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Abstract

In this thesis, we present a general framework to construct categories of motives and
build part of the six operations formalism for these categories. In the case of MW-motivic
cohomology, we prove the quaternionic projective bundle theorem and construct a Gysin
triangle, which enable us to define Pontryagin classes on Chow-Witt rings for symplectic
bundles. Applying these tools together, we compute the group of morphisms between
smooth proper schemes in the category of (effective) MW-motives.

Key Words: Correspondences, Generalized motives, Symplectic orientations.

Résumé

Dans cet article, nous présentons une approche générale pour construire des catégories de
motifs et établissons une partie du formalisme des six foncteurs pour ces catégories. Dans
le cas de la cohomologie MW-motivique, nous prouvons le théoreme des fibrés quaternio-
niques et construisons un triangle de Gysin. Ceci nous permet de définir des classes de
Pontryagin sur les anneaux de Chow-Witt pour des fibrés symplectiques. Appliquant ces
outils, nous calculons le groupe des morphismes entre schémas lisses et propres dans la

catégorie des MW-motifs (effectifs).

Mots clés : Correspondances, Motifs généralisés, Orientations symplectiques.
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Chapter 1

Introduction

1.1 Background

Algebraic geometry is a profound and beautiful branch of mathematics which mainly
studies properties of (smooth) schemes. One of the main approach to this study is to
develop suitable cohomology theories, and algebraic geometers have spent lots of time
working on this. The first approach was the Chow ring (CH"(X)), defined by W. L. Chow
around 1956. The elements of that ring are just algebraic cycles, considered up to rational
equivalence. Much later, it was realized that these groups were in fact homology groups
of the so-called Rost-Schmid complex ([R096]) with coefficients in Milnor K-theory. The
essential operations in the Chow ring are in particular products, pull-backs and push-
forwards, which are in fact all defined at the level of this complex. Moreover, for any
smooth scheme X and any vector bundle V' on X, we have a Thom isomorphism

CH"(X) — CHY™™ ) (v) (1.1)

defined by the push-forward via the zero section of V. Using these isomorphisms, it’s
easy to calculate the Chow ring of a projective bundle P(V') in terms of the Chow ring of
X, obtaining the so-called projective bundle theorem and its consequences, such as the
splitting principle ([Ful98]) and the existence of Chern classes of V' with coefficients in
the Chow ring.

Based on the Chow ring, V. Voevodsky defined, in 2000, motivic cohomology of
(smooth) schemes ([MVWO06]), relating to many fields such as K-theory, Milnor K-theory
and étale cohomology. This had many important applications, such as for example the
Milnor conjecture. The construction is based on the notion of finite correspondences,
which are special cycles and form the morphisms in the category Cor, whose objects are
smooth schemes over k. This enables in turn, given a topology ¢ (Nisnevich or étale)
on the category of smooth schemes, to consider t-sheaves on Cory, the so-called sheaves
with transfers. The category of effective motives DM/ (k) is just the localization of
the derived category of sheaves with transfers under the homotopy invariance conditions
(making X x A! and X equivalent) and the motivic cohomology group HP4(X,Z) is just
the p'" hypercohomology of the motivic complex Z(q) constructed via the Tate twist. An
important fact is that

H*?(X,7) ~ CHP(X), (1.2)

recovering the original Chow groups (functorially in X) as motivic cohomology groups.
More generally, the general term HP7( X, Z) corresponds to the higher Chow group C HY( X, 2q—
p) defined by S. Bloch ([V02]).

There are plenty of further developments of motivic cohomology beyond the basic
facts described above. First, there is the so-called Poincaré duality ([FV00]) for motives



of proper schemes. This requires to stabilize DM®//(k), namely to formally invert the
Tate twist in DM¢//, which is realized by the use of symmetric spectra. This, in partic-
ular, implies that the category of pure Chow motives, defined by Grothendieck, can be
contravariantly embedded into DM/ (k). This is the so-called embedding theorem. Sec-
ond, one can also construct a category Corg over any (smooth) scheme S, by considering
finite correspondences over S ([D07]). The same techniques as above yields the category
of effective (resp. stabilized) motives over S, denoted by DM¢//(S) (resp. DM(S)).
Then one can consider a huge and powerful mechanism called six operations formalism
on the category of effective (resp. stabilized) motives, following an axiomatic approach
described in [CD09] and [CD13]. The first complete version of this formalism appeared
in the stable homotopy theory of schemes ([Ayo07]). It’s very similar and closely related
to the formalism in [CDO09] and [CD13]. The former preserves more information but the
latter has the important property of being oriented ([MVWO06], [CD13]) for any vector
bundle, which makes us possible to prove a projective bundle theorem in motivic coho-
mology as in the Chow ring and giving a Gysin triangle which is a motivic analogue of
(1.1).

Recently, some refinements of the original ideas of Voevodsky appeared. One of them
is based on the Chow-Witt groups C’Hn(X ,-Z), as defined by J. Barge and F. Morel
in 2000 and completed by J. Fasel. The original goal of these groups was to determine
whether a projective module has a rank one free module as a direct summand ([Fas08]),
a question out of range for ordinary Chow groups. Their definition parallels the fact
that Chow groups can be seen as some cohomology groups of the complex in Milnor
K-theory ([R0o96]), they are cohomology groups of the Rost-Schmid complex in Milnor-
Witt K-theory. A significant difference with the Chow rings is that they depend not only
on a smooth scheme X, but also on a line bundle .Z on that scheme, called the twist.
This phenomenon in the Chow-Witt rings is inherited from the Witt ring and it prevents
the Chow-Witt rings from being oriented, that is, there is no projective bundle theorem,
hence no Chern classes on the Chow-Witt ring ([Fas08]). It’s nevertheless an interesting
question to know whether it’s oriented only for symplectic bundles, i.e. if the quaternionic
projective bundle theorem as in [PW10] holds. If it’s the case, we can define Pontryagin
classes with coefficients in the Chow-Witt rings for symplectic bundles.

Mimicking the definition of ordinary motivic cohomology, one can obtain a category
of motives based on the Chow-Witt rings. This is the category of MW-motives as defined
by B. Calmes, F. Déglise and J. Fasel ([CF14], [DF17]). It is a better approximation of
the stable homotopy theory, compared with Voevodsky’s and the equation (1.2) also has
an analogue there. The basic constructions in MW-motivic cohomology are very similar
to motivic cohomology, where the correspondences are replaced by MW-correspondences,
but there is a quite subtle difficulty at each step, that is the calculation of twists in the
operations on Chow-Witt rings, such as product, pull-backs and push-forwards which
are necessarily more complicated than in Chow ring. The serious approach to that is to
regard those twists as elements in the category of virtual vector bundles ([Del87], [CF18])
and it’s a delicate job to implement all calculations under the formal rules of virtual
objects. This inspires us to axiomatize the idea of correspondences and get a general
method to construct motives, even for non-oriented cohomology theories. Furthermore,
to prove the quaternionic projective bundle theorem in Chow-Witt theory, one way is
to prove its counterpart in MW-motivic cohomology first. As a consequence, it gives a
computation of the Thom space of symplectic bundles in MW-motivic cohomology and
gives the corresponding Gysin triangle. Finally, we use all the tools we developed to
compute the group of morphisms in the category of (effective) motives between smooth
proper schemes.



1.2 Main Results

1.2.1 Virtual Objects and Their Calculation

We provide the main tool for the calculation of virtual objects in Chapter 3, which makes
a serious approach to twists possible. Let’s denote by V(Vect(X)) the category of virtual
vector bundles ([Del87]) over X.

Theorem 1.1. (Theorem 3.1)

1. Suppose we have a commutative diagram of vector bundles over X with exact rows
and columns

0 0
U
K=K
Lol
00—V, —Vo—C—0
Lol
0—W, —W,—C—0
(N
0 0.

Then we have a commutative diagram in V(Vect(X))

Vo —— K + W,

! |

Vi+C—K+W;+C.

2. Suppose we have a commutative diagram of vector bundles over X with exact rows
and columns

S—o
!

Q

!

o

I
|

o

!
o<—©<—§<—§<—o

i

S

2—>C—>0

S+—g+—

Then we have a commutative diagram in V (Vect(X))

Wo——Vo+D—=Vi+C+D

i

Wy +C

1
Vi+D+C

¢(C,D)

where ¢(C, D) is the commutation rule between C and D in the category of virtual
vector bundles.

3. Suppose we have a commutative diagram of vector bundles over X with exact rows



and columns

i
—
|
— =
|

0—T—W, —Wy—0

Lol
0 0

Then we have a commutative diagram in V(Vect(X))

Vi——T+Vo=-T+ K+ W,

!

K+ W, oK)
l )

K+T+ W,

where ¢(T, K) is the commutation rule between T and K in the category of virtual
vector bundles.

1.2.2 Correspondences and Generalized Motives

We propose an axiomatic definition of correspondences in Chapter 4. Then given a cor-
respondence theory F, we establish in Chapter 5 the theory of sheaves with E-transfers.
In Chapter 6, we define the category b " (S) (resp. DM (S)) of effective (resp.
stabilized) motives over a smooth base S by using bounded above complexes (contrary to
[CD09], [CD13]) and build part of its six operations formalism (®, f*, fx) in the general
setting.

In Chapter 8, we partially show that the MW-correspondences defined in [CF14] is
indeed a correspondence theory as we defined, by adopting a new perspective on the
push-forward in the Chow-Witt ring.

1.2.3 Symplectic Orientations and Applications

For any X € Sm/S, denote by Zg(X) the motive of X in l/)\]\//[eff’_(S). In Chapter 7, we
prove the quaternionic projective bundle theorem for MW-motivic cohomology:

Theorem 1.2. (Theorem 7.4) Let X € Sm/S and let (&,m) be a symplectic vector
bundle of rank 2n + 2 on X. Let m: HGrx (&) — X be the projection. Then, the map

7®p (% V)?

Ls(HGr(&)) n o Ls(X)(2i)[44]

. . . . —— effﬂ_ . . .
is an isomorphism in DM (S), functorial for X in Sm/S. Here, %" is the dual
tautological bundle endowed with its canonical orientation.

Hence we get the corresponding result in the Chow-Witt ring:

Proposition 1.1. (Proposition 7.11) Let X € Sm/k, & be a symplectic bundle of rank
2n + 2 over X and k = min{|3|,n}. Then the map

2

0; : @f;o(}/'?[j_ (X)LCH (HGrx(&))

is an isomorphism, where j > 0, p: HGrx (&) — X is the structure map and %" is the
dual tautological bundle endowed with its canonical orientation.

4



As an application, we can define the Pontryagin classes (in the Chow-Witt ring) for
symplectic bundles, as follows:

Definition 1.1. (Definition 7.11) In the above proposition, set ( == p1(Z") and 05, ,(¢"F1) :=

n+1 ——23 —0 a1
(G) € @ CH (X). Define po(&) = 1 € CH'(X), and pa(&) = (~1)*"G; for 1 <a <
n + 1. The class p,(&) is called the a'® Pontryagin classes of &. These elements are
uniquely characterized by the Pontryagin polynomaial

¢ =P (u(E))C + o+ (1) (paga(6) = 0.
As a consequence, we obtain a Gysin triangle for certain closed embeddings:

Theorem 1.3. (Theorem 7.6) Let X € Sm/S and let Y C X be a smooth closed sub-
scheme with a symplectic normal bundle with codim(Y') = 2n. Then we have a distin-
quished triangle

Zs(X\Y) — Zs(X) —s Zs(Y)(2n) [4n] — Zs(X \ Y)[1]

in DM (9).
Finally, using the theorem above, the six operations formalism of Chapter 6 and duality
in the stable A'-derived categories ([CD13]), we can prove the following theorem.

Theorem 1.4. (Theorem 7.7) Let X, Y € Sm/k with Y proper, then we have

——d
HOmBTMEff,— (Zpt(X)7Zpt(Y)) =CH Y(X X Y7 WXXY/X)'

(k)

Throughout in this article, we denote by Sm/k the category of smooth separated
schemes over k ([Har77, Chapter 10]), where k is an infinite perfect field with char(k) # 2.
For any X € Sm/k, we denote dimX by dx and for any f: X — Y in Sm/k, we set
df =dx —dy.



Chapitre 2

Introduction

2.1 Contexte

La géométrie algébrique est une branche profonde et belle des mathématiques qui étudie
principalement les propriétés des schémas (lisses). Les géometres algébristes se sont depuis
longtemps attelés a définir des théorie cohomologiques permettant d’étudier ces schémas.
Une des premieres approches a été I'anneau de Chow (CH"(X)), défini par W. L. Chow
aux environs de 1956. Les éléments de cet anneau sont par définition des classes de cycles
algébriques sur X a équivalence rationnelle pres. Ces groupes sont apparus beaucoup plus
tard comme étant la cohomologie du complexe Rost-Schmid ([R0o96]) associé a la K-théorie
de Milnor. Les opérations essentielles de ’anneau de Chow sont en particulier le produit,
le push-forward et le pull-back. Pour tout schéma lisse X et tout fibré vectoriel V' sur X,
nous avons également un isomorphisme de Thom

CH"(X) — CHY™™ ) (v) (2.1)

défini par le push-forward le long de la section nulle de V. De plus, il est facile de calculer
I'anneau de Chow du fibré projectif P(V') en termes de I’anneau de Chow de X pour obtenir
le fameux théoreme de fibré projectif et le principe de scindage associé. Ce théoreme
permet également de définir les classes de Chern de V' sur I'anneau de Chow.

Sur la base de 'anneau de Chow, V. Voevodsky a défini en 2000 la cohomologie mo-
tivique ([MVWO06]), obtenant une nouvelle et magnifique théorie cohomologique associée
aux schémas lisses, permettant de relier de nombreux domaines tels que la K-théorie,
la K-théorie de Milnor et la cohomologie étale. De nombreuses applications importantes
ont découlé de son approche, comme par exemple la preuve de la conjecture de Milnor
(prix Fields). La cohomologie motivique est basée sur la théorie de I'intersection ([Sha94]),
plus précisment sur la théorie associée a certains types de cycles algébriques, appelés cor-
respondances finies. Ceci permet d’obtenir une catégorie Cory dont les objets sont les
schémas lisses sur k et les morphismes des correspondances finies. La prochaine étape est
de considérer les faisceaux sur cette catégorie, pour une topologie fixé ¢ (Nisnevich ou
étale), appelés les faisceaux avec transferts. La catégorie des motifs effectifs DM/ (k)
est simplement la localisation de la catégorie dérivée de faisceaux avec transferts sous la
condition d’invariance par 'homotopie (i.e. forcant X x A! & étre homotope & X). Dans ce
contexte, le groupe de cohomologie motivique HP4( X, Z) n’est autre que le p-ieme groupe
d”hypercohomologie du complexe motivique Z(q), construit en considérant des produits
du twist de Tate. Un théoreme important spécifie que

H?"(X,7) = CHP(X), (2.2)

récuperant ainsi les groupes de Chow d’origine. Cette relation est compatible avec les
opérations de C'H citées ci-dessus. De plus, le terme général H?(X,Z) correspond au
groupe de Chow supérieur CH9(X,2q — p) défini par S. Bloch ([V02]).

6



Nous pourrions encore citer beaucoup d’autres développements de la théorie des mo-
tifs esquissée ci-dessus. Une des plus marquantes est une sorte de dualité de Poincaré
([FV00]) pour les motifs des schémas propres sur la base, mais cela nécessite de stabiliser
la catégorie DM/ (k), & savoir d’inverser formellement le twist de Tate dans DM/ (k).
Ceci est réalisé a 'aide de spectres symétriques. Une des conséquences de la dualitté est
le fait que la catégorie des motifs effectifs de Chow, définie par Grothendieck, peut étre
vue comme une sous-catégorie pleine de DM/ (k). Plus généralement, il est possible
de construire sur tout schéma lisse S une catégorie C'org qui considere les correspon-
dances finies sur S ([D07]) et une catégorie des motifs effectifs (resp. stables) sur S, notée
DMeIT(S) (resp. DM(S)). On peut lier ces différentes catégories (effectives ou stables) &
I’aide d'un ingrédient puissant, appelé formalisme des six opérations, suivant une approche
axiomatique expliquée par exemple dans [CD09] et [CD13]. La premiere version complete
de ce formalisme est apparue dans la théorie de 'homotopie stable des schémas ([Ayo07]).
Le formalisme de [CD09] et [CD13] est tres proche de celui d’Ayoub, mais des résultats
plus forts sont disponibles du fait que les catégories considérées ont plus dee structures.
En particulier, le théoreme du fibré projectif est vérifié par la cohomologie motivique sur
une base, ce qui permet d’obtenir le triangle de Gysin qui est un analogue motivique de
(2.1).

Récemmen/t\,/ une théorie cohomologie plus raffinée est apparue, appelée anneau de
Chow-Witt (CHn(X,.i”)). Elle a été définie par J. Barge et F. Morel vers 2000 et
complétée par J. Fasel quelques annés plus tard. Son objectif initial était de déterminer
si un module projectif avait un facteur libre de rang un ([Fas08]) en utilisant les classes
d’Euler. Ce probleme ne peut pas étre attaqué en général en utilisant ’anneau de Chow.
La définition des groupes de Chow-Witt imite le développement de [R096], a savoir que
ces groupes sont des groupes de cohomologie du complexe de Rost-Schmid associé a la
K-théorie de Milnor-Witt. Une différence significative par rapport a 'anneau de Chow
est que les groupes de Chow-Witt ne dépendent pas seulement d’un schéma lisse X, mais
également d’un fibré en droites L sur ce schéma, appelé le twist. Ce phénomene de I’an-
neau de Chow-Witt est hérité de I'anneau de Witt et empéche 1'orientation de I'anneau de
Chow-Witt, c’est-a-dire qu’il n’y a pas de théoreme du fibré projectif, et pas de classe de
Chern sur I'anneau de Chow-Witt ([Fas08]). Néanmoins, il était assez clair que I'anneau de
Chow-Witt devait satisfaire une propriété d’orientation plus faible, i.e. qu’il était orientée
uniquement pour les fibré symplectiques. En d’autres termes, les spécialistes suspectaient
que le théoreme des fibré projectifs quaternioniques ([PW10]) était vérifié, impliquant
I'existence de classes de Pontryagin, associées aux fibrés symplectiques, a valeurs dans
I’anneau de Chow-Witt.

Récemment, des catégories motiviques instables et stables basées sur les groupes de
Chow-Witt ont éte définies par B. Calmes, F. Déglise et J. Fasel (|[CF14], [DF17]) obtenant
en particulier une nouvelle théorie cohomologique appelée cohomologie MW-motivique.
Ces catégories de motifs sont une meilleure approximation de la théorie de 'homoto-
pie stable en comparaison avec celle de Voevodsky et I’équation (2.2) a également un
analogue ici. Les constructions de base de ces motifs ressemblent beaucoup a celles de
Voevodsky : les correspondances sont remplacées par des MW-correspondances, introdui-
sant ainsi une difficulté assez subtile a chaque étape, a savoir le calcul des twists impliqués
dans les opérations de base de 'anneau Chow-Witt, telles que le produit, le pull-back et le
push-forward. L’approche sérieuse consiste a considérer ces torsions comme des éléments
de la catégorie des fibrés vectoriels virtuels ([Del87], [CF18]) et c’est un travail délicat
d’implémenter tous les calculs selon les regles formelles des objets virtuels. Cela nous
incite a aziomatiser 1'idée de correspondances et a obtenir une méthode générale per-
mettant de construire des catégories de motifs, méme en partant de théories cohomolo-
giques non orientées. Pour prouver le théoréme des fibré projectifs quaternioniques dans



I’anneau de de Chow-Witt, nous devons d’abord prouver la contrepartie en cohomologie
MW-motivique. Comme conséquence, nous calculons également I’espace de Thom associé
a un fibré symplectique dans nos catégories de motifs et obtenons le triangle de Gysin
correspondant. Finalement, nous calculons le groupe des morphismes dans nos catégories
entre deux schémas lisses et propres sur le corps de base.

2.2 Principaux Résultats

2.2.1 Objets Virtuels et Opérations Associées

Dans le chapitre 3, nous fournissons les outils principaux qui nous permettent de calcu-
ler les twists associés aux opérations importantes dans 'anneau de Chow-Witt. Notons
V(Vect(X)) la catégorie des fibrés vectoriels virtuels ([Del87]) sur X.

Théoréem 2.1. (Theorem 3.1)

1. Supposons que nous ayons un diagramme commutatif de fibrés vectoriels sur X, avec
des lignes et des colonnes exactes

0 0

I

K=K

ol
0—V—Vo—C—0

[
0—W, —W,—C—0

] l

0 0.

Alors, nous avons un diagramme commutatif dans V (Vect(X))

Vo— K + W,

! |

Vi+C—=K+W, +C.

2. Supposons que nous ayons un diagramme commutatif de fibrés vectoriels sur X avec
des lignes et des colonnes exactes

l
S—o
|
Q
L

o
!
o<—©<—§<—§<—o
!

=

|

2—)0-)0

S—Ig+—

Alors, nous avons un diagramme commutatif dans V (Vect(X))

Wo——Vo+D—Vi+C+ D

!

Wy +C

!

Vi+D+C.

¢(C,D)



3. Supposons que nous ayons un diagramme commutatif de fibrés vectoriels sur X avec
des lignes et des colonnes exactes

0 0
Lol
K=—K
[
0—T—V—Vo—0

0—T—W, —Wy—0
ol
0 0.

Alors, nous avons un diagramme commutatif dans V (Vect(X))

Vi——T+Vo=T+K+W;.

!

K+ W

!

K+T+ Ws.

o(T,K)

2.2.2 Correspondances et Motifs Généralisés

Nous proposons un traitement axiomatique des correspondances dans le Chapitre 4. Etant
donné une théorie de correspondance E, nous établissons dans le Chapitre 5 les résultats
de base de la théorie des faisceaux avec E-transferts. En particulier, nous définissons dans
le chapitre 6 la catégorie DM effV_(S ) (resp. DM (5)) des motifs effectifs (resp. stabilisés)
sur une base lisse S en utilisant des complexes de tels (différents de [CD09], [CD13]) et
construisons une partie de son formalisme des six opérations (®, f*, fx).

Dans le chapitre 8, nous montrons partiellement que les MW-correspondance définie
dans [CF14] tombent bien dans le formalisme défini ci-dessus, en adoptant une nouvelle
perspective du push-forward dans I'anneau de Chow-Witt.

2.2.3 Orientations Symplectiques et Applications

Pour tout X € Sm/S, notons Zg(X) le motif de X dans meff’_(S). Dans le chapitre

7, nous prouvons le théoreme des fibré projectifs quaternioniques pour la cohomologie
MW-motivique :

Théorem 2.2. (Theorem 7.4) Soient X € Sm/S et (&, m) un fibré vectoriel symplectique
de rang 2n + 2 sur X. Soit m : HGrx (&) — X la projection. Alors, le morphisme

mR&py (% V)?

Zs(HGrx(&))

est un isomorphisme dans lf?\]\/fff’i(S), fonctoriel pour X dans Sm/S. Ici, UV est le

fibré tautologique dual doté de son orientation canonique.

PoZs(X)(2i)[4d]

On obtient donc le résultat correspondant dans I’anneau de Chow-Witt :

Proposition 2.1. (Proposition 7.11)Soient X € Sm/k, & un fibré symplectique de rang
2n + 2 sur X et k= min{|3|,n}. Alors le morphisme

0, ok CH (X)X O (HGry(6))

est un isomorphisme, ot j > 0, p: HGrx(&) — X est le morphisme structurel et %"
est le fibré tautologique dual doté de son orientation canonique.

9



Comme application, nous obtenons des classes de Pontryagin a valeurs dans ’anneau
de Chow-WItt associées a un fibré symplectique.

Définition 2.1. (Definition 7.11) Dans la proposition ci-dessus, supposons que ( :=
2 ——0
pU(%V) et 051,(C"T) = (() € @ CH (X). Définissons po(&) = 1 € CH (X) et
Pa(€) = (=1)*71¢ pour 1 < a < n+1. La classe p,(&) est appelée a-iéme classe de Pon-
tryagin de &. Ces classes sont caractérisées uniquement par le polynome de Pontryagin

¢ =P (@) + o+ (1) (paga(6) = 0.
Nous obtenons également un triangle de Gysin pour certains immersions fermées :

Théoréem 2.3. (Theorem 7.6) Soient X € Sm/S et Y C X un sous-schéma fermé lisse
de codimension codim(Y') = 2n avec un fibré normal symplectique. Alors, nous avons un
triangle distingué

Zs(X \Y) — Zs(X) — Zs(Y)(2n)[4n] — Zs(X \ Y)[1]

dans Wefﬁ_(S).

Enfin, en utilisant le théoreme ci-dessus, le formalisme des six opérations du Chapitre
6 et la dualité dans les catégories Al-stables dérivées ([CD13]), nous obtenons un calcul
de groupe de morphismes dans nos catégories motiviques comme ci-dessous :

Théoréem 2.4. (Theorem 7.7) Soient X,Y € Sm/k avec Y propre sur k. Alors, nous
avons

——d
Hom —cri-  (Zpn(X), Z(Y)) = CH (X xY, Wxxy/x)-

(k)(

Tout au long de cet article, nous désignons par Sm/k la catégorie des schémas séparés
lisses sur k ([Har77, Chapter 10]), ot k est un corps parfait infini avec char(k) # 2. Pour
tout X € Sm/k, nous désignons dimX par dy et pour tout f : X — Y dans Sm/k,
nous posons dy = dx — dy.
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Chapter 3

Virtual Objects and Their
Calculation

In this section we will introduce the category of virtual vector bundles and explain basic
techniques of calculation. The definitions all come from [Del87, Section 4], but we recall
them here for clarity.

Definition 3.1. (/Del87, 4.1]) A category € is called a commutative Picard category if
1. All morphisms are isomorphisms.

2. There is a bifunctorial pairing
+:CXxC —F
satisfying
(a) For every x,y,z € €, an associativity isomorphism
a(z,y,2): (x+y)+2z — x+ (y + 2);
(b) For every x,y € €, a commutativity isomorphism
clr,y):x+y —y+uz.

Furthermore, they satisfy associativity and commutativity constraints ([Mac63]).

3. For every P € €, the functors X — P+ X and X — X + P are equivalences of
categories. Thus there is a unit element 0 such that 0 + X = X for every X € €,
and there is an object —X € € such that X + (—X) = 0.

Definition 3.2. Let X be a scheme. Define Vect(X) to be the category of vector bundles
over X. Denote by (Vect(X),iso) the subcategory of Vect(X) with the same objects but
picking only isomorphisms as morphisms.

Definition 3.3. ([Del87, 4.3]) Let € be a commutative Picard category and let X be a
scheme. A bracket functor on X (with coefficients in € ) is a covariant functor

[—]: (Vect(X),is0) — €

such that:

11



1. For any exact sequence of vector bundles
00— FE, — Ey — E3 — 0,

there is an isomorphism % : [Es] — [Ey] + [Es] being natural with respect to
ismorphisms between exact sequences.

2. There is an isomophism z : [0] — 0 such that for every E € Vect(X), the composite
[B] == [0] + [E] == 0+ [E] — [E]

3. (Remark 3.1) For every consecutive subbundle inclusions By C Ey C Es, there is a
commutative diagram

[E3] = [Er] + [E3/ B

g i

[Eo] + [E3/By) —=— [Eq] + [E2/Er] + [Es/ Es.

4. For every Ey, Ey, there is a commutative diagram

[Ey & Es] = [E4] + [E9]

by

[Es] + [E1).

The following comes from [Del87, 4.3]:

Proposition 3.1. Let X be a scheme. There is a commutative Picard category V (Vect(X))
with a bracket functor on X such that for every commutative Picard category € with a
bracket functor on X, there is a unique additive functor F : V(Vect(X)) — € making
the following diagram commute

(Veet(X),is0) s V(Veet(X))

5 /
%
The category V (Vect(X)) is called the category of virtual vector bundles over X.

For convenience, we will still denote [E] by E in the sequel. The following proposition
strengthens Definition 3.3, (4) a little bit.

Proposition 3.2. Suppose we have a commutative diagram of vector bundles over X with
exact row and column

0

12



Then the following diagram commutes in V (Vect(X))
B——A+C

l @(uwl)

D+ E.

Proof. Since v~1obsplits d, it’s a standard argument that there exists a unique £ : £ — B

such that
€oc=1idg—dovtobcof =idp.

So we have commutative diagrams with exact rows:

0—s DD FE-2yE——0

are |

0—sD—% B¢ g0

0—E-"sDoE-"D——0
R
0—A—2—B—"—C——0.
Hence the statement follows from the commutative diagram of Definition 3.3, (4):

A+ C

/ T“lJF'U
B D+EAEL D

— D+ F——

o]

Do FE.

The next theorem is a fundamental tool for calculations in virtual vector bundles.

Theorem 3.1. 1. Suppose we have a commutative diagram of vector bundles over X
with exact rows and columns

0 0
K=——=K
0 Vi Va C 0
|
0 Wi Wy C 0
0 0

Then we have a commutative diagram in V(Vect(X))

Vo> K+ W,y

| |

Vi+C—K+ W, +C.

13



2. Suppose we have a commutative diagram of vector bundles over X with exact rows
and columns

0 0
0 Vi Va C 0
|
0 Wi Wy C 0
D=——==D
0 0.

Then we have a commutative diagram in V(Vect(X))

Wy——Vo+D—Vi+C+D

l

Wi +C

|

Vi+D+C.

3. Suppose we have a commutative diagram of vector bundles over X with exact rows
and columns

0 0
K——K
0——T 1 Vs 0
|
0T —— W, —— Wy ——0
0 0.

Then we have a commutative diagram in V(Vect(X))

Vi———T+Vo—>T+ K+ W,

|

K+W

|

K+T+W,.

4. Suppose we have a commutative diagram of vector bundles over X with exact rows

14



and columns

0 0
0 K Vi Vs 0
|
0 K Wi W, 0
C=—==C
0 0.

Then we have a commutative diagram in V(Vect(X))

W) ——— K + W,

| l

Vi+(C——K+Vy+C.

Proof. 1. We have injections K — V; — V4, which gives the diagram by Definition
3.3, (3).

2. We have injections V; — Vo — W5 and V|, — W; — W5, These give two
commutative diagrams by Definition 3.3, (3)

Wo——=Vi+Wo/Vi  Wo——Vi+Wy/V.

T S

Vo+D—VI+C+D Wi +C—Vi+D+C
Moreover, we have a commutative diagram with exact row and column

ZQZ 0

¥,:0 C Wy /Vi —— D ——0

N

Thus we have a commutative diagram

W2/V1A>C+D

k lc(C,D)

D+C

by Proposition 3.2. So combining the diagrams above gives the result.
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3. We denote the morphism V; — Vo, — W5 by .. There are morphisms ker(a) —
K and ker(a) — T satisfying the following commutative diagrams

ker(a) —— K ker(a) ——V;

N

Vi——Vy T —W,

by the universal property of K and T as kernels. Then there is a commutative
diagram with exact row and column

o 0
K
¥ :0 T ker(a) — K ——0
\
N
0

Hence we have a commutative diagram

ker(«) L THK

=

K+T

by Proposition 3.2.

We have injections T — ker(a) — Vi, K — ker(a) — V4, which induce the
following commutative diagrams by Definition 3.3, (3):

Vi———T+V; Vi———— K+ W

| Lo |

ker(a) + W —T + K + Wa ker(a) + Wo —2 K + T + Wy
So combining the diagrams above gives the result.

4. The diagram is a rotation and reflection of the diagram in (1).
[l

Remark 3.1. We remark that (1) in the above theorem is actually the meaning of Defi-
nition 3.3, (3).

Remark 3.2. We would like to point out that the calculations with virtual objects are not
trivial, especially when judging commutativity of diagrams. We will see this point in the
sections below.
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Chapter 4

Correspondences from an Axiomatic
Viewpoint

In this section, we are going to axiomatize the notion of correspondences, using the
language of virtual vector bundles defined in the previous section. They are designed
basicly to comply with properties of Chow rings or Chow-Witt rings.

Definition 4.1. Let X be a noetherian scheme and i € N. We denote by Z'(X) the set
of closed subsets in X whose components are all of codimension i.

Definition 4.2. Let X € Sm/k, C € Z(X) and D € Z/(X). We say that C and D
intersect properly if C N D € Z"(X).

We now start our list of axioms.

Axiom 1. (Twists) For every X € Sm/k, we have a commutative Picard category (Defi-
nition 3.1) Px with an additive functor px : V(Vect(X)) — Px and a rank morphism
rkx : Px — F(F =0 or Z/27Z) such that:

1. The following diagram commutes

where the upper horizontal arrow is defined by rkx([E]) = rk(E).

2. For every f: X — Y in Sm/k, there is a pull-back morphism f*: Py — Px
such that the following diagrams commute

2y L 2y V(Vect(Y)) = V(Vect(X))
Tkyl Thx le pxl
F Py —L

where f*: V(Vect(Y)) — V(Vect(X)) is defined by f*([E]) = [f*E]. We have
f*g* = (go f)* for any morphisms f,g in Sm/k and f*(—v) = —f*(v).

Remark 4.1. In practice, the categories Px should be chosen as “small” as possible.
Since this will allow more isomophisms, such as orientations, as we will see in Definition
7.19.
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Axiom 2. (Correspondences) For every X € Sm/k,1 € N, C € Z/(X) andv € Px, there
exists an abelian group E&(X,v) which is called the group of correspondences supported

on C with twist v. These groups are functorial with respect to v. Moreover, if C = (),
then EL(X,v) = 0.

We are now going to describe further properties that these groups should satisfy.

Axiom 3. (Extension of Supports) For every X € Sm/k, C; C Cy € ZY(X), i € N,
v € Px, we have an injective morphism

e(Cy,Cy) : BL (X, v) — B¢, (X, v)

which 1s called the extension of support. This map is functorial with respect to v.
For any disjoint Cy,Cy € Z'(X), we have

Eé’lLJCQ (X7 U) = ElCl (Xa U) S2) Eé‘g <X7 U)
via extension of supports. Moreover, for any C; C Cy C C3 we have
6(02, 03) O 6(01, CQ) = 6(01, 03)

Axiom 4. (Products) Suppose X € Sm/k, vi,vs € Px, C1,Cy € Z/(X) and i,j € N.
Suppose C and Cs intersect properly, then we have a product

EL (X, v1) x EL (X, v2) —— Eg7 o (X, 01 + v2)
This product is functorial with respect to twists and extension of supports.

Axiom 5. (Associativity) For any X € Sm/k, v, € Px and C, € Z*(X), a = 1,2,3,
with pairwise proper intersections the following diagram commutes

Egl (X,v1) x Eng(X, vy) X B3 (X, v3) LE (X, v1) % Egﬁg,s (X, vy + v3)

“ |

E¢ e, (X v+ v2) % BE, (X, vs) Egratie, (X, o + (v2 + v3))

l a(v1,v2,v3) 2

EZC%;TZéjrzﬁ%g <X7 (Ul + 02) + Ug).

Axiom 6. (Conditional Commutativity) Let X € Sm/k, C, € Z'*(X), i, € N, v, € Px
where a = 1,2. If (iy + rkx(v1))(ia + rkx(v2)) = 0 € F and Cy and Cy intersect properly,
the following diagram commutes:

B, (X, v1) X Bg, (X, v2) —— B g, (X, v1 + )

l c(vl,vz)l

Egg (X7 UQ) X Elcl’l (X, Ul) Ezclvjq%b (X, Vg + Ul).

Axiom 7. (Identity) For any X € Sm/k, there is an element e in E%(X,0) such that
for anyv € Px,i €N and C € Z/(X), the following diagrams commute

EL(X,v) — EL(X,0+v) EL(X,0) —% EL(X, v +0)

= =

EL(X,v) FL(X,v),

where u are the unit constraints in Px. We call e the identity and denote it by 1.
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Axiom 8. (Pull-Backs) Suppose f: X — Y is morphism in Sm/k, i € N, C € Z'(Y),
fYC) € ZY(X) and v € Py. Then we have a pull-back morphism

Eg(Y,v) — B o)X, f*0).
This morphism is functorial with respect to v and extension of supports.

Axiom 9. (Functoriality of Pull-Backs) Let X 2y L7 be morphisms in Sm/k,
ie€N,CeZ(Z), fYC) e Z(Y), g f1(C) € ZY(X) and v € P;. We have

(fog) =g"of"
The pull-back of the identity morphism is just the identity morphism.

Axiom 10. (Compability of Pull-Backs) Suppose that f : X — Y is a morphism in
Sm/k, and that Cy € Z(Y) and Cy € Z/(Y) intersect properly for some i,7 € N (the
same for their preimages). For any vi,vy € Py, we have a commutative diagram

Ep, (Y, 01) x EL (Y, vy) : Eg o, (Y, 01 + vs)

lf*xf* lf*

E]iffl(cl)(X> f* (Ul)) X Egéfl(cz)(Xa f*(UQ)) — Ej‘t{(clmcz)<X7 f* (Ul + UQ))

We always have f*(1) = 1.

Before proceeding further, we now recall some facts about tangent bundles and normal
bundles.

Lemma 4.1. Let X =Y 257 be morphisms in Sm/k.
1. If f, g are smooth, we have an exact sequence

0— Tx/y — TX/Z — f*Ty/Z — 0.

2. If f is a closed immersion and g, g o f are smooth, we have an exact sequence

0— TX/Z — f*Ty/Z — Nx/y — 0.

3. If g is smooth and f, go [ are closed immersions, we have an exact sequence

0— f*TY/Z — Nx)y — Nx/z — 0.

4. If f, g are closed immersions, we have an exact sequence

0— Nx/y — NX/Z — f*Ny/Z — 0.

Proof. See [Har77, Chapter II, Proposition 8.11, Proposition 8.12 and Theorem 8.17 and
Chapter III, Proposition 10.4]. ]

Lemma 4.2. Suppose that we have a Cartesian square of schemes

X 25X

bl

Yy —25Y.

Then, the composite T'x:;yr — Txr;y — v*T'x/y is an isomorphism.
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Proof. See [Har77, Chapter 11, Proposition 8.10]. O

Lemma 4.3. Suppose that we have a Cartesian square in Sm/k

X 25X

bl

Y =Y
such that f is a closed immersion. If one of the following conditions holds:
1. w 1s smooth,
2. u is a closed immersion and dimX' — dimY’ = dimX — dimY’,

then the natural morphism ~ defined by the following commutative diagram with exact
rows
0—— U*TX/k — 'U*f*Ty/k — ’U*Nx/y —0

T
0—>TX’/k—>9*TY’/k—)NX'/Y’ —)O
s an isomorphism.

Proof. If u is smooth, then v and 3 are surjective and have the same kernel by the previous
two lemmas. So 7 is an isomorphism by the snake lemma.

In the other case, the dimension condition implies Nx:/y» and Nx/y have the same
rank. So we only have to prove vV is surjective. We can assume that all schemes are affine.

Suppose that Y = Spec(A), X = Spec(A/I),Y" = Spec(A/J) and X' = Spec(A/(I+J)).
Then Ny, = I/I? and Ny, ,y, = (I + J)/(I? + J) and the morphism + is given by

/P @ A/I+J) — I+ D)/(I°+J)

(¢ ) a) — ai.
This is obviously surjective. O]

Axiom 11. (Push-Forwards for Smooth Morphisms) Suppose that f : X — Y is a
smooth morphism in Sm/k, that n € N, v € Px and that C € Z"t% (X) is finite over
Y. Then we have a morphism

n—+d * n
for BGT(X, fro = Tyy) — Bl (Y,v),

which is functorial with respect to v and the extension of supports. The push-forward of
the identity morphism is just the identity morphism (using Tx;y =0).

We may also use the simplified notation
ffo="Tx;y —v
to denote f,. Moreover, we can consider push-forwards of the form
for Ba (X, fror = Txpy + frvs) — Efoy(Y,01 + o)

which are defined by the composite of the push-forward defined above and the commuta-
tivity isomorphism c(—=Tx/y, f*v2).
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Axiom 12. (Functoriality of Push-Forwards for Smooth Morphisms) Suppose that X Sy L.y
are smooth morphisms in Sm/k, and that C € ZT4x=2 (X)) is finite over Z (i € N). Sup-
pose moreover that v € &y. Then we have a commutative diagram

Egi-dx—dz (X, (f o g)*’U . TX/Z) L Eé—i—dx—dz (X, (f o g)*v — g*Ty/Z — Tx/Y)

gx

En&y = (Y, frv = Tyyz)

f*

Elg))

(Z,v)
where o is obtained via the following composite

(fog)v—Tx/z — (fog)v— (Tx;y+9Tyz)
— (f ¢} g)*U — g*Ty/Z — Tx/y.

Axiom 13. (Push-Forward for Closed Immersions) Suppose f : X — Y is a closed
immersion in Sm/k, v € Py and C € Z"T%(X). Then we have an isomorphism

fo i E&TY (X, Nyjy + f0) — Efey(Yov),

This morphism is also functorial in v and under extension of supports. The push-forward
of the identity is just the identity, by using Nx;y = 0.

So given a vector bundle V over X, the definition above gives an isomorphism E7 (X, V) =

EngX(V)(V, 0) (Chapter 1) via the push-forward of the zero section.

We may also use the simplified notation
Nxy + ffv — v
to denote f,. Moreover, we could also consider push-forwards of the form
ot EETY(X, fron+ Nxgy + froa) — By (Yoo + v2)

which are defined by the composite of the push-forward defined above and the commuta-
tivity isomorphism c(f*vi, Nx/y).

Axiom 14. (Functoriality Push-Forwards for Closed Immersions) Suppose that X ——Y Sz

are closed immersions in Sm/k, C € Z7T4x~z2(X) and v € P;. Then we have a com-
mutative diagram

Eg (X, Nxyz + (f 0 9)*v) == EZ ™ (X, Nxyy + g*Nyjz + (f 0 9)"v)

Ny;z + f*v)

Efgicn(Z,0);

where ¢ is induced by the isomorphism Nx;z + (f o g)*v = Nx;y + g*Ny,z + (f o g)*v.
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Axiom 15. (Base Change for Smooth Morphisms) Suppose we have a Cartesian square
of smooth schemes

X' 25X
|
Y LY

with f smooth. Let moreover ¢ = dx —dy = dx: —dy:, n € N, s € Py, C € Z"(X)
finite over Y such that v=1(C) € Z"¢(X). Then the following diagram commutes

n—+c * S n
EEH(X, frs — Txyy) ————— E} iy (Y, 9)
Bl o (X 0" frs — 0" Txyy) == Bl o) (Y 0's).

Here we have used the canonical isomorphism Tx:yr — v*Tx/y of Lemma 4.2.

Axiom 16. (Base Change for Closed Immersions) Suppose that we have a Cartesian
square of smooth schemes

X 25X
|
Y LY

with f a closed immersion. Let ¢ = dx — dy = dx: — dy:, s € Py, C € Z"(X) such
that v=1(C) € Z"¢(X). Then the following diagram commutes

n-+c * e mn
EL(X, Nxjy + f*s) ———— B2 (¥, 5)
Eﬁic(c) (X', 0" Nx)y +v* f*s) — E;l(m(c»(Y/, u*s).

Axiom 17. (Projection Formula for Smooth Morphisms) Suppose that we have a smooth
morphism f: X — Y in Sm/k and that n,m € N. Let further C € Z"%(X) be finite

over Y and D € Z™(Y') be such that C' and f~'(D) intersect properly and vy,vy € Py.
Then the diagrams

n * m wdx f* m * m *
EGH (X, fron— Tgy) < BR(Y,00) 5 BGT (X, fron = Tayy) X B ) (X, f02)

fexid J
n+m-+d * *
Eg(Y, Ul) X Eg<Ya UQ) Ec:f—t(é)) <X7 Jrur — TX/Y + f UQ)

/

EYeynp(v1 +v2)
and
ER(Y,v) x Ept (X, fror — Txyy) 25

— s E™

ffl(D)(X7 [rvg) X EZfdf (X, fro1 = Txyv)

id X fx l

n+m+d * %
EFB(Y,v9) X EG(Y,v1) Ec:f:(jfj)(xa [rog+ o1 = Txyy)

/

EJ’}(*C%D(K vy + V1)
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commute.

Axiom 18. (Projection Formula for Closed Immersions) Suppose that we have a closed
immersion f : X — Y in Sm/k. Let n,m € N, C € Z"%(X) and D € Z™(Y) be
such that f~1(D) € Z™(X), and such that C and f~'(D) intersect properly. Let further
vy, V9 € Py. Then the diagrams

n * m Wdxfron * m *
E&T (X, Nxyy + [or) x BB(Y,v) = B¢ (X, Nxpy + f*on) x B ) (X, f*02)

fexid l

Ex(Y,01) x EB(Y, vp) Eg Sy (X, Ny + fron + frva)

/

Eriynp(Yvi + v2)

and

mn * Xy * n *
EB (Y, v2) X Ec+df(X7 Nxyy + [*v1) f_X>Ef—1(D)(X7f V) X Ec+df<X7 Nxyy + 1)

idX fu l

n+m-+d * *
EB(Y,v) x EA(Y,v1) EC:fj(fg)(X,f v2 + Nxyy + 1)

/

E?(—E,T;LQD (Y, V2 -+ Ul)
commudte.
We still need a compability between the two push-forwards introduced above.

Axiom 19. (Compability between Two Push-Forwards)

1. Suppose that X 72y are morphisms in Sm/k, that f is a closed immer-
sion and that g, go f are smooth. Let C € Zx=4v (X)) be finite over Y, i € N and
v e Py. Then the following diagram commutes

i — x % * (i S g7 ) — % % *
B~ (X,Nx/z + f*g"v — f TZ/Y)X/Z—>E(Z)J+dX WX, fgv+ Nxjz — FTzv)

2 lw
Ei-i-dz—dY 7 av — T Ei+dx—dy X frg'v — T
F(C) ( yg'v Z/Y) c ( g X/Y)
gx
Egriey(Ys0),

where @ is induced by Lemma 4.1, (2).

2. Suppose that X L7y are morphisms in Sm/k with g smooth and f, go f
closed immersions. Let C' € Z™Hx=dv(X) be finite over Y, i € N and v € Py.
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Then the following diagram commutes

% - * % fN AR Z ) * *a*
Egd™=™(X,Nx/z + f*g*v— f %ng)%éczé&y (X, = Tay + Nxjz + f*9"0)

. lcp

E{ (2, g% = Tyyy) Eg =™ (X, Nxyy + f*g"v)
(gof)«
gx
EyrcpYo0),

where ¢ is induced by Lemma 4.1, (3).

3. Suppose that we have a Cartesian square of smooth schemes

X' 25X

s

Y ——Y,

where u is smooth and f is a closed immersion. Let C € Z"4+dv( X" be finite over
Y and let s € Py. Then the following diagram commutes

T d dv % % * * n » %
EC+ ” (X', Nxryyr + g u*s — g* Ty )y ) g—>Eg(+c‘§ (Y u*s —Tyr)y)
n+d¢+d, % . n J’
BT (x y Nxy +u*f*s = Txsx) E2 oy (s s)
Vs 7

n+d *
Eyey (X, Nxyy + f7s).

Axiom 20. (E'tale Ezxcision) Suppose that f : X — Y is an étale morphism in Sm/k,
that C' € Z'(Y') and that the morphism f : f~1(C) — C' is an isomorphism under reduced
closed subscheme structures. Then for any i € N and v € Py, the pull-back morphism

[* 2 Ep(Y,0) — B (X, f*(v))
15 an isomorphism between abelian groups with inverse f.

Definition 4.3. If the categories Px and groups EL(X,v) satisfy all the azioms above,
then they are called a correspondence theory.

Remark 4.2. Let R be a commutative ring. The first example of a correspondence theory
is given by E5(X,v) = CHL(X,v) @ R, where the latter is the free R-module generated
by irreducible components of C' for C € Z4(X), F =0 and Px =0 for any X.

We now give another example, starting with the definition of the categories Zx.

Definition 4.4. For a scheme X, we define a category Px as follows. Its objects are
sequences € = (Ey,...,E,), where n € N and E; are vector bundles over X for i =
1,...,n. We attach to each object £ a line bundle

det(€) = detF) @ - - - @ detE,
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and an integer

rk(E) = rkEy + - -- +rkE, € Z/2Z.
The morphisms between objects € = (Fy, ..., E,) and F = (Fy,..., F,) are given by

Isomo, (det(E),det(F)) if rk(E) =rk(F).

Homgp (E,F) =
oy ) {@ else.

The composition law s inherited from the category of line bundles.

Remark 4.3. The category Px is equivalent to the category of 7./27-graded line bundles
considered in [Del87, 4.3]. However, the category Px will be more convenient in our
computations.

To complete the definition of our correspondence theory, we set
CH,(X,v) = CHu(X, det(v)).

for every X € Sm/k, C € Z'(X), v € Px. These are precisely the MW-correspondences
defined in [CF14]. We will give a plan of proof of the following theorem in Chapter 8.

Theorem 4.1. The collection of MW-correspondences form a correspondence theory with
twists in Px.

25



Chapter 5

Sheaves with F-Tranfers and Their
Operations

In this section, we develop the theory of sheaves with E-transfers over a smooth base as
in [DO7] and [CF14], where F is a correspondence theory.

Since there will be heavy calculations involving twists, we use the abbreviation («, v)
for « € E.(X,v) from now on for convenience and clarity. We extend this notation to
operations such as (a,v) - (5,u), f*((a,v)). For S € Sm/k, we denote the category of
smooth schemes over S by Sm/S.

We will need the notion of admissible subset coming from [CF14, Definition 4.1].

Definition 5.1. Let X, Y € Sm/S. We denote by </s(X,Y) the set of closed subsets
T of X xsY whose components are all finite over X and of dimension dim(X). The
elements of Zs(X,Y) are called admissible subsets from X to'Y owver S.

Lemma 5.1. In the definition above, T itself is also finite over X.

Proof. For every affine open subset U of X, T'N U is affine since each of its components
are affine (see [Har77, Chapter III, Exercises 3.2]). Its structure ring is a submodule of a
finite Ox (U)-module. Hence we conclude that T'N U is finite over U. O]

Definition 5.2. Let S € Sm/k, and let X,Y € Sm/S. The group

Cors(X,Y)= lm EP (X xsY, ~Txxerx)
TG,QKS(X’Y)

15 called the group of finite E-correspondences between X and Y over S.

We can now consider the category 6\’07“5()( ,Y), whose objects are smooth schemes
over S and morphisms between X and Y are just Corg(X,Y) defined above. Our aim is
now to study the composition in that category.

To avoid complicated expressions, we denote for smooth schemes X,Y and Z the
scheme X xgY Xg Z by XY Z and the projection X xgY xgZ — Y x5 Z by pyxrZ.
We extend this notation to arbitrary products of schemes in an obvious way.

Given any a € Corg(X,Y) and 8 € Corg(Y,Z), we may suppose they are defined
over admissible subsets. With this in mind, the image of

Pz vz (B, =Ty zpv)) - pxy™ (e, =Txy)x)))

in (/7\0/7“3()( ,Z) is just defined as o a. It is straightforward to check that this definition
is compatible with extension of supports.

Proposition 5.1. The composition law defined above is associative.
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Proof. Suppose that X —2—=Y Z—1%W are morphisms in 6’;)7"5. As before, we
may suppose that each correspondence is defined over an admissible subset.
Consider the Cartesian squares

XYZIW — XZW XYZW — XYW

A

XY ——XZ YZIW ——YW.

Now

yo(Boa)
=pxivs o (v, =Towi2))px 2" *pxos 0y 2 75 (B, =Ty zyv ))pxy = (o, = Txyyx))))

by definition

:p§€VY (P)Z(VZVW*(7)p§§w*p§}Z/*Z((Pi/(gz*(ﬁ)]ﬁgz*(a)7 —Txyz/xy — TXYZ/Xz)))

by definition of the product

=pxw. Pz (Npxzwspxyvz (0vz " (B)pxy ™ (@), =Txvzixy — Txvz/xz)))

by Axiom 15 for the left square above

:p§§/vr (PE(VZVW*(W)pﬁgx%/Y (pifﬂz/zw* (5)]9?;2‘”*(04), —Txyzw/xyw — TXYZW/XZW))

by Axiom 9 and Axiom 10

3 DA (B 00, T e DS (™ @)
by Axiom 17 for pyya"

=pxive Dxaine (6, —pxn” “Txwix — Dxgin Ixzwixw — Txyzwixzw))
by definition of the product where § = py?"*(V)pyy 2" *(B)pay 2V * ()

:p§§V/[,Z*W((5, —p§§VZW*TXW/X - TXYZW/XW))
by Axiom 12

XYW, XYZW XY ZWx XY ZWx
=pxws Pxyws (& —pxw  Txwix — xyw Lxyvw/xw — Ixyzw/xyw))

by Axiom 12, note that we have used C(—Txyzw/){yw, _TXYZW/XZW)

=pxws Oxvivs 0w’ (v 2 (B)pxy T (@)

by Axiom 17 for pyya,"

=pxwh Pxvivs oy ziv 0z (N@vz " (B), =Ty zwpw))pxy ' (a))
by Axiom 9 and Axiom 10

=pxws Oyw Py Pz (DpyvZ (B)pxy (@)

by Axiom 15 for the right square above

=(yopB)oa
by definition.

Definition 5.3. Consider the functor
y:8m/S — Corsg,

defined on objects by ¥(X) = X. Given an S-morphism f: X — Y, we have the graph
morphism I'y : X — X XgY and the natural map

Ui Txwgvyx — Nx/xxgy
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of Lemma 4.1 is an isomorphism. We set Y(f) to be image of the element 1 € E%(X,0)
of Aziom 7 under the composite

Tg. _
E%(X,0) — E%(X, Nx/xxsy — DiTxwgyyx) —— EY (X x5V, ~Txyv/x)

|

Cors(X,Y).

We prove in the next couple of results that 7 respects the composition of both cate-
gories, starting with some easy cases.

Proposition 5.2. Let f : X — Y be a morphism in Sm/S and g : Y — Z be a
morphism in Corg. Then we have

go(f) = (f xidz)"(g)
where the right hand side is the image into the direct limit of the corresponding element.

Proof. We have a Cartesian square

Ty
X——XY

X7z XY Z
pPx Pxy

FindZ
XZ—XYZ.

Denote the map E%(X,0) — E%(X, Nx/xxsy — I Txxgv/x) by t. Suppose as usual
that ¢ is supported on an admissible subset. We have

gov(f)
=pxyl (v 27 (9, =Ty zyv)) - Py T ((H(1), Nxyxy — Ui Txyv)x)))
by definition

=pxyl (0357 (9, =Ty zyv)) - (T X idy)upx 7" (£(1)))
by Axiom 16 for the square above

=pxz. (g x idz).((Ty x idz)"py ;7 (9. =Ty zv)) - px 7 (1(1))))
by Axiom 18 for I'y x idy

=px g (U x idz)((f x idz)"((9,=Tyzy)) - px 7 (¢(1))))
by Axiom 9

=pxyl (Dp X idz)((f % idz)*(9) - px7*(t(1)), =Txz/x + Nxz/xvz — Uy X idz)* Txyz/xz)
by definition of the product and the pull-back, and Lemma 4.3

=s(((f xidz)*(9) - pX7*(t(1)), =Txz/x + Nxzyxvz — (U x idz) Txyz/x2))
by Axiom 19 (here s is the isomorphism cancelling Nxz/xyz = (I'y x idz)"Txyz/xz)

=(f x idz)"(g) - s(px " (t(1)))
by bifunctoriality of products with respect to twists

=(f xidz)"(g) - px”*(1)
by functoriality of pull-backs with respect to twists

=(f x idz)"(g)
by the definition of the identity and Axiom 9.
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Proposition 5.3. Let f : X — Y be a morphism in 6’5"5 and let g : Y — Z be a
smooth morphism in Sm/S. Let t be the composite

— T'xy/x

Then we have
Y(g) o f = (idx % g).(t(f)),
where the right side is the image into the direct limit of the corresponding element.

Proof. We have a Cartesian square
r
Y —=YZ

XYy XYz
Py T L’YZ
idX XFQ

XY —XYZ,
an isomorphism s : 0 — Ny yz — LTy zy and an isomorphism

r:—=Txy/x — Nxy/xvz — (idx X T'g)"Txyz/xy — Txv)x-

Suppose that f is supported on some admissible subset. We obtain

Vg)ef
=pxre (03 Tau((s(1), Nyyyz = Ty Ty zpv)) - vy (f, =Txvyx))
by definition
=pxys ((idx x Tg)upy " *((s(1), Nyyyz — DTy zpv)) - vy (f))
by Axiom 16 for the square above
=pxys (idx x Tg)u(py " *((s(1), Nyyvz — TiTyzpv)) - (idx x Do) pxy.”*(f))
by Axiom 18 for idx x I,
=pxz. (idx % Tg)u(r((idx x Tg)"pxy”" (1))
by functoriality of pull-backs and products with respect to twists
=(idx x g)(t((idx x Tg)"pxy"*(f)))
by Axiom 19

=(idx x 9)«(t(f))
by Axiom 9.

O
Proposition 5.4. Let f : X — Y be a morphism in 6'\0/7‘5 and let g - Y — Z be a

closed immersion in Sm/S. Let t' be the composite
—Txy/x
— — Txy/x + Nxy/xvz — (idx x Ug)" Txyz/xy
— —Txy/x + (idx xTg)"Txyz/xz + Nxy/xz — (idx xT'g)" Txyz/xy
— — Txy/x +Txy/x + Nxy/xz — (idx x I'g)* Txyz/xy
—Nxy/xz — (idx xTg)" Txyz/xy
— Nxy/xz — (tdx x g)*TXZ/X-
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Then we have

Y(g) o f = (idx x g)(t'(f)),
where the right side is the image into the direct limit of the corresponding element.

Proof. The same proof as in the above proposition applies. O]

Before proceeding further, we make the isomorphisms ¢ and ¢ above more concrete in
the category of virtual vector bundles.

Lemma 5.2. Suppose that we have a commutative diagram in Sm/k

N\

IIN
|

in which the square is Cartesian and f, g are smooth.

1. If j is a closed immersion, then the following diagram commutes

Txyvly +Tyis ¢ Tx/sly ——— Txzly + Tzysly

l

Ny/x +Tyys

|

Tx/zly + Nyz + Tyss Tx/zly +Ty/s + Ny)z.

2. If j is smooth, then the following diagram commutes

Txyyly +Tyis ¢ Txysly ——— Txzly +Tz/sly

|

Ny;x +Tyys

l

Ny/x +Tyjz +Tzsly Tyiz + Ny;x + Tzsly-

Proof. In both cases, there is a commutative diagram with exact row and column

0

Tys

N

0—Tx)v|ly — Tx/sly Ty/s 0

oY

-

Ny, x
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It induces a commutative diagram
Tx/sly —— Tx)vly + Tyys
Ty;s + Nyx

by Theorem 3.1, (3). We now pass to the proof of the first statement. We have a
commutative diagram with exact columns and rows

0 0

Ty s =——=="Tys

0 —>TX/Z’Y —>TX/S’Y —)Tz/sly E— O

0 ——Tx/z|ly —— Ny/x Ny/z 0

0 0.
We deduce the following commutative diagram by Theorem 3.1, (3)

Tx/sly ——————Tx/zly +Tzsly —— Tx/zly +Tyys + Nyyz

|

Tyss + Ny x
Tys +Tx)zly + Nyyz.
Furthermore, there is an obvious commutative diagram
Nyx + Ty «—————Tyjs + Ny;x —— Ty;s + Tx;z|y + Nyz -

| l

Tx/zly + Nyyz + Tyss Tx/zly +Tys + Nyyz

So the statement follows by combining the diagrams above.
For the second statement, observe that we have a commutative diagram with exact
columns and rows

0 —)Ty/Z —)Ty/g —)Tz/sly —0

0 —)T;qz’y —)TX/S’Y —)Tz/sly E— O

Ny)x === Ny/x
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Then the result follows by the same method as above by applying Theorem 3.1, (2) to
the diagram above.
m

Lemma 5.3. Suppose that X,Y,Z € Sm/S and that g : Y — Z is a morphism in
Sm/S.
1. If g is a closed immersion, then the isomorphism t in Proposition 5.3 is equal to
—Txy/x — Nxv/xz — Nxv/xz — Txy/x — Nxv/xz — (idx x g)"Txz/x.
2. If g is smooth, then the isomorphism t' in Proposition 5.4 is equal to
—Txy;x — —(idx x 9)"Txz)x — Txy/xz.

Proof. We have a commutative diagram in Sm/k
XY

idxxg XY Z —— XY
X{fgy XY
Pxz Px

in which the square is Cartesian. Suppose first that g is a closed immersion. In that case,
we show that the composite
—Txy/x
— — Txy/x + Nxy/xvz — (idx x Tg)"Txyz/xy
— — Txy/x + (idx x Ug)"T'xyz/xz + Nxv/xz — (idx x T'g)" Txyz/xy
—Nxy/xz — (idx x Tg)" Txyz/xy
— Nxy/xz — (idx x 9)"Txz/x
—Nxv/xz — Nxv/xz — T'xv/x
— — T'xy/x
is just id_TXY/X. Indeed, it is equal to
—Txy/x
— — Txy/x + Nxy/xvz — (idx x Ty)"Txyz/xy
— —Txy/x — (idx xTg)"Txyz/xy + Nxv/xvz
— = Txy/x — (idx X 9)"Txz/x + Nxv/xvz
— — Txyx — Nxv/xz — Txv)x + Nxv/xvz
— — Txy/x — Nxv/xz — Txy/x + (idx xI'g)"Txvz/xz + Nxv/xz
— — Nxy/xz — Txy;x + Nxy/xz
— — Txy/x,
where the sixth arrow is the cancellation map between the first and the fourth term. By
Lemma 5.2, (1) and the commutative diagram above, we have a commutative diagram

(idx x ') Txyz/xy + Txy/x (idx x T'g)*Txyz/x
Nxy/xvz +Txy/x (idx x Tg)*Txyz/xz + (idx X 9)*Txz/x

l l

(idx xTg)*Txyz/xz + Nxy/xz + Txy/x — (idx x Ug)*Txyz/xz + Txv/x + Nxy/xz-
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Hence the composite above is equal to

—Txy/x
— — Txy/x + Nxy/xvz — (idx x I'g)" Txyz/xy
— — Txyyx — (idx X I'y)"Txyz/xy + Nxv/xvz
— — Txyyx — Nxv/xvz + Nxy/xvz
— — Txyx — Nxvy/xz — (idx x Ug)"Txyz/xz + Nxv/xvz
— — Txy/x — Nxy/xz — (idx X Tg)"Txyz/xz + (idx xI'g)* Txyz/xz + Nxv/xz
— — Txy/x,

which gives the result.
Suppose next that ¢ is smooth. We show that the composite

—Txy/x
— — (idx X Uy)"Txyz/xy + Nxv/xvz — Txy/x
— — (idx X Uy)"Txyz/xy + Nxv/xvz — (idx X Uy)"Txyz/xz
— — (idx x Uy)*"Txyz/xy + Nxv/xvz — Nxy/xvz — Txy/xz
— — (idx xIT'y)" Txyz/xy — Txv/xz
— — (idx x 9)"Txz/x — Txv/xz
— — T'xy/x
is just id_ry,, . By Lemma 5.2, (2) and the commutative diagram at the beginning of

the proof, we get a commutative diagram

(idx x T'g)*Txyz/xy + Txy/x (idx x I'g)*Txyz/x
Nxy/xvz +Txy/x (idx x Ty)*Txyz/xz + (idx X 9)*Txz/x

l l

Nxy/xvz + Txy/xz + (idx X 9)*Txz/x —— Txy/xz + Nxv/xvz + (idx x 9)"Txz/x.
Hence the given composite is equal to

— T'xy/x
— — (idx x Ty)"Txyz/xy + Nxv/xvz — Txv/x
— — (idx X Uy)"Txyz/xy — Txy/x + Nxy/xvz
— — Nxy/xvz — Txv/x + Nxv/xvz
— — Nxy/xvz — (idx x 9)"Txz/x — Txv/xz + Nxv/xvz
— — (idx x 9)"Txz/x — Txvy/xz
— — Txy/x,

where the fifth arrow is the cancellation between the first and the fourth term. The result
follows. u

Proposition 5.5. For any X € Sm/S, Y(idx) is an identity. That is, for any X,Y €
Sm/S, f € Corg(X,Y), g € Cors(Y,X), we have

Flidy)o f=f, goA(idx) =g
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Proof. The second equation follows by Proposition 5.2 and the first one follows from
Lemma 5.2, (1) and Proposition 5.3. ]

Combining Proposition 5.1 and Proposition 5.5, we have proved that 6\’07"5 is indeed
a category. We now complete the proof that 7 is indeed a functor.

Proposition 5.6. For any x21sv2.zn Sm/S, we have

V(g f)=7(g) o(f).

Proof. Suppose at first that f is a closed immersion or that it is smooth. We have a
Cartesian square

xz%y
FgOfT )‘\Fg
x—L .y

and two isomorphisms a : Nyyyz — )Ty z;y — 0 and b: Nx/xz — F}TXZ/X — 0. For
convenience, we denote the induced morphisms at the level of correspondences still by a
and b respectively. Then we have

3(9) 0 3()
—(f % idz) (3 (g))
by Proposition 5.2
=(f xidz)*(Tgu(a™' (1), Nyyyz —TiTyvzv))
by definition of ¥
—(Tyer)e f (@ (1)
by Axiom 16 for the square above
—(Dgop). (b7 (1))
by Axiom 9 and functoriality of pull-backs with respect to twists
=7(g 0 f)
by definition of 7.

Suppose now that f = poi in Sm/S, where p is smooth and i is a closed immersion.
Then

7(9) 03(1) =3(9) 0 3(0) 03(p) = (i 0 9) 03(p) = 79 )

by the statements above. O]
Remark 5.1. In [VO01, Section 2] and [GP1}, Section 2], the set Frn,(X,Y) (resp.
LF,(X,Y)) of (resp. linear) framed correspondence of level n for any X, Y € Sm/k,n €

N is defined. Garkusha-Panin and Voevodsky define the category ZF. (k) to be the category
whose objects are those of Sm/k and

Homgzp. (X, Y) = ®.ZF,(X,Y).

Here, any element s in Fr,(X,Y) is given by (an equivalence class of) a commutative
diagram as below

AT UL AL

]

X Z—Y,
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where a s étale, i,a 01 are closed immersions, poaoi is finite, z is the zero section and
the square is Cartesian. Suppose that Z # () and denote the composite

U—5AL —Y
by f. We have a commutative diagram

l_‘f b=ax1id c
U—UXY —AY XY —XxY

|

AL —— 4 X

in which the square is Cartesian. Then we can associate to s an element o(s) in 6'\0/7%()(, Y)
defined to be the image of 1 under the composite

nga/v O) E?/(Y, Nz _Nz> E}@(Aga_TAT{,/Y)

bulgs n — n *
Eg(U, _g*TAgﬁ/Y) —>Eg(U, pr - pr - g*TA?/y) —f)EZerY ds(AX X Y, —TAr)L(Xy/A} —(q TA’)L(/X)

Core(X,Y) E% 4 (X X Y, =Txy)x),

where we have used the isomorphism G Tpn;y = a™Tan x. One checks that this induces a
functor -
a: ZF.(k) — Cory,

as in [DF17, Proposition 2.1.12].

Definition 5.4. Define PTSY/h(S) to be the category of contravariant additive functors from
Corg to Ab as in [DF'17, Definition 1.2.1] and [MVWO06, Definition 2.1]. The objects of
this category are called presheaves with E-transfers over S. Further, define :971(5) to be
the full subcategory of objects whose restriction on Sm/S wvia 5 are Nisnevich sheaves.
We call them sheaves with E-transfers over S.

Definition 5.5. Let X, Y € Sm/S, we define ¢s(X) by cs(X)(Y) = 6\’0;“5(}/, X). It is
the presheaf with E-transfers represented by X.

We recall the following three propositions which are the technical heart when dealing
with Nisnevich sheaves:

Proposition 5.7. Let f : X — S be a locally of finite type morphism between locally
noetherian schemes. Let I be a directed set and let {T;} be an inverse system of S-schemes
such that for any iy = 19, the morphism T,, — T}, is affine. Then l&nﬂl exists in the
category of S-schemes and we have

Homg(l'&nTi,X) = liﬂHomg(Ti,X).

Proof. See [Pro, Lemma 2.2] and [Pro, Proposition 6.1]. O

Now, let A be a noetherian ring and let p € SpecA. Consider the set I whose elements
are pairs (B,q), where B is a connected étale A-algebra, ¢ € SpecB, ¢ A = p and
k(p) = k(q). Set (B1,q1) = (B2, ¢q2) if there is an A-algebra morphism (always unique if
exists) f: By — By such that f~1(¢q) = ¢1.
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Proposition 5.8. The set I is a directed set and we have
lim B = A},
(B.9)

where the right hand side is the Henselization of A,.

Proof. See the remarks around [Mil80, Lemma 4.8] and see for example [Mil80, Theorem
4.2] for basic properties of Henselian rings. O]

Proposition 5.9. Let U, X, Y be locally noetherian schemes, p : U — X be a Nisnevich
covering and f : X — Y be a finite morphism. Then, there exists for every y € Y a
scheme V with an étale morphism V. — Y being Nisnevich at y such that the morphism
UxyV — X Xy V has a section.

Proof. Consider the following commutative diagram with Cartesian squares

v—.x—1 .y

P,

Ry —25 Ry s, SpecO%.

Since $ is a finite morphism, R; is a finite direct product of Henselian rings (see [Mil80,
Theorem 4.2]). Hence, o has a section s since it is Nisnevich at every maximal ideal of
R;. Pick an affine neighbourhood Uy of y. By [Pro, Lemma 2.3] and Proposition 5.8,

Rl = ( l&l SpecB) XU, f_l(Uo) = l&l (SpecB X Us f_l(Uo)),
(Bvq)i(OY(UO)vy) (Bvq)t(OY(UO)vy)

hence there exists a (By, q) = (Oy(Up),y) such that y o s factor through the projection

lim (SpecB xy, f~H(Uy)) — SpecBy xy, f(Up)
(B,q)=(0Oy (Uo),y)

by using Proposition 5.7 for p. Then we finally let V' = SpecB,. [
Now we are going to prove a similar result as in [DF17, Lemma 1.2.6].

Proposition 5.10. Let X, U € Sm/S and let p : U — X be a Nisnevich covering.
Denote the n-fold product A xp A Xp--- xg A by A} for any schemes A and B. Then,
the complex of sheaves associated to the complex

CU/X) =+ —— T (UR) —2s o S E(U xx U) —25 G5 (U) —2 G (X) —25 0,

s exact. Here we set p; : Uy — U}}_l to be the projection omitting i-th factor and
dn = 32,(=1)"""Cs(pi).-

Proof. Given Y € Sm/S, we have to prove that the complex is exact at every point
y € Y. Now, assume that we have an element a € (/7\0/703(5/, U%) such that d,(a) = 0.
We may suppose that there exists T' € 75(Y, X) such that a comes from E% ™% ((Y x5
U)yxoxs —Tyxsurny) and dy(a) = 0, where R" is defined by the following Cartesian
squares (R := R')

R" ——Y xg Uy — U¥

|

T—Y xg X — X.
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By Proposition 5.9, there is a Nisnevich neighbourhood V' of y such that the map p : R Xy
V' — T Xy V has a section s, which is both an open immersion and a closed immersion
(see [Mil80, Corollary 3.12]). Let D = (Rxy V)\ s(T' xy V). Then d,(alyxsurn) = 0. We
have a commutative diagram

VXSU;L(—>Y XSU?(

l |

% Xg X—Y Xg X,
Cartesian squares

R'" Xy V—V XxgUt ——V TxyV—5(VxsU)\D,

| | ] l

R"——Y xg Uy —Y RXxyV-——=VxgU
equations
Y xsUx = (Y X5 U)yy x>
VxgUx = (VxsU)pygx,
R"=RXp - - xp R= Ry,
R xy V= (Rxy V)i v =T Xyxsx (VXsU))p s, v
(B Xy V)Tuyy = (B Xy V)ix,

and a diagram of Cartesian squares in which the right-hand vertical maps are étale:

(R xy V)%va—> (V xs U>T\L/XSX Xwxgx) (V xsU)\ D) := wntt

J/Z'anS jnJrlJ/

id R Xy V)/?ﬂilyv (V Xs U)T&tlsX
lpn-&-l pn+ll
(R Xy V)%va (V Xs U)y\l/xsXa

where p, 1 denotes the projection omitting the last factor. The maps
dx—d (Pr+19n+1)d v —d
EijixY%/((V Xs U)T\L/XSX’ _TVXSU}}/VT) — bRﬁxYSV(WnJrlv _TVXSU§+1/V|W"+1)
and
dx—d 1 Jnt1 dx —d
E}ﬁxﬁ/((v XS U)?/J;S)o _TVXSU;;“/V) —_— ER)éxYSi/(Wnﬂu _TVXSU;;“/V|W"+1)

are isomorphisms with respective inverses (pp+1 © jnt1)s« and (j,41)« by Axiom 20.
Let’s consider the element

b= ((Jn41) ™" © (Pat1 © jus1) )(a’(VXSU)%Sx) € By (V xs Ut x, Ty uptipv);
where we have used the isomorphism

*
pn+1TVXsU§é/V >TVXSU;+1/V
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since U — X is étale. Then

n+1 n+1

doa(b) = ) (=1 "es(p)(®) = Y (=1 picltina (b))

i=1 i=1
by Proposition 5.3, where
tint1 —TvXSU;;“/v — —(idy Xg pi)*T(VXSU)n()/V - T(VXSU;}“)/(VXSU;)

is the isomorphism of Proposition 5.3 applied to

1% b Uit bi U .

If 1 <7< n+1, we have Cartesian squares

Wil —— (Vs U)pgx - W —— (V xs U)pl x

Pn+10Jn+1 Jn+1

pn Pnoin, L (V xs Uit x W " (V xs U)oy x-
So

Pis(tin+1(b))
=(Pis 0 tigs1 0 (ns1) " © (P © Jus1) ) (alvxsvyy, o r —Tvxsvg/v)
by definition
=i © (Jiy1) " 0 Gna (fims1) © (Prga © jn+1)*)(a|(VxSU)VXSX)
by functoriality of pullbacks with respect to twists
=((Jn) 7" 0 Pix 0 Gingr (timsn) © (Pryr © Jnt1) Nalwxsvyp, )
by Axiom 15 for the right hand square above
=((j5) " 0 Pix © (Prg1 © fng1)" © tin)(@lwxsoy, )
by functoriality of pull-backs with respect to twists
=((72)7" 0 (Pu 0 )" 0 pix 0 tin) (@l wxsvry )
by Axiom 15 for the left hand square above.

For + =n + 1, we have

Pr+1x(tnt1,n+1(0))
=(Prs1s © tnsima1 © (Gryy) "' 0 (P © Jnt1) )@l @wssvyy, oo —Tvxsug/v))
by definition
=(Pn+t1% © tut 1,041 © Jnt1x © (Pny1 © jn+1)*)(a|(szU)(;XSX)
by Axiom 20
=(Pnt1s © Jnt1x © Jppr (bngrnt1) © (Pga © Jnir) )@l sy, )
by functoriality of push-forwards with respect to twists
=((Pn+1© Jnt1)x © (Pny1 © jn+1)*)(a|(VxSU)(‘,XSX)
by Axiom 12 and Lemma 5.3, (2)
=al(vxsv)y,  «
by Axiom 20.
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Hence

dr+1(D)
=((in) ™" © (P 0 Jn)" © du)(alvxsvy, ) + (=D alwwso,
:(_1)na’(VXSU)T&XSx‘
So the complex is exact after Nisnevich sheafication. n

Then by the same proofs as in [DF17, 1.2.7-1.2.11], we have the following result:

Proposition 5.11. 1. The forgetful functor o : S'\;L(S) — F/’:S’/h(S) has a left adjoint
a such that the following diagram commutes:

PSh(S) «— PSh(S)

I

Sh(S) +—— Sh(S),

where a is the Nisnevich sheafication functor with respect to the smooth site over S
(Section 7.2 for notations).

2. The category %(S) is a Grothendieck abelian category and the functor a is exact.

3. The functor 7. appearing in the lower line of the preceding diagram admits a left
adjoint v* and commutes with every limits and colimits.

Proof. The same as [DF17, Proposition 1.2.11]. O

Definition 5.6. Given any X € Sm/S, we define Zs(X) = a(¢s(X)) and we denote
Zs(S) by L.

Proposition 5.12. Let X € Sm/S and Uy UUy = X be a Zariski covering. Then the
following complex is exact as sheaves with E-transfers:

0 — Zg(Uy NUs) —> Zg(Uh) ® Zg(Us) — Zg(X) — 0.

Proof. See [MVWO06, Proposition 6.14] with use of Proposition 5.10. Note that this com-
plex is left exact because for any open immersion U C X in Sm/k, ¢s(U) is a subsheaf
of ¢s(X) by Axiom 20. O

—_—

We are now going to define a tensor product on the category Corg.

Definition 5.7. Let X;,Y; € Sm/S for i = 1,2. Let further f; € 6\’07”5(X1,Y1) and
fo € Corg(Xs,Y3). Set

fi Xs fa=pifi-pofe € 507‘(X1 Xgs Xo2,Y] XgY3)

where p; : X1 Xg Xo XgY] Xg Yy — X; XgY;, 1 =1,2 are the projections. Here we have

used th€ isomorphésm —TX1X2y1y2/X1X2 — _TX1X2Y1Y2/X1X2Y2 — TXlXQYlYQ/XlXQYl‘ We
say that f1 Xg fo is the exterior product of fi and fs.

To prove that the tensor product is well-defined, we need to verify the compatibility
of the tensor products with compositions.
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Lemma 5.4. Let X;,Y;, Z; € Sm/S fori=1,2. Let further p'y : X;Y;Z; — X, Z;,
a; » X0 XoY"YoliZy — XY, Z;, by X0 XoZ 1 Zy — XiZ; and p13 » Xn X1 Yol 2y —
X 1X2Z1Z5y be the projections. Suppose that o; € Egji+dzi((p§3)*vi — Tx,v,2:/x:2:) where
C; € @s(X;,Y:Z;) and v; € Px,z,. Then we have
bip1s. (1) - b3pis.(as) = pra.(ai(an) - a5(as)),
where we have used the isomorphism (exchanging the middle two terms and then merging
the last two terms) from
at(p1s) 01 — Txyxovaz 20/ X0 Xova 21 20 T @3 (D) 02 — TX, X0¥1 Y071 20/ X0 X 21 2
to
Pia(01(v1) + 05(v2)) — T, Xo1 Y2 21 22 X1 X221 25
i the right hand side.

Proof. We have two Cartesian squares

2 1
X YoZy — % X,7, Xz, —M X7

U«QT p25T pT blT
X1 XoY1YoZy Zo == Xy XoY1 202y X1 XoY1 20 Z0 ™25 Xy X0 20 2o
and equations pos = by © praas, p© ¢ = a1 and py3 = praas © ¢. Then we have

bipis. (a1, (is) vi — Tx,vizax020)) - bspia,(0r2)
=(p1245)+D" (1) - bzp%:a*(‘)@)
by Axiom 15 for the right square above

*

:(p1245)*(p*(oz1) 'p1245b2p%3*(042))
by Axiom 17 for pioys

=(p1245)+ (D" (1) - Paspis.(a2))

by Axiom 9
=(p1245)«(P" (1) - qua3(2))

by Axiom 15 for the left square above
=(P1245)+q(¢"P" (1) - a5(a2))

by Axiom 17 for ¢
=(p1245) 14 (a1 () - a3(az))

by Axiom 9
=p13(aj(on) - a5(az2))

by Axiom 12.

O

Proposition 5.13. Let X;,Y;, Z; € Sm/S, f; € é\o/rg(Xi,Y;), gi € @E”S(YQ,ZZ-) where
1 =1,2. Then

(91 X5 92) © (f1 X5 f2) = (910 f1) X5 (g2 f2).
Proof. We have a commutative diagram (i = 1, 2)

Yoy Zy —2 Y, 2,

P23T Tpég
Pis

X\ XoWNYoZ, Zy 2 XY 2 — 22— X, 7,

plﬁ
L’w M Tbi

X1 XYY, 22 XY, X1 X021 Zs.
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Then

(91 X5 92) © (f1 X5 f2)
=p13+(P53((q1 X 71)"g1 - (g2 X 12)"g2) - Pio((qr X 71)" f1 - (g2 X 72)" f2)
by definition
=p13« (07 (P33) " (1) - a5(33) " (92) - a3 (P1a) " (f1) - a5(pTy) " (f2))
by Axiom 10 and Axiom 9.
=pia«(c(a;(p2s)"(91) - a3 (p12)" (1) - a5(p33)"(92) - a5(P1a)* (f2)))
by Axiom 6 and Axiom 16. Here ¢ = c(a’{(pb)*(—Tlel/Xl), a%(p%)*(—TYQZQ/YQ))
=prz.(c(ai((p23)"(91) - (P12)"(F1)) - a5 ((155)* (92) - (PT5)"(f2))))
by Axiom 10
:b’fpb*((pés)*(gl) ) (pb)*(fl)) -bépfg*((pig)*(gz) ) (p%Q)*(fQ»
by Lemma 5.4
=b7(g10 f1) - b3(g2 © f2)
by definition
=(g10 f1) Xs (920 [f2)
by definition.

[]

Now that we proved that the category 6’\07’5 has a tensor product, we review some
basic constructions that will be useful later. -

For any F' € PSh(S) and X € Sm/S, we define FX € PSh(S) by FX(Y) = F(X xg
Y) IfF e :971(5), then it’s clear that FX € 5’71(8) also. We define C, F for any F' € :5'71(5)
to be the complex with (C,F), = F2" as in [MVWO06, Definition 2.14] and differentials
as usual.

A pointed scheme is a pair (X, z) where X € Sm/S and z : S — X is a S-rational
point. We define Zg((X1,21) A ... A (X,, x,)) for pointed schemes (X;, ;) as the cokernel
of the map

0, : @iZS(Xl X ... X 3(\1 X ... X Xn)Z(fl)z_ Z‘dx"'xxiX"'XiUZZS(Xl X ...ox Xp) .

We denote~ZS((X, )N\ A (X, x)) by Zs((X,z)") and Zs({(, x) by zﬁ((X,g)Al). Then
we define Zg(q) = Zs((Gp, 1)")[—¢q] for ¢ > 0 and we set Zg(S) = Zs = Zs(0) = 1g.
Following the notation in [MVWO06, Lemma 2.13], we let [z;] be the composite

and e; € 6’\0/7’3(Xi,Xi) to be idx, — ZS([QZZ])

Lemma 5.5. For n > 2, the sheaf Zs((X1,21) A ... A (Xp, 2n)) is just the image of the
map N N
€1 X ... X ey Lg(Xy % ... xX,) — Zg(X1 x ... x X,).

Moreover, the inclusion of ZS((Xl,xl) Ao N (X, ) into ZS(Xl X ... x X,) as an
image is a section of e X ... X e,.

Proof. We prove the same statements after replacing Zg by ¢s and then sheafify. The first
statement is tantamount to Ker(e; x...xe,) = Im(6,). Now, Im(6,) C Ker(e;X...xey)
because e; o [x;] = 0. On the other hand, Ker(e; x ... X e,) € Im(0,) because

e1 X ... X e, =1dx,x.. xx, + E Joay X oo X fa,s
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where for every n-tuple (aq,...,a,), there exists (at least) a; such that f,, = —[z;]. It
follows that f,, x ... X f,, factors through id x ... x z; x ... X id for that i.
The second statement follows from the fact that e; is idempotent. m

By the lemma above, we can consider the sheaf ZS((Xl,atl) AN (X)) as a
subsheaf of Zg(X; x - -+ x X,,).

Lemma 5.6. For any two pointed schemes (X1,x1), (Xa,x2), we have a split exact se-
quence

0 — Zs((X1,21)A(Xo, 22)) — Zs(X1 x5 X5, (1, 22)) — Zs( X1, 21)@Ls(Xs, 22) — 0.
Proof. A direct computation yields the following split short exact sequence:

(m,e1xe2) —(iXm $2)+(331 idXQ)
—

ZS‘ S Zs((Xl,CUl) A (Xa, 952)2me s(Xi1 xg )52 (X1,21) ® ZS(X27$2)

€10p1,€20p éj

where 7 : X; x5 Xy — S is the structure map. The result follows from this seqeuence,
after quotienting the first two terms above with Zg (sometimes called ‘killing one point’).
O

The following definitions comes from [SV00, Lemma 2.1].

Definition 5.8. Let n > 2 and let F;,G € ]3:9’71(5') fori =1,--- . n. A multilinear
function @ : Fy x - x F,, — G 1s a collection of multilinear maps of abelian groups

O(x1 e xp) P F1(X7) X - X Fo(Xy) — G(Xy Xg -+ xg X5)
for every X; € Sm/S, such that for every f € C/Y\O/TS(XZ',XD, we have a commutative
diagram
- x Fy(X)) (p(ﬁ;&(---xsX{xs---)

X F(f) % l G(- XfX---)l

(Xz (—>é XSXiXS-")

Definition 5.9. Let n > 2 be an integer and let F;,G € 155}1(5) (resp. 371(5)) for
i=1,---,n. The tensor product F\ & --- &% F, (resp. F} ®g---®g F,) is the presheaf
(resp. sheaf) with E-transfers G such that for any H € PSh(S) (resp. Sh(S)), we have

Homg (G, H) = { Multilinear functions Fy x -+ X F,, — H}
naturally.

For any F,G € PSh(S), we can construct F % G € PSh(S) as in the discussion
before [SV00, Lemma 2.1]. Moreover, we define Homg(F,G) to be the presheaf with E-
transfers which sends X € Sm/S to Homg(F,GX). If F,G are sheaves with E-transfers,
we set F®RgG = a(F @Y G). If G is a sheaf with E-transfers, it’s clear that Homg(F, G) is
also a sheaf with E-transfers. Finally, it’s clear from the definition that F @Y% G = G&Y F
and F@SGgG@)SF

Proposition 5.14. For any F,G, H € Igg/h(S), we have isomorphisms

Homg(F ®% G,H) = Homg(F, Homg(G, H)),
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Homgs(F @Y% G,H) = Homg(G, Homg(F, H))

functorial in three variables. Simililarly, for any F,G, H € %(S), we have isomorphisms
Homg(F ®s G, H) = Homg(F,Hom¢(G, H)),
Homg(F ®s G, H) = Homg(G, Homg(F, H))

functorial in three variables.

Proof. This is clear from the definition of the bilinear map. ]

Ift F,G,H € 571(5), it’s easy to see using the above proposition that (F ®g G) ®gs H
and F ®g (G ®g H) are both isomorphic to F ®s G ®¢ H. It folllows that the tensor
product defined above is associative. Finally, one checks that ®g (resp. ®% ) endows

%(S) (resp. E:S'/h(S )) with a symmetric closed monoidal structure.

Proposition 5.15. If a morphism [ : Fy — F5 of presheaves with E-transfers becomes
an isomorphism after sheafifying, then so does the morphism f &% G for any presheaf
with E-transfers G.

Proof. The condition is equivalent to the map Homg(f, H) being an isomorphism for any
sheaf with F-transfers H. Now, we have

Homg(f &% G,H) = Homg(f, Homg(G, H))
by the proposition above. O

Proposition 5.16. 1. For any X,Y € Sm/S, we have
Zs(X) ®g Zs(Y) = Zg(X x5Y)
as sheaves with E-transfers.

2. For any two pointed schemes (X1, x1) and (Xo,x2), we have
Zs(X1,m1) ®s Ls( Xz, 73) = Ls((X1,01) A (X, 22))
as sheaves with E-transfers.

Proof. We have ¢g(X) @Y ¢s(Y) = ¢s(X xgY) using the exterior products of correspon-
dences. Then the statement follows by Proposition 5.15. The second statement follows
by a similar method. O

Now we are going to prove some functorial properties of sheaves with E-transfers over
different bases. Our approach is quite similar as [D07]. The following lemma is useful
when constructing adjunctions, see [Ayo07, Definition 4.4.1] and [D07, 2.5.1].

Lemma 5.7. Let ¢ : € — 2 be a functor between small categories and .# be a category
with arbitrary colimits. Then the functor

. : PreShv(2, #) — PreShv(€, #)

defined by p.(F) = F oy has a left adjoint ¢*.

43



Proof. Suppose G € PreShv(€¢,.#). For every object Y € &, define Cy to be the
category whose objects are Homg(Y, ¢(X)) and morphisms from a; : Y — ¢(X7) to
as 1Y — p(Xy) are b € Homy (X1, Xo) such that a; = p(b)oa;. We have a contravariant
functor

9y10y—>%

defined by Oy (Y — ¢(X)) = GX. Then define (¢*G)Y = lim fy. For any morphism
c:Y) — Ys in 9, we define (¢p*G)(c) using the following commutative diagram

GYZ (a)

. iaOc
(2

i e gyt O
for every a : Yo — ¢(X). One checks it is just what we want. O

Definition 5.10. Suppose that f : S — T is a morphism in Sm/k. For any X € Sm/T,
set X = X xp S € Sm/S. For any X1,Xs € Sm/T, denote by p; the projection
(Xl X X2>S — X1 X7 XQ. Deﬁne

o' . Corr —s Corg
X — XS
g +— g¢°

where g — ¢° : &;’T(Xl,Xg) — @“s(Xf,Xzs) is the unique map such that the
following diagram commutes

plx—dr P} dx,—ds

7z (X xr Xo, =Tx xpxa/x,) —E (X1 X7 X2)®, =Ty wpx2)5/x5) 5

l |

__ ! __
Corp(Xy, X2) L Corg(X?y, X5)

for any Z € (X, Xs).

Proposition 5.17. Suppose that X; LXQ LXS are morphisms in &;"T. Then
(920 91)5 = 95 © gf-

So ! - 6’\0/77 — 6’\0/7“5 15 indeed a functor.

Proof. We have diagrams

Xl XTXQ Xig XSXQS

/‘\Pm Tthz

P13
q13
Xy Xp Xge—— X xp Xo Xp X3 X5 xg X5 &2 XF xg X5 xg X5

J/p23 lths

Xo X7 X3, Xé‘f XSX?:S;
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and three Cartesian squares

Xy Xg X3
P23
Xy Xp Xg 22 Xy p Xy xp X5 25 X x5 X
1 X7 A3 A1 X7 Ag X7 Az —— A1 Xg A9
Tr q t TP
S S, 113 S S s _q12 S S
Xl XSX3 <—X1 SX2 X5X3 —>X1 X5X2
q23

S S
X2 X5X3.

Suppose that g, and goare supported on some admissible subsets. We have

(g20 gl)s
=" P13+ (P23(92) - P12(91))
by definition

=q13:t"(P33(92) - P12(91))
by Axiom 15 for the left square above

=q13+(q12P"(92) - 43397 (91))
by Axiom 10 and Axiom 9

=gy 0 g7
by definition.

It’s then easy to verify that 7 (idy)® = J(idys) for any Y € Sm/T. So ¢/ is a functor. [
It is straightforward to check that p/1°f2 = /2 o0 /1,
Proposition 5.18. Suppose f; € 6'\0/7"T(X1»,YZ-) where i = 1,2. Then
(frxr f2)° = 7 xs f5

Proof. This follows from the commutative diagram

f
(X1Y1X5Y5)8 : /X1Y1X2Y2\‘
(X,77)9 ARG S XoYa.

Proposition 5.19. In the notations above, we have an adjoint pair
£* 1 Sh(T) = Sh(S) : f.
where (f.F)(X) = Foyl for F € %(S)

Proof. Applying Lemma 5.7 to ¢/, we obtain an adjunction %(T) = %(S).W@ may
then apply the sheafication functor of Proposition 5.11 to get the desired result. ]

Obviously, we have (f; 0 f2)* = f5 © fi, (f1 © f2)u = fuu © fou.

Proposition 5.20. Suppose that f : S — T is a morphism in Sm/k.
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1. For anyY € Sm/T, _ _
f*ZT(Y> = ZS(Y X S)

as sheaves with E-transfers.

2. For any F € :97L(S) andY € Sm/T,

(FF)" 2 f(F7%)

as sheaves with E-transfers.

3. For any F € §1/1(T) and G € %(S),

Hom,(F, £.G) 2 f.Homg(f"F,G)

as sheaves with E-transfers.

4. For any F,G € S’\}/L(T), we have

[TFes [*G = f1(ForG)
as sheaves with E-transfers.
Proof. 1. We have

Homgs(f*Zp(Y), =) = Homp(Zp(Y), fi—) = Homs(Zs(Y 7 S), —).

2. For any Z € Sm/T, we get using Proposition 5.18

(fF)'(Z) = F((Y %1 Z) x1 8) 2 F((Z x1 8) x5 (Y %1 8)) = (f(F*7%))(Z).

3. For any Y € Sm/T, we have

Hom,(F, f.G)(Y) = Homy(F,(f.G)")
Homy(F, f.(GY*7%))
by (2)
Homg(f*F,GY*1%)

(feHomgs(f"F,G))(Y).

12

1%

4. For any H € 3'7L(S),

I

Homs(f"F ®s "G, H) Homs(f*G, Homg(f"F, H))
Homy (G, f.Homg(f"F, H))
Homyp(G, Hom(F, f.H))
by (3)

Homy(F @r G, f.H)
Homg(f*(F ®r G), H).

e 11

111
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From now on in this chapter, we suppose that f : S — T is a smooth morphism in
Sm/k. Given such a morphism, we may consider any smooth S-scheme as a smooth 7T-
scheme via f. Moreover, the fact that the diagonal map S — S xS is a closed immersion
implies that for any smooth S-schemes X; and X, the natural morphism

qr : X1 Xg X9 = Xy X7 X
is a closed immersion. Indeed, this follows from the Cartesian square

X1 X5X2—>X1 XTX2

| l

S— 8 X7 S.
Definition 5.11. For X;, Xy € Sm/S, we define

Pr: 6'\0;“5 — C/Y\O}T
X — X
g = gr

where g — gr : 6'\0/7’5()(1, Xy) — 507"T(X1, X3) is the unique map such that the follow-
g diagram commutes

dx,—d apeoty dx,—d
E; Xy xs Xo = Ty xsxo/x1) MEJ(IZ) "X X Xoy =Tx, x5

| |

&;“T(Xl,Xg) i) C/’\O;“S(XlaXﬁ

for any Z € o/5(Xy, X3). Here, ty is the isomorphism

- TX1><SX2/X1
—>N(X1><5X2)/(X1><TX2) - N(X1><SX2)/(X1><TX2) - TX1><SX2/X1

—)N(Xl Xst)/(Xl ><TX2) - Q;TXl XTXQ/Xl'

For convenience of notation, we denote T'x/y by T’y for a smooth morphism f : X — YV
and Nx/y by Ny for a closed immersion f in the following few propositions.

Proposition 5.21. Suppose that X1 —2— Xo —2— X3 are morphisms in 6’\0/7’5. Then,

we have
(92 © 91)T = gor © g1T-

So ¢y : 6’\0/7’5 — Cory is indeed a functor.

Proof. We have Cartesian squares

X1 X5X2—2'>X1 X7 Xo

qllgT quT

X1 XsXQ X5X3—7;/>X1 X (XQ XSXg),

Xl X (XQ Xg Xg)q—>X1 X7 X2 XT X3

[

Xy xg X3 ——L—— X| xp X,
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X1 XsXQ X5X3—>(X1 XSXz) XTXg

| |

X1 X (X2 Xs Xs)L)XH X1 Xo X1 X3,

q/
X1 Xng XSX313—>X1 Xng

T

X7 X7 (X2 Xg X3)M>X1 X1 Xa,

and commutative diagrams

X1 X7 Xy

P12
q12

X1 X7 (X2 Xg X3)L>X1 X7 Xo X7 X3,

Xl XSXQ XSX3—7;/>X1 X (X2 XSXg)
R ’r‘l
Xs X5X3.

For g, and g, supported on admissible subsets, we have

gor © giT
=Juts(g2) 0 ist(g1)
by definition
=13« (P23Jst £ (g2) - Piaists(g1))
by definition
=p13« (¢t 5 (g2) - Platsts(91))
by Axiom 16 for the second square above
=p13:0: (1"t £(92) - " Pratat £(91))
by Axiom 18 for ¢
=p13:q+ ("t 5 (g2) - iaiut (1))
by Axiom 9
=P13xGx (T*tf (92) : Z;qgtf(gl))
by Axiom 16 for the first square above
=p13::1. ("7 1 (g2) - @15t (g1))
by Axiom 18 for 7/
=p13:s s (0558 (92) - 13ty (91), 7" No — 17 ¢ PIsTx, xpxa 1 + N — 17" T,5)
by Axiom 9
=(p13 © q)«1, (a5t (92) - @13t (91), —1" @ PIs Ty xr o %1 + Nir = " Tyy0q))
by Axiom 19, (1) and functoriality of push-forwards with respect to twists
=kars. (a5t (92) - @15t (91), =5k Txtyrxosxs + @3Nk — Tyg,))
by Axiom 19, (3) for the last square above.

Now, we have to treat the twists. We say that a morphism f: A+ B — C + D in
a Picard category contains a switch if there are morphisms g: A — D and h: B — C
such that f = ¢(D,C) o (g + h). Conversely, we say that it doesn’t contain a switch if
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there are morphisms g : A — C and h : B — D such that f = g + h. We have a
commutative diagram in which the three squares are Cartesian

X3 XSXQXSXg g (Xl XSXQ) XTX3
i (X1 Xg Xg) X7 X2 i’
X1 X (X2 X9 Xg) 1 X1 X X2 X7 Xg.

This induces a commutative diagram (in which all arrows contain a switch)

Nq/ + q/*Ni” _ Nu + U*Nv

| —

Ny +i"N,

since they all come from exact sequences related to Ny = Nyoy = Nyoir. Then we have
a commutative diagram (no arrow contains a switch except ¢)

q/*Ni” + /L./*Nq Em— Nu + Nq/ —)i/*Nq + U*Nv

l | J

ql*Ni// —+ Nq/ _— Nu + U*Nv —)i/*Nq + Ni’
\i/

by the diagram above. Hence the composite
¢" Ny +i*"N;, — N, + Ny — "N, + u*N,
is equal to the morphism with a switch
¢*Npy +i*N, — "N, + u*N,
where the morphism ¢”*N;» — u*N,, is given by the composite
q¢*Ny — Ny — u*N,.
So the composite (in which morphisms are without switch)
453 N; + @55 N; — Ny + Ny — ¢5N, + 1" N,
is equal to the morphism with a switch
@3 Nj + q1oNi — 13Ny + 1" N,
where the morphism ¢}, N; — ¢15N}, is given by the composite
05y Ni — Ni — ¢l Ny
and the morphism ¢53N; — "N, is obtained by pulling back the morphism
r*N; — N,
along 7'.
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Moreover, there are commutative diagrams with Cartesian squares

X1 XSXQ—i>X1 XTX2—>X1

] | |

Xl XSXQ XSXg—u>(X1 Xng) XTX2—>X1 XSXg

g | |

X1 X7 (Xg X5X3)q—>X1 X X3 XTX2—>X1 XTX3

and
X2 X5X3+>X2 XTX3—>X2

ol ] T

Xl XsXQ XSXg—q>(X1 ><ng) XTX3—>X1 ><5X2

| | |

X1 xg Xg—— 5 Xy xp Xy ———— X

which induce commutative diagrams where the right-hand vertical maps contain no switch

WL /% /%
7 Q12TX1><TX2/X1 quTX1X5X2/X1 + quNi )

T |

*
_
u T(X1><5X3)><TX2/X1><SX3 Tqig + Nu

| l

* ES ES
q"Tps 1" Tpyg0q + 17Ny

/% % 1% 1%
% .
G237 T'xtyxp X5/ % I3 T X% s X5/x, T 43 V;

T |

q/*T(X1><5X2)><TX3/X1><sX2 Tq/12 + Nq/
k*TXl XTX3/X1 E— qiETXlxsXB/Xl + q?;’Nk

These calculations above together with the functoriality of ¢5, with respect to twists yield

Kz, ((gost £ (92) - aivt s (91), =03k Tx) wpxa/x, + @3Nk — Tg )
=kt (q13.(a53(92) - @15(91)))

=(g2091)r
by definition.

Finally, we have to show that (idx)r = idx for any X € Sm/S. We have the following
commutative diagram

X2 X g X —— X
kqf /
XXTX
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where A is the diagonal map. We have to show that the following diagram commutes

Agy
Npg — Npg —————Npg — DTxwgx/x — —Txxsx/x
Np

T | |
As. ,
T Nag 4+ D5(Ngy — 3 xxrx/x) — Ngp — @3 Txxrx/x

Ay

T NAT —>NAT - A;”TXXTX/X — _TXXTX/X-

The right-hand squares commute by functoriality of the push-forwards with respect to
twists and Axiom 14. The left square comes from the following commutative diagram
with exact rows

0 » Nag Na, ANgNg, ——0

T

0 —_— AE’TXXSX/X — A;TXXTX/X e A*Squ e O

Using Axiom 14, it is straightforward to check that ¢y .5 = @5 © @y,.
Proposition 5.22. Let a € C/’\o/rs(Xl,XQ) and let b € C/’\o/rT(Yl,YQ). Identifying (X1 Xg
XQ) XTY1 XT§/2 with X1 XSX2 Xg (Yi X7 }/’2)5 and X1 XT}/1 X X2 XTS/Q with (Xl Xg
Y¥) xr (Xa x5 YsY), we have
ar X b= (CL Xg bS)T.

Proof. We have a commutative diagram in which the square is Cartesian

(X1 x5 Xp) xp V) X Yo —— X1 X7 Y] X7 X X7 Y5

dl \ o| \

Xy Xg Xy : Xy X7 X Y1 X1 Y.

Suppose that a, b are supported on admissible subsets. Denote by # the isomorphism

* *
-1 I'x, xrXo/X1 T ¢ 1y, xrYa /Y1 T 7 —T'x xrXoxrvi xpYa/X1X7Y1

and by 7 the isomorphism

* *
_plTXl xsX2/X1 — pQTY1 x7Ya /Y1 ’ _TXl XsXaxsY{¥x sV /X1 x5V
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Then

ar X b
=0(qit.(ts(a)) - g>b)
by definition
=0(r.pi(ts(a)) - g3b)
by Axiom 16 for the square in the diagram
=0(r(p1(tf(a)) - p3b))
by Proposition 18 for r and Axiom 10
I?}T%@)((}?T (tf(a)) ) pzmeNt - p#{t*TXl xrX2/X1 T p;TYI ><TY2/Y1>)
by functoriality of push-forwards with respect to twists
=r.(ts(n(p1(a) - p3b)))
:(CL Xs bS)T

by definition.

Here the fifth equality comes from the following commutative diagram with exact rows
and columns

0 0
P51y, xrYa/ Y1 =1y, x7Ya/Y1
0 — * Ty xava/ v — T oy svs v N, 0
]
0 ——=71"¢Tx, X0/ X1 — P1 LX) x5 X2/ X, 1Ny 0
0 0
and Theorem 3.1, (1). O

Applying the same proof as in Proposition 5.19 to ¢, we get the following result.

Proposition 5.23. There is an adjoint pair
f4: Sh(S) = SW(T) : ().
where (fg)'F = F oy for F € Sh(T).

The next lemma is important when identifying (fx)". See also [MVWO06, Exercise
1.12].

Lemma 5.8. For any U € Sm/S, X € Sm/T, we have an adjoint pair:
Cors(U, X5) = Corp(U, X).
Proof. For any U € Sm/S, X € Sm/T, we have an isomorphism

(9U7X:UXSXS—>UXTX.
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We can then define

Mx i Cors(U,X5) — Corp(U,X)
W — QU,X*(W) ’

which is obviously an isomorphism. - -
Let now U € Sm/S, X1, Xs € Sm/T,V € Corr(X1, Xs) and W € Corg(U, X7). We
want to show that
Mox, (VI o W) =V o Ayx, (W).

We have a commutative diagram

X1 X7 Xy

E

S S S
23] Xg X2 UXS Xl
P12

sz:s /
6
U xs (XP x5 X§) LU xg X5 —23U xp X,

q13

UXTX1

0u, x,

R

where we have identified U x g (X7 xg X3) with U x7 X; X7 X, for convenience.
Suppose that V' and W are supported on admissible subsets. We then have

AU,XQ(VS © W) = 9U7X2*p13*<p;3p*v 'pTQW)
by definition

= quz«(@33V - P W)
by Axiom 12

= qua«(33V - 1200, x,:W)

by Axiom 20 and Axiom 9
= Volyx, (W)

by definition.

Suppose next that Uy, Us € Sm/S, X € Sm/T,V € 6'\0/7“5(U1, Uy)and W € 6'\0/7‘5(U2,XS).
We want to show that
>\U1,X(W (6] V) = /\U27x(W> O VT.

We have a commutative diagram
q23
d S b S vy, x
U1 XTUQ(—Ul X (U2 XsX )—>U2 XsX —)Ug XTX,
q
! Ta p23 q13

Ul XSU2<£U1 XS(U2 XSXS>WU1 XSXSQ_)Ul XTX
Uy, X

where we have identified U; X1 (Us x ¢ X¥) with Uy x7 Uy x7 X. If V and W are supported
on admissible subsets and @ is the isomorphism

*
_TU1><SU2><5XS/U1><TX Na —a TUlXT(UQXSXS)/leTX7
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we have

)\Ul,X(W s} V)

:0U1,X*p13*((p;3w : piQ‘/J _TU1><5U2><5XS/U2><SXS - p;QTUIXSUé/Ul))
by definition

=q13+0+ (0" q2300,, x: W - 0(P15V), =" @3 Tv xpx /05 + Na — @™ Ty x p (Us x5 X9) JUr x 0 X))
by Axiom 20 and Axiom 19, (1)

=013+ (42300, xxW - @012V ), =33 T0n s x /02 — Ty g (Us x5 X9) JUr x 0 X))
by Axiom 18 for a

ZQ13*<<QZ39UQ,X*W : d*Qf*SOf(V>7 _q;3TU2><TX/U2 - d*TU1 XTUQ/Ul))
by Axiom 16 for the leftmost square in the diagram above
:)\UQ,X(W) o VT
by definition.

Proposition 5.24. Let f : S — T be a smooth morphism. Then
(f) ="

Proof. For any Y € Sm/S, (idy) € 6’\0/1"T(Y, Y) = 6\0/?"5(}/, Y) is the initial element of
Cy in Lemma 5.7 by application of the above lemma to ¢/ (see Definition 5.10). So for
any F' € %(T), we have (f*F)(Y) = FY = ((f«)'F)(Y). This gives an isomorphism
between f*(F) and (fx)'(F) for any presheaf with E-transfers F' by the lemma above. So
it also gives an isomorphism after sheafication. O

Proposition 5.25. Let f : S — T be a smooth morphism. Then:
1. For any X € Sm/S, we have
f4Zs(X) = Ly (X).
as sheaves with E-transfers.
2. For any F € :971(T) andY € Sm/T
FFY) 2 ()
as sheaves with E-transfers.
3. For any F € 371(5') and G € §l/1(T)
Homq(f4F, H) = f Homg(F, f*H)
as sheaves with E-transfers.
4. For any F € :97L(S) and G € :S%(T)
fo(F®@s [*G) = fpFor G
as sheaves with E-transfers.

Proof. 1. The result follows from the fact that any F € Sh(T) we have
Homz(f4Zs(X), F) = Homs(Zs(X), f*F) = (f*F)(X) = F(X)

by the previous proposition.
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2. For any X € Sm/S, we get

(f{H))(X) = HY xr X).

and

(fH)"™r3(X) = H((Y x7 §) x5 X)

by the above proposition. Then, we can use Proposition 5.22 to conclude.

3. For any Y € Sm/T, we have

Homqp(f4F, H)(Y)

1l

12

Homy(fuF, HY)
Homg(F, [*(H"))
Homsg(F, (f*H)"""%)
by (2)

Homg(F, f*H)(Y x1.5)
(feHomg(F, f*H))(Y).

4. For any H € §;L(T), the following computation applies:

HomT(f#(F ®S f*G)v H)

111

I

95

F®s G, f*H)
[*G, Homy(F, f*H))
G, foHomy(F, 1))
¢, Homy(fF, H)

Homg
Homg

Homqy

Homr

by (3)
HomT(f#F ®T G, H)



Chapter 6

Motivic categories

In this chapter, we construct the categories of effective (resp. stabilized) motives as
a localization of the bounded above complexes ([MVWO06]) of sheaves with FE-transfers
(resp. symmetric spectra). We then compare our construction with the constructions in
[CD09], [CD13] and [DF17], where they use unbounded complexes.

6.1 Complexes of Sheaves with E-Transfers

6.1.1 Derived Categories

Denote by D~ (S) (resp. K~(S)) the derived (resp. homotopy) category of bounded above
complexes of objects in 3’71(5) Our first aim is to define ®g and fx and f* (Chapter 5)
at the level of these categories. The method is inherited from [SV00, Corollary 2.2] and
[IMVWO06, Lemma 8.15].

Definition 6.1. We call a presheaf with E-transfers free if it’s a direct sum of presheaves
of the form ¢s(X). We call a presheaf with E-transfers projective if it’s a direct summand
of a free presheaf with E-transfers. A sheaf with E-transfers is called free (resp. projective)
if it’s a sheafication of a free (resp. projective) presheaf with E-transfers. A bounded
above complex of sheaves with E-transfers is called free (projective) if all its terms are
free (projective).

Remark 6.1. Note that a projective presheaf with E-transfers is a projective object in
the category of presheaves with E-transfers. On the other hand, this is not true anymore
for projective sheaves with E-transfers.

Definition 6.2. A projective resolution of a bounded above complex of sheaves K is a
projective complex (of sheaves) with a quasi-isomorphism P — K.

In the definition above, if K is already projective we may take P = K.

Now let S, T € Sm/k and Y be a scheme with morphisms S<L Y —25 T where g
is smooth. In this section, we consider the functors

QY 6';;"5 — Corr
X — (X)X xgY

and

v: Smg —  Smrp
X +— X xgY
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determined by the triple (Y, S,7T). We have a commutative diagram

Sm/S —2— Sm/T
N
Cors —2— Cory.
Recall from Lemma 5.7 the definitions of ¢* and ¢,.
Lemma 6.1. For any X € Sm/S, we have
o (E5(X)) 2 e ((X))
as presheaves with E-transfers.
Proof. For any F € ?ST%(T),
Homr (" (¢s(X)), F) = Homs(¢s(X), o F) = F(1(X)).
O
Lemma 6.2. The functor @, maps sheaves with E-transfers to sheaves with E-transfers.

Proof. 1t suffices to show that for any finite Nisnevich covering {U;} of X € Sm/S, the
following sequence is exact

where G = ¢, F' for some F' € %(T) This follows easily. O

The following lemma can be proved using a method similar to the one we used in the
proof of Proposition 5.15.

Lemma 6.3. Let f : F' — G be morphism in ]3:9’71(5) such that a(f) is an isomorphism,
then a(o*(f)) is also an isomorphism.

Before stating the next result, recall that the category of presheaves with E-transfers
has enough projective objects (see for instance Remark 6.1). In particular, it is possible
to derive any left-exact functor (say, to the category of abelian groups).

Proposition 6.1. For any F € f/’\S/fL(S),
a((Lig™)a(F)) = a((Lip") F)

as sheaves with E-transfers for any i > 0, where L;p* means the it" left derived functor
of ©*.

Proof. We show first that for any presheaf with E-transfers F' with a(F) = 0 we have
a(Lip™(F)) =0

for any ¢ > 0. Suppose that the above statement is proved. For any presheaf with
FE-transfers F', we can then consider the natural morphism

0:F — a(F).
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We have
a(coker(0)) = a(ker(0)) = 0.

Hence for any ¢ > 0, we have
a(Lip*a(F)) = a(Lip"Im(0)) = a(Lip*F)

by using long exact sequences. Hence the statement follows.
Now we prove the first claim by induction on ¢. The claim is true for ¢ = 0 and we
then suppose that it’s true for i < n. For any F' € PSh(S), we have a surjection

Brerx)Cs(X) — F

defined by each section of F' on each X € Sm/S. Since a(F) = 0, there exists for any
X € Sm/S and any z € F(X) a finite Nisnevich covering U, — X of X such that
x|y, = 0. Then, the composite

Boerx)Cs(Uz) — Bperx)Cs(X) — F
is trivial and we obtain a surjection
EBa:GF(X)HO<é(U:r/X)) — I
with kernel K. Proposition 5.10 implies that
a(H,(C(U/X))) =0

for any Nisnevich covering U — X and any p € Z and consequently a(K) = 0 as well.
We have a hypercohomology spectral sequence

(LP‘P*)Hq(é(U/X)) = (Lp+q¢*)é(U/X)-

Hence

A((Law")CWU/X)) = a((Luw*)Ho(C(U/ X))
by induction hypothesis. But
(Lo )C(U/X)) = a(Ha (9" C(U/X)))
by definition of hypercohomology and the latter vanishes since we have
¢"C(U/X) = C(yU/yX)
by the previous lemmas. So
A((Lnp") Ho(C(U/X))) = 0

and
a(Lyp"F) = a(L,—1¢"K) =0

by the long exact sequence and the induction hypothesis. O]

Proposition 6.2. The functor ¢* takes acyclic projective complexes to acyclic projective
complexes.
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Proof. For any projective F' € 371(5), F = a(G) for some projective G € ﬁgl/z(S) by
definition. So
a((Lip")F) = a((Lig")G) = 0

for any ¢ > 0 by the proposition above. Let
0 —K —F—PFP—0

be a short exact sequence of sheaves with E-transfers with a((L;¢*)P) = 0 for any i > 0.
Then the sequence is still exact after applying ¢* by the long exact sequence. Then the
statement follows easily. O

Proposition 6.3. We have an exact functor
Lo* : D= (S) — D (T)
which maps any K € D~(S) to ¢*P, where P is a projective resolution K.

Proof. By the proposition above, the class of projective complexes is adapted (see [GMO03,
I11.6.3]) to the functor ¢*. We may now apply [GMO03, II1.6.6]. O

In the sequel, we’ll write ¢* in place of Ly* for convenience. We now apply the general
results above to ®g, fx and f*.

Proposition 6.4. 1. The category D~(S) is endowed with a tensor product defined by

®s: D (S) x D (S) — D (S)
(K, L) s PesQ’

where P, Q) are projective resolutions of K, L respectively, and P ®g () s the total
complex of the bicomplexr {P, ®s Q;}. Moreover, for any K € D~(S5), the functor
K ®g — is exact.

2. Suppose that f : S — T is a smooth morphism in Sm/k. Then, there is an exact
functor
f#: D7(S) = D™(T)

defined on objects by K — f4P, where P is a projective resolution of K.
3. Suppose that f: S — T is a morphism in Sm/k. There is an exact functor
f* 2D (T)— D (9)
defined on objects by K — f*P, where P is a projective resolution of K.

Proof. 1. Let Y € Sm/S. In the definition of ¢, we take (Y,S,T) := (Y,S,5) and
then ¢*F = F ®g Zg(Y) for any F € Sh(S) by Proposition 5.14.
Given an acyclic projective complex P and a projective sheaf F, the complex of
sheaves F'®g P is also acyclic by Proposition 6.2 and by definition of projectiveness.
It follows that for any projective complex K the complex P ®g K is also acyclic
by the spectral sequence of the bicomplex {P; ®g K;}. Then for any projective
complexes P, ), R and quasi-isomorphism a : P — (), the morphism a ®g R is still
a quasi-isomorphism since we have

Cone(a ®g R) = Cone(a) ®s R

and the latter one acyclic. The statement follows easily.
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2. In the definition of ¢, we take (Y, S,T) := (S,5,T) and apply Proposition 6.3.

3. In the definition of ¢, we take (Y, S,T) := (T, S,T) and apply Proposition 6.3.
]

Proposition 6.5. Let f : S — T be a smooth morphism in Sm/k. We then have an
adjoint pair
fe:D(S)=D(T): f.
Proof. By Proposition 5.23, it is easy to see that there is an adjunction
fo KT (S)=K (T): f"
Since f* : 3’7L(T) — S%(S) has both a left adjoint and a right adjoint, it’s an exact
functor and Lf* = f* in this case. Suppose that K € D~(S), L € D~ (T) and that

p: P — K is a projective resolution of K. Note then that fzK = fxP by definition.
We now construct a morphism

0 : HOWLD—(S)<f#K, L) — Home(T)(K, f*L)

as follows. Suppose that s € Homp-(s)(f#K, L) is written as a right roof (see [GMO3,

111.2.9])
R
AN
fuP L.

By adjunction, @ induces a morphism o' : P — f*R. Then we define 0(s) to the

composite of the right roof
[*R
P frL

with p~!. This morphism is well-defined since f* is exact.
Next, we construct a morphism

§:Homp- (K, [*L) — Homp-(s)(f4K, L)

as follows. Suppose that ¢ € Homp-(7)(K, f*L) and that ¢ o p is written as a left roof

(see [GMO3, 111.2.8])
R
7N
P L

where R is also projective. By adjunction, b induces a morphism ¢’ : fxR — L and we
define £(t) to be the left roof

) f4R
a y
f#P/ \ L.

This morphism is well-defined by Proposition 6.2 applied to fx. To conclude, one checks
that # and £ are inverse to each other by direct computation. O]
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In [CD09, Theorem 1.7], they put a model structure 9% on the category of unbounded
complexes of sheaves with FE-transfers over S. This is a cofibrantly generated model
structure where the cofibrations are the I-cofibrations ([Hov07, Definition 2.1.7]) where [
consists of the morphisms S""Zg(X) — D"Zg(X) for any X € Sm/S ([CD09, 1.9] for
notations) and weak equivalences are quasi-morphisms of complexes.

Proposition 6.6. Bounded above projective complexes are cofibrant objects in M.

Proof. Suppose that P is a bounded above projective complex and that we have an I-
injective ([Hov07, Definition 2.1.7]) morphism f : A — B between unbounded complexes
with a morphism g : P — B. We have to show that ¢ = f o h for some h: P — A.

We construct h by induction. Suppose that for any m > n we have constructed a
morphism h™ : P™ — A™ such that ¢™ = f™ o h™ and d* o h™ = h™ o d’. As
P is bounded above, this is certainly the case for n large enough. We now construct
hn=t prel s A1 gatisfying the same property, that is, making the following diagram
commute

An—l d4 An
f"‘l Pn—l dP pn
n—1 J/ %
gt B".

By definition, we have a split surjection F' — P"~! where F'is a free sheaf with E-
transfers. So, we may assume that P"~! is free of the form ®;Zg(X;) where X; € Sm/S.
For every ¢, we have two morphisms:

w; : Zs(X;) — Pt — B — B”

and B
v; : Zg(X;) — P — P — A"

which give a commutative square with a lifting since f is I-injective:
S"75(X;) —— A
| >
D" 1Zs(X;) — B.
One checks directly that @®;w; : P*~! — A" is the required morphism. O

The model structure 9 is stable and left proper so it induces a triangulated structure
%" on D(S) ([Ayo07, Theoreme 4.1.49]). The classical triangulated structure of D(S) or
D~ (S) is denoted by ¥.

Proposition 6.7. The natural functor
18 fully faithful exact.

Proof. Any distinguished triangle 7" in (D~ (S),%¥) is isomorphic in D~(S) to a distin-
guished triangle in T of the form

ALB—>Cone(f)—>A[1] :
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where all arrows come from explicit morphisms between chain complexes ([GMO03, 111.3.3
and II1.3.4]). By [Hir03, Proposition 8.1.23], there exists a commutative diagram

AL p

|,

A——B

such that (A’,a) (resp. (B’,b)) is a fibrant cofibrant approximation of A (resp. B) and
g is a cofibration in 9. So the triangle T is isomorphic in D(S) to the distinguished
triangle

A — 5 B'—— Cone(g) — A'[1]

in T. By [CD09, Lemma 1.10] and [Ayo07, Théoreme 4.1.38], the shift functors —[n| and
—[n]"in T and ¥', respectively, coincide on cofibrant objects in 9. So we have a natural
isomorphism 7 : —[n] — —[n]" where ng = idgp, if K is cofibrant in 9. It follows that
the triangle above is distinguished in ¥’ by [Ayo07, Definition 4.1.45]. So the functor i is
exact and it’s clearly fully faithful. O]

Observe now that we can define ®g, f* and fx on D(S) by [CD09, Theorem 1.18 and
Proposition 2.3].

Proposition 6.8. 1. We have a commutative diagram (up to a natural isomorphism)

D=(S) x D=(8) -2 D~(8)

| l

D(S) x D(S) —25- D(S).

2. Suppose that f : S — T is a morphism in Sm/k. We have a commutative diagram
(up to a natural isomorphism)

3. Suppose that f : S — T is a smooth morphism in Sm/k. We have a commutative
diagram (up to a natural isomorphism)

D(S) %5 D~ (1)
D(S) " p(T)

Proof. This follows by direct computation using Proposition 6.6. [

6.1.2 Effective Motives
The following definition comes from [MVWO06, Definition 9.2].

Definition 6.3. Define &y to be the smallest thick subcategory of D~(S) such that
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1. Cone(Zg(X x; AY) — Zg(X)) € &.
2. &y is closed under arbitrary direct sums if it exists in D~(S).

Set Wy to be the class of morphisms in D~(S) whose cone is in &. Define

D" (8) = Do(S) Wi

to be the category of effective motives over S. The morphisms in D~(S) becoming iso-
morphisms after localization by Wy are called A'-weak equivalences.

Before proceeding further, we give an example of an Al-weak equivalence. Recall that
a morphism p : £ — X in Sm/S is an A"-bundle if there is an open covering {U;} of X
such that p~!(U;) = U; x; A™ for any i.

Proposition 6.9. Let p: E — X in Sm/S be an A"-bundle. Then, Zs(p) : Zs(E) —>
Zs(X) is an A'-weak equivalence.

Proof. For any X € Sm/S, the projection Zg(X xj, A") — Zg(X) is an Al-weak
equivalence by definition. Suppose that we have two open sets U; and U, of X such
that the statement is true over Uy, Uy and U; N Uy and set E; = p~'(U;). We have a
commutative diagram with exact rows

0 —— Zg(Ey N Ey) — Zs(By) © Zs(Ey) — Zs(p~ " (E1 U Ey)) —— 0

l l l

0—>Z5(U1 N UQ) —)ZS<U1) I, ZS(UQ) —>Zg(U1 U Ug) —>O

by Proposition 5.12. So the statement is also true over U; U Uy. To conclude, we pick a
finite open covering {U;} of X such that p~'(U;) = U; x; A™ for every i and proceed by
induction on the number of open sets. n

Definition 6.4. ([MVW06, Definition 9.17]) A complex K € D~(S) is called A'-local if
for every A'-equivalence f : A — B, the induced map

I‘IOTN,D—(S)<B7 K) — HOTTLD—(S)(A, K)
s an isomorphism.

Before stating the next result, recall that one can associate to any complex of sheaves
K its Suslin complex C,. K ([MVWO06, Definition 2.14]).

Proposition 6.10. Let K € D~(S).
1. The natural map K — C,K is an A'-weak equivalence.
2. If S = pt, the complex C, K is A'-local.
3. If S = pt, the functor C, induces an endofunctor of D~ (pt).
Proof. 1. The proof of [MVWO06, Lemma 9.15] goes through in our setting.

2. Use Remark 5.1 and mimic the proof of [DF17, Theorem 3.2.9 and Corollary 3.2.11].
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3. It’s easy to check that C, induces an endofunctor of K~ (pt). If f : K — L
is a quasi-isomorphism, then Cone(f) is acyclic. By (1), the natural morphism
Cone(f) — C.Cone(f) is an Al-equivalence. Hence it’s an quasi-isomorphism by
(2) and [MVWO06, Lemma 9.21]. So C.Cone(f) = Cone(C,f) is acyclic and C,f is
a quasi-isomorphism.

0

We now pass to the definition of motivic cohomology.

Definition 6.5. ([MVWO06, Definition 14.17]) Let X € Sm/k and let p,q € Z,q > 0.
The groups

HY (X, Z) = Hom g ess- (Zyu(X), Zu(g) 1)

are called E-motivic cohomology groups of X.

Proposition 6.11. The functor ¢ of Proposition 6.3 induces an exact functor

o DM (s) — DM ()

which 1s determined by the following commutative diagram

*

D~ (S) ——— D~ (T)

| |

DM () =5 D ().

Proof. Let & be the full subcategory of D~(S) which consists of those complexes K €
D=(S) who satisfy p*K € &,. It’s a thick subcategory of D~(S). For any X € Sm/S,
©* maps _ _

ZS(X Xk Al) — Zs(X)

to
Zr((0X) x5 AY) — Zp(X).

Therefore & C & by definition of &, and exactness of ¢*. It follows that ¢* preserves
objects in &,. Hence ¢* preserves Al-weak equivalences by exactness of ¢*. Then the
statement follows from [Kral0, Proposition 4.6.2]. O

Proposition 6.12. 1. There is a tensor product

05 : DM (8) x DM (8) — DM ()

which is determined by the following commutative diagram

D=(S) x D~(§) —=5—— D~(S)

| l

D" (s) x DT () 2 D ().

Furthermore, for any K € 5]\28”’_(5), the functor K ®g — is exact.

2. Suppose that [ : S — T is a smooth morphism in Sm/k. There is an exact functor

fu: DM (8) — D ()
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which is determined by the following commutative diagram

D(8) —*— D~(1)

| |

DM sy L D ).

3. Suppose that f : S — T is a morphism in Sm/k. There is an exact functor

(5)

which 1s determined by the following commutative diagram

Neff77

DMy — D

D~ (T)—2L— D~(8)

| |

™y L D s,

Proof. 1. Suppose that Y € Sm/S. In the definition of ¢, we take (Y, S,T) :=
(Y,S,S). Then o*F = F ®g Zs(Y) for any F' € Sh(S) by Proposition 5.14. Now,

given an A'-weak equivalence a, Zg(Y)®ga is also an A'-weak equivalence by Propo-
sition 6.11 (applied to ¢). We may now apply the method used in the third para-
graph of [MVWO06, Lemma 9.5] to show that the functor K®gs— : D~(S) — D~ (5)
preserves Al-weak equivalences for any K € D~ (S). Finally we apply [Kral0,
Proposition 4.6.2] to the functor K ®g —.

2. In the definition of ¢, we take (Y, S5,T) := (S,5,T) and apply Proposition 6.11.

3. In the definition of ¢, we take (Y, S,T) := (T, 5,T) and apply Proposition 6.11.
L]

Proposition 6.13. Let f : S — T be a smooth morphism in Sm/k. We have an adjoint
pair
—eff,— ———eff— *
fu: DM (S)= DM (T): f~.

Proof. The same method as in Proposition 6.5 applies since ¢* preserves & by Proposition
6.11. O

Proposition 6.14. Let f : S — T be a morphism in Sm/k.
1. For any K,L € Weff’_(T), we have

J(K®s L) = ([TK) @s (fL).

2. If f is smooth, then for any K € D\]\//leffﬁ(S) and L € l/)\]\/fff’i(T), we have
f#(K ®s [7L) = (f4K) ®s L.
Proof. This follows immediately from Proposition 5.20 and Proposition 5.25. O

In [CD09, Proposition 3.5] and [DF17, Definition 3.2.1], the category ﬁéleff(S) is
defined as the the Verdier localization of D(S) with respect to the homotopy invariance

conditions. Now, this localization induces a triangulated structure on DM 6ff(S ) ([Kralo,
Lemma 4.3.1]).
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Proposition 6.15. The ezact functor D~(S) — D(S) of Proposition 6.7 induces an exact
functor DM effﬁ(S) — DM eff(S) which is determined by the commutative diagram
(Proposition 6.7)

D=(S)——— D(9)

| |

M5y — D

This functor is fully faithful if S = pt.

s).

Proof. For the first statement, we use [Kral0O, Proposition 4.6.2]. For the second state-

—— ff7_ . .
ment, we note that we have for any K, L € DM ‘ (pt) a commutative diagram

Hom

B0 oy I L) = Hom g (CLI CLL) ' Homp- () (C.K,C,L),

al l ~

v B
Homﬁﬂeff(pt) (K,L) —— Homﬁﬂeff(pt) (CK,C.L)) +—— Homp(u)(C. K, C.L)

where u, v, v and [ are isomorphisms by Proposition 6.10. So « is an isomorphism. []

To conclude this section, we note that the versions of ®g, f*, fx in both categories
are compatible as in Proposition 6.8.

6.2 Symmetric Spectra

fﬁ(S). The

. . . . - —ef
In this section, we introduce spectra in order to stabilize the category DM ‘
main reference is [CD13, 5.3].

6.2.1 Symmetric Spectra

Let o/ be a symmetric closed monoidal abelian category with arbitrary products. We can
define the category of symmetric sequences &/ as in [CD13, Definition 5.3.5]. It is also
a closed symmetric monoidal abelian category by [CD13, Definition 5.3.7] and [HSS00,
Lemma 2.1.6]. Here, if we have two symmetric sequences A and B, we define A ®° B by

(A ®G B)n - 6apsn X SpxSn—p (Ap ® Bn_p).
Then we define HomG(A, B) by

Hom®(A, B),, = H Homg (Ap, Boip),
P

where Homg (A, Bnip) (With the obvious Sy-action) is the kernel of the map

(0" —(1%0).)

Hom(Ay, Byyp) ngsp Hom(A,, Byyp) -

(see [HSS00, Definition 2.1.3] and [HSS00, Theorem 2.1.11])
Proposition 6.16. In the context above, for any symmetric sequences A, B, C', we have
Hom(A ®° B,C) = Hom(A, Hom® (B, C))

naturally.
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Proof. Giving a morphism from A ®° B to C is equivalent to giving S, x S,-equivariant
maps
fp,q . Ap ® Bq — Cp+q-

That is equivalent to giving S,-equivariant maps
Ipq * Ap —> Hom(By, Cp 1)
such that for any o € S,
Hom(o,Cpyiq) © gpqg = Hom(By, ids, X ) © g4
This just says that g, , factor through Homyg, (By, Cpig)- O

The abelian structure of o7® is just defined termwise. Moreover, we have adjunctions
Qo = A% : evg
and
—{—i}: F® = —{i}(i > 0)
as in [CD13, 5.3.5.1] and [CD09, 6.4.1].

Now suppose that R € /. Then Sym(R) € /€ is a commutative monoid object as in
[CD13, 5.3.8]. Define Spr(&) to be the category of Sym(R)-modules in &7°. Its objects
are called symmetric R-spectra. It’s also a symmetric closed monoidal abelian category
by [HSS00, Theorem 2.2.10] and Proposition 6.16. (The corresponding tensor product

and inner-hom are just denoted by ® and Hom for convenience)
We have an adjunction

Sym(R) ®° — : &/® = Spr() : U,
where U is the forgetful functor. Thus we get an adjunction
Y% o = Spr(H) : Q,

where ¥ = (Sym/(R) ®° —) o iy, 2% = evg o U and ¥°° is monoidal.
We have a canonical identification

A®Y (B{~i}) = (A®° B){~i}
and a morphism
A®° (B{i}) — (A®° B){i}
defined by the composite
A®% (B{i}) — (A% (B{i}){-iHi} = (A@® (B{i}{-i)){i} — (A®° B){i}.
Restricting the functors —{—i} and —{i} on symmetric R-spectra, we get an adjunction
—{—i} : Spr(#) = Spr() - —{i},

where the module structure Sym(R) ®° (A{—i}) — A{—i} of A{—i} is obtained by
applying —{—i} to the module structure of A and the module structure Sym(R) ®°
(B{i}) — B{i} of B{i} is obtained via the composite

Sym(R) ®° (B{i}) — (Sym(R) ®° B){i} — B{i},

where the last arrow is just the shift of the module structure of B. Moreover, we still
have an isomorphism

A®g (B{—1}) = (A®s B){—i}
and a morphism

A®g (B{i}) — (A®s B){i}

defined in the same way as above.
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Definition 6.6. ([CD13, Definition 5.3.16]) For any S € Sm/k, define
15{1} = Sym(coker(Zs(S) — Zs(Gy,)))

and

{1} = Sym(coker(cs(S) — ¢5(Gp))).
Then define Sp(S) to be Spﬂs{l}(%(S)) and Sp'(S) to be Spﬂfs{l}(lggh(S)).

We have an adjunction
@: PSh(S)® = Sh(S)® : 5

where both functors are defined termwise (see Proposition 5.11) and @ is monoidal by
definition. Restricting the above functors on modules, we also obtain an adjunction

a:Sp'(S) = 5Sp(S): o,

where the module structure 15{1} ®§ a(A) — a(A) of a(A) is obtained via sheafication
and the module structure 15{1} ®§ o(B) — o(B) of 6(B) is obtained via the module
structure of B and the sheafication map 15{1} ®§ o(B) — 15{1} ®§ B. The functor a
is again monoidal.

Now, let f : S — T be a morphism in Sm/k. We have an adjunction

£ SW(T)® = Sh(S)® : f.

where both functors are defined termwise (see Proposition 5.19) and f* is monoidal by
Proposition 5.20, (4). Restricting the above functors on spectra, we also obtain an ad-
junction

f725p(T) = Sp(9) : [,
where the module structure 1g{1} ®§ f*A — f*A of f*A is induced by the module

structure of A via f* and the module structure 17{1} ®% f.B — f.B of f.B is obtained
using the composite

17{1} ®F f.B — f.(1s{1} ®§ f*f.B) — f.(1s{1} ®§ B) — f.B.

The functor f* is also monoidal by construction of the tensor product (see [HSS00, Lemma
2.2.2]). The same construction gives an another adjunction

fro8p(T) = Sp'(S) : fe.
Suppose further that f is smooth. We have an adjunction
I - Sh(S)® = SW(T)® - f*
where both functors are defined termwise (see Proposition 5.23) and
fa(A®S f*B) = (fyA) @7 B

also holds by Proposition 5.25, (4). Restricting the above functors on spectra, we get an
adjunction

i 25p(S) = Sp(T) - f*,
where the module structure 17{1} ®° fuA — fuA of f4A is as follows

17{1} ®F faA = fu(ls{1} ®F A) — frA.
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Moreover, we also have

fe(A®s f*B) = (fsA) @1 B
for spectra by construction of the tensor product (see [HSS00, Lemma 2.2.2]). The same
construction gives yet another adjunction

fa SP(S) = Sp/(T) : f.
One checks that when F=—®g A, fu, f*, —{—i}, —{i}, £ or Q> there is a natural
isomorphism ao F' = Foa.
Let ¢ > 0. For any F' € Sh(S), we have
(B F){i} & 5%(Z,(G))® ®s F).
Moreover, for any X € Sm/S,
Homay(s)((5*Zs(X)){—i}, A) = Ai(X)
and
Homgy (s)((X7¢s(X)){—i}, B) = Bi(X).

So (U%Zg(X)){—i} (resp. (5°¢s(X)){—i}) are systems of generators of Sp(S) (resp.
Sp'(S)) ([CD09, 6.7] and [CD13, 5.3.11]). This enables us to imitate the methods used in
Section 6.1.

6.2.2 Derived Categories

We denote by Dy, (S) (resp. Ds,(S)) the derived category of bounded above (resp. un-
bounded) complex of spectra in Sp(S).

Proposition 6.17. Let X,U € Sm/S and p : U — X be a Nisnevich covering. For
any i € N, the complex (E°C(U/X)){—i} (defined by termise application), is exact after
sheafifying as a complex of Sp(S).
Proof. One easily see that (X°A){—i} = Sym(Zs{1}) ®% (io(A){—i}) for any A €
PSh(S). Then the statement follows from the equality

CU/X) % Es(Y) = C(U xgY/X xgY)
for any Y € Sm/S and Proposition 5.10. O
Definition 6.7. We call a spectrum A € Sp'(S) free if it’s a direct sum of spectra of the
form (X°¢cs(X)){—i}. We call A projective if it’s a direct summand of a free spectrum.
A spectrum in Sp(S) is called free (resp. projective) if it’s the sheafication of a free (resp.
projective) spectrum in Sp'(S). A bounded above complex of spectra in Sp(S) is called free
(projective) if all its terms are free (projective).

Definition 6.8. A projective resolution of a bounded above spectrum compler K is a

projective complex with a quasi-isomorphism P — K.

Now let S,T € Sm/k, j > 0 and Y be a scheme with morphisms (PR VN ANy
where ¢ is smooth. Consider in this section the adjunctions

¢*={—jtoggof: Sp(S) = Sp(T): ¢ = fiog*o{j}

" ={—jloggof : SP(S) = SP(T):¢.=fiog o{j}
and the functor
Y: Smg —  Smp
X — XxgY '

They are determined by the quadruple (Y, S, T, 7).
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Proposition 6.18. For any F' € Sp'(S),
a((Lig")a(F)) = a((Lie") F)
as spectra in Sp(S) for any i > 0, where Lyp* means the i'" left derived functor of ¢*.

Proof. Arguing as in the proof of Proposition 6.1, we see that it suffices to treat the case
of spectra F' € Sp/(S) satisfying a(F) = 0. We prove it by induction on i. The claim is
true for ¢ = 0 and we suppose that it’s also true for i < n.

For any F' € Sp/(S), we have a surjection

Orer,(x)20(B7Cs(X)H{~t} — F

defined by each section of F; on each X € Sm/S. Since a(F) = 0, there exists for any
r € Fi(X) and X € Sm/S a finite Nisnevich covering U, — X such that z|y, = 0.
Then, the composite

Daer(x),120(E7Cs(Ua)) {—t} — Baerx)20(X7Cs (X)) {—t} — F
is trivial and we have a surjection
@aeF(X),tZOHO((Eooé(Ua/X)){_t}) — F
with kernel K. Proposition 6.17 implies that
A(H,((E=CWU/X)){~t}) =0

for any Nisnevich covering U — X, ¢ > 0 and p € Z and therefore a(K) = 0 as well.
We have a hypercohomology spectral sequence

(Lpp " Hy(EXCWU/X)){~1}) = (Lpsa ) (EXCU/X){~1})

and consequently
(L") (EXCU/X)){~1})) = a((Lng") Ho(EXC(U/X)){~1}))

by induction hypothesis. But

A((Lap")(S*CU/X){t}) 2 a(Ha (0" (E=CWU/X)){~1})))

by definition of hypercohomology and the latter vanishes since we have

P ((EXCU/X){~t}) = (E=CQU/pX)){~t = j}.

So,
a((Ln@") Ho (X< C(U/X)){~1})) = 0
and
a(Lpyp"F) = a(L,—1¢"K) =0
by the long exact sequence and the induction hypothesis. O]

The same proofs as in Propositions 6.2 and 6.3 yield the following two propositions.

Proposition 6.19. Let functor ¢* takes acyclic projective complezes to acyclic projective
complexes.
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Proposition 6.20. We have an exact functor
which maps any K € Dgp(S) to ¢* P, where P is a projective resolution K.

According to our conventions, we’ll just write ¢* in place of L¢*. We now apply the
general results above to the functors ®g, fx and f*.

Proposition 6.21. 1. There is a tensor product

51 Dg,(S) X Dg,(8) — Dg(S)
(K . L) - PasQ

where P, Q) are projective resolutions of K, L respectively and P ®g () is the total
complex of the bicomplex {P; ®s Q;}. Moreover, for any K € Dgp(S), the functor
K ®g — is exact.

2. Suppose that f : S — T is a smooth morphism in Sm/k. Then, there is an exact

functor
fo o Dg(5) — Dgy(T)
K — f#P ’

where P 1is a projective resolution of K.

3. Suppose that f: S — T is a morphism in Sm/k. There is then an exact functor

f*: Dg,(T) — Dg,(5)
K —  f*P

where P is a projective resolution of K.

4. For i >0 there is an exact functor

—{=ip: Dgp(S) — Dgy(9)
K+ P{-i}’

where P is a projective resolution of K.

Proof. In (1), (2) and (3), take 7 = 0 in the definition of ¢ and proceed as in the proof of
Proposition 6.4. For (4), take the quadruple (5,5, S,7) and use Proposition 6.20. O

Proposition 6.22. 1. If f : S — T is a smooth morphism in Sm/k, we have an
adjoint pair

[y Dg,(S) = Dg,(T) : f*.
2. We have an adjoint pair
—{—i}: Dy, (S) = Dg,(5) : —{i}.
Proof. The same as Proposition 6.5 since —{i} is an exact functor. O]

Now we are going to compare Dy (S) with D~(S) defined in Section 6.1.

Proposition 6.23. The functor 3 : E;L(S) — Sp(9S) takes acyclic projective complexes
of sheaves to acyclic projective complexes of spectra.
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Proof. Let P be a projective sheaf. Then
(X°P), = 1s{1}*" @5 P,

by definition and a tensor product between projective sheaves is again projective. So
Y*°P is projective.

Let @ be an acyclic projective complex of sheaves. Then ¥>°Q) consists of complexes
of the form 15{1}*" ®¢ Q. They are all acyclic by Proposition 6.2. O

Proposition 6.24. There is an exact functor
LY>®: D™ (S) — Dg,(S)
which maps K to X*°P, where P is a projective resolution of K.
Proof. The same as Proposition 6.3. O
As usual, we will write 3 instead of LY*° for convenience.
Proposition 6.25. There is an adjoint pair
¥* D7 (S) = Dg,(S) : .
Proof. The same as Proposition 6.5 since €2°° is an exact functor. n
Proposition 6.26. The functor ¥ : D~(S) — Dg (S) is fully faithful.

Proof. Let K,L € D~(S) with respective projective resolutions P, (). Then, there is a
commutative diagram

Homp-(s)(K, L) =— Hom,_ ((2°K,2*L)

Homp-(s)(P,Q) —— Homp_ (s) (X®P,X>Q)

y

HomD—(S) (P, QOOZOOQ).

Finally we observe that Q*°X*°0Q = Q. m
Proposition 6.27. 1. We have a commutative diagram (up to a canonical isomor-
phism)

D=(S) x D=(8) =225 D~ (S) .

E°°><E°°l Eool

D3,(S) x D, (8) —%+ D3, (S)

2. Let f: S — T be a morphism in Sm/k. We have a commutative diagram (up to
a canonical isomorphism)

D~(T)—L— D= (9)

| |



3. Suppose that f : S — T is a smooth morphism in Sm/k. We then have a commu-
tative diagram (up to a canonical isomorphism)

D(8) 2 p~(T)

| |

D3, ()~ D3, (T).

Proof. This follows by direct computations. m

In [CD09, Theorem 1.7], they define a model structure g, on the category of
unbounded complexes of symmetric spectra over S. This is a cofibrantly generated
model structure where the cofibrations are the I-cofibrations ([Hov07, Definition 2.1.7])
where I consists of the morphisms S"“(EOOZS(X){—i}) — D"(E"OZS(X){—i}) for any
X € Sm/S and i > 0 and weak equivalences are quasi-morphisms between complexes.
The same proof as the one of Proposition 6.6 applies to give the following result.

Proposition 6.28. Bounded above projective complexes are cofibrant objects in Mgy,.

Now, Mg, is stable and left proper so it induces a triangulated structure T’ on Dg,(.5)
([Ayo07, Theoreme 4.1.49]). The classical triangulated structure of Dg,(S) or Dg,(S) is
denoted by ¥.

Proposition 6.29. The natural functor
(Dg,(5), F) — (Dsp(5), T
18 fully faithful exact.
Proof. The same as for Proposition 6.7. m

Finally, we note that the various versions of ®g, f*, fu, X, —{—i},i > 0 are com-
patible as in Proposition 6.8.

6.2.3 Effective Motivic Spectra

Definition 6.9. ([CD13, 5.2.15]) Define & to be the smallest thick subcategory of Dg,(S)
such that

1. (Z®°Cone(Zg(X xj AY) — Zg(X)){—i} € &,i > 0.
2. &y is closed under arbitrary direct sums if it exists in Dg (S).
Set Wy to be the class of morphisms in Dgp(S) whose cone is in &y. Finally, define

DM, (S) = D, (S)W;").

A morphism in Dgp(S) is called a levelwise A'-equivalence if it becomes an isomorphism
in 5\]\/4?:77(5).

Definition 6.10. (/CD13, 5.5.20]) A complex K € Dg,(S) is called levelwise A'-local if
for every levelwise A'-equivalence f : A — B, the induced map

Hongp(S)(B, K)— Hongp(S)(A, K)

1S an tsomorphism.

73



Proposition 6.30. A compler K = (K,,) € Dg,(S) is levelwise A'-local if and only if for
every n > 0, the complex K,, is A'-local in D~(S).

Proof. The proof of [MVWO06, Lemma 9.20] applies. The complex K is levelwise A'-local
if and only if for every X € Sm/S, n € Z and i > 0, the map

Hompgp(a(@mis()()){—i}[n]aK) — Hongp(S)«EOOZS(X x AN){=i}[n], K)

is an isomorphism. One uses Proposition 6.22 and Proposition 6.25 to conclude. O

For every A = (4,) € Sp(S) and X € Sm/S, we define AX by (A,)* = (AX). The
module structure 1g{1} ®° A¥ — AX is given by the composite

1s{1} ®° AY — (1s{1} ®° A)¥ — A¥.

The functor A¥ is contravariant with respect to morphisms in Sm/S. It follows that we
can define the Suslin complex C A of A by (C,A), = C.A,.

Proposition 6.31. Let K € Dg,(S).
1. The natural map K — C.K is a levelwise A'-equivalence.
2. If S = pt, the complex C. K is levelwise A'-local.

3. If S = pt, the functor C, induces an endofunctor of Dgp(pt).

Proof. 1. We have a natural morphism %°Zg(X) ®° A¥ — A defined by the com-
posite
15{1}%P®5Zs(X)®s A — Zs(X)®s(1s{1}P5A4)X — Zs(X)®5A%,, — Apta

p+q

for every p,q > 0. This morphism is compatible with module actions so it induces

a morphism B
Y7Zg(X) @ AY — A.

We then obtain a morphism
AX 5 Hom(S*Zs(X), A)
and we can use the same proof as in [MVWO06, Lemma 9.15] to conclude.
2. By the proposition above and Proposition 6.10.

3. By Proposition 6.10 since quasi-isomorphisms in Dg (pt) are defined levelwise.
O

Proposition 6.32. A morphism f: A — B in Dgp(pt) is a levelwise A'-equivalence if
and only if for every n > 0, the morphism

o =Q%(f{n}): A, — B,
is an A'-equivalence in D™ (pt).

Proof. The morphism f is a levelwise Al-equivalence if and only if C,f is a quasi-
isomorphism by Proposition 6.31. The latter property can be checked levelwise. O]
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Proposition 6.33. Let ¢ be the functor as before. We have an exact functor

* Neffz_ effz_
¢*: DMg, (S)— DMg, (T)

which is determined by the following commutative diagram

D3, (S) —2— D (T)

| |

6.ff77 ¢* effvf

Proof. For any X € Sm/S, ¢* maps

S%(Zs(X xp AY) — Zg(X)){—i}

to

(L (¥ X) i A') — Zp(X)){~i - 5}
So the statement follows by the same method as in Proposition 6.11. O
Proposition 6.34. 1. Then tensor product on Dgp(S) induces a tensor product

Neffv_ Neffv_ Nef_ﬂ_

which 1s determined by the following commutative diagram

D3,(S) x Dy, (8) ——=—— Dg (S)

| l

DMS () x DM (8) -2 DM ().

—eff,— .
Furthermore, for any K € DMSJ; (S), the functor K ®g — is exact.

2. Letf : S — T be a smooth morphism in Sm/k. There is an exact functor

Neff)_ eff)_
f# DMy, (S) — DMg, (T),

which is determined by the following commutative diagram

D3, (S) —*— D3,(T)

| |

DM (8) L DM ().

3. Suppose that f : S — T is a morphism in Sm/k. There is then an exact functor

(S)7

which 1s determined by the following commutative diagram

* Neffvf effvf
ff:DMg, (T)— DMg,

_ I _
DSp(T) —_— DS’p(S>
Neff7_ f* Neff7_

DM, (1)L DM, ().
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4. For any 1 > 0, there is an exact functor
. e effrf e effzf
—{—i}: DMg, (S)— DMg, (S),
which is determined by the following commutative diagram

—{-i}

Dy, (5) Dy, (5)
eff7_ *{*i} eff7_

5. For any i > 0, there is an exact functor
. ——eff— ——eff—
_{7’} . DMSp (pt) — DMSp (pt>7
which 1s determined by the following commutative diagram

_ i}
Dy (pt) ——— Dg, (pt)

| |

——eff— —{Z} ——eff—

DMg, (pt)——=DMg, (pt).
Proof. For (1), (2), (3), take j = 0 in the definition of ¢ and proceed as in Proposition
6.12, using Proposition 6.33. For (4), take the quadruple (S, S, .S,4) and use Proposition
6.33. Finally, (5) holds by Proposition 6.32. O

Proposition 6.35. 1. Let f : S — T be a smooth morphism in Sm/k. We have an
adjoint pair

N(iff,— effv_ o

2. We have an adjoint pair
. — eff7_ —— effv_ .
—{—i}: DMg, (pt) = DMg, (pt) - —{i}.
Proof. The same as in Proposition 6.5. O]

Proposition 6.36. 1. There is an exact functor
w: DM (5) — DM (9)
determined by the following commutative diagram

D~ (S) —=—Dg,(5)

| |

pM™" (9) 2 D (9).

2. There is an exact functor
Q® . DMg, (pt) — DM (pt)
determined by the following commutative diagram

Dg, (pt) —=—— D~ (pt)

l |

DM (o) 2 DM ().
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Proof. 1. This follows from the fact that tensor products with Zg(GA!) preserves Al-
equivalences, together with Proposition 6.32.

2. This follows by Proposition 6.32.

O
Proposition 6.37. There is an adjoint pair
s DM (pt) = DMY (pt) - .
Proof. The same as in Proposition 6.5. O]
Proposition 6.38. The functor ¥ : ﬁéfeff’_(pt) — @Zﬁf’_(pt) is fully faithful.
Proof. The same as in Proposition 6.26. O

Proposition 6.39. 1. We have a commutative diagram (up to a canonical isomor-

phism)

pu"”

|

— ff7_
DMg,

N@ff,—

D) x DM (5) 85

EOOXE‘X’J

—— ff7_
DM,

(5)

(S) x DMg," (5) 22 (S).

2. Suppose that f : S — T is a morphism in Sm/k. We have a commutative diagram
(up to a canonical isomorphism)

ffv_ * ffv_
‘ ANV

|

(1)L Darg)

DM

|

ffv_
DMg,

(T) (5)

(S).

3. Suppose that f : S — T is a smooth morphism in Sm/k. Then, we have a
commutative diagram (up to a canonical isomorphism)

effv_ effﬂ_

oMoy L D ()
| |
pMe (8) L Dyl ().

Proof. This follows by direct computations.

]

In [CD09, Proposition 3.5] and [CD13, Proposition 5.2.16], the category ﬁ%gj;f(S) is
defined as the the Verdier localization of Dg,(S) with respect to the homotopy invariance

.- N . ——eff
conditions. It follows that the localization induces a triangulated structure on DM (;p (S)

([Kral0, Lemma 4.3.1]).

Proposition 6.40. There is an exact functor 157\/42?’_(5) — 15?\/4?:(5) which is de-

termined by the commutative diagram

Dg,(5) = Dsp(5)

|

ff?i
DMy,

It s fully faithful when S = pt.

77

|

eff

(S) ——= DMy, (S).



Proof. The same as Proposition 6.15 by using Proposition 6.31. O

As usual, there are compatibility results between the natural inclusion and ®g, f*,
fa, X0, —{—i},i > 0.

6.2.4 Stable Categories of Motives

Definition 6.11. (/CD13, 5.3.23]) Define & to be the smallest thick subcategory of
Z/D\J\J/Ig;f’_(S) such that

1. Cone((S°Zs(X){1}H{—1} — S%Zg(X)){—i}) € & for every X € Sm/S,i > 0.

. . . . . . . —— effv_
2. & is closed under arbitrary direct sums if it exvists in DMg,  (S).

— e f7,

Set Wq, to be the class of morphisms in D]WSJ;7 (S) whose cone is in &. Define

DM (S) = DML ()]

to be the category of stable motives over S. A morphism in W?;fj_(S) is called a stable
Al-equivalence if it becomes an isomorphism in 157\//[_(5).

Definition 6.12. A complez K € 157\4?:’_(5) is called Q-local if for every stable Al-
equivalence f : A — B, the induced map

HOmNeff,—
s

el S)(B,K) — Hom 5

( Wit 5 (A K)

1S an tsomorphism.

The same method as in the proof of Proposition 6.34 yields the following proposition.
Proposition 6.41. 1. The tensor product on lf)\]\??;f’i(S) induces a tensor product
®s: DM (S)x DM (S) — DM (S),
which 1s determined by the following commutative diagram

DMZ () x DML (8) -2 DM (9)

l l

DM (S)x DM (S) —=2— DM (S).

Furthermore, for any K € 13\]\/47(5), the functor K ®g — is exact.

2. Suppose that f : S — T is a smooth morphism in Sm/k. Then, there is an exact
functor

fu:DM (S) — DM (T),
which is determined by the following commutative diagram

DMl ()L D ()

l |



3. Let f: S — T be a morphism in Sm/k. There is an exact functor
f*+DM (T)—s DM (S),

which 1s determined by the following commutative diagram

effm P eff—
DMSp (T) —— DMSp (S)

l |

DM (T)—L— DM (9).
4. For any 1 > 0, there is an exact functor
—{~i}: DM (S) — DM (S),

which 1s determined by the following commutative diagram

effi— —{—i} effi—

l |

DM (8)—"% DM (9).
We denote by 3° the composite

DM (8) == DM (8)—— DM (8).

Lemma 6.4. Let € be a symmetric monoidal category and let T' € €. If there exists
U € € such that U @ T = 1, then there are isomorphisms

ev: URT — 1,coev:1 —T U

such that T is strongly dualizable ([CD13, 2.4.30]) with dual U under these two maps.

Proof. Let FF= —® U and G = — ® T. Then the condition gives an endoequivalence
F:¢=%:G

i.e. two natural isomorphisms a : FG — id and b : id — GF. We can then construct
the following two morphisms

0: Hom(FX,Y)—%% Hom(GFX,GY) - Hom(X,GY)

and
n: Hom(X,GY)—2= Hom(FX,FGY) -2 Hom(FX,Y)

for every X,Y € €. Let 0, be the composite

F idFXb FGF a><idp F
and 6, be

G indG GFG idea G
Then (no0)(f) =61(X)o f and (on)(g) = gob(Y). So 6 is an isomorphism, hence F'
is a left adjoint of G (vice versa). O
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As a straightforward consequence of the above lemma, we obtain the following result.

Proposition 6.42. The element 3°°%(Zgs(GM!)) has a strong dual (2°*'1g){—1} in

157\//[_(5) with the evaluation and coevaluation maps being isomorphisms.
As a consequence, we can define C'(i) to be C®g3°(15(i)) and C'(—i) to be C{—i}|i]
for any C € l/)\]\//[_(S) and any ¢ > 0.

Proposition 6.43. (/CD13, Proposition 5.3.25]) Suppose that E = CH. Then, the
functor

seost . DM (pt) — DM (pt)
15 fully faithful.

Proof. We first prove that for every projective C € DM 6ff’i(pt), ¥=C € DM Zj;f’i(pt) is
Q-local. Arguing as in [MVWO06, Lemma 9.20], this is equivalent to the morphism

Hom (S Zoy (X){1H{~1}{~i}, 5%(C[n])) — Hom(E™Zy(X){~i}, 5*(C[n]))

being an isomorphism for any X € Sm/S, any ¢ > 0 and any n € Z. This follows from
the following commutative diagram

Hom(S%Zy (X){1H{~1}{~i}, 5(C[n])) —— Hom(E*Zy(X){~i},=*(C[n)))

l

Hom(EZy(X){1H{~1}, 5% (Cln)){i}) ——— Hom(E*Zy(X), 5(C[n)){i})

T

Hom(Z*Zy(X){1}, 5% (Cln)){i + 1}) Hom(Zs(X), 1,{1}*' © (C[n)))

Hom(1, {1} ® Zyy(X), 1 {1} @ (C[n]))

and [FO16, Theorem 5.0.1]. Let now K, L € l/)\]\//[eff’_(pt) be two projective resolutions of
P, Q) respectively. The statement follows then from the following commutative diagram
Zoo,st

00,8t 00,st
oy (I L) = Hom o (5597 K, 520 L)

El o

305t 00,5t 00,8t
Homﬁj/weff,—(pt)(P7 Q)—>Homwf(pt)(z P,Z Q)

X‘ ~

HOmDTweff,f

HomDMZJ;f’f(pt) (3°°P, Q)
and Proposition 6.38. O]
Proposition 6.44. Let f : S — T be a smooth morphism in Sm/k. We have an adjoint
pair
fe:DM (S)=DM (T): f*
Proof. The same as Proposition 6.5. O]
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Proposition 6.45. Suppose that f : S — T is a morphism in Sm/k.
1. For any K,L € W_(T), we have

K ®s L) = (fK) @s (f*L).

2. If f is smooth, then for any K € 15?\/4_(5) and L € 15?\//[_(T), we have

fu(K®s f'L) = (f4K) ®s L.

Proof. Everything can be checked termwise by the discussion in Section 6.2.1. [
In [CD13, Proposition 5.3.23], the category W(S) is defined as the the Verdier local-

N ——eff . e .
ization of DM Zp (S) with respect to Wg,. As usual, the localization induces a triangulated

structure on DM (S) ([KralO, Lemma 4.3.1]). Here is a weak result which is enough for
our purpose:

Proposition 6.46. There is an exact functor 5\]\/4_(5) — 15?\/4(5) which is determined
by the commutative diagram

—eff,— ——eff

| |

DM (S)——— DM(S).

When E = CH and S = pt, the morphism

Hom (X,Y) — Hompz; (X, Y)

DM~ (S)
is an isomorphism if X andY are of the form (X' A){—i},i > 0.

Proof. The first statement follows from [KralO, Proposition 4.6.2]. We have thus a com-
mutative diagram (up to a natural isomorphism)

D sy — b (s)

Eoo,stJ/ Eoo,stl

—_—

DM (S) —— DM(S).

Now let E = CH and S = pt. If the statement holds for X,Y, we say that Z2(X,Y)
holds. If Z(X,Y) is true, then for any X’ = X and Y/ = YV, Z(X")Y’) is also true.
It follows then from Proposition 6.42 and the fact that the natural inclusion is monoidal
that Z(X{—1},Y{—1}) is also true.

By Proposition 6.15, Proposition 6.43 and the diagram above, Z2(X°5 A, ¥°°5! B) is

true for any A, B € DM efﬁ_(pt). Hence the statement follows. O

To conclude, we note as usual that the various versions of ®g, f*, fu, —{—i},i >0
are compatible with the inclusion.
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Chapter 7

Orientations on Symplectic Bundles
and Applications

7.1 Orientations on Symplectic Bundles

In this section, we consider E-correspondences with £ = CH , i.e. MW-correspondences.
We are going to prove the quaternionic projective bundle theorem and derive the existence
of a Gysin triangle over any smooth base S (under some conditions). We first recall
the comparison results between MW-motivic cohomology groups and Chow-Witt groups
established in [DF17].

Proposition 7.1. For any C € D=(S) and any i € N, we have an isomorphism of
functors Sm7" — Ab

Homp-(s)(Zs(—), C[i]) = H'(—, C).
Further, let X be a smooth scheme, Z C X be a closed subset and U = X \ Z. Then, we
have an isomorphism of functors D~(S) — Ab

Homp-(s)(Ls(X)/Zs(U), ~[i]) = Hy (X, -).

Proof. The first statement is obtained using the universal property of [GMO03, page 188].
For the second statement, one first proves that

Homg, ) (Zs(X)/Zs(U), =) = —5(X),

where the right hand side denotes sections with support in Z, defined by the left exact
sequence

0 — Fz(X) — F(X) — F(U).
Consequently, both terms have the same hypercohomology functor. Additionally, we have
Ext'(F, —) = Homp-(s)(F, —[i]) for any sheaf with MW-transfers F', yielding the second
statement. O

Let now X € Sm/S. For any two morphisms f; : Zg(X) — Cii = 1,2 in

DM eff’_(S ), we denote by f; X f, the composite

Zs(X) —" Zs(X) ©5 Zs(X) 2B 0y 05 C;
In case we have two morphisms f; : Zg(X) — Zg(n;)[2n:] in ﬁ\/fff’_(S), we denote by
f1f2 the composite

Zs(X) 228 Zg(n1)[2n1] ® Zig(n2)[2n2] —2 Zg (1 + na) [2(n1 + 12)] .
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Proposition 7.2. Let X € Sm/k, Z C X be a closed subset and i > 0. Then
HY (X, C.Z(1)) = CHy(X),
and in particular .
H* (=, CZp(i)) = CH ()
functorially in X. Moreover, the following diagram commutes for any i,j > 0 (here

o™ = D ()

1 Lon(X), g (0)[20]) % Hom — crr(Zon(X), Zyu (5)[24]) — CH'(X) x CH (X)

| 1

~ ~ ——itj

i1 Lyn(X), Zyali + )26 + ) o' (x)

Hom

DM

Hom

DM

where the right-hand map is the intersection product on Chow-Witt groups. Consequently,
we have isomorphisms Hom g ers (Zpi(X), Ziy(i)[2i]) — CH (X) which send id; = to 1
when © =0 and X = pt.

Proof. See [DF17, Corollary 4.2.6]. ]

7.1.1 Grassmannian Bundles and Quaternionic Projective Bun-
dles

In this section, we recall the basics on Grassmannian bundles and quaternionic projective
bundles. Although these are well-known objects, we include their definitions here for the
sake of notations. The reader may refer to [KL72|, [Sha94| for Grassmannians, [Kle69]
for Grassmannian bundles and [PW10] for quaternionic projective bundles. Let S be a
k-scheme.

Definition 7.1. Let k be a field, v be an integer and 1 < n < r. Consider the ring

A(n,r) = klp;,

.....

and the ideal I(n,r) C A(n,r) generated by

+1 -1 . . . . .
:L:l (_1)t Piy.in_15eDj1. de—1,5e415-Gnt1 with 1 < Uy ey tn—1,715 -5 In+1 <,
Dir,... in if the indices are not distinct,
Piy,.in — SQW(U)pa(il) ..... o(in) foro € S,.

The scheme

Gr(n,r) = Proj(A(n,r)/I(n,r))
1s the Grassmannian of rank n quotients of a k-vector space of rank r.

Definition 7.2. Let X be an S-scheme, & be locally free of rank r on X and 1 <n <r.
Define a functor

F:X—Sch?? — Set
f:T—X +— {FC[fEfE/F is locally free of rank n}

with functorial maps defined by pull-backs.
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Proposition 7.3. The functor F is representable by an X -scheme Grx(n, &), the Grass-
mannian bundle of rank n quotients of &. Further, if & = O%Y, then Grx(n,&) =
Gr(n,r) xx X over X.

Proof. See [Kle69, Proposition 1.2]. O

Let p: Grx(n,&) — X be the structure map. There is a universal element % C p*&
with quotient of rank n. The vector bundle (p*&/.%)" is called the tautological bundle
of Grx(n, &), denoted by % . Its dual is just called the dual tautological bundle, denoted
by %"

Definition 7.3. Let & # 0 be a locally free sheaf of rank n over a scheme X. Then &
is called symplectic if it’s equipped with a skew-symmetric (v-v = 0) and non degenerate
inner product m : & x & — Ox (hence n is always even).

Now, let f : X — Y be a morphism of schemes and (&, m) be a symplectic bundle
on Y. Then (f*&, f*(m)) is also a symplectic bundle, where f*(m) is the pull back of the
map & — & induced by m.

The following is a basic tool when dealing with non degeneracy of inner products.

Proposition 7.4. Let f : X — Y be a morphism between schemes and & be a locally
free sheaf of finite rank over Y with an inner product m : & x & — Ox. Then for any
x € X, m is non degenerate at f(z) if and only if f*(m) is non degenerate at x.

Proof. This is basically because f induces local homomorphisms between stalks. O
The following proposition can be seen from the case of vector spaces.

Proposition 7.5. Suppose that we have an injection i : & — &5, where & is symplectic
and m,|s, is non degenerate. Define &(U) := & (U)" for every U. Then & is again
a symplectic bundle with inner product inherited from & and there exists a unique p :
& — & with poi =idg, and Im(idg, —iop) C &t

Definition 7.4. Let X be an S-scheme and let (&,m) be a symplectic bundle over X.
Define a functor

H:X—Sch”? — Set
[T —X +— {FCfE|f (m)z non degenerate, f*& /. F v.b. of rank rk(&) — 2}

with functorial maps defined by pull-backs.
Definition 7.5. Let

n+1
HP" =D, () Piirnr1) € Gr(2,2n+2),

i=1
where p;iynt1 means the class of p;itnt1 in the quotient.

Proposition 7.6. The functor H is representable by a scheme HGrx(&). Further, if
(&,m) = (O§2”+2, ( 7 g )), then HGrx (&) =2 HP™ x;, X over X.

Proof. We have the structure map = : Grx(2n,&) — X and the tautological exact

sequence
0—ZF —>1&—wu —0.

Define
HGrx(&) ={z € Grx(2n,&)|r*(m)|# is non degenerate at x}.
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We prove that Homx (T, HGrx(&)) = H(T) for any X-scheme f : T — X. By
definition, HGrx (&) is an open subset of Grx(2n,&’). Then, any X-morphism a : T —
HGrx (&) induces an X-morphism b : ' — Grx(2n, &) and this gives an exact sequence

0—K— ¢ —C—0

obtained by applying b* on the exact sequence in the beginning. By definition of HGrx (&),
f*(m)|k is non degenerate. Conversely, given a morphism b : T' — Grx(2n, &) such that
f*(m)|k is non degenerate as above, so 7(m)|# is non degenerate at every point in Im(b)
by Proposition 7.4. So Im(b) C HGrx(&).

For the second statement, consider an X-scheme f : T" — X and an X-morphism
b: T — Gr(2,2n + 2) X; X. Then b factors through HP" x; X if and only if the
composite

c: T — Gr(2,2n+2) x;; X — Gr(2,2n + 2)

factors through H P". Denote the structure map Gr(2,2n+2) — pt by p. Then we have
the tautological exact sequence

0—F —p O3 — U —0
as in the beginning. Then one proves that ¢ factor through H P" if and only if the inner

I . .. .
product (p*OSiQ"”, ( 7 )) is non degenerate after restriction to ¢*% (taking the

dual of the exact sequence above). Considering morphisms Spec K — T where K is a
field, we can assume T = Spec K. Then the non vanishing of the formula Z:.L:ll Diitn+1
in the Definition 7.5 is just equivalent to the non degeneracy required above. O]

Definition 7.6. We will call the scheme HGrx (&) the quaternionic projective bundle of
&.

Let p: HGryx (&) — X be the structure map. Then, there is a universal element .% C
p*& which is just obtained by the restriction of the universal element of the Grassmannian
bundle to HGrx(&). The vector bundle .7 itself is called the tautological bundle of
HGrx (&), denoted by % . Its dual is just called the dual tautological bundle, denoted by
V. We will use the same symbol % for all tautological bundles defined above if there
is no confusion. Note that both % and %" are symplectic by Proposition 7.5.

7.1.2 Quaternionic Projective Bundle Theorem

The following proposition can also be found in [MVWO06, Corollary 15.3] and [SV00,
Proposition 4.3].

Proposition 7.7. Let S € Sm/k. For any correspondence theory E and n > 1, we have
an isomorphism B _ B
Zs((A"\0) x S) =2 Zs® Zs(n)[2n — 1]

in 5\]\/46”77(5).
Proof. We denote the point (1,...,1) € A™ by 1 for any n. Then it suffices to prove that

Zs((A"\ 0) x S, 1) = Zg(n)[2n — 1]

by induction. For n = 1 this is by definition.

In general, write z1,...,x, for the coordinates of A™ and set U; = D(x1), Uy =
Ui, D(z;). Note that U; = (A'\0) x A"t xS, Uy = Al x (A"1\0) x S and U1 NUy =
(AT\ 0) x (A"1\0) x S.
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We have a commutative diagram in the category of sheaves with E-transfers:

Z UlmU27 ) zS(Uhl)EBiS(U?’l)

| l

Zs(Uy N Uy, 1) —— Zg((AY\ 0) x S, 1) @ Zg((A""1\ 0) x S, 1)

where the right-hand vertical map is the sum of the respective projections. Considering
the relevant sheaves as complexes concentrated in degree 0 and taking cones, we obtain a
commutative diagram of triangles in D~ (S)

Zs(U; NUs, 1) Zs(Uy,1) ® Zg(Us, 1) C (7.1)

| l l

Zs(Uy NUs, 1) —— Zg((AM\ 0) x S, 1) @ Zg((A" 1\ 0) x S,1) —— "

It follows from Proposition 5.10 that the map iS(Ul, o ZS(UQ, 1) — ZS((A" \0) xS, 1)
induces a quasi-isomorphism C' — Zg((A" \ 0) x S,1). Using now Lemma 5.6, we obtain
a morphism of complexes Zg(((A'\ 0) x S,;1) A ((A""1\ 0) x S,1))[1] — C” which is a

quasi-isomorphism.

Applying now the exact localization functor D~(S) — 5\]\/46]6}[’7(3) to (7.1) and us-
ing Proposition 6.9, we see that the map C' — (' is an isomorphism in 5\]\//[6]0](’_(8).
Altogether, we have obtained an isomorphism in DM eff’i(S ) of the form

Zs((A"\ 0) x S, 1) — Zs(((A*\ 0) x S, 1) A (A"72\ 0) x S, 1))[1].
Now, the wedge product on the right-hand side can be computed as

Zs(((A"\0) x5, 1))@sZs(((A"\0)x S, 1)) = Zs(1)[1]®sZs(n—1)[2n—3] = Zs(n)[2n—2]

in DM " (S) by Proposition 5.16 and induction hypothesis. Hence we are done. O

Recall now that for any smooth scheme X and any v € &y, we have groups
CH'(X,v) = CH (X, det(v))
for any ¢+ € N. We now discuss the notion of orientation of a vector bundle.

Definition 7.7. Let X € Sm/k and let & be a vector bundle over X. A section s €
det(&)V(X) is called an orientation of & if s trivializes det(&)Y. A vector bundle with an
orientation is called orientable.

Definition 7.8. Let X € Sm/k and & be an orientable vector bundle of rank n over

X with an orientation s. Define e(&) to be the map such that the following diagram
commutes (see [Fas08, Définition 13.2.1]):

CH' (xX) ™ CH" (X, -&)
e(ff)l >
CH'(X)
where ¢, (&) is the Euler class of &. If n = 2, define the first Pontryagin class under

the orientation s of & to be —e(&)(1) € C/’\}/IQ(X) (see [AF16, remark before Proposition
3.1.1]), which is denoted by pi(&).
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Definition 7.9. Let & be a vector bundle of rank n over X € Sm/S and let s be an
orientation of &. The map

e(&): CH (X) — CH'(X)

defined above gives an element

e(&)(1) € Homppgess—(pr) (Lpt(X), Ly (n)[2n]).

It induces a morphism B _
0:Zs(X)— Zs(n)[2n]

by Proposition 6.13, which is called the Euler class of & over S under the orientation s.
If n =2, then —0 is called the first Pontryagin class under the orientation s of & over
S, which is still denoted by p1(&).

The following lemma is obvious.

Lemma 7.1. Let (&,m) be a vector bundle of rank 2 over a scheme X with a skew-
symmetric inner product. Then m is non degenerate iff the induced map /\2 & — Ox 1is
an isomorphism.

Hence for any symplectic bundle of rank 2, there is a canonical orientation induced by
the dual of the isomorphism in the above lemma.

Definition 7.10. Let &1,& be two vector bundles over a scheme X with orientations
S1, So respectively. An isomorphism f @ & — & is called orientation preserving if

det(f)V(s2) = s1-

Proposition 7.8. Let &,&5 be two orientable vector bundles of rank n over a smooth
scheme X with orientations si, Sa, respectively. If there is an orientation preserving
isomorphism f : & — &, then e(&)) = e(&).

Proof. Let E; be the total space of &}, p; : E; — X be the structure map and z; : X —
E; be the zero section for j = 1,2. We have a diagram

(1) ~77n

——0 Gn 51 ——n
CH (X) 2 CH" (X, -&) +2— CH"(X)

m Tf /

CH (X,-&)

in which the right triangle commutes since f is orientation preserving. Hence we only
have to prove that the left triangle commutes. For this, use the following commutative
diagrams which can be catenated:

—0

CH (X) 252 CH (X, & — &)

T

—0
CH (X,8 — &)

—s2+582

T(f—i_idEQ)l
—0
CH' (X, 8 — &)
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——0

CH (X,& — &) 2 CH By, —pi&) <2 CH'(X, —&)

T -pi(f)
CH' (X, 6 — &) 2 CH' (B, —pi &) -1

w e

0 o Py
CH (X, (9@2 — 6@2) —CH (E27 —p;gg) +——CH (X, —52)

]

As an application, if two symplectic bundles of rank 2 are isomorphic (including their
inner products) then their first Pontryagin classes under the canonical orientations are
equal. Note that if they are just isomorphic as vector bundles, the statement is not true
any more, since we can use automorphisms of trivial bundles.

Our next aim is to calculate the motive of HP". Let x1,..., 22,2 be the coordinates
of the underlying vector space of HP". Forany a =1,...,n+1,set V, = >_ k-x;,

i#a+n+1
X§=HP"\ Gr(2,V,). We have a diagram:

Spec k
U HPnfl w (*>
/ X‘
(X — P

where u, v, w are the structure maps, (X/1)¢ is the closed complement of X/ in HP™,

1 T1y.--,Ton o 1,10, 0,40, ..., T2, 0
- )
Yy Yon yla"'>yn707yn+17'-->y2n70
j is the inclusion and
- T1,. - Tangt, 0 o T Ty Tng2s - Tontl
y17"'ay2n+170 Y1y oo s Yns Yn+2y - - -5 Yont1

(%1 . . . . .
(here, ( y > means a two dimensional subspace written in its coordinates spanned by
2

v1, vy in a k-vector space). Note that the lower diagram doesn’t commute, i.e. ko # j.
Proposition 7.9. The following results hold:

1.
T (Upn—r) = 5 (Ugzpn)

as symplectic bundles.

2. If z: HP™ — ¢V is the zero section of %" then there is a section s of %" such
that we have a transversal cartesian square (see [AF16, Theorem 2.4.1]):

(X6L+1>c J HP"
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Proof. See [PW10, Theorem 4.1, (d), (e)]. O

Theorem 7.1. For any n > 0, we have

L (HP™) = @7 Lt (2i)[4d]

in DM (pt).

Proof. Set U2 = |J;_, X{ € HP". The normal bundle Nx1ye/mpn is symplectic by re-
placing X** by X} in Proposition 7.9. So the normal bundle N, := Nw,\x1)v, 1s also
symplectic of rank 2 and has a canonical orientation s,. Moreover, we have an A%-bundle
7 (X3)¢ — HP" ! by [PW10, Theorem 3.2], and then U2~!\ X{ is also an A%-bundle
over U},

Now we prove by induction that

Ln(US) = B0 Ly (20) (4]

This is true for a = 1 by [PW10, Theorem 3.4(a)] and Proposition 6.9. We thus suppose
it’s true for some a > 1 and prove the result for a + 1. Let then

0 : Ly (U2) — B Ly (21)[41]

be such an isomorphism.
. . . . o o . . e effv_
We claim that the inclusion j : Z,,(U2) — Zy,(UST) splits in DM (pt). Indeed,
Proposition 7.2 yields a commutative diagram in which the vertical homomorphisms are
isomorphisms

HomDMeff‘f(pt) (Zpt(UTCLLJrl)? Zpt(US)) ]—> Homﬁf\/[eff’f(pt) (Zpt(UTCLL)’ Zpt(Ur?))
| |
Hom sern= o (L (Ui), 720 Zpr(20) [44)) “— Hom 5170 oty (Lt (U, D20 Z(20) [4d])

| |

@ CH (U d @ CH (U9).

It suffices then to prove that for any i = 0,2,...,2a — 2, the pull-back
i CH (U™ — CH (U?)

is an isomorphism since the first horizontal arrow in the above diagram will then also be
an isomorphism.

We use induction on a again to prove the claim on j*. The case ¢ = 0 is easy.
Hence, we may suppose that ¢ > 0, which implies that a,n > 1. The result now follows
by induction, using the following commutative diagrams (see [Fas08, Remarque 10.4.8],
[Fas08, Corollaire 10.4.10] and [Fas08, Corollaire 11.3.2]) and noting that the exact rows
in the first one are split by [PW10, Theorem 3.4(a)]:

0 —— CHyyrny o (U — CH ' (U2H) — CH'(X3) — 0,

l | |

0~ CHyy 3 (U2) ——— CH'(U2) —— CH'(X{) ——0
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———i—2 ~ ——i—2 ~ —1
CH (Uit \ Xg) 50 CH (U™ \ Xg, Nava) 7y CHpgon g (U )

Sa+1

l l |

CH' “(Us\ X}) ——— CH' (U2 \ X No) ——— CHyyyo 1 (U2)

CH (U ) =" CH (U1 X2)

A2—bundle

| |

CH (WY =0 U\ X}).

=1/ 72 pundle

Now, we have an exact sequence of sheaves by Proposition 5.10

0 — Zpp(U2 N XETY) — Zy(U2) @ Ly (XGH) — Zp(USTH) — 0,

yielding an exact triangle in DM Efﬁ_(pt). Moreover, we have an Al-bundle p : A4+ —
X5+t (see [PW10, Theorem 3.4(a)]) and it follows that

Loy (US N XYY 2 7y (A% 0 x A 240 > 7, 7,4(2a) [4a — 1]
by Proposition 7.7. Killing one point, we get a distinguished triangle in DM eff’_(pt)
L (20)[4a — 1] — Zy(U2) — Ly (USY) — Zpi(2a)[4a).
We have proved that j splits and therefore
Zyp(U ™) 2= Ziy(Uy) @ Zi(20) 4a]
completing the induction process. O

Now we want to improve Theorem 7.1 and find an explicit isomorphism using the first
Pontryagin class of the dual tautological bundle on H P".

The following proposition has a very similar version in [PW10, Theorem 8.1], but the
twists are considered here.

Proposition 7.10. Let w : HP™ — Spec(k) be the structure map. Then the map

—0 2
fni:CH (Spec(k)) — CH (HP™)
x — w*(z) - p (V)
is an isomorphism of abelian groups for i = 0,...,n. Here, %" is endowed with its
canonical orientation.

Proof. We prove the result by induction on n and use the notation of Diagram (*) above.
If n = 0, there is nothing to prove.

We first note that j*(%gpn) = Nixn+1ye/gpn Dy Proposition 7.9. Now, we have a
commutative diagram with split exact row for any ¢ > 0 (as in Theorem 7.1)

00— CH (XY, Ugpn) — s CH(HP") —— CH (X2 — 0,

t]\ t’T
———2¢{—2

B =2
CH ™ “(XPYe, —j* Wy pn + 7 Uppn) 2> CH (HP™, Uppn)

OT
21—2

G (X)) ™ G (P — T (Spec k)

n—1,i—1
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where ¢ (resp. t') is induced (Definition 7.7) by the canonical orientation of j*%pr (resp.
U pn) and o is the cancellation map induced by the canonical orientation. On the other
hand, we have an A'-bundle

p: AT X
by [PW10, Theorem 3.4(a)]. It follows that the statement is true for i = 0. Moreover, it

——2i
follows that CH (XJ™') = 0 if i > 0. Thus j, is an isomorphism if i > 0. In this case,
the map —j,otooon*o f,_ 1,1 will also be an isomorphism. It suffices to show that it
is equal to f,; to conclude.

Pick s € Cf'\FIO(SpeC k). Then

= Ju(t(o(m™(fn-1-1(s)))))
= — Ju(t(o(m* (v*(5) - P (X pa—1)' "))
by definition

= —t'(ju(o(m*(v*(s)) - 7" (01 (%yzp) 7))
by Axiom 10, Proposition 7.9 and the square in the diagram

= —t'(ju(o(m(v*(5)))) - P1(Zipn)' ™)
by Axiom 18 for j

== t'(ju(o(5" (" (9)))) - Po(%sipn)" )
by Axiom 9

= —1'(ju (5" (w*(5)) - o(1)) - pr(Zyipn) ")
by Axiom 7, Axiom 10 and functoriality of pull-back with respect to twists

= —t'(w(s) - ju(o(1) - P1(%gpn)' ")
by Axiom 18 for j

= —w'(s) - t'(ju(0(1)) - p1(Ugpn) ™
by functoriality of products with respect to twists.

Denote the map

——0

CH (HP") —s CH' (HP",~Uspn + Usypn)
by o’. So we see that
t'(je(0(1)) = ' (j.j" (0 (1)) = '(s™ (2 (' (1)) = '((p") ™' (2:(0' (1)) = e(Zypn) (1)
by Axiom 16, yielding the result. m

Lemma 7.2. Let X be a smooth scheme and let i,j > 0. Then

HomNEfﬁ_(pt)(zpt(X)(i)[2i]7zpt(j)[?j]) _ {0 if 1> 7.

—j—i

bM CH (X) ifi<j.

Proof. 1f i < j, the lemma follows from Proposition 7.2 and [F©?16, Theorem 5.0.1].
Suppose then that ¢ > 7. The exact sequence of sheaves with MW-transfers

0 = Zp (A 0) = Zyy (AY) = Zpy (AY)/Zp (A7 \ 0) — 0
vields an exact triangle in DM eff’_(gmf) of the form

Zps(A'\ 0) = Zy(A') = Zyp(A') [ Zya (A \ 0) = Ziu (A" \ 0)[1]
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As Zpt(Ai) ~ ipt(Spec(k:)) by Proposition 6.9, we see that the first map is split. Conse-
quently, we get an isomorphism

Lyt (A") )Ly (AT 0) = Zpy (A" 0,1)]1]
— ff _

and it follows from Proposition 7.7 that Zpt(Ai)/Zpt(Ai \0) ~ Zpt(i)[Qz] in DM (pt).
Therefore, B B o '
Lt (X)(2)[21] 2= Zpt (X X A") /2y (X x (A" 0))

and it follows from Propositions 7.1 and 7.2 that

ety Lot (X)) [20], Zin (7)[2]) = CHY (X x AY) = 0.

Hom
D

Corollary 7.1. For any i,7 > 0, we have

e i {0 ifiFJ.
Homﬁ/leff,—(pt)(zpt( )[2 ]vat(J)[QJD - {6?]0(]{;) if1=17.

In other terms, the motives Zpt(z')[%] are mutually orthogonal in the triangulated category
eff

DM ™" (pt).

Lemma 7.3. Let € be an additive category. Let M, M;, 1 = 1,...,n be objects in € such
that Homg(M;, M;) = 0 if i # j. Suppose that there is an isomorphism ¢ : M — @®;M,;.
Then, a morphism ¢’ : M — @; M, is an isomorphism if and only if ¢, is a free generator
of Homg (M, M;) as left Endy(M;)-module for any i, where ¢ is the composite of ¢’ and
the i" projection.

Proof. Suppose that ¢’ is an isomorphism. We prove that ¢} a free generator of Homeg (M, M;)
as a left Endg(M;)-module. We note that the action is free since ¢} is surjective. Now,
suppose that ¢ € Homeg (M, M;). Since Homg(M;, M;) = 0 if i # j, we see that
Y = (Yo toi;)o(p) where i; is the natural map from M; to the direct sum. Hence v
can be generated by ¢; and ¢/ is indeed a free generator.

Conversely, if we have a morphism ¢’ : M — @;M; such that ¢/ is a free generator of
Homg (M, M;), then ¢} = f;op; for some isomorphism f;. Hence ¢’ is also an isomorphism.

O
Theorem 7.2. The map
Zon (HP™) —=250 o (20) 41
s an isomorphism in B\Z\J/Iefﬁ_(pt). Here, %"V is endowed with its canonical orientation.

Proof. By Theorem 7.1, Corollary 7.1 and Lemma 7.3, it remains to prove that p;(Z")’

is a free generator of Hom o—csi.- (Z ((HP™), Zpt(2i)[4z']). By [F©16, Theorem 5.0.1],

(pt)
the ring End o~ css.- (ot )( pt(2z)[4z]) is commutative, so we only have to prove that p :
oLy

(H P™), Zupy (20)[4i)).

Using the notation of Dlagram (*), we see that the composite

p1(ZY)" generates Hom s—cry.-

Lty L) —— Hom

Hom el

eff‘f(pt) (Zpt(HPn)7 Zpt)

’

(Zyu(HP™), Lyt (23)[4])

(p t)( DM

Hom — 55—
DM (o)
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is an isomorphism by Proposition 7.10. Now given a map

?/J S HomNeff, (zpt(HPn)azpt(Qz)[éLZ])’

DM ™" (pt)

we can find its preimage A under the map above. So we have a commutative diagram:

v Zyn(20)[4]
/ |

A(HPY) —25 T (HP™) @ Zop(HP™) 2% Ty (HP™) @ Loy 255 7y (20)[44] @ Zyg
m‘ y
22 )[4i] ® Zpt
showing that 1) is generated by p’. We are done. O

For any S € Sm/k, we have a projection pg : HP{ — HP™ and we set %y = ps% " .
Theorem 7.3. The map

—~ 1 02/\/ 7 ~
Zs(HPy) —25 s an 7o(2i)[4d

——effi— . oy ) ) .
is an isomorphism in DM (S). Here, g is endowed with its canonical orientation.

Proof. We have a commutative diagram

e o PP =
P Ly (HP™) 222 p Ly (2)[4]

| ]

~ () ~
Zs(HPY) ———="— 7s(2)[4].

Hence the result follows by the commutative diagram

o L Em@Y s e
P Lyt (HP™) R D" Lt (21) [44]

I

(%)

Zs(HPg) —————— ®lo/Ls(20)[4i],
where the upper horizontal arrow is an isomorphism by the theorem above. O]

Theorem 7.4. Let X € Sm/S and let (&, m) be a symplectic vector bundle of rank 2n+2
on X. Let m: HGrx(&) — X be the projection. Then, the map

xpy (% V)

Zs(HGry(&)) n o Ls(X)(2i)[44]

. . . . — effv_ . . . .
18 an isomorphism in DM (S) functorial for X in Sm/S. Here, %" is endowed with
its canonical orientation.
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Proof. We first prove that the map

7R&p (% V)?

Zs(HGry(&)) P o Ls(X)(20)[4i]

is functorial in X. Let then f : Y — X be a morphism of S-schemes. We have a
commutative diagram

HGT‘y(f*(ga)—>HGTx(g)
YﬁX

yielding a commutative diagram in DM eff’_(S )

Zs(HGry (f*&)) — Zs(HGrx(&))

Zs(Y) ————— Ls(X).
On the other hand, we have a commutative diagram

Zs(HGry (f*&)) — Zs(HGrx(&))

Pl(%v)ll lpl(%v)"

Zg(2i) 4] —— Zs(2i)[4i]
for any @ by Proposition 7.2 and naturality of the first Pontryagin class (Proposition 7.8).
Consequently, we get a commutative diagram
Zs(HGry(f*&)) —— Ls(HGrx(&))
7r®p1(01/v)li Jﬁgpl(%v)i
DiLs(Y)(20) 4]~ oo il (X) (20)[41]

proving that the map is natural.
Let’s now prove the first statement. We pick a finite open covering {U,} of X such

that
@l = {0z (1)

for every v and we work by induction on the number of the open sets. If there is just one
open set, HGrx (&) = HP™ x; X and we conclude tensoring the isomorphism of Theorem
7.3 with Zg(X).

Suppose next that X = U; U Uy and the argument holds for (&,m)|y,, (&, m)|u,
and (&, m)|v,nv,. Set &; for the restrictions of & to U; and &5 for its restriction to the
intersection. Using Proposition 5.10, we obtain exact triangles

Zs(Uy NUs) — Zg(Uy) ® Zg(Us) — Zg(X) — Zg(Uy N Us)[1] (7.2)
and

Zs(HGr (&) = Zs(HGr(&)) ® Zs(HGr(&)) — Zs(HGr(&)) — (. )[1].  (7.3)
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Tensoring with Zg(2i)[4i] being exact, we obtain shifted versions of (7.2) and a diagram

Zs(HGr (1)) — Zs(HGr (&) ® Zs(HGr (&) — Zg(HGr(&)) — (.. )[1]

Tr@pl(%v)ll ﬂ&pl(%v)il W@pﬂ“//v)il J/

©iZs(Uy N Uy)(20)[41] — @,(Zs(Uy) ® Zs(Us)) (21)[41] — ©:Zs(X)(24)[44] - (.. .)[1].
(7.4)
The two left-hand squares commute by naturality, and we now prove that the third also
commutes. We have a commutative diagram

Zs(HGr(&)) — Zg(HGr(&12))[1]

] [

Zs(X) ——— Zg(U; N Us)[1].

Tensoring with the morphism corresponding to the i-th power of the first Pontryagin class
Zs(HGr(&)) — Zs(2i)[4i], we obtain a commutative diagram

Zs(HGr(&)) @ Zs(HGr(&)) — Zs(HGr (&) @ Zg(HGr(&))[1] (7.5)
w@pl(%v)’l lﬁ@pl(%v)i[ll
Zs(X) ® Z(2i)[4i] ————— Zg(Uy N Us) @ Zg(2)[4][1].
On the other hand, the open cover
(HGr(&) x HGr(&)) U (HGr(&) x HGr(&)) = HGr(&) x HGr(&)

yields a Mayer-Vietoris triangle, and the commutative diagrams

HGr(&;) HGr(&)

l |

HGr(&;) x HGr(&)—— HGr(&) x HGr(&),

in which the first vertical arrow is the product of the identity and the inclusion and the
second vertical arrow is the diagonal map, induce a morphism of Mayer-Vietoris triangles
and in particular a commutative diagram

Zs(HGr (&) Zs(HGr(&12))[1] (7.6)

o] l

Zs(HGr(8)) ® Ls(HGr(&)) — Ls(HGr(£12)) @ Ls(HGr(&))[1]

where the right-hand vertical map is the tensor of the identity with the morphism Zg(HGr(&2)) —
Zs(HGr(&)).

Concatenating Diagrams (7.5) and (7.6), we obtain that the third triangle in (7.4) also
commutes. Moreover, our induction hypothesis and the five lemma imply that the third
morphism in (7.4) is an isomorphism as well.

We conclude the proof of the theorem by observing that we may reduce the case of
a general covering {U,} of X to the case of a covering by two open subschemes using
induction again. 0
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Arguing as in [PW10, Theorem 8.2|, we can deduce a similar version of Pontryagin
classes for Chow-Witt rings.

Proposition 7.11. Let X € Sm/k, & be a symplectic bundle of rank 2n + 2 over X and
k= min{[%],n}. Then the map

21 pplo)/\/m/—\/j

6, el OH  (X) L2 OH (HGry(6))

is an isomorphism, where j > 0, p: HGrx (&) — X is the structure map and %" is the
dual tautological bundle endowed with its canonical orientation.

Proof. Write DM in place of DM oI (pt) for convenience. We apply Hom 55,(—, Zpt (9)[24])
to both sides of the isomorphism in Theorem 7.4. Note that we have an isomorphism for

i< 3
——J—2

Hom gy (Zy(X)(20) 4], Zyu () [24]) — CH (X))
by Proposition 7.2.

—j—2i

Now suppose that we have an element s € CH’ (X), i < k, which corresponds
to a morphism ¢ : Zu(X) — Zp(j — 2i)[2j — 4i]. We conclude the proof using the
commutative diagrams

Zpy(HGrx (&)

Lﬁ»&pl(%V)i i

Topt(X) @ Lo (20)[41) 225 T — 20)[25 — 41]) © Ly (20)[41] —— Zow () 2]

and

o Hom sy (Zye (X)(20)[44), Zyn (1) 202 VD o1 Fop(H G (8)), Zon () [29))

| o

ok O (X) Lt !

Definition 7.11. In the above proposition, set ¢ :== p1(%") and
2
Ornia(C"T) = (G) € B CH (X).

——0
Define po(&) =1 € CH (X) and po(&) = (=1)*71¢; for 1 <a <n+ 1. The class p,(&)
is called the a™ Pontryagin class of &. These classes are uniquely characterized by the
Pontryagin polynomial

= p (&) + A (1) (P (£)) = 0.

Remark 7.1. We show that p;(E) = 0 for i > 0 if E is a trivial symplectic bundle. It

suffices to show that py (") = 0. If X = pt, this is clear since C/'\ITIZ(pt) = 0. For general
cases, E is the pull-back of a trivial symplectic bundle over pt, hence p1(%") vanishes
also.
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7.1.3 The Gysin Triangle

Definition 7.12. Let X € Sm/S and Y C X be a closed subset. For any correspondence
theory E, consider the quotient sheaf with E-transfers

MY(‘X) = zS(X)/is(X \Y).

Its image in WEff’_(S) will be called the relative motive of X with support in'Y (see
[DO07, Definition 2.2] and the remark before [SV00, Corollary 5.3]). By abuse of notation,
we still denote it by My (X).

Our aim in this section is to compute the relative motives in some situations. For this,
we’ll need the following notion.

Definition 7.13. Suppose that X € Sm/S and that E is a vector bundle over X. For

any correspondence theory, define Thg(E) = MX(E) where X C E 1is the zero section of
E. The motive Ths(F) is called the Thom space of E.

The following result is sometimes called homotopy purity.

Proposition 7.12. Let X € Sm/S and Y C X be a smooth closed subscheme. Then for
any correspondence theory, we have

My (X) = Thg(Ny,x)

in DM (9).

Proof. Use [P09, Theorem 2.2.8] and Proposition 7.13 below. Alternatively, one may use
[IMV98, §3, Theorem 2.23| and the sequence of functors of [DF17, §3.2.4.a]. O

Proposition 7.13. Let f: X — Y be an étale morphism in Sm/S, Z CY be a closed
subset of Y such that the map [ : f~(Z) — Z is an isomorphism (here, the schemes

are endowed with their reduced structure). Then the map M1z (X) — MZ(Y) is an
1somorphism of sheaves with E-transfers for any correspondence theory E.

Proof. By the condition given, we get a Nisnevich covering f1lid : X II (Y \ Z) — Y of
Y. So we have a commutative diagram with exact (after sheafication) rows and columns
by Proposition 5.10:

cs(Y\Z)=—=¢cs(Y \ Z)

E((XTL(Y\ 2)) xy (XIL(Y\ 2))) — Es(X (Y \ Z)) — 2

\N

ts(X) —L— (V) /AY \ Z2)—0

0 0.

We want to show that ker(q) = ¢s(X \ f~1(Z)) after sheafication, yielding the state-
ment. We clearly have c¢g(X \ f~!(Z)) C ker(q) and r maps onto ker(q) after sheafication.
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So it suffices to show that I'm(r) C ¢g(X \ f71(Z)). The sheaf cs((X I (Y \ Z)) xy (X II
(Y'\ Z))) is decomposed into four direct components

Cs(X xy X),cs(X xy (Y\Z)),cs(Y\Z2) xy X),cs(Y\Z) xy (Y \ 2))

via disjoint unions so we just have to calculate their images under r respectively. The
calculations for the last three components are easy and we only explain the computation
of the first one.

We have a Cartesian square

X xy X 2o X

LN

Then for any = € 7 '(Z), p1(z) = pa(x) and the morphisms k(p;(z)) — k(x) induced
by p1 and p, are equal since f~}(Z) = Z. So by [Mil80, Corollary 3.13], p; = p» on
the connected component containing x. Hence p; = ps; on a closed and open set U
containing 7 1(Z). Now, ¢s(X xy X) = ¢5(U) @¢s(U*) and so |z = 0. It follows that
Im(rlegwe)) C ¢s(X \ f71(Z)). So we have proved that Im(r) C (X \ f~1(2)). O

As a consequence, we see that the study of relative motives (of smooth schemes)
reduces to the study of Thom spaces. With this in mind, suppose that X is a smooth
scheme and that (&, m) is a symplectic vector bundle of rank 2n over X with total space
E. We now study the Thom space of E. Recall first that, as in the discussion before
[PW10, Theorem 4.1], Ox & & & Oy is also a symplectic vector bundle with inner product
given by the matrix

0 0 1
0 m 0
-1 0 0
Definition 7.14. Let X and E be as above.

1. Define N~ by the cartesian square

Grx(2n,& @ Ox) —— Grx(2n,0x & & & Ox)

T |

N S HGrx(Ox ® € ® Ox),

where 1 is induced by the projection pa3 : Ox ® E ® Ox — & ® Ox and j is the
inclusion (see Proposition 7.6).

2. Set
N ={x € Grx(2n,Ox®E®0x)| & — p*(OxBEBOx) — p*(Ox®Ox) iso. at x},
where p: Grx(2n,Ox & & & Ox) — X is the structure map and
0—8&8 —p(OxeER0x) — " —0

15 the tautological exact sequence. Note that N is an open set of the Grassmannian

GrX(Qn,OX D & D OX)

98



3. Set
V={z€Grx(2n,&®0x)|.F" — ¢"(£®0x) — ¢*Ox is an isomorphism at x},
where q : Grx(2n,& ® Ox) — X is the structure map and
0—F — ¢ (Ed0x) — F"—0

is the tautological exact sequence. As above, note that V' is an open set of Grx(2n, &®
Ox).

The notations of N~ and N come from [PW10, Theorem 4.1], but our treatment is
slightly different.

Lemma 7.4. 1) Let T be an X-scheme and let f: T — Grx(2n,0x & & & Ox) be an
X-morphism. Then

Im(f) C N <= f*&" — (pof) (Ox®EDOx) — (pof) (Ox®Ox) is an isomorphism.

Consequently, N~ C NN HGrx(Ox & & @ Oy).
2) Let T be an X-scheme and let f: T — Grx(2n,& @ Ox) be an X-morphism. Then

Im(f) CV << f*F' — (qo [)*(&® Ox) — (qo ) Ox is an isomorphism.
Furthermore, N— =V,
Proof. 1) = Easy. For the <= part, set
C = Coker(& — p*(Ox & & ® Ox) — p*(Ox & Ox)).

We see that N = Supp(C)°. Since f~1(Supp(C)) = Supp(f*C), f~(Supp(C)) = 0 hence
fYN)=T. So Im(f) C N.

For the second statement, let v : N= — X be the structure map. The bundle N~ has
amap ¢ towards Grx(2n, Ox®& B Ox ) hence we have a subbundle K C v*(Ox®&DOx).
Since ¢ factors through Gry(2n, & @ Ox), the first inclusion v*Ox — v*(Ox ® & & Ox)
factors through K, which makes v*Ox a subbundle of K. Since ¢ also factors through
HGrx(Ox ® & @ Ox), the inner product is non degenerate on K. So for every x € N—,
there is an affine neighborhood U of x such that K(U) is a free Oy-(U)-module with a
basis (1,0,0) and (z1,z2,x3). Hence x3 € On-(U)* by non degeneracy. It follows that
the map K — v*(Ox @ & ® Ox) — v*(Ox @ Ox) is surjective on U. So we see that
N~ C N by the first statement.

2) The first statement can be proved as in 1). For the second statement, we have a
commutative diagram with exact rows:

0 K’ v (Ox ® &) T 0.

i ]

0— K'®0x —0v*(Ox®E B O0x) — 9 ——0

Hence there is a section in K’'(N~) which maps to (1,s,0) in v*(Ox & & & Ox). This
section turns the map K’ — v*(Ox & &) — v*Ox into an isomorphism. So N~ C V.
The inclusion V' C N~ can be proved using a similar method. O

Lemma 7.5. Let T be an X-scheme and f : T — Grx(2n,0x & & @ Ox) be an X-
morphism. Let ¢ be the composite

(po f)*Ox —— (po f)*(Ox ® & ® Ox) — f*&" .
Then

Im(f) C Grx(2n,8 @ Ox )¢ < ¢ is injective and has a locally free cokernel.
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Proof. We have
Im(f) CGrx(2n,& ® Ox)¢ <= Vg :Spec K — T, Im(fog) C Grx(2n,& & Ox)°,
where K is a field. So let’s assume T" = Spec K. In this case,
Im(f) C Grx(2n,& ® Ox)¢ <= f does not factor through Gry(2n,& @ Ox),
and the latter condition is equivalent to ¢ # 0. Hence
Im(f) CGrx(2n,8 @ Ox)° <= Vg : Spec K — T, g"(p) # 0.

Now we may assume that 7" is affine and use the residue fields of T'. Locally, the map ¢
is of the form (a;) : A — A%?" and the condition just says that the ideal (a;) is the unit
ideal. This is equivalent to (a;) being injective and Coker((a;)) being projective. This
just says that ¢ is injective and has a locally free cokernel. O]

Consider next the following square

!
—

=

«—
IS

N-
X

where [ is given by N~ C N and v is just the structure map (of N7). Let r : N — X
be the structure map of N. We have the tautological exact sequence

&=

z

0 — T*<Ox@OX) — T*(Ox@@@@Ox) — ¢ — 0
(1,0) — (1,51,0) (xx)
(07 1) — (07$2a 1)

and u is induced by s;. Finally, z is the zero section of FE.
Proposition 7.14. The above square is a Cartesian square.
Proof. The map [ induces an exact sequence

0 — ’U*(Ox@Ox) — ’U*<Ox@ég0@0)() — ¢ — 0.
(1,0) — (1,5,0)

But (1,0,0) belongs to the kernel, so s = 0. Hence the square commutes and is Cartesian.
m

Now, we use the square

w
e

N E
FE — X,
where w is induced by sy in (**). We see right away that it’s a Cartesian square and it
follows that u is an A*"-bundle.
The third step in our calculation of Thg(FE) is the following theorem. It has a similar

version in [PW10, Proposition 4.3], but we are not considering the same embedding as
there.
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Proposition 7.15. For any correspondence theory,
Ths(E) = My-(N) = My-(HGry(Ox ® & & Ox))

in DM (9).

Proof. The first isomorphism comes from Proposition 7.14 and the fact that u : N — F
is an A?"-bundle. The second isomorphism follows from N~ C NN HGrx(Ox & & & Ox)
by Lemma 7.4 and Proposition 7.13. O

By Lemma 7.5, the natural embedding HGrx (&) — HGrx(Ox & & & Ox) factors
through (N7)¢ and thus we have a map i : HGrx (&) — (N 7).

Proposition 7.16. For any correspondence theory,
Zs(i) : Zs(HGrx(&)) — Zs((N7)°)

. . . . e effﬂ_
is an isomorphism in DM ().

Proof. Follows from the proof of [PW10, Theorem 5.2]. O

Finally, the following theorem completes the calculation. Its proof is similar to the
proof of [D07, Lemma 2.12].

Theorem 7.5. Let X be a smooth S-scheme and let E be a symplectic bundle of rank 2n
over X. Then B
Ths(E) = Zs(X)(2n)[4n]

in DM (9).

Proof. By Proposition 7.16, M- (HGrx(Ox®&®O0x)) is just the cone of the embedding
i: HGrx(&) — HGrx(Ox®&®0x). By Theorem 7.4, we have a commutative diagram
where the vertical arrows are isomorphisms

Zs(HGrx (&) —— Zs(HGrx(Ox ® & ® Ox))

l l

O L (X)(20)[4i] ——— @ Zs (X)) (24)[41].
Now, 7 pulls back the tautological bundle to the tautological bundle, giving the result. [

Putting everything together, we obtain the following result. The triangle appearing
in the statement is called the Gysin triangle.

Theorem 7.6. Let X € Sm/S be a smooth scheme and letY C X be a smooth closed sub-
scheme of codimension 2n with a symplectic normal bundle. Then we have a distinguished
triangle B B B B

Zs(X\Y) —Zs(X) — Zs(Y)(2n)[4n] — Zs(X \ Y)[1]

in DM (9).

Proof. Follows from Theorem 7.5 and Proposition 7.12. O
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7.2 Duality for Proper Schemes and Applications

In this section, we are going to prove that Zpt(X ) is strongly dualizable in DM _(pt)
for proper X € Sm/k. Then, we explicitly calculate its dual by using orientations on
symplectic bundles. Finally we use our results to compute the group of morphisms in

DM efﬁ_(pt) between smooth proper schemes over k. For this we need to involve the
stable Al-derived category Dy1(S) over S introduced in [CD13, Example 5.3.31] and use
the duality result on that category. For clarity, we describe our procedure using the
following picture:

Duality in Dy1(S) = Duality in 5?\/4(5) = Duality in W_(pt) = Theorem 7.7.

Let’s briefly review the construction of Dj1(S), the reader may also refer to [CD13,
Section 5] and [DF17a, Section 1].

Define Sh(S) to be category of Nisnevich sheaves of abelian groups on Sm/S. The
Yoneda representative of the functor F' —— F(X) for any X € Sm/S is denoted by
Zs(X). The functor 5 : Sm/S —» Corg in Proposition 5.6 and Lemma 5.7 gives us an
adjunction

71 Sh(S) = Sh(S) : 7.

The category Sh(S) is a symmetric monoidal category with Zg(X) ®¢Zs(Y) = Zs(X X g
Y) and 7* is a monoidal functor. For any f: S — T in Sm/k, the same method as the
one used in Proposition 5.19 yields an adjunction

71 SK(T) = Sh(S) : f..

Further, f*y* = ~*f* since there is a similar equality for their right adjoints. If f is
smooth, there is an adjunction

fu:Sh(S) = ST : f~

as in Proposition 5.23 and fx7* = 7" f4 by the same argument as above.
As in Section 6.2.1, we define SSp(S) to be the category of symmetric 1s{1}-spectra
of Sh(S), where
1s{1} = Coker(Zs(S) — Zs(Gy,)).

There are adjunctions
¥ Sh(S) = SSp(S) : Q=

and

7*: SSp(S) = Sp(S) : .

and we can also define ®g, f*, fi, fu, —{—i} and —{i} (i > 0) on SSp(S). Moreover, ¥*
commutes with f* and fx and is monoidal as above.

In [CD09, Theorem 1.7], they put a model structure 9tg on the category of unbounded
complexes of objects in Sh(S). This is a cofibrantly generated model structure where the
cofibrations are the I-cofibrations where I consists of the morphisms S"*(Zg(X)) —
D"(Zg(X)) for any X € Sm/S and weak equivalences are quasi-morphisms between
complexes. The homotopy category of Mg is denoted by Dg(S). Moreover, Mg is stable
and left proper so it induces a triangulated structure on Dg(S).

Localizing Dg(S) with respect to the morphisms

ZS(X Xk Al) — Zs(X)

as in Section 6.1, we get a category Dg{f (S) with the induced triangulated structure.
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In [CD09, Theorem 1.7], they also define a model structure Mgs, on the category
of unbounded complexes of symmetric spectra in Sh(S). This is again a cofibrantly
generated model structure where the cofibrations are the I-cofibrations where I consists
of the morphisms S"t(X*Zg(X){—i}) — D"(X>Zs(X){—i}) for any X € Sm/S and
1 > 0 and weak equivalences are quasi-morphisms between complexes. The homotopy
category of Mg, is denoted by Dgg,(S). Moreover, Mg, is stable and left proper so it
induces a triangulated structure on Dgg,(S).

Localizing Dgg,(S) with respect to the morphisms

(B¥Zs(X xj A') — £%Zg(X)){—i},i > 0

as in Section 6.2.3, we get a category with the induced triangulated structure. Localizing
further that category with respect to

(X% Zs(X){1H{ -1} — B¥Zs(X)){—i}

as in Section 6.2.3, we obtain the category Dy1(.S), with the induced triangulated struc-
ture. Moreover, we have an exact functor

22205t DI (S) — Dy (S).

The stage being set, we now calculate the inverse of the Thom space for any vector
bundle, using the methods of Section 7.1.

Proposition 7.17. For any correspondence theory, we have:

1. Suppose that f : S — T is a morphism in Sm/k, that X € Sm/T and that E is a
vector bundle over X. Then we have

f*The(E) = Ths(f°E)
m 5\]\/46”77(5), where f*E is the vector bundle over X* induced by E.

2. Suppose that f : S — T is a smooth morphism in Sm/k, that X € Sm/S and that
E is a vector bundle over X. Then we have

f#Ths(E) =Thr(E)

NCff,—

in DM (9).
3. ([CD13, Remark 2.4.15]) Suppose Ey and Ey are vector bundles over X € Sm/k.
Then
Thx(E)) ®@x Thx(Es) = Thx(E; & E»)
in DM (x),

Proof. The proofs of (1) and (2) being easy, we only prove (3). The total space of E; @ Es is
just Ey X x E5. By definition, for any vector bundle E over X, Thx (F) is quasi-isomorphic
the complex

ZS(E \X) — ZS(E)-
Hence the left hand side is the total complex

Zs((BL\X) xx (Bx\ X)) — Zs((By\X) X x E2) & Zs(Ey x x (Bs\ X)) — Zg(Ey x x E»).
By Proposition 5.10, the complex

Zs((Bx\ X) xx (B2 \ X)) — Zs((E1 \ X) xx B2) & Zs(Ey xx (B \ X))
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is quasi-isomorphic to _
0— ZS(<E1 Xx EQ) \X)

since

(El XxEQ)\X:(El\X) XxEQUEl Xx (EQ\X)

Hence we have a quasi-isomorphism

Zs((By\ X) x (Bx\ X)) — Zs((Ey \ X) X By) @ Zg(Ey x (By\ X)) — Zg(Ey x E»)

| | |

0 Zs((By x B)\ X) ———— 5 Zs(Ey x B).

]

Proposition 7.18. Let E be a vector bundle of rank n over X € Sm/k. Then we have
(2" Thx (E)) ™ = (2" Thx(E"))(—2n)[—4n]
in DM (X).
Proof. By Proposition 7.17 and Theorem 7.5, we have
Thx(FE) ®x Thx(EY) < Thx(E & EY) = 1x(2n)[4n]
—eff—

in DM (X). Now the statement follows from Proposition 6.42 and the fact that 3°
is monoidal. O

Since we have a monoidal exact functor DM (X) — DM eff(X ), the same proof

as above yields the following result.
Proposition 7.19. Let E be a vector bundle of rank n over X € Sm/k. Then we have
(B Thx (E))~" = (8" Thx (EY))(—2n)[—4n]

We'll need the following properties of the stable Al-derived category, which can be for
instance found in [DF17a, 1.1.7 and Theorem 1.1.10].

Proposition 7.20. 1. Forany f : S — T in Sm/k, we have an adjoint pair of exact
functors

f* i Dpa(T) = Dpa () - fo
2. For any smooth f : S — T in Sm/k, we have an adjoint pair of exact functors
[ D (S) = Dua(T) = [
and for any A € Dy (S) and B € Dy (T), we have
(f#A)® B= f4(A® fB).
3. For any f:S — T in Sm/k, we have a functor
fi i Dpi(S) — Dy (T).

If f is proper, we have
f! = f*

If f is smooth, we have
fi = fp(= @ (8% Ths(Tsr)) ).
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Proposition 7.21. Let S € Sm/k and f : X — S be a smooth proper morphism. Then
251 Zg(X) € Dai(S) is strongly dualizable with dual fu(X°*Thx(Tx/s)™").

Proof. For any A, B € D1(S), we have

Homp,, (5)(Z°°’StZS(X) ®s A, B)
=Homp,, (s)(f4#/"A, B)
by Proposition 7.20, (2)
%’HomDAI ) (A, fof*B)
by Proposition 7.20, (1) and (2)
%’HomDAI(S)(A, fif*B)
by Proposition 7.20, (3)
~Homp,,s)(A, f4(f*B&x (3" Thx(Tx/s)) "))
by Proposition 7.20, (3)
~Homp,,(s)(A, B®sg f4(3°"Thx(Tx/s)™"))
by Proposition 7.20, (2).

]

Proposition 7.22. Let S € Sm/k and let f : X — S be a smooth proper morphism.
Then Y5 7,5(X) € DM(S) is strongly dualizable with dual

(X2 Ths(Qx/s)) (—2d)[~4d],
where d = dx — dg := dimX — dimS.

Proof. Since we have a monoidal exact functor v* : Dy1(S) — DM (S) which commutes
with f4 up to a natural isomorphism, ¥X°°**Zg(X) € DM (S) is strongly dualizable with
dual fyu (X" Thx(Tx/y)"") by Proposition 7.21. Now, Proposition 7.19 yields

(X" Thx(Txs)) " = (S Thx(Qx/s))(—2d)[—4d).
Finally, we have
fa((Z Thx (Qxys)) (—2d)[4d]) = (2" Thg(Qx/s))(—2d)[—4d].
O

Now we have a monoidal exact functor DM (pt) —» DM (pt) which commutes with
—{—i},i > 0 up to a natural isomorphism. Then by Proposition 6.46, we have the
following result.

Proposition 7.23. Let X € Sm/k be a proper scheme. Then $°°%Z,,(X) € DM (pt)
15 strongly dualizable with dual

(ZOO’StThpt(Qx/k)) (—de) [—4dx] .

The following theorem gives a computation of the hom-groups in the category of
(effective) MW-motives in case the objects are smooth proper.

Theorem 7.7. Let X, Y € Sm/k with Y proper. Then

~ g
HOmBTwEffy—(pt) (Zpt(X)7Zpt(Y)) =CH (X X Y? _TXXY/X)'
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Proof. Let p: Y — pt be the structure map of Y and let ¢ : X xY — Y be the second
projection. We have

(pt) (Zpt<X)a Zpt(y))

%Homﬁ[ (pt) (EOO7Stht (X)7 EOO,Stht(Y))

Hom — cir—
OmDMeff,

by Proposition 6.43

= Hom gy 0o (5 Lyn(X) ® (E7 Thy(Qy ) (=2dy ) [—4dy], 27" 1,,.)

by Proposition 7.23
> Hom ;- - (pt)(zwvstzpt()() ® (22 TRy (Qy 1)), 2 1 (2dy ) [4dy )

by Proposition 6.42

=Hom g 0o (5 (Lt X) © Thy(Qy i), 22" 1 (2dy ) [4dy])
Zin(X) ® Thyn(Qy i), Lpe 24y ) [4dy])
by Proposition 6.43
=Hom Zyn(X) ® pyThy (Qu i), Tpu(2dy ) [4dy])
by Proposition 7.17
ooy (P (0" Zn (X) @ Thy (Qn)), Ls (2dy ) [Adly])
by Proposition 6.14
~Hom seri (ps(Zy (X X Y) @ Thy (1)), 1,e(2dy ) [4dy])

gHOmﬁueff,f(pt)(

DM (o) (

~H oM — ors
= OmDMeff’

DM
2Hom g esr (D@ (Lxxy) @ Thy (Qvr)), 1ye(2dy) [4dy])

(pt)

=Homgyerre o (P (aa" Thy (i), 1y (2dy ) [4dy])

by Proposition 6.14
oty LTt (v ), Le (20 ) [4dy ])
by Proposition 7.17

~ oM — org
= OmDMeff’

——d
=CH Y(X XY, _TXXY/X)
by the discussion after [DF17, Remark 4.2.7].
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Chapter 8

MW-Correspondences as a
Correspondence Theory

In this section, we are going to sketch of the proof of Theorem 4.1. It’s incomplete and
will be completed in the future. We will always assume F = C'H in this section.
For any scheme X and z € X, set Q, = m,/m2 and A, = det(m,/m?).

Definition 8.1. Let G be an abelian group, and let M, N be G-sets. Define
M xgN =M x N/~ (m,n) ~ (m' n) < (m,n)=(gm',g 'n') for some g € G.
The set M x¢ N is endowed with the action of G defined by g(m,n) = (gm,n).

Definition 8.2. Let G be an abelian group and let M be a G-set. We denote the group
algebra of G over Z by Z|G| and the free abelian group generated by M by Z[M]. Then
ZIM] is a Z|G)-module.

The following lemma is straighforward.

Lemma 8.1. 1. Let M, N be GG-sets, then

ZIM xg N| = Z[M)] Qz[a] Z[N].

2. Let G — H be a morphism of abelian groups and let M be a G-set. Then
ZIM x¢ H| = Z[M] Xza] Z[H]
as Z[H]-modules.

Definition 8.3. Let R be a commutative ring. We set Q(R) = R*/(R*)? as an abelian
group and for any one dimensional free R-module L we define

Q(L) = L*) ~,x ~y < x =1’y for somer € R*
as a Q(R)-sets.
The following lemma is straighforward.

Lemma 8.2. 1. Let Ly, Ly be one dimensional free R-modules, then
Q(L1 ®@r La) = Q(L1) Xq(r) Q(L2).
2. Let L be a one dimensional free R-module, then
Q(LY) = Homqgr)(Q(L), Q(R)).

107



3. Let S be an R-algebra and L be a one dimensional free R-module, then
QL ®r S) = Q(L) Xqr) Q(5)

as Q(S)-sets.
Proposition 8.1. The categories Px (Definition 4.4) for X € Sm/k satisfy Aziom 1.

Proof. We set F = 7Z/27. From the definition of &y, we see that for every A =
(Er, -+, E,), rk(A) is well defined in Z/27Z, independent of isomorphisms in &y. Hence
there is a rank morphism rky : Px — 7Z/27.

Define a bifunctor

+ Px X Py — Px
((Elf"aEn) ) (FbaFm)) — (Ely"'aEnyFla"'7Fm)'

It is easy to see that this operation endows &y with the structure of a Picard category
with —(Ey, -+, E,) = (EY,--- ,EY). For any A, B € Px, we attach a commutativity
isomorphism

=c(A,B):A@B—B®A

by

(_1)TkX (Arkx( B)deet A)®det(B)-

This turns £y into a commutative Picard category.
There is an obvious functor i : (Vect(X),iso) — Px sending E to (E) and f :
Ey — FE5 to det(f). Moreover, for every exact sequence

0— Ey — B3 — Ey — 0,

we attach the isomorphism (E3) — (E}, Es) given by the isomorphism det B3 — det E1®
det Fy sending a A to a® (3 for any local base «v (resp. (3) of £y (resp. E3). This functor
satisfies all conditions given in Definition 3.3.

Finally, for any f : X — Y in Sm/k, we define f* : Py — Px by f*(Ey, -+, E,) =
(f*Ela"' af*En) ]

We set K)'W(F,L) = KW (F) @z Z|Q(L)] ([Morl2, Remark 2.21]) for every one
dimensional F-vector space L. For every X € Sm/k, x € X, T closed in X and v € Py,
define

K™ (k(2), Ay @ v) = K™ (k(@), A} @k det(v)]kw))

and
Cror(X KN o) = @@ KM% (k(y),A; @),

yexmnr

where X is the set of points of codimension n in X ([Mor12, Chapter 4]).
Now for every X € Sm/k, i € N, v € Px and T closed in X, we define the groups
required by Axiom 2 to be of the form

CHyp(X,0) = H(Chsr(X; KMV;0)).

Then, Axiom 3 just comes from the extension of supports in Chow-Witt groups.
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8.1 Operations without Intersection

Lemma 8.3. Let f : X — X' be a smooth morphism in Sm/k, and let x € X with
[k(x) : k(f(x))] < oco. Then we have an isomorphism

Q(A}) = Q(Wi/xr k) X k() Q(A} @ @ E(z))
(the Qs will be ignored in the sequel for convenience).

Proof. 1f k(x) is separable over k(f(z)), then we have a commutative diagram with exact
rows and columns

0 0
Qx/x1k(z) == Qx/x"|k(x)
0 Q, Qx/k|k() Qp(zyp —0

TE

0—— Q@) ® k(2) — Uxrypli(ray) @ k(T) — Q(p(ay)n © k(x) — 0

0 0
so we have an isomorphism
A; = wxyx i) @ (M) @ k(z))
which induces an isomorphism
Q(A) = Qwx/x'[iw) X)) QN ® k().

If the field extension is not separable, we only have the horizontal exact sequences and the
middle vertical arrows. But Q(wi(z)/k) = Q(Wi(f(2))/k ® k(2)) still holds ([Morl2, Lemma
4.1]), so we have isomorphisms

QA7)
—Q(Wi(a)/k) X Q(w,?(x k) X Q) QA7)
—Q(Wk(a)/k) XQk(z)) QWi /k ke )
—Q(Wk(x)/k) X Q(W)V(/X'|k(x ) XQUi(x)) Q(WX'/k|k(f ® k(z))
— QW) /k) X Qk(x)) QWX xk(2) XQUka)) QN () @ k(ﬂﬂ)) XQi(x)) @(Nj(z) ® k()
—Q(wWr(@) /1) XQ(k(x) QW x k() XQi(ay) Qwy ) k) QN ® k(2))
—Q(wx/xr[kw)) X Qi) RNy ® k().

This coincides with the isomorphism we obtained in the case of separable field extension
by applying Theorem 3.1, (2) to the digram above. O]

Lemma 8.4. Let f: X — X' be a closed immersion in Sm/k and let x € X (so that
k(x) = k(f(x))). Then we have an isomorphism
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Proof. This follows by the following commutative diagram with exact rows and columns

0 0
0 Q, Qx| k(@) — Qp(a) e —— 0
|
0 Q) Qxr /e k(f () — Qe —— 0
Ny xli@) == Ny x:lv@)
0 0

]

Lemma 8.5. Let f : X — X' be a smooth morphism in Sm/k, and let x € X with
codim(z) = codim(f(x)). Then, we have an isomorphism

Qp = Q) Oniray) k(2)-

Proof. The cotangent map
Qf(a) Or(s(ay) k(x) — L

of f is injective and the two vector spaces have the same dimension codim(z). O

Lemma 8.6. Let X1, Xy € Sm/k, x1 € Xy, x5 € Xo and let y be the generic point of
some component of T; X T3. Then we have an isomorphism

Proof. We have the following commutative diagram with exact rows and columns (same
if we exchange X; and X5)

0 0 0

0—— Qs ® k(y) —— P10 sk lkw) — G Qayplre) —— 0

y Qx1 %Xk k() — Qarxaz/k k) — 0

0 0, 0

where p; : X1 x Xo — X, and ¢; : 71 X T3 — T; are the projections and Qﬁxﬁ/kmy) =
Q7| k(y) - O

Definition 8.4. (Aziom 8) Let f : X — X' be a smooth morphism, and let x € X with
codim(x) = codim(f(z)). For any v € Px, we have an obvious morphism

R (R(f(2)), Ajey @ v) — K™ (k(2), AL @ f*v)
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by Lemma 8.5. This induces a pull-back morphism ([Fas08, Corollaire 10.4.2])
f*: CHp(X' v) — CH oy (X, £*(v))
for every T € Z™(X). It is functorial with respect to v.

Remark 8.1. The pull-back along closed immersions is much more difficult and we will
discuss this in Section 8.2.

The following proposition is obvious.

Proposition 8.2. (Aziom 9) The pull-back between smooth morphisms is functorial and

(1) = 1.

Definition 8.5. (Aziom 11) Let f : X — X' be a smooth morphism and let C' €
745 (X)) be finite over X'. We define the push-forward (Proposition 8.6)

’L+f

f OHC’ (X, f*U — TX/X/) —_— CHf(C) (X/, 'U)

as the composite for every x € C' N X +ds)
B (k(2), A ® [0 © wxxe) —— Ko™ (k(z), Wi @ (M) © k() @ f*0 © wxyx)
T’":E;Ez»l

where the horizontal arrow s induced by Lemma 8.3, while the vertical arrow is the trace
map composed with the isomorphism of virtual vector bundles cancelling the first and last
bundle. The push-forward for smooth morphisms is functorial with respect to v.

It’s clear by definition that Axiom 20 is satisfied.

Definition 8.6. (Aziom 13) Let f : X — X' be a closed immersion and let C €
ZHd1(X). We define the push-forward (Proposition 8.7)

Z+f

f CHC (X, NX/X’ + f*’l]) — C/T]-;[;(C)<X/, 'U)

by the isomorphism induced by Lemma 8.4

Ko™ (k(x), A} ® detNx/xr @ frv) —— K™ (k(f(x)), A,y @ v)

for every x € C N X4 The push-forward for closed immersions is functorial with
respect to v.

Remark 8.2. Suppose that f : X — X' is a morphism of schemes and that C €
745 (X)) is such that C =T for some x € X. Suppose further that C is also closed in

X'. Then, we have an exact sequence
* * .
if fis a closed immersion, we have an exact sequence
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So, we can identify 0 with Nz/x|pw) since the latter satisfies the same exact sequences
when C' 1s smooth. Hence in the context above, the push-forward associated to f with
support C is completely determined by the composite

Neyx + fvle = Tx/x'le — Tx)x'le + Neyy + fvle = Tx/x/|le — Neyy + [l
in case [ 1s smooth and by the isomorphism
Neyx + Nxyxi|le + fvle — Neyy + fvle

if fis a closed immersion.

This inspires us to convert equations of twisted Chow-Witt groups into equations of
virtual objects. Then use the method described in Chapter 3. This is the main idea we
will use in this chapter.

We now explain the differentials in the Rost-Schmid complex. Suppose that X € Sm/k
and that Y = 3 for some y € X. Let further Z = Z for some z € Y and v € Zx. We
now define the differential

O K) (k(y), Ay @ v) — KW (k(z), AL @ v).
Suppose at first that Y is normal. Then the exact sequence
L /Iy — Qxily — Qv — 0
is also left exact at the stalk of z, and we have a commutative diagram with exact rows

0—— Iy /I§ k) — Qx/nlbz) —— Qyvyileez) —— 0

y l

0—— I7/12 k) — Qxulez) — Qz/uluz) — 0.

The map i is injective with cokernel m, / mﬁ, where m, is the maximal ideal of Oy,,. Thus,
we have an exact sequence

Now choose a free basis a of (Iy/I%)Y, e of (m,/m?)¥ and t of det(v),. Hence a is also

a free basis of QO = (Iy/I3)" |k and (e, a) is a free basis of Qf = (I7/1%)"[x() by the
sequence above. We define the map 0 by

K (k(y), Ay @v) — KW (k(2), AL @)
SRa®t — 0is)®(eNa)®t

where 0¢ is the usual partial map for Milnor-Witt groups. This map is independent of
the choice of a,e,t. B

In general, let Y be the normalization of Y with morphism 7 : ¥ — Y and let
{zi} = 77 1(2). We have an isomorphism (the same for z)

Ay = Wik @ W lkw)-

Now fix z;. We find that QO17 K satisfies

Qog. /k ® k(y) = Quy)/k-
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Also, we have an exact sequence
0 — ms,/m2 —> Qoy,%_/,c ® k() — Qe — 0.
So, choose a free basis e; of (m.,/m2)", ¢; of QO?,zi/k’ d of (2% ;). and [ of det(v),. We
define 0; by the following composite
K™Y (k(y), Ay @ v)
— K0 (K (y), wy)n © Wx/k @ V)

— I k(1) (me, /m2)Y @ (o e @ k(%)) ®ie (Wx i) @) Vo))
— KO (R (21), Wk b @iz (Wxalkis) @neo) o))
— KO (R (2), (Wi n @ F(20)) Ok (Wxlk(z) @nz) vlres)))

), (

(
(
(
— KO (K (21), (Wh()/k Onz) Wxalkz) Onz) Vi) Onz) k(20))
(2)s Whz)/k @) Wxsalk(z) ®k(z) Vi(z))
(2), A ®v),

a

rrow is defined by
5RcRARV/I—05(s)®e® (1) ®d®lL,

which is independent of the choice of e;. Then we define 0 = > 0;. This definition
coincides with the definition just given when Y is normal by applying Theorem 3.1, (4)
to the following commutative diagram with exact columns and rows

0 0

0 —— Tzskl(z) — Ty/klbz) —— (mz/m3)Y ——0

0 —— Tskluie) — Txsklie) — (12/1%)" sy —— 0

(Iy J13)Y |k(z) == (Iy / I3")" |r(2)

0 0.
Remark 8.3. Here we would like to treat a kind of linearity of 0Y. Let s € K} (k(y), Aj®

v).

1. Suppose that f € Oy, and that n =0, we want to show that

O2([fls) = [f10%(s).
It suffices to show the formula for each 0;. We see that 0; = TTZ((Z) o 07 and

05 ([f]s) = €[ f]05i(s). Suppose that 0% (s) =< a >n. Then

k zZi T
Trkgz))(e[f] <a>mn)

:Tr:g;)((< f>—-<1>)<a>)
=(<f>-<1 >)Tr,’jéj’)')(< a>)

:[T]TTZEZ)(< a>n).

Then the claim is proved.
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2. If we have another line bundle .# over X and m is a free basis of M, (so it’s also
a free basis of M, ), we have

0Z(s @m) = 0(s) @ m.

We note nevertheless that this doesn’t hold for a general free basis of M. indeed,
if we replace m by \-m, where \ € k(y)*, then \ plays a role in the computation of
the residue maps.

Remark 8.4. It’s obvious that any morphism vy — vy in Px will induce an isomor-
phism between the corresponding Rost-Schmid complexes.

Definition 8.7. (/CF18]) Let X, € Sm/k and let x, € X, for a = 1,2. Let y be the
generic point of some component of Ty X Tz. For every s, € KNV (k(x,), A%, ® v,), we
define

s1% 52 = e(pi(vn) p3(AL,)) (03 (51) @ pa(s2)) € By I (), Ay © (97 (01) + p3(02))),

y

where p; : § — T; is the projection (note the use of Lemma 8.6). It is called the exterior
product between s; and sy. The exterior product is functorial with respect to twists and
extension of supports.

We will denote p}(vy) + p3(v2) by vy X v, for convenience.

Now we focus of a special case of the proof that the right exterior product with an
element in Chow-Witt groups (with support) is a chain complex map between Rost-
Schmid complexes, while the left exterior product is not.

Proposition 8.3. Let X, X' € Sm/k, v € Px,v' € PxrandletY € Z(X), T € Z7(X')
be smooth. Suppose that 5 € é\f{;(X’,v’). Then the following diagram commutes

Dacroery© KM (k(s), AL ® (0% V) =25 Bre xnxnyirson KW (k(u), A% @ (v x v')) .

Txﬁ Txﬁ

Dyeyo KW (k(y), Ay @ v) 4 Doevnxtn K (k(2), Ak @ v)

That is, for every B € ﬁ;(X’,U’) and o € ®yey o K" (k(y), A; @ v), we have

I(a x B) =0(a) x .

Moreover, we have ‘
(B x a) =< —1 >IHExY) 55 (a).

Proof. We may assume that Y and T are irreducible. We check the commutativity after
projecting to each u € (X x X’)*++1) It suffices to let u be a generic point of Z x T, where
2z €Y N XD since otherwise both terms vanish. Set Z = Z. We have a commutative
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diagram with exact columns and rows (we write X x Y by XY for short)

0 0
Nzryyr =——= Nz1/vT
0 —— Nzr/x1 — Nzr/xx» — Nxr/xx'| 20 —— 0

]

0 —— Nyr/x7|zr — Nyr/xx'|zr —— Nyr/yx/|zr —— 0

0 0.

We have projection maps p; : ZT — Z and py : ZT — T. By Theorem 3.1, (1), we
have a commutative diagram

PI(Nz/y + Nyyx|z +v|z) + p5(Npyxr + ' |7) —— 01 (Nz)v) + Nyr/xx:|zr + pi(v|z) + p5(V'|7)

l l

PI(Nz/x +v|z) + 05(Npyx +'|7) Nzryr + Nyryxx:|zr + pi(v|z) + p5 (V')

l l

Nzrxr + pi(v|z) + Nyryy x| zr + p5(V'|r) ———— Nzr/xx: + pi(v]z) + p5(v'| 1),

which gives the first equation. For the second one, we compute directly using the first
equation using Proposition 8.4 (which still holds in this context):

o6 x a)
—9(< -1 < (i+rkx (0) (G+rky (1)) c(qivr, ghvs) (o x B))
— < 1 > (rkx @) G+rkx () c(qivr, Gve)(9(a x B))
= < —1 SRtk ) o(gm | gi,)(0(a) x )
= < —1 >3k ) 5% 9(a),
where ¢1, ¢ are the respective projections of X x X’ on the corresponding factor. O]

Definition 8.8. The exterior product of Definition 8.7 induces a pairing

———_ni+n2

é\.JH;I(Xl,Ul) X C/'\H/ZE(X27U2) — CHT1><T2 (Xl X X27U1 X UQ)

for every X, € Sm/k, T, € Z"(X,) smooth and v, € Px, for a = 1,2 by Proposition
8.3. It’s called the exterior product between Chow-Witt groups.

Proposition 8.4. (Aziom 5 and 6) In the context above, the exterior product is associative
and satisfies

i X sy = —1 etk O)eotim(ez) ks ) (i (05), i (01)) (52 X 1)
where s, € Cf’\ﬁ;:(Xa,va).

Proof. Associativity comes from Definition 3.3, (3) and the second statement follows from
the definition of the commutativity isomorphism in Proposition 8.1. O
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Proposition 8.5. (Aziom 10) Let f, : Y, — X, be smooth morphisms in Sm/k for
a=1,2. Then, we have

(1 X f2)"(s1 x s2) = fi(s1) X f3(s2).
Proof. This follows from Lemma 8.5 and Lemma 8.6. O

Now, we would like to prove a special case that the the push-forwards defined in
Definition 8.5 and Definition 8.6 form a chain complex morphism between Rost-Schmid
complexes, just to explain how to treat the twists.

Proposition 8.6. Suppose that Z CY C X are schemes with X and 'Y smooth. Suppose
that Y = G in X and that Z = Z in' Y for some z € Y. Suppose moreover that
f: X — X' is a smooth morphism, that v € Px: and that Y is also a closed subset of
X'. Then we have a commutative diagram

KXY (k(y), Ay @ [0 ® wxyxo) = K (k(2), AT @ f*0 @ wxx0)

| |

KW (R(f(y))s Ny ® v) —— KTV (k(f(2)), Ajy © 0).

Proof. We have the following commutative diagram with exact rows and columns

0 0
Nyyy === Ng)y
O—>TX/X’|Z—>NZ/X NZ/X’ 0

O—>TX/X’|Z—>NY/X|Z—>NY/X’|Z—>0

0 0.

Now the statement is to prove that the following diagram commutes

Nzyy + Ny)x|z + fv|lz = Tx)x'|z —— Nz/v + Tx/x'|z + Nyx'|z + f*0|z — Tx)x/|z

| l

Nzyx + fvlz = Tx/x|z Nzy + Ny x|z + fv|z
Tx/x'|z + Nzyxo + [z = Tx/x/|z Nyz/xi + f*vlz.

We have the following commutative diagrams

Tx/x/|z + Nzyxr + fvlz — Tx/x'|z Nyzxr+ f*vlz

T T

Tx/x'|z + Nzyy + Nyyxi|z + [*vlz — Tx)x/|z — Nzyv + Ny/x/|z + f*v|z
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Nz;y + Nyyx|z + fvlz — Tx/x'|z —— Nzv + Tx/x|z + Ny,x|z + |z — Tx/x'|z

J

Nzjx + fvlz —Tx/x|z Tx/x'|z + Nzjy + Nyyxi|z + [z — Tx/x'|z
Tx/x'|z + Nzyxr + fvlz — Tx/x'|z

where the second one comes from Theorem 3.1, (3). Then, the result follows by combining
the two diagrams above. O]

Proposition 8.7. Suppose that Z CY C X are schemes with X and'Y smooth. Suppose
thatY =5 in X and that Z =Z in'Y for z € Y. Suppose moreover that f : X — X'
15 a closed immersion and that v € Px.. Then we have a commutative diagram

KYW(k(y), Ay ® detNx/x @ f*v) —0 L KMW (k(2), A* @ detNx/x: ® f*v)
f*l f*l
XY (k(f(y)), Ay ® v) ——2—— KMW (k(f(2)), A}y @ v).

Proof. The diagram commutes because of the following commutative diagram by Defini-
tion 3.3, (3)

Nzy + Ny/x|z + Nx/x|z + f*v|z —— Nz)x + Nx/x/|z + f*v|z

l l

Nzy + Ny)xi|z + [z Nyjxi + fvlz.

[
Proposition 8.8. Let XLy 2.7 be morphisms in Sm/k, v € Pz and let C €
Zi+dgor (X).
1. (Aziom 12) Suppose that f, g are smooth and that C' is also a closed subset in Z.
Then the following diagram commutes
Ni+dgof " Ni_"dgof * *
CHe (X, (g0 f)'v—=Txz) — CHe (X, (go f)v— ["Ty/z — Txyv)
f*

(gof)« 7t ¥
CH (Y, g0 — Ty2)

Gx
CH 0y (Z,0).

2. (Aziom 14) Suppose that f, g are closed immersions. Then, the following diagram
commutes

Ni+dgo * Ni""dgo * *
CHg (X, Nx/z + (go f)v) — CHg "' (X, Nxjy + f*Nyjz + (g0 f)*v)
I+

(9of)- it .
g CHf(Cg)(Y, Ny;z + g*v)

gx*

CH 50y (Z;v).
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3. (Aziom 19, (1)) Suppose that f is a closed immersion, that g and go f are smooth
and that C' is also a closed subset of Z. Then the following diagram commutes

—itdyes ——itdyo

CHg (X, Nxy + frgv— f*Ty;z) — CH (X, f*g*v+ Nx)y — f*Ty/z)

. |

NZ—‘rdg % Ni+dgo * %
Hpon (Y, 90 — Tyyz) CHe (X, frg™v — Tx/z)

gx

CHy(pcp(2,v)-
4. (Azxiom 19, (2)) Suppose that g is smooth, and that f and gof are closed immersions.
Then the following diagram commutes

~ypitdgos * % * ~pitdgor * * %
CHC (X,NX/y+ng—ny/Z)—>CHC (X,—f Ty/z+NX/y+fgv)

: |

—itd i} —itdye .
CH o) (Y,9"v — Tyyz) CHe (X, Nx/z + f*g*v)

gx

CHy(s(0)(Z,0).

Proof. 1. This follows from the following commutative diagram

Neyx + frg*vle — Txz|e Neyx + f*g*vle — f*Tyvizle — Txyvle

Tx/yle + Neyy + frgvle — f*Ty)zle — Txyvle

Neyy + frg*vle = f*Tyiz|c

[*Tysz|lc + Neyz + f*g*vle — f*Tyz|c

Tx/zlc + Neoyz + f*g*vle — Txyzle Neyz + frg™vlc
using Definition 3.3, (3).

2. Essentially the same as in (1).
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3. We are going to prove that the following diagram commutes

Neyx + Nxyyle + f*g*vle — f*Ty/z|lc ———— Neyx + f*g*vle + Nxyvle — [ Tyvizle

Neyy + frg*vle — f*Tyzlc Neyx + f*g*v|le + Nxyvle — Nxyvle — Tx/zle
Tyzlc + Neyz + f*g*vle — f*Tyviz|c Neyx + [*g*v|e — Txyzle
Neyz + frg*vle Tx/zlc + Neyz + frg*vle — Tx/zle

Let A=Tx/z|c+Nx)v|c+Ne/z+f*g*v|c—Nx)vle—Tx/z|c. We have commutative
diagrams

*Tyizlc + Neyz + f*g*vle — f*Tyiz|c jj
Neyz + f*g*vle Tx/zlc + Neyz + [Fgvle — Tx/zle

Neyx + Nxyyvle + f*9*vle — Nxyvle — Tx/zle
Neyx + frg*vle — 7>A

l

Tx/z|lc + Neyz + g™ vle — Txyzlc-

Furthermore, there is a commutative diagram with exact rows and columns

0 0
0——Tx/zlc — NC:/X Ngyz 0
0—— f*Ty)z|lc — Neyy Ne¢yz 0
Nx/yle == Nx,v|c
0 0

and by Theorem 3.1, (2), we have a commutative diagram

Neyx + Nxyvle + [fg*vle — f*Ty/z|lc ——— Neyx + Nxyvle + f*g*vle — [ Tyv)z|c

l |

Neyy + frg*vle — f*Ty/zlc Tx/zlc + Neyzle + Nxyvle + ffg*vle — Ty zle
f*TY/Z’C + N¢yz + [rg*vle — f*TY/Zlc A.

The proof follows easily.
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4. We are going to prove that the following diagram commutes

Neyx + Nxyyle + ffg*vle = f*Tyv/z|lc ————— Neyx — [*Tyyzle + Nxyvle + f*g*ve

l

Neyy + f*g*vle — f*Ty)zlc Neyx — [Tyizle + [*Tyzle + Nxjzle + f*g*v|e
*Tyzlc + Neyz + f*g*vle — f*Tyz|c Neyx + Nxyzle + 9" v|e

R

We have a commutative diagram

Neyz + f*g*vle.

Ty)zlc + Neyz + g™ vle = f*Tyvizlc — [ Tyviz|lc + Neyx + Nxjzle + 9™ v|le = f*Tyzle

l l

Neyz + f*9*vle Neyx + Nxyzle + frg*vle.

Furthermore, there is a commutative diagram with exact rows and columns

0 0

[ Tyzlc == f*"Tv,z|c

0_>NC/X —)Nc/y—>Nx/y’0—>0

0_>NC/X —)NC/Z —>NX/Z’C—>O

0 0.

By Theorem 3.1, (3), we have a commutative diagram

Neyx + Nxyvle + f*9*vle — f*Tyv/zlc —— Neyx + [ Tyvizle + Nxjzle + 9" vle — f*Tyvz|c

|

Neyy + frg*vle — [Ty zlc

l

[Tyvizlc + Neyz + o™ vle — f*Tyvizlc — [Ty z|lc + Neyx + Nxjzle + fr9™v|e — f*Tyzle

and the proof follows.
]

Proposition 8.9. (Aziom 19, (3)) Suppose that we have a Cartesian square of smooth
schemes
X2 X

bl

Y ——Y,
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where u is smooth and f is a closed immersion: Let s € Py and let C € Z"HdsTde(X)
be also closed in'Y . Then the following diagram commutes

——n+d +du n+u
CHC ! (X/ NX//yf—i—gus—g Ty//y)—>CH (XuS—Ty//y)

—~—n+d+dy ——n
CHC ! (X,,U*NX/Y +u*f*8 - TX//X) CHU(Q(C))<Y7 S)

Vs /
fa
n+ f

Proof. We are going to show that the following diagram commutes

NC/X’ + NX’/Y/|C —+ g*u*s|c — g*TY’/Y|C NC/Y’ + g*u*s|(; — g*TY’/Y|C
Neyxr +v*Nxyvle + g u*sle — Txrxle 9Ty vle + Neyy + g us|le — ¢* Ty v e
Txi)x|c + Neyx +v*Nxjyvle + g u's|ec — Txiyx e Neyy + g u*s|c

NC’/X + U*NX/y|C -+ g*u*s|c.
We have a commutative diagram with exact rows and columns

0 0
Txi/x|o —— ¢*Ty v o
0—— NC/X/ E— NC/Y’ E— NX’/Y’|C’ —0

!

0 NC/X NC/Y U*NX/Y|0—>O

0 0.

So, we have a commutative diagram by Theorem 3.1, (1)

Neyy: Neyxr + Nxjyrle
9Ty vlc + Neyy Txi/x|c + Neyx + Nxiyyile

l /

9Ty vlc + Neyx +v*Nxyyle.

Then the statement follows easily from the data above. n
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Proposition 8.10. Suppose that we have a Cartesian square of smooth schemes
X =X
o
Yy’ —-Y.
1. (Aziom 15) Suppose that f, u are smooth, that s € Py and that C € Z"T4(X) is
a closed subset of Y. Then the following diagram commutes

——n+d » ——n
CHe (X, f's — Txyy) —2—— CH Yy (Y, 5)

ll}* J{u*
n+df

CH 1 c)(X ’,v*f*s—U*TX/Y)LC/*\ﬁZ(v_l(C))(Y’,u*s).

2. (Aziom 16) Suppose that [ is a closed immersion, that s € Py and that C €
Z"+di(X). Suppose moreover that u is smooth. Then the following diagram com-

mutes
——n+d

CHy' (X, Nxyy + f*s) ——— CH Yy (Y, 5)

s J 1o

CH —1(0)(X v NX/Y"—U f S>_>CHg(v e ))(Y,u 3).

Proof. 1. We have a commutative diagram by functoriality of v* with respect to twists
Neyx + fvle = Txyvle Tx/v|lc + Neyy + f*sle — Txyvle
N’ufl(C)/X’ + U*f*8|v—1(c) - TX’/Y’ v=1(0) NC/Y + f*8|c

l l

TX’/Y"v—l + N, -1(C)/Y’ + ’U*f*S’v—l(C) — TX’/Y’ ’U—l(C) _— Nv—l(c)/yl -+ f*S’v—l(C)

2. We have a commutative diagram by functoriality of v* with respect to twists

Neyx + Nxyvle + fsle Neyy + f*sle
Ny-vyyxr + Nxoyyrlo-10) + 0" f8lo-1(0) — No-1(0)yv7 + 0" f*s]o-1(c)
]

Proposition 8.11. 1. (Aziom 17) Suppose that f : X — Y is a smooth morphism in
Sm/k, that v € Py and that C € Z" % (X) is a smooth closed subset of Y. Then,
for any Z € Sm/k, any v' € Pz and any D € Z™(Z), the following diagrams

commaute
CHA ™ (X, fv — Tyy) x CHp(Z,0)) —— CHe s " (X % Z,(f*v — Txjy) x 0')
n—+dr+m
fexid CHCX[J; (X X Z7 (f*U X ?}l> — TXXZ/YXZ)
(fxid)«
X —vtm

617?7]:(0)(}[7U> XC/’\HJ;(Z/U/) CHf(C ><D(}/VXZ ’UX'U)
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CH(Z,0') x CHe ™ (X, f*v — Tayy) — CHyod ™ (2 % X0/ % (f*v — Txyy))

CHp(Z,0') x CH ye(Y,v) ~ CHop, 1y (Z X Y0 x ).

2. (Aziom 18) Suppose that f : X — Y is a closed immersion in Sm/k, that v € Py
and that C is a smooth closed subset of X. Then for any Z € Sm/k, any v' € Py
and any D € Z™(Z), the following diagrams commute

——n+dy ——n+dg+m

CHp (X, Nxyy + fv) x CHp(Z,0') == CHgpy (X x Z,(Nx)y + f*v) X v')

f*xidl (fxid)*l

~Ir e —~—n+m

CH (Y v) x CHpp(Z,0') . CH jcyup(Y X Z,0 X 0')
7 m —n n+dr+m
CHp(Z, V) x (JHC "(X,Nxjy + fro) —=—CHp.b (Zx X, v x (Nxjy + [*v))

——n+ds+m
idxfe CY}IDXCf' (Z X X, (U’ X f*v) + NX><Z/Y><Z)
(idx )«
C/’\[f[g(Z, v') X Cf'\ﬁ[;(c)(ya v) . Cf'\ﬁr;;f W(Z x Y, v xv).

Proof. We have projections p; : C x D — C'and py : C' x D — D.

1. For the first diagram, we are going to prove that the following diagram commutes

(Neyx + [*vle = Txyvle, Npjz + V'[p) ——pi(Neyx + [*vle = Txyvlc) + p3(Npsz +v'|p)

f*l l

(Neyy + f*vle, Npjz +v'|p) Nexpyxxz +0i(f*vle) +p3(V'|p) — Txxz/yxzloxp
l (fX’Ld)*l
pi(Neyy + f*vle) + 05(Npjz + v'|p) Nexpyyxz +pi(f*vle) + 05V |p).

We have a commutative diagram
(Neyx + ffole — TX/YlCa Npyz + V'|p) —>p>{(NC/X + f*vle = Txyvle) +p§(ND/Z +'|p)

a|

(Neyy + f*vle, Npjz +v'|p)
pi(Neyy + fvle) +p3(Npjz +v'[p)
and then we just have to show the following diagram commutes

pi(Neyx + [*vle = Txyvle) + p5(Npyz +9'|p)

(f)+p5(id)

Py (f+)+p5(id
Nexpyxxz +0i(f*v|e) +p3(v'|p) — Txxz/yxzloxp

(fxid)*l

i (Neyy + f*vle) + p5(Npyz +V'|p) —————— Nexpyyxz + 01 (f*v]e) + p5(v'|p).
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This follows from Theorem 3.1, (1) and the following commutative diagram with
exact rows and columns

0 0

pi(Tx/vle) = Txxz/vxzlexp

0 ——piNe/x —— Noxp/xxz — P5Npjz —— 0

*

0 ——piNe)y ——— Noxp/yxz ———P3Np;jz ——0

——n+d
For the second diagram, we suppose that o € CH f(X, f[*v — Tx/y) and that
peCH ZL(Z, v'"). Moreover, we have a commutative diagram

X« xxz2 4D

%

Yy« 2y x2Z

Then

(id x f)«(8 x o)
—(f X id)u(< —1 SOk W) oty — Ti), g (o)) (@ x B))
by Proposition 8.4
= < —1 Stk Nmarkz () (£ id), (e(pi(fv — Ty ), (")) (a x B))
= < =1 SR @Rz ) (f o id). ((e(pi(f70), p3(01) 0 (=P Txyv, p(v"))) (a X )

= < =1 S ONmEE2) (1 (0), 65 () ((F % id)o(e(=piTxv, p5(0) (@ x 5)))
by functoriality of push-forwards with respect to twists

— <« —1 >ntrky () (mtrkz(v) c(qy (v), q;(ful))(f*(a/) x ()
by the first diagram

=8 x fi(a)
by Proposition 8.4.

. For the first diagram, we are going to prove that the following diagram commutes

(Ne¢yx + Nxyyle + [*vle, Npjz +v") ——pi(Neyx + Nxyyvle + [fvle) +p3(Npjz + ')

| |

(Neyy + f*vle, Npjz +v') Newpyxxz + Nxxzyyxzloxp + pi(ffvle) + p5(v')
pI(Neyy + f*vle) + p3(Npyz + ') » Noxpyyxz + 01 (f*v]e) + p5(v').
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We have a commutative diagram

(Neyx + Nxyyle + f*v|e, Npjz +v') — pi(Neyx + Nxyyvle + f*vle) +p5(Npyz + ')

|

(Neyy + f*vleys Npjz +v)

l

pI(Neyy + f*vle) +p5(Npjz +').

(f<)+p3(id)

Hence we just have to show that the following diagram commutes

pi(Neyx + Nxyvle + f*vle) + p5(Npyz + ')

P} (f+)+p3(id l
Nexpixxz + Nxxzivxzloxp + 01 (f*v]e) + p5(v')

|

Pi(Neyy + frole) + p5(Npjz + ") —————— Nowpyyxz + pi(f*vle) + p5(v").

This follows fromTheorem 3.1, (2) together with the following commutative diagram
with exact rows and columns

0 0
0 ——piNg/x ——— Noxp/xxz ———DP5Npjz ——0

0 ——piNe¢)y ———— Nexp/yxz ———P3Npjz —— 0

21 (Nx/v|c) — Nxxz/vxzloxp

The second diagram follows by the same method as in the proof of the second
diagram of (1).

]

8.2 Intersection with Divisors

In this section, we discuss a special case of intersection, namely pull-backs along a divi-
sor with smooth support. The constructions here basically come from [CF18], but the
treatments of push-forwards are possibly different.

Definition 8.9. Let X € Sm/k and let D = {(U;, fi)} be a Cartier divisor on X . Suppose
that C € Z"(X), s € CHZ(X, v) and that dim(C N |D|) < dim(C'). Let

S= 84 @U@ Vg € By exin Ko™ (k(ya), A}, @)
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where s, @ U, @ Vg € Kyw(k(ya),/\;a ®v) and y, € X™. For every x € {y,} N X"+,
suppose that x € U; for some i (and then y, € U; also). Then, f; € O%, since y, & |D|
and consequently we have a well-defined element f; € k(y,). Set

ordy(D-s) = 37 (< —1 >em) [Fls, 0,6 fiow,) € K2V ((x), AL©.2(~D)@v).
TEYq
Then define
D-s= Y ordy(D-5s) € Dyexoin K™ (k(z), A} @ £(~D) @ ).
zeX (n+1)
It’s functorial with respect to v by Remark §.4.

Lemma 8.7. The definition of ord,(D - s) above is independent of the choice of i and f;
and
——n+1
D-s € CHegpp (X, Z(=D) +v).

Proof. For any other j and f; with x € U;, we have f;/f; € O% ,. Moreover, we have

> 0 (50 @ 0 @ v,) = 0

TEYa
- n
since s € CH(X,v). So we have

Zﬁga(5a®ua®fi®va) =0

TEYa

and
Z 0% (84 @ Uq ® fj @ Ug) =0
TEYa

by Remark 8.3, (2). Moreover,

[fi]8a ® U @ f; ® v,
((Fi/Fl+ < Fil fi > [fi)sa @ ua ® f; @ vg

[fj/fi]sa XU, ® fj K Vg + [fi]sa X Ug & fz & Vg-

Hence
D08 ([f])50 © ua ® f; @ va)
TEYa
:aga<2[fj/fi]5a D Ug & fj ® Ua) + 33“(2[%]% R Uy ® f; ® Ua)
TEYq TEYa
:aga<2[ﬁ]3a ® Uq ® fz ® va)a
TEYa

which shows that ord, (D - s) is well-defined.
If x ¢ |D|, then f; € Oy . So

ord;(D - s)

= Z o (< —1 >0lmve) [Fls, @ u, @ fi @ v,)
TEYq

— Z [Filove (< —1 >Hmua) g @ u, @ f; @ v,)
TEYq
by Remark 8.3, (1)

=0.
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Hence the support of D - s is contained in C'N|D].
Finally let’s prove that 9(D - s) = 0, where for every z, we denote >
the differential map 0 is then just (0.). For this, we prove that

Ou(D - s) := Z 05 (ord,(D -s5)) =0

zeX(+) uex

0Y by 0, and

Y,2€Y

for u € X"*+2)_If 4 € U;, then
ord;(D - s) = Z oV (< —1 > codim(ya) [fi]5a ® U ® f; @ va)

TEYa

by definition. So let t = > < —1 >dime) [fls, @ u, @ f; @ v,

S Blord(D-s)= Y &0.(1) = 0.0(1) = 0.

zeX(n+l) yex zeX (D) yex
[
Definition 8.10. (Aziom 8) Let X € Sm/k and let D be a smooth effective Cartier
divisor on X. Let i : |[D| — X be the inclusion and let Np,x = i*.Z (D) be its normal

bundle. Suppose that v € Px, that C € Z™(X) and that s € 6*7{2()(, v) and that
dim(C' N |D|) < dim(C). We have a push-forward isomorphism

—n ——n+1
i : CHepyp|(ID], 7" Z(D) + " Z(=D) + i*v) — CHepypy(X, Z(=D) + v).
Denote by s(Z (D)) the isomorphism i*v — *£ (D) +i* £ (—D) + i*v and define
i*(s) € CHcpyp(| D], 7"0)
to be the unique element such that
ix(s(L(D))(i"(s))) = D - s.
It’s functorial with respect to v.

Proposition 8.12. Let X, € Sm/k, v, € Px, and C, € Z"*(X,) be smooth fora =1,2.

Further, let o, € Cf’\ﬁZZ(Xa,va), Pa @ X1 X X9 — X, be the projections and let D, be
smooth effective Cartier divisors on X,. Then

(Dy-aq) X ag =pi(Dy) - (ag X ag)

and
c(piv, p3Z (—D2)) (o x (D2 - az)) = p3(D2) - (a1 X az).
Proof. We prove the first assertion. Since both sides live in the group
——n1tnat X
CH -1 (1pyncynps (co) (X1 X Xo, p1Z(=Dh) + (v1 X v2)),
it suffices to check their components at any generic point u in ¢; X t where t; € (|Dy| N
C)O ty € C’éo). Suppose that Dy = {(U;, f;)} and that ¢; € U;. At u, we then have

(Dl . Oél> X Q9
=0, (< =1>™ [fi] ® f; ® a1) X
=0(< —1>"[f]® fi @ 1) X ap

=0(< =1 >" ([fi| ® fi ® a1) X az)
by Proposition 8.3.

=0,(< —1>™ ([fi] ® fi ® a1) X ag)

=0u(< =1 >" (pi(fi)] @ pi(fi) © (a1 x a2))
=pi(D1) - (a1 X ag).
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For the second assertion, we exchange the role of X; and X5 as before:

c(piv, p3Z (—=D3)) (a1 X (Dy - az))

= < =1 >mark C)netrke (020 ¢(psy piog)((Ds - az) X o)
by Proposition 8.4

= < —1 >0k D)) netrk (v2) c(p3v2, piv) (p3(D2) - (a2 X a1))
by the first equation

= < =1 Sk OOk 2) g DY - (v, plor)(an X ax)
by the functoriality of intersections with respect to twists

=p5(D2) - (a1 X )
by Proposition 8.4.

]

Proposition 8.13. 1. (Aziom 17) Let f : X — Y be a smooth morphism in Sm/k,
C € Z™4(X) be smooth and closed in'Y, D be a Cartier divisor over Y with

dim(|D| 1 £(C)) < dim(f(C)) and a € CHu " (X, f*v — Txyy). Then
D fda) = f(f*(D) - a).

2. (Axiom 18) Let f : X — Y be a closed immersion in Sm/k, C € Z4(X) be
smooth, D be a Cartier divisor over Y with dim(|D|N f(C)) < dim(f(C)) and let

——i+d
aeCHy " (X, Ny)y + f*v). Then

D - fila) = fulc(L(=f"D), Nxyv)(f*(D) - @)).

Proof. 1. Both sides live in the same Chow-Witt group, so we check their components
at any generic point y of f(C)N|D|. Suppose that D = {(U;, f;)}, v € U;. We have
a commutative diagram

id, f+
(Z(~D)le, Neyx + Frole — Txpvle) S (2(=D)le, Neyy + fole)

l l

* id+fx *
L(=D)|c + Neyx + f*0lo — Txyvle —25 Z(=D)|e + Neyy + f*0le

l l

* f *
Neyx +Z(=D)|c + f*v|le = Tx/v|lc —— Neyy + Z(=D)lc + f*v]e.
At y, we then have

D fi(a)

=0,(< =1 >"[fi] ® f; ® fu())

=0,(< =1 > f([f(f)l © f*(fi) ® a))
by the diagram above

=f0y(< =1 > [f~(f)] @ f*(fi) ® a)
by Proposition 8.6

=[(f (D) - ).
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2. Both sides live in the same Chow-Witt group, so we check their components at any
generic point y of f(C) N |D|. Suppose that D = {(U;, f;)}, y € U;. We then have
a commutative diagram

" (id, fx) y
(Z(—=D)lc, Neyx + Nxyvle + ffvle) —— (ZL(=D)|c, Neyy + f*vle)

l l

id+ f«
g(—D)|c + NC/X + Nx/y|c + f*U|C i).,%(—DNC -+ Nc/y + f*U|C

l l

NC/X + Nx/y|c + g(_D”C —+ f*U|c LLNC/Y + g(_DHC + f*U|C.
At y, we then have

D fi(a)

=0,(< =1>'[f] ® f; ® fu(a))

=0,(< =1 > £((f(f)l @ f(f) ®a))
by the diagram above

=f.0,(< =1 > [f+(f)] @ f*(fi) @ a)
by Proposition 8.7

]

Now we are ready for basic formulas concerning pull-backs along divisors. We will use
the notation of Definition 8.10.

Proposition 8.14. (Aziom 10) For a = 1,2, let X, € Sm/k, D, be effective smooth
divisors over X,, v, € Px,, Co € Z"(X,) be smooth with dim(C, N |D,|) < dim(C,),
g € C’Hgi (Xa,vq) and iy : |D,| —> X, be inclusions. Then we have

Z.T(Oq) X Qg = (Zl X zd)*(a1 X 042)
a1 X Z;(ag) = (Zd X ig)*(al X Ozg).

Proof. We denote the projection X; x X9 — X, by p,. For the first assertion, it suffices
to check the equation after application of the isomorphism (i; X id), o s(:Z(p{D1)) on
both sides. We have

(ix x id).(s(Z(p1D1)) (i1 (1) X az))
=(i1 x id).((s(Z(D1))i1 (1)) x 2)
by bifunctoriality of exterior products with respect to twists
=i1(s(Z(D1))i1 (1)) X
by Proposition 8.11
=(D; - a1) X ag
=pi(D1) - (a1 X az)
by Proposition 8.12
=(in xid). (s(Z (p1D1)) (12 x id)" (e X a2))).

129



The second equation follows by exchanging the roles of X; and Xo:
aq X i5(aw)
= < ) (i, g i3 (02) X an)
= < —1 >mbrkx CO)2trkx, 02)) o(gxi2, | groy)((ip X id)* (o X )
= < —1 >mArkx )k, (02) () 5 jd)* (e(phvg, phvr) (ag X ay))
by functoriality of pull-backs with respect to twists
=(id X i3)" (1 X ).

Proposition 8.15. Suppose that we have a Cartesian square of smooth schemes
X =X
]
Y'Y,

where u is a closed immersion, dim(X') = dim(X) — 1 and dim(Y") = dim(Y") — 1.

1. (Aziom 16) If f is a closed immersion , s € Py, C € Z" % (X) is smooth and
dim(u='(f(C))) < dim(f(C)), the following diagram commutes

n+df

CHe' (X, Nxyy + f*s) ——— CH Yy (Y, 9)

J’U* \\(u*
——ntdy

CH —1(0)(X v NX/Y + v* f S)—>0Hg('u e ))(Y’,U*S).

2. (Aziom 15) If f is smooth, s € Py and C € Z" 4 (X) is smooth and closed inY,
the following diagram commutes

CHE ™ (X, f*s — Tx)y) ——— CH (Y, )
n+df l

* Lk * 9= ~Ir" *
CH 1oy (X 0" f*s = v Txyy ) —— OH 10 (Y, u™s).

Proof. The conditions give us a unique effective smooth divisor D (resp. D’) over Y (resp.
X) such that |D| =Y’ (resp. |D'| = X'). Moreover, we have D" = f*(D). It suffices to
check the equation after application of u, o s(Z(D)) on both sides.

——n+d
1. Suppose that a € C’HCJr f(X, Nx/y + [*s). We then have

us(s(Z(D))(u" fu(a)))
=D fi(a)
=f(c(Z(=D"), Nxy)(D" - o))
by Proposition 8.13, (2)
=f(e(Z(=D"), Nxv)(v(s(Z (D)) (v"(a)
=fu((c(v"Z(=D"),v"Nx/y) o s(L(D")))
=u,g:((c(v*"Z(D") +v* £ (-D"),v"Nx,y)
by Proposition 8.8
=u.(s(Z(D))(g:(v*(c))))

by functoriality of push-forwards with respect to twists.

)

o —~ =
4
* =
—
Q
—
~—
N
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—~—n+ds
2. Suppose that a € C’HCJr (X, frs — Tx/y). We then have

u(s(L(D))(u f.(a)))
:f*(DI ’ Oz)
by Proposition 8.13, (1)
=f (0 ((s(Z(D) (v (), 0" ZL(D) =" L(D') + 0" f*s — v"Txyv)))
=ux(9:((9"s(Z (D)) (v*()), g*u" Z (D) = g*u" Z(D) + v* f*s — Txryy)))
by Proposition 8.9
=u.(s(ZL(D))(g.v*(2)))

by functoriality of push-forwards with respect to twists.
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