M. Ahmad and A. R. Cashmore, HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor, Nature, vol.366, pp.162-166, 1993.

B. S. Atanassov, R. D. Mohan, X. Lan, X. Kuang, Y. Lu et al., ATXN7L3 and ENY2 Coordinate Activity of Multiple H2B Deubiquitinases Important for Cellular Proliferation and Tumor Growth, Mol. Cell, vol.62, pp.558-571, 2016.

A. J. Bannister and T. Kouzarides, Regulation of chromatin by histone modifications, Cell Res, vol.21, p.381, 2011.

F. Barneche, J. Malapeira, and P. Mas, The impact of chromatin dynamics on plant light responses and circadian clock function, J Exp Bot, vol.65, 2014.

K. Batta, Z. Zhang, K. Yen, D. B. Goffman, and B. F. Pugh, Genome-wide function of H2B ubiquitylation in promoter and genic regions, Genes Dev, vol.25, pp.2254-2265, 2011.

M. Benhamed, C. Bertrand, C. Servet, and D. X. Zhou, Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression, Plant Cell, vol.18, pp.2893-2903, 2006.

G. Benvenuto, F. Formiggini, P. Laflamme, M. Malakhov, and C. Bowler, The photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosome context, Curr Biol, vol.12, pp.1529-1534, 2002.

Y. V. Bernatavichute, X. Zhang, S. Cokus, M. Pellegrini, and S. E. Jacobsen, , 2008.

, Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana, PLoS One, vol.3, p.3156

A. Bernhardt, E. Lechner, P. Hano, V. Schade, M. Dieterle et al., CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana, Plant J, vol.47, pp.591-603, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00092820

J. Bonnet, C. Wang, T. Baptista, S. D. Vincent, W. Hsiao et al., The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription, Genes Dev, vol.28, pp.1999-2012, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02130240

C. Bourbousse, I. Ahmed, F. Roudier, G. Zabulon, E. Blondet et al., Histone H2B Monoubiquitination Facilitates the Rapid Modulation of Gene Expression during Arabidopsis Photomorphogenesis, PLoS Genet, vol.8, 2012.

C. Bourbousse, I. Mestiri, G. Zabulon, M. Bourge, F. Formiggini et al., Heterochromatin reorganization during photomorphogenic reprogramming of plant development, Proc Natl Acad Sci U A, vol.112, pp.2836-2880, 2015.

D. Bouyer, F. Roudier, M. Heese, E. D. Andersen, D. Gey et al., Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition, PLoS Genet, vol.7, 2011.

F. Bratzel, G. Lopez-torrejon, M. Koch, J. C. Del-pozo, C. et al., Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination, Curr Biol, vol.20, pp.1853-1859, 2010.

H. Cao, X. Li, Z. Wang, M. Ding, Y. Sun et al., , 2015.

, Histone H2B Monoubiquitination Mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 Is Involved in Anther Development by Regulating Tapetum DegradationRelated Genes in Rice, Plant Physiol, vol.168, pp.1389-1405

Y. Cao, Y. Dai, S. Cui, and L. Ma, Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis, Plant Cell, vol.20, pp.2586-2602, 2008.

J. F. Charron, H. He, A. A. Elling, and X. W. Deng, Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis, Plant Cell Online, vol.21, pp.3732-3748, 2009.

H. Chen, Y. Shen, X. Tang, L. Yu, J. Wang et al., Arabidopsis CULLIN4 Forms an E3 Ubiquitin Ligase with RBX1 and the CDD Complex in Mediating Light Control of Development, Plant Cell, vol.18, 1991.

H. Chen, X. Huang, G. Gusmaroli, W. Terzaghi, O. S. Lau et al., Arabidopsis CULLIN4-Damaged DNA Binding Protein 1 Interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA Complexes to Regulate Photomorphogenesis and Flowering Time, Plant Cell Online, vol.22, pp.108-123, 2010.

Y. H. Choi, M. Gehring, L. Johnson, M. Hannon, J. J. Harada et al., DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis, Cell, vol.110, pp.33-42, 2002.

J. Chory, C. Peto, R. Feinbaum, L. Pratt, A. et al., Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light, Cell, vol.58, pp.991-999, 1989.

Y. L. Chua, A. P. Brown, and J. C. Gray, Targeted histone acetylation and altered nuclease accessibility over short regions of the pea plastocyanin gene, Plant Cell, vol.13, pp.599-612, 2001.

B. Czermin, R. Melfi, D. Mccabe, V. Seitz, A. Imhof et al., Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites, Cell, vol.111, pp.185-196, 2002.

F. De-lucia, P. Crevillen, A. M. Jones, T. Greb, and C. Dean, A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization, Proc Natl Acad Sci U A, vol.105, pp.16831-16836, 2008.

X. W. Deng, T. Caspar, and P. H. Quail, cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis, Genes Dev, vol.5, pp.1172-1182, 1991.

R. Dhawan, H. Luo, A. M. Foerster, S. Abuqamar, H. N. Du et al., HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis, Plant Cell, vol.21, pp.1000-1019, 2009.

M. Dillies, A. Rau, J. Aubert, C. Hennequet-antier, M. Jeanmougin et al., A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis, Brief. Bioinform, vol.14, pp.671-683, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01521274

T. A. Dittmer, N. J. Stacey, K. Sugimoto-shirasu, and E. J. Richards, LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana, Plant Cell Online, vol.19, pp.2793-2803, 2007.

C. J. Doherty and S. A. Kay, Circadian control of global gene expression patterns, Annu Rev Genet, vol.44, pp.419-444, 2010.

J. Dong, D. Tang, Z. Gao, R. Yu, K. Li et al., , 2014.

, Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochromeinteracting factors in the dark, Plant Cell, vol.26, pp.3630-3645

J. Du, X. Zhong, Y. V. Bernatavichute, H. Stroud, S. Feng et al., Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants, Cell, vol.151, pp.167-180, 2012.

A. Durand, J. Bonnet, M. Fournier, V. Chavant, and P. Schultz, Mapping the Deubiquitination Module within the SAGA Complex, Structure, vol.22, pp.1553-1559, 2014.

K. W. Earley, M. S. Shook, B. Brower-toland, L. Hicks, and C. S. Pikaard, In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation, Plant J, vol.52, pp.615-626, 2007.

J. C. Eissenberg and A. Shilatifard, Histone H3 lysine 4 (H3K4) methylation in development and differentiation, Dev. Biol, 2009.

N. C. Emre, K. Ingvarsdottir, A. Wyce, A. Wood, N. J. Krogan et al., Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing, Mol. Cell, vol.17, pp.585-594, 2005.

C. Fankhauser and J. J. Casal, Phenotypic characterization of a photomorphogenic mutant, Plant J, vol.39, pp.747-760, 2004.

B. Fierz, C. Chatterjee, R. K. Mcginty, M. Bar-dagan, D. P. Raleigh et al., Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction, Nat Chem Biol, vol.7, pp.113-119, 2011.

G. J. Filion, J. G. Van-bemmel, U. Braunschweig, W. Talhout, J. Kind et al., Systematic protein location mapping reveals five principal chromatin types in Drosophila cells, Cell, vol.143, pp.212-224, 2010.

A. B. Fleming, C. F. Kao, C. Hillyer, M. Pikaart, and M. A. Osley, H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation, Mol Cell, vol.31, pp.57-66, 2008.

K. A. Franklin and P. H. Quail, Phytochrome functions in Arabidopsis development, J Exp Bot, vol.61, pp.11-24, 2010.

P. Fransz and H. Jong, From nucleosome to chromosome: a dynamic organization of genetic information, Plant J, vol.66, pp.4-17, 2011.

P. Fransz, J. H. De-jong, M. Lysak, M. R. Castiglione, and I. Schubert, Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate, Proc Natl Acad Sci U A, vol.99, pp.14584-14589, 2002.

E. García-oliver, V. García-molinero, and S. Rodríguez-navarro, mRNA export and gene expression: The SAGA-TREX-2 connection, Biochim. Biophys. Acta BBA -Gene Regul. Mech, vol.1819, pp.555-565, 2012.

R. G. Gardner, Z. W. Nelson, and D. E. Gottschling, Ubp10/Dot4p Regulates the Persistence of Ubiquitinated Histone H2B: Distinct Roles in Telomeric Silencing and General Chromatin, Mol Cell Biol, vol.25, pp.6123-6139, 2005.

Z. Gong, T. Morales-ruiz, R. R. Ariza, T. Roldán-arjona, L. David et al., ROS1, a Repressor of Transcriptional Gene Silencing in Arabidopsis, Encodes a DNA Glycosylase/Lyase, vol.111, pp.803-814, 2002.

C. K. Govind, F. Zhang, H. Qiu, K. Hofmeyer, and A. G. Hinnebusch, Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions, Mol Cell, vol.25, pp.31-42, 2007.

P. A. Grant, A. Eberharter, S. John, R. G. Cook, B. M. Turner et al., Expanded lysine acetylation specificity of Gcn5 in native complexes, J. Biol. Chem, vol.274, pp.5895-5900, 1999.

R. P. Grant, D. Neuhaus, and M. Stewart, Structural basis for the interaction between the Tap/NXF1 UBA domain and FG nucleoporins at 1A resolution, J. Mol. Biol, vol.326, pp.849-858, 2003.

D. Grimanelli and F. Roudier, Epigenetics and development in plants: green light to convergent innovations, Curr Top Dev Biol, vol.104, pp.189-222, 2013.

S. Grob, M. W. Schmid, and U. Grossniklaus, Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila, Mol Cell, vol.55, 2014.

A. T. Hark, K. E. Vlachonasios, K. A. Pavangadkar, S. Rao, H. Gordon et al., Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have distinct biological functions, Biochim. Biophys. Acta BBA -Gene Regul. Mech, pp.117-124, 1789.

S. L. Harmer, S. Panda, and S. A. Kay, Molecular bases of circadian rhythms, Annu Rev Cell Dev Biol, vol.17, pp.215-253, 2001.

L. Hennig and M. Derkacheva, Diversity of Polycomb group complexes in plants: same rules, different players?, Trends Genet, vol.25, pp.414-423, 2009.

K. W. Henry, A. Wyce, W. S. Lo, L. J. Duggan, N. C. Emre et al., Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8, Genes Dev, vol.17, pp.2648-2663, 2003.

K. Himanen, M. Woloszynska, T. M. Boccardi, S. De-groeve, H. Nelissen et al., Histone H2B monoubiquitination is required to reach maximal transcript levels of circadian clock genes in Arabidopsis, Plant J, vol.72, pp.249-260, 2012.

M. Hochstrasser, Protein degradation or regulation: Ub the judge, Cell, vol.84, pp.813-815, 1996.

W. Huanca-mamani, M. Garcia-aguilar, G. León-martínez, U. Grossniklaus, and J. Vielle-calzada,

, CHR11, a chromatin-remodeling factor essential for nuclear proliferation during female gametogenesis in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.17231-17236

W. W. Hwang, S. Venkatasubrahmanyam, A. G. Ianculescu, A. Tong, C. Boone et al., A conserved RING finger protein required for histone H2B monoubiquitination and cell size control, Mol. Cell, vol.11, pp.261-266, 2003.

Y. Ikeda and T. Kinoshita, DNA demethylation: a lesson from the garden, Chromosoma, vol.118, pp.37-41, 2009.

M. L. Irigoyen, E. Iniesto, L. Rodriguez, M. I. Puga, Y. Yanagawa et al., Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis, Plant Cell, vol.26, pp.712-728, 2014.

Y. Jiao, O. S. Lau, and X. W. Deng, Light-regulated transcriptional networks in higher plants, Nat Rev Genet, vol.8, pp.217-230, 2007.

T. Kagawa, T. Sakai, N. Suetsugu, K. Oikawa, S. Ishiguro et al., Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response, Science, vol.291, pp.2138-2141, 2001.

M. Kang, S. Yoo, H. Kwon, B. Lee, J. Cho et al., Negative regulatory roles of DE-ETIOLATED1 in flowering time in Arabidopsis. Sci. Rep. 5, 2015.

M. W. Kankel, D. E. Ramsey, T. L. Stokes, S. K. Flowers, J. R. Haag et al., Arabidopsis MET1 cytosine methyltransferase mutants, Genetics, vol.163, pp.1109-1122, 2003.

P. V. Kharchenko, A. A. Alekseyenko, Y. B. Schwartz, A. Minoda, N. C. Riddle et al., Comprehensive analysis of the chromatin landscape in Drosophila melanogaster, Nature, vol.471, pp.480-485, 2011.

S. Khorasanizadeh, The nucleosome: from genomic organization to genomic regulation, Cell, vol.116, pp.259-272, 2004.

D. Kim and S. Sung, Polycomb-Mediated Gene Silencing in Arabidopsis thaliana, Mol. Cells, vol.37, pp.841-850, 2014.

D. Kim, A. Hong, H. I. Park, W. H. Shin, L. Yoo et al., Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells, J. Cell. Physiol, 2017.

C. Koehler, J. Bonnet, M. Stierle, C. Romier, D. Devys et al., DNA Binding by Sgf11 Protein Affects Histone H2B Deubiquitination by Spt-Ada-Gcn5-Acetyltransferase (SAGA), J. Biol. Chem, vol.289, pp.8989-8999, 2014.

A. Köhler, P. Pascual-garcía, A. Llopis, M. Zapater, F. Posas et al., The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinylation through its interaction with Ubp8 and Sgf11, Mol. Biol. Cell, vol.17, pp.4228-4236, 2006.

A. Köhler, E. Zimmerman, M. Schneider, E. Hurt, and N. Zheng, Structural Basis for Assembly and Activation of the Heterotetrameric SAGA Histone H2B Deubiquitinase Module, Cell, vol.141, pp.606-617, 2010.

A. Köhler, E. Zimmerman, M. Schneider, E. Hurt, and N. Zheng, Structural Basis for Assembly and Activation of the Heterotetrameric SAGA Histone H2B Deubiquitinase Module, Cell, vol.141, pp.606-617, 2010.

C. Kohler, L. Hennig, R. Bouveret, J. Gheyselinck, U. Grossniklaus et al., , 2003.

, Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development, Embo J, vol.22, pp.4804-4814

A. Krichevsky, A. Zaltsman, B. Lacroix, and V. Citovsky, Involvement of KDM1C histone demethylaseâ?"OTLD1 otubain-like histone deubiquitinase complexes in plant gene repression 10, Proc. Natl. Acad. Sci, 2011.

M. Kuo, J. Zhou, P. Jambeck, M. E. Churchill, A. et al., Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo, Genes Dev, vol.12, pp.627-639, 1998.

M. Lafos, P. Kroll, M. L. Hohenstatt, F. L. Thorpe, O. Clarenz et al., Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation, PLoS Genet, vol.7, p.1002040, 2011.

O. S. Lau and X. W. Deng, The photomorphogenic repressors COP1 and DET1: 20 years later, Trends Plant Sci, vol.17, pp.584-593, 2012.

O. S. Lau, X. Huang, J. B. Charron, J. H. Lee, G. Li et al., Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock, Mol Cell, vol.43, pp.703-712, 2011.

J. A. Law and S. E. Jacobsen, Establishing, maintaining and modifying DNA methylation patterns in plants and animals, Nat. Rev. Genet, vol.11, pp.204-220, 2010.

J. A. Law, A. A. Vashisht, J. A. Wohlschlegel, and S. E. Jacobsen, SHH1, a Homeodomain Protein Required for DNA Methylation, As Well As RDR2, RDM4, and Chromatin Remodeling Factors, Associate with RNA Polymerase IV, PLoS Genet, vol.7, 2011.

K. K. Lee, L. Florens, S. K. Swanson, M. P. Washburn, and J. L. Workman, The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex, Mol Cell Biol, vol.25, pp.1173-1182, 2005.

K. K. Lee, S. K. Swanson, L. Florens, M. P. Washburn, and J. L. Workman, Yeast Sgf73/Ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes, Epigenetics Chromatin, vol.2, issue.2, 2009.

P. Leivar, M. , and E. , PIFs: Systems Integrators in Plant Development, 2014.

, Plant Cell, vol.26, pp.56-78

P. Leivar and P. H. Quail, PIFs: pivotal components in a cellular signaling hub, Trends Plant Sci, vol.16, pp.19-28, 2010.

P. Leivar, E. Monte, B. Al-sady, C. Carle, A. Storer et al., , 2008.

, The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels, Plant Cell, vol.20, pp.337-352

E. B. Lewis, A gene complex controlling segmentation in Drosophila, Nature, vol.276, pp.565-570, 1978.

K. Li, Z. Gao, H. He, W. Terzaghi, L. Fan et al., Arabidopsis DET1 represses photomorphogenesis in part by negatively regulating DELLA protein abundance in darkness, Mol. Plant, vol.8, pp.622-630, 2015.

Y. Li, Y. Yang, J. Li, H. Liu, F. Chen et al., USP22 drives colorectal cancer invasion and metastasis via epithelial-mesenchymal transition by activating AP4, Oncotarget, vol.8, pp.32683-32695, 2017.

A. M. Lindroth, X. Cao, J. P. Jackson, D. Zilberman, C. M. Mccallum et al., Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation, Science, vol.292, pp.2077-2080, 2001.

Y. Liu, M. Koornneef, and W. J. Soppe, The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy, Plant Cell, vol.19, pp.433-444, 2007.

Y. Liu, F. Wang, H. Zhang, H. He, L. Ma et al., Functional characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in development, Plant J, vol.55, pp.844-856, 2008.

Q. Lu, X. Tang, G. Tian, F. Wang, K. Liu et al., Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin, Plant J, vol.61, pp.259-270, 2010.

M. Luo, M. Z. Luo, D. Buzas, J. Finnegan, C. Helliwell et al., UBIQUITIN-SPECIFIC PROTEASE 26 is required for seed development and the repression of PHERES1 in Arabidopsis, Genetics, vol.180, pp.229-236, 2008.

L. G. Ma, J. M. Li, L. J. Qu, J. Hager, Z. L. Chen et al., Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways, Plant Cell, vol.13, pp.2589-2607, 2001.

B. B. Maxwell, C. R. Andersson, D. S. Poole, S. A. Kay, and J. Chory, HY5, Circadian ClockAssociated 1, and a cis-element, DET1 dark response element, mediate DET1 regulation of chlorophyll a/b-binding protein 2 expression, Plant Physiol, vol.133, pp.1565-1577, 2003.

C. R. Mcclung, The genetics of plant clocks, Adv Genet, vol.74, pp.105-139, 2011.

I. Meier, E. J. Richards, and D. E. Evans, Cell Biology of the Plant Nucleus, Annu. Rev. Plant Biol, vol.68, pp.139-172, 2017.

M. Mohan, H. Herz, E. R. Smith, Y. Zhang, J. Jackson et al., The COMPASS Family of H3K4 Methylases in Drosophila ?, Mol. Cell. Biol, vol.31, pp.4310-4318, 2011.

R. D. Mohan, G. Dialynas, V. M. Weake, J. Liu, S. Martin-brown et al., Loss of Drosophila Ataxin-7, a SAGA subunit, reduces H2B ubiquitination and leads to neural and retinal degeneration, Genes Dev, vol.28, pp.259-272, 2014.

A. Molitor and W. H. Shen, The polycomb complex PRC1: composition and function in plants, J Genet Genomics, vol.40, pp.231-238, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00834129

F. Moraga, A. , and F. , Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses, Front. Plant Sci, vol.6, 2015.

D. E. Olins and A. L. Olins, Chromatin history: our view from the bridge, Nat. Rev. Mol. Cell Biol, vol.4, pp.809-814, 2003.

D. A. Orlando, M. W. Chen, V. E. Brown, S. Solanki, Y. J. Choi et al., Quantitative ChIP-Seq Normalization Reveals Global Modulation of the Epigenome, Cell Rep, vol.9, pp.1163-1170, 2014.

M. T. Osterlund, C. S. Hardtke, N. Wei, and X. W. Deng, Targeted destabilization of HY5 during light-regulated development of Arabidopsis, Nature, vol.405, pp.462-466, 2000.

M. Pazhouhandeh, J. Molinier, A. Berr, and P. Genschik, MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis, Proc. Natl. Acad. Sci, vol.108, pp.3430-3435, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00569512

U. V. Pedmale, S. S. Huang, M. Zander, B. J. Cole, J. Hetzel et al., Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light, Cell, vol.164, pp.233-245, 2016.

G. Perrella and E. Kaiserli, Light behind the curtain: photoregulation of nuclear architecture and chromatin dynamics in plants, New Phytol, vol.212, pp.908-919, 2016.

C. S. Pikaard and O. M. Scheid, Epigenetic Regulation in Plants, Cold Spring Harb. Perspect. Biol, vol.6, p.19315, 2014.

L. Rizzini, J. J. Favory, C. Cloix, D. Faggionato, A. O'hara et al., Perception of UV-B by the Arabidopsis UVR8 protein, Science, vol.332, pp.103-106, 2011.

J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander et al., Integrative genomics viewer, Nat. Biotechnol, vol.29, pp.24-26, 2011.

N. C. Rockwell, Y. Su, and J. C. Lagarias, Phytochrome structure and signaling mechanisms, In Annual Review of Plant Biology, pp.837-858, 2006.

S. B. Rothbart and B. D. Strahl, Interpreting the language of histone and DNA modifications, Biochim. Biophys. Acta, vol.1839, pp.627-643, 2014.

F. Roudier, I. Ahmed, C. Bérard, A. Sarazin, T. Mary-huard et al., Integrative epigenomic mapping defines four main chromatin states in Arabidopsis, EMBO J, vol.30, pp.1928-1938, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00999846

A. J. Ruthenburg, C. D. Allis, and J. Wysocka, Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark, Mol. Cell, vol.25, pp.15-30, 2007.

M. Sadowski, R. Suryadinata, A. R. Tan, S. N. Roesley, and B. Sarcevic, Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes, IUBMB Life, vol.64, pp.136-142, 2012.

Y. Sakamoto and S. Takagi, LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana, Plant Cell Physiol, vol.54, pp.622-633, 2013.

N. L. Samara and C. Wolberger, A new chapter in the transcription SAGA, Curr. Opin. Struct. Biol, vol.21, pp.767-774, 2011.

N. L. Samara, A. B. Datta, C. E. Berndsen, X. Zhang, T. Yao et al., Structural insights into the assembly and function of the SAGA deubiquitinating module, Science, vol.328, pp.1025-1029, 2010.

N. L. Samara, A. E. Ringel, and C. Wolberger, A Role for Intersubunit Interactions in Maintaining SAGA Deubiquitinating Module Structure and Activity, Structure, vol.20, pp.1414-1424, 2012.

D. Schubert, O. Clarenz, and J. Goodrich, Epigenetic control of plant development by Polycomb-group proteins, Curr. Opin. Plant Biol, vol.8, pp.553-561, 2005.

T. F. Schultz, T. Kiyosue, M. Yanovsky, M. Wada, and S. A. Kay, A role for LKP2 in the circadian clock of Arabidopsis, Plant Cell, vol.13, pp.2659-2670, 2001.

J. M. Schulze, T. Hentrich, S. Nakanishi, A. Gupta, E. Emberly et al., Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123, Genes Dev, vol.25, pp.2242-2247, 2011.

J. Sequeira-mendes, I. Araguez, R. Peiro, R. Mendez-giraldez, X. Zhang et al., The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States, Plant Cell, vol.26, pp.2351-2366, 2014.

C. Servet, N. Conde-e-silva, and D. Zhou, Histone Acetyltransferase AtGCN5/HAG1 Is a Versatile Regulator of Developmental and Inducible Gene Expression in Arabidopsis, Mol. Plant, vol.3, pp.670-677, 2010.

R. A. Sharrock and T. Clack, Patterns of expression and normalized levels of the five Arabidopsis phytochromes, Plant Physiol, vol.130, pp.442-456, 2002.

D. J. Sheerin, C. Menon, S. Oven-krockhaus, B. Enderle, L. Zhu et al., Light-Activated Phytochrome A and B Interact with Members of the SPA Family to Promote Photomorphogenesis in Arabidopsis by Reorganizing the COP1/SPA Complex, Plant Cell, vol.27, pp.189-201, 2015.

A. Shilatifard, Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression, Annu Rev Biochem, vol.75, pp.243-269, 2006.

E. Smith and A. Shilatifard, Developmental biology. Histone cross-talk in stem cells, Science, vol.323, pp.221-222, 2009.

V. V. Sridhar, A. Kapoor, K. Zhang, J. Zhu, T. Zhou et al., Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination, Nature, vol.447, pp.735-738, 2007.

R. Srivastava, K. M. Rai, B. Pandey, S. P. Singh, and S. V. Sawant, Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination, PLOS ONE, vol.10, 2015.

C. Strambio-de-castillia, M. Niepel, and M. P. Rout, The nuclear pore complex: bridging nuclear transport and gene regulation, Nat. Rev. Mol. Cell Biol, vol.11, pp.490-501, 2010.

N. Suetsugu, N. Yamada, T. Kagawa, H. Yonekura, T. Q. Uyeda et al., Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.8860-8865, 2010.

Z. Sun, A. , and C. D. , Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast, Nature, vol.418, pp.104-108, 2002.

P. B. Talbert and S. Henikoff, Histone variants on the move: substrates for chromatin dynamics, Nat. Rev. Mol. Cell Biol, vol.18, pp.115-126, 2016.

J. M. Tepperman, M. E. Hudson, R. Khanna, T. Zhu, S. H. Chang et al., Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation, Plant J, vol.38, pp.725-739, 2004.

J. Van-leene, D. Eeckhout, B. Cannoot, N. De-winne, G. Persiau et al., An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes, Nat. Protoc, vol.10, pp.169-187, 2015.

M. Vermeulen, K. W. Mulder, S. Denissov, W. W. Pijnappel, F. M. Van-schaik et al., Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4, Cell, vol.131, pp.58-69, 2007.

H. Wang, L. Wang, H. Erdjument-bromage, M. Vidal, P. Tempst et al., Role of histone H2A ubiquitination in Polycomb silencing, Nature, vol.431, pp.873-878, 2004.

V. M. Weake and J. L. Workman, Histone ubiquitination: triggering gene activity, Mol Cell, vol.29, pp.653-663, 2008.

V. M. Weake and J. L. Workman, SAGA function in tissue-specific gene expression, Trends Cell Biol, 2011.

V. M. Weake, K. K. Lee, S. Guelman, C. Lin, C. Seidel et al., , 2008.

, SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual system, EMBO J, vol.27, pp.394-405

I. Weinhofer, E. Hehenberger, P. Roszak, L. Hennig, and C. Köhler, H3K27me3 Profiling of the Endosperm Implies Exclusion of Polycomb Group Protein Targeting by DNA Methylation, PLOS Genet, vol.6, p.1001152, 2010.

H. Woo, O. Pontes, C. Pikaard, and E. Richards, VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization, Genes Dev, vol.21, pp.267-277, 2007.

A. Wood, N. J. Krogan, J. Dover, J. Schneider, J. Heidt et al., Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter, Mol Cell, vol.11, pp.267-274, 2003.

A. Wyce, T. Xiao, K. A. Whelan, C. Kosman, W. Walter et al., H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex, Mol Cell, vol.27, pp.275-288, 2007.

X. Xu, I. Paik, L. Zhu, Q. Bu, X. Huang et al., PHYTOCHROME INTERACTING FACTOR1 Enhances the E3 Ligase Activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to Synergistically Repress Photomorphogenesis in Arabidopsis, 2014.

N. Yan, J. H. Doelling, T. G. Falbel, A. M. Durski, and R. D. Vierstra, The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine, Plant Physiol, vol.124, pp.1828-1843, 2000.

Y. Yanagawa, J. A. Sullivan, S. Komatsu, G. Gusmaroli, G. Suzuki et al., Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes, Genes Dev, vol.18, pp.2172-2181, 2004.

C. Yang, F. Bratzel, N. Hohmann, M. Koch, F. Turck et al., VAL-and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis, Curr Biol, vol.23, pp.1324-1329, 2013.

T. Ye, S. Ravens, A. Krebs, T. , and L. , Interpreting and Visualizing ChIP-seq Data with the seqMINER Software, pp.141-152, 2014.

H. Yu, G. Kago, C. M. Yellman, and A. Matouschek, Ubiquitin-like domains can target to the proteasome but proteolysis requires a disordered region, EMBO J, vol.35, pp.1522-1536, 2016.

M. Van-zanten, M. A. Koini, R. Geyer, Y. Liu, V. Brambilla et al., Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation, Proc Natl Acad Sci U A, vol.108, pp.20219-20224, 2011.

D. Zhang, F. Jiang, X. Wang, L. , and G. , Downregulation of Ubiquitin-Specific Protease 22 Inhibits Proliferation, Invasion, and Epithelial-Mesenchymal Transition in Osteosarcoma Cells, Oncol. Res, vol.25, pp.743-751, 2017.

X. Y. Zhang, O. Clarenz, S. Cokus, Y. V. Bernatavichute, M. Pellegrini et al., Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis, PLoS Biol, vol.5, 2007.

X. Zhang, M. Varthi, S. M. Sykes, C. Phillips, C. Warzecha et al., The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression, Mol. Cell, vol.29, pp.102-111, 2008.

V. W. Zhou, A. Goren, and B. E. Bernstein, Charting histone modifications and the functional organization of mammalian genomes, Nat. Rev. Genet, vol.12, pp.7-18, 2011.

Y. Zhou, F. J. Romero-campero, Á. Gómez-zambrano, F. Turck, C. et al., H2A monoubiquitination in Arabidopsis thaliana is generally independent of LHP1 and PRC2 activity, 2017.

, Genome Biol, vol.18, p.69