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Abstract

In this thesis, we present a general framework to construct categories of motives and
build part of the six operations formalism for these categories. In the case of MW-motivic
cohomology, we prove the quaternionic projective bundle theorem and construct a Gysin
triangle, which enable us to define Pontryagin classes on Chow-Witt rings for symplectic
bundles. Applying these tools together, we compute the group of morphisms between
smooth proper schemes in the category of (effective) MW-motives.

Key Words: Correspondences, Generalized motives, Symplectic orientations.

Résumé

Dans cet article, nous présentons une approche générale pour construire des catégories de
motifs et établissons une partie du formalisme des six foncteurs pour ces catégories. Dans
le cas de la cohomologie MW-motivique, nous prouvons le théoreme des fibrés quaternio-
niques et construisons un triangle de Gysin. Ceci nous permet de définir des classes de
Pontryagin sur les anneaux de Chow-Witt pour des fibrés symplectiques. Appliquant ces
outils, nous calculons le groupe des morphismes entre schémas lisses et propres dans la

catégorie des MW-motifs (effectifs).

Mots clés : Correspondances, Motifs généralisés, Orientations symplectiques.
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Chapter 1

Introduction

1.1 Background

Algebraic geometry is a profound and beautiful branch of mathematics which mainly
studies properties of (smooth) schemes. One of the main approach to this study is to
develop suitable cohomology theories, and algebraic geometers have spent lots of time
working on this. The first approach was the Chow ring (CH"(X)), defined by W. L. Chow
around 1956. The elements of that ring are just algebraic cycles, considered up to rational
equivalence. Much later, it was realized that these groups were in fact homology groups
of the so-called Rost-Schmid complex ([R096]) with coefficients in Milnor K-theory. The
essential operations in the Chow ring are in particular products, pull-backs and push-
forwards, which are in fact all defined at the level of this complex. Moreover, for any
smooth scheme X and any vector bundle V on X, we have a Thom isomorphism

CH"(X) — CHE ™™ M)v) (1.1)

defined by the push-forward via the zero section of V. Using these isomorphisms, it’s
easy to calculate the Chow ring of a projective bundle P(V ) in terms of the Chow ring of
X, obtaining the so-called projective bundle theorem and its consequences, such as the
splitting principle ([Ful98]) and the existence of Chern classes of V with coefficients in
the Chow ring.

Based on the Chow ring, V. Voevodsky defined, in 2000, motivic cohomology of
(smooth) schemes ([MVWO06]), relating to many fields such as K-theory, Milnor K-theory
and étale cohomology. This had many important applications, such as for example the
Milnor conjecture. The construction is based on the notion of finite correspondences,
which are special cycles and form the morphisms in the category Coryg whose objects are
smooth schemes over k. This enables in turn, given a topology t (Nisnevich or étale)
on the category of smooth schemes, to consider t-sheaves on Cory, the so-called sheaves
with transfers. The category of effective motives DM®TT(K) is just the localization of
the derived category of sheaves with transfers under the homotopy invariance conditions
(making X x Al and X equivalent) and the motivic cohomology group HP¥(X, Z) is just
the pt" hypercohomology of the motivic complex Z(q) constructed via the Tate twist. An
important fact is that
H2PP(X,Z) CHP(X), (1.2)

(

recovering the original Chow groups (functorially in X) as motivic cohomology groups.
More generally, the general term HP9(X, Z) corresponds to the higher Chow group CHY(X, 29—
p) defined by S. Bloch ([V02]).

There are plenty of further developments of motivic cohomology beyond the basic
facts described above. First, there is the so-called Poincaré duality ([FV00]) for motives



of proper schemes. This requires to stabilize DM® T (k), namely to formally invert the
Tate twist in DM®TT which is realized by the use of symmetric spectra. This, in partic-
ular, implies that the category of pure Chow motives, defined by Grothendieck, can be
contravariantly embedded into DM®TT (k). This is the so-called embedding theorem. Sec-
ond, one can also construct a category Cors over any (smooth) scheme S, by considering
finite correspondences over S ([D07]). The same techniques as above yields the category
of effective (resp. stabilized) motives over S, denoted by DM®T(S) (resp. DM(S)).
Then one can consider a huge and powerful mechanism called six operations formalism
on the category of effective (resp. stabilized) motives, following an axiomatic approach
described in [CD09] and [CD13]. The first complete version of this formalism appeared
in the stable homotopy theory of schemes ([Ayo07]). It’s very similar and closely related
to the formalism in [CDO09] and [CD13]. The former preserves more information but the
latter has the important property of being oriented ([MVWO06], [CD13]) for any vector
bundle, which makes us possible to prove a projective bundle theorem in motivic coho-
mology as in the Chow ring and giving a Gysin triangle which is a motivic analogue of
(1.1).

Recently, some refinements of the ori%inal ideas of Voevodsky appeared. One of them
is based on the Chow-Witt groups CH (X, L), as defined by J. Barge and F. Morel
in 2000 and completed by J. Fasel. The original goal of these groups was to determine
whether a projective module has a rank one free module as a direct summand ([Fas08]),
a question out of range for ordinary Chow groups. Their definition parallels the fact
that Chow groups can be seen as some cohomology groups of the complex in Milnor
K-theory ([R096]), they are cohomology groups of the Rost-Schmid complex in Milnor-
Witt K-theory. A significant difference with the Chow rings is that they depend not only
on a smooth scheme X, but also on a line bundle L. on that scheme, called the twist.
This phenomenon in the Chow-Witt rings is inherited from the Witt ring and it prevents
the Chow-Witt rings from being oriented, that is, there is no projective bundle theorem,
hence no Chern classes on the Chow-Witt ring ([Fas08]). It’s nevertheless an interesting
question to know whether it’s oriented only for symplectic bundles, i.e. if the quaternionic
projective bundle theorem as in [PW10] holds. If it’s the case, we can define Pontryagin
classes with coefficients in the Chow-Witt rings for symplectic bundles.

Mimicking the definition of ordinary motivic cohomology, one can obtain a category
of motives based on the Chow-Witt rings. This is the category of MW-motives as defined
by B. Calmes, F. Déglise and J. Fasel ([CF14], [DF17]). It is a better approximation of
the stable homotopy theory, compared with Voevodsky’s and the equation (1.2) also has
an analogue there. The basic constructions in MW-motivic cohomology are very similar
to motivic cohomology, where the correspondences are replaced by MW-correspondences,
but there is a quite subtle difficulty at each step, that is the calculation of twists in the
operations on Chow-Witt rings, such as product, pull-backs and push-forwards which
are necessarily more complicated than in Chow ring. The serious approach to that is to
regard those twists as elements in the category of virtual vector bundles ([Del87], [CF18])
and it’s a delicate job to implement all calculations under the formal rules of virtual
objects. This inspires us to axiomatize the idea of correspondences and get a general
method to construct motives, even for non-oriented cohomology theories. Furthermore,
to prove the quaternionic projective bundle theorem in Chow-Witt theory, one way is
to prove its counterpart in MW-motivic cohomology first. As a consequence, it gives a
computation of the Thom space of symplectic bundles in MW-motivic cohomology and
gives the corresponding Gysin triangle. Finally, we use all the tools we developed to
compute the group of morphisms in the category of (effective) motives between smooth
proper schemes.



1.2 Main Results
1.2.1 Virtual Objects and Their Calculation

We provide the main tool for the calculation of virtual objects in Chapter 3, which makes
a serious approach to twists possible. Let’s denote by V (V ect(X)) the category of virtual
vector bundles ([Del87]) over X.

Theorem 1.1. (Theorem 3.1)

1. Suppose we have a commutative diagram of vector bundles over X with exact rows
and columns
0 0
| |
K=K

0—V;—V,—C—0

0—W;—W,—C—0

| |
0 0

Then we have a commutative diagram in V (Vect(X))

V, K + W,

| |
Vi+C—K +W; +C.

2. Suppose we have a commutative diagram of vector bundles over X with exact rows

and columns
0 0
| |
O—Vl—Vz—C”3—0
| |
0—W;—W,—C—0
| |
D—D

N
0 0.

Then we have a commutative diagram in V (Vect(X))

W, V,+D—V:+C+D

|
W, |+ c ¢(C.D)

Vi+D+C

where ¢(C, D) is the commutation rule between C and D in the category of virtual
vector bundles.

3. Suppose we have a commutative diagram of vector bundles over X with exact rows



and columns
0 0

I

K—K

I
0—T —Vi—V,—0

0—T —W; —W,—0

| |
0 0.

Then we have a commutative diagram in V (Vect(X))

Vi T+V,—T+K+W,

|
K +| Wi o(T.K)

K+T+W,

where ¢(T, K) is the commutation rule between T and K in the category of virtual
vector bundles.

1.2.2 Correspondences and Generalized Motives

We propose an axiomatic definition of correspondences in Chapter 4. Then given a cor-
respondence theory E, we establish in Chapter 5 the theory of sheaves with E-transfers.
In Chapter 6, we define the category DM (S) (resp. DM (S)) of effective (resp.
stabilized) motives over a smooth base S by using bounded above complexes (contrary to
[CD09], [CD13]) and build part of its six operations formalism ( , ¥ | f4) in the general
setting.

In Chapter 8, we partially show that the MW-correspondences defined in [CF14] is
indeed a correspondence theory as we defined, by adopting a new perspective on the
push-forward in the Chow-Witt ring.

1.2.3 Symplectic Orientations and Applications

ff,—
For any X  Sm/S, denote by Zs(X) the motive of X in DM’ (S). In Chapter 7, we
prove the quaternionic projective bundle theorem for MW-motivic cohomology:

Theorem 1.2. (Theorem 7.4) Let X  Sm/S and let (E,m) be a symplectic vector
bundle of rank 2n +2 on X. Let m: HGrx(E) — X be the projection. Then, the map

Zs(HGry (E)) — P )

im0Zs (X)(21)[4i]
ff— . . B
Is an isomorphism in DM® (S), functorial for X in Sm/S. Here, U is the dual
tautological bundle endowed with its canonical orientation.
Hence we get the corresponding result in the Chow-Witt ring:

Proposition 1.1. (Proposition 7.11) Let X  Sm/k, E be a symplectic bundle of rank
2n+ 2 over X and k = min{ J ,n}. Then the map

p-pa(U )l

g : ',CH “(X) CH' (HGI«(E))

is an isomorphism, where j =0, p: HGrx(E) — X is the structure map and U is the
dual tautological bundle endowed with its canonical orientation.

4



As an application, we can define the Pontryagin classes (in the Chow-Witt ring) for
symplectic bundles, as follows:

Definition 1.1. (Definition 7.11) In the above proposition, set { := p;(U ) and 0o, (27 =

(@) TICH™(X). Define po(E) =1 CH"(X), and pa(E) = (—1)*1% for 1 =a =
n+ 1. The class p,(E) is called the a'" Pontryagin classes of E. These elements are
uniquely characterized by the Pontryagin polynomial

" =p (P(E)NT" + ..+ (=)™ (pnaa(E)) = 0.
As a consequence, we obtain a Gysin triangle for certain closed embeddings:

Theorem 1.3. (Theorem 7.6) Let X Sm/S and letY X be a smooth closed sub-
scheme with a symplectic normal bundle with codim(Y ) = 2n. Then we have a distin-
guished triangle

Zs(X\Y) = Zs(X) = Zs(Y )(2m)[4n] = Zs(X \Y)[1]

inDM® " (S).

Finally, using the theorem above, the six operations formalism of Chapter 6 and duality
in the stable Al-derived categories ([CD13]), we can prove the following theorem.

Theorem 1.4. (Theorem 7.7) Let X,Y Sm/k with Y proper, then we have
d
Homyerr= o (Zpt(X), Zpe(Y ) = CH (X XY, Oxoeysx)-

Throughout in this article, we denote by Sm/k the category of smooth separated
schemes over K ([Har77, Chapter 10]), where K is an infinite perfect field with char (k) = 2.
For any X  Sm/k, we denote dimX by dx and for any f : X — Y in Sm/K, we set
df = dx —dy.



Chapitre 2

Introduction

2.1 Contexte

La géométrie algébrique est une branche profonde et belle des mathématiques qui étudie
principalement les propriétés des schémas (lisses). Les géometres algébristes se sont depuis
longtemps attelés a définir des théorie cohomologiques permettant d’étudier ces schémas.
Une des premieres approches a été I'anneau de Chow (CH"(X)), défini par W. L. Chow
aux environs de 1956. Les éléments de cet anneau sont par définition des classes de cycles
algébriques sur X a équivalence rationnelle pres. Ces groupes sont apparus beaucoup plus
tard comme étant la cohomologie du complexe Rost-Schmid ([R0o96]) associé a la K-théorie
de Milnor. Les opérations essentielles de ’anneau de Chow sont en particulier le produit,
le push-forward et le pull-back. Pour tout schéma lisse X et tout fibré vectoriel V sur X,
nous avons également un isomorphisme de Thom

CH"(X) —= CHE ™™ M)v) (2.1)

défini par le push-forward le long de la section nulle de V. De plus, il est facile de calculer
I'anneau de Chow du fibré projectif P(V ) en termes de I’anneau de Chow de X pour obtenir
le fameux théoreme de fibré projectif et le principe de scindage associé. Ce théoreme
permet également de définir les classes de Chern de V sur I'anneau de Chow.

Sur la base de 'anneau de Chow, V. Voevodsky a défini en 2000 la cohomologie mo-
tivique ([MVWO06]), obtenant une nouvelle et magnifique théorie cohomologique associée
aux schémas lisses, permettant de relier de nombreux domaines tels que la K-théorie,
la K-théorie de Milnor et la cohomologie étale. De nombreuses applications importantes
ont découlé de son approche, comme par exemple la preuve de la conjecture de Milnor
(prix Fields). La cohomologie motivique est basée sur la théorie de I'intersection ([Sha94]),
plus précisment sur la théorie associée a certains types de cycles algébriques, appelés cor-
respondances finies. Ceci permet d’obtenir une catégorie Cory dont les objets sont les
schémas lisses sur K et les morphismes des correspondances finies. La prochaine étape est
de considérer les faisceaux sur cette catégorie, pour une topologie fixé t (Nisnevich ou
étale), appelés les faisceaux avec transferts. La catégorie des motifs effectifs DM®T (k)
est simplement la localisation de la catégorie dérivée de faisceaux avec transferts sous la
condition d’invariance par 'homotopie (i.e. forcant X x Al & étre homotope & X). Dans ce
contexte, le groupe de cohomologie motivique HP4(X, Z) n’est autre que le p-ieme groupe
d”hypercohomologie du complexe motivique Z(q), construit en considérant des produits
du twist de Tate. Un théoreme important spécifie que

H#P(X,Z) = CHP(X), (2.2)

récuperant ainsi les groupes de Chow d’origine. Cette relation est compatible avec les
opérations de CH citées ci-dessus. De plus, le terme général HP9(X, Z) correspond au
groupe de Chow supérieur CHY(X, 2q — p) défini par S. Bloch ([V02]).

6



Nous pourrions encore citer beaucoup d’autres développements de la théorie des mo-
tifs esquissée ci-dessus. Une des plus marquantes est une sorte de dualité de Poincaré
([FV00]) pour les motifs des schémas propres sur la base, mais cela nécessite de stabiliser
la catégorie DM®TT(k), & savoir d’inverser formellement le twist de Tate dans DM®TT (k).
Ceci est réalisé a 'aide de spectres symétriques. Une des conséquences de la dualitté est
le fait que la catégorie des motifs effectifs de Chow, définie par Grothendieck, peut étre
vue comme une sous-catégorie pleine de DM®T(k). Plus généralement, il est possible
de construire sur tout schéma lisse S une catégorie Cors qui considere les correspon-
dances finies sur S ([D07]) et une catégorie des motifs effectifs (resp. stables) sur S, notée
DM®TT(S) (resp. DM(S)). On peut lier ces différentes catégories (effectives ou stables) a
I’aide d'un ingrédient puissant, appelé formalisme des six opérations, suivant une approche
axiomatique expliquée par exemple dans [CD09] et [CD13]. La premiere version complete
de ce formalisme est apparue dans la théorie de 'homotopie stable des schémas ([Ayo07]).
Le formalisme de [CD09] et [CD13] est tres proche de celui d’Ayoub, mais des résultats
plus forts sont disponibles du fait que les catégories considérées ont plus dee structures.
En particulier, le théoreme du fibré projectif est vérifié par la cohomologie motivique sur
une base, ce qui permet d’obtenir le triangle de Gysin qui est un analogue motivique de
(2.1).

Récemment, une théorie cohomologie plus raffinée est apparue, appelée anneau de
Chow-Witt (CHn(X, L)). Elle a été définie par J. Barge et F. Morel vers 2000 et
complétée par J. Fasel quelques annés plus tard. Son objectif initial était de déterminer
si un module projectif avait un facteur libre de rang un ([Fas08]) en utilisant les classes
d’Euler. Ce probleme ne peut pas étre attaqué en général en utilisant ’anneau de Chow.
La définition des groupes de Chow-Witt imite le développement de [R096], a savoir que
ces groupes sont des groupes de cohomologie du complexe de Rost-Schmid associé a la
K-théorie de Milnor-Witt. Une différence significative par rapport a 'anneau de Chow
est que les groupes de Chow-Witt ne dépendent pas seulement d’un schéma lisse X, mais
également d’un fibré en droites L sur ce schéma, appelé le twist. Ce phénomene de I'an-
neau de Chow-Witt est hérité de I'anneau de Witt et empéche 1'orientation de I'anneau de
Chow-Witt, c’est-a-dire qu’il n’y a pas de théoreme du fibré projectif, et pas de classe de
Chern sur I'anneau de Chow-Witt ([Fas08]). Néanmoins, il était assez clair que I'anneau de
Chow-Witt devait satisfaire une propriété d’orientation plus faible, i.e. qu’il était orientée
uniquement pour les fibré symplectiques. En d’autres termes, les spécialistes suspectaient
que le théoreme des fibré projectifs quaternioniques ([PW10]) était vérifié, impliquant
I'existence de classes de Pontryagin, associées aux fibrés symplectiques, a valeurs dans
I’anneau de Chow-Witt.

Récemment, des catégories motiviques instables et stables basées sur les groupes de
Chow-Witt ont éte définies par B. Calmes, F. Déglise et J. Fasel (|[CF14], [DF17]) obtenant
en particulier une nouvelle théorie cohomologique appelée cohomologie MW-motivique.
Ces catégories de motifs sont une meilleure approximation de la théorie de 'homoto-
pie stable en comparaison avec celle de Voevodsky et I’équation (2.2) a également un
analogue ici. Les constructions de base de ces motifs ressemblent beaucoup a celles de
Voevodsky : les correspondances sont remplacées par des MW-correspondances, introdui-
sant ainsi une difficulté assez subtile a chaque étape, a savoir le calcul des twists impliqués
dans les opérations de base de 'anneau Chow-Witt, telles que le produit, le pull-back et le
push-forward. L’approche sérieuse consiste a considérer ces torsions comme des éléments
de la catégorie des fibrés vectoriels virtuels ([Del87], [CF18]) et c’est un travail délicat
d’implémenter tous les calculs selon les regles formelles des objets virtuels. Cela nous
incite a axiomatiser l'idée de correspondances et a obtenir une méthode générale per-
mettant de construire des catégories de motifs, méme en partant de théories cohomolo-
giques non orientées. Pour prouver le theoréme des fibré projectifs quaternioniques dans



I’anneau de de Chow-Witt, nous devons d’abord prouver la contrepartie en cohomologie
MW-motivique. Comme conséquence, nous calculons également I’espace de Thom associé
a un fibré symplectique dans nos catégories de motifs et obtenons le triangle de Gysin
correspondant. Finalement, nous calculons le groupe des morphismes dans nos catégories
entre deux schémas lisses et propres sur le corps de base.

2.2 Principaux Résultats

2.2.1 Objets Virtuels et Opérations Associées

Dans le chapitre 3, nous fournissons les outils principaux qui nous permettent de calcu-
ler les twists associés aux opérations importantes dans 'anneau de Chow-Witt. Notons
V (Vect(X)) la catégorie des fibrés vectoriels virtuels ([Del87]) sur X.

Théorém 2.1. (Theorem 3.1)

1. Supposons que nous ayons un diagramme commutatif de fibrés vectoriels sur X, avec
des lignes et des colonnes exactes

0 0
| |
K=K

0—V,—V,—C—0

0—W;—W,;—C—0

| |
0 o

Alors, nous avons un diagramme commutatif dans V (V ect(X))

Vs K+ W,

Vi+4C—K+W;+C.

2. Supposons que nous ayons un diagramme commutatif de fibrés vectoriels sur X avec
des lignes et des colonnes exactes

0 0

I
O—Vl—Vz—C”:—O
I
0—W; —W,—C—0
| |
D=—D

0 0.

Alors, nous avons un diagramme commutatif dans V (V ect(X))

W2 V2—|—D—V1+C—|—D

|
Wy |+ c ¢(C.D)

Vi+D+C.



3. Supposons que nous ayons un diagramme commutatif de fibrés vectoriels sur X avec
des lignes et des colonnes exactes

0 0

| |
K—K

0—T—V;—V,—0

0—T—W; —W,—0

| |
0 0.

Alors, nous avons un diagramme commutatif dans V (V ect(X))

\% T+Vo,—T+K+W;.

|
K +| Wi o(T.K)

K+T+ W,.

2.2.2 Correspondances et Motifs Géneéralisés

Nous proposons un traitement axiomatique des correspondances dans le Chapitre 4. Etant
donné une théorie de correspondance E, nous établissons dans le Chapitre 5 les résultats
de base de la théorie des faisceaux avec E-transferts. En particulier, nous définissons dans
le chapitre 6 la catégorie DM (S) (resp. DM (S)) des motifs effectifs (resp. stabilisés)
sur une base lisse S en utilisant des complexes de tels (différents de [CD09], [CD13]) et
construisons une partie de son formalisme des six opérations ( , f , fz).

Dans le chapitre 8, nous montrons partiellement que les MW-correspondance définie
dans [CF14] tombent bien dans le formalisme défini ci-dessus, en adoptant une nouvelle
perspective du push-forward dans I'anneau de Chow-Witt.

2.2.3 Orientations Symplectiques et Applications

ff,—
Pour tout X  Sm/S, notons Zg(X) le motif de X dans DM® (S). Dans le chapitre
7, nous prouvons le théoreme des fibré projectifs quaternioniques pour la cohomologie
MW-motivique :

Théorém 2.2. (Theorem 7.4) Soient X  Sm/S et (E, m) un fibré vectoriel symplectique
de rang 2n + 2 sur X. Soit m: HGrx (E) - X la projection. Alors, le morphisme

M pa(U )

Zs(HGrx(E)) im0Zs (X)(2i)[4i]

. i ff— . .
est un isomorphisme dans DM® (S), fonctoriel pour X dans Sm/S. Ici, U est le
fibré tautologique dual doté de son orientation canonique.
On obtient donc le résultat correspondant dans I’anneau de Chow-Witt :

Proposition 2.1. (Proposition 7.11)Soient X  Sm/k, E un fibré symplectique de rang
2n+ 2 sur X et k =min{ % ,n}. Alors le morphisme

2i p -pa(U )
) S

g : ,cH “(x CH' (HGrx (E))

est un isomorphisme, o0 j =0, p: HGrx(E) — X est le morphisme structurel et U
est le fibré tautologique dual doté de son orientation canonique.

9



Comme application, nous obtenons des classes de Pontryagin a valeurs dans ’anneau
de Chow-WItt associées a un fibré symplectique.

Définition 2.1. (Definition 7.11) Dans la proposition ci-dessus, supposons que ( :=
2i L. 0

p(U ) et 051,00 = (&)  ™ICH™(X). Définissons po(E) = 1 CH (X) et

Pa(E) = (—=1)371g pour 1 <a<n+ 1. La classe pa(E ) est appelée a-iéme classe de Pon-

tryagin de E. Ces classes sont caractérisées uniquement par le polyndme de Pontryagin

" —p (pENT" + ..+ (=1)™p (prea(E)) = 0.

Nous obtenons également un triangle de Gysin pour certains immersions fermées :

Théorem 2.3. (Theorem 7.6) Soient X Sm/S etY X un sous-schema fermé lisse
de codimension codim(Y ) = 2n avec un fibré normal symplectique. Alors, nous avons un
triangle distingué

Zs(X\Y) == Zs(X) == Zs(Y)(2n)[4n] == Zs(X\Y)[1]

dans DM*" (S).

Enfin, en utilisant le théoreme ci-dessus, le formalisme des six opérations du Chapitre
6 et la dualité dans les catégories Al-stables dérivées ([CD13]), nous obtenons un calcul
de groupe de morphismes dans nos catégories motiviques comme ci-dessous :

Théorém 2.4. (Theorem 7.7) Soient X,Y  Sm/k avec Y propre sur k. Alors, nous
avons o
HomDMeff,_(k)(Zpt(X), Zn(Y)) =CH (X XY, 0xxy/x)-

Tout au long de cet article, nous désignons par Sm/K la catégorie des schémas séparés
lisses sur k ([Har77, Chapter 10]), ot K est un corps parfait infini avec char(k) = 2. Pour
tout X  Sm/K, nous désignons dimX par dx et pour tout f : X — Y dans Sm/K,
nous posons 0 = dx — dy .

10



Chapter 3

Virtual Objects and Their
Calculation

In this section we will introduce the category of virtual vector bundles and explain basic
techniques of calculation. The definitions all come from [Del87, Section 4], but we recall
them here for clarity.

Definition 3.1. ([Del87, 4.1]) A category C is called a commutative Picard category if
1. All morphisms are isomorphisms.
2. There is a bifunctorial pairing
+:CxC—C
satisfying
(a) For every x,y,z C, an associativity isomorphism
ax,y,z): (X+y)+z— X+ (y+2);
(b) For every x,y C, a commutativity isomorphism
C(X,Y) : X+Yy ==y +X
Furthermore, they satisfy associativity and commutativity constraints ([Mac63]).

3. Forevery P C, the functors X — P + X and X — X + P are equivalences of
categories. Thus there is a unit element 0 such that 0 + X = X for every X C,
and there is an object —X  C such that X + (—X) = 0.

Definition 3.2. Let X be a scheme. Define V ect(X) to be the category of vector bundles
over X. Denote by (Vect(X), iso) the subcategory of Vect(X) with the same objects but
picking only isomorphisms as morphisms.

Definition 3.3. ([Del87, 4.3]) Let C be a commutative Picard category and let X be a
scheme. A bracket functor on X (with coe cients in C) is a covariant functor

[—] : (Vect(X),is0) — C

such that:

11



1. For any exact sequence of vector bundles
O I El - E2 - E3 - 0,

there is an isomorphism ¥ : [E;] — [E;] + [Es] being natural with respect to
ismorphisms between exact sequences.

2. There is an isomophism z : [0] — 0 such that for every E  V ect(X), the composite

[E] ——[0] + [E] 0+ [E] — [E]
is id[E].

3. (Remark 3.1) For every consecutive subbundle inclusions E; E, Eg, there is a
commutative diagram

[Es] 2 [E1] + [Es/E4]

[Ez] + [Es/Ez] —=— [Ey] + [E2/E4] + [Es/E3].

4. For every E4, E,, there is a commutative diagram

[Er  Ea)—=—[Ed + [E2]

[E2] + [E4].

b

The following comes from [Del87, 4.3]:

Proposition 3.1. Let X be a scheme. There is a commutative Picard category V (V ect(X))
with a bracket functor on X such that for every commutative Picard category C with a
bracket functor on X, there is a unique additive functor F : V (Vect(X)) — C making
the following diagram commute

(V ect(X), is0) “2— V (V ect(X))

o
C.
The category V (Vect(X)) is called the category of virtual vector bundles over X.

For convenience, we will still denote [E] by E in the sequel. The following proposition
strengthens Definition 3.3, (4) a little bit.

Proposition 3.2. Suppose we have a commutative diagram of vector bundles over X with
exact row and column

12



Then the following diagram commutes in V (V ect(X))

B A+C
‘ /Aﬁéj;;;u+v—ﬁ
D+ E.

Proof. Since v~ 1ebsplits d, it’s a standard argument that there exists a unique & : E — B

such that
EOC:idB—dOV_lob,COE:idE.

So we have commutative diagrams with exact rows:

0—D-*D E-2E— 0
| ]
0 p—% B—° E 0

\—E-2D E-2D— 0

d+¢ \Y

u*l
0—A—2-B—2_C 0.
Hence the statement follows from the commutative diagram of Definition 3.3, (4):

A+C

/ ul+y
B D+ELPE D

——D+

(d+&)~? ‘ /

D E.

The next theorem is a fundamental tool for calculations in virtual vector bundles.

Theorem 3.1. 1. Suppose we have a commutative diagram of vector bundles over X
with exact rows and columns

0 0
K=—=K
0 Vi V, C 0
|
0 W, W, C 0
0 0.

Then we have a commutative diagram in V (Vect(X))

Vy——MMK +W,;

Vi+C—K+W; +C.

13



2. Suppose we have a commutative diagram of vector bundles over X with exact rows
and columns

0 0
0 \1 V, C 0
|
0 W, W, C 0
D=——D
0 0.
Then we have a commutative diagram in V (V ect(X))
W, —V,+D Vi+C+D
W; +C <o)
Vi+D+C.

3. Suppose we have a commutative diagram of vector bundles over X with exact rows

and columns
0 0
K _ K
0 'h’ \ V, 0
0 Wi W, 0
0 0.
Then we have a commutative diagram in V (Vect(X))
Vi——————T +V; T+K+W,
K+ W, ST K
K+T+W,.

4. Suppose we have a commutative diagram of vector bundles over X with exact rows
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and columns

0 0
0 K \% V, 0
|
0 K W, W, 0
C=——=—=C
0 0.

Then we have a commutative diagram in V (Vect(X))

W) ——K +W,;

Vi+C—K+V,;+C.

Proof. 1. We have injections K —- V; —— V,, which gives the diagram by Definition
3.3, (3).

2. We have injections Vi — V, — W, and V; — W; — W,. These give two
commutative diagrams by Definition 3.3, (3)

W, Vi+Wo/V, W, Vi +Wo/Vy .
T
Vo, +D Vi+C+D W; +C Vi+D+C

Moreover, we have a commutative diagram with exact row and column

222 0

D

N\

>1:0 C W,/Vq

N

D—0

C

Thus we have a commutative diagram

31

W,/V, C+D

SN

D+C

¢(C,D)

by Proposition 3.2. So combining the diagrams above gives the result.
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3. We denote the morphism V; — V, — W, by a. There are morphisms ker(a) ——
K and ker(a) — T satisfying the following commutative diagrams

ker(a) — K ker(a) Vi

Vl V2 T Wl

by the universal property of K and T as kernels. Then there is a commutative
diagram with exact row and column

dp 0
K
¥1:0 T ker(a) — K ——0
\
\T
0

Hence we have a commutative diagram

ker(a) =T + K

K+T

32

by Proposition 3.2.

We have injections T —— ker(a) — Vi, K — ker(a) — Vj, which induce the
following commutative diagrams by Definition 3.3, (3):

Vi————T +V, Vi—MM K +W;

ker(a) + W, —2-T + K + W, ker(a) + W,

22

K+T+W,

So combining the diagrams above gives the result.

4. The diagram is a rotation and reflection of the diagram in (1).
[l

Remark 3.1. We remark that (1) in the above theorem is actually the meaning of Defi-
nition 3.3, (3).

Remark 3.2. We would like to point out that the calculations with virtual objects are not
trivial, especially when judging commutativity of diagrams. We will see this point in the
sections below.
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Chapter 4

Correspondences from an Axiomatic
Viewpoint

In this section, we are going to axiomatize the notion of correspondences, using the
language of virtual vector bundles defined in the previous section. They are designed
basicly to comply with properties of Chow rings or Chow-Witt rings.

Definition 4.1. Let X be a noetherian scheme and i N. We denote by Z'(X) the set
of closed subsets in X whose components are all of codimension i.

Definition 4.2. Let X Sm/k, C Z!(X)and D ZJ(X). We say that C and D
intersect properly if CnD  Z™I(X).

We now start our list of axioms.

Axiom 1. (Twists) For every X Sm/k, we have a commutative Picard category (Defi-
nition 3.1) Px with an additive functor px : V (Vect(X)) — Px and a rank morphism
rkx : Px — F(F =0 or Z/2Z) such that:

1. The following diagram commutes

rkx

V (Vect(X))
Py

Px

4
rkx F"
where the upper horizontal arrow is defined by rkx ([E]) = rk(E).

2. For every f: X — Y in Sm/Kk, there is a pull-back morphism f : Py — Py
such that the following diagrams commute

Py 1 Py V (Vect(Y)) ——V (Vect(X))
rky o (9% Px
F Py ———— Px,

where f : V (Vect(Y)) — V (Vect(X)) is defined by f ([E]) = [f E]. We have
fg =(geof) for any morphisms f,g in Sm/k and ¥ (—v) = —F (v).

Remark 4.1. In practice, the categories Py should be chosen as “small” as possible.
Since this will allow more isomophisms, such as orientations, as we will see in Definition
7.19.
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Axiom 2. (Correspondences) Forevery X Sm/k,i N,C Zi(X)andv Px, there
exists an abelian group EX (X, V) which is called the group of correspondences supported
on C with twist v. These groups are functorial with respect to v. Moreover, if C =
then EL(X,v) = 0.

We are now going to describe further properties that these groups should satisfy.

Axiom 3. (Extension of Supports) For every X  Sm/k, C; C, Z'(X),i N,
v Py, we have an injective morphism

e(C1,Cp) : EE (X, V) — EE,(X,V)

which is called the extension of support. This map is functorial with respect to v.
For any disjoint C;,C, Z'(X), we have

E(i:1 Co (X’ V) = E(I:;L (x’ V) E(I:2 (X’ V)
via extension of supports. Moreover, for any C; C, C;z we have
e(Cz, Cg) ° e(Cl, Cz) = e(Cl, Cg)

Axiom 4. (Products) Suppose X  Sm/k, vi,v, Px, C;,C, Z'(X)andi,j N.
Suppose C; and C, intersect properly, then we have a product

E(i:l (X’ Vl) x Eg_‘,z (X1 VZ) : E(I_‘::jncz (X1 Vl + V2> y

This product is functorial with respect to twists and extension of supports.

Axiom 5. (Associativity) For any X Sm/k, v, Px and C, Z'=(X), a=1,2,3,
with pairwise proper intersections the following diagram commutes

El (X,v1) X EZ (X, V) x EE (X, Vs) "2 EL (X, v1) X EZH2 (X, v, + Vg)
-xid
B2 (X, vy + Vo) X EE (X, V3) Egritis (X, vy + (V2 +V3))

Egrizrle (X, (Vi +V2) +V3).

Axiom 6. (Conditional Commutativity) Let X Sm/k, C; Z'=(X),is N,va Px
where a = 1,2. If (i +rkx(v1))(i2+rkx(v2)) =0 F and C; and C, intersect properly,
the following diagram commutes:

E& (X, vi) x EE (X, vz) —— EE&M2 (X, vy + Vo)
c(vi,v2)
E& (X, V) x ER (X, v1) —— EZ™i2 (X, v, +vy).

Axiom 7. (ldentity) For any X  Sm/Kk, there is an element e in E% (X, 0) such that
foranyv Px,i Nand C Z'(X), the following diagrams commute

EL(X,v) ——EL(X,0+V) V) ——EL(X,v+0)
NP
c(X,v

EL(X
V) E‘c(>H<,V).

where u are the unit constraints in Px. We call e the identity and denote it by 1.
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Axiom 8. (Pull-Backs) Suppose f : X — Y is morphism in Sm/k,i N, C Z(Y),
f1(C) Z'(X)andv Py. Then we have a pull-back morphism

Ec(Y,V) == Ef-1)(X, F ).
This morphism is functorial with respect to v and extension of supports.

Axiom 9. (Functoriality of Pull-Backs) Let X 9y T 7 e morphisms in Sm/Kk,
i N,C Z'(z),f}C) Z'(Y),g'f}C) Z'(X)andv Pz. We have

(feg) =g -f.
The pull-back of the identity morphism is just the identity morphism.

Axiom 10. (Compability of Pull-Backs) Suppose that f : X —- Y is a morphism in
Sm/k, and that C; Z'(Y) and C,  ZJ(Y) intersect properly for some i,j N (the
same for their preimages). For any vi,v, Py, we have a commutative diagram

EL (Y, v) X EL (Y,v2) ' EZT (Y, v1+Vy)
f xf f
EiaoyXF (Vi) X EL o)X, F (vo) ——Ef o X F (v + V)

We always have f (1) = 1.

Before proceeding further, we now recall some facts about tangent bundles and normal
bundles.

f

Lemma 4.1. Let X Y 27 be morphisms in Sm/k.

1. If £, g are smooth, we have an exact sequence

0 B TX/Y - Tx/z - - f Ty/z - - O

2. If T is a closed immersion and g, g = T are smooth, we have an exact sequence
0— Tx/z = T Tysz = Nxyy — 0.

3. If g is smooth and f, g o T are closed immersions, we have an exact sequence
0— f Tysz = Nxsv = Nxsz — 0.

4. If £, g are closed immersions, we have an exact sequence

O - - Nx/y s Nx/z —— f Ny/z - O

Proof. See [Har77, Chapter II, Proposition 8.11, Proposition 8.12 and Theorem 8.17 and
Chapter III, Proposition 10.4]. ]

Lemma 4.2. Suppose that we have a Cartesian square of schemes
X X

f

g
Yy —2—v.

Then, the composite Tx ;v — Tx sy — V Txyy IS an isomorphism.
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Proof. See [Har77, Chapter II, Proposition 8.10]. O

Lemma 4.3. Suppose that we have a Cartesian square in Sm/k

X X

f

E
Yy “-v

such that f is a closed immersion. If one of the following conditions holds:
1. u is smooth,
2. uis a closed immersion and dimX —dimY =dimX —dimY,

then the natural morphism y defined by the following commutative diagram with exact
rows

0——vV TX/k v T Ty/k \/ NX/Y 0
a B Y
0 Tx s« g Ty Nx /v 0

is an isomorphism.

Proof. If uis smooth, then o and [ are surjective and have the same kernel by the previous
two lemmas. So Yy is an isomorphism by the snake lemma.

In the other case, the dimension condition implies Nx ,y and Nx,y have the same
rank. So we only have to provey is surjective. We can assume that all schemes are affine.
Suppose that Y = Spec(A), X = Spec(A/1),Y = Spec(A/J) and X = Spec(A/(1+J)).
Then Ny, = 1/1? and Ny ,, = (1 +J)/(1? +J) and the morphism Y is given by

/12 an A/ 43) = (14+3)/(12+7)

(i : a) — ai.
This is obviously surjective. O]

Axiom 11. (Push-Forwards for Smooth Morphisms) Suppose that £ : X — Y is a
smooth morphism in Sm/k, that n N, v Px and that C  Z"*dr(X) is finite over
Y . Then we have a morphism

f Eg+df(X,f V—Txsv) = Efcy(Y,V),

which is functorial with respect to v and the extension of supports. The push-forward of
the identity morphism is just the identity morphism (using Tx,y = 0).

We may also use the simplified notation
fv—Txy — V
to denote . Moreover, we can consider push-forwards of the form
fEQ (X F v — Ty +F Vo) —— Efey(Y, Vi + Vo)

which are defined by the composite of the push-forward defined above and the commuta-
tivity isomorphism ¢(—Tx,y, T Vo).
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Axiom 12. (Functoriality of Push-Forwards for Smooth Morphisms) Suppose that X v

are smooth morphisms in Sm/k, and that C ~ Z'+9x~dz (X)) is finite over Z (i N). Sup-
pose moreover that v Pz. Then we have a commutative diagram

¢

EC™ T2 (X, (F o) V= Tyz) —— ES™ (X, (Fo9) v=0 Tyrz = Ty

g9

Esey (Y. Fv—Tyz)

f

i
Ef(@J(C))

(Z.v)
where ¢ is obtained via the following composite

(Feg)Vv—=Txz — (Feg) v—(Txsy +9 Tyvsz)
— (Feog)v—0 Tysz — Txsy.

Axiom 13. (Push-Forward for Closed Immersions) Suppose f : X — Y is a closed
immersion in Sm/k, v Py and C  Z"*%(X). Then we have an isomorphism

£ EQ (X, Ny +F V) = Elgy(Y,V),

This morphism is also functorial in v and under extension of supports. The push-forward
of the identity is just the identity, by using Nx,y = 0.

So given a vector bundle V over X, the definition above gives an isomorphism E2 (X,V ) =

ESHKX(V)(V, 0) (Chapter 1) via the push-forward of the zero section.

We may also use the simplified notation
Nx,y +fv——yvVv
to denote . Moreover, we could also consider push-forwards of the form
£ EQ K F v+ Nogy +F Vo) = ERey (Y, Vi + V)

which are defined by the composite of the push-forward defined above and the commuta-
tivity isomorphism ¢(f vy, Nx/y ).

Axiom 14. (Functoriality Push-Forwards for Closed Immersions) Suppose that X L
are closed immersions in Sm/k, C  Z*9x~dz(X) and v P_. Then we have a com-
mutative diagram

EZ™ T2 (X, Nywrz + (F 2 9) V) == B (X, Nyiyy +9 Nyzz + (F 2 0) V)

g

Egicy “(Y,Nysz +F V)

f

E

taen(@:V),

where ¢ is induced by the isomorphism Nx,z + (feg) v = Nx,y +9 Ny,z + (f=g) v.
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Axiom 15. (Base Change for Smooth Morphisms) Suppose we have a Cartesian square
of smooth schemes

Y /Y
with ¥ smooth. Let moreover c =dx —dy =dx —dy,n N,s Py, C Z"¢X)
finite over Y such that v-1(C) Z"*¢(X). Then the following diagram commutes

X

f

X

«

+ f
EXT(X,F s—Txyy) —————Efg(Y,s)

\4 u

n+ g
Ev—lc(c) (X ,V fs—v Tx/y) —_— Egr;](v_l(C))

(Y ,us).
Here we have used the canonical isomorphism Tx ,y — VvV Tx,y of Lemma 4.2.

Axiom 16. (Base Change for Closed Immersions) Suppose that we have a Cartesian
square of smooth schemes

with f a closed immersion. Let c =dx —dy =dx —dy,s Py, C Z"¢X) such
that v=3(C) Z"*¢(X). Then the following diagram commutes

EZ(X,Nxyy +F 8) ————EP,(Y,s)

\4 u

ED ey (X .V Ny +v F5) =—EDN 1) (Y ,us).

Axiom 17. (Projection Formula for Smooth Morphisms) Suppose that we have a smooth
morphism f : X — Y in Sm/k and that n,m  N. Let further C Z"*%(X) be finite
over Y and D Z™(Y) be such that C and f~(D) intersect properly and vi,v, Py.
Then the diagrams

+ id=<f +
Eg o (X; f Vi — TX/Y) x EB“(Y, Vz) : Eg d (X, T Vi — Tx/y) x E;n_l(D)(X, f Vz)
f xid
EE(Y,v1) x ER(Y,V2) EQ:}“—T(’E,)(X, fvi—Txy +T V)

/

EDEM (Vl + V2>

Y,f(C)nD
and
ED(Y,v2) X EQ™ (X, F vy — Tpy ) ot By ) (X, F V2) X EST (X, F vy — Toeyy )
idxf
ED(Y,v2) x EL(Y, Vi) Echagy (X F V2 +F vi = Ty )

/
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commute.

Axiom 18. (Projection Formula for Closed Immersions) Suppose that we have a closed
immersion f : X — Y in Sm/k. Letnm N, C ZzZ"dr(X)and D Z™(Y) be
such that f~3(D) Z™(X), and such that C and (D) intersect properly. Let further
v1,V2  Py. Then the diagrams

idx<f

ECT (X, Nxyy +F va) X EB(Y, Vo) =—EC™ (X, Ny +F v1) X Ey) (X, F V)

f xid y

n+m-+d
E 1

EQ(Y,v1) x EQ(Y,V2) Cmf_1(D)(X, Nxsy +F vi+F vy)

/

EDNFM (Y,Vl —|—V2)

f(C)nD
and
ED(Y,v2) X E&™ (X, Nyyy +F Vi) 70 By o) (X, F v2) % ECT (X, Nogyy + F V1)
idx<f
ED(Y,v,) x EA(Y,vy) Bty (X, F V2 + Ny +F vi)

/

E?(ETnD(Y' V2 + V1)

commute.
We still need a compability between the two push-forwards introduced above.

Axiom 19. (Compability between Two Push-Forwards)

1. Suppose that X T 7 % ¥ are morphisms in Sm/k, that f is a closed immer-
sion and that g, g - f are smooth. Let C ~ Z'*9x~dv (X)) he finite over Y, i N and
v Py. Then the following diagram commutes

Ee ™™ (X,Nx/z +Fgv—TF -|-Z/CY('\)IX/Z’f gé/(-?:+dx_dY (X, gV+Nxz—F Tzv),
f ‘d)
Eteer ™ (Z,9V—"Tzy) ESN (X, g v—Txy)
g %
Egericon(Y: V),

where ¢ is induced by Lemma 4.1, (2).

2. Suppose that X " 729 Y are morphisms in Sm/k with g smooth and f, gof

closed immersions. Let C ~ Z'™9~dv (X)) be finite over Y, i Nandv Py.
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Then the following diagram commutes

_ Nx/z+f g v,—f.
EST9 (X, Nozz +F g v = T TV ESSR0 (3 —F Ty 4 Nz +F g V)
£ ¢
NS (Z,0 v —Toyy) EC>T (X, Ny +F g v)
Egcren(Y: V),

where ¢ is induced by Lemma 4.1, (3).
3. Suppose that we have a Cartesian square of smooth schemes

X Y -X
g

£

Y ——,

where u is smooth and f is a closed immersion. Let C  Z"*dr*dv(X ) he finite over
Y and let s Py. Then the following diagram commutes

E2+df+dv(x Nx,v +gus—gTy ) — E;(E(;U(Y Us=Tv )
u
E2+df+dv(x V Nxsy +Uf s—Tx/x) Edacn(Y:S)
v f
Eviey (X, Nssy + T 5).

Axiom 20. (étale Excision) Suppose that f : X —- Y is an étale morphism in Sm/k,
that C  Z'(Y) and that the morphism f : f71(C) —- C is an isomorphism under reduced
closed subscheme structures. Then for any i N andv Py, the pull-back morphism

f o EL(Y,V) = Efa (X T (V)
is an isomorphism between abelian groups with inverse f .

Definition 4.3. If the categories Px and groups EL (X, v) satisfy all the axioms above,
then they are called a correspondence theory.

Remark 4.2. Let R be a commutative ring. The first example of a correspondence theory
is given by EL(X,v) = CHL(X,v) R, where the latter is the free R-module generated
by irreducible components of C for C  Z'(X), F =0 and Px = 0 for any X.

We now give another example, starting with the definition of the categories Px.

Definition 4.4. For a scheme X, we define a category Px as follows. Its objects are
sequences E := (Ej,...,En), where n N and E; are vector bundles over X for i =
1,...,n. We attach to each object E a line bundle

det(E) =detE; --- detE,
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and an integer
rk(E) = rkEy + - + rkE, Z/2Z.

The morphisms between objects E = (Ej,...,En) and F = (F4, ..., Fy) are given by

Home, (E, F) = Isomo, (det(E), det(F)) if rk(E) = rk(F).
else.
The composition law is inherited from the category of line bundles.

Remark 4.3. The category P is equivalent to the category of Z/2Z-graded line bundles
considered in [Del87, 4.3]. However, the category Px will be more convenient in our
computations.

To complete the definition of our correspondence theory, we set
CHa(X,V) = CHg (X, det(v)).

for every X  Sm/k, C  Z'(X),v Px. These are precisely the MW-correspondences
defined in [CF14]. We will give a plan of proof of the following theorem in Chapter 8.

Theorem 4.1. The collection of MW-correspondences form a correspondence theory with
twists in Px.
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Chapter 5

Sheaves with E-Tranfers and Their
Operations

In this section, we develop the theory of sheaves with E-transfers over a smooth base as
in [DO7] and [CF14], where E is a correspondence theory.

Since there will be heavy calculations involving twists, we use the abbreviation (a, V)
fora EL(X,v) from now on for convenience and clarity. We extend this notation to
operations such as (a,Vv) - (B,u), f ((a,v)). For S  Sm/k, we denote the category of
smooth schemes over S by Sm/S.

We will need the notion of admissible subset coming from [CF14, Definition 4.1].

Definition 5.1. Let X,Y  Sm/S. We denote by As(X,Y ) the set of closed subsets
T of X xg Y whose components are all finite over X and of dimension dim(X). The
elements of Ag(X,Y ) are called admissible subsets from X to Y over S.

Lemma 5.1. In the definition above, T itself is also finite over X.

Proof. For every affine open subset U of X, T n U is affine since each of its components
are affine (see [Har77, Chapter III, Exercises 3.2]). Its structure ring is a submodule of a
finite Ox (U)-module. Hence we conclude that T n U is finite over U. O]

Definition 5.2. Let S Sm/k, and let X,Y Sm/S. The group

Cors(X,Y)= lim E¥ (X %Y, —Txxeysx)
T AS?X,Y)

is called the group of finite E-correspondences between X and Y over S.

We can now consider the category Cors(X,Y ), whose objects are smooth schemes
over S and morphisms between X and Y are just Cors(X,Y ) defined above. Our aim is
now to study the composition in that category.

To avoid complicated expressions, we denote for smooth schemes X,Y and Z the
scheme X Xg Y xXg Z by XY Z and the projection X XgY XgZ — Y Xg Z by pf((zz.
We extend this notation to arbitrary products of schemes in an obvious way.

Given any o  Corg(X,Y) and B Cors(Y,Z), we may suppose they are defined
over admissible subsets. With this in mind, the image of

P22 (727 (B, —Tvzsv)) - Pxv? (&, —Txv/x)))

in Cors(X,Z) is just defined as B o a. It is straightforward to check that this definition
is compatible with extension of supports.

Proposition 5.1. The composition law defined above is associative.
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B

Proof. Suppose that X —2—Y Z-—Y W are morphisms in Cors. As before, we
may suppose that each correspondence is defined over an admissible subset.
Consider the Cartesian squares

XYZW — XZW XY ZW —— XYW

XY Z XZ YZW YW.

Now

yeo(Beo
=p%&” (2R (Y, —Tzwrz))pXs" pxz2 (0527 ((B. —Tyzv ))PXy 2 (&, —Txvsx))))

by definition
XZW (2 XZW XZW XY Z [ (nXYZ XY Z

=pxw (Pzw  (Y)Pxz Pxz ((pyz= (B)pxy < (a), =Txvyz/xy — Txvzsxz)))

by definition of the product

=p%w (2w (VPszw Pxvz (0927 (BIPy ™ (@), =Txvzrxy = Txvz/xz)))

by Axiom 15 for the left square above

:pi\%vw(pgvsz (y)piz\%’w(pi(;zw (B)F&izw (a), =Txyzwsxyw — Txyzwsxzw))

by Axiom 9 and Axiom 10

=p%a Pxzw (2w (V) —Txyzwrxy 2)Re2 2" (B)pky 2" (@)
by Axiom 17 for pXy&"
=pXa PXra” (3, —=pXW™ Txwrx — PXdy” Txzwrxw — Txyzwrxzw))

by definition of the product where & = pZ,“" (Y)pra“Y (B)pXv2™W (a)

:p§\\g\lzw((5’ _pé\\;\lzw Txwrsx — Txy zwsxw))
by Axiom 12
:pisz p§¥\%vw((5, _pi\\/(vzw Txwrsx — pi(%\%vw Txywrxw — Txyzwsxyw))

by Axiom 12, note that we have used ¢(—Txy zwsxyw, —Txy zwsxzw )

=pw’ (v’ (Pzw™" (V)pyz =Y (B))psy ™ (@)

by Axiom 17 for pXy &

=pxw (Pyw Pyzw (Pzw" (V)(PYZ™ (B), =Ty zwrvw))Pxy " (0))
by Axiom 9 and Axiom 10
XYW (XYW Y ZW (Y ZW Y ZW XYW

=pxw’ (PYw Pyw (Pzw ' (Y)pyz " (B))pxy " (a))
by Axiom 15 for the right square above

=(ye°B)-a
by definition.

Definition 5.3. Consider the functor
Yy :Sm/S — Corsg,

defined on objects by y(X) = X. Given an S-morphism f : X — Y, we have the graph
morphism I's : X — X %g Y and the natural map

FeTxxgysrx = Nx/xxgy
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of Lemma 4.1 is an isomorphism. We set y(f) to be image of the element 1 EJ (X, 0)
of Axiom 7 under the composite

e

EZ (X, 0) —— EZ (X, Nx/xxsy — e Txxsysx) E;j(Y _ds(x %5 Y, = Txxsv/sx)

Corg(X,Y).

We prove in the next couple of results that y respects the composition of both cate-
gories, starting with some easy cases.

Proposition 5.2. Let f : X — Y be a morphism in Sm/S andg:Y — Z be a
morphism in Cors. Then we have

gey(f) = (fxidz) (g)
where the right hand side is the image into the direct limit of the corresponding element.

Proof. We have a Cartesian square

s

X XY
P Py~
Mgxid
XZ XY Z.

Denote the map EY(X,0) == EX (X, Nx/xxsy — ['fTxxsysx) by t. Suppose as usual
that g is supported on an admissible subset. We have

gey(f)

=Pz 2 (0727 (8, =Tyzsv)) - PXv? Tr ((t(1),Nxsxy — CgTxvsx)))
by definition

=pXz”(PYz” (9, —Tyzsv)) - (Te x idz) p%* (t(1)))
by Axiom 16 for the square above

=pxzZ((Ce x idz) (D¢ x idz) pY2% (9, =Tvzsv)) - pX” (t(1))))
by Axiom 18 for I'f X idz

=pxz” (T < idz) ((f xidz) ((9,=Tvzv)) pX* (1(1))))
by Axiom 9

=pXy’ (T < idz) ((f xidz) (9) - pX” (t(1)), =Txzsx + Nxzsxyz — (Ts X idz) Txyz/xz)
by definition of the product and the pull-back, and Lemma 4.3

=s(((f xidz) (9) - pX? (t(1)), =Txzsx + Nxzsxyz — (I's ¥ idz) Txyz/xz))
by Axiom 19 (here s is the isomorphism cancelling Nxz,xyz = (I't X idz) Txyz/xz)

=(f xidz) (9) - s(px” (t(1)))
by bifunctoriality of products with respect to twists

=(f > idz) (9) - px“ (1)
by functoriality of pull-backs with respect to twists

=(f xidz) (9)
by the definition of the identity and Axiom 9.
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Proposition 5.3. Let f : X — Y be a morphism in Cors and letg : Y — Z be a
smooth morphism in Sm/S. Let t be the composite

_TXY/X
— — (idx x Iy
—— — (idx x T
— — (idx x Iy
— — (idx x Iy
— —(

idx %< 0) Txz/x — Txvsxz-

Txyzrxy + Nxvsxyz — Txysx
Txvyzsxy + Nxysxyz — (idx X T'g) Txyz/xz

TXYZ/XY + NXY/XYZ - I\IXY/XYZ - TXY/XZ

~— — ~—

TXY Z/XY — TXY/XZ

Then we have
y(9) = f = (idx > g) (t(f)),
where the right side is the image into the direct limit of the corresponding element.

Proof. We have a Cartesian square

y ¢ vz
Y [
XY Doy 7.

an isomorphism s : 0 —— Ny,/yz — FgTY zsv and an isomorphism

r:—Txysx = Nxysxyz = (idx X T'g) Txyz/xy — Txysx.

Suppose that f is supported on some admissible subset. We obtain

y(g)ef
=p%rZ (P27 Ty ((5(1),Nysvz =TTy zv ) - Py > ((F, —Txysx))
by definition
=pXy((idx xTq) P& ((s(1),Nysvz =T Tyzsv)) - pXv? (F))
by Axiom 16 for the square above
=pXy?(idx x Tg) (" ((s(1),Nysyz —=TyTyzsv)) - (idx x Ig) pXy? (F))
by Axiom 18 for idx > Iy
=pxz” (idx % I'g) (r((idx x Ty) pxy* (f)))
by functoriality of pull-backs and products with respect to twists
=(idx > g) (t((idx < Tg) pxcy* (F)))
by Axiom 19
=(idx > g) (t(f))
by Axiom 9.
O

Proposition 5.4. Let f : X — Y be a morphism in Cors and let g : Y — Z be a
closed immersion in Sm/S. Let t be the composite
- TXY/X
—— — Txysx + Nxy/xyz — (idx x Fg) Txy zrxy
— — Txysx + (idx X T'g) Txyzsxz + Nxv/xz — (idx X T'g) Txyzsxy
—= — Txysx + Txvsx + Nxy/xz — (idx X Tg) Txyzsxy
—= Nxy/xz — (idx %X Tg) Txyz/xy

—= Nxy/xz — (idx % ) Txz/x.

29



Then we have
y(9) e f = (idx < g) (t(f)),
where the right side is the image into the direct limit of the corresponding element.

Proof. The same proof as in the above proposition applies. O]

Before proceeding further, we make the isomorphisms t and t above more concrete in
the category of virtual vector bundles.

Lemma 5.2. Suppose that we have a commutative diagram in Sm/k

W\
i X —Y
‘ f
z-% s

in which the square is Cartesian and f, g are smooth.

1. If j is a closed immersion, then the following diagram commutes

Txsvly + Tyss — Txssly Txszly + Tzssly
Ny/x + Tyys
Txszly +Nysz +Tyss Txszly + Tyss + Nyz.

2. If j is smooth, then the following diagram commutes

Txsvly +Tyss ——— Txssly ———— Txszly + Tzssly
Ny/x + Ty/ss
Ny/x + Tysz + Tzssly Tvsz + Nysx + Tzssly .

Proof. In both cases, there is a commutative diagram with exact row and column

0
Tyss
N
0——Txsvly Txssly Tyss 0
~
Ny /x
0.



It induces a commutative diagram

Txssly —— Txsv ly + Tyss

/

Tyss + Ny/x

by Theorem 3.1, (3). We now pass to the proof of the first statement. We have a
commutative diagram with exact columns and rows

0 0
Tyss Tyss
0—— Txszly Txssly Tzssly 0
0—— Txszly Ny /x Ny/z 0
0 0.

We deduce the following commutative diagram by Theorem 3.1, (3)

Txssly ———— Txszly + Tzssly Txszly + Tyss + Nysz

Tyss + Ny/x

Tyvss + Txszly + Nysz.

Furthermore, there is an obvious commutative diagram

Ny/x + Tyss ———— Tyss + Ny/x

Txszly +Nysz +Tyss Txszly +Tyss + Nysz

Tvss + Txszly +Nysz .

So the statement follows by combining the diagrams above.
For the second statement, observe that we have a commutative diagram with exact
columns and rows

0 0
0 Ty/z Tyss Tzssly 0
0—— Txszly Txssly Tzssly 0
Ny/x ==—=Ny/x
0 0
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Then the result follows by the same method as above by applying Theorem 3.1, (2) to
the diagram above.
O

Lemma 5.3. Suppose that X,Y,Z Sm/S and that g : Y — Z is a morphism in
Sm/S.

1. If g is a closed immersion, then the isomorphism t in Proposition 5.3 is equal to
_TXY/X s NXY/XZ - I\IXY/XZ - TXY/X s NXY/XZ - (ldx x g) TXZ/X-
2. If g is smooth, then the isomorphism t in Proposition 5.4 is equal to
—Txvsx = —(idx % 9) Txz/x — Txv/xz-

Proof. We have a commutative diagram in Sm/k

XY
ick
xg XY Z e XY
ST
XZ o X

in which the square is Cartesian. Suppose first that g is a closed immersion. In that case,
we show that the composite

— Txvsx
—— — Txysx + Nxysxyz = (idx %< Tg) Txyz/xy
— — Txysx + (idx X T'g) Txyzsxz + Nxvs/xz — (idx X T'g) Txyzsxy
— Nxy/xz — (idx % T'g) Txyz/xy
——- Nxy/sxz — (idx % g) Txz/x
—— Nxvy/xz = Nxv/xz — Txvsx
— — Txvsx

is just id_r, . Indeed, it is equal to

— Txvsx
—— — Txysx + Nxysxyz = (idx %< Tg) Txyz/xy
—— — Txysx — (idx X Ty) Txyz/xy + Nxysxyz
—= = Txysx — (idx % g) Txz/x + Nxy/sxyz
—— — Txvysx = Nxvs/xz = Txysx + Nxy/xyz
—— — Txvsx = Nxysxz = Txysx + (idx X I'y) Txyz/xz + Nxy/xz

- — Nxv/xz — Txysx + Nxv/xz

- = TXY/X;

where the sixth arrow is the cancellation map between the first and the fourth term. By
Lemma 5.2, (1) and the commutative diagram above, we have a commutative diagram

(idx x T'g) Txyz/xy + Txysx (idx xT'g) Txyzsx
Nxy/sxyz + Txvrsx (idx % I'y) Txyzsxz + (idx % g) Txz/x
(idx *T'g) Txyzsxz + Nxv/xz + Txv/x —— (idx X I'g) Txyz/xz + Txvsx + Nxv/xz-
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Hence the composite above is equal to

— Txvsx
—— — Txvsx + Nxvysxyz — (idx < Tg) Txyz/xy
—— — Txysx — (idx X T'g) Txyz/xy + Nxvy/xyz
—— — Txxysx = Nxvsxyz + Nxv/xvz
—— — Txysx = Nxvy/xz — (idx %X I'g) Txyz/xz + Nxv/xvz
—= — Txvsx — Nxy/xz — (idx X I'g) Txyzsxz + (idx X Tg) Txyzs/xz + Nxv/xz

- = Txvysx,

which gives the result.
Suppose next that g is smooth. We show that the composite

- TXY/X

- (IdX x Fg) TXYZ/XY + NXY/XYZ - TXY/X

— — (idx x Fg) Txvzzxy + Nxysxyz — (idx % Fg) Txyz/xz
—— — (idx % T'y) Txyzsxy + Nxysxyz — Nxv/xyz — Txv/xz
— — (idx % T'g) Txyzsxy — Txvsxz

— — (idx % 0) Txz/x — Txv/xz

- TXY/X

is just id—r,, .. By Lemma 5.2, (2) and the commutative diagram at the beginning of
the proof, we get a commutative diagram

(idx xT'g) Txyzsxy + Txysx (idx xT'g) Txyzsx
Nxy/xyz + Txvsx (idx < T'g) Txyz/xz + (idx % g) Txz/x
Nxv/xvyz + Txysxz + (idx X 0) Txz/x —— Txvsxz + Nxvy/xyz + (idx %< 9) Txz/x.

Hence the given composite is equal to

— Txvsx
—— — (idx < T'y) Txyzsxy + Nxvy/xyz = Txysx
—— — (idx % I'g) Txyzsxy = Txysx + Nxv/xyz
—— — Nxv/xyz = Txvysx + Nxv/xvz
—— — Nxvy/xyz — (idx % 9) Txz/x — Txvsxz + Nxy/xyz
—— — (idx % g) Txzsx — Txvsxz

- — Txysx,

where the fifth arrow is the cancellation between the first and the fourth term. The result
follows. u

Proposition 5.5. For any X Sm/S, y(idx) is an identity. That is, for any X,Y
sSm/S, f Cors(X,Y),g Cors(Y,X), we have

y(idy)of=1F, gey(idx)=g.
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Proof. The second equation follows by Proposition 5.2 and the first one follows from
Lemma 5.2, (1) and Proposition 5.3. O

Combining Proposition 5.1 and Proposition 5.5, we have proved that Corg is indeed
a category. We now complete the proof that y is indeed a functor.

Proposition 5.6. For any X T v Zin Sm/S, we have

y(gef)=y(g)°y(f).

Proof. Suppose at first that f is a closed immersion or that it is smooth. We have a
Cartesian square

xz Pz y 7
Mgof Mg
X'y

and two iSOHlOthiSHlS a:Nyyz— FgTY z7v —— 0 and b: Nyx/xz — FfTXZ/X —- 0. For
convenience, we denote the induced morphisms at the level of correspondences still by a
and b respectively. Then we have

y(@) < y(f)
=(f < idz) (v(9))
by Proposition 5.2
=(f xidz) Ty (@7*(1),Nysvz — LyTyzsv))
by definition of y
=(Pgor) T (a71(1))
by Axiom 16 for the square above
=(Pgor) (07(1))
by Axiom 9 and functoriality of pull-backs with respect to twists
=y(@-f)
by definition of y.

Suppose now that f = peiin Sm/S, where p is smooth and 1 is a closed immersion.
Then

V(@) ey(F) =y(@ e y(@)ey(p) =v(i=g)oy(p) =vy(@-f)
by the statements above. O]

Remark 5.1. In [V01, Section 2] and [GP14, Section 2], the set Fr,(X,Y) (resp.
ZF,(X,Y)) of (resp. linear) framed correspondence of level n for any X,Y Sm/k,n
N is defined. Garkusha-Panin and Voevodsky define the category ZF (k) to be the category
whose objects are those of Sm/k and

Homze (k)(X,Y) = nZFn(X,Y)
Here, any element s in Fr,(X,Y ) is given by (an equivalence class of) a commutative

diagram as below
g

AL 2 U Al
p‘ i‘ z
X zZ—Y,
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where a is étale, i,a i are closed immersions, pea-i is finite, z is the zero section and
the square is Cartesian. Suppose that Z = and denote the composite

U——Al —Y
by f. We have a commutative diagram

Fr b=axid

Uxy Al xY S X xY

AL — X

u

in which the square is Cartesian. Then we can associate to s an element a(s) in Corg(X,Y)
defined to be the image of 1 under the composite

E2(Y,0) E(Y,N, — N,) : EP (A, —Tap/v)
g

b I
EZ(U, =9 Tag/v) :

EZ2(U,Nry =Nr, —9g Tan/v)

n-+dy —d
Ez " (AR XY, —Tagxvsay — 0 Tag/x)

C

Corg(X,Y) Eoiry ™ (X = Y, =Txxv/x),
where we have used the isomorphism g Tan,y = a Tap/x. One checks that this induces a
functor
a:ZF (k) — Cory

as in [DF17, Proposition 2.1.12].

Definition 5.4. Define PSh(S) to be the category of contravariant additive functors from
Cors to Ab as in [DF17, Definition 1.2.1] and [MVWO06, Definition 2.1]. The objects of
this category are called presheaves with E-transfers over S. Further, define Sh(S) to be
the full subcategory of objects whose restriction on Sm/S via y are Nisnevich sheaves.
We call them sheaves with E-transfers over S.

Definition 5.5. Let X,Y  Sm/S, we define cs(X) by cs(X)(Y) = Cors(Y,X). Itis
the presheaf with E-transfers represented by X.

We recall the following three propositions which are the technical heart when dealing
with Nisnevich sheaves:

Proposition 5.7. Let f : X — S be a locally of finite type morphism between locally
noetherian schemes. Let | be a directed set and let {T;} be an inverse system of S-schemes
such that for any i; i, the morphism T;, — T;, isa ne. Then 1(1_@i T; exists in the
category of S-schemes and we have

Homs (lim Tj, X) = lim Homs(T;, X).
i i

Proof. See [Pro, Lemma 2.2] and [Pro, Proposition 6.1]. O

Now, let A be a noetherian ring and let p SpecA. Consider the set | whose elements
are pairs (B, (), where B is a connected étale A-algebra, g  SpecB, g n A = p and
K(p) = k(q). Set (B1,01) (Bg,0p) if there is an A-algebra morphism (always unique if
exists) ¥ : By —— B, such that £71(qz) = ;.

35



Proposition 5.8. The set I is a directed set and we have
lim B = A7,
(B.9)

where the right hand side is the Henselization of A,.

Proof. See the remarks around [Mil80, Lemma 4.8] and see for example [Mil80, Theorem
4.2] for basic properties of Henselian rings. n

Proposition 5.9. Let U, X, Y be locally noetherian schemes, p : U — X be a Nisnevich
covering and f : X — Y be a finite morphism. Then, there exists for everyy Y a
scheme V with an étale morphism V. —- Y being Nisnevich at y such that the morphism
U xy V — X xy V has a section.

Proof. Consider the following commutative diagram with Cartesian squares

u—f x—" v

v |
B

R, 2 R; SpecO'Q‘y.

Since B is a finite morphism, R; is a finite direct product of Henselian rings (see [Mil80,
Theorem 4.2]). Hence, o has a section S since it is Nisnevich at every maximal ideal of
R;. Pick an affine neighbourhood Up of y. By [Pro, Lemma 2.3] and Proposition 5.8,

R; = lim SpecB  xy, F1(Ug) = lim (SpecB >y, F71(Up)),
(B.a) (Oy (Uo).y) (B.a) (Oy (Uo).y)

hence there exists a (Bg,q) (Oy (Up),Y) such that y e s factor through the projection

lim (SpecB xy, F71(Ug)) —— SpecBg <y, F(Up)
(B.q) (Oy (Uo).y)

by using Proposition 5.7 for p. Then we finally let V = SpecBy. [
Now we are going to prove a similar result as in [DF17, Lemma 1.2.6].

Proposition 5.10. Let X, U Sm/S and let p : U — X be a Nisnevich covering.
Denote the n-fold product A xg A xg --- xg A by Ag for any schemes A and B. Then,
the complex of sheaves associated to the complex

dn da do

CU/X) =+ ——¢s(UD) Cs (U x5 U) —2¢g(U) —2cg(X) -2 0,

is exact. Here we set pj : Uy — UR™! to be the projection omitting i-th factor and
dn = §(=1)""cs(pi)-

Proof. Given Y Sm/S, we have to prove that the complex is exact at every point
y Y. Now, assume that we have an element a  Corg(Y,UJ) such that d,(a) = 0.
We may suppose that there exists T Ag(Y, X) such that a comes from EZX ™ ((Y xg
U)¥ waxs —Tyxsunsy) and dn(@) = 0, where R" is defined by the following Cartesian
squares (R := R?)

R" ——Y xg U)Q — UQ

T——Y xg X——X.
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By Proposition 5.9, there is a Nisnevich neighbourhood V of y such that the map p : R <y
V —- T Xy V has a section S, which is both an open immersion and a closed immersion
(see [Mil80, Corollary 3.12]). Let D = (R <y V )\s(T %y V). Then dn(aly xsup) = 0. We
have a commutative diagram

V Xg UQ—Y Xg UQ

V XS X — Y xS X1
Cartesian squares

R"xyV—V stQ—V,TxyV;(V st)\D,

Rn

-

YstQ—Y R xy V V xg U

equations
Y xsUg = (Y %s U)y.cx
V xs Ug = (V %s U)yugx
R"=Rx; ... x; R=RY,
R %y V = (Rxy V)7.,v = (T Xyxex (V Xs U))T, v,
(Rxy V)T, v = (RXy V){sox

and a diagram of Cartesian squares in which the right-hand vertical maps are étale:

(Rxy V)i vy —— (V X5 U)Jwex Xxex) (V XsU)\ D) :=Wn*t

id"xs Jn+1

id(R >y V)Tl (V x5 Ui
Pn+1 Pn+1

(R XY V)!nyv (V XS U)\r} xg X1

where pn+1 denotes the projection omitting the last factor. The maps

dx —ds n _ (PR+1°jn+1
Erfisy v ((V X5 U)¥xgx: —Tvxsugsv

dx —d
ER)éXyﬁl (W n+l, _TV ><5U>"<'+1/V |Wn+1)

and
jn+1

dx —ds n+1  _ dx —ds n+1 _
ERanv((V Xs U)v xg X Tv xSuQ"l/v) I ERanv<W J Tv xsURt/v |W”+1)

are isomorphisms with respective inverses (Pn+1 © jn+1) and (Jn+1) by Axiom 20.
Let’s consider the element

] _ - dx —d
b= ((ne1) ™" ° (Pres ©dnw) )@l sy, ) ERgy ((V s U)TLixs — Ty quaia )s
where we have used the isomorphism

pn+1TV xsUR/NV T TV XSUQ+1N
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since U — X is étale. Then

n+1 n+1

dnea(b) = (=D)Tes(pi)(b) = (=1)"7pi (tinea (b))

i=1 i=1
by Proposition 5.3, where
ti,n+1 : _TVXSUQH/V Bl _(idv Xs pi) T(V xsUR)/V _T(VXSUQH)/(V =xsUR)

is the isomorphism of Proposition 5.3 applied to

b + Pi
Vv ug*t up .

If 1 <i<n+1, we have Cartesian squares

Wn+1 _ V %< U)N Wn+l_— V %< U n+1
pn+1°]n+£ S >VXSX Jn+1 ( S )VXSX
pi Pi ‘ Pi

wn B (v UNax,  W" (Vg UV xsx-

Pi

So

Pi (tin+1(D))
=(Ppi © tine1° (ne) ™" (Pt © Jnet) ) (@l xsu)g .y ~Tvxsugrv))
by definition
=(Pi © (Gnw) ™ @ Jnea(tines) © (et © Jner) )@l xsupp o)
by functoriality of pullbacks with respect to twists
:(<jn>_l °Pi °Jne1(tinet) © (Pt © Jn+1) )(a|(V ><sU){)xSX)
by Axiom 15 for the right hand square above
=((n) 7" e Pi © (Pnez o dner) ©tin)(@ly x5U)] o)
by functoriality of pull-backs with respect to twists
=((n) " 2 (Pn2dn) o pi ©tin)(@wxsu)p. )
by Axiom 15 for the left hand square above.

For i = n+ 1, we have

Pn+1 (tnsz,n+1(h))
=(Pn+1 © tarrn+t © (ns) 7 © (Pt © Jna) )((@lev *sU xgx ! —Tvxsugrv))
by definition
:(pn+1 °th+in+1 © Jn+1 © (pn+l ° jn+1) )(al(V *xsU)y xSX)
by Axiom 20
:(pn+1 ° Jn+1 °jn+1(tn+1,n+1) °© (pn+1 °jn+1> )(al(V XSU)stx)
by functoriality of push-forwards with respect to twists
:((pn+1 °jn+1) °© (pn+1 °jn+1) )(al(V st)\'}XSX)
by Axiom 12 and Lemma 5.3, (2)
:al(V =xsU)0 X

by Axiom 20.
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Hence

So the complex is exact after Nisnevich sheafication. n

Then by the same proofs as in [DF17, 1.2.7-1.2.11], we have the following result:

Proposition 5.11. 1. The forgetful functor o : Sh(S) — PSh(S) has a left adjoint
a such that the following diagram commutes:

PSh(S) —~—PSh(S)

a

a

Sh(S) ——Sh(S),

where a is the Nisnevich sheafication functor with respect to the smooth site over S
(Section 7.2 for notations).

2. The category Sh(S) is a Grothendieck abelian category and the functor a is exact.

3. The functor y appearing in the lower line of the preceding diagram admits a left
adjoint y and commutes with every limits and colimits.

Proof. The same as [DF17, Proposition 1.2.11]. O

Definition 5.6. Given any X  Sm/S, we define Zs(X) = a(cs(X)) and we denote
Zs(S) by s.

Proposition 5.12. Let X Sm/S and U; U, = X be a Zariski covering. Then the
following complex is exact as sheaves with E-transfers:

00— Zs(Ul N Uz) - Zs(Ul) Zg(Uz) - Zs(X) — 0.

Proof. See [MVWO06, Proposition 6.14] with use of Proposition 5.10. Note that this com-
plex is left exact because for any open immersion U~ X in Sm/k, cs(U) is a subsheaf
of cs(X) by Axiom 20. O

We are now going to define a tensor product on the category Cors.

Definition 5.7. Let X;,Y; Sm/S for i = 1,2. Let further f;  Corgs(Xy,Y;) and
f2 Cors(XZ,Y2>. Set

1 xg fp =p,f1-p,f2 Cor(X; xs Xz, Y1 X5 Y3)

where p;j : X1 Xg X, X5 Yy X5 Y, — Xj X5 Yj, 1 = 1,2 are the projections. Here we have

used the ISOmOI’phlsm _TX1X2Y1Y2/X1X2 - _TX1X2Y1Y2/X1X2Y2 - TX1X2Y1Y2/X1X2Y1' We
say that f; xg T, is the exterior product of f; and f,.

To prove that the tensor product is well-defined, we need to verify the compatibility
of the tensor products with compositions.
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Lemma 5.4. Let X;,Yi,Z; Sm/S for i = 1,2. Let further pl; : X;Y;Zi —» X;Z;,
aj - X1 XoY1Yo2Z1Z, — XiYiZi, bi : X XoZ1Zy — XiZi and P13 : X1 XoY1Y2Z1Z5 ——
dy; +dz;

X1X3Z12Z, be the projections. Suppose that o;  E, ((pl3) Vi — Tx,v,zisx;z;) Where
Ci As(Xi,YiZi) andvi Px,z. Then we have

byp1s (01) - bypTs (02) = P1s (By () - @,(0t2)),
where we have used the isomorphism (exchanging the middle two terms and then merging
the last two terms) from
21 (P13) Vi — Txuxo¥1¥221zo/xaxo¥2z122 + 82(PF3) V2 = Txyxovivaz120/%a X2¥12:2
to

P13(by (V1) +ba(V2)) = TxsXoV1Y22120/%: %0212,
in the right hand side.

Proof. We have two Cartesian squares

2 1
XoY2Zy — B X,7, X1Y1Z3 — X7,
a p2s P‘ by
X1 XoY1Y2Z1Z, X1 XoY1Z1Zo XeXoY1Z1Zo P2 X1 X0Z1Z5

and equations Pas = by © P1oss, P ° g = a; and P13 = P12sas © . Then we have

blpiis ((Gl, (pis) Vi — TX1Y121/X121)) ) b2pi3 (GZ)
=(P1245) P (02) - bpT5 (02)
by Axiom 15 for the right square above

=(P1245) (P (01) - PyaashoPis (02))
by Axiom 17 for P1245

=(P12ss) (P (O1) - PosPTs (012))
by Axiom 9
=(P124s) (P (01) - G @(0r2))
by Axiom 15 for the left square above

=(P1245) 0 (A P (1) - 85(012))
by Axiom 17 for q

=(P1245) 4 (a;(01) - 8,(0X2))
by Axiom 9
=P13 (81(01) - ay(0r2))
by Axiom 12.
O
Proposition 5.13. Let X;,V;,Zi Sm/S, fi Cors(X;,VYi), gi Cors(Yij, Zi) where
i=1,2. Then
(91 %5 02) © (f1 s F2) = (91 = F1) %5 (92 ° F2).
Proof. We have a commutative diagram (i = 1, 2)

Qi <rij

Y]_YzZlZz Yizi
P23 phs _
XiXoY1Y2Z1Z, 2 XiYiZi — 2 XiZ;
P13 P ‘
P12 bi
X XoY Yy —P0 %y, X1 X5Z1Z,.

40



Then

(91 s g2) © (f1 x5 T2)
=P13 (P23((d1 X 1) g1 (A2 X 12) G2) - Prp((da X 1) Fr- (G2 % 12) F2)
by definition
=p1s (a,(P3s) (91) - 33(P33) (92) - ay(Pl) (F1) - @,(p3,) (F2))
by Axiom 10 and Axiom 9.
=p13 (c(a1(Pzs) (91) - @1 (Pr2) (F1) - @x(ps) (Q2) - @(PL2) (F2)))
by Axiom 6 and Axiom 16. Here ¢ = C(al(piz) (—Tx v17%1),s az(p§3) (—Tv,27v,))
=p13 (c(ar((P23) (91) - (P12) (F1)) - @x((P%s) (02) - (PT,) (F2))))
by Axiom 10
=b,p1s ((P33) (1) - (P12) (F1)) - bopis ((P3s) (02) - (P2) (F2))
by Lemma 5.4
=b; (91 © 1) - 0y(92 © F2)
by definition
=(91 ° F1) %s (g2 ° F2)
by definition.

[]

Now that we proved that the category Corsg has a tensor product, we review some
basic constructions that will be useful later.

For any F PSh(S) and X Sm/S, we define F* PSh(S) by FX(Y) = F(X xg
Y). If F  Sh(S), then it’s clear that F*  Sh(S) also. We define C F forany F  Sh(S)
to be the complex with (C F), = F " as in [MVWO06, Definition 2.14] and differentials
as usual.

A pointed scheme is a pair (X, X) where X Sm/S and X : S —= X is a S-rational
point. We define Zg((X1,X1) ... (Xn,Xn)) for pointed schemes (Xj, Xj) as the cokernel
of the map

(—1)i~Lidx...xx; x...xid

On: iZs(Xpx...xXjx...xX,) Zs(Xyx ... xX,).

We denote Zs((X,X) ... (X,X)) by Zs((X,x) ") and Zs(X,X) by Zs((X,X) *). Then
we define Zg(q) = Zs((Gm, 1) 9)[—q] for ¢ = 0 and we set Zg(S) = Zs = Zs(0) = s.
Following the notation in [MVWO06, Lemma 2.13], we let [Xi] be the composite

X; — S =L X;
and e; CorS(Xi, Xi) to be idxi — ZS([Xi]).

Lemma 5.5. For n = 2, the sheaf Zs((X1,X1) ... (Xn,Xn)) is just the image of the
map
€1 X ... Xen: Zs(Xy X ... xXp) — Zs(Xy % ... % Xp).

Moreover, the inclusion of Zg((X1,X1) ... (Xn,Xn)) into Zg(Xy % ... % X;) as an
image is a section of e; < ... X< e,.

Proof. We prove the same statements after replacing Zs by Cs and then sheafify. The first
statement is tantamount to Ker(e;x...xey) = Im(8,). Now, Im(6,) Ker(e;x...xep)
because €j © [Xj] = 0. On the other hand, Ker(e; x...xe,) Im(8,) because

€1 X ... X ey = Idx,x. xx, + To, ... % Tqy,,
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where for every n-tuple (0, ...,0n), there exists (at least) o such that fy, = —[Xi]. It
follows that fq, % ... x fy, factors through id < ... > x; % ... % id for that i.
The second statement follows from the fact that e; is idempotent. m

By the lemma above, we can consider the sheaf Zg((X1,X1) -+ (Xn,Xn)) as a
subsheaf of Zg(Xy x -+ x X,).

Lemma 5.6. For any two pointed schemes (Xi,X1), (X2, X2), we have a split exact se-
quence

00— Zs<<Xl,X1) (Xz,Xz)) — ZS(X1><SX2, (X11X2)) - Zs<Xl,X1) ZS(XZ,XZ) — 0.
Proof. A direct computation yields the following split short exact sequence:

(m,e1xez) —(idx; ,X2)+(X1,idx,)

Zs  Zs((Xy,X1) (Xz,Xz)() Zs (X1 %s )%gg o%zg(xl,xl) Zs (X2, X2)

X1,X2)+id

1°P1,€2

where T : X; Xg X, — S is the structure map. The result follows from this seqeuence,
after quotienting the first two terms above with Zg (sometimes called ‘killing one point’).
O

The following definitions comes from [SV00, Lemma 2.1].

Definition 5.8. Let n = 2 and let F;,G  PSh(S) for i = 1,---,n. A multilinear
function ¢ : F; < - x F, — G is a collection of multilinear maps of abelian groups

Dxy, xn) P F1(X1) X oo X Fp(Xp) == G(Xy Xs -+ X5 Xp)
for every X;j  Sm/S, such that for every f  Corg(Xj, X;), we have a commutative
diagram
TG R
"'xFi<Xi)x"'—é("'xSXi xs...)
- xF(F)x.. G(---xfx---)‘

xFI(XI)xq)(ié(xSXI XS"')

Definition 5.9. Let n = 2 be an integer and let F;,G  PSh(S) (resp. Sh(S)) for
i=1,---,n. The tensor product F; 2 --- B2"F, (resp. F; s--- sFy) is the presheaf

(resp. sheaf) with E-transfers G such that for any H P Sh(S) (resp. Sh(S)), we have
Homs (G, H) = {Multilinear functions F; < - -- < F, — H}
naturally.

For any F,G  PSh(S), we can construct F & G PSh(S) as in the discussion
before [SV00, Lemma 2.1]. Moreover, we define Homg(F, G) to be the presheaf with E-
transfers which sends X  Sm/S to Homs(F, GX). If F, G are sheaves with E-transfers,
weset F sG=a(F 2 G). If Gis asheaf with E-transfers, it’s clear that Homg(F, G) is
also a sheaf with E-transfers. Finally, it’s clear from the definition that F 2§ G =G &'F
and F IS G=0G S F.

Proposition 5.14. For any F,G,H P Sh(S), we have isomorphisms

Homs(F 2 G,H) = Homs(F,Homg(G, H)),
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Homs(F & G,H) = Homs(G, Homg(F, H))
functorial in three variables. Simililarly, for any F,G,H Sh(S), we have isomorphisms
Homs(F s G,H) = Homs(F,Homg(G,H)),
Homs(F s G,H)=Homg(G,Homg(F, H))
functorial in three variables.
Proof. This is clear from the definition of the bilinear map. ]
If F,G,H Sh(S), it’s easy to see using the above proposition that (F sG) sH

and F s (G s H) are both isomorphic to F s G s H. It folllows that the tensor

product defined above is associative. Finally, one checks that s (resp. &) endows

Sh(S) (resp. PSh(S)) with a symmetric closed monoidal structure.

Proposition 5.15. If a morphism f : F; — F, of presheaves with E-transfers becomes
an isomorphism after sheafifying, then so does the morphism f & G for any presheaf
with E-transfers G.

Proof. The condition is equivalent to the map Homs(f, H) being an isomorphism for any
sheaf with E-transfers H. Now, we have

Homs(f £ G,H) = Homs(f,Homg(G,H))
by the proposition above. O

Proposition 5.16. 1. For any X,Y Sm/S, we have
Zs(X) szs<Y):ZS(X st)
as sheaves with E-transfers.

2. For any two pointed schemes (Xi,X;) and (X, X»), we have
Zs(X1,X1) s Zs(Xz,X2) = Zs((X1,X1)  (Xz,X2))
as sheaves with E-transfers.

Proof. We have cs(X) £ ¢s(Y) = cs(X xsY ) using the exterior products of correspon-
dences. Then the statement follows by Proposition 5.15. The second statement follows
by a similar method. O

Now we are going to prove some functorial properties of sheaves with E-transfers over
different bases. Our approach is quite similar as [D07]. The following lemma is useful
when constructing adjunctions, see [Ayo07, Definition 4.4.1] and [D07, 2.5.1].

Lemma 5.7. Let ¢ : C — D be a functor between small categories and M be a category
with arbitrary colimits. Then the functor

¢ :PreShv(D,M)—- PreShv(C,M)

defined by ¢ (F) = F = ¢ has a left adjoint ¢ .
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Proof. Suppose G~ PreShv(C,M). For every object Y D, define Cy to be the
category whose objects are Homp (Y, (X)) and morphisms from a; : Y —- ¢(X;) to
a:Y — ¢(Xz)areb Homc (Xy, X3) such that a; = ¢(b)ea;. We have a contravariant
functor

ey ZCY — M
defined by By (Y — ¢(X)) = GX. Then define (¢ G)Y = limBy. For any morphism
C:Y1 — Y, in D, we define (¢ G)(c) using the following commutative diagram

eYz (a)

. la-c
la

fiOvzg e

By,

for every a: Y, — ¢(X). One checks it is just what we want. ]

Definition 5.10. Suppose that f : S —— T is a morphism in Sm/k. Forany X Sm/T,
set X5 = X xS Sm/S. For any X3, X, Sm/T, denote by pr the projection
(Xl xXT Xz)s — Xy X1 Xo. Define

¢': Corr — Corg
X ——— XS )
g — g°

where g — ¢° : Cory(Xy, X3) — Cors(X3$,X?) is the unique map such that the
following diagram commutes

dx.,—d Pe dx.,—d
EZ? T (X1 X7 Xa, =Ty sy Xor;) —— Epfi(f(z)s((xl X1 X2)%, =Ty ey x2)57%5)

CorT (Xl, Xz) CorS <Xf, XZS)

forany Z  Ag(Xy, X3).

Proposition 5.17. Suppose that X; —— X, —>— X5 are morphisms in Corr. Then

(92°01)° =05 = 07
So ¢f : Cort —— Corsg is indeed a functor.
Proof. We have diagrams

X1 X1 X Xls Xg XZS

P12 Q12

P13
X1 X1 X3 Xy X Xp X1 Xz XS xg X$ 2 XS =g X$ xg X§

P23 23

Xa X1 X3, X$ xg XS,
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and three Cartesian squares

Xy x5 X3
p23

Xy X1 Xz —2 Xy %1 Xy X7 Xz —2— X, x5 X,

r q t p

S s 3 S S s M2 S S

023

XZS Xg X3S
Suppose that g; and gare supported on some admissible subsets. We have

(92 © 91)S

=T P13 (P23(92) * P12(91))
by definition

=013 t (Pp3(92) - P12(91))
by Axiom 15 for the left square above

=013 (dg2P (92) - Upsd (91))
by Axiom 10 and Axiom 9

=05 © g7

by definition.
It’s then easy to verify that y(idy )S = y(idys) forany Y ~ Sm/T. So ¢ is a functor. [
It is straightforward to check that ¢pfi-T2 = ¢ o pTt.
Proposition 5.18. Suppose fi Cort (X, Y;) where i = 1,2. Then
(Fy %7 F)° = P x5 5.

Proof. This follows from the commutative diagram

<X1Y1X2Y2)S i /><1Y1X2Y2\
(X1Y;)S P A A A 2 XY,

Proposition 5.19. In the notations above, we have an adjoint pair
f :Sh(T) Sh(S):f
where (fF F)(X)=F = ¢f for F  Sh(S).

Proof. Applying Lemma 5.7 to ¢, we obtain an adjunction PSh(T)  PSh(S).We may
then apply the sheafication functor of Proposition 5.11 to get the desired result. ]

Obviously, we have (fyofy) =F, of  (fiof,) =F of;.

Proposition 5.20. Suppose that f : S — T is a morphism in Sm/k.
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1. Forany Y Sm/T,
f ZT(Y> = Zs(Y X1 S)

as sheaves with E-transfers.
2. Forany F Sh(S)andY Sm/T,
(FF) =f (F"79)
as sheaves with E-transfers.
3. Forany F Sh(T)and G Sh(S),
Hom. (F,f G) = f Homg(f F,G)
as sheaves with E-transfers.
4. For any F,G Sh(T), we have
fF sfG=f (F 10G)
as sheaves with E-transfers.
Proof. 1. We have

Homs(f ZT<Y),—> = HomT<ZT(Y),f —) = H0m5<ZS(Y X1 S),—)

2. For any Z Sm/T, we get using Proposition 5.18

(FF)Y(Z) =F((Y %1 Z) %71 S) = F((Z %1 8) x5 (Y x1 8§)) = (f (F"™7%))(Z).

3. Forany Y Sm/T, we have

Hom; (F,f G)(Y) = Hom:(F,(f G)")
— Homy(F, T (GY>*79))
by (2)
= Homs(f F,G"*79)
= (F Homg(f F,G))(Y).

4. For any H Sh(S),

Homs(f F sf G,H) = Homs(f G,Homg(f F,H))
= Hom+ (G, f Homg(f F,H))
= Hom(G,Hom< (F,f H))
by (3)
= Hom:(F 1G,fH)
= Homs(f (F 1 G),H).
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From now on in this chapter, we suppose that f : S — T is a smooth morphism in
Sm/K. Given such a morphism, we may consider any smooth S-scheme as a smooth T-
scheme via . Moreover, the fact that the diagonal map S —» S %t S is a closed immersion
implies that for any smooth S-schemes X; and Xj;, the natural morphism

Of : Xq Xg X » Xg X1 Xy

is a closed immersion. Indeed, this follows from the Cartesian square

Xy xXg Xp Xy %1 X

S———Sx:S.
Definition 5.11. For X;, X, Sm/S, we define

bf: Cors — Corg
X 1 X )

g — Or

where g — g1 : Cors(Xy, X;) — Cory(Xy, X;) is the unique map such that the follow-
ing diagram commutes

dx, —ds ar °tr dx, —dt
Bz T (Xexs Xo = Txyxexorxa) — Eg by (KXo X1 Xo, =Ty er X074 )

Cory (X, Xz) br

Cors (Xl, Xz)
for any Z  As(Xy, X;). Here, t¢ is the isomorphism

- TX1><5X2/X1
__’ N(XleXZ)/(XlXT X2) T N(Xlxsxz)/(xle X2) T TXlxsxz/Xl
- N(XleXZ)/(Xle X2) quX1><T Xa/Xy+

For convenience of notation, we denote Tx,y by T¢ for a smooth morphism f : X — Y
and Nx/y by Ng¢ for a closed immersion T in the following few propositions.

Proposition 5.21. Suppose that X; 9 X5 % Xz are morphisms in Cors. Then,
we have

(92 °01)1 = ot © O17.
So ¢f : Cors — Corr is indeed a functor.

Proof. We have Cartesian squares

Xy xXg Xp +X1 <1 Xz

Q12 d12

Xy Xg Xp Xg Xg —— X %1 (Xz x5 X3),

Xy %7 (Xg Xg Xg) —— Xy X1 Xp X7 X3

r P23

Xy xg X3 +X1 X1 Xz,

47



X1 Xg Xy X5 X3 (Xq xs Xz) %1 X3

X1 X1 (Xz %5 X3) ! Xy X1 Xy X1 X3,

q
Xy xg Xy xg X3 — X1 %g X3
i ‘ K

Xy X1 (X %g X3) Pro=d Xy X1 Xz,

and commutative diagrams

X1 %1 X,

2 P12

X1 %1 (Xz %5 X3) . X1 %7 Xy %1 X3,

X1 xg Xy Xg X3 i X1 X1 (X %5 X3)

r

Xy Xg Xs.

U23

For g; and g, supported on admissible subsets, we have

got © Q17

=] tr(02) ° 1 te(Q1)
by definition

=P13 (Poa) tr(92) - P1oi tr(91))
by definition

=p13 (q 1 te(92) - Pyoi t(01))

by Axiom 16 for the second square above

=P13 G (F t(92) - 4 Pl tr(91))
by Axiom 18 for q

=p13 G (r te(92)  dpoi te (1))
by Axiom 9
=P13  (r te(2) - T diote(01))
by Axiom 16 for the first square above

=Pz 0 (i 1 te(d2) - Upptr(01))
by Axiom 18 for i

=P13 § i ((Upatf(92) - Aate(91), 1 Ng— i 0 PraTxyxrxarxs + Ni —i @ Tpy,))

by Axiom 9

=(P13 ° q) T ((dstr(92) - Gaote(92), =1 G PraTxyxrxarxy + Nii =1 Tpigeq))
by Axiom 19, (1) and functoriality of push-forwards with respect to twists

=K 13 (A3t (92) - Giote(91), —U1sK Ty xarxy + ANk = Tg,))

by Axiom 19, (3) for the last square above.

Now, we have to treat the twists. We say that a morphism f : A+ B — C + D in
a Picard category contains a switch if there are morphisms g : A—- D and h:B — C
such that f = ¢(D,C) = (g + h). Conversely, we say that it doesn’t contain a switch if
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there are morphisms g : A — C and h : B — D such that T = g + h. We have a
commutative diagram in which the three squares are Cartesian

X1 xXg Xy X5 X3 ! (Xq x5 Xp) %1 X3

X1 X1 (X3 %5 X3) . Xy X1 X5 X1 Xa.

This induces a commutative diagram (in which all arrows contain a switch)

Ny +q Ni —Ny+uN,

since they all come from exact sequences related to Nj .q = Nyoy = Ng.i . Then we have
a commutative diagram (no arrow contains a switch except ¢)

W

by the diagram above. Hence the composite

g Ni +1 Ng— Nyu+Ng — 1 Ng+u N,
is equal to the morphism with a switch
g Ni +1 Ng— 1 Nqg+uN,
where the morphism g Nj —- u N, is given by the composite
g Ni — N;j — u N,.
So the composite (in which morphisms are without switch)
O23Nj + d12Ni == Ng + Ny = 935Nk +1 Ny
is equal to the morphism with a switch
O23Nj + 02oNi == 033Nk +1 Ng
where the morphism ¢;,Nij — @;3Nk is given by the composite
G22Ni == Ni = 033Nk
and the morphism g,3Nj — 1 Ny is obtained by pulling back the morphism
r Nj — Nq
along 1 .
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Moreover, there are commutative diagrams with Cartesian squares

Xy Xg Xg —————— Xy X1 Xg ———— X4
\ \
X1 xg Xp x5 Xz —— (X1 X5 X3) %7 X, Xy %Xg X3
i\ e
X1 X1 (X3 %5 X3) ] Xy X1 X3 X1 X; Xy X1 X3
and _
Xz Xs X3 ! Ko Xy Xg———X;

\ \
X1 Xg Xz X5 X3 (Xy x5 Xp) x1 X3 X1 %s Xz
\ \
X1 Xs X3 : Xy Xt Xg——X,

which induce commutative diagrams where the right-hand vertical maps contain no switch

I quTxleXZ/xl - quTxleXZ/xl + quNi )
u T(XIXSX3)XTX2/X1XSX3 —qu3 + Ny
|
q Tp13 i Tpl3°q +1 Nq
q23j TX2><T X3/ Xo — q23TX2><sX3/X2 =+ O3 Nj
q T(Xlxsxz)xTxa/Xlxsxz —Tq12 + Nq
|
K Txtyxr xa/xy = 13 Txyxexarxs 1 1aNk.

These calculations above together with the functoriality of q;53 with respect to twists yield

K 013 ((d2ste(92) - Qiote(91), —13K Txxyxxarx, + d1sNk — qug))
=K t¢ (033 (Up3(92) - U12(01)))

=(92° 01)7
by definition.

Finally, we have to show that (idx )t = idx for any X ~ Sm/S. We have the following
commutative diagram
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where  is the diagonal map. We have to show that the following diagram commutes

N ¢ =N ——N o= gTxxsxsx > —Txxgx/X
\ :
0 N ¢+ s(Ng = G Txxrxsx) —— Ngg = 8¢ Ty x/
‘ af

N =N ——N = 1 Txoerxsx . — T x/x-

The right-hand squares commute by functoriality of the push-forwards with respect to
twists and Axiom 14. The left square comes from the following commutative diagram
with exact rows

0 N N . Ng, ——0

S

00— sTxxexrx ——  1TIxxyxrx ——  gNgg ——0.

Using Axiom 14, it is straightforward to check that ¢¢ £, = Pr, © Pr,.

Proposition 5.22. Leta Corg(Xy, X;) and let b Corr (Y1, Y2). Identifying (X; Xg
XZ) X1 Y1 X7 Y5 with X1 Xg Xy Xg (Yl X1 Yz)s and Xy X7 Yy %Xt Xy X1 Y with (Xl Xg
YS) x1 (X2 %5Y,>), we have

ar Xt h= (a Xg bS)T.

Proof. We have a commutative diagram in which the square is Cartesian

r

(X1 %s Xz) X7 Y1 X7 Y, X1 X1 Yy X7 Xy X1 Y>

x g1 k

n Xy %1 X3 Y1 X1 Y.

P1

X1 Xg X3

Suppose that a,b are supported on admissible subsets. Denote by 8 the isomorphism
_qlTxlexz/Xl - q2TY1><TY2/Y1 - _TX1><TX2><TY1><TY2/X1><TY1
and by n the isomorphism

_plTXlxslexl - pZTleTYZ/Yl - _TX1><SX2><SY1$XSst/Xlstls'
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Then

ar Xt b
=0(q,t (te(a)) - qpb)

by definition
=8(r p,(tr(a)) - 62D)

by Axiom 16 for the square in the diagram
=0(r (py(tr(a)) - pob))

by Proposition 18 for r and Axiom 10

=r 1 (8)((p1(tr(@)) - Pob, 1Nt = Prt Tixiser xorxs = P2 Taxrvarva))
by functoriality of push-forwards with respect to twists

=r (tr(N(p.(a) - b))

=(a xgb%)y
by definition.

Here the fifth equality comes from the following commutative diagram with exact rows
and columns

0 0
Po Ty < Yorvs === P Ty, xrYorv,
0——T TxyvaxoYarxays — Txy v SYS7x, v $ N 0
0 ——1 0y Ty =y Xorxs = P1 Ty g Xorx1 Py N¢ 0
0 0
and Theorem 3.1, (1). O

Applying the same proof as in Proposition 5.19 to ¢f, we get the following result.

Proposition 5.23. There is an adjoint pair
s :Sh(S) Sh(T): (fy),
where (fyx) F =F o ¢¢ for F Sh(T).

The next lemma is important when identifying (fz). See also [MVWO06, Exercise
1.12].

Lemma 5.8. Forany U Sm/S, X Sm/T, we have an adjoint pair:
Cors(U, X%) = Cory (U, X).
Proof. For any U Sm/S, X Sm/T, we have an isomorphism

eU’x U xg )(S — U x;: X.
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We can then define

)\U,X: Cors(U,XS) — COfT(U,X)
W 1 eU’x (W) '

which is obviously an isomorphism.
Let now U  Sm/S, X;,X, Sm/T,V  Cory(Xy, X3) and W Cors(U, X7). We
want to show that
)\U,XZ(VS © W) =V o )\U,Xl(W)-

We have a commutative diagram

where we have identified U xg (X7 xg X3) with U x1 X; %1 X, for convenience.
Suppose that V and W are supported on admissible subsets. We then have

Au,xz(VS W) = Bux, P13 (P3P V - P, W)
by definition

= Q13 (U3 " PW)
by Axiom 12

= 013 (O3V - G30ux, W)
by Axiom 20 and Axiom 9
= V ° AU,Xl (W)
by definition.
Suppose next that Uq, U, SI"n/S7 X Sm/T,V Cors(Ul,Uz) and W Cors(Uz,XS).

We want to show that
)\Ul,X (W © V) = )\Uz,X (W) © VT-

We have a commutative diagram

023

8
Up <7 Uy d Uy %1 (Up %g XS) b Uy xg X3 X U, x1 X,

ar

Ui xs Uy P2 Up %s (U xs XS)

a
P23 013

U; Xg Xse

P13 Up.X

U <1 X

where we have identified Uy X1 (U, x5 XS) with Uy %7 Uy 1 X. If V and W are supported
on admissible subsets and 0 is the isomorphism

_TlesszsXS/leTX — Na—a TleT(UZXSXS)/leTX’
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we have

)\Ul,X (W oV )

=06uy.x P13 ((P2zW * P12Vs —TuyxgUsxs xS /Uzxs xS — P12 TUyxsU7U; )
by definition

:q13 a ((a q236U2,X W ' e(plZV )’ —a q23TU2><-|—X/U2 + Na —a TleT(szsXS)/leTX))
by Axiom 20 and Axiom 19, (1)

=013 ((A2300,,x W - @ 8(P1,V ), —Up3Tupxr /U, = TUpxr (UzxsXS)/Up <7 X))
by Axiom 18 for a

=013 ((G230u,x W - d dr §r(V ), —UsTuzer xru, = d Tuyxruprus )
by Axiom 16 for the leftmost square in the diagram above

:)\UZ,X (W) ° VT
by definition.

Proposition 5.24. Let f : S - T be a smooth morphism. Then
(fy) =T .

Proof. For any Y Sm/S, y(idy) Corr(Y,Y) = Cors(Y,YS) is the initial element of
Cy in Lemma 5.7 by application of the above lemma to ¢f (see Definition 5.10). So for
any F PSh(T), we have (F F)(Y) =FY = ((f4) F)(Y ). This gives an isomorphism
between T (F) and (fx) (F) for any presheaf with E-transfers F by the lemma above. So
it also gives an isomorphism after sheafication. O

Proposition 5.25. Let f : S — T be a smooth morphism. Then:
1. For any X Sm/S, we have
fuZs(X) = Z1 (X).
as sheaves with E-transfers.
2. Forany F Sh(T)andY Sm/T
f(F')=(fF)"s
as sheaves with E-transfers.
3. Forany F  Sh(S)and G Sh(T)
Homq (fxF,H) = f Homg(F, f H)
as sheaves with E-transfers.
4. Forany F Sh(S)and G Sh(T)
fu(F sfG)=Ff4F G
as sheaves with E-transfers.
Proof. 1. The result follows from the fact that any F Sh(T) we have
Homsy (fxZs(X),F) = Homs(Zs(X), f F) = (f F)(X) = F(X)

by the previous proposition.
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2. For any X Sm/S, we get
(F (H"))(X) = H(Y x7 X).

and
(F H)"TS(X) = H((Y %7 8) %5 X)

by the above proposition. Then, we can use Proposition 5.22 to conclude.

3. Forany Y Sm/T, we have

Hom (fxF, H)(Y) Homs (fxF,H")

= Homs(F,f (HY))

— Homs(F, (f H)Y*79)
by (2)

= Homg(F,f H)(Y %1 §)

= (f Homg(F, f H))(Y).

4. For any H Sh(T), the following computation applies:

Hom:(fx(F sf G),H) = Homg
= Homg

Homy

Hom+t

by (3)

= Homt(f4F 1 G,H).

F sf G fH)

f G,Homg(F,f H))
G,f Homg(F,f H))
G, Hom+ (f4F, H))
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Chapter 6

Motivic categories

In this chapter, we construct the categories of effective (resp. stabilized) motives as
a localization of the bounded above complexes ([MVWO06]) of sheaves with E-transfers
(resp. symmetric spectra). We then compare our construction with the constructions in
[CD09], [CD13] and [DF17], where they use unbounded complexes.

6.1 Complexes of Sheaves with E-Transfers

6.1.1 Derived Categories

Denote by D™(S) (resp. K7(S)) the derived (resp. homotopy) category of bounded above
complexes of objects in Sh(S). Our first aim is to define g and fy and ¥ (Chapter 5)
at the level of these categories. The method is inherited from [SV00, Corollary 2.2] and
[IMVWO06, Lemma 8.15].

Definition 6.1. We call a presheaf with E-transfers free if it’s a direct sum of presheaves
of the form cs(X). We call a presheaf with E-transfers projective if it’s a direct summand
of a free presheaf with E-transfers. A sheaf with E-transfers is called free (resp. projective)
if it’s a sheafication of a free (resp. projective) presheaf with E-transfers. A bounded
above complex of sheaves with E-transfers is called free (projective) if all its terms are
free (projective).

Remark 6.1. Note that a projective presheaf with E-transfers is a projective object in
the category of presheaves with E-transfers. On the other hand, this is not true anymore
for projective sheaves with E-transfers.

Definition 6.2. A projective resolution of a bounded above complex of sheaves K is a
projective complex (of sheaves) with a quasi-isomorphism P — K.

In the definition above, if K is already projective we may take P = K.

£
Now let S, T Sm/k and Y be a scheme with morphisms S ——Y
is smooth. In this section, we consider the functors

g

T where ¢
¢: Cors — Cort
X — (XY )T =X xgY

and
g: Smg — Smy
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determined by the triple (Y, S, T). We have a commutative diagram

sm/s —Y—sm/T

(N
o

Corg Corr.
Recall from Lemma 5.7 the definitions of ¢ and ¢ .

Lemma 6.1. For any X Sm/S, we have

¢ (cs(X)) = cr (W(X))
as presheaves with E-transfers.

Proof. For any F  PSh(T),

Homr (¢ (cs(X)), F) = Homs(cs(X), ¢ F) = F(W(X)).
[
Lemma 6.2. The functor ¢ maps sheaves with E-transfers to sheaves with E-transfers.

Proof. It suffices to show that for any finite Nisnevich covering {U;j} of X  Sm/S, the
following sequence is exact

0— G(X) — |G(U|) - i,jG(Ui Xx UJ)

where G = ¢ F for some F Sh(T). This follows easily. O

The following lemma can be proved using a method similar to the one we used in the
proof of Proposition 5.15.

Lemma 6.3. Let f : F — G be morphism in P Sh(S) such that a(f) is an isomorphism,
then a(¢ (f)) is also an isomorphism.

Before stating the next result, recall that the category of presheaves with E-transfers
has enough projective objects (see for instance Remark 6.1). In particular, it is possible
to derive any left-exact functor (say, to the category of abelian groups).

Proposition 6.1. For any F  PSh(S),
a((Li¢ )a(F)) = a((Li¢ )F)

as sheaves with E-transfers for any i = 0, where L;¢ means the it" left derived functor

of ¢ .
Proof. We show first that for any presheaf with E-transfers F with a(F) = 0 we have
a(Li¢ (F)) =0

for any i = 0. Suppose that the above statement is proved. For any presheaf with
E-transfers F, we can then consider the natural morphism

0:F — a(F).
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We have
a(coker(6)) = a(ker(8)) = 0.

Hence for any i = 0, we have
a(Li¢ a(F)) = a(Li¢ Im(6)) = a(Li¢ F)

by using long exact sequences. Hence the statement follows.
Now we prove the first claim by induction on i. The claim is true for i = 0 and we
then suppose that it’s true for i < n. For any F PSh(S), we have a surjection

X F(X)CS(X) — F

defined by each section of F on each X  Sm/S. Since a(F) = 0, there exists for any
X Sm/S and any X  F(X) a finite Nisnevich covering Ux — X of X such that
X|u, = 0. Then, the composite

x Fo)Cs(Ux) == x Fex)Cs(X) —= F
is trivial and we obtain a surjection
x FeoHo(C(Ux/X)) == F
with kernel K. Proposition 5.10 implies that
a(Hp(C(U/X))) =0

for any Nisnevich covering U — X and any p  Z and consequently a(K) = 0 as well.
We have a hypercohomology spectral sequence

v

(Lpd JHg(C(U/X)) = (Lpead )C(U/X).

Hence

% 1%

a((Ln )C(U/X)) = a((Lnd JHo(C(U/X)))
by induction hypothesis. But
a((Lnd )C(U/X)) = a(Hn(9 C(U/X)))
by definition of hypercohomology and the latter vanishes since we have
¢ C(U/X) = C(PU/PX)

by the previous lemmas. So

v

a((Ln¢ JHo(C(U/X))) =0

and
a(l—nq) F) = a(l—n—lq) K) =0

by the long exact sequence and the induction hypothesis. O]

Proposition 6.2. The functor ¢ takes acyclic projective complexes to acyclic projective
complexes.
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Proof. For any projective F Sh(S), F = a(G) for some projective G~ PSh(S) by
definition. So

a((Li¢ )F) =a((Li¢ )G) =0
for any i > 0 by the proposition above. Let

be a short exact sequence of sheaves with E-transfers with a((Li¢ )P) = 0 for any i > 0.
Then the sequence is still exact after applying ¢ by the long exact sequence. Then the
statement follows easily. O

Proposition 6.3. We have an exact functor
Lé :D(S)— D (T)
which maps any K D7(S) to ¢ P, where P is a projective resolution K.

Proof. By the proposition above, the class of projective complexes is adapted (see [GMO03,
I11.6.3]) to the functor ¢ . We may now apply [GMO03, II1.6.6]. O

In the sequel, we’ll write ¢ in place of L$ for convenience. We now apply the general
results above to g, g and T .

Proposition 6.4. 1. The category D~ (S) is endowed with a tensor product defined by

s: D(S) x D(S) — D (S)
K ., L — P sQ

where P, Q are projective resolutions of K, L respectively, and P g Q is the total
complex of the bicomplex {P; s Q;}. Moreover, for any K D™ (S), the functor
K s —is exact.

2. Suppose that f : S — T is a smooth morphism in Sm/k. Then, there is an exact
functor
fy:D(S) - D (T)

defined on objects by K - f4P, where P is a projective resolution of K.
3. Suppose that ¥ : S — T is a morphism in Sm/k. There is an exact functor
f :D(T) - D°(S)
defined on objects by K - f P, where P is a projective resolution of K.

Proof. 1. Let Y Sm/S. In the definition of ¢, we take (Y,S,T) := (Y,S,S) and
thenp F =F sZs(Y) for any F  Sh(S) by Proposition 5.14.
Given an acyclic projective complex P and a projective sheaf F, the complex of
sheaves F g P is also acyclic by Proposition 6.2 and by definition of projectiveness.
It follows that for any projective complex K the complex P g K is also acyclic
by the spectral sequence of the bicomplex {P; s Kj}. Then for any projective
complexes P, Q, R and quasi-isomorphism a : P — Q, the morphism a gR is still
a quasi-isomorphism since we have

Cone(a sR)=Cone(a) sR

and the latter one acyclic. The statement follows easily.
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2. In the definition of ¢, we take (Y,S,T) :=(S,S,T) and apply Proposition 6.3.

3. In the definition of ¢, we take (Y,S,T) :=(T,S,T) and apply Proposition 6.3.
[

Proposition 6.5. Let T : S — T be a smooth morphism in Sm/k. We then have an
adjoint pair

fy,:D(S) D (T):f.
Proof. By Proposition 5.23, it is easy to see that there is an adjunction

fye :KT(S) KT(T):f.

Since ¥ : Sh(T) — Sh(S) has both a left adjoint and a right adjoint, it’s an exact
functor and Lf = f in this case. Suppose that K D7(S), L D7(T) and that
p: P —- K is a projective resolution of K. Note then that f4#K = f4P by definition.

We now construct a morphism

0: HomD—(S)<f#K, L) — HomD—(T)(K,f L)

as follows. Suppose that s Homp-(s)(f#K, L) is written as a right roof (see [GMO3,

I11.2.9])
R
4P L.

By adjunction, a induces a morphism a : P — f R. Then we define 6(S) to the

composite of the right roof
fR
P fL

with p~t. This morphism is well-defined since f is exact.
Next, we construct a morphism

E : Home(T)(K,f L) — Home(S)(f#K, L)

as follows. Suppose that t  Homp-¢r)(K,f L) and that t e p is written as a left roof
(see [GMO3, 111.2.8])
R

P% NfL

where R is also projective. By adjunction, b induces a morphism b : f4R — L and we
define &(t) to be the left roof

4P L.

This morphism is well-defined by Proposition 6.2 applied to fx. To conclude, one checks
that 8 and & are inverse to each other by direct computation. O]
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In [CD09, Theorem 1.7], they put a model structure M on the category of unbounded
complexes of sheaves with E-transfers over S. This is a cofibrantly generated model
structure where the cofibrations are the I-cofibrations ([Hov07, Definition 2.1.7]) where |
consists of the morphisms S"*1Zg(X) —— D"Zg(X) for any X Sm/S ([CD09, 1.9] for
notations) and weak equivalences are quasi-morphisms of complexes.

Proposition 6.6. Bounded above projective complexes are cofibrant objects in M.

Proof. Suppose that P is a bounded above projective complex and that we have an |-
injective ([Hov07, Definition 2.1.7]) morphism f : A — B between unbounded complexes
with a morphism g : P —— B. We have to show that g = f o h for some h: P — A.

We construct h by induction. Suppose that for any m = n we have constructed a
morphism h™ : P™ —, A™ gsuch that g™ = fM o h™ and d® e h™ = hM o dP. As
P is bounded above, this is certainly the case for n large enough. We now construct
h"=1 . pn—1 —, AP~1 gatisfying the same property, that is, making the following diagram
commute

A1 an AN
h " w
Fn—1 pn-1_& pn
Bn-1 ’ d® BN ’

By definition, we have a split surjection F — P"! where F is a free sheaf with E-
transfers. So, we may assume that P"™! is free of the form iZs(Xj) where X; Sm/S.
For every i, we have two morphisms:

Ui : ZS(X|) - Pn_l - Bn_l - Bn

and
Vi Zs(Xi) = Pt = PP — A"

which give a commutative square with a lifting since f is I-injective:

Vi

S"Zs(X;) A
Wi
f
D"1Z5(Xi) —— B.
One checks directly that ;w;j : P"™* —— A" i5 the required morphism. O

The model structure M is stable and left proper so it induces a triangulated structure
T on D(S) ([Ayo07, Theoreme 4.1.49]). The classical triangulated structure of D(S) or
D~ (S) is denoted by T.

Proposition 6.7. The natural functor
i:(D°(S), T) — (D(S), T)
is fully faithful exact.

Proof. Any distinguished triangle T in (D7(S), T) is isomorphic in D™ (S) to a distin-
guished triangle in T of the form

A f

B —— Cone(f) — A[1],
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where all arrows come from explicit morphisms between chain complexes ([GMO03, 111.3.3
and II1.3.4]). By [Hir03, Proposition 8.1.23], there exists a commutative diagram

such that (A,a) (resp. (B,b)) is a fibrant cofibrant approximation of A (resp. B) and
g is a cofibration in M. So the triangle T is isomorphic in D(S) to the distinguished
triangle

A — B —Cone(g) — A[l]
in T. By [CD09, Lemma 1.10] and [Ayo07, Théoreme 4.1.38], the shift functors —[n] and
—[n] in T and T, respectively, coincide on cofibrant objects in M. So we have a natural
isomorphism n : —[n] —— —[n] where Nk = idk) if K is cofibrant in M. It follows that

the triangle above is distinguished in T by [Ayo07, Definition 4.1.45]. So the functor i is
exact and it’s clearly fully faithful. O]

Observe now that we can define g, f and fx on D(S) by [CD09, Theorem 1.18 and
Proposition 2.3].

Proposition 6.8. 1. We have a commutative diagram (up to a natural isomorphism)

D™(S)x D™ (S)—=-D~(S)

D(S) x D(S) —=—D(S).

2. Suppose that f : S — T is a morphism in Sm/k. We have a commutative diagram
(up to a natural isomorphism)

3. Suppose that f : S — T is a smooth morphism in Sm/k. We have a commutative
diagram (up to a natural isomorphism)

Proof. This follows by direct computation using Proposition 6.6. [

6.1.2 E ective Motives
The following definition comes from [MVWO06, Definition 9.2].

Definition 6.3. Define Ea to be the smallest thick subcategory of D (S) such that
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1. Cone(Zs(X xx Al) —= Zs(X)) Ea.
2. Ea is closed under arbitrary direct sums if it exists in D7(S).

Set W, to be the class of morphisms in D™(S) whose cone is in E5. Define

DM (S) = D7(S) W,

to be the category of e ective motives over S. The morphisms in D™(S) becoming iso-
morphisms after localization by Wx are called Al-weak equivalences.

Before proceeding further, we give an example of an Al-weak equivalence. Recall that
a morphism p : E —— X in Sm/S is an A"-bundle if there is an open covering {U;} of X
such that p~1(U;) = U; x A" for any i.

Proposition 6.9. Let p: E — X in Sm/S be an A"-bundle. Then, Zs(p) : Zs(E) —
Zs(X) is an Al-weak equivalence.

Proof. For any X  Sm/S, the projection Zg(X xx A") — Zg(X) is an Al-weak
equivalence by definition. Suppose that we have two open sets U; and U, of X such
that the statement is true over Uy, U, and U; n U, and set E; = p~1(U;). We have a
commutative diagram with exact rows

0—— Zs(El N Eg) ZS(El) Zs(Ez) Zs(p_l(El E2)> —0

O—ZS<U1 n Uz) 0

Zs(U1)  Zs(Uy)

Zs(U;  Uy)

by Proposition 5.12. So the statement is also true over U;  U,. To conclude, we pick a
finite open covering {U;} of X such that p~1(U;) = U; % A" for every i and proceed by
induction on the number of open sets. n

Definition 6.4. ((MVWO06, Definition 9.17]) A complex K D~ (S) is called Al-local if
for every Al-equivalence f : A — B, the induced map

HomD—(S)(B, K) — HomD—(S)(A, K)
is an isomorphism.

Before stating the next result, recall that one can associate to any complex of sheaves
K its Suslin complex C K ([MVWO06, Definition 2.14]).

Proposition 6.10. Let K D7 (S).
1. The natural map K — C K is an Al-weak equivalence.
2. If S = pt, the complex C K is Al-local.
3. If S = pt, the functor C induces an endofunctor of D~ (pt).
Proof. 1. The proof of [MVWO06, Lemma 9.15] goes through in our setting.

2. Use Remark 5.1 and mimic the proof of [DF17, Theorem 3.2.9 and Corollary 3.2.11].
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3. It’s easy to check that C induces an endofunctor of K™ (pt). If f : K — L
is a quasi-isomorphism, then Cone(f) is acyclic. By (1), the natural morphism
Cone(f) — C Cone(f) is an Al-equivalence. Hence it’s an quasi-isomorphism by
(2) and [MVWO06, Lemma 9.21]. So C Cone(f) = Cone(C f) is acyclic and C f is
a quasi-isomorphism.

0

We now pass to the definition of motivic cohomology.

Definition 6.5. ([IMVWO06, Definition 14.17]) Let X Sm/k and let p,q Z,q = 0.
The groups
HEY(X,Z) = HomDMeff,—(pt)(Zpt<X), Zy(9)[p])

are called E-motivic cohomology groups of X.

Proposition 6.11. The functor ¢ of Proposition 6.3 induces an exact functor

¢ DM (S)— DM (T)

which is determined by the following commutative diagram

¢

D~ (S) D=(T)

DM () DM (T).

Proof. Let E be the full subcategory of D™(S) which consists of those complexes K
D™ (S) who satisfy ¢ K Ea. It’s a thick subcategory of D7(S). For any X  Sm/S,

¢ maps
Zs(x Xk Al) — Zs(X)

to
Zr (WX) ¥ Al) — Z7 (UX).

Therefore En  E by definition of Ex and exactness of ¢ . It follows that ¢ preserves
objects in Ea. Hence ¢ preserves Al-weak equivalences by exactness of ¢ . Then the
statement follows from [Kral0, Proposition 4.6.2]. O

Proposition 6.12. 1. There is a tensor product

s:DM" T (S)xDM" " (S) — DM" " (S)
which is determined by the following commutative diagram

D (S)xD(S)——=——D7(S)

DM (5) x DM (5) —=- DM (s).

ff,— .
Furthermore, for any K DM’ (S), the functor K s — is exact.

2. Suppose that f : S —— T is a smooth morphism in Sm/k. There is an exact functor

f,: DM (S)— DM (T)
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which is determined by the following commutative diagram

T

D™(S) ————Db~(T)

DM (s) DM (T).
3. Suppose that f : S — T is a morphism in Sm/K. There is an exact functor

£ .DM" T (T)— DM (s)

which is determined by the following commutative diagram

f

D=(T) D~(S)

DM (1) DM (s,

Proof. 1. Suppose that Y Sm/S. In the definition of ¢, we take (Y,S,T) :=
(Y,S,S). Then ¢ F = F sZs(Y) for any F Sh(S) by Proposition 5.14. Now,
given an Al-weak equivalence a, Zs(Y ) sais also an Al-weak equivalence by Propo-
sition 6.11 (applied to ¢). We may now apply the method used in the third para-
graph of [MVWO06, Lemma 9.5] to show that the functor K g—: D7 (S) —— D7(S)
preserves Al-weak equivalences for any K D~(S). Finally we apply [KralO,

Proposition 4.6.2] to the functor K g —.
2. In the definition of ¢, we take (Y,S,T) :=(S,S,T) and apply Proposition 6.11.

3. In the definition of ¢, we take (Y,S,T) :=(T,S,T) and apply Proposition 6.11.
0
Proposition 6.13. Let f : S — T be a smooth morphism in Sm/k. We have an adjoint
pair
f,— F,—
fy:DM°  (S) DM = (T):f.

Proof. The same method as in Proposition 6.5 applies since ¢ preserves Ex by Proposition
6.11. O

Proposition 6.14. Let f : S — T be a morphism in Sm/k.

1. For any K, L DM (T), we have
f(K sL=(fK) s(fL).

2. If f is smooth, then for any K DMEff'_(S) and L DMeff'_(T), we have
fu(K s L)=(fuK) sL.

Proof. This follows immediately from Proposition 5.20 and Proposition 5.25. n

£
In [CD09, Proposition 3.5] and [DF17, Definition 3.2.1], the category DM® (S) is
defined as the the Verdier localization of D(S) with respect to the homotopy invariance

f
conditions. Now, this localization induces a triangulated structure on DM ) (S) ([Kralo,
Lemma 4.3.1]).
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Proposition 6.15. The exact functor D™ (S) — D(S) of Proposition 6.7 induces an exact

functor DMeff’_(S) - DMeff(S) which is determined by the commutative diagram
(Proposition 6.7)

D™ (S)————D(S)
DM (5) — DM (S).
This functor is fully faithful if S = pt.

Proof. For the first statement, we use [Kral0, Proposmon 4.6.2]. For the second state-

ment, we note that we have for any K, L DI\/I B (pt) a commutative diagram
y
HomDMeff,—(pt)(K, L) DMeff,—(pt)<C K,C L) ——Homp-y(C K,C L),
a =
B
Hom err (K, L)LHomDMeff(pt)(C K,C L)) —— Hompy(C K,C L)

where U, vV, y and B are isomorphisms by Proposition 6.10. So o is an isomorphism. [

To conclude this section, we note that the versions of g, ¥, fx in both categories
are compatible as in Proposition 6.8.

6.2 Symmetric Spectra

eff,—
In this section, we introduce spectra in order to stabilize the category DM (S). The

main reference is [CD13, 5.3].

6.2.1 Symmetric Spectra

Let A be a symmetric closed monoidal abelian category with arbitrary products. We can
define the category of symmetric sequences A S as in [CD13, Definition 5.3.5]. It is also
a closed symmetric monoidal abelian category by [CD13, Definition 5.3.7] and [HSS00,
Lemma 2.1.6]. Here, if we have two symmetric sequences A and B, we define A S B by

(A SB)n= pSnXs,xsn_p (Ap  Bnp).
Then we define Hom®(A, B) by

Hom®(A,B), =  Homg (Ap, Bnsp),
p

where Homg_ (Ap, Bn+p) (with the obvious Sp-action) is the kernel of the map

(0 —(1x0) )

Hom(Ap, Bnp) o s, HOM(Ap, Bnap) .

(see [HSS00, Definition 2.1.3] and [HSS00, Theorem 2.1.11])
Proposition 6.16. In the context above, for any symmetric sequences A, B, C, we have
Hom(A °B,C)=Hom(A,Hom®(B,C))

naturally.
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Proof. Giving a morphism from A S B to C is equivalent to giving S, % Sq-equivariant
maps
That is equivalent to giving Sp-equivariant maps
Opq : Ap == Hom(Bg, Cpaq)
such that for any 0 Sy,
Hom(a, Cp+q) ° Gpqg = HOoM(By, ids, < 0) © gp q.
This just says that gpq factor through Homg (B, Cp+q).- O

The abelian structure of A S is just defined termwise. Moreover, we have adjunctions
io A A S T €Vp
and
—{-i}: A AS.—{i}(i=0)
as in [CD13, 5.3.5.1] and [CD09, 6.4.1].

Now suppose that R~ A . Then Sym(R) A S is a commutative monoid object as in
[CD13, 5.3.8]. Define Spr(A ) to be the category of Sym(R)-modules in A S. Its objects
are called symmetric R-spectra. It’s also a symmetric closed monoidal abelian category
by [HSS00, Theorem 2.2.10] and Proposition 6.16. (The corresponding tensor product

and inner-hom are just denoted by ~ and Hom for convenience)
We have an adjunction

Sym(R) S—:AS Spr(A):U,
where U is the forgetful functor. Thus we get an adjunction
YA Spr(A): Q%
where ¥ = (Sym(R) S =)< iy, Q™ =evg e U and X is monoidal.
We have a canonical identification
A S (B{-i})=(A °B){-i}
and a morphism
A S (B{i}) — (A °B){i}
defined by the composite
A SE{}Y)— (A SE{H{-iHi}=(A °B{H-H{i}— (A °B)i}
Restricting the functors —{—i} and —{i} on symmetric R-spectra, we get an adjunction
—{=i}:Spr(A)  Spr(A): —{i},

where the module structure Sym(R) S (A{—i}) — A{—i} of A{—i} is obtained by
applying —{—i} to the module structure of A and the module structure Sym(R) S
(B{i}) — B{i} of B{i} is obtained via the composite

sym(R) = (B{i}) - (Sym(R) °B){i} — B{i},

where the last arrow is just the shift of the module structure of B. Moreover, we still
have an isomorphism

A s (B{-i})=(A sB){-i}
and a morphism
A s (B{i}) — (A sB){i}

defined in the same way as above.
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Definition 6.6. ([CD13, Definition 5.3.16]) For any S  Sm/k, define
s{1} = Sym(coker(Zs(S) — Zs(Gn)))

and
s{1} = Sym(coker(cs(S) — ¢s(Gm))).

Then define Sp(S) to be Sp ¢13(Sh(S)) and Sp (S) to be Sp _(13(P Sh(S)).

We have an adjunction
a:PSh(S)® Sh(S)%:o

where both functors are defined termwise (see Proposition 5.11) and a is monoidal by
definition. Restricting the above functors on modules, we also obtain an adjunction

a:Sp(S) Sp(S):o,

where the module structure s{1} §a(A) — a(A) of a(A) is obtained via sheafication
and the module structure {1} £ 0(B) —- 0(B) of 0(B) is obtained via the module
structure of B and the sheafication map ¢{1} $0(B) — s{1} £ B. The functor a
is again monoidal.

Now, let £ : S — T be a morphism in Sm/k. We have an adjunction

f :Sh(T)® Sh(S)®:f

where both functors are defined termwise (see Proposition 5.19) and f is monoidal by
Proposition 5.20, (4). Restricting the above functors on spectra, we also obtain an ad-
junction

f :Sp(T) Sp(S):f,

where the module structure s{1} $f A — f A of f A is induced by the module
structure of A via f and the module structure {1} $f B — f B of f B is obtained
using the composite

{1} $FB— f(s{1} SFFB)— f( {1} $B)— fB.

The functor ¥ is also monoidal by construction of the tensor product (see [HSS00, Lemma
2.2.2]). The same construction gives an another adjunction

f :Sp(T) Sp(S):f.
Suppose further that f is smooth. We have an adjunction
fy:Sh(S)® Sh(T)®:f
where both functors are defined termwise (see Proposition 5.23) and
fy(A ST B)=(fyA) 7B

also holds by Proposition 5.25, (4). Restricting the above functors on spectra, we get an
adjunction

f,:Sp(S) Sp(T):f,

where the module structure {1} S fzA — F4A of T4A is as follows
{1} FFfA=TF4( {1} SA) — fLA
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Moreover, we also have

fu(A s B)=(fyA) 1B

for spectra by construction of the tensor product (see [HSS00, Lemma 2.2.2]). The same
construction gives yet another adjunction

fy:Sp(S) Sp(T):f.
One checks that when F=— g A, fg, T, —{—i}, —{i}, X°° or Q2 there is a natural
isomorphism a° F = F < a.
Let i = 0. For any F  Sh(S), we have
(S°FHi} = 2°(Z«(Gm) ' sF).
Moreover, for any X  Sm/S,
Homsp(s) (X7Zs (X){=1} A) = Ai(X)
and
Homsp () (X% cs (X)){—i}, B) = Bi(X).

So (3X°Zs(X)){—i} (resp. (X%cs(X)){—i}) are systems of generators of Sp(S) (resp.
Sp (S)) ([CD09, 6.7] and [CD13, 5.3.11]). This enables us to imitate the methods used in
Section 6.1.

6.2.2 Derived Categories

We denote by Dg,(S) (resp. Dsp(S)) the derived category of bounded above (resp. un-
bounded) complex of spectra in Sp(S).

Proposition 6.17. Let X,U Sm/S and p : U — X be a Nisnevich covering. For
any i N, the complex (X<C(U/X)){—i} (defined by termise application), is exact after
sheafifying as a complex of Sp(S).

Proof. One easily see that (X®A){—i} = Sym(Zs{1}) g (io(A){=i}) for any A
PSh(S). Then the statement follows from the equality

C(U/X) Res(Y)=C(U xsY/X x5 Y)
for any Y ~ Sm/S and Proposition 5.10. [

Definition 6.7. We call a spectrum A Sp (S) free if it’s a direct sum of spectra of the
form (X*°cs(X)){—i}. We call A projective if it’s a direct summand of a free spectrum.
A spectrum in Sp(S) is called free (resp. projective) if it’s the sheafication of a free (resp.
projective) spectrum in Sp (S). A bounded above complex of spectra in Sp(S) is called free
(projective) if all its terms are free (projective).

Definition 6.8. A projective resolution of a bounded above spectrum complex K is a
projective complex with a quasi-isomorphism P —- K.

Now let S, T Sm/k, j =0 and Y be a scheme with morphisms S Ty 7
where ¢ is smooth. Consider in this section the adjunctions

@ ={-j}egu-f : Sp(S) Sp(T):9 =F -g - {j}
¢ ={-j}eguf : Sp(S) Sp(T):¢ =F =g - {j}

and the functor
g: Smg — Smy

They are determined by the quadruple (Y,S,T,j).
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Proposition 6.18. For any F  Sp (S),
a((Li¢ )a(F)) = a((Lid )F)
as spectra in Sp(S) for any i = 0, where Lij¢p means the it" left derived functor of ¢ .

Proof. Arguing as in the proof of Proposition 6.1, we see that it suffices to treat the case
of spectra F Sp (S) satisfying a(F) = 0. We prove it by induction on i. The claim is
true for i = 0 and we suppose that it’s also true for i <n.

For any F Sp (S), we have a surjection

x Feo)=0(E7Cs(X){—t} — F

defined by each section of Fy on each X  Sm/S. Since a(F) = 0, there exists for any
X  F¢(X) and X Sm/S a finite Nisnevich covering Uy —— X such that X|y, = 0.
Then, the composite

a Fo)t=0(ETCs(Ua)){—t} — a2 Fex)m0(2FCs(X)){—t} — F
is trivial and we have a surjection
2 FozoHo(B7C(Ua/X){-1}) — F
with kernel K. Proposition 6.17 implies that
a(Hp((3=C(U/X){~1}) =0

for any Nisnevich covering U — X, t =0 and p Z and therefore a(K) = 0 as well.
We have a hypercohomology spectral sequence

(Lo JH((STCUX){—t}) = (Lprgd )(E=CU/X){-t})

and consequently

a((Lnd )((S=CU/X){~1})) = a((Lnd )Ho((E7C(U/X)){~-1}))

by induction hypothesis. But

a((Lnd )(SC(U/X){~1}) = a(Hn(d ((S*C(U/X)){~1})))

by definition of hypercohomology and the latter vanishes since we have

O (ECU/X){~1}) = (S=C(YU/PX)){—t—j}.

So,
a((La¢ JHo((Z=C(U/X)){—1})) =0
and
a(l—nq) F) = a(l—n—lq) K) =0
by the long exact sequence and the induction hypothesis. O]

The same proofs as in Propositions 6.2 and 6.3 yield the following two propositions.

Proposition 6.19. Let functor ¢ takes acyclic projective complexes to acyclic projective
complexes.
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Proposition 6.20. We have an exact functor
Lo : Dgy(S) = Dg,(T)
which maps any K Dg,(S) to ¢ P, where P is a projective resolution K.

According to our conventions, we’ll just write @ in place of L@ . We now apply the
general results above to the functors s, fx and T .

Proposition 6.21. 1. There is a tensor product

s: D5(S) % Dgy(S) — Dg(S)
K , L — P sQ’

where P, Q are projective resolutions of K, L respectively and P s Q is the total
complex of the bicomplex {Pi s Q;}. Moreover, for any K  Dg,(S), the functor
K s — is exact.

2. Suppose that £ : S — T is a smooth morphism in Sm/k. Then, there is an exact
functor
Ty Dgy(S) — Dgy(T)
K — f#P '

where P is a projective resolution of K.

3. Suppose that f : S — T is a morphism in Sm/k. There is then an exact functor

f : Dg(T) — Dg,(S)
K - - f P '

where P is a projective resolution of K.

4. For i = 0 there is an exact functor

_{_i}: DS_p(S) - D§p<s>
K — P{-i}’

where P is a projective resolution of K.

Proof. In (1), (2) and (3), take j = 0 in the definition of @ and proceed as in the proof of
Proposition 6.4. For (4), take the quadruple (S, S, S, i) and use Proposition 6.20. O

Proposition 6.22. 1. If f : S — T is a smooth morphism in Sm/k, we have an
adjoint pair
Ty :Dgy(S)  Dgy(T): T .
2. We have an adjoint pair
—{~=i}:Dg,(S)  Dgy(S) - —{i}-
Proof. The same as Proposition 6.5 since —{i} is an exact functor. O

Now we are going to compare Dg,(S) with D7 (S) defined in Section 6.1.

Proposition 6.23. The functor = : Sh(S) — Sp(S) takes acyclic projective complexes
of sheaves to acyclic projective complexes of spectra.
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Proof. Let P be a projective sheaf. Then
(pr)n = S{l} ; s Pn

by definition and a tensor product between projective sheaves is again projective. So
>°P is projective.

Let Q be an acyclic projective complex of sheaves. Then ¥*°Q consists of complexes
of the form s{1} ™ s Q. They are all acyclic by Proposition 6.2. O

Proposition 6.24. There is an exact functor
LX*: D7 (S) = Dg,(S)
which maps K to X*°P, where P is a projective resolution of K.
Proof. The same as Proposition 6.3. 0
As usual, we will write 3 instead of L for convenience.
Proposition 6.25. There is an adjoint pair
Y7 :D7(S)  Dgy(S): Q%.
Proof. The same as Proposition 6.5 since 2°° is an exact functor. n
Proposition 6.26. The functor £ : D7(S) —- Dg,(S) is fully faithful.

Proof. Let K,L D7(S) with respective projective resolutions P, Q. Then, there is a
commutative diagram

Homp—(s)(K, L) =— Homp_ ) (K, 2L

Homp-(s)(P, Q) =— Homp_ (2P, £°Q)
HomD—(S)(P, QOOZOOQ)

Finally we observe that Q2°X*Q = Q. m

Proposition 6.27. 1. We have a commutative diagram (up to a canonical isomor-
phism)

D™ (S)x D™ (S)—=-D"(S) .
Dsp(S) % Dgp(S) —— Dg,(S)

2. Let f: S — T be a morphism in Sm/k. We have a commutative diagram (up to

a canonical isomorphism)
f

D~(T) ——D(S)
Ds,(T) — Dg,(S)



3. Suppose that f : S — T is a smooth morphism in Sm/k. We then have a commu-
tative diagram (up to a canonical isomorphism)

LS

D3,(8) - D5,(T).
Proof. This follows by direct computations. ]

In [CD09, Theorem 1.7], they define a model structure Ms, on the category of
unbounded complexes of symmetric spectra over S. This is a cofibrantly generated
model structure where the cofibrations are the I-cofibrations ([Hov07, Definition 2.1.7])
where | consists of the morphisms S"*(X*°Zg(X){—i}) — D"(X*Zs(X){—i}) for any
X Sm/S and i = 0 and weak equivalences are quasi-morphisms between complexes.
The same proof as the one of Proposition 6.6 applies to give the following result.

Proposition 6.28. Bounded above projective complexes are cofibrant objects in Ms.

Now, Mg, is stable and left proper so it induces a triangulated structure T on Dgp(S)
([Ayo07, Theoreme 4.1.49]). The classical triangulated structure of Dgp(S) or Dgy(S) is
denoted by T.

Proposition 6.29. The natural functor
(Dsp(S), T) == (Dsp(S), T)
is fully faithful exact.
Proof. The same as for Proposition 6.7. m

Finally, we note that the various versions of g, T, fx, X°°, —{—1},1 = 0 are com-
patible as in Proposition 6.8.

6.2.3 E ective Motivic Spectra

Definition 6.9. ([CD13, 5.2.15]) Define Ea to be the smallest thick subcategory of Dg,(S)
such that

1. (Z=Cone(Zs(X x¢ Al) — Zg(X))){—i} Ea,i=0.
2. Ea is closed under arbitrary direct sums if it exists in Dg,(S).

Set W, to be the class of morphisms in Ds_p(S) whose cone is in E5. Finally, define

DM, (S) = Dg,(S)[Wxll

A morphism in Ds_p(S) is called a levelwise Al-equivalence if it becomes an isomorphism

) eff,—
in DMg, (S).

Definition 6.10. ([CD13, 5.3.20]) A complex K Dg,(S) is called levelwise Al-local if
for every levelwise Al-equivalence f : A — B, the induced map

is an isomorphism.
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Proposition 6.30. A complex K = (K,) Dg,(S) is levelwise A'-local if and only if for
every n = 0, the complex K is Al-local in D~(S).

Proof. The proof of [MVWO06, Lemma 9.20] applies. The complex K is levelwise Al-local
if and only if for every X  Sm/S,; n  Z and i = 0, the map

HOngp(S)<<E°°ZS(X)){_i}[n]a K) —- Hongp(S)<<E°°ZS(X x AY)){—i}n], K)

is an isomorphism. One uses Proposition 6.22 and Proposition 6.25 to conclude. O

For every A = (An)  Sp(S) and X  Sm/S, we define AX by (A,)X = (AX). The
module structure {1} S AX —. AX is given by the composite

{1} SAY — ({1} SAX — A

The functor AX is contravariant with respect to morphisms in Sm/S. It follows that we
can define the Suslin complex C A of A by (C A)y =C An.

Proposition 6.31. Let K Dg,(S).
1. The natural map K — C K is a levelwise Al-equivalence.
2. If S = pt, the complex C K is levelwise Al-local.

3. If S = pt, the functor C induces an endofunctor of Dg,(pt).

Proof. 1. We have a natural morphism ¥*Zg(X) S AX —_ A defined by the com-
posite
s{1} P sZs(X) sAY == Zs(X) s( s{1} P sA)™ == Zs(X) sANq —— Apxg

for every p,q = 0. This morphism is compatible with module actions so it induces
a morphism

NeZs(X) s AX — A
We then obtain a morphism
A — Hom(E*Zs(X), A)
and we can use the same proof as in [MVWO06, Lemma 9.15] to conclude.
2. By the proposition above and Proposition 6.10.

3. By Proposition 6.10 since quasi-isomorphisms in Dgp(pt) are defined levelwise.
O

Proposition 6.32. A morphism f : A — B in Dg,(pt) is a levelwise A'-equivalence if
and only if for every n = 0, the morphism

f. = Q°(F{n}) : An — B,
is an Al-eguivalence in D~ (pt).

Proof. The morphism f is a levelwise Al-equivalence if and only if C f is a quasi-
isomorphism by Proposition 6.31. The latter property can be checked levelwise. O]
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Proposition 6.33. Let ¢ be the functor as before. We have an exact functor

eff,— eff,—
(0] :DMSp (S) — DMSp (T)

which is determined by the following commutative diagram

Dg5,(S) ———— Dg,(T)

eff,— o) eff,—
DMSIO (S)—DMSp (T)

Proof. For any X Sm/S, @ maps
Y2 (Zs(X % Al) — Zs(X){—i}

to
E2(Zr (WX) x AY) = Zr (WX){—i —j}.
So the statement follows by the same method as in Proposition 6.11. O

Proposition 6.34. 1. Then tensor product on Dg,(S) induces a tensor product

eff,— eff,— eff,—
s :DMg, (S)*xDMg, (S)—— DMg, (S),

which is determined by the following commutative diagram

Dy (S) x Dg,(8) —————Dg,(S)

eff,— eff,— s eff,—

ff,— .
Furthermore, for any K DMZp (S), the functor K s — is exact.

2. Letf : S — T be a smooth morphism in Sm/k. There is an exact functor

eff,— eff,—
Ty : DMSp (S) = DMSIO (T),

which is determined by the following commutative diagram
L)

eff,— f eff,—
DMg, (S)——DMg, (T).

3. Suppose that f : S — T is a morphism in Sm/K. There is then an exact functor

eff,— eff,—
f :DMg, (T)—— DMg, (S),

which is determined by the following commutative diagram

Dg,(T) ———— Dg,(S)

eff,— f eff,—
DMg, (T)——DMg, (S).
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4. For any i = 0, there is an exact functor
R eff,— eff,—
—{—i}: DMg, (S) — DMy, (S),
which is determined by the following commutative diagram

—{-i}

Dsp(S) Dsp(S)

eff,— —{—i} eff,—
5. For any i = 0, there is an exact functor
. eff,— eff,—
—{i}: DMSp (pt) - DMSp (pt)’
which is determined by the following commutative diagram

—{i} —
DSp (pt>

Dsp(pt)

eff,— —{i} eff,—
DMSp (pt) - DMSp (pt>

Proof. For (1), (2), (3), take J = 0 in the definition of @ and proceed as in Proposition
6.12, using Proposition 6.33. For (4), take the quadruple (S, S, S, i) and use Proposition

6.33. Finally, (5) holds by Proposition 6.32. O
Proposition 6.35. 1. Let f:S — T be a smooth morphism in Sm/k. We have an
adjoint pair

eff,— eff,—

2. We have an adjoint pair
. eff,— eff,— .
—{-i}: DMSp (pt) DMSp (pt) :—{i}.
Proof. The same as in Proposition 6.5. m

Proposition 6.36. 1. There is an exact functor
eff,— eff,—
¥ : DM (S) =—» DMg, (S)
determined by the following commutative diagram

D~(S) —=——Dg,(S)

ff,— oo ff,—
) =" DMy, (S).

2. There is an exact functor

o eff,— eff,
Q°:DMg, (pt) — DM (pt)

determined by the following commutative diagram

Ds,(pt) —*—— D~ (pt)

eff,— oo eff,—
DMg,  (pt) =—DM " (pt).
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Proof. 1. This follows from the fact that tensor products with Zs(G,) preserves Al-
equivalences, together with Proposition 6.32.

2. This follows by Proposition 6.32.

[
Proposition 6.37. There is an adjoint pair
eff,— eff,—
¥ : DM (pt) DMg, (pt): Q=.
Proof. The same as in Proposition 6.5. m
1 ff— . .
Proposition 6.38. The functor X : DM® (pt) — DMesp (pt) is fully faithful.
Proof. The same as in Proposition 6.26. 0

Proposition 6.39. 1. We have a commutative diagram (up to a canonical isomor-
phism)

DM (5)x DM (5) —=- DM (s)

>Ox3 >
eff,— eff,— eff,—

2. Suppose that f : S — T is a morphism in Sm/k. We have a commutative diagram
(up to a canonical isomorphism)

DMeff,—(T) f DMeff,—(S)

> >

eff,— f eff,—

3. Suppose that £ : S — T is a smooth morphism in Sm/k. Then, we have a
commutative diagram (up to a canonical isomorphism)

(T)

ff,— f ff,—
DM® " (S)— DM°

T T
eff,— f eff,—
DMg, (S)——DMg, (T).
Proof. This follows by direct computations. [

f
In [CD09, Proposition 3.5] and [CD13, Proposition 5.2.16], the category DI\/IZp (S) is

defined as the the Verdier localization of Dgp(S) with respect to the homotopy invariance

eff
conditions. It follows that the localization induces a triangulated structure on DMg, (S)

([Kral0, Lemma 4.3.1]).

ff,— ff N .
Proposition 6.40. There is an exact functor DMZp (S) —» DMZp (S) which is de-
termined by the commutative diagram

Dsp(S) ———Dsp(S)

eff,— eff
DMg, (S)——DMg, (S).

It is fully faithful when S = pt.
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Proof. The same as Proposition 6.15 by using Proposition 6.31. O
As usual, there are compatibility results between the natural inclusion and g, T,
Ty, 2, —{—i}1=0.
6.2.4 Stable Categories of Motives
Definition 6.11. ([CD13, 5.3.23]) Define Eq to be the smallest thick subcategory of
f,—
DI\/IeSp (S) such that

1. Cone((2°Zs(X){1}H{—1} — X=Zg(X)){—i}) Eq forevery X Sm/S,i=0.

i i . e T,
2. Egq is closed under arbitrary direct sums if it exists in DM':;p (S).

- o :
Set Wq, to be the class of morphisms in DMZIO (S) whose cone is in Eq. Define

DM (S)=DMg,  (S)[Wg"]

: L = . .
to be the category of stable motives over S. A morphism in DM;Io (S) is called a stable
Al-equivalence if it becomes an isomorphism in DM (S).

ff,— . .
Definition 6.12. A complex K DI\/IZp (S) is called Q-local if for every stable Al-
equivalence f : A — B, the induced map

Hom ef f,

DMSp —(S)(B, K) 1 Hom eff,

DMsg, ‘(S)(A’ K)
IS an isomorphism.

The same method as in the proof of Proposition 6.34 yields the following proposition.

ff— .
Proposition 6.41. 1. The tensor product on DMZp (S) induces a tensor product

s:DM (S)xDM (S)—— DM (S),
which is determined by the following commutative diagram
eff,— eff,—

eff,—
DMg, (S)*DMg, (S)—=DMg, " (S)

DM (S)xDM (S)—=—DM (S).

Furthermore, for any K DM (S), the functor K g — is exact.

2. Suppose that £ : S — T is a smooth morphism in Sm/k. Then, there is an exact
functor

f4:DM (S)— DM (T),
which is determined by the following commutative diagram

eff,— f. eff,—
DMg, (S) s DMg,  (T)

j— f# —

DM (S) DM (T).
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3. Let f : S — T be a morphism in Sm/k. There is an exact functor
f :DM (T)— DM (S),

which is determined by the following commutative diagram

eff,— f eff,—
DMSp (T) DMSp (S)

T DM (s).

DM (T)
4. For any i = 0, there is an exact functor
—{—i}:DM (S)— DM (S),

which is determined by the following commutative diagram

eff,— —{—i} eff,—
DMg, (S)—DMSp (S)

—{-1} -

DM (S) DM (S).

We denote by Xt the composite

1 oo ff,— -
DM~ (S)-Z=-DMyg, (S)——DM (S).

Lemma 6.4. Let C be a symmetric monoidal category and let T  C. If there exists
U C suchthatU T = |, then there are isomorphisms

ev:U T — ,coev: — T U

such that T is strongly dualizable ([CD13, 2.4.30]) with dual U under these two maps.

Proof. Let F =— U and G=— T. Then the condition gives an endoequivalence
F:C C:G

i.e. two natural isomorphisms a: FG — id and b : id —— GF. We can then construct
the following two morphisms

8: Hom(FX,Y)—S—Hom(GF X, GY ) —2— Hom(X, GY)

and
n: Hom(X,GY)——Hom(FX,FGY)——Hom(FX,Y)
for every X,Y  C. Let 8; be the composite
F idg x<b FGF axidg F
and 6> be
G bxidg GEG idgxa G
Then (N<8)(F) =06,(X)eFf and (8°n)(g) =g °02(Y). So 0 is an isomorphism, hence F
is a left adjoint of G (vice versa). O

79



As a straightforward consequence of the above lemma, we obtain the following result.

Proposition 6.42. The element ©*Y(Zs(G,l)) has a strong dual (XSt 5){—1} in
DM (S) with the evaluation and coevaluation maps being isomorphisms.

As a consequence, we can define C(i) tobe C  sX*t( 5(i)) and C(—i) to be C{—i}{i]
forany C DM (S) and any i = 0.

Proposition 6.43. ([CD13, Proposition 5.3.25]) Suppose that E = CH. Then, the

functor

eff,—

%St DM ' (pt) — DM (pt)

is fully faithful.

f,— £f,—
Proof. We first prove that for every projective C DM® (pt), X°C DM;p (pt) is
Q-local. Arguing as in [MVWO06, Lemma 9.20], this is equivalent to the morphism

Hom (2% Zp (X){TH—1H~i}, ¥%(C[n])) = Hom(E%Zu(X){—i}, 2= (C[n]))

being an isomorphism for any X  Sm/S, any i = 0 and any n  Z. This follows from
the following commutative diagram

Hom (2% Zp (X){TH—1H~i}, ¥(C[n])) —— Hom (= Zp(X){ =i}, X=(C[n}))

Hom (X% Zp(X){1H{—1}, ¥=(C[n)){i}) Hom(X%Zy(X), X7(CIn]){i})

e

Hom(E%°Zp (X){1}, 2 (C[n)){i + 1}) Hom(Zs(X), w{1} ' (C[n]))

Hom( pt{l} Zpt(x>a pt{l} 1 (C[ﬂ]))

f,—
and [FO16, Theorem 5.0.1]. Let now K, L DM° (pt) be two projective resolutions of
P, Q respectively. The statement follows then from the following commutative diagram

zoo,St

oo, st oo, st
HomDMeff,f(pt)<K, L) HomDM—(pt)(Z SIK, X°oStL)
Soost ‘w,st oo, st
HomDMeff,_(pt)(P, Q) — HomDM—(pt)(E P, X°5'Q)
x =‘
HomDMprf,—(pt)(Z P,X Q)
and Proposition 6.38. O]

Proposition 6.44. Let f : S — T be a smooth morphism in Sm/k. We have an adjoint
pair

f.:DM (S) DM (T):f.

Proof. The same as Proposition 6.5. m
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Proposition 6.45. Suppose that f : S — T is a morphism in Sm/Kk.
1. Forany K,L DM (T), we have

f(K sL)=(fK) s(fL).

2. If T is smooth, then for any K DM_(S) and L DM_(T), we have

fu(K sfL)=(fyK) sL.

Proof. Everything can be checked termwise by the discussion in Section 6.2.1. [

In [CD13, Proposition 5.3.23|, the category DM (S) is defined as the the Verdier local-
ization of DM esp (S) with respect to Wq. As usual, the localization induces a triangulated

structure on DM (S) ([KralO, Lemma 4.3.1]). Here is a weak result which is enough for
our purpose:

Proposition 6.46. There is an exact functor DM (S) — DM (S) which is determined
by the commutative diagram

eff,— eff
DMSp (S)—DI\/ISp (S)

DM (S)

DM(S).

When E = CH and S = pt, the morphism

Hom (X,Y)—- Hom X, Y)

DM (S) DM(S)(

is an isomorphism if X and Y are of the form (X*StA){—i},i = 0.

Proof. The first statement follows from [KralO, Proposition 4.6.2]. We have thus a com-
mutative diagram (up to a natural isomorphism)

DI\/Ieff,—(s) L DMeff (S)
ZOO,St Zm,st

DM (S)

DM (S).

Now let E = CH and S = pt. If the statement holds for X,Y , we say that P (X,Y)
holds. If P (X,Y ) is true, then for any X = X and Y =Y, P(X,Y ) is also true.
It follows then from Proposition 6.42 and the fact that the natural inclusion is monoidal
that P (X{—1},Y {—1}) is also true.

By Proposition 6.15, Proposition 6.43 and the diagram above, P (X°StA, X StB) is

F,—
true for any A, B DM® (pt). Hence the statement follows. O

To conclude, we note as usual that the various versions of g, ¥, fg, —{—i},1 =0
are compatible with the inclusion.
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Chapter 7

Orientations on Symplectic Bundles
and Applications

7.1 Orientations on Symplectic Bundles

In this section, we consider E-correspondences with E = CH, i.e. MW-correspondences.
We are going to prove the quaternionic projective bundle theorem and derive the existence
of a Gysin triangle over any smooth base S (under some conditions). We first recall
the comparison results between MW-motivic cohomology groups and Chow-Witt groups
established in [DF17].

Proposition 7.1. For any C  D7(S) and any i N, we have an isomorphism of
functors Smy” — Ab

Homp-(sy(Zs(—), Cli]) = H'(—,C).
Further, let X be a smooth scheme, Z X be a closed subset and U = X \ Z. Then, we
have an isomorphism of functors D™(S) — Ab

Homp-(s)(Zs(X)/Zs(U), —i]) = Hy (X, -).

Proof. The first statement is obtained using the universal property of [GMO03, page 188].
For the second statement, one first proves that

Hom (Zs(X)/Zs(U),—) = —z(X),

Sh(s)

where the right hand side denotes sections with support in Z, defined by the left exact

sequence

Con_sequently, both terms have the same hypercohomology functor. Additionally, we have
Ext'(F,—) = Homp-(s)(F, —[i]) for any sheaf with MW-transfers F, yielding the second

statement. ]
Let now X Sm/S. For any two morphisms f; : Zs(X) — Cj,i = 1,2 in
eff,—

DM (S), we denote by f; T, the composite

f1 T2

Zs(X) ——Zs(X) sZs(X)2"c, sC,.

f—
In case we have two morphisms fj : Zs(X) —= Zg(nj)[2n;] in DM’ (S), we denote by
T, f, the composite

f1 2

ZS<X) Zs(nl + ng)[2(n1 + nz)} .

Zs(nl)[in] Zg(ﬂz)[an}
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Proposition 7.2. Let X Sm/k, Z X be a closed subset and i = 0. Then
HZ (X, C Zy(i)) = CHy(X),

and in particular _
H?(=,C Zy(i)) = CH'(-)

functorially in X. Moreover, the following diagram commutes for any i,j = 0 (here

DMeff _ DMeff, (pt))

Hom_ err (Zpe(X), Zpe()[21]) % Hom | err (Zpe(X), Zpe(§) 2] ]) —CHi(x) g CHj(X)

i+]

Hom_ err (Zpe(X), Zen(i +§)[2(i +1)]) cH ™ (x)

where the right-hand map is the intersection product on Chow-Witt groups. Consequently,

. . . . 1 . .
we ha\_/e isomorphisms Hom  err (Zpe(X), Zpe(1)[2i]) — CH (X) which send id, to 1
when i =0 and X = pt.

Proof. See [DF17, Corollary 4.2.6]. ]

7.1.1 Grassmannian Bundles and Quaternionic Projective Bun-
dles

In this section, we recall the basics on Grassmannian bundles and quaternionic projective
bundles. Although these are well-known objects, we include their definitions here for the
sake of notations. The reader may refer to [KL72|, [Sha94| for Grassmannians, [Kle69]
for Grassmannian bundles and [PW10] for quaternionic projective bundles. Let S be a
K-scheme.

Definition 7.1. Let k be a field, r be an integer and 1 < n < r. Consider the ring
il <ip,...,in<r]

and the ideal I(n,r) A(n,r) generated by

{:_11(_1)t_1pi1...in—1jtpjl...jt—l,jt+1,---jn+1 Wlth 1= ila ey in—l;jl, e ajn+1 = r,
Piy....in if the indices are not distinct,
Pis.....in = SAN(0)Ps(iy),....o(in) forc S,.
The scheme

Gr(n,r) =Proj(A(n,r)/1(n,r))
Is the Grassmannian of rank n quotients of a k-vector space of rank r.

Definition 7.2. Let X be an S-scheme, E be locally free of rank ron X and 1=n<r.
Define a functor

F:X—=Sch® —, Set
f:T—X — {F fE|fE/F islocally free of rank n}

with functorial maps defined by pull-backs.
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Proposition 7.3. The functor F is representable by an X-scheme Grx (n, E), the Grass-
mannian bundle of rank n quotients of E. Further, if E = Oy, then Grx(n,E) =
Gr(n,r) x, X over X.

Proof. See [Kle69, Proposition 1.2]. O

Let p: Grx(n,E) — X be the structure map. There is a universal element F  p E
with quotient of rank n. The vector bundle (p E/F) is called the tautological bundle
of Grx(n,E), denoted by U . Its dual is just called the dual tautological bundle, denoted
by U

Definition 7.3. Let E = 0 be a locally free sheaf of rank n over a scheme X. Then E
is called symplectic if it’s equipped with a skew-symmetric (v -v = 0) and non degenerate
inner product m: E x E — Ox (hence n is always even).

Now, let ¥ : X — Y be a morphism of schemes and (E, m) be a symplectic bundle
on Y. Then (f E,f (m)) is also a symplectic bundle, where ¥ (m) is the pull back of the
map E — E induced by m.

The following is a basic tool when dealing with non degeneracy of inner products.

Proposition 7.4. Let f : X — Y be a morphism between schemes and E be a locally
free sheaf of finite rank over Y with an inner product m: E <X E —- Ox. Then for any
x X, m is non degenerate at f(x) if and only if f (m) is non degenerate at x.

Proof. This is basically because  induces local homomorphisms between stalks. O]
The following proposition can be seen from the case of vector spaces.

Proposition 7.5. Suppose that we have an injection i : E; — E,, where E; is symplectic
and mg,|g, is non degenerate. Define E; (U) := E;(U) for every U. Then E, is again
a symplectic bundle with inner product inherited from E, and there exists a unique p :
E, — Ey withpei=idg and Im(idg, —iep) E; .

Definition 7.4. Let X be an S-scheme and let (E, m) be a symplectic bundle over X.
Define a functor

H:X—Sch® —. Set
f:T—X — {F fE|f (m)| non degenerate,f E/F v.b. of rank rk(E) — 2}

with functorial maps defined by pull-backs.

Definition 7.5. Let

n+1

HP" =Di(  Piirn+) Gr(2,2n+2),

i=1
where Pi j+n+1 Means the class of pj+n+1 iN the quotient.
Proposition 7.6. The functor H is representable by a scheme HGrx(E). Further, if

(E,m) = 0,22 | , then HGry (E) = HP" x, X over X.

Proof. We have the structure map T : Grx(2n,E) — X and the tautological exact

sequence

Define
HGrx(E) ={x Grx(2n,E)|n (m)|e is non degenerate at X}.
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We prove that Homx (T,HGrx(E)) = H(T) for any X-scheme f : T —s X. By
definition, HGrx (E ) is an open subset of Grx (2n,E). Then, any X-morphism a: T —
HGrx (E ) induces an X-morphism b : T — Grx(2n, E) and this gives an exact sequence

obtained by applying b on the exact sequence in the beginning. By definition of HGrx (E ),
T (m)|k is non degenerate. Conversely, given a morphism b : T — Grx(2n, E ) such that
T (m)|k is non degenerate as above, so T (mM)|E is non degenerate at every point in Im(b)
by Proposition 7.4. So Im(b) HGrx(E).

For the second statement, consider an X-scheme f : T —— X and an X-morphism
b: T — Gr(2,2n + 2) %, X. Then b factors through HP" %, X if and only if the
composite

C: T — Gr(2,2n+2) x X — Gr(2,2n + 2)

factors through HP". Denote the structure map Gr(2,2n+2) —- pt by p. Then we have
the tautological exact sequence

0— F —pO,/™— U —0

as in the beginning. Then one proves that ¢ factor through HP" if and only if the inner

product p Opt2"+2, is non degenerate after restriction to ¢ U (taking the

—I
dual of the exact sequence above). Considering morphisms Spec K —— T where K is a
field, we can assume T = Spec K. Then the non vanishing of the formula ::11 Pii+n+1
in the Definition 7.5 is just equivalent to the non degeneracy required above. O]

Definition 7.6. We will call the scheme HGrx (E) the quaternionic projective bundle of
E.

Let p: HGrx (E) — X be the structure map. Then, there is a universal element F
p E which is just obtained by the restriction of the universal element of the Grassmannian
bundle to HGrx(E). The vector bundle F itself is called the tautological bundle of
HGrx (E), denoted by U . Its dual is just called the dual tautological bundle, denoted by
U . We will use the same symbol U for all tautological bundles defined above if there
is no confusion. Note that both U and U are symplectic by Proposition 7.5.

7.1.2 Quaternionic Projective Bundle Theorem

The following proposition can also be found in [MVWO06, Corollary 15.3] and [SV00,
Proposition 4.3].

Proposition 7.7. Let S Sm/Kk. For any correspondence theory E and n = 1, we have
an isomorphism
Zs((A"\0)xS) =Zs Zs(n)[2n—1]
) eff,—
in DM (S).
Proof. We denote the point (1,...,1) A" by 1 for any n. Then it suffices to prove that
Zs((A"\0) xS, 1) = Zs(n)[2n — 1]

by induction. For n = 1 this is by definition.

In general, write Xj,...,Xn for the coordinates of A" and set U; = D(X;), U, =
" D(x;). Note that Uy = (AT\0) x A" x S, U, = Al x (A"1\0) x S and Uy n U, =
(A'\0) x (A"1\0) x S.

85



We have a commutative diagram in the category of sheaves with E-transfers:

Zs(Ul N U2, 1) Zs(Ul, 1) Zs(Uz, 1)

ZS(Ul N U2,1)—Zs<<Al\0) x S, 1) Zs((An_l\()) ><S,1)

where the right-hand vertical map is the sum of the respective projections. Considering
the relevant sheaves as complexes concentrated in degree 0 and taking cones, we obtain a
commutative diagram of triangles in D7 (S)

Zs(Ul n U2, 1) Zs(Ul, 1) Zs(Uz, 1) C (71)

Zs(Ul n Uy, 1) — Zs((Al \0) xS, 1) Zs((An_l \0) xS, 1) —C

It follows from Proposition 5.10 that the map Zg(U;, 1) Zs(Uz, 1) - Zs((A"\0) xS, 1)
induces a quasi-isomorphism C — Zg((A"\0) % S, 1). Using now Lemma 5.6, we obtain
a morphism of complexes Zs(((A'\0) x S,1) ((A"1\0) xS, 1))[1] » C which is a
quasi-isomorphism.

-
Applying now the exact localization functor D™(S) - DM’ (S) to (7.1) and us-
ing Proposition 6.9, we see that the map C — C is an isomorphism in DM° '_(S).

Altogether, we have obtained an isomorphism in DMeff'_(S) of the form
Zs((A"\0) x S,1) - Zs(((A'\0) xS, 1) ((A"'\0) xS, 1))[1].
Now, the wedge product on the right-hand side can be computed as

Zs(((AN0)%S,1)) sZs(((A™\0)xS, 1)) = Zs(1)[1] sZs(n—1)[2n—3] = Zs(n)[2n—2]

f,—
in DM " (S) by Proposition 5.16 and induction hypothesis. Hence we are done. O

Recall now that for any smooth scheme X and any v Px, we have groups
CH'(X,v) := CH'(X, det(v))
for any i N. We now discuss the notion of orientation of a vector bundle.

Definition 7.7. Let X Sm/k and let E be a vector bundle over X. A section s
det(E) (X) is called an orientation of E if s trivializes det(E) . A vector bundle with an
orientation is called orientable.

Definition 7.8. Let X Sm/k and E be an orientable vector bundle of rank n over
X with an orientation s. Define e(E) to be the map such that the following diagram
commutes (see [Fas08, Définition 13.2.1]):

“® cH"(X,-E)

where c,(E) is the Euler class of E. If n = 2, define the first Pontryagin class under

the orientation s of E to be —e(E)(1) CHZ(X) (see [AF16, remark before Proposition
3.1.1]), which is denoted by p; (E).

CH"(X)

e(E)

CH"(X)
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Definition 7.9. Let E be a vector bundle of rank n over X Sm/S and let s be an
orientation of E. The map

e(E): CH (X) — CH"(X)

defined above gives an element
e(E)(1) Hompmers—t (Zpt(X), Zpe(N)[2N]).

It induces a morphism
0:Zs(X) — Zs(n)[2n]

by Proposition 6.13, which is called the Euler class of E over S under the orientation s.
If n =2, then —8 is called the first Pontryagin class under the orientation s of E over
S, which is still denoted by p;(E ).

The following lemma is obvious.

Lemma 7.1. Let (E,m) be a vector bundle of rank 2 over a scheme X with a skew-
symmetric inner product. Then m is non degenerate i the induced map 2E —— Ox is
an isomorphism.

Hence for any symplectic bundle of rank 2, there is a canonical orientation induced by
the dual of the isomorphism in the above lemma.

Definition 7.10. Let E;,E, be two vector bundles over a scheme X with orientations
S1, Sp respectively. An isomorphism f : E; — E, is called orientation preserving if
det(f) (sz2) = ss1.

Proposition 7.8. Let E;,E, be two orientable vector bundles of rank n over a smooth
scheme X with orientations s;, S,, respectively. If there is an orientation preserving
isomorphism f : E; — Ej, then e(E;) = e(Ey).

Proof. Let E;j be the total space of Ej, pj : Ej — X be the structure map and z; : X ——
E;j be the zero section for j = 1,2. We have a diagram

CH(X) 2 cH"(x, —E;) —- CH"(X)
% _f/

CH"(X,—E,)

in which the right triangle commutes since T is orientation preserving. Hence we only
have to prove that the left triangle commutes. For this, use the following commutative
diagrams which can be catenated:

0 — 0
CH (X)=22'CH (X,E; — E;)
idg, —f
0
CH (X,E; — Ey)
—S2+S2

‘(f+idEz)—1

0
CH (X,E; — Ey)

87



CH (X,E1 — E1) 2 CH"(E1, —p,E1) -~ CH" (X, —E;)
‘ —p, (F)
0 Z1 n
CH (X, El - Ez) CH (El, _plEZ) —f
P1

CH’(X,E, — E») 2— CH"(Es, —p,E2) =2~ CH" (X, —E»).

]

As an application, if two symplectic bundles of rank 2 are isomorphic (including their
inner products) then their first Pontryagin classes under the canonical orientations are
equal. Note that if they are just isomorphic as vector bundles, the statement is not true
any more, since we can use automorphisms of trivial bundles.

Our next aim is to calculate the motive of HP". Let Xy, ..., Xon+2 be the coordinates
of the underlying vector space of HP". Foranya=1,...,n+1, set V; = k- X,
X8 =HP"\Gr(2,V,). We have a diagram:

i=a+n+1

Spec k

(Xg™)°

where U, v, W are the structure maps, (X6'+1)° is the closed complement of X6‘+1 in HP",

k Xl,---1X2n — Xla---,Xn,01Xn+11---,X2n10
yla---1y2n y1,---,yn,Oyyn+11---,y2n,0

J is the inclusion and

m Xl;-"!X2n+110 _ X1y ooy Xy Xp42y + 00y Xon+1
yl;-'-1y2n+110 ylu---yyn1Yn+2’---ay2n+1

\ . . . . .
(here, vl means a two dimensional subspace written in its coordinates spanned by
2

V1,V in a K-vector space). Note that the lower diagram doesn’t commute, i.e. Ko = j.
Proposition 7.9. The following results hold:

1.
M (Uppn-1) =] (Uppn)
as symplectic bundles.

2. If z: HP"™ — U s the zero section of U then there is a section s of U such
that we have a transversal cartesian square (see [AF16, Theorem 2.4.1]):
(Xg*)F ——HP"
J
HP"

s— Unpn.
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Proof. See [PW10, Theorem 4.1, (d), (e)]. O

Theorem 7.1. For any n = 0, we have

Zpt(HP") = LoZpt(20)[4]
ff,—

in DM* (pt).

Proof. Set U2 = 2., X} HP". The normal bundle N(xyesmpn is symplectic by re-
placing X§™** byX$ in Proposition 7.9. So the normal bundle N, := Nua\xtyru, is also
symplectic of rank 2 and has a canonical orientation S;. Moreover, we have an A%-bundle
m: (X} — HP" ! by [PW10, Theorem 3.2], and then U271\ X} is also an A%-bundle
over U2T1.

Now we prove by induction that

Zot(UR) = 550 Zpe(20)[4i].

This is true for a = 1 by [PW10, Theorem 3.4(a)| and Proposition 6.9. We thus suppose
it’s true for some a = 1 and prove the result for a+ 1. Let then

0: Zpi(Ug) — o Zpe(20)[41]

be such an isomorphism.

. ff,—

We claim that the inclusion j : Zp(U2) —= Zn(U3*1) splits in DM’ (pt). Indeed,

Proposition 7.2 yields a commutative diagram in which the vertical homomorphisms are
isomorphisms

Zpt(UR), Zpt(UR))

]
HomDMeff’_(pt)(Zpt(Ur?ﬂ)’ Zpt(Uf)) ——— Hom

DM eff,—(pt) (

Zo(UZ™), T Zpe(20) [4]) - Homere | (Zoe(UR),  T4Z(20)[4i)

- 2i, i _ 2i
imo CHO(UF™) =g CH(UR).

n

HomDMeff,—(pt) (

It suffices then to prove that for any 1 =0,2,...,2a — 2, the pull-back
j :cH'(UaY — cH'(UY)

is an isomorphism since the first horizontal arrow in the above diagram will then also be
an isomorphism.

We use induction on a again to prove the claim on j . The case i = 0 is easy.
Hence, we may suppose that 1 > 0, which implies that a,n > 1. The result now follows
by induction, using the following commutative diagrams (see [Fas08, Remarque 10.4.8],
[Fas08, Corollaire 10.4.10] and [Fas08, Corollaire 11.3.2]) and noting that the exact rows
in the first one are split by [PW10, Theorem 3.4(a)]:

0 —— CHygeina (USH) —— CH' (U — CH'(X})

CH'(U2) —— CH'(X3)

0,

i
0 CHU,%\X&(Ur?)
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._2 . ._2 ) _
CH' (UZ™\X3) 5o CH  (UZ*'\XE, Nau1) = CHyariyca (US™)

Sa+1 Thom

CH' (U3 \ X3, Na) —=—

hom

CH'(Ua\X3) CHyax (U2)

Sa

CH' 2(Ua_)—=—CH' “(Ua*1\ X2)

‘ A2—bundle

CH AU —=—cH  ua\ x).

A2—pundle

Now, we have an exact sequence of sheaves by Proposition 5.10
0 == Zp(Ug n X5™) == Zpe(UR)  Zpe(X5™) == Zp(UZ™) —= 0,

ff,—
yielding an exact triangle in DM ) (pt). Moreover, we have an Al-bundle p : A*"*1 —_,

X&** (see [PW10, Theorem 3.4(a)]) and it follows that

Zot (U2 0 XE) = Zp (AN O x A2+ — 7 7. (2a)[4a — 1]

by Proposition 7.7. Killing one point, we get a distinguished triangle in DMef " (pt)
Zye(2a)[4a — 1] == Zn(UR) == Zpe(UR™) —— Z(2a)[4al.
We have proved that J splits and therefore
Zoe(UR™)  Zpe(UR)  Zpe(2a)[4a)
completing the induction process. O

Now we want to improve Theorem 7.1 and find an explicit isomorphism using the first
Pontryagin class of the dual tautological bundle on HP".

The following proposition has a very similar version in [PW10, Theorem 8.1], but the
twists are considered here.

Proposition 7.10. Let w : HP" - Spec(k) be the structure map. Then the map

foi:CH (Spec(k) —  CH'(HP")
X — W (X)-p(U )

IS an isomorphism of abelian groups for i = 0,...,n. Here, U is endowed with its
canonical orientation.

Proof. We prove the result by induction on n and use the notation of Diagram (*) above.
If n = 0, there is nothing to prove.
We first note that j (Uppn) = Nxr+iye/pypn by Proposition 7.9. Now, we have a
commutative diagram with split exact row for any i = 0 (as in Theorem 7.1)
2i—2

0 CH™ T (XE™)%, —j Uppn) ——— CH™ (HP™) —— CH™ (X3™) —o0,

t t

2i—2

+ . ] j 2i
CH™ “((XP*1)¢,—j Uppn +j Uppn) - CH™ (HP", Uppn)

0

CH™ (X)) — = CH™ T (HP"1) — CH(Spec k)

n—1,i—1
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where t (resp. t) is induced (Definition 7.7) by the canonical orientation of j Uypn (resp.
Uppn) and 0 is the cancellation map induced by the canonical orientation. On the other
hand, we have an Al-bundle

p: AT — X§

by [PW10, Theorem 3.4(a)]. It follows that the statement is true for i = 0. Moreover, it

2

follows that CH I(X(?H) =01if 1 > 0. Thus J is an isomorphism if i > 0. In this case,
the map —J eteoem of,_1j—; will also be an isomorphism. It suffices to show that it
is equal to f,j to conclude.

Pick s CHO(Spec k). Then

—J (o (fa-1i-2(s))))
=—J (t(1 (v () - p1(Upypn-1)"™))))
by definition

=—t( (o(m (v (8))*J (P1(Uppn)'™))))
by Axiom 10, Proposition 7.9 and the square in the diagram

=—t(j (o(m (v (s))) - pa(Uppn)'™)
by Axiom 18 for

=—t(j (0(i (W (5)))) P1(Uppn)'™)
by Axiom 9

=—t( (G (w(s)) 0(1) pa(Uppn)"™)
by Axiom 7, Axiom 10 and functoriality of pull-back with respect to twists

=—t(w (s)-j (0(1)) - pr(Uppn)™)
by Axiom 18 for j

==w (s) t(J (0(1))) - pa(Upspn)' ™"
by functoriality of products with respect to twists.

Denote the map
CH (HP™) —— CH (HP", —Uppn + Uppn)
by 0. So we see that
t(d (o) =tGj (1)) =t(s(z (1)) =t((p)(z (0(1)))) =e(Uypn)(1)
by Axiom 16, yielding the result. m

Lemma 7.2. Let X be a smooth scheme and let |,j = (0. Then
Hom Zoe ) (D20, Zut ) 20]) = =1

eff,— | |, == 1—i
DM T (pt)( pt( )( ) pt(J) J ) CI IJ (X) If | <j

Proof. If i < j, the lemma follows from Proposition 7.2 and [F©?16, Theorem 5.0.1].
Suppose then that i > J. The exact sequence of sheaves with MW-transfers

0~ Zp(A'N0) — Zpt(A') = Zp(A)/ Ze (AN 0) = 0
£f,—
yields an exact triangle in DM® (pt) of the form

Zot(A'\0) = Zpt(AY) - Zp(A)/Zp(AT\N0) - Zp(A'\N0)[1]
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As Zy(A)  Zp(Spec(k)) by Proposition 6.9, we see that the first map is split. Conse-
quently, we get an isomorphism

Zot(AN/Z (AN 0)  Zn(ATNO,1)[1]

and it follows from Proposition 7.7 that Zp(A)/Zy (AN 0)  Zp(i)[2i] in DI\/IEff’_(pt).
Therefore, _ _
Zot(X)(D[2i] Zpe(X x AN/ Zpe(X < (A'\ D))

and it follows from Propositions 7.1 and 7.2 that

HOMG ort 0 (Zot <) D[20], ZnD2])  CHxnoX X A') = 01

Corollary 7.1. For any i,j =0, we have
H Zou (D20, Ze ()20 = =l
OMett=y Zot DAL Zn DA = o o

In other terms, the motives Z(i)[2i] are mutually orthogonal in the triangulated category
eff,—

DM (pt).

Lemma 7.3. Let C be an additive category. Let M, M;, i = 1,...,n be objects in C such
that Homc (M;, M;) = 0 if i = j. Suppose that there is an isomorphism ¢ : M — ;M.
Then, a morphism ¢ : M —  M; is an isomorphism if and only if ¢; is a free generator
of Homc (M, M;) as left Endc (M;)-module for any i, where ¢, is the composite of ¢ and
the it" projection.

Proof. Suppose that ¢ is an isomorphism. We prove that ¢; a free generator of Hom¢ (M, M)
as a left Endc (Mj)-module. We note that the action is free since ¢; is surjective. Now,
suppose that Y Homc (M, M;). Since Hom¢ (Mj, M;) = 0 if i = j, we see that
Y= (Peodteoij) e (d;) where ij is the natural map from M; to the direct sum. Hence ()
can be generated by ¢; and ¢; is indeed a free generator.
Conversely, if we have a morphism ¢ : M —  jM; such that ¢; is a free generator of
Homc (M, M;), then ¢; = Fijod; for some isomorphism ;. Hence ¢ is also an isomorphism.
O

Theorem 7.2. The map

p1(U )

Zy(HP") iZoZpt(21)[4i]

i . L - . - . . .
IS an isomorphism in DM’ (pt). Here, U is endowed with its canonical orientation.

Proof. By Theorem 7.1, Corollary 7.1 and Lemma 7.3, it remains to prove that py(U )’
is a free generator of HomDMeff,—(pt)(Zpt(HPn),Zpt(2i)[4i]). By [F©16, Theorem 5.0.1],

the ring EndDMeff,—(pt)(Zpt(2i)[4”) is commutative, so we only have to prove that p :=

p1(U )' generates HomDMeff,—(pt)(Zpt(HPn),Zpt(2i)[4i]).

Using the notation of Diagram (*), we see that the composite

w
HomDMeff, (Zpt’ Zpt) HomDMeff,

_(pt)(zpt<H P n)' Zpt)

(pY)

Hom_ er Zyi(HP™), Zpe(2i)[4i])

f”(pt)(
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is an isomorphism by Proposition 7.10. Now given a map
U] HomDMeff,—(pt)(Zpt(H P™), Zne(2i)[4i]),

we can find its preimage A under the map above. So we have a commutative diagram:

/“’\zpt@imn

|dw

\ y
pt (20)[4i]  Zpt
Zpe(21) 4|
showing that | is generated by p'. We are done. O

For any S Sm/K, we have a projection ps : HPS — HP" and we set Ug = pgU

Theorem 7.3. The map

1(Ug )i . .
s N\ Zs(2i)[4i]

ff, . . . . . .
IS an isomorphism in DM’ (S). Here, Ug is endowed with its canonical orientation.

Proof. We have a commutative diagram

p (p2(U )

P Zn(HP") P Zpt(2)[4]

pl(Us )

Zs(HPg)) Zs(2)[4].

Hence the result follows by the commutative diagram

(p2(U ))' N
P Zpn(HP") = Igp Zpe(20)[4
Zs(HPE) — 22— L 74 (2i) 4
where the upper horizontal arrow is an isomorphism by the theorem above. O]

Theorem 7.4. Let X Sm/S and let (E, m) be a symplectic vector bundle of rank 2n+2
on X. Let m: HGrx(E) - X be the projection. Then, the map

m p(U )

Zs(HGrx(E)) im0Zs (X)(2i)[4i]

ff, i . . .
Is an isomorphism in DM’ (S) functorial for X in Sm/S. Here, U is endowed with
its canonical orientation.
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Proof. We first prove that the map

m p(U )

Zs(HGrx(E)) im0Zs (X)(2i)[4i]

is functorial in X. Let then £ : Y - X be a morphism of S-schemes. We have a
commutative diagram

HGry (f E)—Her(E)
T s

fo

f,—
yielding a commutative diagram in DM’ (S)

Zs(HGry (f E)) —— Zs(HGrx(E))

1 11

ZS(Y) Zs(X)

T
On the other hand, we have a commutative diagram

Zs(H Gry (f E )) —_— Zs(H er(E ))

pr(U ) pr(U )

Zs (20) 4] ———— Zs (20) 4]

for any i by Proposition 7.2 and naturality of the first Pontryagin class (Proposition 7.8).
Consequently, we get a commutative diagram

Zs(HGrY (f E)) ZS<HG|")((E))
m piU ) m opiU )
Z5(V)21) 4] o 1Zs(X)(20) 4

proving that the map is natural.
Let’s now prove the first statement. We pick a finite open covering {Uq} of X such

that

+ |
(E.mlu, = 022

for every o and we work by induction on the number of the open sets. If there is just one
open set, HGrx (E) = HP" %, X and we conclude tensoring the isomorphism of Theorem
7.3 with Zg(X).

Suppose next that X = U; U, and the argument holds for (E,m)|y,, (E, m)]u,
and (E, m)|u,nu,. Set Ej for the restrictions of E to Ui and Ej, for its restriction to the
intersection. Using Proposition 5.10, we obtain exact triangles

Zs(Ul N Uz) — Zs(Ul) Zs<U2) - Zs(X) - Zs(Ul N Uz)[l] (72)
and

Zs(HGr(Ey)) - Zs(HGr(E1)) Zs(HGr(Ez)) - Zs(HGr(E)) - (..)[1].  (7.3)
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Tensoring with Zg(2i)[4i] being exact, we obtain shifted versions of (7.2) and a diagram

m opy(U ) ™ opiU ) m opy(U ) ‘ ‘
iZs(U1 n Up)(21)[4i] — i(Zs(U1)  Zs(Up))(20)[4i] — iZs(X)(20)[41] — (.. )[1].
(7.4)
The two left-hand squares commute by naturality, and we now prove that the third also
commutes. We have a commutative diagram

Zs(H GI‘(E )) —Zs<H Gr(Elz))[l]

s m[1]
Zs(X) —Zs(Ul N Uz)[l]

Tensoring with the morphism corresponding to the i-th power of the first Pontryagin class
Zs(HGr(E)) - Zs(2i)[4i], we obtain a commutative diagram

Zs(HGr(E)) Zs(HGr(E)) ——Zs(HGr(E1z)) Zs(HGr(E))[1] (7.5)
™ opi(U ) ™ opa(U )]
Zs(X)  Z(20)4i] ———— Zs(Us n Up)  Zs(20)[4il[1].

On the other hand, the open cover
(HGr(E;) *x HGr(E)) (HGr(E;) *x HGr(E)) = HGr(E) x HGr(E)

yields a Mayer-Vietoris triangle, and the commutative diagrams

HGr(E;) HGr(E)

HGr(Ej) *x HGr(E) —— HGr(E) x HGr(E),

in which the first vertical arrow is the product of the identity and the inclusion and the
second vertical arrow is the diagonal map, induce a morphism of Mayer-Vietoris triangles
and in particular a commutative diagram

Zs(HGr(E)) Zs(HGr(E)) — Zs(HGr(Ez)) Zs(HGr(E))[]

where the right-hand vertical map is the tensor of the identity with the morphism Zg(HGr(E;)) —
Zs(HGr(E)).

Concatenating Diagrams (7.5) and (7.6), we obtain that the third triangle in (7.4) also
commutes. Moreover, our induction hypothesis and the five lemma imply that the third
morphism in (7.4) is an isomorphism as well.

We conclude the proof of the theorem by observing that we may reduce the case of
a general covering {Uq} of X to the case of a covering by two open subschemes using
induction again. 0
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Arguing as in [PW10, Theorem 8.2|, we can deduce a similar version of Pontryagin
classes for Chow-Witt rings.

Proposition 7.11. Let X  Sm/k, E be a symplectic bundle of rank 2n + 2 over X and
k =min{ J ,n}. Then the map

L o
8 : k,CH (x)2Rt )N

CH'(HGrx(E))
is an isomorphism, where j =0, p: HGrx (E) — X is the structure map and U is the
dual tautological bundle endowed with its canonical orientation.

ff,— .
Proof. Write DM in place of DM ) (pt) for convenience. We apply Homg,,(—, Zp:(J)[2]])
to both sides of the isomorphism in Theorem 7.4. Note that we have an isomorphism for
i< !
2
s . j—2i
Homp,, (Zpe(X) (20)[4i], Zpe(§)[20]) = CH™(X)
by Proposition 7.2.
j—2
Now suppose that we have an element S cH' I(X), I < Kk, which corresponds
to a morphism ¢ : Zy(X) —= Zpe(j — 2i)[2] — 4i]. We conclude the proof using the
commutative diagrams

Zot(HGrx (E)) |
‘p puu g R O
Zoe(X)  Zpe(20)[41] 25 Z(G — 20)[25 — 4i]  Zpe(20)[4i] —— Zpe(§) 20

and

< HOMp,, (Zot (X) (20)[Ai], Zpe () (2§ ]) 2 OB om L (Zot(HGI (), Zoe ()20

j—2i p pr(U )l

< cH T (x) CH’ (HGrx (E)).

Definition 7.11. In the above proposition, set { :=p;(U ) and
- + + 2i
Bmaa(@™) 1= (&) THCH (X).

Define po(E) =1 CHO(X) and pa(E) = (—1)271¢ for 1 <=a<n+ 1. The class pa(E)
is called the at" Pontryagin class of E. These classes are uniquely characterized by the
Pontryagin polynomial

" —p (PENT + ..+ (=1 (pres(E)) = 0.

Remark 7.1. We show that p;(E) = 0 for i > 0 if E is a trivial symplectic bundle. It

su ces to show that p,(U ) = 0. If X = pt, this is clear since CHz(pt) = 0. For general
cases, E is the pull-back of a trivial symplectic bundle over pt, hence p;(U ) vanishes
also.
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7.1.3 The Gysin Triangle

Definition 7.12. Let X Sm/SandY X be a closed subset. For any correspondence
theory E, consider the quotient sheaf with E-transfers

Its image in DMeff'_(S) will be called the relative motive of X with support in Y (see
[DO7, Definition 2.2] and the remark before [SV00, Corollary 5.3]). By abuse of notation,
we still denote it by My (X).

Our aim in this section is to compute the relative motives in some situations. For this,
we’ll need the following notion.

Definition 7.13. Suppose that X Sm/S and that E is a vector bundle over X. For
any correspondence theory, define Ths(E) = Mx(E) where X  E is the zero section of
E. The motive Ths(E) is called the Thom space of E.

The following result is sometimes called homotopy purity.

Proposition 7.12. Let X Sm/S andY X be a smooth closed subscheme. Then for
any correspondence theory, we have

My (X) = Ths(Ny/x)

in DM" " (S).

Proof. Use [P09, Theorem 2.2.8] and Proposition 7.13 below. Alternatively, one may use
[MV98, 83, Theorem 2.23| and the sequence of functors of [DF17, 8§3.2.4.a]. O

Proposition 7.13. Let f : X — Y be an &étale morphism in Sm/S, Z Y be a closed
subset of Y such that the map f : f~1(Z) — Z is an isomorphism (here, the schemes
are endowed with their reduced structure). Then the map M¢-1z)(X) — Mz (Y ) is an
iIsomorphism of sheaves with E-transfers for any correspondence theory E.

Proof. By the condition given, we get a Nisnevich covering f id: X (Y \Z)—- Y of
Y. So we have a commutative diagram with exact (after sheafication) rows and columns
by Proposition 5.10:

cs((X (Y NZ)) =y (X (Y \Z)))

\A—

cs(X)

0 0.

We want to show that ker(q) = cs(X \ f71(Z)) after sheafication, yielding the state-
ment. We clearly have cs(X\f~(Z)) ker(q) and r maps onto ker(q) after sheafication.
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So it suffices to show that Im(r)  cs(X\f71(Z)). The sheaf cs((X (Y \Z)) xy (X
(Y \Z))) is decomposed into four direct components

Cs(X =y X),cs(X %y (Y \NZ)),cs((Y \Z) xy X),cs((Y \Z) %y (Y \2Z))

via disjoint unions so we just have to calculate their images under r respectively. The
calculations for the last three components are easy and we only explain the computation
of the first one.

We have a Cartesian square

Then for any X T (Z), p1(X) = p2(x) and the morphisms k(pi(X)) —— Kk(X) induced
by p1 and p, are equal since f~1(Z) = Z. So by [Mil80, Corollary 3.13], p; = p2 on
the connected component containing X. Hence p; = p2 on a closed and open set U
containing T~*(Z). Now, cs(X xy X) =cs(U) ¢s(U°) and so r|egw) = 0. It follows that
IM(rlesuey)  Cs(X\NF(Z)). So we have proved that Im(r) cs(X \f71(2)). O

As a consequence, we see that the study of relative motives (of smooth schemes)
reduces to the study of Thom spaces. With this in mind, suppose that X is a smooth
scheme and that (E, m) is a symplectic vector bundle of rank 2n over X with total space
E. We now study the Thom space of E. Recall first that, as in the discussion before
[PW10, Theorem 4.1], Ox E Ox is also a symplectic vector bundle with inner product
given by the matrix

0 0 1
0 m O
-1 0 0
Definition 7.14. Let X and E be as above.
1. Define N~ by the cartesian square
er(2n, E Ox) ;er(Qn,Ox E Ox)
]
NT—HGrx(Ox E Ox),

where i is induced by the projection p,3 : Ox E Ox — E Ox and j is the
inclusion (see Proposition 7.6).

2. Set
N={x Grx(2n,0x E Ox)|E — p (Ox E Ox)— p (Ox Ox) iso. at x},
where p: Grx(2n,0x E Ox) — X is the structure map and
0—E —p(Ox E Ox)——E — 0

Is the tautological exact sequence. Note that N is an open set of the Grassmannian
er(Qn,OX E Ox)
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3. Set
V ={x Grx(2n,E Ox)|F — q (E Ox)—- g Ox is an isomorphism at x},
where q: Grx(2n,E  Ox) — X is the structure map and
0—F —q(E Ox)— F — 0

is the tautological exact sequence. As above, note that V is an open set of Gry (2n, E
Ox).-

The notations of N~ and N come from [PW10, Theorem 4.1], but our treatment is
slightly different.

Lemma 7.4. 1) Let T be an X-scheme and let f : T — Grx(2n,0x E Ox) be an
X-morphism. Then

Im(f) N fE — (pof) (Ox E Ox)—- (pof) (Ox Ox) is an isomorphism.

Consequently, N N nHGrx(Ox E Oyk).
2) Let T be an X-scheme and let f: T — Grx(2n,E  Ox) be an X-morphism. Then

Im(f) V fF — (qof) (E Ox)— (qeof) Ox is an isomorphism.
Furthermore, N™ = V.
Proof. 1) = Easy. For the = part, set

C =Coker(E — p (Ox E Ox)— p (Ox Ox)).

We see that N = Supp(C)°®. Since f~1(Supp(C)) = Supp(f C), f~1(Supp(C)) = hence
fI(N)=T. SoIm(f) N.

For the second statement, let v.: N7 —— X be the structure map. The bundle N~ has
amap ¢ towards Grx (2n,0x E Ox) hence we have asubbundle K v (Ox E Ox).
Since ¢ factors through Gry(2n,E  Ox), the first inclusion v Ox — v (Ox E Ox)
factors through K, which makes v Ox a subbundle of K. Since ¢ also factors through
HGrx(Ox E Ox), the inner product is non degenerate on K. So for every X N7,
there is an affine neighborhood U of X such that K(U) is a free Oy-(U)-module with a
basis (1,0,0) and (X1, X2,X3). Hence X3 On-(U) by non degeneracy. It follows that
the map K —— v (Ox E Ox) —— Vv (Ox Ox) is surjective on U. So we see that
N~ N by the first statement.

2) The first statement can be proved as in 1). For the second statement, we have a
commutative diagram with exact rows:

0 K \Y (())( E) G 0.

P1 P12
0—K Ox—vVv(0Ox E Ox)—G—0
Hence there is a section in K (N7) which maps to (1,5,0) inv (Ox E Ox). This

section turns the map K —- v (Ox E) — v Ox into an isomorphism. So N~ V.
The inclusion V.~ N7 can be proved using a similar method. O

Lemma 7.5. Let T be an X-scheme and f : T — Grx(2n,0x E Ox) be an X-
morphism. Let ¢ be the composite

(pof) Ox —2 (pof) (Ox E Ox)— fE

Then

Im(f) Grx(2n,E Ox)° ¢ is injective and has a locally free cokernel.
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Proof. We have
Im(f) Grx(2n,E  Ox)° g:Spec K— T,Im(f-g) Grx(2n,E Ox)S,
where K is a field. So let’s assume T = Spec K. In this case,
Im(f) Grx(2n,E  Ox)° T does not factor through Grx(2n,E  Ox),
and the latter condition is equivalent to ¢ = 0. Hence
Im(f) Grx(2n,E  Ox)° g:Spec K—- T,9 (¢) =0.

Now we may assume that T is affine and use the residue fields of T. Locally, the map ¢
is of the form (aj) : A —— A 2" and the condition just says that the ideal (a;) is the unit
ideal. This is equivalent to (@;) being injective and Coker((a;j)) being projective. This
just says that ¢ is injective and has a locally free cokernel. O]

Consider next the following square
N-——N
\

X

u

E

z

where | is given by N™ N and Vv is just the structure map (of N7). Let r : N —5 X
be the structure map of N. We have the tautological exact sequence

0O — r (Ox Ox) — r (Ox E Ox) - rE — 0
(1,0) - (1,51,0) ()
(0,1) —- (0,52, 1)

and U is induced by S;. Finally, z is the zero section of E.
Proposition 7.14. The above square is a Cartesian square.
Proof. The map | induces an exact sequence

O '/ (OX Ox) '/ (Ox E Ox) - V E - 0

(1,0) e (1,5,0)
But (1,0, 0) belongs to the kernel, so s = 0. Hence the square commutes and is Cartesian.
O
Now, we use the square
N—"—E
u T
E X,

where W is induced by S; in (**). We see right away that it’s a Cartesian square and it
follows that U is an A2"-bundle.

The third step in our calculation of Thg(E) is the following theorem. It has a similar
version in [PW10, Proposition 4.3], but we are not considering the same embedding as
there.
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Proposition 7.15. For any correspondence theory,

Ths(E) = My-(N) = My-(HGrx(Ox  E  Ox))

inDM" " (S).

Proof. The first isomorphism comes from Proposition 7.14 and the fact that u: N —= E
is an A?"-bundle. The second isomorphism follows from N™ N nHGryx(Ox E Ox)
by Lemma 7.4 and Proposition 7.13. O

By Lemma 7.5, the natural embedding HGrx (E) — HGrx(Ox E Ox) factors
through (N7)° and thus we have a map i : HGrx(E) —— (N7)°.

Proposition 7.16. For any correspondence theory,

Zs(i) : Zs(HGrx (E)) = Zs((N7)%)

ff,
Is an isomorphism in DM° (S).
Proof. Follows from the proof of [PW10, Theorem 5.2]. O

Finally, the following theorem completes the calculation. Its proof is similar to the
proof of [D07, Lemma 2.12].

Theorem 7.5. Let X be a smooth S-scheme and let E be a symplectic bundle of rank 2n
over X. Then
Ths(E) = Zs(X)(2n)[4n]
. eff,—
in DM (S).
Proof. By Proposition 7.16, Mn-(HGrx (Ox E Ox)) is just the cone of the embedding

i:HGrx(E) — HGrx(Ox E Ox). By Theorem 7.4, we have a commutative diagram
where the vertical arrows are isomorphisms

Zs(Her(E)) Zs(HGr)((Ox E Ox))

0 Zs (X)(20)[4i] ———  [LoZs(X)(2i)[4i].
Now, 1 pulls back the tautological bundle to the tautological bundle, giving the result. [J

Putting everything together, we obtain the following result. The triangle appearing
in the statement is called the Gysin triangle.

Theorem 7.6. Let X  Sm/S be a smooth scheme and letY X be a smooth closed sub-
scheme of codimension 2n with a symplectic normal bundle. Then we have a distinguished
triangle

Zs(X\Y)— Zs(X) — Zs(Y)(2n)[4n] —= Zg(X \Y)[1]
) eff,—
in DM (S).

Proof. Follows from Theorem 7.5 and Proposition 7.12. O
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7.2 Duality for Proper Schemes and Applications

In this section, we are going to prove that Zp(X) is strongly dualizable in DM_(pt)
for proper X  Sm/k. Then, we explicitly calculate its dual by using orientations on
symplectic bundles. Finally we use our results to compute the group of morphisms in

DI\/Ieff’ (pt) between smooth proper schemes over K. For this we need to involve the
stable Al-derived category Da1(S) over S introduced in [CD13, Example 5.3.31] and use
the duality result on that category. For clarity, we describe our procedure using the
following picture:

Duality in Da:(S) = Duality in DM(S) = Duality in DM (pt) = Theorem 7.7.

Let’s briefly review the construction of Da1(S), the reader may also refer to [CD13,
Section 5] and [DF17a, Section 1].

Define Sh(S) to be category of Nisnevich sheaves of abelian groups on Sm/S. The
Yoneda representative of the functor F —- F(X) for any X ~ Sm/S is denoted by
Zs(X). The functor y : Sm/S —- Cors in Proposition 5.6 and Lemma 5.7 gives us an
adjunction

y :Sh(S) Sh(S):v.

The category Sh(S) is a symmetric monoidal category with Zg(X) sZs(Y) = Zs(X Xg
Y ) and y is a monoidal functor. For any f:S — T in Sm/K; the same method as the
one used in Proposition 5.19 yields an adjunction

f :Sh(T) Sh(S):f.

Further, f y =y T since there is a similar equality for their right adjoints. If f is
smooth, there is an adjunction

fy:Sh(S) Sh(T):f

as in Proposition 5.23 and fgy =Yy T by the same argument as above.
As in Section 6.2.1, we define SSp(S) to be the category of symmetric s{1}-spectra
of Sh(S), where
s{1} = Coker(Zs(S) — Zs(Gm)).

There are adjunctions
¥ :Sh(S) SSp(S): Q™

and
y :SSp(S) Sp(S):vy

and we can also define g, f |, | fy, —{—i} and —{i} (i = 0) on SSp(S). Moreover, y
commutes with ¥ and fx and is monoidal as above.

In [CD09, Theorem 1.7|, they put a model structure Mg on the category of unbounded
complexes of objects in Sh(S). This is a cofibrantly generated model structure where the
cofibrations are the I-cofibrations where | consists of the morphisms S"**(Zs(X)) —-
D"(Zs(X)) for any X  Sm/S and weak equivalences are quasi-morphisms between
complexes. The homotopy category of Mg is denoted by Ds(S). Moreover, Mg is stable
and left proper so it induces a triangulated structure on Dg(S).

Localizing Dg(S) with respect to the morphisms

Zs(x Xk Al) — ZS(X)
as in Section 6.1, we get a category D:Ef (S) with the induced triangulated structure.
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In [CD09, Theorem 1.7], they also define a model structure Mgsp on the category
of unbounded complexes of symmetric spectra in Sh(S). This is again a cofibrantly
generated model structure where the cofibrations are the I-cofibrations where | consists
of the morphisms S"*(2*°Zgs(X){=i}) —— D"(E*°Zs(X){—i}) for any X Sm/S and
i = 0 and weak equivalences are quasi-morphisms between complexes. The homotopy
category of Msgs, is denoted by Dssp(S). Moreover, Msgs, is stable and left proper so it
induces a triangulated structure on Dsgp(S).

Localizing Dsgp(S) with respect to the morphisms

(B%Zs(X x¢ Al) == B2Zg(X)){=i},i =0

as in Section 6.2.3, we get a category with the induced triangulated structure. Localizing
further that category with respect to

(E7Zs(X){AIH—1} = E%Zs(X)){~i}

as in Section 6.2.3, we obtain the category Da:(S), with the induced triangulated struc-
ture. Moreover, we have an exact functor

%t DEIT(S) —— Dai(S).

The stage being set, we now calculate the inverse of the Thom space for any vector
bundle, using the methods of Section 7.1.

Proposition 7.17. For any correspondence theory, we have:

1. Suppose that f : S — T is a morphism in Sm/k, that X Sm/T and that E is a
vector bundle over X. Then we have

f Thi(E)=Ths(f E)

in DMeff'_(S), where f E is the vector bundle over XS induced by E.

2. Suppose that T : S — T is a smooth morphism in Sm/k, that X Sm/S and that
E is a vector bundle over X. Then we have

f,Ths(E) = Thr (E)

eff,—

in DM (S).
3. ([CD13, Remark 2.4.15]) Suppose E; and E, are vector bundles over X  Sm/k.
Then
Thx(E1) x Thx(Ez) =Thx(E1 Ej)
in DM (X).

Proof. The proofs of (1) and (2) being easy, we only prove (3). The total space of E; E; is
just E; %x E;,. By definition, for any vector bundle E over X, Thx (E) is quasi-isomorphic
the complex

Zs(E\X) — Zs(E).
Hence the left hand side is the total complex

Zs((El\X) Xx (Ez\x>) — Zs((El\X) Xx Ez) ZS(El Xx (Ez\X)) — ZS(El Xx Ez)
By Proposition 5.10, the complex

Zs((El\X) Xx (Ez\X)) - Zs((El\X) Xx Ez) Zs(El Xx (Ez \X))
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is quasi-isomorphic to
0— ZS((El Xx Ez) \X)

since

(El Xx Ez)\x :(El\X) Xy B, Ep Xx (Ez\X)

Hence we have a quasi-isomorphism

Zs((El\X) X (Ez\X)) —Zs((El\X) x Ez) ZS(El x (Ez\X)) —Zg(El x Ez)

0 ZS((Elez)\X)—Zs(EleZ).
]

Proposition 7.18. Let E be a vector bundle of rank n over X Sm/k. Then we have
(B2 Thx (E))™ = (Z2*'Thx (E ))(—2n)[—4n]
in DM (X).
Proof. By Proposition 7.17 and Theorem 7.5, we have
Thx(E) xThx(E )=Thx(E E )= x(2n)[4n]

F,—
in DM* (X). Now the statement follows from Proposition 6.42 and the fact that >t

is monoidal. O

: f
(X) — DM’ (X), the same proof

f
Since we have a monoidal exact functor DMe
as above yields the following result.

Proposition 7.19. Let E be a vector bundle of rank n over X Sm/Kk. Then we have
(= Thy (E)) ™! = (2% Thx (E ))(—2n)[—4n]
in DM (X).

We'll need the following properties of the stable Al-derived category, which can be for
instance found in [DF17a, 1.1.7 and Theorem 1.1.10].

Proposition 7.20. 1. Forany f:S — T in Sm/k, we have an adjoint pair of exact
functors
f DAl(T) DAl(S) i

2. For any smooth f : S — T in Sm/k, we have an adjoint pair of exact functors
fy: Dar(S)  Dar(T):fF
and for any A Dai(S) and B Da:(T), we have
(f+A) B=f«A f B).
3. Forany f:S — T in Sm/k, we have a functor
fi: Da:(S) — Das(T).

If T is proper, we have
fi=~F.

If ¥ is smooth, we have

fi=fy(— (Z°Ths(Tsr))™).
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Proposition 7.21. Let S Sm/k and f : X — S be a smooth proper morphism. Then
NoStZg(X)  Dar(S) is strongly dualizable with dual fu (XSt hy (Tx/s) ™).

Proof. For any A,B  Dai(S), we have

Homp , (5)(X°'Zs(X) sAB)
=Homp , 5)(f»T A,B)
by Proposition 7.20, (2)
:HomDAl(S)(A,f f B)
by Proposition 7.20, (1) and (2)
:HomDAl(S)(A, ff B)
by Proposition 7.20, (3)
=Homp , (A, Fu(f B x (5 Thx(Txss))™))
by Proposition 7.20, (3)
=Homp ,5)(A, B s Fu(2=Thx(Txss) ™))
by Proposition 7.20, (2).

]

Proposition 7.22. Let S Sm/k and let f : X — S be a smooth proper morphism.
Then Y°5tZg(X) DM(S) is strongly dualizable with dual

(25T hs (Qx/s)) (—2d)[—4d],
where d = dx — ds := dimX — dimS.

Proof. Since we have a monoidal exact functor y : Dai(S) —— DM(S) which commutes

with fz up to a natural isomorphism, X°5tZg(X) DM/(S) is strongly dualizable with
dual Fu(X°ST hy (Tx/y )™1) by Proposition 7.21. Now, Proposition 7.19 yields

(Zoo’StT hx (Tx/s))_l = (ZOO’StT hx(Qx/g))(_2d)[_4d}
Finally, we have
To(22% T hyx (Qxss))(—2d)[—4d]) = (25T hs(Qx/s)) (—2d)[—4d)].

]

Now we have a monoidal exact functor DM _(pt) —— DM (pt) which commutes with
—{—i},i = 0 up to a natural isomorphism. Then by Proposition 6.46, we have the
following result.

Proposition 7.23. Let X Sm/k be a proper scheme. Then X*5tZ(X) DM (pt)
is strongly dualizable with dual

(Zoo’StT hpt(QX/k)> (—de) [—4dx] .

The following theorem gives a computation of the hom-groups in the category of
(effective) MW-motives in case the objects are smooth proper.

Theorem 7.7. Let X,Y Sm/k with Y proper. Then

d
HomD Zpt(X),Zp(Y)) =CH Y (X XY, =Txxysx).

TR
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Proof. Let p:Y —- pt be the structure map of Y and let g : X XY —- Y be the second
projection. We have

HomDMeff,— Zpt(X),Zpt<Y))

(pY) (

=Hom (Eoo’Stht(X), EOO’Stht(Y ))

DM (pt)
by Proposition 6.43

=Hom (B Z5e(X) (B T hpe(Qy i) (—2dy ) [—4dy ], 250 )

DM (pt)
by Proposition 7.23

=Hom (5 Zpe(X) (2% T hpe(Qy i), B2 pe(2dy ) [4dy ])

DM (pt)
by Proposition 6.42

(E2(Zpe(X) - Thpe(Qvzc)), B pe(2dy ) [4dy ])
~onZet(X)  Thpe(Qysc), pe(2dy )[4dy )
by Proposition 6.43
(Zpt(X)  pxThy (Qvsk), pe(2dy)[4dy])
by Proposition 7.17
:HomDMeff'_(pt)(p#(p Zpt(X) T hY (Qy/k)), pt(2dy )[4dy ])
by Proposition 6.14
:HomDMeff,—(pt)(p#(Zy (X xY ) Thy (Qy/k)), pt(2dy )[4dy D
~onP# (@ ) Thy (Qvs)), pe(2dy )[4dy])
=Hom e (Pr(0#Q Thy (Qvs)), pe(2dy )[4dy])
by Proposition 6.14
:HomDMeff,—(pt)(Thpt(QXXY/X)1 pt(2dy )[4dy |)
by Proposition 7.17

=Homy, e

=H omDMeff,

=H OmDMeff,—(pt)

=H OmDMeff,

d
—CH " (X %Y, =Txxy/x)
by the discussion after [DF17, Remark 4.2.7].
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Chapter 8

MW-Correspondences as a
Correspondence Theory

In this section, we are going to sketch of the proof of Theorem 4.1. It’s incomplete and
will be completed in the future. We will always assume E = CH in this section.
For any scheme X and X X, set Qyx = Myx/m2 and Ay = det(m,/m2).

Definition 8.1. Let G be an abelian group, and let M, N be G-sets. Define
MxgN=MxN/ ,(mn) (m,n) (m,n) = (gm,g~*n) for some g G.
The set M xg N is endowed with the action of G defined by g(m,n) = (gm, n).

Definition 8.2. Let G be an abelian group and let M be a G-set. We denote the group
algebra of G over Z by Z[G| and the free abelian group generated by M by Z[M]. Then
Z[M] is a Z[G]-module.

The following lemma is straighforward.

Lemma 8.1. 1. Let M, N be G-sets, then
Z[M Xg N] = Z[M} Z[G] Z[N]

2. Let G —— H be a morphism of abelian groups and let M be a G-set. Then
ZIM xg H] = ZIM]  zg) Z[H]
as Z[H]-modules.

Definition 8.3. Let R be a commutative ring. We set Q(R) = R /(R )? as an abelian
group and for any one dimensional free R-module L we define

QL)=L/ ,x y x =r?y forsomer R
as a Q(R)-sets.
The following lemma is straighforward.

Lemma 8.2. 1. Let L,, L, be one dimensional free R-modules, then
Q(L1 rLz)=Q(L1) %qr) Q(L2).
2. Let L be a one dimensional free R-module, then
Q(L ) = Homger)(Q(L), Q(R)).
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3. Let S be an R-algebra and L be a one dimensional free R-module, then
QL rS)=0Q(L) *qr) Q(S)
as Q(S)-sets.
Proposition 8.1. The categories Px (Definition 4.4) for X Sm/k satisfy Axiom 1.

Proof. We set F = Z/2Z. From the definition of Px, we see that for every A =
(E1,- - ,En), rk(A) is well defined in Z/2Z, independent of isomorphisms in Px. Hence
there is a rank morphism rky : Px — Z/2Z.

Define a bifunctor

((Elalll 1EI’]> ’ (Flalll 1Fm)) - (Ela”' ;En,Fl,"' !Fm)

It is easy to see that this operation endows Px with the structure of a Picard category
with —(Eq, -+ ,En) = (E,, -+ ,E;). For any A,B  Px, we attach a commutativity
isomorphism

c=c(AB):A B—B A

by

(—1)"x BB a)y detcs)-

This turns Px into a commutative Picard category.
There is an obvious functor i : (Vect(X),iso) —— Px sending E to (E) and f :
Ei1 — E; to det(f). Moreover, for every exact sequence

O_—> E1 — E3 B E2 B 0,

we attach the isomorphism (E3) — (Ej, E3) given by the isomorphism detE; —— detE;
detE; sending a 3 toa [ for any local base a (resp. B) of E; (resp. E3z). This functor
satisfies all conditions given in Definition 3.3.

Finally, for any f : X — Y in Sm/K, we define f : Py — Px by f (Ej,- - ,Ep) =
(F Eq, -, F En). O

We set KMW(F, L) = KMY(F)  zoFEy Z[Q(L)] ([Morl2, Remark 2.21]) for every one
dimensional F-vector space L. For every X Sm/k, x X, T closedin X andv Py,
define

KA (K(x), Ay v) = KR (K(X), Ay ke det(V)lke)

and
CSS,T (X;KMW;V) = Kr'}fl’\r/,(k(y), A
y XMaT

y V)

where X is the set of points of codimension n in X ([Mor12, Chapter 4]).
Now for every X Sm/K, i N, v Pyx and T closed in X, we define the groups
required by Axiom 2 to be of the form
CH1 (X, V) = H'(Crs 1 (X: KI™:v)),

Then, Axiom 3 just comes from the extension of supports in Chow-Witt groups.
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8.1 Operations without Intersection

Lemma 8.3. Let f : X — X be a smooth morphism in Sm/k, and let x X with
[k(X) : k(f(X))] < oo. Then we have an isomorphism

Q(Ay) = QWx/x lkeo) Xk QA k(X))
(the Qs will be ignored in the sequel for convenience).

Proof. If k(x) is separable over K(f(X)), then we have a commutative diagram with exact
rows and columns

0 0
Qxrx ko === Uxsx Ik
0 Qx Qxrilkx Qrpgrk —0
0——0rp9  K(X) —— O sdlkcrogy  KX) —— Qrpope K(X) ——0
0 0

so we have an isomorphism

Ay = xrx Iy (Mg K(X))

which induces an isomorphism

Q(A,) = Q(wx/sx |k(x)) X QX)) Q(Af(x) K(x)).

If the field extension is not separable, we only have the horizontal exact sequences and the
middle vertical arrows. But Q(Wkpysk) = Q(Wkcreyk  K(X)) still holds ([Morl2, Lemma
4.1]), so we have isomorphisms

x)
Wkx)7k) XQke) Q wk(x)/k) Xk QA)
Wy /klk))

Q(A

Q( ) (

Q( ) %o Ql

Q(Wkeark) X ek QU0x/x lkea) XQuee) QU0x sklkrogy — K(X))
Q( ) (

Q(

Q(

Wk (x)/k

Wk7k) XQke) QWx/x k) Xk QUWkrpgyk  K(X)) %ok QAsxy  K(X))
Wk(/k) XQeke) QWx/x Tke)) X k) QWkpork) Xk QA ey K(X))
Wxx ko)) Xk Q(Af  K(X)).

This coincides with the isomorphism we obtained in the case of separable field extension
by applying Theorem 3.1, (2) to the digram above. O]

Lemma 8.4. Let T : X — X be a closed immersion in Sm/k and let x X (so that
K(x) = k(f(x))). Then we have an isomorphism

Afy = Ax detNy/x [keo-
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Proof. This follows by the following commutative diagram with exact rows and columns

0 0
0 Oy Qxsklkeo Qrk 0
|
0 Qs Ox 7klkerog) — Qe o)/k 0
N/x Ik === Ny,x Ik
0 0

]

Lemma 8.5. Let f : X — X be a smooth morphism in Sm/k, and let x X with
codim(x) = codim(f(x)). Then, we have an isomorphism

O = Qg ke K(X)-

Proof. The cotangent map
Qe k(Fe) K(X) == O

of T is injective and the two vector spaces have the same dimension codim(X). O

Lemma 8.6. Let X, X, Sm/k, x; Xy, X X and let y be the generic point of
some component of X; %< X;. Then we have an isomorphism

Ay =D ko) KY) D, ko) K(Y).

Proof. We have the following commutative diagram with exact rows and columns (same
if we exchange X; and X5)

0 0 0
00— K(Y) —— P12 sxlkey)y — U1 Pxazklkeyy ——0
0 Qy Oy xxarklky) — Qsasxarklkey —— 0

0—Qx, Kk(y)

P2 2%, 7k |k(y) U2 xarklk(y) — 0

0 0, 0

where pj : X3 X X; == Xj and j : X1 X Xz —— Xj are the projections and Qsgxsg/klky) =
Qycdiy- O

Definition 8.4. (Axiom 8) Let f : X — X be a smooth morphism, and let x X with
codim(x) = codim(f(x)). For any v Px , we have an obvious morphism

Kr':"W(k(f(x)),Af(x) v) = KYW(k(x),A,  Fv)
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by Lemma 8.5. This induces a pull-back morphism ([Fas08, Corollaire 10.4.2])
n n
f . CHT<X ,V) I CHf—l(T)(x,f (V))
for every T Z"(X). It is functorial with respect to v.

Remark 8.1. The pull-back along closed immersions is much more di cult and we will
discuss this in Section 8.2.

The following proposition is obvious.

Proposition 8.2. (Axiom 9) The pull-back between smooth morphisms is functorial and
f(l)=1.

Definition 8.5. (Axiom 11) Let f : X — X be a smooth morphism and let C
Z*9 (X)) be finite over X . We define the push-forward (Proposition 8.6)

df(

£ CHe (X, F v —Txx ) == CHye)(X,V)

as the composite for every x C n X(+dr)

Ko™ (K(x), A T v oyx ) —— KEMW(K(X), 0/ (Mg K(X) TV oxx)

k(x)
k(F(x))

Ko™ (K(F(X)), Ay V)

Tr

where the horizontal arrow is induced by Lemma 8.3, while the vertical arrow is the trace
map composed with the isomorphism of virtual vector bundles cancelling the first and last
bundle. The push-forward for smooth morphisms is functorial with respect to v.

It’s clear by definition that Axiom 20 is satisfied.

Definition 8.6. (Axiom 13) Let f : X — X be a closed immersion and let C
Z™dr (X). We define the push-forward (Proposition 8.7)

f 1 CHe " (X,Nysx +F V) = CHy)(X,V)
by the isomorphism induced by Lemma 8.4

Ko™ (k(x), Ay detNx,x T v) —— KW (k(F(X)), Ay V)

for every x  C n X0*9) The push-forward for closed immersions is functorial with
respect to v.

Remark 8.2. Suppose that f : X — X is a morphism of schemes and that C
Z*9(X) is such that C = X for some x  X. Suppose further that C is also closed in
X . Then, we have an exact sequence

0 — Tx/x |k(X) I QX I Qf(x) - O,
if ¥ is a closed immersion, we have an exact sequence

O I QX I Qf(x) I Nx/x ||((X) - - 0
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So, we can identify €, with Ny/x |k since the latter satisfies the same exact sequences
when C is smooth. Hence in the context above, the push-forward associated to ¥ with
support C is completely determined by the composite

Nesx +F Ve = Txsx [c = Txsx |c + Nesy +F Ve = Txsx |c = Neyy +F Ve
in case T is smooth and by the isomorphism

Nc/x + Nxsx lc +F Vlc = Neyy +F Ve

if ¥ is a closed immersion.

This inspires us to convert equations of twisted Chow-Witt groups into equations of
virtual objects. Then use the method described in Chapter 3. This is the main idea we
will use in this chapter.

We now explain the differentials in the Rost-Schmid complex. Suppose that X ~ Sm/k
and that Y =y for somey X. Let further Z =Z forsomez Y® andv Pyx. We
now define the differential

07 : Kp™(k(y), Ay, V) — KiTY (k(z), A, V).

y
Suppose at first that Y is normal. Then the exact sequence

2
IY/IY - Qx/kly - Qy/k s 0

is also left exact at the stalk of z, and we have a commutative diagram with exact rows

0 Iy 715 Iy —— Qxsklk —— Qv skl ——0

0

12712 k) —— Qxsklkiz) —— Qzsklk@z) —— 0.

The map i is injective with cokernel m,/m?, where m, is the maximal ideal of Oy ,. Thus,
we have an exact sequence

0— (mzlmg) — (lz/l%) |k(z) — (ly/l&) |k(z) — 0.

Now choose a free basis a of (Iy/12),, e of (m;/m2) and t of det(v),. Hence a is also
a free basis of Q, = (Iv/15) |y and (e,a) is a free basis of Q, = (12/12) |k by the
sequence above. We define the map d by

KW k(). Ay V) — KR (k(z),A, V)
s a t — 05(s) (e a) t'

where 0¢ is the usual partial map for Milnor-Witt groups. This map is independent of
the choice of a, e, t.

In general, let Y be the normalization of Y with morphism m : Y — Y and let
{z;} = n71(z). We have an isomorphism (the same for z)

Ay = Okyyrk  Oxsilky)-

Now fix z;. We find that QOY L /K satisfies

e K(Y) = Qg

112



Also, we have an exact sequence
0 —- mg/mZ —- Qo, , i k(zi) = Y@y = 0.
So, choose a free basis €; of (m,/mZ) | ¢; of QOY,zi/k’ d of (Qy )z and | of det(v),. We
define 9; by the following composite
K™ (k(y), A
— KA (K(Y), Oy Oxene V)
— KL k(@) (mz/m3) (o, i K(Zi)) ke (Oxadk) k@ Vika))

v)

)
—— KoY (k(zi), ok k@ (Oxslky k@) Vike)))
— K\ (k(@i), (ok@yk K(Zi)) k@) Oxdke k@) Vika))
— KLY (k(@i), (wk@yk k@) Oxadke) k@) Vika) ke K(zi))
— KLY (k(2), ok@yk k@) sk k@) Vike)
— KM (k(z),A, V),
where the second arrow is defined by
s ¢ d I—0d7(s) & (¢ 1) d |,

which is independent of the choice of e;. Then we define 0¥y = 0;. This definition
coincides with the definition just given when Y is normal by applying Theorem 3.1, (4)
to the following commutative diagram with exact columns and rows

0 0
0 Tz/klk@) Ty klk@ — (M/m2) ——0
0 Tz/klk@) Tx/klk@) (12/12) |z —0

(IN/13) |k =—= (IN/13) k)

0 0.

Remark 8.3. Here we would like to treat a kind of linearity of 8Y. Lets KMW (k(y), A
V).

y

1. Suppose that f Oy, and that n = 0, we want to show that

0 ([f]s) = [F]9Y(s).
It su ces to show the formula for each 0;. We see that 0; = Trtg;) 031 and
0% ([f]s) = [F]agi(s). Suppose that di(s) =<a >n. Then

T ([fl<a>n)

—TF'EES (<f>—<1>)<a>)

=(<f>—-<1>)T rl':EZ;)(< a>)

=[FITr&)(<a>n).

Then the claim is proved.
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2. If we have another line bundle M over X and m is a free basis of M, (so it’s also
a free basis of My), we have

0J)(s m)=20J(s) m.

We note nevertheless that this doesn’t hold for a general free basis of My. indeed,
if we replace m by A-m, where A K(y) , then A plays a role in the computation of
the residue maps.

Remark 8.4. It’s obvious that any morphism v; —- v, in Px will induce an isomor-
phism between the corresponding Rost-Schmid complexes.

Definition 8.7. ([CF18]) Let X, Sm/k and let x, X, for a = 1,2. Lety be the
generic point of some component of X; x X;. For every s,  KMW(K(Xa), A, Va), we
define

MW

S1%8 = (P1(V)P2(Ay,))(Pa(S1)  P2(S2))  yKnim(K(Y), Ay (p1(Va) + Pa(V2))),
y

where p; : ¥ — Xj is the projection (note the use of Lemma 8.6). It is called the exterior
product between s; and s,. The exterior product is functorial with respect to twists and
extension of supports.

We will denote p; (V1) + p,(V2) by Vi X v, for convenience.

Now we focus of a special case of the proof that the right exterior product with an
element in Chow-Witt groups (with support) is a chain complex map between Rost-
Schmid complexes, while the left exterior product is not.

Proposition 8.3. Let X,X Sm/k,v Px,v Px andletY Z(X), T ZI(X)
be smooth. Suppose that 8 CHJT(X ,V ). Then the following diagram commutes

s (Y xT)©® KrMW(k(SL Ag (V XV )) o u (XxX )l+i+) Kf’YI_VlV (k(U), Ay <V Vv )) )
[ [
y yoKYW(k(y), A, V) : 2 voxao KLY (K(2),A, V)

y
That is, for every CHjT(X Vv)yanda  y yoKYY(k(y), A

o(axp)=0a(a)xp.

y V), we have

Moreover, we have _
0(B x a) =< —1 >I*x () g x 3 (a1).

Proof. We may assume that Y and T are irreducible. We check the commutativity after
projecting to each u (X X )*I+D Tt suffices to let U be a generic point of Zx T, where
z Y n X0*D gince otherwise both terms vanish. Set Z = Z. We have a commutative
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diagram with exact columns and rows (we write X % Y by XY for short)

0 0
Nz7/v1 === Nz1/vT
0 ———Nz1/x7 NzT/xx Nxt/xx |zT 0
0 —— Ny1/xrlzT Ny 1/xx |zT Ny T:YX |z 7 0

0 0.

We have projection maps p; : ZT — Z and pp : ZT — T. By Theorem 3.1, (1), we
have a commutative diagram

P1(Nzsy + Nysxlz +V|z) +pa(Nr/x +Vir) P1(Nzsy ) + Nyt/xx |zt +p1(Vlz) +pa(V IT)

P1(Nz/x +V|z) + Po(Nt/x +Vir) Nzt/v1 + Ny1sxx [zt +P1(VIz) +pa(V IT)

Nzt/x1 +P1(Vlz) + Ny1/vx [z1 + Po(V [1) ————— Nzr/xx + Pp1(Vlz) +po(V |1),

which gives the first equation. For the second one, we compute directly using the first
equation using Proposition 8.4 (which still holds in this context):

o(B > a)
=0(< —1 ST ) ¢(gy vy, g,v,) (0 % B))
=< —1 = (i+rkx (V)G +rky (v)) C(q]_Vl’ q2V2>(a(a x B))
= < —1 >k WGHrhoc (V) ¢(g, vy, g,v5)(0(a) % B)
— < —1 >k ) B x g(a),
where (1, (z are the respective projections of X x X on the corresponding factor. O

Definition 8.8. The exterior product of Definition 8.7 induces a pairing

ni+nz

n n
CHr, (X1,V1) X CHr. (X2,V2) == CHooser, (X1 % Xa, V1 X V)

for every X, Sm/k, T, Z"(X,) smooth and v, Px_ for a = 1,2 by Proposition
8.3. It’s called the exterior product between Chow-Witt groups.

Proposition 8.4. (Axiom 5 and 6) In the context above, the exterior product is associative
and satisfies

515 53 = —1 (MO o U)oU) 16,2 (p, (1), (v1)) (52 > 1)

where s, CH1- (Xa, Va).

Proof. Associativity comes from Definition 3.3, (3) and the second statement follows from
the definition of the commutativity isomorphism in Proposition 8.1. O
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Proposition 8.5. (Axiom 10) Let f, : Y, — X, be smooth morphisms in Sm/k for
a=1,2. Then, we have

(1 x F2) (s1%s2) =Ty (s1) % T, (s2).

Proof. This follows from Lemma 8.5 and Lemma 8.6. O]

Now, we would like to prove a special case that the the push-forwards defined in
Definition 8.5 and Definition 8.6 form a chain complex morphism between Rost-Schmid
complexes, just to explain how to treat the twists.

Proposition 8.6. Suppose that Z Y X are schemes with X and Y smooth. Suppose
that Y =y in X and that Z = z in Y for some z Y®. Suppose moreover that
f . X — X is a smooth morphism, that v. Px and that Y is also a closed subset of
X . Then we have a commutative diagram

KMW(K(y), Ay Fv o oxx ) ——KMY(k(2),A, FVv  wxx)
f f

Kr':/lw(k(f(y»’Af(y) V)AKM&V(k(f(Z))’Af(z) v).

y

Proof. We have the following commutative diagram with exact rows and columns

0 0
Nz/v Nz/v
0—Txsx |z Nz/x Nz/x 0
|
00— Txsx Iz Ny/x|z Ny/x |z 0
0 0.

Now the statement is to prove that the following diagram commutes

Nz/v +Ny/xlz +F Vlz = Txsx |z Nz/y + Txsx |z + Nysx |z +F Vlz = Txsx |z

Nz/x + T V|z = Tx/x |z Nz/v +Ny/x |z +TF v|z

Txsx |z + Nzsx + T Vlz = Tx/x |z Nz/x +T v|z.

We have the following commutative diagrams

Txsx |z + Nzsx +F V|z = Tx/x |2 Nz/x +F v|z

Txsx |1z +Nzsy + Nysx |z +F V[z = Txsx |z Nz/v +Ny/x |z + T vz
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Nz/v +Ny/xlz +F Vlz = Txsx |z Nz/y +Txsx |z + Nysx |z +F V|z = Txsx |z,

Nz/x +F V|z = Tx/x |z Txsx |z + Nzsy + Nyyx |z +F V|z = Txsx |z

P e

Txsx |z + Nzsx +F V|z = Txsx |z

where the second one comes from Theorem 3.1, (3). Then, the result follows by combining
the two diagrams above. O]

Proposition 8.7. Suppose that Z Y X are schemes with X and Y smooth. Suppose
thatY =yin X andthat Z=zinY forz Y®. Suppose moreover that f : X — X
is a closed immersion and that v. Py . Then we have a commutative diagram

KMW(k(y), A, detNxsx Fv)—2—KMY(k(z),A, detNxx T V)

L L

KMW(K(F(y), Apyy V) ——2—— KMY(K(F(2)), Agy V)

Proof. The diagram commutes because of the following commutative diagram by Defini-
tion 3.3, (3)

Nz/v + Ny/x|z + Nx/x |z + T v|z

Nz/x + Nx/x |z + T v|z

Nz/v +Ny/x |z +F v|z Nz/x + T Vv|z.

U
f

Proposition 8.8. Let X
Z*de-t (X)),

1. (Axiom 12) Suppose that f, g are smooth and that C is also a closed subset in Z.
Then the following diagram commutes

Y 2 7 be morphisms in Sm/k, v Pz and let C

i+dg°f

CH¢

i+dg°f

CH¢

(X, (gof) v—Txsz)

(X, (geof)v—=F Tyz — Txsv)

f

d
(Y,gv—Tysz)

g ‘

i
CHgrep(Z,V):

2. (Axiom 14) Suppose that T, g are closed immersions. Then, the following diagram

commutes
i+d.. i+dg.
CHe ™" (X, Nxzz + (g = F) v) —— CHg " (X, Noxpy +F Nyzz + (g = F) v)

f

i+dg

9

i
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3. (Axiom 19, (1)) Suppose that T is a closed immersion, that g and g = f are smooth
and that C is also a closed subset of Z. Then the following diagram commutes

i+dg. i-+dg.
CH¢ ""(X,Nsyy +F gv—F Tyzz)——CHg “"(X,f g v+Nsyy —F Tysz)
f |
i+dg i+dg.t
CHeo)(Y, 9 V—Tysz) CH:. * (X, fgVv—Txsz)

i

4. (Axiom 19, (2)) Suppose that g is smooth, and that f and gof are closed immersions.
Then the following diagram commutes

i+dgcf

CHc

i+dgaf

(X,Nx/y +f g v—TF Ty/z) CHC (X,—f Tysz + Nxyy +F g V)

f ‘

i+dg i+dgor
CHey(Y,g V—=Ty/z) CH: * (X,Nxszz+Tf gv)

g

i

Proof. 1. This follows from the following commutative diagram

Ne/x +F g Ve — Txszle Nesx +F g Vvl —F Tyszle = Txsv e
Txsvlc + Ny +F g Vle =F Tyszle = Txsv e
Nesy +F g vle —F Tyszle

f Tvszlc + Nez +F g vlc —F Tyzlc

Txszlc + Necsz +F g Vlc — Txszlc Ncsz +F g Vi

using Definition 3.3, (3).

2. Essentially the same as in (1).
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3. We are going to prove that the following diagram commutes

Nc/x + Nxsvle +F g Vie = F Tyszle —————Ne/x +F g Ve + Nxyvle = F Tyszle
Ney +F g vie —F Tyvszle Ncsx +F g Ve + Nxsyv lc = Nxsvle — Txszle
f Tyvszle + Nesz +F g vle = F Tvszle Nesx +F g Vle — Txszle
Ncsz +F g Ve Txszlc + Ncz +F 9 Ve = Txszlc

Let A = Tx/zlc +Nxsy [c +Ncsz+F g Vlc—Nx/v |c —Txsz|c. We have commutative
diagrams

f Tyvszlc + Ncz +F g vlc —F Tysz[c A

Ncsz +F g Vi Txszlc + Nz +F 9 Ve — Txszlc

Nc/x + Nxsyvle +F g Ve = Nxsvle = Txszle

Nesx +F 9 Ve — Txszle A

S

Txszlc + Nesz +F 9 Ve — Txszlc.

Furthermore, there is a commutative diagram with exact rows and columns

0 0
0 Txszlc Nc/x Nc/z 0
0——7F Tyszlc Nc/v Nc/z 0
Nx/v |c ==Nxsvlc
0 0

and by Theorem 3.1, (2), we have a commutative diagram

Nesx + Nxsvlc +F g Vvle —F Tyzlc —— Nesx + Nxyvlc +F g vle = F Tysz|e
Nesyy +F g vle—F Tyzle Txszlc + Neszle + Nxsyle +F g Vle — F Tyszle
f Tyvszlc + Nz +F g Vvlc —F Tyvszlc A

The proof follows easily.
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4. We are going to prove that the following diagram commutes

Nc/x + Nxsvlc +F g Vvle = F Tyszlc ——— Neyx —F Tyvszle + Nxsyle +F g Ve
Neyy +F g vle—TF Tyzle Ne/x —F Tyvszle +F Tyszle + Nxszlc +F g Ve
f Tyvszlc + Ncsz +F g vlc —F Tyzlc Nc/x + Nxszlc +F g vic

Ncsz +F g vic.

We have a commutative diagram

f Tyvszlc + Nz +F g Ve —F Tyvszlc

Ncsz +F g Ve Nc/x + Nxszlc +F g vic.

f Tv/zlc + Nesx + Nxszlc +F g vlc = F Tv/z|c

Furthermore, there is a commutative diagram with exact rows and columns

0 0
f Tyzle=—=T* Ty/zlc
0 ——Nc/x Nc/v Nx/v |c 0
0 ——Nc/x Nc/z Nx/z|c 0
0 0.

By Theorem 3.1, (3), we have a commutative diagram

Nesx + Nxsvlc +F g Ve —F Tyz|e

Neyy +F g vlc—F Tyzle

f Tvszlc +Ncz +F g vlc —F Tyzlc

Nesx +F Tyvszle + Nxszle +F g Ve = F Tyvszle

f Tyszlc + Ne/x + Nxszlc +F g vie = F Tyszlc

and the proof follows.
]

Proposition 8.9. (Axiom 19, (3)) Suppose that we have a Cartesian square of smooth
schemes
X Y _X

f

9
Yy 2,
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where u is smooth and f is a closed immersion: Lets Py and let C  ZMdr+dv(X)
be also closed in Y. Then the following diagram commutes

n+df+dv g n+du

CHC (X,NX/Y +gus—g Ty/Y)—CHg(C)(X,US_Ty/Y)
u

n+dg+dy n

CHc ' (X,V Nxyy +uf s—Txx) CHygcey(Y:9)
\% /
f
n+df

Proof. We are going to show that the following diagram commutes

Nesx +Nx v lc+guslc—9g Ty vl Ncsy +9Uslc—9 Ty svlc
Ncs/x +V Nxsylec +9 U s|lc — Tx /xlc g Ty svlc +Neyy +9 Uslc —9g Ty syl
Tx sxlc + Ncsx +V Nxsylc +9 U s|lc — Tx sx|c Ncsy +9 U S|c

Necsx +V Nxsylc +9 U Slc.

We have a commutative diagram with exact rows and columns

0 0
Tx xlc ——9 Tv svle
0 —— Ne/x Nc/y Nx sv lc 0
0 ——Nc/x Nc/v V Nx/vlc 0
0 0.
So, we have a commutative diagram by Theorem 3.1, (1)
Nc/y Nc/x +Nx /v e
g Ty svlc + Necyy Tx 7xlc + Necsx + Nx /v |c
g Ty svlc + Nesx +V Ny e
Then the statement follows easily from the data above. n
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Proposition 8.10. Suppose that we have a Cartesian square of smooth schemes
X Y—X

f

g
Yy —2+—v.
1. (Axiom 15) Suppose that f, u are smooth, that s Py and that C  Z"*dr (X)) is
a closed subset of Y. Then the following diagram commutes

n-+d¢ f

CHe (X, s—Txsy) CHro(Y, )

\ u

n+d¢ g

CHV_l(C)(X ,V f S—V TX/Y)

n
CHg(V_l(C))(Y ,U S)

2. (Axiom 16) Suppose that T is a closed immersion, that s Py and that C
Z"+dr(X). Suppose moreover that u is smooth. Then the following diagram com-

mutes
n+dg f n
CHe (X,Nxsy +F 5) —————CHg)(Y,5)
\% u
n+d¢ g n
CHy-1cy(X,V Nxsy +V T 5) ——CHyy-1cy(Y ;U S).
Proof. 1. We have a commutative diagram by functoriality of v with respect to twists
Ne/x +F Vle = Txsvlc Txsvlc +Nesy +F slc = Txsvle
Nyv-1cyrx +V T sly-1cy = Tx 7v v-1(c) Ncsy + T s|c

Tx v v-1cc)y + Nv-1cyry +V T Sly-21c) — Tx /v v-21cy ——— Nv—1cyry + T Sly—1(cy.

2. We have a commutative diagram by functoriality of v with respect to twists

Ncsx + Nxsy|lc + T sl Ncsy +F sc

Ny-1icy/x +Nx v [v-1cy +V T sly-1c) Ny-1ccyry +V T sly-1(cy.

O

Proposition 8.11. 1. (Axiom 17) Suppose that f : X —- Y is a smooth morphism in
Sm/k, that v Py and that C Z"*dr (X)) is a smooth closed subset of Y. Then,
for any Z  Sm/k, any v Pz and any D Z™(Z), the following diagrams
commute

n+d¢

CHe (X, v—Txy)>xCHp(Z,V)

= n+deg+m

CHexp (X XZ,(FVv—Txsy)*XV)

c

n+dg+m

£ xid CHeup (XX Z,(FVXV)—Txxz/vxz)

(Fxid)

n m n-+m
CHf(C)(Y!V>xCHD(ZsV) CHf(C)XD(Y ><Z,V><V)
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= n+deg+m

df(

m n+
CHD(Z,V)XCHC X,f V—Tx/y)

idxf (idxF)

> n+m

CHpxfc)(Z XY,V xv).

m n
CHp(Z,v) % CHgiey (Y, V)

2. (Axiom 18) Suppose that f : X —- Y is a closed immersion in Sm/k, thatv Py
and that C is a smooth closed subset of X. Then for any Z Sm/k, anyv P
and any D Z™(Z), the following diagrams commute

n+d¢

CHg "(X,Nxsy +F V) x CHp(Z,V)

= n+dg+m

f xid (F xid)

n m n+m
CHgcy(Y,v) * CHR(Z,V) CHgcyxp(Y X Z,vxV)

CHO(Z,v) % CHe (X, Nysy +F V) —— CHpe ™(Z % X,V % (Nysy +F V))
0
idxf CHr,;:dCf+m(Z x X, (Vv %X F V) + Nxxzsy xz)
(id=F)

x

m n n+m
CHp(Z,v) > CHgy(Y,V) CHpsxfcy(Z XY, v xV).

Proof. We have projections p; : C XD — C and p, : C xD —- D.

1. For the first diagram, we are going to prove that the following diagram commutes

P1(Nesx + T Vlc = Txsyvlc) + Po(Npsz + Vv bp)

(Nesx + T Vlc = Txsvle,Npsz +V |p)

f

(Nesy + T V]|e,Npsz +Vp) Nexprxxz + P1(F Vlc) + P2(V o) — Txxzsy xzlexp
(Fxid) ‘
P1(Ncsy +F Vi|c) +po(Npsz +Vp) Nexpry <z + P1(F Vic) +po(V |p).

We have a commutative diagram

(Nesx + T Vle = Txsvle,Npsz +Vp) P1(Nc/x + F Vlc = Txsvlc) + P2(Npsz + Vv bp)

f

N T v|c,N v
(Nesy +F V|e,Npsz +Vp) F )+p,(id)

P1(Ncsy +F Vi) +p2(Npsz +VIp)
and then we just have to show the following diagram commutes

P1(Nec/x + T Vlec = Txsvlc) + P2(Npsz +V p)

py(F )+p,(id
Nexorxxz + P1(F Vle) + pa(VIp) — Txxzsy xzlexp

(Fxid) ‘

P1(Ncsy + T V[c) + p2(Npsz +V |o) ————— Nexpry xz + P1(F V]c) +po(V |b)-

123



This follows from Theorem 3.1, (1) and the following commutative diagram with
exact rows and columns

0 0
P1(Txsv lc) —— Tx=xz/v xzlcxp
0 P1Nc/x —— Ncxprxxz P2Np/z 0
|
0 ———pNc/y ————— Ncxp/y =z PoNp/z 0
0 0
For the second diagram, we suppose that O CHEerf (X, f v—Txsy) and that

m
B CHg(Z,v). Moreover, we have a commutative diagram

X plxXsz D

y

Yy — 2y xZ.

f fxid

Then

(id><f) (B>a)
=(F x id) (< —1 >k Mz ¢, (F v —Tyyy ), po(V)) (a0 % B))
by Proposition 8.4
= < —1 SOk MHkz (D) (F ¢ id) (c(py(F v — Ty ), Po(V))(a % B))
= < —1 SO (F < id) ((c(py(F V), po(V)) o c(—p1Txry, Po(V))) (a0 % B))

= < —1 e XM ¢(gy (v), 4y (v ) ((F > id) (c(=pyTxsv,Po(v))(a < B)))
by functoriality of push-forwards with respect to twists

= < —1 >MriemIe) ¢(q (v), 4 (v ) (F (o) < B))
by the first diagram

B % (0)
by Proposition 8.4.

. For the first diagram, we are going to prove that the following diagram commutes

(Necsx +Nxsvle +F Ve, Npsz +Vv) P1(Ncsx + Nxsvlc + F Vic) + po(Npsz +V)

(Nesy +F V]|, Npsz +V) Nexprxxz + Nxxzsy xz|exp + P (T Vic) + p,(Vv)

pl(NC/Y +f Vlc) + pz(ND/z —+ V) NCxD/Y %7 + pl(f Vlc) + pz(V )
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We have a commutative diagram

(Nc/x + Nxsyle +F V|e,Npsz +V) P1(Ncsx + Nxsylc + T Vlc) + po(Npsz +V)

(Ncsy +F Ve, Npsz +V)

P;(Ncsy + T Vic) +po(Npsz +V).

1(F )+py(id)

Hence we just have to show that the following diagram commutes

P1(Nesx + Nxsylc +F Vic) +p2(Npsz +V)

Py (F )+p,(id ‘

Nexprxxz + Nxxzzy xz|exp + Ppi(F Vic) + po(V)

P1(Ncsy + T V|c) +p2(Npsz +V ) —————— Nexpry <z + P (F V[e) + pa(v).

This follows fromTheorem 3.1, (2) together with the following commutative diagram
with exact rows and columns

0 0
0 P1Nc/x ——— Nexprxxz P2Np/z 0
|
0 P1Nc/y ————— Nexpry =z PoNp/z 0
P1(Nx/v [c) —— Nxxz/vy xzlcxp

0 0.

The second diagram follows by the same method as in the proof of the second
diagram of (1).

]

8.2 Intersection with Divisors

In this section, we discuss a special case of intersection, namely pull-backs along a divi-
sor with smooth support. The constructions here basically come from [CF18], but the
treatments of push-forwards are possibly different.

Definition 8.9. Let X Sm/k and let D = {(U;, fi)} be a Cartier divisor on X. Suppose
n
that C Z"(X),s CHc(X,v) and that dim(C n |D|) <dim(C). Let

S=  Sa Us Va y xooKYW(K(Ya), Ay, V)
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where s, Uy Va  KYW(k(ya),A,, Vv)andy, X®™. Foreveryx {y,}nX®*D,
suppose that x  U; for some i (and then y,  Uj also). Then, fi Oy, sincey, / |D|
and consequently we have a well-defined element f;  k(ya). Set

ordy(D-s) = (< —1>®"MO0D s, u, fi va) Kg"W(k(x),A, L(-D) v).
X Ya
Then define
D.s= ords(D-s) 4 xenKMW(k(X),A, L (=D) V).
X X(n+1)

It’s functorial with respect to v by Remark 8.4.

Lemma 8.7. The definition of ordx(D - s) above is independent of the choice of i and f;
and
D-s CHgnp (X, L (D) +V).

Proof. For any other j and fj with X  Uj, we have fj/f; Oy ,. Moreover, we have

a)):a(Sa Ua Va) - O

X Ya
since S CH(n;(X,V). So we have

002(sa Us Ti va)=0

and

by Remark 8.3, (2). Moreover,

fj]Sa ua fj Va
:([fj/fi]—i- < fj/fi > [f_i])sa Uy fj Va
:[fj/fi]Sa Uy fj Va + [fi]sa Ua Fi  Va.

—

Hence

0% ([fjlsa Ua Tj Va)

X Ya
:a)}éa< [fj /fi]sa Ua fj Va) + a)¥3< [f_i]sa Uy fi Va)
X Ya X Va
=02( [filsa ua fi va),
X Ya

which shows that ordy(D - s) is well-defined.

If x / |DJ, then fi Oy ,. So
ord«(D - s)
= (< —1>%0mOa) [fls, u, Fi o Va)
X Va
= [floYr(< —1>im0) s u, fiovy)
X Va
by Remark 8.3, (1)

=0.
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Hence the support of D - s is contained in C n |D|.
Finally let’s prove that (D -s) = 0, where for every z, we denote yz y07 by 9; and
the differential map 0 is then just (9;). For this, we prove that

0u(D -s) := 0, (ordy(D-s)) =0

x X+ y x
foru X©O*2 Ifu U, then
OrdX(D ' S) = 55\4""(< —1 >codimbya) [_i]sa Us T Va)

X Ya

by definition. So let t = < —1>cdimba) [fils, u, fi Va

a

05 (ordy(D - s)) = 05(0x(t)) = 0u(0(t)) = 0.
x XM+ y x x X+ y x
]
Definition 8.10. (Axiom 8) Let X Sm/k and let D be a smooth e ective Cartier
divisor on X. Leti: |D| — X be the inclusion and let Np,x = i L (D) be its normal

bundle. Suppose that v. Py, that C  Z"(X) and that s CH?;(X,V) and that
dim(C n |D|) < dim(C). We have a push-forward isomorphism
. . . . +1
i :CHe,pi(IDI,i L (D) +i L(=D)+1i V) — CHepp (X, L (D) + V).
Denote by s(L (D)) the isomorphism i v— i L (D)+1i L (—D) +i v and define
. n .
i (s) CHc,p(Dl,i V)
to be the unique element such that
i (s(L-(D))(i (s))) =Ds.
It’s functorial with respect to v.

Proposition 8.12. Let X, Sm/k,va, Px,2andC, Z"2(X,) be smooth fora =1,2.
Na - -

Further, let o, CH¢_(Xa,Va), Pa @ X1 X Xy — X, be the projections and let D, be

smooth e ective Cartier divisors on X,. Then

(D1 oq) xap = py(Dy) - (01 x )
and
C(pyV1, Po L (—=D2))(ay % (D2 - 0z2)) = py(D2) - (01 X 0z).
Proof. We prove the first assertion. Since both sides live in the group

Nni+ns+1

Clel(|D1|mcl)ﬂp21(C2)(X1 x Xz, p1L (=D1) + (V1 %X V2)),
it suffices to check their components at any generic point U in t; X t, where t;  (|Dy| n
C)O 1, Céo). Suppose that D; = {(U;, fi)} and that t;  Uj. At u, we then have
(Dy-01) X0
=0 (<—1=>"[f] fi o) xa,
=d(<—1>M[f
—o(< —1>" ([f]
by Proposition 8.3.

fi o) >xa
fi op) xap)

=0,(<—1>M ([fi] i oy)>x0)
=0u(< —1>" ([p,(F)]  pu(F) (00 x Q)
=p;(D1) - (01 x ay).
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For the second assertion, we exchange the role of X; and X, as before:

c(PyV1, P, L (=D2)) (01 * (D2 - a2))
— < —1 >n1trks; (V1)) (n2+rkx, (v2)) c(P,Va, P1V1) (D2 - az) x ay)
by Proposition 8.4
= < —1 >Mrroq Uz rioa (2) ¢(p,vy, pyva ) (po(D2) - (G2 % 04))
by the first equation
— < —1 S ()24 1R (2 (D) - o(pVa, PyVa) (O X 0
by the functoriality of intersections with respect to twists
=p2(D2) - (01 < )
by Proposition 8.4.

]

Proposition 8.13. 1. (Axiom 17) Let f : X — Y be a smooth morphism in Sm/k,
C  Z'™9%(X) be smooth and closed in Y, D be a Cartier divisor over Y with

dim(|D| n £(C)) <dim(f(C)) and @ CH& (X, f v —Txsy). Then

D-f(a)=F (f (D) ).

2. (Axiom 18) Let f : X — Y be a closed immersion in Sm/k, C  Z™%(X) he
smooth, D be a Cartier divisor over Y with dim(|D| n f(C)) < dim(f(C)) and let

o CHL (X, Ny +F v). Then
D-f (a) =f (c(L (—F D), Nxyy )(F (D) - a)).

Proof. 1. Both sides live in the same Chow-Witt group, so we check their components
at any generic point y of f(C) n|D|. Suppose that D = {(U;, i)}, y  Ui. We have

a commutative diagram

(id,f )

(L (=D)]c,Ncsx +F Vlc — Txsvlc)

L (—D)|c + Ncsx + T Vlc — Txsvlc

Ne/x + L (=D)lc + T Ve — Txsv lc

(L (=D)|c, Ny + T vc)

L (—D)|c + N¢csy + T V]c

NC/Y —+ L (_D)lc —+ f Vlc.

id+f

f

At y, we then have

D-f (a)

—o(<-1>T[f] i f(a)

=0y(<—1 > f (F (fy)] f(f) o))
by the diagram above

=fo,(<—1>"U [F (i) f (f) a
by Proposition 8.6

=f (f (D) - ).
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2. Both sides live in the same Chow-Witt group, so we check their components at any
generic point y of f(C) n |D|. Suppose that D = {(U;, i)}, y Uj. We then have
a commutative diagram

(id,f )

(L (—=D)]c,Ncsx + Nxsvlc + T vic) (L (—D)|c,Ncysy + T V|c)

id+f
L (—D)|c + Nc/x + Nxsylc + T V|c I L (—D)|c + N¢csvy + T vc

‘ £ ‘

NC/X + Nx/y |C + L <—D)|c —+ f Vlc NC/Y + L (—D)lc —+ f Vlc.

At y, we then have

D-f (a)
=oy(<—1>'[f] i f(a)
=oy(<—1>"% f ([f (fy)] f (f) a)
by the diagram above
=fo,(<—1>" [F ()] f (f) a)
by Proposition 8.7
=f (c¢(L (=F D), Nx,y )(f (D) - a)).

]

Now we are ready for basic formulas concerning pull-backs along divisors. We will use
the notation of Definition 8.10.

Proposition 8.14. (Axiom 10) For a = 1,2, let X, Sm/k, D, be e ective smooth

divisors over X,, Va Px,, Ca Z"(X,) be smooth with dim(C, n [D,|) < dim(C,),
Na . . .

O0a CHc, (Xa,Va) and ia : [Dg| — Xj be inclusions. Then we have

ij(0y) <0y = (ip xid) (0p < ay)
0y X i,(0p) = (id X i) (0g x Q).

Proof. We denote the projection X; %X X, —— Xj by pa. For the first assertion, it suffices

to check the equation after application of the isomorphism (i; % id) < s(L (p;D;1)) on
both sides. We have

(iy > id) (s(L (pyD1))(iy(0n) < 0z))
=(i1 xid) ((s(L- (D1))i;(01)) x )
by bifunctoriality of exterior products with respect to twists
=iy (s(L (D1))iy(01)) < o
by Proposition 8.11
=(D1 - 01) x Oy
=p;(D1) - (01 x 0z
by Proposition 8.12
=(iy < id) (s(L (pyD1))((ix > id) (0 % 02))).
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The second equation follows by exchanging the roles of X; and Xs:
01 X i,(07)
= < —1 >Nk )2t (v2)) 6, i,Vsp, 0y V) (i0(0) X ay)
= < —1 > V) N2+rko; (V2) 6(g,i,vy, v ) ((i2 X id) (0 % 0g))
= < —1 >Mrroa)nzrrioc(2) (i, > id) (c(pyvz, pova) (02 * a1))
by functoriality of pull-backs with respect to twists
=(id < i) (0 x ap).

Il
Proposition 8.15. Suppose that we have a Cartesian square of smooth schemes
X Y _X
g f

where u is a closed immersion, dim(X ) = dim(X) —1 and dim(Y ) =dim(Y ) — 1.

1. (Axiom 16) If f is a closed immersion , s Py, C  Z"%(X) is smooth and
dim(u1(f(C))) < dim(f(C)), the following diagram commutes
n+d¢

f n

\ u

ndf

n
CHV 1(C)(X \ NX/Y +V T S) : CHg(V_l(C))<Y ,u S)

2. (Axiom 15) If f is smooth, s Py and C Z"*%(X) is smooth and closed in Y,
the following diagram commutes
n-+d n

CHe (X, F s—Txpy) CHygy(Y,s)

\ u

n+d¢ n
CHV_l(C)(X ,V f S—V TX/Y) CHg(V_l(C))<Y ,U S)

Proof. The conditions give us a unique effective smooth divisor D (resp. D ) over Y (resp.
X) such that |D| =Y (resp. |D| = X ). Moreover, we have D = f (D). It suffices to
check the equation after application of u < s(L (D)) on both sides.

1. Suppose that a CH2+df(X, Nxsy + F s). We then have

u (s(L(D))(u T (a)))

=D f (a)

=f (c(L (=D ),Nxsy )(D - a))
by Proposition 8.13, (2)

=T (c(L (=D ), Nxsv )(v (s(L. (D))(v (a0)))))

=f v ((c(v L (=D),v Nxsy) o s(L.(D)))(v (a)))

=ug ((c(vL(D)+v L(—D),v Nxs)es(L(D)))(v (a)))
by Proposition 8.8

=u (s(L.(D))(g (v (a))))

by functoriality of push-forwards with respect to twists.
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df(

2. Suppose that o CHg+ X, s—Txsy). We then have

u (s(L(D))(u f (a)))

=D - f ()

=f (D -a)
by Proposition 8.13, (1)

=F (v ((s(L(D))(v (a)),v L(D)=vL[D)+vFs—vTuy))

—u (g (9 S(L (D))(v (@)),g u L(D)—g uL(D)+vFs—Txsn))
by Proposition 8.9

=u (s(L(D))(g v (a)))

by functoriality of push-forwards with respect to twists.
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