×. C29), , vol.174

, MALDI-TOFMS m?z calcd for C137H133NO37

F. Och3(c3-c, , p.50

. Hz,

, 2C, 2 × OCH3(C6 B,E )), 59.98 (2C, 2 × OCH3(C2 B,E )), vol.60

×. and E. ,

(. 2c, ×. , and F. ,

×. and D. ,

?. Me, , pp.3-82

, 27 mmol) and imidazole (54 mg, 3.0 eq., 0.80 mmol) in dry PhMe (7.2 mL) and dry CH3CN (5.5 mL) was added dry triethylamine (0.05 mL, 1.2 eq., 0.32 mmol) and 4 Å molecular sieve. The reaction mixture was stirred at 90 ?C for 1d and at 110 ?C for 3d. The solvent was evaporated under vacuum. The residue was subjected to silica gel column (eluent : DCM / MeOH = 15 :1, then 10 :1 and 7 :1) to get the crude ?-CD Me -NHC-OMs, which was passed through LH-20 column to remove the free imidazole. The pure ?-CD Me -NHC-OMs was dissolved in water

, Note: ?-CD Me -NHC-OMs can dissolve in PhMe

H. Nmr, 400 MHz, CD3CN, 300K): ? 2.80 (m, 1H, J1 = 6.65 Hz, J2 = 10.57 Hz, 1 × H6a B ), 3.05 (m, 4H, 1 × H2 E , 1 × OCH3(C6 B )), 3.08 (m, 1H, 1 × H2 F ), 3.11 (m, 3H, 1 × H2 B , 1 × H2 C , 1 ×H6b B ), 3.14 (m, 1H, 1 × H2 G ), 3.16 (m, 1H, 1 × H6a E ), 3.22

×. H4-e-,-1-×-h5-g, 3.59 (m, 1H, 1 × H6a F ), 3.61 (s, 3H, 1 × OCH3(C3 G )), 3.62 (m, 1H, 1 × H5 B ), 3.64 (m, 1H, 1 × H6a G ), 3.68 (m, 1H, 1 × H5 C ), 3.69 (m, 1H, 1 × H6b F ), 3.70 (s, 3H, 1 × OCH3(C3 C )), 3.78 (m, 1H, 1 × H4 C ), 3.79 (m, 1H, 1 × H3 C ), 3.80 (m, 1H, 1 × H5 F ), 3.88 (m, 2H, 1 × H6b G , 1 × H6b C )

, To a solution of ?-CD Me -NHC-Cl 3-82b (50 mg, 0.034 mmol) in dry and degassed CH3CN (2 mL) was added K2CO3(23 mg, 0.17 mmol) and AuSMe2Cl (25 mg

. Ar, After stirred at 50 ?C overnight, the reaction mixture was diluted by DCM and subjected to silica gel chromatography, vol.10

H. Nmr, 400 MHz, CD3CN, 300K): ? 2.74 (dd, 1H, J1 = 4.00 Hz, J2 = 10.87 Hz, 1 × H6a F ), 2.89 (dd, 1H, J1 = 1.54 Hz, J2 = 11.04 Hz, 1 × H6b F )

×. H2-c, 28 (s, 3H, 1 × OCH3(C6 E )), 3.30 (m, 1H, 1 × H6b B ), 3.32 (s, 3H, 1 × OCH3(C3 G )), 3.33 (s, 3H, 1 × OCH3(C6 C )), 3.40 (m, 4H, 1 × H5 B , 1 × OCH3(C2 B )), 3.41 (s, 3H, 1 × OCH3(C2 D )), 3.42 (s, 3H, 1 × OCH3(C2 F ), 3H, 1 × OCH3(C6 B )), 3.24 (m, 1H, 1 × H2 A ), 3.25 (m, 1H, 1 × H3 B ), vol.3, p.1

×. Och3, s, 3H, 1 × OCH3(C3 C )), 3.62 (m, 1H, 1 × H6a G ), 3.63 (m, 1H, 1 × H3 F ), 3.66 (m, 1H, 1 × H5 C ), 3.68 (m, 2H, 1 × H5 G , 1 × H6a C ), 3.69 (m, 1H, 1 × H5 E ), 3.70 (m, 1H, 1 × H4 G ), 3.75 (m, 4H, 1 × H6a D , 1 × OCH3(C3 G )), 3.76

. Hz,

×. H1-g,

, ×OCH3(C6 F )), 59.31 (1C, 1 ×OCH3(C6 C )), vol.59, p.1

, ×OCH3(C3 G )), 61.97 (1C, 1 ×OCH3(C3 D )), 61.98 (1C, 1 ×OCH3(C3 C )), 62.01 (1C, 1 ×OCH3(C3 B )), 62.11 (1C, 1 ×OCH3(C3 F )), vol.70, pp.71-84

, 47 (1C, 1 × C2 B ), 82.52 (1C, 1 × C2 C ), 31 (1C, 1 × C3 E ), 82.32 (1C, 1 × C4 C ), 82.42 (2C, 1 × C3 C , 1 × C3 F ), vol.82

×. C1-a, 99.16 (1C, 1 × C1 B ), 99.99 (1C, 1 × C1 E ), vol.123

, 13 C NMR (150 MHz, CD3CN, 300K): ? 53.59 (1C, 1 × C6 D ), 55.39 (1C, 1 × C6 A ), 57.98 (1C, 1 × OCH3(C2 E )), 58.09 (1C, 1 × OCH3(C2 C )), 58.17 (1C, 1 × OCH3(C2 D )), 58.72 (1C, 1 × OCH3(C2 F )), 58.77 (1C, 1 × OCH3(C2 A )), 58.99 (1C, 1 × OCH3(C6 C )), 59.14 (2C, 1 × OCH3(C6 B ), 1 × OCH3(C6 F )), 59.20 (1C, 1 × OCH3(C6 E )), 59.32 (1C, 1 × OCH3(C6 G )), 59.72 (1C, 1 × OCH3(C2 G )), p.61

, 12 (1C, 1 × C2 B ), 82.18 (1C, 1 × C3 F ), vol.82, p.63

, mmol) was dissolved in CD3CN (0.4 mL, from vial) into a NMR tube

H. Nmr-showed-that-h5-a and . Of, 3-105 downshifted from 4.80 ppm to 5.30 ppm of 3-106. MS spectrum was shown as followed

, H NMR (400MHz, CDCl3, 300K): ? 3.00 (dd, 2H, J1 = 6.49 Hz, J2 = 10.49 Hz, 2 × H6a B,E )

. Hz,

×. , D. , and F. , , vol.2

W. Wang, X. Zhu, X. Hong, and Y. Hu, Identification of novel inhibitors of p53-MDM2 interaction facilitated by pharmacophore-based virtual screening combining molecular docking strategy, Med. Chem. Commun, vol.4, pp.411-416, 2013.

X. Zhu, X. Ma, and Y. Hu, PARP1: A promising target for the development of PARP1-based candidates for anticancer intervention, Curr. Med. Chem, vol.23, pp.1756-1774, 2016.

X. Zhu, M. Sollogoub, and Y. Zhang, Biological applications of hydrophilic C60 derivatives (hC60s) -a structural perspective, Eur. J. Med. Chem, vol.115, pp.438-452, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01288178

X. Zhu, A. Quaranta, R. V. Bensasson, M. Sollogoub, and Y. Zhang, Secondary-rim ?-cyclodextrin functionalization to conjugate with C60: improved efficacy as photosensitizer, Chem. Eur. J

X. Zhu, M. Ménand, M. Sollogoub, and Y. Zhang, Design and synthesis of novel permethylated cyclodextrin-C60 conjugates for inhibiting hepatitis C virus. Young Research Fellows' day, 2015.

X. Zhu, M. Ménand, S. Roland, O. Bistri, and M. Sollogoub, NHC-Capped permethylated-?-cyclodextrin-silver complex showed different conformations in chloroform and water by Xray diffraction, Journées de Chimie Organique, 2016.

X. Zhu, O. Bistri, S. Roland, M. Menand, Y. Zhang et al., NHC-capped permethylated cyclodextrin-AuCl complex in neat water, synthesis and selective reactions

I. Montagne, . Curie, and G. France-;-crini, Review: A History of Cyclodextrins, Oral communication. References, vol.1, issue.21, pp.10940-10975, 2014.

Q. Z. Qi and W. , Cyclodextrin glucanotransferase: from gene to applications, Microbiol Biotechnol, vol.66, pp.475-485, 2005.

V. Ramamurthy, Organic photochemistry in organized media, Tetrahedron, vol.42, issue.21, pp.5753-5839, 1986.

A. Hybl, R. E. Rundle, and D. E. Williams, The Crystal and Molecular Structure of the Cyclohexaamylose-Potassium Acetate Complex1, Journal of the American Chemical Society, vol.87, issue.13, pp.2779-2788, 1965.

M. L. Bender, R. Van-etten, and G. A. Clowes, The Mechanism of the CycloamyloseCatalyzed Reactions of Phenyl Esters. A Model for, Journal of the American Chemical Society, vol.88, issue.10, pp.2319-2320, 1966.

F. Cramer, Cyclodextrin -A Paradigmatic Model, Proceedings of the First International Symposium on Cyclodextrins, pp.3-14, 1981.

F. Cramer and W. Kampe, Inclusion Compounds. XVII.1 Catalysis of Decarboxylation by Cyclodextrins. A Model Reaction for the Mechanism of Enzymes, Journal of the American Chemical Society, vol.87, issue.5, pp.1115-1120, 1965.

K. Harata, Structural Aspects of Stereodifferentiation in the Solid State, Chemical Reviews, vol.98, issue.5, pp.1803-1828, 1998.

A. Lannoy, R. Bleta, C. Machut-binkowski, A. Addad, E. Monflier et al., Cyclodextrin-Directed Synthesis of Gold-Modified TiO2 Materials and Evaluation of Their Photocatalytic Activity in the Removal of a Pesticide from Water: Effect of Porosity and Particle Size, ACS Sustainable Chemistry & Engineering, vol.2017, issue.5, pp.3623-3630
URL : https://hal.archives-ouvertes.fr/hal-01681351

T. B. Boving, X. Wang, and M. L. Brusseau, Cyclodextrin-Enhanced Solubilization and Removal of Residual-Phase Chlorinated Solvents from Porous Media, Environmental Science & Technology, vol.33, issue.5, pp.764-770, 1999.

G. Jozefaciuk, A. Muranyi, and E. Fenyvesi, Effect of Randomly Methylated ?-Cyclodextrin on Physical Properties of Soils, Environmental Science & Technology, vol.37, issue.13, pp.3012-3017, 2003.

D. Armspach and D. Matt, Methylated cyclodextrins as preorganisation platforms for the synthesis of multidentate chelating ligands aimed at transition metal coordination and industrially relevant catalysis, Comptes Rendus Chimie, vol.14, issue.2-3, pp.135-148, 2011.

H. Kazuaki, U. Kaneto, O. Masaki, and H. Fumitoshi, The Structure of the Cyclodextrin Complex. XV. Crystal Structure of Hexakis(2,3,6-tri-O-methyl)-?-cyclodextrin-p-Nitrophenol (1 : 1) Complex Monohydrate, Bulletin of the Chemical Society of Japan, vol.55, issue.12, pp.3904-3910, 1982.

R. Saikosin, T. Limpaseni, and P. Pongsawasdi, Formation of Inclusion Complexes between Cyclodextrins and Carbaryl and Characterization of the Complexes, Journal of inclusion phenomena and macrocyclic chemistry, vol.44, issue.1, pp.191-196, 2002.

S. Tamagaki and K. Batoh, Remarkable selectivity of per-O-methylated tricationic 6A,6C,6E-tripyridinio-6A,6C,6E-trideoxy-[small alpha]-cyclodextrin for basic anions over non-basic anions, Journal of the Chemical Society, vol.2, issue.8, pp.1389-1393, 2001.

R. Breslow and L. E. Overman, Artificial enzyme" combining a metal catalytic group and a hydrophobic binding cavity, Journal of the American Chemical Society, vol.92, issue.4, pp.1075-1077, 1970.

T. H. Fenger and M. Bols, Substrate control through per-O-methylation of cyclodextrin acids, Chemical Communications, vol.46, issue.41, pp.7769-7771, 2010.

C. Rousseau, F. Ortega-caballero, L. U. Nordstrøm, B. Christensen, T. E. Petersen et al., Artificial Glycosyl Phosphorylases, Chemistry -A European Journal, vol.11, issue.17, pp.5094-5101, 2005.

W. A. König, D. Icheln, T. Runge, B. Pfaffenberger, P. Ludwig et al., Gas chromatographic enantiomer separation of agrochemicals using modified cyclodextrins, Journal of High Resolution Chromatography, vol.1991, issue.8, pp.530-536

Z. Tian, L. Si, K. Meng, X. Zhou, Y. Zhang et al., Inhibition of influenza virus infection by multivalent pentacyclic triterpene-functionalized per-O-methylated cyclodextrin conjugates, European Journal of Medicinal Chemistry, vol.134, pp.133-139, 2017.

K. Kano, R. Nishiyabu, T. Asada, and Y. Kuroda, Static and Dynamic Behavior of 2:1 Inclusion Complexes of Cyclodextrins and Charged Porphyrins in Aqueous Organic Media, Journal of the American Chemical Society, vol.124, issue.33, pp.9937-9944, 2002.

K. Fujimoto, Y. Muto, and M. Inouye, A DNA Duplex-Based, Tailor-Made Fluorescent Sensor for Porphyrin Derivatives, Bioconjugate Chemistry, vol.19, issue.6, pp.1132-1134, 2008.

S. Minegishi, A. Yumura, H. Miyoshi, S. Negi, S. Taketani et al., Detection and Removal of Endogenous Carbon Monoxide by Selective and Cell-Permeable Hemoprotein Model Complexes, Journal of the American Chemical Society, vol.2017, issue.16, pp.5984-5991

H. W. Kroto, J. R. Heath, S. C. O'brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, vol.318, issue.6042, pp.162-163, 1985.

W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Solid C60: a new form of carbon, Nature, vol.347, issue.6291, pp.354-358, 1990.

T. C. Dinadayalane and J. Leszczynski, Remarkable diversity of carbon-carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene, Structural Chemistry, vol.21, issue.6, pp.1155-1169, 2010.

N. Komatsu, T. Ohe, and K. Matsushige, A highly improved method for purification of fullerenes applicable to large-scale production, Carbon, vol.42, issue.1, pp.163-167, 2004.

R. E. Smalley, Self-assembly of the fullerenes, Accounts of Chemical Research, vol.25, issue.3, pp.98-105, 1992.

J. Y. Huang, F. Ding, K. Jiao, B. I. Yakobson, D. E. Manolopoulos et al., Real Time Microscopy, Kinetics, and Mechanism of Giant Fullerene Evaporation, The Journal of Chemical Physics, vol.99, issue.17, pp.7603-7614, 1992.

R. C. Haddon, L. E. Brus, and K. Raghavachari, Electronic structure and bonding in icosahedral C60, Chemical Physics Letters, vol.125, issue.5, pp.459-464, 1986.

X. Lu and Z. Chen, Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<C60) and Single-Walled Carbon Nanotubes, Chemical Reviews, vol.105, issue.10, pp.3643-3696, 2005.

C. Bingel, Cyclopropanierung von Fullerenen, Chemische Berichte, vol.126, issue.8, pp.1957-1959, 1993.

A. Bolag, J. López-andarias, S. Lascano, S. Soleimanpour, C. Atienza et al., A Collection of Fullerenes for Synthetic Access Toward Oriented Charge-Transfer Cascades in Triple-Channel Photosystems, Angewandte Chemie International Edition, vol.53, issue.19, pp.4890-4895, 2014.

J. Iehl and J. Nierengarten, A Click-Click Approach for the Preparation of Functionalized [5:1]-Hexaadducts of C60, Chemistry -A European Journal, vol.15, issue.30, pp.7306-7309, 2009.

Y. Cao, Y. Liang, L. Zhang, S. Osuna, A. M. Hoyt et al., Why Bistetracenes Are Much Less Reactive Than Pentacenes in Diels-Alder Reactions with Fullerenes, Journal of the American Chemical Society, vol.136, issue.30, pp.10743-10751, 2014.

T. E. Shubina, D. I. Sharapa, C. Schubert, D. Zahn, M. Halik et al., Fullerene Van der Waals Oligomers as Electron Traps, Journal of the American Chemical Society, vol.136, issue.31, pp.10890-10893, 2014.

S. H. Lim, J. Yi, G. M. Moon, C. S. Ra, K. Nahm et al., Method for the Synthesis of AmineFunctionalized Fullerenes Involving SET-Promoted Photoaddition Reactions of ?-Silylamines, The Journal of Organic Chemistry, vol.79, issue.15, pp.6946-6958, 2014.

H. Li, C. Risko, J. H. Seo, C. Campbell, G. Wu et al., FullereneCarbene Lewis Acid-Base Adducts, Journal of the American Chemical Society, vol.133, issue.32, pp.12410-12413, 2011.

Y. Li and L. Gan, Selective Addition of Secondary Amines to C60: Formation of Pentaand Hexaamino[60]fullerenes. The Journal of Organic Chemistry, vol.79, pp.8912-8916, 2014.

Y. Xiao, S. Zhu, D. Liu, M. Suzuki, X. Lu et al., Angewandte Chemie International Edition, vol.53, issue.11, pp.3006-3010, 2014.

L. Echegoyen and L. E. Echegoyen, Electrochemistry of Fullerenes and Their Derivatives, Accounts of Chemical Research, vol.31, issue.9, pp.593-601, 1998.

M. Prato, Fullerene chemistry for materials science applications, Journal of Materials Chemistry, vol.7, issue.7, pp.1097-1109, 1997.

E. B. Zeynalov, N. S. Allen, and N. I. Salmanova, Radical scavenging efficiency of different fullerenes C60-C70 and fullerene soot, Polymer Degradation and Stability, vol.94, issue.8, pp.1183-1189, 2009.

J. W. Arbogast, A. P. Darmanyan, C. S. Foote, F. N. Diederich, R. L. Whetten et al., Photophysical properties of sixty atom carbon molecule (C60), The Journal of Physical Chemistry, vol.95, issue.1, pp.11-12, 1991.

J. Lee, Y. Yamakoshi, J. B. Hughes, and J. Kim, Mechanism of C60 Photoreactivity in Water: Fate of Triplet State and Radical Anion and Production of Reactive Oxygen Species, Environmental Science & Technology, vol.42, issue.9, pp.3459-3464, 2008.

S. Perni, P. Prokopovich, J. Pratten, I. P. Parkin, and M. Wilson, Nanoparticles: their potential use in antibacterial photodynamic therapy, Photochemical & Photobiological Sciences, issue.5, pp.712-720, 2011.

M. Lens, L. Medenica, and U. Citernesi, Antioxidative capacity of C60 (buckminsterfullerene) and newly synthesized fulleropyrrolidine derivatives encapsulated in liposomes, Biotechnology and Applied Biochemistry, vol.51, issue.3, pp.135-140, 2008.

M. Carini, L. Ðor?evi?, and T. D. Ros, Fullerenes in Biology and Medicine. In Handbook of Carbon Nano Materials, WORLD SCIENTIFIC, pp.1-48, 2012.

A. W. Jensen, S. R. Wilson, and D. I. Schuster, Biological applications of fullerenes

, Bioorganic & Medicinal Chemistry, vol.4, issue.6, pp.767-779, 1996.

S. Wang, R. Gao, F. Zhou, and M. Selke, Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy, Journal of Materials Chemistry, vol.14, issue.4, pp.487-493, 2004.

S. H. Friedman, D. L. Decamp, R. P. Sijbesma, G. Srdanov, F. Wudl et al., Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification, Journal of the American Chemical Society, vol.115, issue.15, pp.6506-6509, 1993.

C. Toniolo, A. Bianco, M. Maggini, G. Scorrano, M. Prato et al., A Bioactive Fullerene Peptide, Journal of Medicinal Chemistry, vol.37, issue.26, pp.4558-4562, 1994.

T. Mashino, K. Shimotohno, N. Ikegami, D. Nishikawa, K. Okuda et al., Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives, Bioorganic & Medicinal Chemistry Letters, vol.15, issue.4, pp.1107-1109, 2005.

S. Durdagi, C. T. Supuran, T. A. Strom, N. Doostdar, M. K. Kumar et al., In Silico Drug Screening Approach for the Design of Magic Bullets: A Successful Example with Anti-HIV Fullerene Derivatized Amino Acids, Journal of Chemical Information and Modeling, vol.49, issue.5, pp.1139-1143, 2009.

A. Trpkovic, B. Todorovic-markovic, and V. Trajkovic, Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress, Archives of Toxicology, vol.86, issue.12, pp.1809-1827, 2012.

D. M. Guldi and M. Prato, Excited-State Properties of C60 Fullerene Derivatives, Accounts of Chemical Research, vol.33, issue.10, pp.695-703, 2000.

F. Prat, R. Stackow, R. Bernstein, W. Qian, Y. Rubin et al., Triplet-State Properties and Singlet Oxygen Generation in a Homologous Series of Functionalized Fullerene Derivatives, The Journal of Physical Chemistry A, issue.36, pp.7230-7235, 1999.

V. M. Torres, B. Srdjenovic, V. Jacevic, V. D. Simic, A. Djordjevic et al., Fullerenol C60(OH)24 prevents doxorubicin-induced acute cardiotoxicity in rats, vol.62, pp.707-725

R. Injac, N. Radic, B. Govedarica, M. Perse, A. Cerar et al., Acute doxorubicin pulmotoxicity in rats with malignant neoplasm is effectively treated with fullerenol C60(OH)24 through inhibition of oxidative stress, Pharmacological Reports, vol.61, issue.2, pp.335-342, 2009.

R. Injac, M. Boskovic, M. Perse, E. Koprivec-furlan, A. Cerar et al., Acute doxorubicin nephrotoxicity in rats with malignant neoplasm can be successfully treated with fullerenol C60(OH)24 via suppression of oxidative stress, Pharmacological reports : PR, vol.60, issue.5, pp.742-751, 2008.

R. Injac, M. Perse, N. Obermajer, V. Djordjevic-milic, M. Prijatelj et al., Potential hepatoprotective effects of fullerenol C60(OH)24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas, Biomaterials, vol.29, pp.3451-3460, 2008.

L. L. Dugan, D. M. Turetsky, C. Du, D. Lobner, M. Wheeler et al., Carboxyfullerenes as neuroprotective agents. Proceedings of the National Academy of Sciences of the United States of America, vol.94, pp.9434-9439, 1997.

B. Zhao, Y. He, P. J. Bilski, and C. F. Chignell, Pristine (C60) and Hydroxylated [C60(OH)24] Fullerene Phototoxicity towards HaCaT Keratinocytes: Type I vs Type II Mechanisms, Chemical Research in Toxicology, vol.21, issue.5, pp.1056-1063, 2008.

S. L. Xiao, Q. Wang, F. Yu, Y. Y. Peng, M. Yang et al., Conjugation of cyclodextrin with fullerene as a new class of HCV entry inhibitors, Bioorg Med Chem, vol.2012, issue.18, pp.5616-5638

R. Bernstein, F. Prat, and C. S. Foote, On the Mechanism of DNA Cleavage by Fullerenes Investigated in Model Systems: Electron Transfer from Guanosine and 8-Oxo-Guanosine Derivatives to C60, Journal of the American Chemical Society, vol.121, issue.2, pp.464-465, 1999.

S. Samal and K. E. Geckeler, Cyclodextrin-fullerenes: a new class of water-soluble fullerenes, Chemical Communications, issue.13, pp.1101-1102, 2000.

Y. Liu, Y. Zhao, Y. Chen, P. Liang, and L. Li, A water-soluble ?-cyclodextrin derivative possessing a fullerene tether as an efficient photodriven DNA-cleavage reagent, Tetrahedron Letters, vol.46, issue.14, pp.2507-2511, 2005.

J. Wang, Z. Zhang, W. Wu, and X. Jiang, Synthesis of ?-Cyclodextrin-[60]fullerene Conjugate and Its DNA Cleavage Performance, Chinese Journal of Chemistry, vol.32, issue.1, pp.78-84, 2014.

D. Iohara, M. Hiratsuka, F. Hirayama, K. Takeshita, K. Motoyama et al., Evaluation of Photodynamic Activity of C60/2-Hydroxypropyl-?-Cyclodextrin Nanoparticles, Journal of Pharmaceutical Sciences, vol.2012, issue.9, pp.3390-3397

T. Andersson, G. Westman, O. Wennerstrom, M. Sundahl, and U. Nmr, Investigation of water-soluble fullerene-60-[gamma]-cyclodextrin complex, Journal of the Chemical Society, vol.2, issue.5, pp.1097-1101, 1994.

B. Zhao, Y. He, C. F. Chignell, J. Yin, U. Andley et al., Difference in Phototoxicity of Cyclodextrin Complexed Fullerene [(?-CyD)2/C60] and Its Aggregated Derivatives toward Human Lens Epithelial Cells, Chemical Research in Toxicology, vol.22, issue.4, pp.660-667, 2009.

K. Nobusawa, M. Akiyama, A. Ikeda, and M. Naito, pH responsive smart carrier of [60] fullerene with 6-amino-cyclodextrin inclusion complex for photodynamic therapy, Journal of Materials Chemistry, vol.2012, issue.42, pp.22610-22613

A. Ikeda, T. Iizuka, N. Maekubo, R. Aono, J. Kikuchi et al.,

, Fullerene Derivatives with High Levels of Photodynamic Activity by Long Wavelength Excitation, ACS Medicinal Chemistry Letters, vol.2013, issue.4, pp.752-756

J. Yang, Y. Wang, A. Rassat, Y. Zhang, and P. Sinaÿ, Synthesis of novel highly watersoluble 2:1 cyclodextrin/fullerene conjugates involving the secondary rim of ?-cyclodextrin, Tetrahedron, vol.60, issue.52, pp.12163-12168, 2004.

Z. Guan, Y. Wang, Y. Chen, L. Zhang, and Y. Zhang, Novel approach for synthesis of 2:1 permethylated ?-cyclodextrin-C60 conjugate, Tetrahedron, vol.65, issue.6, pp.1125-1129, 2009.

Y. Chen, Y. Wang, A. Rassat, P. Sinaÿ, Y. Zhao et al., Synthesis of water-soluble 2-alkylcyclodextrin-C60 conjugates and their inclusion complexation in aqueous solution, Tetrahedron, vol.62, issue.9, pp.2045-2049, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00096678

S. Filippone and A. Rassat, In search for internal complexation in cyclodextrin-fullerene conjugates, Comptes Rendus Chimie, vol.6, issue.1, pp.83-86, 2003.

A. Quaranta, Y. Zhang, S. Filippone, J. Yang, P. Sinaÿ et al., Photophysical studies of six amphiphilic 2:1 cyclodextrin:[60]fullerene derivatives, Chemical Physics, vol.325, issue.2-3, pp.397-403, 2006.

R. C. Petter, J. S. Salek, C. T. Sikorski, G. Kumaravel, and F. T. Lin, Cooperative binding by aggregated mono-6-(alkylamino)-.beta.-cyclodextrins, Journal of the American Chemical Society, vol.112, issue.10, pp.3860-3868, 1990.

H. H. Baer, A. Vargas-berenguel, Y. Y. Shu, J. Defaye, A. Gadelle et al., Improved preparation of hexakis(6-deoxy)cyclomalto-hexaose and heptakis(6-deoxy)cyclomaltoheptaose, Carbohydrate Research, vol.228, issue.1, pp.307-314, 1992.

A. R. Khan, P. Forgo, K. J. Stine, and V. T. Souza, Methods for Selective Modifications of Cyclodextrins, Chem Rev, vol.98, issue.5, pp.1977-1996, 1998.

M. ?ezanka, B. Eignerová, J. Jind?ich, and M. Kotora, Synthesis of Mono

, Cyclodextrins via Cross Metathesis, European Journal of Organic Chemistry, issue.32, pp.6256-6262, 2010.

M. Bláhová, E. Bedná?ová, M. ?ezanka, and J. Jind?ich, Complete Sets of Monosubstituted ?-Cyclodextrins as Precursors for Further Synthesis, The Journal of Organic Chemistry, vol.78, issue.2, pp.697-701, 2013.

D. Armspach and D. Matt, The tris(4-tert-butylphenyl)methyl group: a bulky substituant for effective regioselective difunctionalisation of cyclomaltohexaose, Carbohydrate Research, vol.310, issue.1-2, pp.129-133, 1998.

D. Armspach, L. Poorters, D. Matt, B. Benmerad, F. Balegroune et al., A new approach to A,B-difunctionalisation of cyclodextrins using bulky 1,3-bis[bis(aryl)chloromethyl]benzenes as capping reagents, Organic & Biomolecular Chemistry, vol.3, issue.14, pp.2588-2592, 2005.

M. Jouffroy, D. Armspach, D. Matt, and L. Toupet, Regioselective di-and tetrafunctionalisation of [gamma]-cyclodextrin using capping methodology, Organic & Biomolecular Chemistry, vol.11, issue.22, pp.3699-3705, 2013.

T. Lecourt, A. Herault, A. J. Pearce, M. Sollogoub, and P. Sinaÿ, Triisobutylaluminium and Diisobutylaluminium Hydride as Molecular Scalpels: The Regioselective Stripping of Perbenzylated Sugars and Cyclodextrins, Chemistry -A European Journal, vol.10, issue.12, pp.2960-2971, 2004.

B. Wang, E. Zaborova, S. Guieu, M. Petrillo, M. Guitet et al., Site-selective hexa-hetero-functionalization of ?-cyclodextrin an archetypical C6-symmetric concave cycle, Nature Communications, vol.5, p.5354, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01324074

S. Volkov, L. Kumprecht, M. Budesinsky, M. Lepsik, M. Dusek et al., A [gamma]-cyclodextrin duplex connected with two disulfide bonds: synthesis, structure and inclusion complexes, Organic & Biomolecular Chemistry, vol.13, issue.10, pp.2980-2985, 2015.

A. J. Pearce and P. Sinaÿ, Diisobutylaluminum-Promoted Regioselective De-O-benzylation of Perbenzylated Cyclodextrins: A Powerful New Strategy for the Preparation of Selectively Modified Cyclodextrins, Angewandte Chemie International Edition, vol.39, issue.20, pp.3610-3612, 2000.

T. Chaise, E. Bourgeaux, P. Cardinael, and J. C. Combret, Direct and convenient access to mono 3-hydroxy per-O-methylated ?-cyclodextrin, Tetrahedron Letters, vol.45, issue.30, pp.5853-5856, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01935979

E. Bourgeaux and J. Combret, General access to asymmetric ?-cyclodextrins for gas chromatographic applications by insertion of a selectively modified sugar unit, Tetrahedron: Asymmetry, vol.11, issue.20, pp.4189-4205, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01936614

F. Bellia, D. La-mendola, C. Pedone, E. Rizzarelli, M. Saviano et al., Selectively functionalized cyclodextrins and their metal complexes, Chemical Society Reviews, vol.38, issue.9, pp.2756-2781, 2009.

S. Xiao, M. Yang, P. Sinaÿ, Y. Blériot, M. Sollogoub et al., Diisobutylaluminium Hydride (DIBAL-H) Promoted Secondary Rim Regioselective Demethylations of Permethylated ?-Cyclodextrin: A Mechanistic Proposal, European Journal of Organic Chemistry, issue.8, pp.1510-1516, 2010.

S. Xiao, D. Zhou, M. Yang, P. Sinaÿ, M. Sollogoub et al., Diisobutylaluminum-promoted secondary rim selective de-O-methylation of permethylated cyclodextrins, Tetrahedron Letters, vol.52, issue.41, pp.2371-2373, 2002.

T. Murakami, K. Harata, and S. Morimoto, Regioselective sulfonation of a secondary hydroxyl group of cyclodextrins, Tetrahedron Letters, vol.28, issue.3, pp.321-324, 1987.

K. Teranishi, S. Tanabe, M. Hisamatsu, and T. Yamada, Convenient Regioselective mono

. O-sulfonation-of-cyclomaltooctaose, Biotechnology, and Biochemistry, vol.62, issue.6, pp.1249-1252, 1998.

S. M. Goldup, D. A. Leigh, T. Long, P. R. Mcgonigal, M. D. Symes et al., Active Metal Template Synthesis of [2]Catenanes, Journal of the American Chemical Society, vol.131, issue.43, pp.15924-15929, 2009.

P. H. Seeberger, P. Stallforth, L. G. De, and M. Cavallari, Carbohydrate-glycolipid conjugate vaccines, 2013.

J. Baryza, K. Bowman, A. Geall, T. Labonte, C. Lee et al., Lipides, compositions lipidiques, 2011.

M. M. Stephan and B. Mohar, Simple Preparation of Highly Pure Monomeric ?-Hydroxycarboxylic Acids, Organic Process Research & Development, vol.10, issue.3, pp.481-483, 2006.

K. D. Mcreynolds, D. Dimas, and H. Le, Synthesis of hydrophilic aminooxy linkers and multivalent cores for chemoselective aldehyde/ketone conjugation, Tetrahedron Letters, vol.55, issue.14, pp.2270-2273, 2014.

X. Camps and A. Hirsch, Efficient cyclopropanation of C60 starting from malonates, Journal of the Chemical Society, Perkin Transactions, vol.1, issue.11, pp.1595-1596, 1997.

Y. Zhao, Y. Li, Y. Li, C. Huang, H. Liu et al., Self-assembly of indolocarbazole-containing macrocyclic molecules, Organic & Biomolecular Chemistry, vol.8, issue.17, pp.3923-3927, 2010.

Y. Zhang, K. Iwabuchi, S. Nunomura, and S. Hakomori, Effect of Synthetic Sialyl 2?1 Sphingosine and Other Glycosylsphingosines on the Structure and Function of the "Glycosphingolipid Signaling Domain (GSD)" in Mouse Melanoma B16 Cells, Biochemistry, vol.39, issue.10, pp.2459-2468, 2000.

K. Nobusawa, D. Payra, and M. Naito, Pyridyl-cyclodextrin for ultra-hydrosolubilization of [60]fullerene, Chemical Communications, vol.50, issue.61, pp.8339-8342, 2014.

S. Filippone, F. Heimann, and A. Rassat, A highly water-soluble 2[ratio]1 [small beta]-cyclodextrin-fullerene conjugate, Chemical Communications, issue.14, pp.1508-1509, 2002.

R. V. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, C60 in Model Biological Systems. A Visible-UV Absorption Study of Solvent-Dependent Parameters and Solute Aggregation, The Journal of Physical Chemistry, vol.98, issue.13, pp.3492-3500, 1994.

R. V. Bensasson, E. Bienvenu?e, ?. Fabre, C. Janot, J. Land et al., Photophysical Properties of Three Methanofullerene Derivatives, Chemistry -A European Journal, vol.4, issue.2, pp.270-278, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01727865

A. Quaranta, D. J. Mcgarvey, E. J. Land, M. Brettreich, S. Burghardt et al., Photophysical properties of a dendritic methano[60]fullerene octadeca acid and its tert-butyl ester: evidence for aggregation of the acid form in water, Physical Chemistry Chemical Physics, vol.5, issue.5, pp.843-848, 2003.

B. Amand and R. Bensasson, Determination of triplet quantum yields by laser flash absorption spectroscopy, Chemical Physics Letters, vol.34, issue.1, pp.44-48, 1975.

R. Bensasson, C. R. Goldschmidt, E. J. Land, and T. G. Truscott, LASER INTENSITY AND THE COMPARATIVE METHOD FOR DETERMINATION OF TRIPLET QUANTUM YIELDS, Photochemistry and Photobiology, vol.28, issue.2, pp.277-281, 1978.

R. Cundall, Excited States and Free Radicals in Biology and Medicine, Contributions from Flash Photolysis and Pulse Radiolysis, International Journal of Radiation Biology, vol.66, issue.1, pp.119-119, 1994.

R. Schmidt, C. Tanielian, R. Dunsbach, and C. Wolff, Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1?g) sensitization, Journal of Photochemistry and Photobiology A: Chemistry, vol.79, issue.1, pp.11-17, 1994.

A. Kumar and R. Dutt-shukla, Cyclodextrin catalysed C-C bond formation via C(sp3)-H functionalization of 2-methyl azaarenes with diones in aqueous medium, Green Chemistry, vol.17, issue.2, pp.848-851, 2015.

S. Kumar, N. Verma, and N. Ahmed, Cyclodextrin in water: highly facile biomimetic one pot deprotection of phenolic THP/MOM/Ac/Ts ethers and concomitant regioselective cyclization of chalcone epoxides and 2[prime or minute]-aminochalcones, RSC Advances, vol.5, issue.103, pp.85128-85138, 2015.

X. Xu, C. Li, Z. Tao, and Y. Pan, Hemin-Catalyzed, Cyclodextrin-Assisted Insertion of Carbenoids into N?H Bonds. Advanced Synthesis & Catalysis, vol.357, pp.3341-3345, 2015.

X. Xu, C. Li, Z. Tao, and Y. Pan, Aqueous hemin catalyzed sulfonium ylide formation and subsequent [2,3]-sigmatropic rearrangements, Green Chemistry, vol.19, issue.5, pp.1245-1249, 2017.

M. N. Tahir, T. T. Nielsen, and K. L. Larsen, ?-cyclodextrin functionalized on glass microparticles: A green catalyst for selective oxidation of toluene to benzaldehyde, Applied Surface Science, vol.389, pp.1108-1112, 2016.

R. Breslow and S. Singh, Phosphate Ester Cleavage Catalyzed by Bifunctional Zinc Complexes: Comments on the "p-Nitrophenyl Ester Syndrome, Bioorganic Chemistry, vol.16, pp.408-417, 1988.

S. D. Dong, Bifunctional Cyclodextrin Metalioenzyme Mimics, Tetrahedron Letters, vol.39, pp.9343-9346, 1998.

E. Karakhanov, A. Maximov, and A. Kirillov, Biphasic Wacker-oxidation of 1-octene catalyzed by palladium complexes with modified b-cyclodextrins, Journal of Molecular Catalysis A: Chemical, vol.157, pp.25-30, 2000.

R. Breslow and N. Nesnas, Burst Kinetics and Turnover in an Esterase Mimic, Tetrahedron Letters, vol.40, pp.3335-3338, 1999.

E. U. Akkaya and A. W. Czarnik, Synthesis and Reactivity of Cobalt( 111) Complexes Bearing Primary-and Secondary-Side Cyclodextrin Binding Sites. A Tale of Two CD's, Journal of American Chemistry Society, issue.110, pp.8553-8554, 1988.

M. Zhao, L. Zhang, H. Chen, H. Wang, L. Ji et al., Effect of hydrophobic interaction cooperating with double Lewis acid activation in a zinc(ii) phosphodiesterase mimic, Chemical Communications, vol.46, issue.35, pp.6497-6499, 2010.

L. Zhu, H. Yan, C. Y. Ang, K. T. Nguyen, M. Li et al., Photoswitchable Supramolecular Catalysis by Interparticle Host-Guest Competitive Binding, Chemistry -A European Journal, vol.18, issue.44, pp.13979-13983, 2012.

M. T. Reetz, Supramolecular transition metal catalysts in two-phase systems, Catalysis Today, vol.42, pp.399-411, 1998.

M. T. Reetz and S. R. Waldvogel, ?-Cyclodextrin-Modified Diphosphanes as Ligands for Supramolecular Rhodium Catalysts, Angewandte Chemie International Edition in English, vol.36, issue.8, pp.865-867, 1997.

D. N. Tran, F. Legrand, S. Menuel, H. Bricout, S. Tilloy et al., Cyclodextrinphosphane possessing a guest-tunable conformation for aqueous rhodium-catalyzed hydroformylation, Chemical Communications, vol.48, issue.5, pp.753-755, 2012.

C. Machut-binkowski, F. X. Legrand, N. Azaroual, S. Tilloy, and E. Monflier, New Phosphane Based on a ?-Cyclodextrin, Exhibiting a Solvent-Tunable Conformation, and its Catalytic Properties, Chemistry -A European Journal, vol.16, issue.33, pp.10195-10201, 2010.

F. Legrand, N. Six, C. Slomianny, H. Bricout, S. Tilloy et al., Synthesis, Rhodium Complexes and Catalytic Applications of a New Water-Soluble Triphenylphosphane-Modified ?-Cyclodextrin. Advanced Synthesis & Catalysis, vol.353, pp.1325-1334, 2011.

M. Jouffroy, R. Gramage-doria, D. Sémeril, D. Armspach, D. Matt et al., Phosphinocyclodextrins as confining units for catalytic metal centres. Applications to carbon-carbon bond forming reactions, Beilstein Journal of Organic Chemistry, vol.10, pp.2388-2405, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01472884

Y. Takashima, K. Uramatsu, D. Jomori, A. Harima, M. Otsubo et al., Ring-Opening Metathesis Polymerization by a Ru Phosphine Derivative of Cyclodextrin in Water, ACS Macro Letters, vol.2013, issue.5, pp.384-387

A. Schlatter, M. K. Kundu, and W. Woggon, Enantioselective Reduction of Aromatic and Aliphatic Ketones Catalyzed by Ruthenium Complexes Attached to ?-Cyclodextrin

, Angewandte Chemie International Edition, vol.43, issue.48, pp.6731-6734, 2004.

A. Schlatter and W. Woggon, Enantioselective Transfer Hydrogenation of Aliphatic Ketones Catalyzed by Ruthenium Complexes Linked to the Secondary Face of ?-Cyclodextrin. Advanced Synthesis & Catalysis, vol.350, pp.995-1000, 2008.

N. T. Chau, J. Guégan, S. Menuel, M. Guerrero, F. Hapiot et al., ?-Cyclodextrins grafted with chiral amino acids: A promising supramolecular stabilizer of nanoparticles for asymmetric hydrogenation?, Applied Catalysis A: General, vol.467, pp.497-503, 2013.

R. Herbois, S. Noel, B. Leger, S. Tilloy, S. Menuel et al., Ruthenium-containing [small beta]-cyclodextrin polymer globules for the catalytic hydrogenation of biomass-derived furanic compounds, Green Chemistry, vol.17, issue.4, pp.2444-2454, 2015.

F. Legrand, M. Menand, M. Sollogoub, S. Tilloy, and E. Monflier, An N-heterocyclic carbene ligand based on a [small beta]-cyclodextrin-imidazolium salt: synthesis, characterization of organometallic complexes and Suzuki coupling, New Journal of Chemistry, vol.35, issue.10, pp.2061-2065, 2011.

M. Guitet, F. Marcelo, S. A. Beaumais, Y. Zhang, J. Jiménez-barbero et al., Diametrically Opposed Carbenes on an ?-Cyclodextrin: Synthesis, Characterization of Organometallic Complexes and SuzukiMiyaura Coupling in Ethanol and in Water, European Journal of Organic Chemistry, issue.18, pp.3691-3699, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01685012

E. Engeldinger, L. Poorters, D. Armspach, D. Matt, and L. Toupet, Diastereospecific synthesis of phosphinidene-capped cyclodextrins leading to "introverted" ligands, Chemical Communications, issue.6, pp.634-635, 2004.

B. Benmerad, P. Clair, D. Armspach, D. Matt, F. Balegroune et al., Sulfurcapped cyclodextrins: a new class of cavitands with extroverted as well as introverted donor functionalities, Chemical Communications, issue.25, pp.2678-2680, 2006.

R. Gramage-doria, D. Armspach, D. Matt, and L. Toupet, A Cavity-Shaped Diphosphane Displaying "Oschelating" Behavior, Angewandte Chemie International Edition, vol.50, issue.7, pp.1554-1559, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01472929

V. Kairouz and A. R. Schmitzer, Imidazolium-functionalized [small beta]-cyclodextrin as a highly recyclable multifunctional ligand in water, Green Chemistry, vol.16, issue.6, pp.3117-3124, 2014.

M. Qi, P. Z. Tan, F. Xue, H. S. Malhi, Z. Zhang et al., A supramolecular recyclable catalyst for aqueous Suzuki-Miyaura coupling, RSC Advances, vol.5, issue.5, pp.3590-3596, 2015.

A. Khalafi-nezhad and F. Panahi, Size-Controlled Synthesis of Palladium Nanoparticles on a Silica-Cyclodextrin Substrate: A Novel Palladium Catalyst System for the Heck Reaction in Water, ACS Sustainable Chemistry & Engineering, vol.2014, issue.5, pp.1177-1186

C. Machut, J. Patrigeon, S. Tilloy, H. Bricout, F. Hapiot et al., Self-Assembled Supramolecular Bidentate Ligands for Aqueous Organometallic Catalysis, Angewandte Chemie International Edition, vol.46, issue.17, pp.3040-3042, 2007.

J. Patrigeon, F. Hapiot, M. Canipelle, S. Menuel, and E. Monflier, Cyclodextrin-Based Supramolecular P,N Bidentate Ligands and their Platinum and Rhodium Complexes, Organometallics, issue.24, pp.6668-6674, 2010.

S. Menuel, E. Bertaut, E. Monflier, and F. Hapiot, Cyclodextrin-based PNN supramolecular assemblies: a new class of pincer-type ligands for aqueous organometallic catalysis, Dalton Transactions, vol.44, issue.30, pp.13504-13512, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01681339

H. Jia, D. Schmitz, A. Ott, A. Pich, and Y. Lu, Cyclodextrin modified microgels as "nanoreactor" for the generation of Au nanoparticles with enhanced catalytic activity, Journal of Materials Chemistry A, vol.2015, issue.11, pp.6187-6195

M. Padilla, F. Peccati, J. L. Bourdelande, X. Solans-monfort, G. Guirado et al., Enhanced photocatalytic activity of gold nanoparticles driven by supramolecular host-guest chemistry, Chemical Communications, vol.53, issue.13, pp.2126-2129, 2017.

B. Kaboudin, Y. Abedi, and T. Yokomatsu, CuII-?-Cyclodextrin Complex as a Nanocatalyst for the Homo-and Cross-Coupling of Arylboronic Acids under Ligand-and Base-Free Conditions in Air: Chemoselective Cross-Coupling of Arylboronic Acids in Water, European Journal of Organic Chemistry, issue.33, pp.6656-6662, 2011.

B. Kaboudin, Y. Abedi, and T. Yokomatsu, One-pot synthesis of 1,2,3-triazoles from boronic acids in water using Cu(ii)-[small beta]-cyclodextrin complex as a nanocatalyst, Organic & Biomolecular Chemistry, vol.2012, issue.23, pp.4543-4548

R. Breslow and B. Zhang, Cleavage of Phosphate Esters by a Cyclodextrin Dimer Catalyst That Binds the Substrates Together with La3+ and Hydrogen Peroxide, Journal of American Chemistry Society, vol.116, pp.7893-7894, 1994.

B. Zhang and R. Breslow, Ester Hydrolysis by a Catalytic Cyclodextrin Dimer Enzyme Mimic with a Metallobipyridyl Linking Group, Journal of the American Chemical Society, vol.119, issue.7, pp.1676-1681, 1997.

J. Yang, B. Gabriele, S. Belvedere, Y. Huang, and R. Breslow, Catalytic Oxidations of Steroid Substrates by Artificial Cytochrome P-450 Enzymes, Journal of Organic Chemistry, vol.67, issue.15, pp.5057-5067, 2002.

Y. Kuroda, T. Hiroshige, and H. Ogoshi, Epoxidation reaction catalysed by cyclodextrin sandwiched porphyrin in aqueous buffer solution, Journal of the Chemical Society, Chemical Communications, issue.22, pp.1594-1595, 1990.

P. Li, S. Li, Y. Wang, Y. Zhang, and G. Han, Green synthesis of ?-CD-functionalized monodispersed silver nanoparticles with ehanced catalytic activity, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.520, pp.26-31, 2017.

E. Tomás-mendivil, P. Y. Toullec, J. Díez, S. Conejero, V. Michelet et al., Cycloisomerization versus Hydration Reactions in Aqueous Media: A Au(III)-NHC Catalyst That Makes the Difference, Organic Letters, vol.14, issue.10, pp.2520-2523, 2012.

E. Tomás-mendivil, P. Y. Toullec, J. Borge, S. Conejero, V. Michelet et al., Water-Soluble Gold(I) and Gold(III) Complexes with Sulfonated N-Heterocyclic Carbene Ligands: Synthesis, Characterization, and Application in the Catalytic Cycloisomerization of ?-Alkynoic Acids into Enol-Lactones, ACS Catalysis, vol.2013, issue.12, pp.3086-3098

V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes, Angewandte Chemie International Edition, vol.41, issue.14, pp.2596-2599, 2002.

F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman et al., Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates, Journal of the American Chemical Society, vol.127, issue.1, pp.210-216, 2005.

B. T. Worrell, J. A. Malik, and V. V. Fokin, Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions, Science, issue.6131, pp.457-460, 2013.

C. Nolte, P. Mayer, and B. F. Straub, Isolation of a Copper(I) Triazolide: A "Click" Intermediate, Angewandte Chemie International Edition, vol.46, issue.12, pp.2101-2103, 2007.

L. Jin, E. A. Romero, M. Melaimi, and G. Bertrand, The Janus Face of the X Ligand in the Copper-Catalyzed Azide-Alkyne Cycloaddition, Journal of the American Chemical Society, vol.137, issue.50, pp.15696-15698, 2015.

L. Jin, D. R. Tolentino, M. Melaimi, and G. Bertrand, Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne "click reaction, Science Advances, vol.2015, issue.5, p.1