 1)

T (λ− 1)
(B.2)
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Figure B.2.: Young modulus convergence

Based on these convergence results, the Young modulus value 105Esk78 leads to a con-

vergence criteria less than 0.01 %. Consequentely, a Young Modulus of 105Esk78 is then

used.
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B.2.2. Finite element method mesh convergence

Using the tether Young modulus 105Esk78 in Annex B.2.1 a mesh convergence is per-

formed. Here, the selected case leads to an important tether sag. The air density is 1.225

kg.m-3. The true wind speed is Uref = 5 m.s-1 at the altitude of reference, zref , 10 m

above the sea. The true wind velocity follows a wind gradient according to the power low

Utw = Uref

(
z

zref

)1/7
. The tether length is 300 m, the tether diameter is 0.06 m. The tether

attachment point is at [0, 0, 0]T , the kite position is set at [108.91, 232.83, 131.94]Tm. The

tether is discretized in Ni linear bar (or truss in Abaqus) elements of equal length. In Figure

B.3 the influence of the number of element Ni ∈ {5, 10, 20, 30, 40} is investigated throught

the following relative difference:

∆TN =
T (Ni)− T (Ni−1)

T (Ni−1)
(B.3)
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Figure B.3.: Tether mesh convergence; relative difference such as defined in Eq. versus the

number of bar element

With 40 elements the relative difference is less than 0.01%.

B.2.3. Diameter and mass per unit of length of Dyneema® SK78

Figure B.4 shows the square of the diameter for different mass per unit of length. The solid

line represents the linear regression estimating the relationship between the square of the

diameter and the mass per unit of length.
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Figure B.4.: The square of the diameter versus mass per unit of length for a tether made of

Dyneema® SK78; the data are provided by the manufacturer Cousin Trestec.

B.3. Low wind limit of kite operability

B.3.1. Ratio between the kite mass and the kite area
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C. Ship motions

C.1. Transformation of the h to the s frame

The ship velocity at the point H with respect to the c frame is obtained as follows:

V(s)
H∈s/c =



us
vs
ws


−OsH ×



ps
qs
rs




=




us + hzqs
vs + hxrs − hzps

ws − hxqs


 (C.1)

Thanks to the transformation matrix Th

s
assuming small oscillations V(h)

H∈s/c is:

V(h)
H∈s/c =




1 −ξ6 ξ5
ξ6 1 −ξ4
−ξ5 ξ4 1


 · V(b)

H∈s/c, (C.2)

and,



ξ̇4
ξ̇5
ξ̇6


 =



ps
qs
rs


 (C.3)

Decoupling the longitudinal modes (surge, heave and pitch) and lateral modes (sway, roll

and yaw) and keeping only first order term V(h)
H∈s/c can be simplified as follows:

V(h)
H∈s/c =




us + hzqs
vs + hxrs − hzps + ξ6us

ws − hxqs − ξ5us


 (C.4)

Moreover, the h frame is translating at a constant speed Uh with respect to the c frame.

Consequently, V(h)
H∈s/h =

[
ξ̇1, ξ̇2, ξ̇3

]T
can be simplified as follows:
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C. Ship motions



ξ̇1
ξ̇2
ξ̇3


 =




us − Uh + hzqs
vs + hxrs − hzps + ξ6Uh

ws − hxqs − ξ5Uh


 (C.5)

and its time derivatives,



ξ̈1
ξ̈2
ξ̈3


 =




u̇s + hz q̇s
v̇s + hxṙs − hz ṗs + rsUh

ws − hxq̇s − qsUh


 (C.6)

Assuming sinusoidal motions at the pulsation ω:



ξ̇1
ξ̇2
ξ̇3


 =




us − Uh + hzqs
vs + hxrs − hzps − Uh

ω2 ṗs
ws − hxqs +

Uh

ω2 q̇s


 (C.7)

Consequently,

{
ξ̇ = JδV s − Uh

ω2
e
LδV̇ s

ξ̈ = JδV̇ s + UhLδV s

, (C.8)

where,

J =




1 0 0 0 hz 0
0 1 0 −hz 0 hx
0 0 1 0 −hx 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, (C.9)

and,

L =




0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(C.10)
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C.2. Laplace transform of the retardation function

C.2. Laplace transform of the retardation function

Let’s assume sinusoidal velocities of the form:

{
Vs = sin (ωt) I6
V̇ s = ω cos (ωt) I6

(C.11)

Eq. (6.9) can then be transformed as follows:

[
M

S
+ Ã

]
ω cos (ωt) I6

+
[
B̃ +D

]
sin (ωt) I6

+

t
ˆ

−∞

K (t− τ) sin (ωτ) dτI6 (C.12)

+C S = F − F̄

Transforming the variable of integration τ into τ
′

= t−τ , the convolution product becomes:

t
ˆ

−∞

K (t− τ) sin (ωτ) dτ =

∞̂

0

K
(
τ

′

)
sin
[
ω
(
t− τ

′

)]
dτ

′

(C.13)

According to the trigonometrical formula, sin
[
ω
(
t− τ

′

)]
= sin (ωt) cos

(
ωτ

′

)
−sin

(
ωτ

′

)
cos (ωt),

Eq. (C.12) becomes:




[
M

S
+ Ã

]
− 1

ω

∞̂

0

K
(
τ

′

)
sin
(
ωτ

′

)
dτ

′



ω cos (ωt) I6

+




[
B̃ +D

]
+

∞̂

0

K
(
τ

′

)
cos
(
ωτ

′

)
dτ

′



 sin (ωt) I6 (C.14)

+C S = F − F̄

According to Eq. (6.7) with velocities and accelerations as in Eq. (C.11), Eq. (C.14) must

be equivalent to:
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C. Ship motions

[
M

S
+A

]
ω cos (ωt) I6 +

[
B +D

]
sin (ωt) I6 + C ξ = F − F̄ , (C.15)

consequently, the retardation matrix must respect the following system:




A = Ã− 1

ω

´∞
0 K

(
τ

′

)
sin
(
ωτ

′

)
dτ

′

B = B̃ +
´∞
0 K

(
τ

′

)
cos
(
ωτ

′

)
dτ

′
(C.16)

By definition of the Laplace transform:

K (jω) =

∞̂

0

K (t) exp (−jωt) dτ ′

(C.17)

=

∞̂

0

K (t) cos (ωt) dt− j

∞̂

0

K (t) sin (ωt) dt

K (jω) = B − B̃ + jω
[
A− Ã

]
(C.18)

C.3. Infinite frequency added mass

0 2 4 6 8 10 12 14 16
0

100

200

300

400

ω [rad/s]

1
0

th
se

ct
io

n
a
3
3

[K
g
/m

]

Figure C.1.: Sectional added mass of the 10th section of the DTMB5512 at full scale versus

frequency of motion; result obtained with the Shipmo Marin® software.

Figure C.1 shows the added mass of the 10th section for different frequency from 0.01 to

14.9. For high frequency the added mass is quasi constant.
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C.4. Illustrating example of the identification of the Laplace transform of the retardation matrix

C.4. Illustrating example of the identification of the Laplace

transform of the retardation matrix

The identification method of the rational transfer function fitting the retardation matrix is

illustrated for the matrix coefficient K33 for Uh = 1.53 m/s.

C.4.1. First step: time domain identification

The Laplace transform of the retardation function is identified for different order from 2 to

10 in the time domain according to Kung (1978). For instance for the order 4, the identified

transfer function is:

H33 = 103
6.823p3 + 53.34p2 + 41.4p

p4 + 15.03p3 + 88.4p2 + 124.8p+ 30.55
(C.19)

Figure C.2 shows the impulse response obtained with the dataK33 and the impulse response

of the estimated transfer function of order 4 with the time domain identification method, Eq

(C.19). The corresponding results in terms of amplitude and phase of the Laplace transform

are plotted in Figs. C.3 and C.4. As it can be observed on Figs. C.3 and C.4, the fit in terms

of amplitude and phase amplitude is not very accurate for low frequencies.
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Figure C.2.: Comparison of the impulse response according to the data K33 in dashed line

compared to the estimated transfert function of order 4 with the time domain

method in solid line.
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Figure C.3.: Comparison of the amplitude of the tranfert function K33 in dashed line with

the identified transfert function in solid line H33 with the time domain method
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Figure C.4.: Comparison of the phase of the tranfert function K33 in dashed line with the

identified transfert function in solid line H33 with the time domain method

C.4.2. Second step: frequency domain identification

In order to increase the accuracy of the identification method, a frequency domain identifi-

cation is necessary. The frequency domain method uses as initial solution the best identi-

fication of the time domain method, for the considered case Eq. (C.19). Finally, with this

step the identified function becomes:
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C.4. Illustrating example of the identification of the Laplace transform of the retardation matrix

H33 =
7446p3 + 6.34 · 104p2 + 1.045 · 105p+ 2.625 · 104

p4 + 17.43p3 + 112.2p2 + 246.4p+ 151
(C.20)

After this step, the fitting error decreases to 1.87%. Figures C.5, C.6 and C.7 show the

improvement.
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Figure C.5.: Comparison of the impulse response according to the data K33 in dashed line

compared to the estimated transfert function of order 4 with the frequency do-

main method in solid line.
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Figure C.6.: Comparison of the amplitude of the tranfert function K33 in dashed line with

the identified transfert function in solid line H33 with the frequency domain

method
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Figure C.7.: Comparison of the phase of the tranfert function K33 in dashed line with

the identified transfert function in solid line H33 with the frequency domain

method

C.5. DTMB 5512 transfer functions

C.5.1. Analytical expressions

Us = 0 m.s-1 Us = 7.72 m.s-1

H33
1.567·107p3+1.686·107p2+1.965·106p
p4+2.341p3+2.051p2+0.5028p+0.02567

1.605·107p2+1.246·107p+4.636·105
p3+2.047p2+1.503p+0.2333

H35
2.358·108p2+5.073·108p

p3+2.893p2+1.244p+0.0974
2.496·108p+1.28·104
p2+2.498p+9.835·10−5

H55
2.567·1010p3+1.047·1010p2+2.411·108p
p4+2.433p3+1.414p2+0.183p+9.855e−06

2.619·1010p3+1.627·1010p2+2.283·109p+8.57·107
p4+2.524p3+1.704p2+0.3333p+0.01713

H53
2.358·108p2+5.073·107p

p3+2.893p2+1.244p+0.0974
2.469·108p2−1.046·108p−1.843·107
p3+2.385p2+0.8536p+0.04549

H44
7.103·107p4+1.536·108p3+1.715·108p2+8.002·107p
p5+4.771p4+8.429p3+10.43p2+6.139p+2.898

7.214·107p3+7.685·107p2+3.174·107p+2.671·106
p4+3.168p3+3.669p2+2.486p+0.8639

Table C.1.: Expressions of the identified analytical transfer function for the DTMB 5512 at

full scale and at Us = 0 m.s-1 and Us = 7.72 m.s-1

180



C.5. DTMB 5512 transfer functions

C.5.2. Heave
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Figure C.8.: (a) and (d) plots of the impulse response function K33 from the data and the

analytical fit H33; (b) and (e) plots of the added mass A33 from the data and

from the analytical fit; (c) and (f) plots of the damping A33 from the data and

from the analytical fit
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Figure C.9.: (a) and (d) plots of the impulse response function K35 from the data and the

analytical fit H35; (b) and (e) plots of the added mass A35 from the data and

from the analytical fit; (c) and (f) plots of the damping A35 from the data and

from the analytical fit
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C.5.3. Roll
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Figure C.10.: (a) and (d) plots of the impulse response function K44 from the data and the

analytical fit H44; (b) and (e) plots of the added mass A44 from the data and

from the analytical fit; (c) and (f) plots of the damping B44 from the data and

from the analytical fit
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C.5.4. Pitch
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Figure C.11.: (a) and (d) plots of the impulse response function K55 from the data and the

analytical fit H55; (b) and (e) plots of the added mass A55 from the data and

from the analytical fit; (c) and (f) plots of the damping B55 from the data and

from the analytical fit
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Figure C.12.: (a) and (d) plots of the impulse response function K53 from the data and the

analytical fit H53; (b) and (e) plots of the added mass A53 from the data and

from the analytical fit; (c) and (f) plots of the damping A53 from the data and

from the analytical fit

C.6. A direct extension of the time domain seakeeping model to

maneuvering motions

C.6.1. Viscous effect modeling on the horizontal ship motions

The damping concerning the sway and the yaw motions is dominated at low frequency by

viscous effects and may be non-linear. Since, the linear seakeeping theory of Salvesen et al.

(1970) assumes a potential flow, the modeling of the hydrodynamic force of the hull with the

time domain seakeeping model as presented in Chap. 6 is not consistent for horizontal ship

motions. Consequently, Bailey et al. (1997) and Fossen and Smogeli (2004) proposed to

take into account the viscous effect with a summation of the damping data from seakeeping

theory denoted by B
(sk)
ij and a viscous decaying ramp:

{
Bij (ω) = B

(sk)
ij (ω) + kij − λijω if kij − λijω > 0,

Bij (ω) = B
(sk)
ij (ω) otherwise,

(C.21)
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C. Ship motions

where i, j ∈ {2, 6} are the component indices of motion (2: surge; 6: yaw). Fossen and

Smogeli in (Fossen and Smogeli, 2004) proposed an alternative method as follows:

Bij (ω) = B
(sk)
ij (ω) + kije

−λijω, (C.22)

with λij > 0.

No method has been provided to identify the coefficients kij and λij . Consequently, a

systematic method is proposed here. At zero frequency the sum of viscous damping with the

seakeeping damping should equal to the linear maneuvering damping denoted by B
(man)
ij .

Hence, kij can be estimated with the following formula:

kij = B
(man)
ij −B

(sk)
ij (ω = 0) , (C.23)

The definition of the parameter λij is more questionable but it can defined with the following

formula:

λij =
1

2

kijω
(sk)
max

max
ω∈R+

B
(sk)
ij

, (C.24)

where ω
(sk)
max corresponds to the frequency such asB

(sk)
ij (ωmax) = max B

(sk)
ij . According to

Eqns. (C.22), (C.23) and (C.24), comparisons of the presented correction method with the

corrections presented in Bailey et al. (1997) are plotted in Figs. C.13 and C.14 respectively

for B22 and B66.
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Figure C.13.: b22 damping coefficient against frequency of the motion; Comparison of the

experimental data; with the Bailey et al. (1997) correction for viscous effects

and with the present correction method for viscous effect.
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Figure C.14.: b66 damping coefficient against frequency of the motion; Comparison of the

experimental data with the Bailey et al. (1997) correction for viscous effects

and with the present correction method for viscous effect.

A good agreement is found with the presented correction and the considered data. Ac-

cording to this correction, at low frequency, the hull hydrodynamic forces relative to the

horizontal motions should be equal to the hull forces predicted by the linear term of the

maneuvering model used to determine kij .

With this modification of the damping, only the corresponding linear terms of a maneu-

vering model are taken into account. Consequently, the non-linear terms can be added as

external force F hnl.
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Figure C.15.: Turning circle path with rudder angle δr = 35° . The results obtained with

the mixed seakeeping and maneuvering model ( ) are compared with the

free sailing EFD data of the JMUC ( ).
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C.6.2. Results
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Figure C.16.: Time history during a 35° turning circle maneuver of the: drift angle βs, surge

velocity us, heel angle φs, surge velocity us and yaw turning rate rs. The

results obtained with the direct extension of the time seakeeping model ( )

are compared with the free sailing EFD data of the SVA ( ).

During a turning circle maneuver with a rudder angle of 35°, Figs. C.15 and C.16 show

respectively the ship path in the plane
(
xn, yn

)
and the time series of the drift angle βs,

surge velocity us, heel angle φs, surge velocity us and yaw turning rate rs. Figs. C.15 and

C.16 compare the results obtained with the direct extension of the time domain seakeep-

ing model (solid line) with the EFD data obtained with the free running test at the JMUC

(dashed line).

Figure C.17 shows during a KCS zigzag 15/1° test maneuver the time history of: the rudder

angle δr, the ship heading ψs, the ship drift angle βs = − arctan (vs/us), the heeling angle
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C. Ship motions

φs and the ship longitudinal speed us. The solid lines correspond to the direct extension

of the time domain seakeeping model. The dashed lines correspond to the free sailing data

performed by the SVA.
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Figure C.17.: Time history during a zigzag 15/1° maneuver of the: rudder angle δr, heading

ψs, drift angle βs, heel angle φs and surge velocity us. The results obtained

with the direct extension of the time seakeeping model ( ) are compared

with the free sailing EFD data of the SVA ( ).

C.6.3. Analyse and discussion

In Fig. C.15, it can be noticed that the predicted turning radius of gyration with the direct

extension of the time domain seakeeping model is slightly underestimated according to

the free sailing results performed at the JMUC. The predicted transient part of the turning

circle is shorter. This analysis is confirmed by the time series in Fig. C.16. Indeed, the
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predicted evolution of the drift angle reaches sooner a steady state. The predicted loss of

surge velocity is underestimated. The yaw turning rate is overestimated. Since, the steady

part of the drift angle is correctly estimated, the higher surge velocity and the higher turning

rate lead to an equivalent turning radius of gyration. The most important difference between

the predicted motion and the free sailing data concern the heel angle. Indeed, the steady part

of the predicted heel angle is around 4° whereas the free sailing heel angle is around -5°.

Regarding the predicted ship motion during the 15/1° zig-zag test in Fig. C.17, the turning

period and the overshoot angle are largely overestimated.

The important difference in terms of heel angle is due to an underestimation of the heel

angle due to the drift and the yaw turning rate by the STF strip theory (Salvesen et al.,

1970). The positive heel angle is due to the heeling moment impose by the rudder. Even if

the hull heeling moment due to the drift and the yaw turning rate is negative with respect to

the xs axis, the heeling moment due to the rudder is positive and larger. Consequently, the

term relatives to the mode “2, 4” should be examined.

The poor accuracy of the predicted motions during the transient part of the turning circle

and the zig-zag maneuvers is clear. The transient parts of the motions are highly dependent

of the added masses. With the direct extension of the time domain seakeeping model, the

hull forces due to the accelerations are distributed on the infinite added mass and the state-

space systems. As shown by Woodward (2014) the value of the yaw added mass is highly

sensitive on the maneuvering results.

C.6.4. Conclusion

The accuracy provided by the implemented direct extension of the time seakeeping model is

not satisfactory. Some key elements have been given to explain the importance differences

between the direct extension of the time domain seakeeping model and the free sailing

results. An extensive analysis of the ship modeling with the direct extension of the time

domain seakeeping model should be performed. Nevertheless, since such an analysis can

be very time consuming, this work is beyond the scope of this thesis. Consequently, the

mixed seakeeping and maneuvering model is retained.

C.7. Kriso Container Ship

C.7.1. Open water propeller data

The considered open water propeller data are from the NMRI free sailing model (www.sim-

man2008.dk).
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C. Ship motions

J Kt Kq

0.0 0.5327 0.7517

0.10 0.4937 0.7058

0.15 0.4719 0.6813

0.20 0.4469 0.6538

0.25 0.4208 0.6232

0.30 0.3922 0.5895

0.35 0.3657 0.5589

0.40 0.3425 0.5314

0.45 0.3143 0.5008

0.50 0.2895 0.4702

0.55 0.2647 0.4396

0.60 0.2407 0.4090

0.65 0.2162 0.3784

0.70 0.1931 0.3478

0.75 0.1688 0.3172

0.80 0.1414 0.2805

0.85 0.1148 0.2468

0.90 0.0870 0.2132

0.95 0.0581 0.1704

1.00 0.0293 0.1275

1.05 -0.0033 0.0786

Table C.2.: Kriso Container Ship open water propeller data of the NMRI free sailing model

C.7.2. Kriso Container Ship hull adavance resistance

The hull advance resistance data have been calculated with the regression model of Holtrop

and Mennen (1982).

us (m.s-1) Rbh (N)

0.0 0.0

2.0 46110

4.0 166520

6.0 355480

8.0 634540

10.0 1094770

12.0 1881990

14.0 3218030

Table C.3.: Kriso Container Ship hull resistance
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C.7.3. Kriso Container Ship maneuvering coefficients

Table C.4 gives the maneuvering coefficients of the KCS container ship according to Fukui

et al. (2015).

Surge coefficient

cx0 = −0.12

X
′

βsβs
= −0.0603 cxβsβs = 2.31

X
′

βsrs
= −0.0603 cxβsrs = −0.22

X
′

rsrs = −0.0162 cxrsrs = 3.50

X
′

βsβsβsβs
= −0.0760 cxβsβsβsβs = −13.28

Sway coefficients
Y

′

φs
= −0.0052

Y
′

βs
= 0.2162 cyβs = 0.05

Y
′

rs = 0.0245 cyrs = −1.20
Yβsβsφs = 0.3352

Y
′

βsrsφs
= 0.3123

Y
′

rsrsφs
= −0.0642

Y
′

βsβsβs
= 1.7028 cyβsβsβs = 0.36

Y
′

βsβsrs
= −0.5658 cyβsβsrs = 0.64

Y
′

βsrsrs
= −0.5658 cyβsrsrs = −0.22

Y
′

rsrsrs = −0.0105 cyrsrsrs = −0.74

Yaw coefficients

N
′

φs
= −0.0063

N
′

βs
= 0.1172 cnβs = 0.21

N
′

rs = −0.0443 cnrs = −0.32
Nβsβsφs = −0.2532

N
′

βsrsφs
= 0.1152

N
′

rsrsφs
= −0.0120

N
′

βsβsβs
= 0.1710 cnβsβsβs = −0.09

N
′

βsβsrs
= −0.5602 cnβsβsrs = −0.09

N
′

βsrsrs
= 0.0200 cnβsrsrs = 2.52

N
′

rsrsrs = −0.0369 cnrsrsrs = −0.23

Table C.4.: KCS container ship maneuvering coefficient
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C. Ship motions

C.7.4. Kriso Container Ship interaction coefficients

t 0.165

w 0.208

η 0.792

κ 0.713

ǫ 0.900

γ+r 0.55

γ−r 0.45

tr 0.44

ah 0.232

x
′

h -0.711

l
′

r -0.36

Cφs -0.36

Table C.5.: KCS container ship maneuvering interaction coefficient

C.7.5. Kriso Container Ship windage coefficients

Al Af Hm sh sl κ δw D
′

t D
′

l

5245.4 m2 893.9 m2 20.0 m 10.08 m -4.57 m 1.4 0.4 0.9 0.55

Table C.6.: KCS windage parameters
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C.7. Kriso Container Ship

C.7.6. Kriso Container Ship transfer functions

C.7.6.1. Analytical expressions

Us = 10.29 m.s-1

H22
4.544·107p2+1.848·107p+1.542·106

p3+2.045p2+1.343p+0.56

H24
−5.098·107p3−2.293·108p2−9.098·107p+1.013·106

p4+3.598p3+6.007p2+3.807p+1.728

H26
4.931·108p3+7.603·108p2+3.173·108p−2.328·106

p+2.809p3+3.579p2+2.24p+0.985

H33
3.432·107p2+1.806·107p+7.087·105
p3+1.217p2+0.5928p+0.06082

H35
1.599·109p3+2.478·109p2+1.647·108p+196.6
p4+4.744p3+4.036p2+0.1008p+2.361·10−7

H42
−5.337·107s3−2.312·108s2−9.273·107s−3.204·105

p4+3.594p+5.966p2+3.781p+1.711

H44
1.208·109p2+7.255·108p+1.379·108

p3+3.02p2+2.182p+1.239

H46
−5.03·109p3−1.38·1010p2−6.162·109p−8.99·107

p4+4.123p3+6.021p2+4.02p+1.837

H53
1.344·109p−4.151·108
p2+1.96p+0.2473

H55
1.839·1011p+2.127·1010
p2+1.443p+0.3231

H62
−1.038·109p2+4.258·109p+1.121·109

p3+11.76p2+11.49p+8.033

H64
−3.557·109p+3.677·108
p2+0.7965p+0.8216

H66
9.761·1010p2+3.043·1010p+5.954·108

p3+1.622p2+1.217p+0.4785

Table C.7.: Expressions of the identified analytical transfer function for the KCS at full scale

and at Us = 10 m.s-1 and Us = 7.72 m.s-1
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C.7.6.2. Sway
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Figure C.18.: (a) plot of the impulse response function K22 from the data and the analytical

fit H22; (b) plot of the added mass A22 from the data and from the analytical

fit; (c) plot of the damping B22 from the data and from the analytical fit
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Figure C.19.: (a) plot of the impulse response function K24 from the data and the analytical

fit H24; (b) plot of the added mass A24 from the data and from the analytical

fit; (c) plot of the damping B24 from the data and from the analytical fit
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Figure C.20.: (a) plot of the impulse response function K26 from the data and the analytical

fit H26; (b) plot of the added mass A26 from the data and from the analytical

fit; (c) plot of the damping B26 from the data and from the analytical fit

C.7.6.3. Heave
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Figure C.21.: (a) plot of the impulse response function K33 from the data and the analytical

fit H33; (b) plot of the added mass A33 from the data and from the analytical

fit; (c) plot of the damping B33 from the data and from the analytical fit
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Figure C.22.: (a) plot of the impulse response function K35 from the data and the analytical

fit H35; (b) plot of the added mass A35 from the data and from the analytical

fit; (c) plot of the damping B35 from the data and from the analytical fit

C.7.6.4. Roll
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Figure C.23.: (a) plot of the impulse response function K42 from the data and the analytical

fit H42; (b) plot of the added mass A42 from the data and from the analytical

fit; (c) plot of the damping B42 from the data and from the analytical fit
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Figure C.24.: (a) plot of the impulse response function K44 from the data and the analytical

fit H44; (b) plot of the added mass A44 from the data and from the analytical

fit; (c) plot of the damping B44 from the data and from the analytical fit
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Figure C.25.: (a) plot of the impulse response function K46 from the data and the analytical

fit H46; (b) plot of the added mass A46 from the data and from the analytical

fit; (c) plot of the damping B46 from the data and from the analytical fit

C.7.6.5. Pitch
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Figure C.26.: (a) plot of the impulse response function K53 from the data and the analytical

fit H53; (b) plot of the added mass A53 from the data and from the analytical

fit; (c) plot of the damping B53 from the data and from the analytical fit
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Figure C.27.: (a) plot of the impulse response function K55 from the data and the analytical

fit H55; (b) plot of the added mass A55 from the data and from the analytical

fit; (c) plot of the damping B55 from the data and from the analytical fit
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C.7.6.6. Yaw
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Figure C.28.: (a) plot of the impulse response function K62 from the data and the analytical

fit H62; (b) plot of the added mass A62 from the data and from the analytical

fit; (c) plot of the damping B62 from the data and from the analytical fit
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Figure C.29.: (a) plot of the impulse response function K64 from the data and the analytical

fit H64; (b) plot of the added mass A64 from the data and from the analytical

fit; (c) plot of the damping B64 from the data and from the analytical fit
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Figure C.30.: (a) plot of the impulse response function K66 from the data and the analytical

fit H66; (b) plot of the added mass A66 from the data and from the analytical

fit; (c) plot of the damping B66 from the data and from the analytical fit
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Investigation of the dynamic motions and operability of a ship 
towed by kite 

 
Keywords: Kite, Kiteboat, Maneuvering, Seakeeping, Tether, Catenary, Coupling, Time-domain, Lock-in. 

 

In order to reduce greenhouse gas emissions and shipping costs, the use of kites as an auxiliary propulsion device 

for ships is promising. In order to estimate the performance and the operability of a kite-towed vessel, a dynamic 

modeling of the system is implemented. A classical kite modeling is used. This model neglects the mass of the 

kite and assumes straight and inelastic tethers. These assumptions lead to a kinematic model depending on the 

lift coefficient and the aerodynamic lift to drag ration angle. A linear evolution of these aerodynamic coefficients 

as a function of the curvature of the flight path is proposed. In addition, by developing a quasi-analytical line 

model, it is shown that from 2 m.s
-1

 of relative wind the straight tether assumption is reasonable. Based on the 

tether model, an analytical criterion assessing the minimum wind speed to enable a quasi-static kite flight is 

developed. To solve all the interaction terms between the kite and the ship, a time domain seakeeping model 

based on the linearized ship equation of motion assuming a potential flow is developed. The convolution product 

of the impulse response of the ship is computed with state-space systems. However, since horizontal ship 

motions are not well represented by such theories, a coupling with a maneuvering model is presented. 

Comparisons to experimental data tests show good agreements. To study the interactions between the kite and 

the ship, a monolithic coupling and a dissociated coupling are compared. The dissociated coupling neglects the 

influence of ship motions on the kite flight. In a calm water case, results obtained by the two types of coupling 

are very close. In regular waves, ship motions are dominated by the wave influence. Thus, with the monolithic 

coupling, a network of low frequency subharmonic appears in the kite excitation spectrum. The fundamental 

frequency of the subharmonic is given by the difference between the wave frequency and the frequency of the 

nearest kite excitation harmonic. When this difference is small enough, a lock-in phenomenon appears. This 

phenomenon is a benefit for the kite and the ship when the shift of the excitation harmonics corresponds to an 

increase. Furthermore, a course keeping stability study shows that the rudder needs to be actively controlled. 

 

Evaluation des limites d’utilisation des navires tractés par kite par 
l’étude des mouvements de tenue à la mer et de manœuvrabilité 

 
Mots-clefs : Kite, Kiteboat, Manœuvrabilité, Tenue à la mer, Ligne, Chainette, Couplage, simulation temporelle, 

accrochage de mode. 

 

Afin de réduire les émissions de gaz à effet de serre et le coût du transport maritime, l'utilisation des cerfs-

volants comme système de propulsion auxiliaire des navires est prometteuse. Pour estimer les performances et 

l’opérabilité d’un navire tracté par cerf-volant, une modélisation dynamique du système est alors mise en œuvre. 
Une modélisation analytique de cerf-volant est utilisée. Ce modèle néglige la masse du cerf-volant et suppose 

que les lignes sont droites et indéformables. Ces hypothèses conduisent à un modèle cinématique dépendant du 

coefficient de portance et de la finesse aérodynamique. Une évolution linéaire des coefficients aérodynamiques 

en fonction de la courbure de la trajectoire de vol est proposée. Par ailleurs, en développant un modèle quasi-

analytique de ligne, il est montré qu’à partir de 2 m.s-1de vent relatif que l’hypothèse de ligne droite est 
raisonnable. En se basant sur un modèle de ligne, un critère analytique de vitesse de vent minimum permettant 

un vol quasi-statique est présenté. Dans le but de résoudre l’ensemble des termes d’interaction entre le cerf-

volant et le navire, un modèle linéarisé de tenue à la mer temporelle est développé. Le produit de convolution de 

la réponse impulsionnelle du navire est calculé avec des systèmes d’états. Cependant comme celle-ci représente 

mal les mouvements horizontaux des navires, le modèle développé est alors couplé à un modèle de 

manœuvrabilité. Pour étudier les interactions entre le cerf-volant et le navire un couplage monolithique et un 

couplage dissocié sont comparés. Le couplage dissocié néglige l’influence des mouvements du navire sur le vol 
du cerf-volant. En cas de mer calme, les résultats obtenus par les deux types de couplage sont très proches. En 

cas de houle régulière les mouvements du navire sont principalement causés par la houle. Le couplage 

monolithique montre qu’un réseau de sous-harmoniques basse fréquence apparait alors dans le spectre 

d’excitation du navire. La fréquence fondamentale des sous-harmoniques est donnée par la différence entre la 

fréquence de vague et la fréquence de l’harmonique la plus proche de l’excitation du kite. Quand cette différence 
est suffisamment petite, un phénomène d’accrochage apparait. Ce phénomène est bénéfique pour le cerf-volant 

et le navire quand le décalage des harmoniques d'excitation correspond à une augmentation. Par ailleurs, une 

étude de la stabilité de route montre qu'il est nécessaire de contrôler activement le safran. 
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