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Abstract

In this thesis, we present a general framework to construct categories of motives and

build part of the six operations formalism for these categories. In the case of MW-motivic

cohomology, we prove the quaternionic projective bundle theorem and construct a Gysin

triangle, which enable us to define Pontryagin classes on Chow-Witt rings for symplectic

bundles. Applying these tools together, we compute the group of morphisms between

smooth proper schemes in the category of (effective) MW-motives.

Key Words: Correspondences, Generalized motives, Symplectic orientations.

Résumé

Dans cet article, nous présentons une approche générale pour construire des catégories de

motifs et établissons une partie du formalisme des six foncteurs pour ces catégories. Dans

le cas de la cohomologie MW-motivique, nous prouvons le théorème des fibrés quaternio-

niques et construisons un triangle de Gysin. Ceci nous permet de définir des classes de

Pontryagin sur les anneaux de Chow-Witt pour des fibrés symplectiques. Appliquant ces

outils, nous calculons le groupe des morphismes entre schémas lisses et propres dans la

catégorie des MW-motifs (effectifs).

Mots clés : Correspondances, Motifs généralisés, Orientations symplectiques.
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Chapter 1

Introduction

1.1 Background

Algebraic geometry is a profound and beautiful branch of mathematics which mainly
studies properties of (smooth) schemes. One of the main approach to this study is to
develop suitable cohomology theories, and algebraic geometers have spent lots of time
working on this. The first approach was the Chow ring (CHn(X)), defined by W. L. Chow
around 1956. The elements of that ring are just algebraic cycles, considered up to rational
equivalence. Much later, it was realized that these groups were in fact homology groups
of the so-called Rost-Schmid complex ([Ro96]) with coefficients in Milnor K-theory. The
essential operations in the Chow ring are in particular products, pull-backs and push-
forwards, which are in fact all defined at the level of this complex. Moreover, for any
smooth scheme X and any vector bundle V on X, we have a Thom isomorphism

CHn(X) −→ CH
n+rk(V )
X (V ) (1.1)

defined by the push-forward via the zero section of V . Using these isomorphisms, it’s
easy to calculate the Chow ring of a projective bundle P(V ) in terms of the Chow ring of
X, obtaining the so-called projective bundle theorem and its consequences, such as the
splitting principle ([Ful98]) and the existence of Chern classes of V with coefficients in
the Chow ring.

Based on the Chow ring, V. Voevodsky defined, in 2000, motivic cohomology of
(smooth) schemes ([MVW06]), relating to many fields such as K-theory, Milnor K-theory
and étale cohomology. This had many important applications, such as for example the
Milnor conjecture. The construction is based on the notion of finite correspondences,
which are special cycles and form the morphisms in the category Cork whose objects are
smooth schemes over k. This enables in turn, given a topology t (Nisnevich or étale)
on the category of smooth schemes, to consider t-sheaves on Cork, the so-called sheaves
with transfers. The category of effective motives DM eff (k) is just the localization of
the derived category of sheaves with transfers under the homotopy invariance conditions
(making X ×A1 and X equivalent) and the motivic cohomology group Hp,q(X,Z) is just
the pth hypercohomology of the motivic complex Z(q) constructed via the Tate twist. An
important fact is that

H2p,p(X,Z) ≃ CHp(X), (1.2)

recovering the original Chow groups (functorially in X) as motivic cohomology groups.
More generally, the general termHp,q(X,Z) corresponds to the higher Chow group CHq(X, 2q−
p) defined by S. Bloch ([V02]).

There are plenty of further developments of motivic cohomology beyond the basic
facts described above. First, there is the so-called Poincaré duality ([FV00]) for motives
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of proper schemes. This requires to stabilize DM eff (k), namely to formally invert the
Tate twist in DM eff , which is realized by the use of symmetric spectra. This, in partic-
ular, implies that the category of pure Chow motives, defined by Grothendieck, can be
contravariantly embedded into DM eff (k). This is the so-called embedding theorem. Sec-
ond, one can also construct a category CorS over any (smooth) scheme S, by considering
finite correspondences over S ([D07]). The same techniques as above yields the category
of effective (resp. stabilized) motives over S, denoted by DM eff (S) (resp. DM(S)).
Then one can consider a huge and powerful mechanism called six operations formalism
on the category of effective (resp. stabilized) motives, following an axiomatic approach
described in [CD09] and [CD13]. The first complete version of this formalism appeared
in the stable homotopy theory of schemes ([Ayo07]). It’s very similar and closely related
to the formalism in [CD09] and [CD13]. The former preserves more information but the
latter has the important property of being oriented ([MVW06], [CD13]) for any vector
bundle, which makes us possible to prove a projective bundle theorem in motivic coho-
mology as in the Chow ring and giving a Gysin triangle which is a motivic analogue of
(1.1).

Recently, some refinements of the original ideas of Voevodsky appeared. One of them

is based on the Chow-Witt groups C̃H
n
(X,L ), as defined by J. Barge and F. Morel

in 2000 and completed by J. Fasel. The original goal of these groups was to determine
whether a projective module has a rank one free module as a direct summand ([Fas08]),
a question out of range for ordinary Chow groups. Their definition parallels the fact
that Chow groups can be seen as some cohomology groups of the complex in Milnor
K-theory ([Ro96]), they are cohomology groups of the Rost-Schmid complex in Milnor-
Witt K-theory. A significant difference with the Chow rings is that they depend not only
on a smooth scheme X, but also on a line bundle L on that scheme, called the twist.
This phenomenon in the Chow-Witt rings is inherited from the Witt ring and it prevents
the Chow-Witt rings from being oriented, that is, there is no projective bundle theorem,
hence no Chern classes on the Chow-Witt ring ([Fas08]). It’s nevertheless an interesting
question to know whether it’s oriented only for symplectic bundles, i.e. if the quaternionic
projective bundle theorem as in [PW10] holds. If it’s the case, we can define Pontryagin
classes with coefficients in the Chow-Witt rings for symplectic bundles.

Mimicking the definition of ordinary motivic cohomology, one can obtain a category
of motives based on the Chow-Witt rings. This is the category of MW-motives as defined
by B. Calmès, F. Déglise and J. Fasel ([CF14], [DF17]). It is a better approximation of
the stable homotopy theory, compared with Voevodsky’s and the equation (1.2) also has
an analogue there. The basic constructions in MW-motivic cohomology are very similar
to motivic cohomology, where the correspondences are replaced by MW-correspondences,
but there is a quite subtle difficulty at each step, that is the calculation of twists in the
operations on Chow-Witt rings, such as product, pull-backs and push-forwards which
are necessarily more complicated than in Chow ring. The serious approach to that is to
regard those twists as elements in the category of virtual vector bundles ([Del87], [CF18])
and it’s a delicate job to implement all calculations under the formal rules of virtual
objects. This inspires us to axiomatize the idea of correspondences and get a general
method to construct motives, even for non-oriented cohomology theories. Furthermore,
to prove the quaternionic projective bundle theorem in Chow-Witt theory, one way is
to prove its counterpart in MW-motivic cohomology first. As a consequence, it gives a
computation of the Thom space of symplectic bundles in MW-motivic cohomology and
gives the corresponding Gysin triangle. Finally, we use all the tools we developed to
compute the group of morphisms in the category of (effective) motives between smooth
proper schemes.
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1.2 Main Results

1.2.1 Virtual Objects and Their Calculation

We provide the main tool for the calculation of virtual objects in Chapter 3, which makes
a serious approach to twists possible. Let’s denote by V (V ect(X)) the category of virtual
vector bundles ([Del87]) over X.

Theorem 1.1. (Theorem 3.1)

1. Suppose we have a commutative diagram of vector bundles over X with exact rows
and columns

0
��

0
��

K

��

K

��

0 // V1 //

��

V2
��

// C // 0

0 //W1
//

��

W2
//

��

C // 0

0 0.

Then we have a commutative diagram in V (V ect(X))

V2 //

��

K +W2

��

V1 + C // K +W1 + C.

2. Suppose we have a commutative diagram of vector bundles over X with exact rows
and columns

0

��

0

��

0 // V1 //

��

V2

��

// C // 0

0 //W1
//

��

W2
//

��

C // 0

D

��

D

��

0 0.

Then we have a commutative diagram in V (V ect(X))

W2
//

��

V2 +D // V1 + C +D

c(C,D)

vv

W1 + C

��

V1 +D + C

where c(C,D) is the commutation rule between C and D in the category of virtual
vector bundles.

3. Suppose we have a commutative diagram of vector bundles over X with exact rows
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and columns
0
��

0
��

K

��

K

��

0 // T // V1
��

// V2 //

��

0

0 // T //W1
//

��

W2
//

��

0

0 0.

Then we have a commutative diagram in V (V ect(X))

V1 //

��

T + V2 // T +K +W2

c(T,K)

vv

K +W1

��

K + T +W2

where c(T,K) is the commutation rule between T and K in the category of virtual
vector bundles.

1.2.2 Correspondences and Generalized Motives

We propose an axiomatic definition of correspondences in Chapter 4. Then given a cor-
respondence theory E, we establish in Chapter 5 the theory of sheaves with E-transfers.

In Chapter 6, we define the category D̃M
eff,−

(S) (resp. D̃M
−
(S)) of effective (resp.

stabilized) motives over a smooth base S by using bounded above complexes (contrary to
[CD09], [CD13]) and build part of its six operations formalism (⊗, f ∗, f#) in the general
setting.

In Chapter 8, we partially show that the MW-correspondences defined in [CF14] is
indeed a correspondence theory as we defined, by adopting a new perspective on the
push-forward in the Chow-Witt ring.

1.2.3 Symplectic Orientations and Applications

For any X ∈ Sm/S, denote by Z̃S(X) the motive of X in D̃M
eff,−

(S). In Chapter 7, we
prove the quaternionic projective bundle theorem for MW-motivic cohomology:

Theorem 1.2. (Theorem 7.4) Let X ∈ Sm/S and let (E ,m) be a symplectic vector
bundle of rank 2n+ 2 on X. Let π : HGrX(E )→ X be the projection. Then, the map

Z̃S(HGrX(E ))
π⊠p1(U ∨)i

// ⊕ni=0Z̃S(X)(2i)[4i]

is an isomorphism in D̃M
eff,−

(S), functorial for X in Sm/S. Here, U ∨ is the dual
tautological bundle endowed with its canonical orientation.

Hence we get the corresponding result in the Chow-Witt ring:

Proposition 1.1. (Proposition 7.11) Let X ∈ Sm/k, E be a symplectic bundle of rank
2n+ 2 over X and k = min{⌊ j

2
⌋, n}. Then the map

θj : ⊕
k
i=0C̃H

j−2i
(X)

p∗·p1(U ∨)i
// C̃H

j
(HGrX(E ))

is an isomorphism, where j ≥ 0, p : HGrX(E ) −→ X is the structure map and U ∨ is the
dual tautological bundle endowed with its canonical orientation.
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As an application, we can define the Pontryagin classes (in the Chow-Witt ring) for
symplectic bundles, as follows:

Definition 1.1. (Definition 7.11) In the above proposition, set ζ := p1(U
∨) and θ−1

2n+2(ζ
n+1) :=

(ζi) ∈ ⊕
n+1
i=1 C̃H

2i
(X). Define p0(E ) = 1 ∈ C̃H

0
(X), and pa(E ) = (−1)a−1ζi for 1 ≤ a ≤

n + 1. The class pa(E ) is called the ath Pontryagin classes of E . These elements are
uniquely characterized by the Pontryagin polynomial

ζn+1 − p∗(p1(E ))ζn + . . .+ (−1)n+1p∗(pn+1(E )) = 0.

As a consequence, we obtain a Gysin triangle for certain closed embeddings:

Theorem 1.3. (Theorem 7.6) Let X ∈ Sm/S and let Y ⊆ X be a smooth closed sub-
scheme with a symplectic normal bundle with codim(Y ) = 2n. Then we have a distin-
guished triangle

Z̃S(X \ Y ) −→ Z̃S(X) −→ Z̃S(Y )(2n)[4n] −→ Z̃S(X \ Y )[1]

in D̃M
eff,−

(S).

Finally, using the theorem above, the six operations formalism of Chapter 6 and duality
in the stable A1-derived categories ([CD13]), we can prove the following theorem.

Theorem 1.4. (Theorem 7.7) Let X, Y ∈ Sm/k with Y proper, then we have

Hom
D̃M

eff,−
(k)
(Z̃pt(X), Z̃pt(Y )) ∼= C̃H

dY
(X × Y, ωX×Y/X).

Throughout in this article, we denote by Sm/k the category of smooth separated
schemes over k ([Har77, Chapter 10]), where k is an infinite perfect field with char(k) 6= 2.
For any X ∈ Sm/k, we denote dimX by dX and for any f : X −→ Y in Sm/k, we set
df = dX − dY .
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Chapitre 2

Introduction

2.1 Contexte

La géométrie algébrique est une branche profonde et belle des mathématiques qui étudie
principalement les propriétés des schémas (lisses). Les géomètres algébristes se sont depuis
longtemps attelés à définir des théorie cohomologiques permettant d’étudier ces schémas.
Une des premières approches a été l’anneau de Chow (CHn(X)), défini par W. L. Chow
aux environs de 1956. Les éléments de cet anneau sont par définition des classes de cycles
algébriques sur X à équivalence rationnelle près. Ces groupes sont apparus beaucoup plus
tard comme étant la cohomologie du complexe Rost-Schmid ([Ro96]) associé à la K-théorie
de Milnor. Les opérations essentielles de l’anneau de Chow sont en particulier le produit,
le push-forward et le pull-back. Pour tout schéma lisse X et tout fibré vectoriel V sur X,
nous avons également un isomorphisme de Thom

CHn(X) −→ CH
n+rk(V )
X (V ) (2.1)

défini par le push-forward le long de la section nulle de V . De plus, il est facile de calculer
l’anneau de Chow du fibré projectif P(V ) en termes de l’anneau de Chow deX pour obtenir
le fameux théorème de fibré projectif et le principe de scindage associé. Ce théorème
permet également de définir les classes de Chern de V sur l’anneau de Chow.

Sur la base de l’anneau de Chow, V. Voevodsky a défini en 2000 la cohomologie mo-
tivique ([MVW06]), obtenant une nouvelle et magnifique théorie cohomologique associée
aux schémas lisses, permettant de relier de nombreux domaines tels que la K-théorie,
la K-théorie de Milnor et la cohomologie étale. De nombreuses applications importantes
ont découlé de son approche, comme par exemple la preuve de la conjecture de Milnor
(prix Fields). La cohomologie motivique est basée sur la théorie de l’intersection ([Sha94]),
plus précisḿent sur la théorie associée à certains types de cycles algébriques, appelés cor-
respondances finies. Ceci permet d’obtenir une catégorie Cork dont les objets sont les
schémas lisses sur k et les morphismes des correspondances finies. La prochaine étape est
de considérer les faisceaux sur cette catégorie, pour une topologie fixé t (Nisnevich ou
étale), appelés les faisceaux avec transferts. La catégorie des motifs effectifs DM eff (k)
est simplement la localisation de la catégorie dérivée de faisceaux avec transferts sous la
condition d’invariance par l’homotopie (i.e. forçant X×A1 à être homotope à X). Dans ce
contexte, le groupe de cohomologie motivique Hp,q(X,Z) n’est autre que le p-ième groupe
d”hypercohomologie du complexe motivique Z(q), construit en considérant des produits
du twist de Tate. Un théorème important spécifie que

H2p,p(X,Z) = CHp(X), (2.2)

récupèrant ainsi les groupes de Chow d’origine. Cette relation est compatible avec les
opérations de CH citées ci-dessus. De plus, le terme général Hp,q(X,Z) correspond au
groupe de Chow supérieur CHq(X, 2q − p) défini par S. Bloch ([V02]).
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Nous pourrions encore citer beaucoup d’autres développements de la théorie des mo-
tifs esquissée ci-dessus. Une des plus marquantes est une sorte de dualité de Poincaré
([FV00]) pour les motifs des schémas propres sur la base, mais cela nécessite de stabiliser
la catégorie DM eff (k), à savoir d’inverser formellement le twist de Tate dans DM eff (k).
Ceci est réalisé à l’aide de spectres symétriques. Une des conséquences de la dualitté est
le fait que la catégorie des motifs effectifs de Chow, définie par Grothendieck, peut être
vue comme une sous-catégorie pleine de DM eff (k). Plus généralement, il est possible
de construire sur tout schéma lisse S une catégorie CorS qui considère les correspon-
dances finies sur S ([D07]) et une catégorie des motifs effectifs (resp. stables) sur S, notée
DM eff (S) (resp. DM(S)). On peut lier ces différentes catégories (effectives ou stables) à
l’aide d’un ingrédient puissant, appelé formalisme des six opérations, suivant une approche
axiomatique expliquée par exemple dans [CD09] et [CD13]. La première version complète
de ce formalisme est apparue dans la théorie de l’homotopie stable des schémas ([Ayo07]).
Le formalisme de [CD09] et [CD13] est très proche de celui d’Ayoub, mais des résultats
plus forts sont disponibles du fait que les catégories considérées ont plus dee structures.
En particulier, le théorème du fibré projectif est vérifié par la cohomologie motivique sur
une base, ce qui permet d’obtenir le triangle de Gysin qui est un analogue motivique de
(2.1).

Récemment, une théorie cohomologie plus raffinée est apparue, appelée anneau de

Chow-Witt (C̃H
n
(X,L )). Elle a été définie par J. Barge et F. Morel vers 2000 et

complétée par J. Fasel quelques annés plus tard. Son objectif initial était de déterminer
si un module projectif avait un facteur libre de rang un ([Fas08]) en utilisant les classes
d’Euler. Ce problème ne peut pas être attaqué en général en utilisant l’anneau de Chow.
La définition des groupes de Chow-Witt imite le développement de [Ro96], à savoir que
ces groupes sont des groupes de cohomologie du complexe de Rost-Schmid associé à la
K-théorie de Milnor-Witt. Une différence significative par rapport à l’anneau de Chow
est que les groupes de Chow-Witt ne dépendent pas seulement d’un schéma lisse X, mais
également d’un fibré en droites L sur ce schéma, appelé le twist. Ce phénomène de l’an-
neau de Chow-Witt est hérité de l’anneau de Witt et empêche l’orientation de l’anneau de
Chow-Witt, c’est-à-dire qu’il n’y a pas de théorème du fibré projectif, et pas de classe de
Chern sur l’anneau de Chow-Witt ([Fas08]). Néanmoins, il était assez clair que l’anneau de
Chow-Witt devait satisfaire une propriété d’orientation plus faible, i.e. qu’il était orientée
uniquement pour les fibré symplectiques. En d’autres termes, les spécialistes suspectaient
que le théorème des fibré projectifs quaternioniques ([PW10]) était vérifié, impliquant
l’existence de classes de Pontryagin, associées aux fibrés symplectiques, à valeurs dans
l’anneau de Chow-Witt.

Récemment, des catégories motiviques instables et stables basées sur les groupes de
Chow-Witt ont éte définies par B. Calmès, F. Déglise et J. Fasel ([CF14], [DF17]) obtenant
en particulier une nouvelle théorie cohomologique appelée cohomologie MW-motivique.
Ces catégories de motifs sont une meilleure approximation de la théorie de l’homoto-
pie stable en comparaison avec celle de Voevodsky et l’équation (2.2) a également un
analogue ici. Les constructions de base de ces motifs ressemblent beaucoup à celles de
Voevodsky : les correspondances sont remplacées par des MW-correspondances, introdui-
sant ainsi une difficulté assez subtile à chaque étape, à savoir le calcul des twists impliqués
dans les opérations de base de l’anneau Chow-Witt, telles que le produit, le pull-back et le
push-forward. L’approche sérieuse consiste à considérer ces torsions comme des éléments
de la catégorie des fibrés vectoriels virtuels ([Del87], [CF18]) et c’est un travail délicat
d’implémenter tous les calculs selon les règles formelles des objets virtuels. Cela nous
incite à axiomatiser l’idée de correspondances et à obtenir une méthode générale per-
mettant de construire des catégories de motifs, même en partant de théories cohomolo-
giques non orientées. Pour prouver le théorème des fibré projectifs quaternioniques dans
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l’anneau de de Chow-Witt, nous devons d’abord prouver la contrepartie en cohomologie
MW-motivique. Comme conséquence, nous calculons également l’espace de Thom associé
à un fibré symplectique dans nos catégories de motifs et obtenons le triangle de Gysin
correspondant. Finalement, nous calculons le groupe des morphismes dans nos catégories
entre deux schémas lisses et propres sur le corps de base.

2.2 Principaux Résultats

2.2.1 Objets Virtuels et Opérations Associées

Dans le chapitre 3, nous fournissons les outils principaux qui nous permettent de calcu-
ler les twists associés aux opérations importantes dans l’anneau de Chow-Witt. Notons
V (V ect(X)) la catégorie des fibrés vectoriels virtuels ([Del87]) sur X.

Théorèm 2.1. (Theorem 3.1)

1. Supposons que nous ayons un diagramme commutatif de fibrés vectoriels sur X, avec
des lignes et des colonnes exactes

0
��

0
��

K

��

K

��

0 // V1 //

��

V2
��

// C // 0

0 //W1
//

��

W2
//

��

C // 0

0 0.

Alors, nous avons un diagramme commutatif dans V (V ect(X))

V2 //

��

K +W2

��

V1 + C // K +W1 + C.

2. Supposons que nous ayons un diagramme commutatif de fibrés vectoriels sur X avec
des lignes et des colonnes exactes

0

��

0

��

0 // V1 //

��

V2
��

// C // 0

0 //W1
//

��

W2
//

��

C // 0

D

��

D

��

0 0.

Alors, nous avons un diagramme commutatif dans V (V ect(X))

W2
//

��

V2 +D // V1 + C +D

c(C,D)

vv

W1 + C

��

V1 +D + C.
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3. Supposons que nous ayons un diagramme commutatif de fibrés vectoriels sur X avec
des lignes et des colonnes exactes

0
��

0
��

K

��

K

��

0 // T // V1
��

// V2 //

��

0

0 // T //W1
//

��

W2
//

��

0

0 0.

Alors, nous avons un diagramme commutatif dans V (V ect(X))

V1 //

��

T + V2 // T +K +W2

c(T,K)

vv

K +W1

��

K + T +W2.

.

2.2.2 Correspondances et Motifs Généralisés

Nous proposons un traitement axiomatique des correspondances dans le Chapitre 4. Étant
donné une théorie de correspondance E, nous établissons dans le Chapitre 5 les résultats
de base de la théorie des faisceaux avec E-transferts. En particulier, nous définissons dans

le chapitre 6 la catégorie D̃M
eff,−

(S) (resp. D̃M
−
(S)) des motifs effectifs (resp. stabilisés)

sur une base lisse S en utilisant des complexes de tels (différents de [CD09], [CD13]) et
construisons une partie de son formalisme des six opérations (⊗, f ∗, f#).

Dans le chapitre 8, nous montrons partiellement que les MW-correspondance définie
dans [CF14] tombent bien dans le formalisme défini ci-dessus, en adoptant une nouvelle
perspective du push-forward dans l’anneau de Chow-Witt.

2.2.3 Orientations Symplectiques et Applications

Pour tout X ∈ Sm/S, notons Z̃S(X) le motif de X dans D̃M
eff,−

(S). Dans le chapitre
7, nous prouvons le théorème des fibré projectifs quaternioniques pour la cohomologie
MW-motivique :

Théorèm 2.2. (Theorem 7.4) Soient X ∈ Sm/S et (E ,m) un fibré vectoriel symplectique
de rang 2n+ 2 sur X. Soit π : HGrX(E )→ X la projection. Alors, le morphisme

Z̃S(HGrX(E ))
π⊠p1(U ∨)i

// ⊕ni=0Z̃S(X)(2i)[4i]

est un isomorphisme dans D̃M
eff,−

(S), fonctoriel pour X dans Sm/S. Ici, U ∨ est le
fibré tautologique dual doté de son orientation canonique.

On obtient donc le résultat correspondant dans l’anneau de Chow-Witt :

Proposition 2.1. (Proposition 7.11)Soient X ∈ Sm/k, E un fibré symplectique de rang
2n+ 2 sur X et k = min{⌊ j

2
⌋, n}. Alors le morphisme

θj : ⊕
k
i=0C̃H

j−2i
(X)

p∗·p1(U ∨)i
// C̃H

j
(HGrX(E ))

est un isomorphisme, où j ≥ 0, p : HGrX(E ) −→ X est le morphisme structurel et U ∨

est le fibré tautologique dual doté de son orientation canonique.
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Comme application, nous obtenons des classes de Pontryagin à valeurs dans l’anneau
de Chow-WItt associées à un fibré symplectique.

Définition 2.1. (Definition 7.11) Dans la proposition ci-dessus, supposons que ζ :=

p1(U
∨) et θ−1

2n+2(ζ
n+1) := (ζi) ∈ ⊕

n+1
i=1 C̃H

2i
(X). Définissons p0(E ) = 1 ∈ C̃H

0
(X) et

pa(E ) = (−1)a−1ζi pour 1 ≤ a ≤ n+1. La classe pa(E ) est appelée a-ième classe de Pon-
tryagin de E . Ces classes sont caractérisées uniquement par le polynôme de Pontryagin

ζn+1 − p∗(p1(E ))ζn + . . .+ (−1)n+1p∗(pn+1(E )) = 0.

Nous obtenons également un triangle de Gysin pour certains immersions fermées :

Théorèm 2.3. (Theorem 7.6) Soient X ∈ Sm/S et Y ⊆ X un sous-schéma fermé lisse
de codimension codim(Y ) = 2n avec un fibré normal symplectique. Alors, nous avons un
triangle distingué

Z̃S(X \ Y ) −→ Z̃S(X) −→ Z̃S(Y )(2n)[4n] −→ Z̃S(X \ Y )[1]

dans D̃M
eff,−

(S).

Enfin, en utilisant le théorème ci-dessus, le formalisme des six opérations du Chapitre
6 et la dualité dans les catégories A1-stables dérivées ([CD13]), nous obtenons un calcul
de groupe de morphismes dans nos catégories motiviques comme ci-dessous :

Théorèm 2.4. (Theorem 7.7) Soient X, Y ∈ Sm/k avec Y propre sur k. Alors, nous
avons

Hom
D̃M

eff,−
(k)
(Z̃pt(X), Z̃pt(Y )) ∼= C̃H

dY
(X × Y, ωX×Y/X).

Tout au long de cet article, nous désignons par Sm/k la catégorie des schémas séparés
lisses sur k ([Har77, Chapter 10]), où k est un corps parfait infini avec char(k) 6= 2. Pour
tout X ∈ Sm/k, nous désignons dimX par dX et pour tout f : X −→ Y dans Sm/k,
nous posons df = dX − dY .
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Chapter 3

Virtual Objects and Their

Calculation

In this section we will introduce the category of virtual vector bundles and explain basic
techniques of calculation. The definitions all come from [Del87, Section 4], but we recall
them here for clarity.

Definition 3.1. ([Del87, 4.1]) A category C is called a commutative Picard category if

1. All morphisms are isomorphisms.

2. There is a bifunctorial pairing

+ : C × C −→ C

satisfying

(a) For every x, y, z ∈ C , an associativity isomorphism

a(x, y, z) : (x+ y) + z −→ x+ (y + z);

(b) For every x, y ∈ C , a commutativity isomorphism

c(x, y) : x+ y −→ y + x.

Furthermore, they satisfy associativity and commutativity constraints ([Mac63]).

3. For every P ∈ C , the functors X 7−→ P +X and X 7−→ X + P are equivalences of
categories. Thus there is a unit element 0 such that 0 +X ∼= X for every X ∈ C ,
and there is an object −X ∈ C such that X + (−X) ∼= 0.

Definition 3.2. Let X be a scheme. Define V ect(X) to be the category of vector bundles
over X. Denote by (V ect(X), iso) the subcategory of V ect(X) with the same objects but
picking only isomorphisms as morphisms.

Definition 3.3. ([Del87, 4.3]) Let C be a commutative Picard category and let X be a
scheme. A bracket functor on X (with coefficients in C ) is a covariant functor

[−] : (V ect(X), iso) −→ C

such that:
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1. For any exact sequence of vector bundles

0 −→ E1 −→ E2 −→ E3 −→ 0,

there is an isomorphism Σ : [E2] −→ [E1] + [E3] being natural with respect to
ismorphisms between exact sequences.

2. There is an isomophism z : [0] −→ 0 such that for every E ∈ V ect(X), the composite

[E] Σ // [0] + [E] z // 0 + [E] // [E]

is id[E].

3. (Remark 3.1) For every consecutive subbundle inclusions E1 ⊆ E2 ⊆ E3, there is a
commutative diagram

[E3]
Σ //

Σ
��

[E1] + [E3/E1]

Σ
��

[E2] + [E3/E2]
Σ // [E1] + [E2/E1] + [E3/E2].

4. For every E1, E2, there is a commutative diagram

[E1 ⊕ E2]
Σ //

Σ
��

[E1] + [E2]

c(E1,E2)ww

[E2] + [E1].

The following comes from [Del87, 4.3]:

Proposition 3.1. Let X be a scheme. There is a commutative Picard category V (V ect(X))
with a bracket functor on X such that for every commutative Picard category C with a
bracket functor on X, there is a unique additive functor F : V (V ect(X)) −→ C making
the following diagram commute

(V ect(X), iso)
[−]

//

[−]
��

V (V ect(X))
F

vv
C .

The category V (V ect(X)) is called the category of virtual vector bundles over X.

For convenience, we will still denote [E] by E in the sequel. The following proposition
strengthens Definition 3.3, (4) a little bit.

Proposition 3.2. Suppose we have a commutative diagram of vector bundles over X with
exact row and column

0

��

D

d
��

∼=
v

  

0 // A
a //

∼=

u

  

B
b

//

c
��

C // 0

E

��

0.
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Then the following diagram commutes in V (V ect(X))

B //

��

A+ C

c(E,D)◦(u+v−1)yy

D + E.

Proof. Since v−1◦b splits d, it’s a standard argument that there exists a unique ξ : E −→ B
such that

ξ ◦ c = idB − d ◦ v
−1 ◦ b, c ◦ ξ = idE.

So we have commutative diagrams with exact rows:

0 // D
i1 // D ⊕ E

p2
//

d+ξ
��

E // 0

0 // D
d // B

c // E // 0

0 // E
i2 //

u−1

��

D ⊕ E
p1

//

d+ξ
��

D //

v
��

0

0 // A
a // B

b // C // 0.

Hence the statement follows from the commutative diagram of Definition 3.3, (4):

A+ C

B

44

//

(d+ξ)−1
##

D + E
c(D,E)

// E +D

u−1+v

OO

D ⊕ E.

OO 99

The next theorem is a fundamental tool for calculations in virtual vector bundles.

Theorem 3.1. 1. Suppose we have a commutative diagram of vector bundles over X
with exact rows and columns

0

��

0

��

K

��

K

��

0 // V1 //

��

V2

��

// C // 0

0 //W1
//

��

W2
//

��

C // 0

0 0.

Then we have a commutative diagram in V (V ect(X))

V2 //

��

K +W2

��

V1 + C // K +W1 + C.
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2. Suppose we have a commutative diagram of vector bundles over X with exact rows
and columns

0

��

0

��

0 // V1 //

��

V2

��

// C // 0

0 //W1
//

��

W2
//

��

C // 0

D

��

D

��

0 0.

Then we have a commutative diagram in V (V ect(X))

W2
//

��

V2 +D // V1 + C +D

c(C,D)

ww

W1 + C

��

V1 +D + C.

3. Suppose we have a commutative diagram of vector bundles over X with exact rows
and columns

0

��

0

��

K

��

K

��

0 // T // V1

��

// V2 //

��

0

0 // T //W1
//

��

W2
//

��

0

0 0.

Then we have a commutative diagram in V (V ect(X))

V1 //

��

T + V2 // T +K +W2

c(T,K)

ww

K +W1

��

K + T +W2.

4. Suppose we have a commutative diagram of vector bundles over X with exact rows
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and columns
0

��

0

��

0 // K // V1

��

// V2 //

��

0

0 // K //W1
//

��

W2
//

��

0

C

��

C

��

0 0.

Then we have a commutative diagram in V (V ect(X))

W1
//

��

K +W2

��

V1 + C // K + V2 + C.

Proof. 1. We have injections K −→ V1 −→ V2, which gives the diagram by Definition
3.3, (3).

2. We have injections V1 −→ V2 −→ W2 and V1 −→ W1 −→ W2. These give two
commutative diagrams by Definition 3.3, (3)

W2
//

��

V1 +W2/V1

Σ1

��

V2 +D // V1 + C +D

W2
//

��

V1 +W2/V1

Σ2

��

W1 + C // V1 +D + C

.

Moreover, we have a commutative diagram with exact row and column

Σ2 : 0

��

D

��

Σ1 : 0 // C //W2/V1 //

��

D // 0

C

��

0

.

Thus we have a commutative diagram

W2/V1
Σ1 //

Σ2 %%

C +D

c(C,D)

��

D + C

by Proposition 3.2. So combining the diagrams above gives the result.
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3. We denote the morphism V1 −→ V2 −→ W2 by α. There are morphisms ker(α) −→
K and ker(α) −→ T satisfying the following commutative diagrams

ker(α) //

��

K

��

V1 // V2

ker(α) //

��

V1

��

T //W1

by the universal property of K and T as kernels. Then there is a commutative
diagram with exact row and column

Σ2 : 0

��

K

��

Σ1 : 0 // T // ker(α) //

��

K // 0

T

��

0

.

Hence we have a commutative diagram

ker(α)
Σ1 //

Σ2

��

T +K

c(T,K)yy

K + T

by Proposition 3.2.

We have injections T −→ ker(α) −→ V1, K −→ ker(α) −→ V1, which induce the
following commutative diagrams by Definition 3.3, (3):

V1 //

��

T + V2

��

ker(α) +W2
Σ1 // T +K +W2

V1 //

��

K +W1

��

ker(α) +W2
Σ2 // K + T +W2

.

So combining the diagrams above gives the result.

4. The diagram is a rotation and reflection of the diagram in (1).

Remark 3.1. We remark that (1) in the above theorem is actually the meaning of Defi-
nition 3.3, (3).

Remark 3.2. We would like to point out that the calculations with virtual objects are not
trivial, especially when judging commutativity of diagrams. We will see this point in the
sections below.
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Chapter 4

Correspondences from an Axiomatic

Viewpoint

In this section, we are going to axiomatize the notion of correspondences, using the
language of virtual vector bundles defined in the previous section. They are designed
basicly to comply with properties of Chow rings or Chow-Witt rings.

Definition 4.1. Let X be a noetherian scheme and i ∈ N. We denote by Zi(X) the set
of closed subsets in X whose components are all of codimension i.

Definition 4.2. Let X ∈ Sm/k, C ∈ Zi(X) and D ∈ Zj(X). We say that C and D
intersect properly if C ∩D ∈ Zi+j(X).

We now start our list of axioms.

Axiom 1. (Twists) For every X ∈ Sm/k, we have a commutative Picard category (Defi-
nition 3.1) PX with an additive functor pX : V (V ect(X)) −→PX and a rank morphism
rkX : PX −→ F(F = 0 or Z/2Z) such that:

1. The following diagram commutes

V (V ect(X))
rkX //

pY
��

Z

��

PX
rkX // F,

where the upper horizontal arrow is defined by rkX([E]) = rk(E).

2. For every f : X −→ Y in Sm/k, there is a pull-back morphism f ∗ : PY −→ PX

such that the following diagrams commute

PY
f∗

//

rkY
��

PX

rkX
||

F

V (V ect(Y ))
f∗

//

pY
��

V (V ect(X))

pX
��

PY
f∗

// PX ,

where f ∗ : V (V ect(Y )) −→ V (V ect(X)) is defined by f ∗([E]) = [f ∗E]. We have
f ∗g∗ = (g ◦ f)∗ for any morphisms f, g in Sm/k and f ∗(−v) = −f ∗(v).

Remark 4.1. In practice, the categories PX should be chosen as “small” as possible.
Since this will allow more isomophisms, such as orientations, as we will see in Definition
7.19.
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Axiom 2. (Correspondences) For every X ∈ Sm/k, i ∈ N, C ∈ Zi(X) and v ∈PX , there
exists an abelian group Ei

C(X, v) which is called the group of correspondences supported
on C with twist v. These groups are functorial with respect to v. Moreover, if C = ∅,
then Ei

C(X, v) = 0.

We are now going to describe further properties that these groups should satisfy.

Axiom 3. (Extension of Supports) For every X ∈ Sm/k, C1 ⊆ C2 ∈ Zi(X), i ∈ N,
v ∈PX , we have an injective morphism

e(C1, C2) : E
i
C1
(X, v) −→ Ei

C2
(X, v)

which is called the extension of support. This map is functorial with respect to v.
For any disjoint C1, C2 ∈ Z

i(X), we have

Ei
C1∪C2

(X, v) ∼= Ei
C1
(X, v)⊕ Ei

C2
(X, v)

via extension of supports. Moreover, for any C1 ⊆ C2 ⊆ C3 we have

e(C2, C3) ◦ e(C1, C2) = e(C1, C3).

Axiom 4. (Products) Suppose X ∈ Sm/k, v1, v2 ∈ PX , C1, C2 ∈ Z
i(X) and i, j ∈ N.

Suppose C1 and C2 intersect properly, then we have a product

Ei
C1
(X, v1)× E

j
C2
(X, v2)

· // Ei+j
C1∩C2

(X, v1 + v2) ,

This product is functorial with respect to twists and extension of supports.

Axiom 5. (Associativity) For any X ∈ Sm/k, va ∈ PX and Ca ∈ Z
ia(X), a = 1, 2, 3,

with pairwise proper intersections the following diagram commutes

Ei1
C1
(X, v1)× E

i2
C2
(X, v2)× E

i3
C3
(X, v3)

·×id
��

id×·
// Ei1

C1
(X, v1)× E

i2+i3
C2∩C3

(X, v2 + v3)

·

��

Ei1+i2
C1∩C2

(X, v1 + v2)× E
i3
C3
(X, v3)

·

��

Ei1+i2+i3
C1∩C2∩C3

(X, v1 + (v2 + v3))
a(v1,v2,v3)−1

rr

Ei1+i2+i3
C1∩C2∩C3

(X, (v1 + v2) + v3).

Axiom 6. (Conditional Commutativity) Let X ∈ Sm/k, Ca ∈ Z
ia(X), ia ∈ N, va ∈PX

where a = 1, 2. If (i1 + rkX(v1))(i2 + rkX(v2)) = 0 ∈ F and C1 and C2 intersect properly,
the following diagram commutes:

Ei1
C1
(X, v1)× E

i2
C2
(X, v2)

· //

��

Ei1+i2
C1∩C2

(X, v1 + v2)

c(v1,v2)
��

Ei2
C2
(X, v2)× E

i1
C1
(X, v1)

· // Ei1+i2
C1∩C2

(X, v2 + v1).

Axiom 7. (Identity) For any X ∈ Sm/k, there is an element e in E0
X(X, 0) such that

for any v ∈PX , i ∈ N and C ∈ Zi(X), the following diagrams commute

Ei
C(X, v)

e· // Ei
C(X, 0 + v)

u

ww

Ei
C(X, v)

Ei
C(X, v)

·e // Ei
C(X, v + 0)

u

ww

Ei
C(X, v),

where u are the unit constraints in PX . We call e the identity and denote it by 1.
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Axiom 8. (Pull-Backs) Suppose f : X −→ Y is morphism in Sm/k, i ∈ N, C ∈ Zi(Y ),
f−1(C) ∈ Zi(X) and v ∈PY . Then we have a pull-back morphism

Ei
C(Y, v) −→ Ei

f−1(C)(X, f
∗v).

This morphism is functorial with respect to v and extension of supports.

Axiom 9. (Functoriality of Pull-Backs) Let X
g

// Y
f

// Z be morphisms in Sm/k,
i ∈ N, C ∈ Zi(Z), f−1(C) ∈ Zi(Y ), g−1f−1(C) ∈ Zi(X) and v ∈PZ. We have

(f ◦ g)∗ = g∗ ◦ f ∗.

The pull-back of the identity morphism is just the identity morphism.

Axiom 10. (Compability of Pull-Backs) Suppose that f : X −→ Y is a morphism in
Sm/k, and that C1 ∈ Zi(Y ) and C2 ∈ Zj(Y ) intersect properly for some i, j ∈ N (the
same for their preimages). For any v1, v2 ∈PY , we have a commutative diagram

Ei
C1
(Y, v1)× E

j
C2
(Y, v2)

· //

f∗×f∗

��

Ei+j
C1∩C2

(Y, v1 + v2)

f∗

��

Ei
f−1(C1)

(X, f ∗(v1))× E
j
f−1(C2)

(X, f ∗(v2))
· // Ei+j

f−1(C1∩C2)
(X, f ∗(v1 + v2))

.

We always have f ∗(1) = 1.

Before proceeding further, we now recall some facts about tangent bundles and normal
bundles.

Lemma 4.1. Let X
f

// Y
g

// Z be morphisms in Sm/k.

1. If f , g are smooth, we have an exact sequence

0 −→ TX/Y −→ TX/Z −→ f ∗TY/Z −→ 0.

2. If f is a closed immersion and g, g ◦ f are smooth, we have an exact sequence

0 −→ TX/Z −→ f ∗TY/Z −→ NX/Y −→ 0.

3. If g is smooth and f , g ◦ f are closed immersions, we have an exact sequence

0 −→ f ∗TY/Z −→ NX/Y −→ NX/Z −→ 0.

4. If f , g are closed immersions, we have an exact sequence

0 −→ NX/Y −→ NX/Z −→ f ∗NY/Z −→ 0.

Proof. See [Har77, Chapter II, Proposition 8.11, Proposition 8.12 and Theorem 8.17 and
Chapter III, Proposition 10.4].

Lemma 4.2. Suppose that we have a Cartesian square of schemes

X ′ v //

g
��

X

f
��

Y ′ u // Y.

Then, the composite TX′/Y ′ −→ TX′/Y −→ v∗TX/Y is an isomorphism.
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Proof. See [Har77, Chapter II, Proposition 8.10].

Lemma 4.3. Suppose that we have a Cartesian square in Sm/k

X ′ v //

g
��

X

f
��

Y ′ u // Y

such that f is a closed immersion. If one of the following conditions holds:

1. u is smooth,

2. u is a closed immersion and dimX ′ − dimY ′ = dimX − dimY ,

then the natural morphism γ defined by the following commutative diagram with exact
rows

0 // v∗TX/k // v∗f ∗TY/k // v∗NX/Y
// 0

0 // TX′/k
//

α

OO

g∗TY ′/k
//

β

OO

NX′/Y ′
//

γ

OO

0

is an isomorphism.

Proof. If u is smooth, then α and β are surjective and have the same kernel by the previous
two lemmas. So γ is an isomorphism by the snake lemma.

In the other case, the dimension condition implies NX′/Y ′ and NX/Y have the same
rank. So we only have to prove γ∨ is surjective. We can assume that all schemes are affine.
Suppose that Y = Spec(A), X = Spec(A/I), Y ′ = Spec(A/J) and X ′ = Spec(A/(I+J)).
Then N∨

X/Y = I/I2 and N∨
X′/Y ′ = (I + J)/(I2 + J) and the morphism γ is given by

I/I2 ⊗A/I A/(I + J) −→ (I + J)/(I2 + J)
(i , a) 7−→ ai.

This is obviously surjective.

Axiom 11. (Push-Forwards for Smooth Morphisms) Suppose that f : X −→ Y is a
smooth morphism in Sm/k, that n ∈ N, v ∈ PX and that C ∈ Zn+df (X) is finite over
Y . Then we have a morphism

f∗ : E
n+df
C (X, f ∗v − TX/Y ) −→ En

f(C)(Y, v),

which is functorial with respect to v and the extension of supports. The push-forward of
the identity morphism is just the identity morphism (using TX/Y = 0).

We may also use the simplified notation

f ∗v − TX/Y −→ v

to denote f∗. Moreover, we can consider push-forwards of the form

f∗ : E
n+df
C (X, f ∗v1 − TX/Y + f ∗v2) −→ En

f(C)(Y, v1 + v2)

which are defined by the composite of the push-forward defined above and the commuta-
tivity isomorphism c(−TX/Y , f

∗v2).
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Axiom 12. (Functoriality of Push-Forwards for Smooth Morphisms) Suppose that X
g

// Y
f

// Z
are smooth morphisms in Sm/k, and that C ∈ Zi+dX−dZ (X) is finite over Z (i ∈ N). Sup-
pose moreover that v ∈PZ. Then we have a commutative diagram

Ei+dX−dZ
C (X, (f ◦ g)∗v − TX/Z)

ϕ
//

(f◦g)∗

((

Ei+dX−dZ
C (X, (f ◦ g)∗v − g∗TY/Z − TX/Y )

g∗
��

Ei+dY −dZ
g(C) (Y, f ∗v − TY/Z)

f∗

��

Ei
f(g(C))(Z, v)

where ϕ is obtained via the following composite

(f ◦ g)∗v − TX/Z −→ (f ◦ g)∗v − (TX/Y + g∗TY/Z)

−→ (f ◦ g)∗v − g∗TY/Z − TX/Y .

Axiom 13. (Push-Forward for Closed Immersions) Suppose f : X −→ Y is a closed
immersion in Sm/k, v ∈PY and C ∈ Zn+df (X). Then we have an isomorphism

f∗ : E
n+df
C (X,NX/Y + f ∗v) −→ En

f(C)(Y, v),

This morphism is also functorial in v and under extension of supports. The push-forward
of the identity is just the identity, by using NX/Y = 0.

So given a vector bundle V overX, the definition above gives an isomorphism En
C(X, V ) ∼=

E
n+rkX(V )
C (V, 0) (Chapter 1) via the push-forward of the zero section.
We may also use the simplified notation

NX/Y + f ∗v −→ v

to denote f∗. Moreover, we could also consider push-forwards of the form

f∗ : E
n+df
C (X, f ∗v1 +NX/Y + f ∗v2) −→ En

f(C)(Y, v1 + v2)

which are defined by the composite of the push-forward defined above and the commuta-
tivity isomorphism c(f ∗v1, NX/Y ).

Axiom 14. (Functoriality Push-Forwards for Closed Immersions) Suppose that X
g

// Y
f

// Z
are closed immersions in Sm/k, C ∈ Zi+dX−dZ (X) and v ∈ PZ. Then we have a com-
mutative diagram

Ei+dX−dZ
C (X,NX/Z + (f ◦ g)∗v)

ϕ
//

(f◦g)∗

((

Ei+dX−dZ
C (X,NX/Y + g∗NY/Z + (f ◦ g)∗v)

g∗
��

Ei+dY −dZ
g(C) (Y,NY/Z + f ∗v)

f∗

��

Ei
f(g(C))(Z, v),

where ϕ is induced by the isomorphism NX/Z + (f ◦ g)∗v ∼= NX/Y + g∗NY/Z + (f ◦ g)∗v.
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Axiom 15. (Base Change for Smooth Morphisms) Suppose we have a Cartesian square
of smooth schemes

X ′ v //

g
��

X

f
��

Y ′ u // Y

with f smooth. Let moreover c = dX − dY = dX′ − dY ′, n ∈ N, s ∈ PY , C ∈ Z
n+c(X)

finite over Y such that v−1(C) ∈ Zn+c(X). Then the following diagram commutes

En+c
C (X, f ∗s− TX/Y )

f∗
//

v∗

��

En
f(C)(Y, s)

u∗

��

En+c
v−1(C)(X

′, v∗f ∗s− v∗TX/Y )
g∗

// En
g(v−1(C))(Y

′, u∗s).

Here we have used the canonical isomorphism TX′/Y ′ −→ v∗TX/Y of Lemma 4.2.

Axiom 16. (Base Change for Closed Immersions) Suppose that we have a Cartesian
square of smooth schemes

X ′ v //

g
��

X

f
��

Y ′ u // Y

with f a closed immersion. Let c = dX − dY = dX′ − dY ′, s ∈ PY , C ∈ Z
n+c(X) such

that v−1(C) ∈ Zn+c(X). Then the following diagram commutes

En+c
C (X,NX/Y + f ∗s)

f∗
//

v∗

��

En
f(C)(Y, s)

u∗

��

En+c
v−1(C)(X

′, v∗NX/Y + v∗f ∗s)
g∗

// En
g(v−1(C))(Y

′, u∗s).

Axiom 17. (Projection Formula for Smooth Morphisms) Suppose that we have a smooth
morphism f : X −→ Y in Sm/k and that n,m ∈ N. Let further C ∈ Zn+df (X) be finite
over Y and D ∈ Zm(Y ) be such that C and f−1(D) intersect properly and v1, v2 ∈ PY .
Then the diagrams

E
n+df
C (X, f ∗v1 − TX/Y )× E

m
D (Y, v2)

id×f∗
//

f∗×id

��

E
n+df
C (X, f ∗v1 − TX/Y )× E

m
f−1(D)(X, f

∗v2)

·
��

En
C(Y, v1)× E

m
D (Y, v2)

·

��

E
n+m+df
C∩f−1(D)(X, f

∗v1 − TX/Y + f ∗v2)

f∗
rr

En+m
Y,f(C)∩D(v1 + v2)

and

Em
D (Y, v2)× E

n+df
C (X, f ∗v1 − TX/Y )

f∗×id
//

id×f∗

��

Em
f−1(D)(X, f

∗v2)× E
n+df
C (X, f ∗v1 − TX/Y )

·
��

Em
D (Y, v2)× E

n
C(Y, v1)

·

��

E
n+m+df
C∩f−1(D)(X, f

∗v2 + f ∗v1 − TX/Y )

f∗
rr

En+m
f(C)∩D(Y, v2 + v1)
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commute.

Axiom 18. (Projection Formula for Closed Immersions) Suppose that we have a closed
immersion f : X −→ Y in Sm/k. Let n,m ∈ N, C ∈ Zn+df (X) and D ∈ Zm(Y ) be
such that f−1(D) ∈ Zm(X), and such that C and f−1(D) intersect properly. Let further
v1, v2 ∈PY . Then the diagrams

E
n+df
C (X,NX/Y + f ∗v1)× E

m
D (Y, v2)

id×f∗
//

f∗×id

��

E
n+df
C (X,NX/Y + f ∗v1)× E

m
f−1(D)(X, f

∗v2)

·
��

En
C(Y, v1)× E

m
D (Y, v2)

·

��

E
n+m+df
C∩f−1(D)(X,NX/Y + f ∗v1 + f ∗v2)

f∗
rr

En+m
f(C)∩D(Y, v1 + v2)

and

Em
D (Y, v2)× E

n+df
C (X,NX/Y + f ∗v1)

f∗×id
//

id×f∗

��

Em
f−1(D)(X, f

∗v2)× E
n+df
C (X,NX/Y + f ∗v1)

·
��

Em
D (Y, v2)× E

n
C(Y, v1)

·

��

E
n+m+df
C∩f−1(D)(X, f

∗v2 +NX/Y + f ∗v1)

f∗
rr

En+m
f(C)∩D(Y, v2 + v1)

commute.

We still need a compability between the two push-forwards introduced above.

Axiom 19. (Compability between Two Push-Forwards)

1. Suppose that X
f

// Z
g

// Y are morphisms in Sm/k, that f is a closed immer-
sion and that g, g ◦ f are smooth. Let C ∈ Zi+dX−dY (X) be finite over Y , i ∈ N and
v ∈PY . Then the following diagram commutes

Ei+dX−dY
C (X,NX/Z + f ∗g∗v − f ∗TZ/Y )

f∗
��

c(NX/Z ,f
∗g∗v)
// Ei+dX−dY

C (X, f ∗g∗v +NX/Z − f
∗TZ/Y )

ϕ

��

Ei+dZ−dY
f(C) (Z, g∗v − TZ/Y )

g∗

��

Ei+dX−dY
C (X, f ∗g∗v − TX/Y )

(g◦f)∗

rr

Ei
g(f(C))(Y, v),

,

where ϕ is induced by Lemma 4.1, (2).

2. Suppose that X
f

// Z
g

// Y are morphisms in Sm/k with g smooth and f , g ◦f
closed immersions. Let C ∈ Zi+dX−dY (X) be finite over Y , i ∈ N and v ∈ PY .
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Then the following diagram commutes

Ei+dX−dY
C (X,NX/Z + f ∗g∗v − f ∗TZ/Y )

f∗
��

c(NX/Z+f∗g∗v,−f∗TZ/Y )
// Ei+dX−dY

C (X,−f ∗TZ/Y +NX/Z + f ∗g∗v)

ϕ

��

Ei+dZ−dY
f(C) (Z, g∗v − TZ/Y )

g∗

��

Ei+dX−dY
C (X,NX/Y + f ∗g∗v)

(g◦f)∗

rr

Ei
g(f(C))(Y, v),

where ϕ is induced by Lemma 4.1, (3).

3. Suppose that we have a Cartesian square of smooth schemes

X ′ v //

g

��

X

f
��

Y ′ u // Y,

where u is smooth and f is a closed immersion. Let C ∈ Zn+df+dv(X ′) be finite over
Y and let s ∈PY . Then the following diagram commutes

E
n+df+dv
C (X ′, NX′/Y ′ + g∗u∗s− g∗TY ′/Y )

g∗
//

��

En+du
g(C) (Y

′, u∗s− TY ′/Y )

u∗

��

E
n+df+dv
C (X ′, v∗NX/Y + u∗f ∗s− TX′/X)

v∗
��

En
u(g(C))(Y, s)

E
n+df
v(C) (X,NX/Y + f ∗s).

f∗

33

Axiom 20. (Étale Excision) Suppose that f : X −→ Y is an étale morphism in Sm/k,
that C ∈ Zi(Y ) and that the morphism f : f−1(C) −→ C is an isomorphism under reduced
closed subscheme structures. Then for any i ∈ N and v ∈PY , the pull-back morphism

f ∗ : Ei
C(Y, v) −→ Ei

f−1(C)(X, f
∗(v))

is an isomorphism between abelian groups with inverse f∗.

Definition 4.3. If the categories PX and groups Ei
C(X, v) satisfy all the axioms above,

then they are called a correspondence theory.

Remark 4.2. Let R be a commutative ring. The first example of a correspondence theory
is given by Ei

C(X, v) = CH i
C(X, v) ⊗ R, where the latter is the free R-module generated

by irreducible components of C for C ∈ Zi(X), F = 0 and PX = 0 for any X.

We now give another example, starting with the definition of the categories PX .

Definition 4.4. For a scheme X, we define a category PX as follows. Its objects are
sequences E := (E1, . . . , En), where n ∈ N and Ei are vector bundles over X for i =
1, . . . , n. We attach to each object E a line bundle

det(E) = detE1 ⊗ · · · ⊗ detEn
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and an integer
rk(E) = rkE1 + · · ·+ rkEn ∈ Z/2Z.

The morphisms between objects E = (E1, . . . , En) and F = (F1, . . . , Fm) are given by

HomPX
(E ,F) =

{
IsomOX

(det(E), det(F)) if rk(E) = rk(F).

∅ else.

The composition law is inherited from the category of line bundles.

Remark 4.3. The category PX is equivalent to the category of Z/2Z-graded line bundles
considered in [Del87, 4.3]. However, the category PX will be more convenient in our
computations.

To complete the definition of our correspondence theory, we set

C̃H
i

C(X, v) = C̃H
i

C(X, det(v)).

for every X ∈ Sm/k, C ∈ Zi(X), v ∈PX . These are precisely the MW-correspondences
defined in [CF14]. We will give a plan of proof of the following theorem in Chapter 8.

Theorem 4.1. The collection of MW-correspondences form a correspondence theory with
twists in PX .
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Chapter 5

Sheaves with E-Tranfers and Their

Operations

In this section, we develop the theory of sheaves with E-transfers over a smooth base as
in [D07] and [CF14], where E is a correspondence theory.

Since there will be heavy calculations involving twists, we use the abbreviation (α, v)
for α ∈ Ei

C(X, v) from now on for convenience and clarity. We extend this notation to
operations such as (α, v) · (β, u), f ∗((α, v)). For S ∈ Sm/k, we denote the category of
smooth schemes over S by Sm/S.

We will need the notion of admissible subset coming from [CF14, Definition 4.1].

Definition 5.1. Let X, Y ∈ Sm/S. We denote by AS(X, Y ) the set of closed subsets
T of X ×S Y whose components are all finite over X and of dimension dim(X). The
elements of AS(X, Y ) are called admissible subsets from X to Y over S.

Lemma 5.1. In the definition above, T itself is also finite over X.

Proof. For every affine open subset U of X, T ∩ U is affine since each of its components
are affine (see [Har77, Chapter III, Exercises 3.2]). Its structure ring is a submodule of a
finite OX(U)-module. Hence we conclude that T ∩ U is finite over U .

Definition 5.2. Let S ∈ Sm/k, and let X, Y ∈ Sm/S. The group

C̃orS(X, Y ) = lim−→
T∈AS(X,Y )

EdY −dS
T (X ×S Y,−TX×SY/X)

is called the group of finite E-correspondences between X and Y over S.

We can now consider the category C̃orS(X, Y ), whose objects are smooth schemes

over S and morphisms between X and Y are just C̃orS(X, Y ) defined above. Our aim is
now to study the composition in that category.

To avoid complicated expressions, we denote for smooth schemes X, Y and Z the
scheme X ×S Y ×S Z by XY Z and the projection X ×S Y ×S Z −→ Y ×S Z by pXY ZY Z .
We extend this notation to arbitrary products of schemes in an obvious way.

Given any α ∈ C̃orS(X, Y ) and β ∈ C̃orS(Y, Z), we may suppose they are defined
over admissible subsets. With this in mind, the image of

pXY ZXZ∗ (p
XY Z∗
Y Z ((β,−TY Z/Y )) · p

XY Z∗
XY ((α,−TXY/X)))

in C̃orS(X,Z) is just defined as β ◦ α. It is straightforward to check that this definition
is compatible with extension of supports.

Proposition 5.1. The composition law defined above is associative.

26



Proof. Suppose that X α // Y
β

// Z
γ

//W are morphisms in C̃orS. As before, we
may suppose that each correspondence is defined over an admissible subset.

Consider the Cartesian squares

XY ZW //

��

XZW

��

XY Z // XZ

XY ZW //

��

XYW

��

Y ZW // YW.

Now

γ ◦ (β ◦ α)

=pXZWXW∗ (p
XZW∗
ZW ((γ,−TZW/Z))p

XZW∗
XZ pXY ZXZ∗ (p

XY Z∗
Y Z ((β,−TY Z/Y ))p

XY Z∗
XY ((α,−TXY/X))))

by definition

=pXZWXW∗ (p
XZW∗
ZW (γ)pXZW∗

XZ pXY ZXZ∗ ((p
XY Z∗
Y Z (β)pXY Z∗XY (α),−TXY Z/XY − TXY Z/XZ)))

by definition of the product

=pXZWXW∗ (p
XZW∗
ZW (γ)pXY ZWXZW∗ p

XY ZW∗
XY Z ((pXY Z∗Y Z (β)pXY Z∗XY (α),−TXY Z/XY − TXY Z/XZ)))

by Axiom 15 for the left square above

=pXZWXW∗ (p
XZW∗
ZW (γ)pXY ZWXZW∗ (p

XY ZW∗
Y Z (β)pXY ZW∗

XY (α),−TXY ZW/XYW − TXY ZW/XZW ))

by Axiom 9 and Axiom 10

=pXZWXW∗ p
XY ZW
XZW∗ ((p

XY ZW∗
ZW (γ),−TXY ZW/XY Z)p

XY ZW∗
Y Z (β)pXY ZW∗

XY (α))

by Axiom 17 for pXY ZWXZW

=pXZWXW∗ p
XY ZW
XZW∗ ((δ,−p

XY ZW∗
XW TXW/X − p

XY ZW∗
XZW TXZW/XW − TXY ZW/XZW ))

by definition of the product where δ = pXY ZW∗
ZW (γ)pXY ZW∗

Y Z (β)pXY ZW∗
XY (α)

=pXY ZWXW∗ ((δ,−pXY ZW∗
XW TXW/X − TXY ZW/XW ))

by Axiom 12

=pXYWXW∗ p
XY ZW
XYW∗ ((δ,−p

XY ZW∗
XW TXW/X − p

XY ZW∗
XYW TXYW/XW − TXY ZW/XYW ))

by Axiom 12, note that we have used c(−TXY ZW/XYW ,−TXY ZW/XZW )

=pXYWXW∗ (p
XY ZW
XYW∗ (p

XY ZW∗
ZW (γ)pXY ZW∗

Y Z (β))pXYW∗
XY (α))

by Axiom 17 for pXY ZWXYW

=pXYWXW∗ (p
XY ZW
XYW∗ p

XY ZW∗
Y ZW (pY ZW∗

ZW (γ)(pY ZW∗
Y Z (β),−TY ZW/YW ))pXYW∗

XY (α))

by Axiom 9 and Axiom 10

=pXYWXW∗ (p
XYW∗
YW pY ZWYW∗ (p

Y ZW∗
ZW (γ)pY ZW∗

Y Z (β))pXYW∗
XY (α))

by Axiom 15 for the right square above

=(γ ◦ β) ◦ α

by definition.

Definition 5.3. Consider the functor

γ̃ : Sm/S −→ C̃orS,

defined on objects by γ̃(X) = X. Given an S-morphism f : X −→ Y , we have the graph
morphism Γf : X −→ X ×S Y and the natural map

Γ∗
fTX×SY/X −→ NX/X×SY
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of Lemma 4.1 is an isomorphism. We set γ̃(f) to be image of the element 1 ∈ E0
X(X, 0)

of Axiom 7 under the composite

E0
X(X, 0)

// E0
X(X,NX/X×SY − Γ∗

fTX×SY/X)
Γf∗

// EdY −dS
X (X ×S Y,−TX×SY/X)

��

C̃orS(X, Y ).

We prove in the next couple of results that γ̃ respects the composition of both cate-
gories, starting with some easy cases.

Proposition 5.2. Let f : X −→ Y be a morphism in Sm/S and g : Y −→ Z be a

morphism in C̃orS. Then we have

g ◦ γ̃(f) = (f × idZ)
∗(g)

where the right hand side is the image into the direct limit of the corresponding element.

Proof. We have a Cartesian square

X
Γf

// XY

XZ

pXZ
X

OO

Γf×idZ
// XY Z.

pXY Z
XY

OO

Denote the map E0
X(X, 0) −→ E0

X(X,NX/X×SY − Γ∗
fTX×SY/X) by t. Suppose as usual

that g is supported on an admissible subset. We have

g ◦ γ̃(f)

=pXY ZXZ∗ (p
XY Z∗
Y Z ((g,−TY Z/Y )) · p

XY Z∗
XY Γf∗((t(1), NX/XY − Γ∗

fTXY/X)))

by definition

=pXY ZXZ∗ (p
XY Z∗
Y Z ((g,−TY Z/Y )) · (Γf × idZ)∗p

XZ∗
X (t(1)))

by Axiom 16 for the square above

=pXY ZXZ∗ ((Γf × idZ)∗((Γf × idZ)
∗pXY Z∗Y Z ((g,−TY Z/Y )) · p

XZ∗
X (t(1))))

by Axiom 18 for Γf × idZ

=pXY ZXZ∗ ((Γf × idZ)∗((f × idZ)
∗((g,−TY Z/Y )) · p

XZ∗
X (t(1))))

by Axiom 9

=pXY ZXZ∗ (Γf × idZ)∗((f × idZ)
∗(g) · pXZ∗X (t(1)),−TXZ/X +NXZ/XY Z − (Γf × idZ)

∗TXY Z/XZ)

by definition of the product and the pull-back, and Lemma 4.3

=s(((f × idZ)
∗(g) · pXZ∗X (t(1)),−TXZ/X +NXZ/XY Z − (Γf × idZ)

∗TXY Z/XZ))

by Axiom 19 (here s is the isomorphism cancelling NXZ/XY Z
∼= (Γf × idZ)

∗TXY Z/XZ)

=(f × idZ)
∗(g) · s(pXZ∗X (t(1)))

by bifunctoriality of products with respect to twists

=(f × idZ)
∗(g) · pXZ∗X (1)

by functoriality of pull-backs with respect to twists

=(f × idZ)
∗(g)

by the definition of the identity and Axiom 9.
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Proposition 5.3. Let f : X −→ Y be a morphism in C̃orS and let g : Y −→ Z be a
smooth morphism in Sm/S. Let t be the composite

− TXY/X

−→− (idX × Γg)
∗TXY Z/XY +NXY/XY Z − TXY/X

−→− (idX × Γg)
∗TXY Z/XY +NXY/XY Z − (idX × Γg)

∗TXY Z/XZ

−→− (idX × Γg)
∗TXY Z/XY +NXY/XY Z −NXY/XY Z − TXY/XZ

−→− (idX × Γg)
∗TXY Z/XY − TXY/XZ

−→− (idX × g)
∗TXZ/X − TXY/XZ .

Then we have
γ̃(g) ◦ f = (idX × g)∗(t(f)),

where the right side is the image into the direct limit of the corresponding element.

Proof. We have a Cartesian square

Y
Γg

// Y Z

XY

pXY
Y

OO

idX×Γg
// XY Z,

pXY Z
Y Z

OO

an isomorphism s : 0 −→ NY/Y Z − Γ∗
gTY Z/Y and an isomorphism

r : −TXY/X −→ NXY/XY Z − (idX × Γg)
∗TXY Z/XY − TXY/X .

Suppose that f is supported on some admissible subset. We obtain

γ̃(g) ◦ f

=pXY ZXZ∗ (p
XY Z∗
Y Z Γg∗((s(1), NY/Y Z − Γ∗

gTY Z/Y )) · p
XY Z∗
XY ((f,−TXY/X))

by definition

=pXY ZXZ∗ ((idX × Γg)∗p
XY ∗
Y ((s(1), NY/Y Z − Γ∗

gTY Z/Y )) · p
XY Z∗
XY (f))

by Axiom 16 for the square above

=pXY ZXZ∗ (idX × Γg)∗(p
XY ∗
Y ((s(1), NY/Y Z − Γ∗

gTY Z/Y )) · (idX × Γg)
∗pXY Z∗XY (f))

by Axiom 18 for idX × Γg

=pXY ZXZ∗ (idX × Γg)∗(r((idX × Γg)
∗pXY Z∗XY (f)))

by functoriality of pull-backs and products with respect to twists

=(idX × g)∗(t((idX × Γg)
∗pXY Z∗XY (f)))

by Axiom 19

=(idX × g)∗(t(f))

by Axiom 9.

Proposition 5.4. Let f : X −→ Y be a morphism in C̃orS and let g : Y −→ Z be a
closed immersion in Sm/S. Let t′ be the composite

− TXY/X

−→− TXY/X +NXY/XY Z − (idX × Γg)
∗TXY Z/XY

−→− TXY/X + (idX × Γg)
∗TXY Z/XZ +NXY/XZ − (idX × Γg)

∗TXY Z/XY

−→− TXY/X + TXY/X +NXY/XZ − (idX × Γg)
∗TXY Z/XY

−→NXY/XZ − (idX × Γg)
∗TXY Z/XY

−→NXY/XZ − (idX × g)
∗TXZ/X .
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Then we have
γ̃(g) ◦ f = (idX × g)∗(t

′(f)),

where the right side is the image into the direct limit of the corresponding element.

Proof. The same proof as in the above proposition applies.

Before proceeding further, we make the isomorphisms t and t′ above more concrete in
the category of virtual vector bundles.

Lemma 5.2. Suppose that we have a commutative diagram in Sm/k

Y

��

j

��

X //

��

Y

f
��

Z
g

// S

in which the square is Cartesian and f , g are smooth.

1. If j is a closed immersion, then the following diagram commutes

TX/Y |Y + TY/S

��

TX/S|Yoo // TX/Z |Y + TZ/S|Y

��

NY/X + TY/S

��

TX/Z |Y +NY/Z + TY/S // TX/Z |Y + TY/S +NY/Z .

2. If j is smooth, then the following diagram commutes

TX/Y |Y + TY/S

��

TX/S|Yoo // TX/Z |Y + TZ/S|Y

��

NY/X + TY/S

��

NY/X + TY/Z + TZ/S|Y // TY/Z +NY/X + TZ/S|Y .

Proof. In both cases, there is a commutative diagram with exact row and column

0

��

TY/S

��

0 // TX/Y |Y //

∼=
%%

TX/S|Y //

��

TY/S // 0

NY/X

��

0.
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It induces a commutative diagram

TX/S|Y //

��

TX/Y |Y + TY/S

vv

TY/S +NY/X

by Theorem 3.1, (3). We now pass to the proof of the first statement. We have a
commutative diagram with exact columns and rows

0

��

0

��

TY/S

��

TY/S

��

0 // TX/Z |Y // TX/S|Y

��

// TZ/S|Y //

��

0

0 // TX/Z |Y // NY/X
//

��

NY/Z
//

��

0

0 0.

We deduce the following commutative diagram by Theorem 3.1, (3)

TX/S|Y //

��

TX/Z |Y + TZ/S|Y // TX/Z |Y + TY/S +NY/Z

tt

TY/S +NY/X

��

TY/S + TX/Z |Y +NY/Z .

Furthermore, there is an obvious commutative diagram

NY/X + TY/S

��

TY/S +NY/X
//oo TY/S + TX/Z |Y +NY/Z

��

TX/Z |Y +NY/Z + TY/S // TX/Z |Y + TY/S +NY/Z

.

So the statement follows by combining the diagrams above.
For the second statement, observe that we have a commutative diagram with exact

columns and rows

0

��

0

��

0 // TY/Z //

��

TY/S

��

// TZ/S|Y // 0

0 // TX/Z |Y //

��

TX/S|Y //

��

TZ/S|Y // 0

NY/X

��

NY/X

��

0 0.
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Then the result follows by the same method as above by applying Theorem 3.1, (2) to
the diagram above.

Lemma 5.3. Suppose that X, Y, Z ∈ Sm/S and that g : Y −→ Z is a morphism in
Sm/S.

1. If g is a closed immersion, then the isomorphism t in Proposition 5.3 is equal to

−TXY/X −→ NXY/XZ −NXY/XZ − TXY/X −→ NXY/XZ − (idX × g)
∗TXZ/X .

2. If g is smooth, then the isomorphism t′ in Proposition 5.4 is equal to

−TXY/X −→ −(idX × g)
∗TXZ/X − TXY/XZ .

Proof. We have a commutative diagram in Sm/k

XY

idX×Γg��

idX×g

��

XY Z
pXY Z
XY

//

pXY Z
XZ

��

XY

pXY
X

��

XZ
pXZ
X

// X

in which the square is Cartesian. Suppose first that g is a closed immersion. In that case,
we show that the composite

− TXY/X

−→− TXY/X +NXY/XY Z − (idX × Γg)
∗TXY Z/XY

−→− TXY/X + (idX × Γg)
∗TXY Z/XZ +NXY/XZ − (idX × Γg)

∗TXY Z/XY

−→NXY/XZ − (idX × Γg)
∗TXY Z/XY

−→NXY/XZ − (idX × g)
∗TXZ/X

−→NXY/XZ −NXY/XZ − TXY/X

−→− TXY/X

is just id−TXY/X
. Indeed, it is equal to

− TXY/X

−→− TXY/X +NXY/XY Z − (idX × Γg)
∗TXY Z/XY

−→− TXY/X − (idX × Γg)
∗TXY Z/XY +NXY/XY Z

−→− TXY/X − (idX × g)
∗TXZ/X +NXY/XY Z

−→− TXY/X −NXY/XZ − TXY/X +NXY/XY Z

−→− TXY/X −NXY/XZ − TXY/X + (idX × Γg)
∗TXY Z/XZ +NXY/XZ

−→−NXY/XZ − TXY/X +NXY/XZ

−→− TXY/X ,

where the sixth arrow is the cancellation map between the first and the fourth term. By
Lemma 5.2, (1) and the commutative diagram above, we have a commutative diagram

(idX × Γg)
∗TXY Z/XY + TXY/X

��

(idX × Γg)
∗TXY Z/Xoo

��

NXY/XY Z + TXY/X

��

(idX × Γg)
∗TXY Z/XZ + (idX × g)

∗TXZ/X

��

(idX × Γg)
∗TXY Z/XZ +NXY/XZ + TXY/X // (idX × Γg)

∗TXY Z/XZ + TXY/X +NXY/XZ .
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Hence the composite above is equal to

− TXY/X

−→− TXY/X +NXY/XY Z − (idX × Γg)
∗TXY Z/XY

−→− TXY/X − (idX × Γg)
∗TXY Z/XY +NXY/XY Z

−→− TXY/X −NXY/XY Z +NXY/XY Z

−→− TXY/X −NXY/XZ − (idX × Γg)
∗TXY Z/XZ +NXY/XY Z

−→− TXY/X −NXY/XZ − (idX × Γg)
∗TXY Z/XZ + (idX × Γg)

∗TXY Z/XZ +NXY/XZ

−→− TXY/X ,

which gives the result.
Suppose next that g is smooth. We show that the composite

− TXY/X

−→− (idX × Γg)
∗TXY Z/XY +NXY/XY Z − TXY/X

−→− (idX × Γg)
∗TXY Z/XY +NXY/XY Z − (idX × Γg)

∗TXY Z/XZ

−→− (idX × Γg)
∗TXY Z/XY +NXY/XY Z −NXY/XY Z − TXY/XZ

−→− (idX × Γg)
∗TXY Z/XY − TXY/XZ

−→− (idX × g)
∗TXZ/X − TXY/XZ

−→− TXY/X

is just id−TXY/X
. By Lemma 5.2, (2) and the commutative diagram at the beginning of

the proof, we get a commutative diagram

(idX × Γg)
∗TXY Z/XY + TXY/X

��

(idX × Γg)
∗TXY Z/Xoo

��

NXY/XY Z + TXY/X

��

(idX × Γg)
∗TXY Z/XZ + (idX × g)

∗TXZ/X

��

NXY/XY Z + TXY/XZ + (idX × g)
∗TXZ/X // TXY/XZ +NXY/XY Z + (idX × g)

∗TXZ/X .

Hence the given composite is equal to

− TXY/X

−→− (idX × Γg)
∗TXY Z/XY +NXY/XY Z − TXY/X

−→− (idX × Γg)
∗TXY Z/XY − TXY/X +NXY/XY Z

−→−NXY/XY Z − TXY/X +NXY/XY Z

−→−NXY/XY Z − (idX × g)
∗TXZ/X − TXY/XZ +NXY/XY Z

−→− (idX × g)
∗TXZ/X − TXY/XZ

−→− TXY/X ,

where the fifth arrow is the cancellation between the first and the fourth term. The result
follows.

Proposition 5.5. For any X ∈ Sm/S, γ̃(idX) is an identity. That is, for any X, Y ∈

Sm/S, f ∈ C̃orS(X, Y ), g ∈ C̃orS(Y,X), we have

γ̃(idY ) ◦ f = f, g ◦ γ̃(idX) = g.
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Proof. The second equation follows by Proposition 5.2 and the first one follows from
Lemma 5.2, (1) and Proposition 5.3.

Combining Proposition 5.1 and Proposition 5.5, we have proved that C̃orS is indeed
a category. We now complete the proof that γ̃ is indeed a functor.

Proposition 5.6. For any X
f

// Y
g

// Z in Sm/S, we have

γ̃(g ◦ f) = γ̃(g) ◦ γ̃(f).

Proof. Suppose at first that f is a closed immersion or that it is smooth. We have a
Cartesian square

XZ
f×idZ // Y Z

X

Γg◦f

OO

f
// Y

Γg

OO

and two isomorphisms a : NY/Y Z − Γ∗
gTY Z/Y −→ 0 and b : NX/XZ − Γ∗

fTXZ/X −→ 0. For
convenience, we denote the induced morphisms at the level of correspondences still by a
and b respectively. Then we have

γ̃(g) ◦ γ̃(f)

=(f × idZ)
∗(γ̃(g))

by Proposition 5.2

=(f × idZ)
∗(Γg∗(a

−1(1), NY/Y Z − Γ∗
gTY Z/Y ))

by definition of γ̃

=(Γg◦f )∗f
∗(a−1(1))

by Axiom 16 for the square above

=(Γg◦f )∗(b
−1(1))

by Axiom 9 and functoriality of pull-backs with respect to twists

=γ̃(g ◦ f)

by definition of γ̃.

Suppose now that f = p ◦ i in Sm/S, where p is smooth and i is a closed immersion.
Then

γ̃(g) ◦ γ̃(f) = γ̃(g) ◦ γ̃(i) ◦ γ̃(p) = γ̃(i ◦ g) ◦ γ̃(p) = γ̃(g ◦ f)

by the statements above.

Remark 5.1. In [V01, Section 2] and [GP14, Section 2], the set Frn(X, Y ) (resp.
ZFn(X, Y )) of (resp. linear) framed correspondence of level n for any X, Y ∈ Sm/k, n ∈
N is defined. Garkusha-Panin and Voevodsky define the category ZF∗(k) to be the category
whose objects are those of Sm/k and

HomZF∗(k)(X, Y ) = ⊕nZFn(X, Y ).

Here, any element s in Frn(X, Y ) is given by (an equivalence class of) a commutative
diagram as below

An
X

p

��

U
g

//aoo An
Y

X Z

i

OO

// Y,

z

OO
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where a is étale, i, a ◦ i are closed immersions, p ◦ a ◦ i is finite, z is the zero section and
the square is Cartesian. Suppose that Z 6= ∅ and denote the composite

U
g

// An
Y

// Y

by f . We have a commutative diagram

U
Γf

// U × Y
b=a×id

// An
X × Y

c //

q

��

X × Y

��

An
X

// X

in which the square is Cartesian. Then we can associate to s an element α(s) in C̃ork(X, Y )
defined to be the image of 1 under the composite

E0
Y (Y, 0)

// E0
Y (Y,Nz −Nz)

z∗ // En
Y (A

n
Y ,−TAn

Y /Y
)

g∗

qq

En
Z(U,−g

∗TAn
Y /Y

) // En
Z(U,NΓf

−NΓf
− g∗TAn

Y /Y
)
b∗Γf∗

// En+dY −dS
Z (An

X × Y,−TAn
X×Y/An

X
− q∗TAn

X/X
)

c∗

��

C̃ork(X, Y ) EdY −dS
p(Z) (X × Y,−TX×Y/X),oo

where we have used the isomorphism g∗TAn
Y /Y
∼= a∗TAn

X/X
. One checks that this induces a

functor
α : ZF∗(k) −→ C̃ork

as in [DF17, Proposition 2.1.12].

Definition 5.4. Define P̃Sh(S) to be the category of contravariant additive functors from

C̃orS to Ab as in [DF17, Definition 1.2.1] and [MVW06, Definition 2.1]. The objects of

this category are called presheaves with E-transfers over S. Further, define S̃h(S) to be
the full subcategory of objects whose restriction on Sm/S via γ̃ are Nisnevich sheaves.
We call them sheaves with E-transfers over S.

Definition 5.5. Let X, Y ∈ Sm/S, we define c̃S(X) by c̃S(X)(Y ) = C̃orS(Y,X). It is
the presheaf with E-transfers represented by X.

We recall the following three propositions which are the technical heart when dealing
with Nisnevich sheaves:

Proposition 5.7. Let f : X −→ S be a locally of finite type morphism between locally
noetherian schemes. Let I be a directed set and let {Ti} be an inverse system of S-schemes
such that for any i1 � i2, the morphism Ti2 −→ Ti1 is affine. Then lim←−i Ti exists in the
category of S-schemes and we have

HomS(lim←−
i

Ti, X) = lim−→
i

HomS(Ti, X).

Proof. See [Pro, Lemma 2.2] and [Pro, Proposition 6.1].

Now, let A be a noetherian ring and let p ∈ SpecA. Consider the set I whose elements
are pairs (B, q), where B is a connected étale A-algebra, q ∈ SpecB, q ∩ A = p and
k(p) = k(q). Set (B1, q1) � (B2, q2) if there is an A-algebra morphism (always unique if
exists) f : B1 −→ B2 such that f−1(q2) = q1.
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Proposition 5.8. The set I is a directed set and we have

lim−→
(B,q)

B ∼= Ahp ,

where the right hand side is the Henselization of Ap.

Proof. See the remarks around [Mil80, Lemma 4.8] and see for example [Mil80, Theorem
4.2] for basic properties of Henselian rings.

Proposition 5.9. Let U , X, Y be locally noetherian schemes, p : U −→ X be a Nisnevich
covering and f : X −→ Y be a finite morphism. Then, there exists for every y ∈ Y a
scheme V with an étale morphism V −→ Y being Nisnevich at y such that the morphism
U ×Y V −→ X ×Y V has a section.

Proof. Consider the following commutative diagram with Cartesian squares

U
p

// X
f

// Y

R2
α //

γ

OO

R1
β

//

OO

SpecOh
Y,y.

OO

Since β is a finite morphism, R1 is a finite direct product of Henselian rings (see [Mil80,
Theorem 4.2]). Hence, α has a section s since it is Nisnevich at every maximal ideal of
R1. Pick an affine neighbourhood U0 of y. By [Pro, Lemma 2.3] and Proposition 5.8,

R1 =

(
lim←−

(B,q)�(OY (U0),y)

SpecB

)
×U0 f

−1(U0) = lim←−
(B,q)�(OY (U0),y)

(SpecB ×U0 f
−1(U0)),

hence there exists a (B0, q) � (OY (U0), y) such that γ ◦ s factor through the projection

lim←−
(B,q)�(OY (U0),y)

(SpecB ×U0 f
−1(U0)) −→ SpecB0 ×U0 f

−1(U0)

by using Proposition 5.7 for p. Then we finally let V = SpecB0.

Now we are going to prove a similar result as in [DF17, Lemma 1.2.6].

Proposition 5.10. Let X,U ∈ Sm/S and let p : U −→ X be a Nisnevich covering.
Denote the n-fold product A×B A×B · · · ×B A by AnB for any schemes A and B. Then,
the complex of sheaves associated to the complex

C̆(U/X) := · · · // c̃S(U
n
X)

dn // · · · // c̃S(U ×X U)
d2 // c̃S(U)

d1 // c̃S(X)
d0 // 0 ,

is exact. Here we set pi : Un
X −→ Un−1

X to be the projection omitting i-th factor and
dn =

∑
i(−1)

i−1c̃S(pi).

Proof. Given Y ∈ Sm/S, we have to prove that the complex is exact at every point

y ∈ Y . Now, assume that we have an element a ∈ C̃orS(Y, U
n
X) such that dn(a) = 0.

We may suppose that there exists T ∈ AS(Y,X) such that a comes from EdX−dS
Rn ((Y ×S

U)nY×SX
,−TY×SU

n
X/Y

) and dn(a) = 0, where Rn is defined by the following Cartesian
squares (R := R1)

Rn //

��

Y ×S U
n
X

��

// Un
X

��

T // Y ×S X // X.
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By Proposition 5.9, there is a Nisnevich neighbourhood V of y such that the map p : R×Y
V −→ T ×Y V has a section s, which is both an open immersion and a closed immersion
(see [Mil80, Corollary 3.12]). Let D = (R×Y V ) \ s(T ×Y V ). Then dn(a|V×SU

n
X
) = 0. We

have a commutative diagram

V ×S U
n
X

//

��

Y ×S U
n
X

��

V ×S X // Y ×S X,

Cartesian squares

Rn ×Y V //

��

V ×S U
n
X

��

// V

��

Rn // Y ×S U
n
X

// Y

, T ×Y V
s //

s

��

(V ×S U) \D

��

R×Y V // V ×S U

,

equations
Y ×S U

n
X = (Y ×S U)

n
Y×SX

,

V ×S U
n
X = (V ×S U)

n
V×SX

,

Rn = R×T · · · ×T R = Rn
T ,

Rn ×Y V = (R×Y V )nT×Y V
= (T ×Y×SX (V ×S U))

n
T×Y V

,

(R×Y V )nT×Y V
= (R×Y V )nV×SX

,

and a diagram of Cartesian squares in which the right-hand vertical maps are étale:

(R×Y V )nT×Y V
//

idn×s
��

id

##

(V ×S U)
n
V×SX

×(V×SX) ((V ×S U) \D) := W n+1

jn+1

��

(R×Y V )n+1
T×Y V

//

pn+1

��

(V ×S U)
n+1
V×SX

pn+1

��

(R×Y V )nT×Y V
// (V ×S U)

n
V×SX

,

where pn+1 denotes the projection omitting the last factor. The maps

EdX−dS
Rn×Y V

((V ×S U)
n
V×SX

,−TV×SU
n
X/V

)
(pn+1◦jn+1)∗

// EdX−dS
Rn×Y V

(W n+1,−TV×SU
n+1
X /V |Wn+1)

and

EdX−dS
Rn×Y V

((V ×S U)
n+1
V×SX

,−TV×SU
n+1
X /V )

j∗n+1
// EdX−dS

Rn×Y V
(W n+1,−TV×SU

n+1
X /V |Wn+1)

are isomorphisms with respective inverses (pn+1 ◦ jn+1)∗ and (jn+1)∗ by Axiom 20.
Let’s consider the element

b := ((j∗n+1)
−1 ◦ (pn+1 ◦ jn+1)

∗)(a|(V×SU)nV ×SX
) ∈ EdX−dS

Rn×Y V
((V ×S U)

n+1
V×SX

,−TV×SU
n+1
X /V ),

where we have used the isomorphism

p∗n+1TV×SU
n
X/V
−→ TV×SU

n+1
X /V

37



since U −→ X is étale. Then

dn+1(b) =
n+1∑

i=1

(−1)i−1c̃S(pi)(b) =
n+1∑

i=1

(−1)i−1pi∗(ti,n+1(b))

by Proposition 5.3, where

ti,n+1 : −TV×SU
n+1
X /V −→ −(idV ×S pi)

∗T(V×SU
n
X)/V − T(V×SU

n+1
X )/(V×SU

n
X)

is the isomorphism of Proposition 5.3 applied to

V
b // Un+1

X

pi // Un
X .

If 1 ≤ i < n+ 1, we have Cartesian squares

W n+1
pn+1◦jn+1

//

pi

��

(V ×S U)
n
V×SX

pi
��

W n pn◦jn
// (V ×S U)

n−1
V×SX

,

W n+1
jn+1

//

pi

��

(V ×S U)
n+1
V×SX

pi

��

W n jn
// (V ×S U)

n
V×SX

.

So

pi∗(ti,n+1(b))

=(pi∗ ◦ ti,n+1 ◦ (j
∗
n+1)

−1 ◦ (pn+1 ◦ jn+1)
∗)((a|(V×SU)nV ×SX

,−TV×SU
n
X/V

))

by definition

=(pi∗ ◦ (j
∗
n+1)

−1 ◦ j∗n+1(ti,n+1) ◦ (pn+1 ◦ jn+1)
∗)(a|(V×SU)nV ×SX

)

by functoriality of pullbacks with respect to twists

=((j∗n)
−1 ◦ pi∗ ◦ j

∗
n+1(ti,n+1) ◦ (pn+1 ◦ jn+1)

∗)(a|(V×SU)nV ×SX
)

by Axiom 15 for the right hand square above

=((j∗n)
−1 ◦ pi∗ ◦ (pn+1 ◦ jn+1)

∗ ◦ ti,n)(a|(V×SU)nV ×SX
)

by functoriality of pull-backs with respect to twists

=((j∗n)
−1 ◦ (pn ◦ jn)

∗ ◦ pi∗ ◦ ti,n)(a|(V×SU)nV ×SX
)

by Axiom 15 for the left hand square above.

For i = n+ 1, we have

pn+1∗(tn+1,n+1(b))

=(pn+1∗ ◦ tn+1,n+1 ◦ (j
∗
n+1)

−1 ◦ (pn+1 ◦ jn+1)
∗)((a|(V×SU)nV ×SX

,−TV×SU
n
X/V

))

by definition

=(pn+1∗ ◦ tn+1,n+1 ◦ jn+1∗ ◦ (pn+1 ◦ jn+1)
∗)(a|(V×SU)nV ×SX

)

by Axiom 20

=(pn+1∗ ◦ jn+1∗ ◦ j
∗
n+1(tn+1,n+1) ◦ (pn+1 ◦ jn+1)

∗)(a|(V×SU)nV ×SX
)

by functoriality of push-forwards with respect to twists

=((pn+1 ◦ jn+1)∗ ◦ (pn+1 ◦ jn+1)
∗)(a|(V×SU)nV ×SX

)

by Axiom 12 and Lemma 5.3, (2)

=a|(V×SU)nV ×SX

by Axiom 20.
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Hence

dn+1(b)

=((j∗n)
−1 ◦ (pn ◦ jn)

∗ ◦ dn)(a|(V×SU)nV ×SX
) + (−1)na|(V×SU)nV ×SX

=(−1)na|(V×SU)nV ×SX
.

So the complex is exact after Nisnevich sheafication.

Then by the same proofs as in [DF17, 1.2.7-1.2.11], we have the following result:

Proposition 5.11. 1. The forgetful functor õ : S̃h(S) −→ P̃Sh(S) has a left adjoint
ã such that the following diagram commutes:

PSh(S)

a

��

P̃Sh(S)
γ̃∗

oo

ã
��

Sh(S) S̃h(S),
γ̃∗

oo

where a is the Nisnevich sheafication functor with respect to the smooth site over S
(Section 7.2 for notations).

2. The category S̃h(S) is a Grothendieck abelian category and the functor ã is exact.

3. The functor γ̃∗ appearing in the lower line of the preceding diagram admits a left
adjoint γ̃∗ and commutes with every limits and colimits.

Proof. The same as [DF17, Proposition 1.2.11].

Definition 5.6. Given any X ∈ Sm/S, we define Z̃S(X) = ã(c̃S(X)) and we denote

Z̃S(S) by ✶S.

Proposition 5.12. Let X ∈ Sm/S and U1 ∪ U2 = X be a Zariski covering. Then the
following complex is exact as sheaves with E-transfers:

0 −→ Z̃S(U1 ∩ U2) −→ Z̃S(U1)⊕ Z̃S(U2) −→ Z̃S(X) −→ 0.

Proof. See [MVW06, Proposition 6.14] with use of Proposition 5.10. Note that this com-
plex is left exact because for any open immersion U ⊆ X in Sm/k, c̃S(U) is a subsheaf
of c̃S(X) by Axiom 20.

We are now going to define a tensor product on the category C̃orS.

Definition 5.7. Let Xi, Yi ∈ Sm/S for i = 1, 2. Let further f1 ∈ C̃orS(X1, Y1) and

f2 ∈ C̃orS(X2, Y2). Set

f1 ×S f2 = p∗1f1 · p
∗
2f2 ∈ C̃or(X1 ×S X2, Y1 ×S Y2)

where pi : X1 ×S X2 ×S Y1 ×S Y2 −→ Xi ×S Yi, i = 1, 2 are the projections. Here we have
used the isomorphism −TX1X2Y1Y2/X1X2 −→ −TX1X2Y1Y2/X1X2Y2 − TX1X2Y1Y2/X1X2Y1. We
say that f1 ×S f2 is the exterior product of f1 and f2.

To prove that the tensor product is well-defined, we need to verify the compatibility
of the tensor products with compositions.
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Lemma 5.4. Let Xi, Yi, Zi ∈ Sm/S for i = 1, 2. Let further pi13 : XiYiZi −→ XiZi,
ai : X1X2Y1Y2Z1Z2 −→ XiYiZi, bi : X1X2Z1Z2 −→ XiZi and p13 : X1X2Y1Y2Z1Z2 −→

X1X2Z1Z2 be the projections. Suppose that αi ∈ E
dYi+dZi
Ci

((pi13)
∗vi − TXiYiZi/XiZi

) where
Ci ∈ AS(Xi, YiZi) and vi ∈PXiZi

. Then we have

b∗1p
1
13∗(α1) · b

∗
2p

2
13∗(α2) = p13∗(a

∗
1(α1) · a

∗
2(α2)),

where we have used the isomorphism (exchanging the middle two terms and then merging
the last two terms) from

a∗1(p
1
13)

∗v1 − TX1X2Y1Y2Z1Z2/X1X2Y2Z1Z2 + a∗2(p
2
13)

∗v2 − TX1X2Y1Y2Z1Z2/X1X2Y1Z1Z2

to
p∗13(b

∗
1(v1) + b∗2(v2))− TX1X2Y1Y2Z1Z2/X1X2Z1Z2

in the right hand side.

Proof. We have two Cartesian squares

X2Y2Z2

p213 // X2Z2

X1X2Y1Y2Z1Z2

a2

OO

q
// X1X2Y1Z1Z2

p25

OO
X1Y1Z1

p113 // X1Z1

X1X2Y1Z1Z2
p1245

//

p

OO

X1X2Z1Z2

b1

OO

and equations p25 = b2 ◦ p1245, p ◦ q = a1 and p13 = p1245 ◦ q. Then we have

b∗1p
1
13∗((α1, (p

1
13)

∗vi − TX1Y1Z1/X1Z1)) · b
∗
2p

2
13∗(α2)

=(p1245)∗p
∗(α1) · b

∗
2p

2
13∗(α2)

by Axiom 15 for the right square above

=(p1245)∗(p
∗(α1) · p

∗
1245b

∗
2p

2
13∗(α2))

by Axiom 17 for p1245

=(p1245)∗(p
∗(α1) · p

∗
25p

2
13∗(α2))

by Axiom 9

=(p1245)∗(p
∗(α1) · q∗a

∗
2(α2))

by Axiom 15 for the left square above

=(p1245)∗q∗(q
∗p∗(α1) · a

∗
2(α2))

by Axiom 17 for q

=(p1245)∗q∗(a
∗
1(α1) · a

∗
2(α2))

by Axiom 9

=p13∗(a
∗
1(α1) · a

∗
2(α2))

by Axiom 12.

Proposition 5.13. Let Xi, Yi, Zi ∈ Sm/S, fi ∈ C̃orS(Xi, Yi), gi ∈ C̃orS(Yi, Zi) where
i = 1, 2. Then

(g1 ×S g2) ◦ (f1 ×S f2) = (g1 ◦ f1)×S (g2 ◦ f2).

Proof. We have a commutative diagram (i = 1, 2)

Y1Y2Z1Z2
qi×ri // YiZi

X1X2Y1Y2Z1Z2

p23

OO

p12
��

ai //

p13

++

XiYiZi
pi13 //

pi23

OO

pi12

��

XiZi

X1X2Y1Y2
pi×qi // XiYi X1X2Z1Z2.

bi

OO
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Then

(g1 ×S g2) ◦ (f1 ×S f2)

=p13∗(p
∗
23((q1 × r1)

∗g1 · (q2 × r2)
∗g2) · p

∗
12((q1 × r1)

∗f1 · (q2 × r2)
∗f2)

by definition

=p13∗(a
∗
1(p

1
23)

∗(g1) · a
∗
2(p

2
23)

∗(g2) · a
∗
1(p

1
12)

∗(f1) · a
∗
2(p

2
12)

∗(f2))

by Axiom 10 and Axiom 9.

=p13∗(c(a
∗
1(p

1
23)

∗(g1) · a
∗
1(p

1
12)

∗(f1) · a
∗
2(p

2
23)

∗(g2) · a
∗
2(p

2
12)

∗(f2)))

by Axiom 6 and Axiom 16. Here c = c(a∗1(p
1
12)

∗(−TX1Y1/X1), a
∗
2(p

2
23)

∗(−TY2Z2/Y2))

=p13∗(c(a
∗
1((p

1
23)

∗(g1) · (p
1
12)

∗(f1)) · a
∗
2((p

2
23)

∗(g2) · (p
2
12)

∗(f2))))

by Axiom 10

=b∗1p
1
13∗((p

1
23)

∗(g1) · (p
1
12)

∗(f1)) · b
∗
2p

2
13∗((p

2
23)

∗(g2) · (p
2
12)

∗(f2))

by Lemma 5.4

=b∗1(g1 ◦ f1) · b
∗
2(g2 ◦ f2)

by definition

=(g1 ◦ f1)×S (g2 ◦ f2)

by definition.

Now that we proved that the category C̃orS has a tensor product, we review some
basic constructions that will be useful later.

For any F ∈ P̃Sh(S) and X ∈ Sm/S, we define FX ∈ P̃Sh(S) by FX(Y ) = F (X ×S
Y ). If F ∈ S̃h(S), then it’s clear that FX ∈ S̃h(S) also. We define C∗F for any F ∈ S̃h(S)
to be the complex with (C∗F )n = F△n

as in [MVW06, Definition 2.14] and differentials
as usual.

A pointed scheme is a pair (X, x) where X ∈ Sm/S and x : S −→ X is a S-rational

point. We define Z̃S((X1, x1)∧ . . .∧ (Xn, xn)) for pointed schemes (Xi, xi) as the cokernel
of the map

θn : ⊕iZ̃S(X1 × . . .× X̂i × . . .×Xn)
∑

(−1)i−1id×...×xi×...×id
// Z̃S(X1 × . . .×Xn) .

We denote Z̃S((X, x)∧ . . .∧ (X, x)) by Z̃S((X, x)
∧n) and Z̃S(X, x) by Z̃S((X, x)

∧1). Then

we define Z̃S(q) = Z̃S((Gm, 1)
∧q)[−q] for q ≥ 0 and we set Z̃S(S) = Z̃S = Z̃S(0) = ✶S.

Following the notation in [MVW06, Lemma 2.13], we let [xi] be the composite

Xi −→ S
xi−→ Xi

and ei ∈ C̃orS(Xi, Xi) to be idXi
− Z̃S([xi]).

Lemma 5.5. For n ≥ 2, the sheaf Z̃S((X1, x1) ∧ . . . ∧ (Xn, xn)) is just the image of the
map

e1 × . . .× en : Z̃S(X1 × . . .×Xn) −→ Z̃S(X1 × . . .×Xn).

Moreover, the inclusion of Z̃S((X1, x1) ∧ . . . ∧ (Xn, xn)) into Z̃S(X1 × . . . × Xn) as an
image is a section of e1 × . . .× en.

Proof. We prove the same statements after replacing Z̃S by c̃S and then sheafify. The first
statement is tantamount toKer(e1×. . .×en) = Im(θn). Now, Im(θn) ⊆ Ker(e1×. . .×en)
because ei ◦ [xi] = 0. On the other hand, Ker(e1 × . . .× en) ⊆ Im(θn) because

e1 × . . .× en = idX1×...×Xn +
∑

fα1 × . . .× fαn ,
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where for every n-tuple (α1, . . . , αn), there exists (at least) αi such that fαi
= −[xi]. It

follows that fα1 × . . .× fαn factors through id× . . .× xi × . . .× id for that i.
The second statement follows from the fact that ei is idempotent.

By the lemma above, we can consider the sheaf Z̃S((X1, x1) ∧ · · · ∧ (Xn, xn)) as a

subsheaf of Z̃S(X1 × · · · ×Xn).

Lemma 5.6. For any two pointed schemes (X1, x1), (X2, x2), we have a split exact se-
quence

0 −→ Z̃S((X1, x1)∧(X2, x2)) −→ Z̃S(X1×SX2, (x1, x2)) −→ Z̃S(X1, x1)⊕Z̃S(X2, x2) −→ 0.

Proof. A direct computation yields the following split short exact sequence:

Z̃S ⊕ Z̃S((X1, x1) ∧ (X2, x2))
(x1,x2)+id

// Z̃S(X1 ×S X2)
(−e1◦p1,e2◦p2)

//

(π,e1×e2)
pp

Z̃S(X1, x1)⊕ Z̃S(X2, x2)

−(idX1
,x2)+(x1,idX2

)
qq

,

where π : X1 ×S X2 −→ S is the structure map. The result follows from this seqeuence,
after quotienting the first two terms above with Z̃S (sometimes called ‘killing one point’).

The following definitions comes from [SV00, Lemma 2.1].

Definition 5.8. Let n ≥ 2 and let Fi, G ∈ P̃Sh(S) for i = 1, · · · , n. A multilinear
function ϕ : F1 × · · · × Fn −→ G is a collection of multilinear maps of abelian groups

ϕ(X1,··· ,Xn) : F1(X1)× · · · × Fn(Xn) −→ G(X1 ×S · · · ×S Xn)

for every Xi ∈ Sm/S, such that for every f ∈ C̃orS(Xi, X
′
i), we have a commutative

diagram

· · · × Fi(X
′
i)× · · ·

ϕ(··· ,X′

i,··· )//

···×F (f)×···
��

G(· · · ×S X
′
i ×S · · · )

G(···×f×··· )
��

· · · × Fi(Xi)× · · ·
ϕ(··· ,Xi,··· ).

// G(· · · ×S Xi ×S · · · )

Definition 5.9. Let n ≥ 2 be an integer and let Fi, G ∈ P̃Sh(S) (resp. S̃h(S)) for
i = 1, · · · , n. The tensor product F1⊗

pr
S · · · ⊗

pr
S Fn (resp. F1⊗S · · · ⊗S Fn) is the presheaf

(resp. sheaf) with E-transfers G such that for any H ∈ P̃Sh(S) (resp. S̃h(S)), we have

HomS(G,H) ∼= {Multilinear functions F1 × · · · × Fn −→ H}

naturally.

For any F,G ∈ P̃Sh(S), we can construct F ⊗prS G ∈ P̃Sh(S) as in the discussion
before [SV00, Lemma 2.1]. Moreover, we define HomS(F,G) to be the presheaf with E-
transfers which sends X ∈ Sm/S to HomS(F,G

X). If F,G are sheaves with E-transfers,
we set F⊗SG = ã(F⊗prS G). If G is a sheaf with E-transfers, it’s clear that HomS(F,G) is
also a sheaf with E-transfers. Finally, it’s clear from the definition that F⊗prS G

∼= G⊗prS F
and F ⊗S G ∼= G⊗S F .

Proposition 5.14. For any F,G,H ∈ P̃Sh(S), we have isomorphisms

HomS(F ⊗
pr
S G,H) ∼= HomS(F,HomS(G,H)),
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HomS(F ⊗
pr
S G,H) ∼= HomS(G,HomS(F,H))

functorial in three variables. Simililarly, for any F,G,H ∈ S̃h(S), we have isomorphisms

HomS(F ⊗S G,H) ∼= HomS(F,HomS(G,H)),

HomS(F ⊗S G,H) ∼= HomS(G,HomS(F,H))

functorial in three variables.

Proof. This is clear from the definition of the bilinear map.

If F,G,H ∈ S̃h(S), it’s easy to see using the above proposition that (F ⊗S G) ⊗S H
and F ⊗S (G ⊗S H) are both isomorphic to F ⊗S G ⊗S H. It folllows that the tensor
product defined above is associative. Finally, one checks that ⊗S (resp. ⊗prS ) endows

S̃h(S) (resp. P̃Sh(S)) with a symmetric closed monoidal structure.

Proposition 5.15. If a morphism f : F1 −→ F2 of presheaves with E-transfers becomes
an isomorphism after sheafifying, then so does the morphism f ⊗prS G for any presheaf
with E-transfers G.

Proof. The condition is equivalent to the map HomS(f,H) being an isomorphism for any
sheaf with E-transfers H. Now, we have

HomS(f ⊗
pr
S G,H) ∼= HomS(f,HomS(G,H))

by the proposition above.

Proposition 5.16. 1. For any X, Y ∈ Sm/S, we have

Z̃S(X)⊗S Z̃S(Y ) ∼= Z̃S(X ×S Y )

as sheaves with E-transfers.

2. For any two pointed schemes (X1, x1) and (X2, x2), we have

Z̃S(X1, x1)⊗S Z̃S(X2, x2) ∼= Z̃S((X1, x1) ∧ (X2, x2))

as sheaves with E-transfers.

Proof. We have c̃S(X)⊗prS c̃S(Y ) ∼= c̃S(X ×S Y ) using the exterior products of correspon-
dences. Then the statement follows by Proposition 5.15. The second statement follows
by a similar method.

Now we are going to prove some functorial properties of sheaves with E-transfers over
different bases. Our approach is quite similar as [D07]. The following lemma is useful
when constructing adjunctions, see [Ayo07, Definition 4.4.1] and [D07, 2.5.1].

Lemma 5.7. Let ϕ : C −→ D be a functor between small categories and M be a category
with arbitrary colimits. Then the functor

ϕ∗ : PreShv(D ,M ) −→ PreShv(C ,M )

defined by ϕ∗(F ) = F ◦ ϕ has a left adjoint ϕ∗.
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Proof. Suppose G ∈ PreShv(C ,M ). For every object Y ∈ D , define CY to be the
category whose objects are HomD(Y, ϕ(X)) and morphisms from a1 : Y −→ ϕ(X1) to
a2 : Y −→ ϕ(X2) are b ∈ HomC (X1, X2) such that a2 = ϕ(b)◦a1. We have a contravariant
functor

θY : CY −→M

defined by θY (Y −→ ϕ(X)) = GX. Then define (ϕ∗G)Y = lim−→ θY . For any morphism
c : Y1 −→ Y2 in D , we define (ϕ∗G)(c) using the following commutative diagram

θY2(a)

ia
��

ia◦c

$$

lim−→ θY2(ϕ∗G)(c)
// lim−→ θY1

for every a : Y2 −→ ϕ(X). One checks it is just what we want.

Definition 5.10. Suppose that f : S −→ T is a morphism in Sm/k. For any X ∈ Sm/T ,
set XS = X ×T S ∈ Sm/S. For any X1, X2 ∈ Sm/T , denote by pf the projection
(X1 ×T X2)

S −→ X1 ×T X2. Define

ϕf : C̃orT −→ C̃orS
X 7−→ XS

g 7−→ gS
,

where g 7−→ gS : C̃orT (X1, X2) −→ C̃orS(X
S
1 , X

S
2 ) is the unique map such that the

following diagram commutes

E
dX2

−dT
Z (X1 ×T X2,−TX1×TX2/X1)

p∗f
//

��

E
dX2

−dS

p−1
f (Z)

((X1 ×T X2)
S,−T(X1×TX2)S/XS

1
)

��

C̃orT (X1, X2)
ϕf

// C̃orS(X
S
1 , X

S
2 )

,

for any Z ∈ AT (X1, X2).

Proposition 5.17. Suppose that X1
g1

// X2
g2

// X3 are morphisms in C̃orT . Then

(g2 ◦ g1)
S = gS2 ◦ g

S
1 .

So ϕf : C̃orT −→ C̃orS is indeed a functor.

Proof. We have diagrams

X1 ×T X2

X1 ×T X3 X1 ×T X2 ×T X3

p12

OO

p13
oo

p23
��

X2 ×T X3,

XS
1 ×S X

S
2

XS
1 ×S X

S
3 XS

1 ×S X
S
2 ×S X

S
3

q12

OO

q13
oo

q23
��

XS
2 ×S X

S
3 ,
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and three Cartesian squares

X2 ×S X3

X1 ×T X3 X1 ×T X2 ×T X3
p13

oo
p12

//

p23

OO

X1 ×S X2

XS
1 ×S X

S
3

r

OO

XS
1 ×S X

S
2 ×S X

S
3

q13
oo

t

OO

q23
��

q12
// XS

1 ×S X
S
2

p

OO

XS
2 ×S X

S
3 .

q

DD

Suppose that g1 and g2are supported on some admissible subsets. We have

(g2 ◦ g1)
S

=r∗p13∗(p
∗
23(g2) · p

∗
12(g1))

by definition

=q13∗t
∗(p∗23(g2) · p

∗
12(g1))

by Axiom 15 for the left square above

=q13∗(q
∗
12p

∗(g2) · q
∗
23q

∗(g1))

by Axiom 10 and Axiom 9

=gS2 ◦ g
S
1

by definition.

It’s then easy to verify that γ̃(idY )
S = γ̃(idY S) for any Y ∈ Sm/T . So ϕf is a functor.

It is straightforward to check that ϕf1◦f2 = ϕf2 ◦ ϕf1 .

Proposition 5.18. Suppose fi ∈ C̃orT (Xi, Yi) where i = 1, 2. Then

(f1 ×T f2)
S = fS1 ×S f

S
2 .

Proof. This follows from the commutative diagram

(X1Y1X2Y2)
S pf

//

''ww

X1Y1X2Y2

%%yy

(X1Y1)
S

pf
22(X2Y2)

S
pf 22X1Y1 X2Y2.

Proposition 5.19. In the notations above, we have an adjoint pair

f ∗ : S̃h(T ) ⇋ S̃h(S) : f∗

where (f∗F )(X) = F ◦ ϕf for F ∈ S̃h(S).

Proof. Applying Lemma 5.7 to ϕf , we obtain an adjunction P̃Sh(T ) ⇋ P̃Sh(S).We may
then apply the sheafication functor of Proposition 5.11 to get the desired result.

Obviously, we have (f1 ◦ f2)
∗ = f ∗

2 ◦ f
∗
1 , (f1 ◦ f2)∗ = f1∗ ◦ f2∗.

Proposition 5.20. Suppose that f : S −→ T is a morphism in Sm/k.
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1. For any Y ∈ Sm/T ,

f ∗Z̃T (Y ) ∼= Z̃S(Y ×T S)

as sheaves with E-transfers.

2. For any F ∈ S̃h(S) and Y ∈ Sm/T ,

(f∗F )
Y ∼= f∗(F

Y×TS)

as sheaves with E-transfers.

3. For any F ∈ S̃h(T ) and G ∈ S̃h(S),

HomT (F, f∗G)
∼= f∗HomS(f

∗F,G)

as sheaves with E-transfers.

4. For any F,G ∈ S̃h(T ), we have

f ∗F ⊗S f
∗G ∼= f ∗(F ⊗T G)

as sheaves with E-transfers.

Proof. 1. We have

HomS(f
∗Z̃T (Y ),−) ∼= HomT (Z̃T (Y ), f∗−) ∼= HomS(Z̃S(Y ×T S),−).

2. For any Z ∈ Sm/T , we get using Proposition 5.18

(f∗F )
Y (Z) = F ((Y ×T Z)×T S) ∼= F ((Z ×T S)×S (Y ×T S)) ∼= (f∗(F

Y×TS))(Z).

3. For any Y ∈ Sm/T , we have

HomT (F, f∗G)(Y ) = HomT (F, (f∗G)
Y )

∼= HomT (F, f∗(G
Y×TS))

by (2)
∼= HomS(f

∗F,GY×TS)

= (f∗HomS(f
∗F,G))(Y ).

4. For any H ∈ S̃h(S),

HomS(f
∗F ⊗S f

∗G,H) ∼= HomS(f
∗G,HomS(f

∗F,H))
∼= HomT (G, f∗HomS(f

∗F,H))
∼= HomT (G,HomT (F, f∗H))

by (3)
∼= HomT (F ⊗T G, f∗H)
∼= HomS(f

∗(F ⊗T G), H).
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From now on in this chapter, we suppose that f : S −→ T is a smooth morphism in
Sm/k. Given such a morphism, we may consider any smooth S-scheme as a smooth T -
scheme via f . Moreover, the fact that the diagonal map S → S×T S is a closed immersion
implies that for any smooth S-schemes X1 and X2, the natural morphism

qf : X1 ×S X2 → X1 ×T X2

is a closed immersion. Indeed, this follows from the Cartesian square

X1 ×S X2
//

��

X1 ×T X2

��

S // S ×T S.

Definition 5.11. For X1, X2 ∈ Sm/S, we define

ϕf : C̃orS −→ C̃orT
X 7−→ X
g 7−→ gT

,

where g 7−→ gT : C̃orS(X1, X2) −→ C̃orT (X1, X2) is the unique map such that the follow-
ing diagram commutes

E
dX1

−dS
Z (X1 ×S X2 − TX1×SX2/X1)

qf∗◦tf
//

��

E
dX1

−dT
qf (Z)

(X1 ×T X2,−TX1×TX2/X1)

��

C̃orT (X1, X2)
ϕf

// C̃orS(X1, X2)

for any Z ∈ AS(X1, X2). Here, tf is the isomorphism

− TX1×SX2/X1

−→N(X1×SX2)/(X1×TX2) −N(X1×SX2)/(X1×TX2) − TX1×SX2/X1

−→N(X1×SX2)/(X1×TX2) − q
∗
fTX1×TX2/X1 .

For convenience of notation, we denote TX/Y by Tf for a smooth morphism f : X −→ Y
and NX/Y by Nf for a closed immersion f in the following few propositions.

Proposition 5.21. Suppose that X1
g1

// X2
g2

// X3 are morphisms in C̃orS. Then,
we have

(g2 ◦ g1)T = g2T ◦ g1T .

So ϕf : C̃orS −→ C̃orT is indeed a functor.

Proof. We have Cartesian squares

X1 ×S X2
i // X1 ×T X2

X1 ×S X2 ×S X3
i′ //

q′12

OO

X1 ×T (X2 ×S X3),

q12

OO

X1 ×T (X2 ×S X3)
q

//

r

��

X1 ×T X2 ×T X3

p23

��

X2 ×S X3
j

// X1 ×T X3,
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X1 ×S X2 ×S X3
//

i′

��

(X1 ×S X2)×T X3

��

X1 ×T (X2 ×S X3)
q

// X1 ×T X2 ×T X3,

X1 ×S X2 ×S X3

i′

��

q′13 // X1 ×S X3

k
��

X1 ×T (X2 ×S X3)
p13◦q

// X1 ×T X3,

and commutative diagrams

X1 ×T X2

X1 ×T (X2 ×S X3)
q

//

q12

OO

X1 ×T X2 ×T X3,

p12
jj

X1 ×S X2 ×S X3
i′ //

q′23 **

X1 ×T (X2 ×S X3)

r

��

X2 ×S X3.

For g1 and g2 supported on admissible subsets, we have

g2T ◦ g1T

=j∗tf (g2) ◦ i∗tf (g1)

by definition

=p13∗(p
∗
23j∗tf (g2) · p

∗
12i∗tf (g1))

by definition

=p13∗(q∗r
∗tf (g2) · p

∗
12i∗tf (g1))

by Axiom 16 for the second square above

=p13∗q∗(r
∗tf (g2) · q

∗p∗12i∗tf (g1))

by Axiom 18 for q

=p13∗q∗(r
∗tf (g2) · q

∗
12i∗tf (g1))

by Axiom 9

=p13∗q∗(r
∗tf (g2) · i

′
∗q

′∗
12tf (g1))

by Axiom 16 for the first square above

=p13∗q∗i
′
∗(i

′∗r∗tf (g2) · q
′∗
12tf (g1))

by Axiom 18 for i′

=p13∗q∗i
′
∗((q

′∗
23tf (g2) · q

′∗
12tf (g1), i

′∗Nq − i
′∗q∗p∗13TX1×TX3/X1 +Ni′ − i

′∗q∗Tp13))

by Axiom 9

=(p13 ◦ q)∗i
′
∗((q

′∗
23tf (g2) · q

′∗
12tf (g1),−i

′∗q∗p∗13TX1×TX3/X1 +Ni′ − i
′∗Tp13◦q))

by Axiom 19, (1) and functoriality of push-forwards with respect to twists

=k∗q
′
13∗((q

′∗
23tf (g2) · q

′∗
12tf (g1),−q

′∗
13k

∗TX1×TX3/X1 + q′∗13Nk − Tq′13))

by Axiom 19, (3) for the last square above.

Now, we have to treat the twists. We say that a morphism f : A + B −→ C +D in
a Picard category contains a switch if there are morphisms g : A −→ D and h : B −→ C
such that f = c(D,C) ◦ (g + h). Conversely, we say that it doesn’t contain a switch if
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there are morphisms g : A −→ C and h : B −→ D such that f = g + h. We have a
commutative diagram in which the three squares are Cartesian

X1 ×S X2 ×S X3
q′

//

u

**

i′

��

(X1 ×S X2)×T X3

i′′

��

(X1 ×S X3)×T X2

v

**

X1 ×T (X2 ×S X3)
q

// X1 ×T X2 ×T X3.

This induces a commutative diagram (in which all arrows contain a switch)

Nq′ + q′∗Ni′′
//

��

Nu + u∗Nv

ww

Ni′ + i′∗Nq

since they all come from exact sequences related to Ni′′◦q′ = Nv◦u = Nq◦i′ . Then we have
a commutative diagram (no arrow contains a switch except ϕ)

q′∗Ni′′ + i′∗Nq
//

��

Nu +Nq′
//

��

i′∗Nq + u∗Nv

��

q′∗Ni′′ +Nq′
//

ϕ

66
Nu + u∗Nv

// i′∗Nq +Ni′

by the diagram above. Hence the composite

q′∗Ni′′ + i′∗Nq −→ Nu +Nq′ −→ i′∗Nq + u∗Nv

is equal to the morphism with a switch

q′∗Ni′′ + i′∗Nq −→ i′∗Nq + u∗Nv

where the morphism q′∗Ni′′ −→ u∗Nv is given by the composite

q′∗Ni′′ −→ Ni′ −→ u∗Nv.

So the composite (in which morphisms are without switch)

q′∗23Nj + q∗12Ni −→ Nq′ +Nu −→ q′∗13Nk + i′∗Nq

is equal to the morphism with a switch

q′∗23Nj + q∗12Ni −→ q′∗13Nk + i′∗Nq

where the morphism q∗12Ni −→ q′∗13Nk is given by the composite

q∗12Ni −→ Ni′ −→ q′∗13Nk

and the morphism q′∗23Nj −→ i′∗Nq is obtained by pulling back the morphism

r∗Nj −→ Nq

along i′.
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Moreover, there are commutative diagrams with Cartesian squares

X1 ×S X2
i // X1 ×T X2

// X1

X1 ×S X2 ×S X3

q′12

OO

u //

i′

��

(X1 ×S X3)×T X2
//

OO

��

X1 ×S X3

OO

��

X1 ×T (X2 ×S X3)
q

// X1 ×T X3 ×T X2
// X1 ×T X3

and

X2 ×S X3
j

// X2 ×T X3
// X2

X1 ×S X2 ×S X3
q′

//

q′23

OO

q′13
��

(X1 ×S X2)×T X3

OO

��

// X1 ×S X2

OO

��

X1 ×S X3
k // X1 ×T X3

// X1

which induce commutative diagrams where the right-hand vertical maps contain no switch

i∗q′∗12TX1×TX2/X1
// q′∗12TX1×SX2/X1 + q′∗12Ni

u∗T(X1×SX3)×TX2/X1×SX3
//

OO

��

Tq′13 +Nu

OO

��

q∗Tp13 // i′∗Tp13◦q + i′∗Nq

,

q′∗23j
∗TX2×TX3/X2

// q′∗23TX2×SX3/X2 + q′∗23Nj

q′∗T(X1×SX2)×TX3/X1×SX2
//

OO

��

Tq′12 +Nq′

OO

��

k∗TX1×TX3/X1
// q′∗13TX1×SX3/X1 + q′∗13Nk.

These calculations above together with the functoriality of q′13∗ with respect to twists yield

k∗q
′
13∗((q

′∗
23tf (g2) · q

′∗
12tf (g1),−q

′∗
13k

∗TX1×TX3/X1 + q′∗13Nk − Tq′13))

=k∗tf (q
′
13∗(q

′∗
23(g2) · q

′∗
12(g1)))

=(g2 ◦ g1)T

by definition.

Finally, we have to show that (idX)T = idX for any X ∈ Sm/S. We have the following
commutative diagram

X

△T $$

△S // X ×S X //

qf
��

X

X ×T X

::
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where △ is the diagonal map. We have to show that the following diagram commutes

N△S
−N△S

// N△S
−△∗

STX×SX/X

��

△S∗ // −TX×SX/X

tf

��

0

OO

��

N△S
+△∗

S(Nqf − q
∗
fTX×TX/X)

△S∗ //

��

Nqf − q
∗
fTX×TX/X

qf∗

��

N△T
−N△T

// N△T
−△∗

TTX×TX/X
△T∗ // −TX×TX/X .

The right-hand squares commute by functoriality of the push-forwards with respect to
twists and Axiom 14. The left square comes from the following commutative diagram
with exact rows

0 // N△S
// N△T

//△∗
SNqf

// 0

0 //△∗
STX×SX/X

∼=

OO

//△∗
TTX×TX/X

∼=

OO

//△∗
SNqf

// 0.

Using Axiom 14, it is straightforward to check that ϕf1◦f2 = ϕf1 ◦ ϕf2 .

Proposition 5.22. Let a ∈ C̃orS(X1, X2) and let b ∈ C̃orT (Y1, Y2). Identifying (X1 ×S
X2)×T Y1 ×T Y2 with X1 ×S X2 ×S (Y1 ×T Y2)

S and X1 ×T Y1 ×T X2 ×T Y2 with (X1 ×S
Y S
1 )×T (X2 ×S Y

S
2 ), we have

aT ×T b = (a×S b
S)T .

Proof. We have a commutative diagram in which the square is Cartesian

(X1 ×S X2)×T Y1 ×T Y2
r //

p1

��
p2

++

X1 ×T Y1 ×T X2 ×T Y2

q1

��
q2

))

X1 ×S X2 t
// X1 ×T X2 Y1 ×T Y2.

Suppose that a, b are supported on admissible subsets. Denote by θ the isomorphism

−q∗1TX1×TX2/X1 − q
∗
2TY1×TY2/Y1 −→ −TX1×TX2×TY1×TY2/X1×TY1

and by η the isomorphism

−p∗1TX1×SX2/X1 − p
∗
2TY1×TY2/Y1 −→ −TX1×SX2×SY

S
1 ×SY

S
2 /X1×SY

S
1
.
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Then

aT ×T b

=θ(q∗1t∗(tf (a)) · q
∗
2b)

by definition

=θ(r∗p
∗
1(tf (a)) · q

∗
2b)

by Axiom 16 for the square in the diagram

=θ(r∗(p
∗
1(tf (a)) · p

∗
2b))

by Proposition 18 for r and Axiom 10

=r∗r
∗(θ)((p∗1(tf (a)) · p

∗
2b, p

∗
1Nt − p

∗
1t

∗TX1×TX2/X1 − p
∗
2TY1×TY2/Y1))

by functoriality of push-forwards with respect to twists

=r∗(tf (η(p
∗
1(a) · p

∗
2b)))

=(a×S b
S)T

by definition.

Here the fifth equality comes from the following commutative diagram with exact rows
and columns

0

��

0

��

p∗2TY1×TY2/Y1

��

p∗2TY1×TY2/Y1

��

0 // r∗TX1Y1X2Y2/X1Y1
//

��

TX1X2Y S
1 Y

S
2 /X1Y S

1

��

// Nr
//

∼=

��

0

0 // r∗q∗1TX1×TX2/X1
//

��

p∗1TX1×SX2/X1
//

��

p∗1Nt
// 0

0 0

and Theorem 3.1, (1).

Applying the same proof as in Proposition 5.19 to ϕf , we get the following result.

Proposition 5.23. There is an adjoint pair

f# : S̃h(S) ⇋ S̃h(T ) : (f#)
′,

where (f#)
′F = F ◦ ϕf for F ∈ S̃h(T ).

The next lemma is important when identifying (f#)
′. See also [MVW06, Exercise

1.12].

Lemma 5.8. For any U ∈ Sm/S, X ∈ Sm/T , we have an adjoint pair:

C̃orS(U,X
S) = C̃orT (U,X).

Proof. For any U ∈ Sm/S, X ∈ Sm/T , we have an isomorphism

θU,X : U ×S X
S −→ U ×T X.
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We can then define

λU,X : C̃orS(U,X
S) −→ C̃orT (U,X)

W 7−→ θU,X∗(W )
,

which is obviously an isomorphism.
Let now U ∈ Sm/S, X1, X2 ∈ Sm/T , V ∈ C̃orT (X1, X2) and W ∈ C̃orS(U,X

S
1 ). We

want to show that
λU,X2(V

S ◦W ) = V ◦ λU,X1(W ).

We have a commutative diagram

X1 ×T X2 U ×T X1

XS
1 ×S X

S
2

p

OO

U ×S X
S
1

θU,X1

∼=

88

U ×S (X
S
1 ×S X

S
2 )

p23

OO

p13
//

p12
66

q23

@@
q12

00

q13

66
U ×S X

S
2

θU,X2

∼=
// U ×T X2,

where we have identified U ×S (X
S
1 ×S X

S
2 ) with U ×T X1 ×T X2 for convenience.

Suppose that V and W are supported on admissible subsets. We then have

λU,X2(V
S ◦W ) = θU,X2∗p13∗(p

∗
23p

∗V · p∗12W )

by definition

= q13∗(q
∗
23V · p

∗
12W )

by Axiom 12

= q13∗(q
∗
23V · q

∗
12θU,X1∗W )

by Axiom 20 and Axiom 9

= V ◦ λU,X1(W )

by definition.

Suppose next that U1, U2 ∈ Sm/S,X ∈ Sm/T , V ∈ C̃orS(U1, U2) andW ∈ C̃orS(U2, X
S).

We want to show that
λU1,X(W ◦ V ) = λU2,X(W ) ◦ VT .

We have a commutative diagram

U1 ×T U2 U1 ×T (U2 ×S X
S)doo b //

q23

((

q13
++

U2 ×S X
S
θU2,X // U2 ×T X

U1 ×S U2

qf

OO

U1 ×S (U2 ×S X
S)

p12
oo

p13
//

p23

66

a

OO

U1 ×S X
S
θU1,X

// U1 ×T X

,

where we have identified U1×T (U2×SX
S) with U1×T U2×TX. If V andW are supported

on admissible subsets and θ is the isomorphism

−TU1×SU2×SXS/U1×TX −→ Na − a
∗TU1×T (U2×SXS)/U1×TX ,
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we have

λU1,X(W ◦ V )

=θU1,X∗p13∗((p
∗
23W · p

∗
12V,−TU1×SU2×SXS/U2×SXS − p∗12TU1×SU2/U1))

by definition

=q13∗a∗((a
∗q∗23θU2,X∗W · θ(p

∗
12V ),−a∗q∗23TU2×TX/U2 +Na − a

∗TU1×T (U2×SXS)/U1×TX))

by Axiom 20 and Axiom 19, (1)

=q13∗((q
∗
23θU2,X∗W · a∗θ(p

∗
12V ),−q∗23TU2×TX/U2 − TU1×T (U2×SXS)/U1×TX))

by Axiom 18 for a

=q13∗((q
∗
23θU2,X∗W · d

∗qf∗ϕf (V ),−q∗23TU2×TX/U2 − d
∗TU1×TU2/U1))

by Axiom 16 for the leftmost square in the diagram above

=λU2,X(W ) ◦ VT

by definition.

Proposition 5.24. Let f : S → T be a smooth morphism. Then

(f#)
′ = f ∗.

Proof. For any Y ∈ Sm/S, γ̃(idY ) ∈ C̃orT (Y, Y ) = C̃orS(Y, Y
S) is the initial element of

CY in Lemma 5.7 by application of the above lemma to ϕf (see Definition 5.10). So for

any F ∈ P̃Sh(T ), we have (f ∗F )(Y ) = FY = ((f#)
′F )(Y ). This gives an isomorphism

between f ∗(F ) and (f#)
′(F ) for any presheaf with E-transfers F by the lemma above. So

it also gives an isomorphism after sheafication.

Proposition 5.25. Let f : S −→ T be a smooth morphism. Then:

1. For any X ∈ Sm/S, we have

f#Z̃S(X) ∼= Z̃T (X).

as sheaves with E-transfers.

2. For any F ∈ S̃h(T ) and Y ∈ Sm/T

f ∗(F Y ) ∼= (f ∗F )Y×TS

as sheaves with E-transfers.

3. For any F ∈ S̃h(S) and G ∈ S̃h(T )

HomT (f#F,H) ∼= f∗HomS(F, f
∗H)

as sheaves with E-transfers.

4. For any F ∈ S̃h(S) and G ∈ S̃h(T )

f#(F ⊗S f
∗G) ∼= f#F ⊗T G

as sheaves with E-transfers.

Proof. 1. The result follows from the fact that any F ∈ S̃h(T ) we have

HomT (f#Z̃S(X), F ) ∼= HomS(Z̃S(X), f ∗F ) ∼= (f ∗F )(X) ∼= F (X)

by the previous proposition.
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2. For any X ∈ Sm/S, we get

(f ∗(HY ))(X) = H(Y ×T X).

and
(f ∗H)Y×TS(X) = H((Y ×T S)×S X)

by the above proposition. Then, we can use Proposition 5.22 to conclude.

3. For any Y ∈ Sm/T , we have

HomT (f#F,H)(Y ) = HomT (f#F,H
Y )

∼= HomS(F, f
∗(HY ))

∼= HomS(F, (f
∗H)Y×TS)

by (2)

= HomS(F, f
∗H)(Y ×T S)

= (f∗HomS(F, f
∗H))(Y ).

4. For any H ∈ S̃h(T ), the following computation applies:

HomT (f#(F ⊗S f
∗G), H) ∼= HomS(F ⊗S f

∗G, f ∗H)
∼= HomS(f

∗G,HomS(F, f
∗H))

∼= HomT (G, f∗HomS(F, f
∗H))

∼= HomT (G,HomT (f#F,H))

by (3)
∼= HomT (f#F ⊗T G,H).
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Chapter 6

Motivic categories

In this chapter, we construct the categories of effective (resp. stabilized) motives as
a localization of the bounded above complexes ([MVW06]) of sheaves with E-transfers
(resp. symmetric spectra). We then compare our construction with the constructions in
[CD09], [CD13] and [DF17], where they use unbounded complexes.

6.1 Complexes of Sheaves with E-Transfers

6.1.1 Derived Categories

Denote by D−(S) (resp. K−(S)) the derived (resp. homotopy) category of bounded above

complexes of objects in S̃h(S). Our first aim is to define ⊗S and f# and f ∗ (Chapter 5)
at the level of these categories. The method is inherited from [SV00, Corollary 2.2] and
[MVW06, Lemma 8.15].

Definition 6.1. We call a presheaf with E-transfers free if it’s a direct sum of presheaves
of the form c̃S(X). We call a presheaf with E-transfers projective if it’s a direct summand
of a free presheaf with E-transfers. A sheaf with E-transfers is called free (resp. projective)
if it’s a sheafication of a free (resp. projective) presheaf with E-transfers. A bounded
above complex of sheaves with E-transfers is called free (projective) if all its terms are
free (projective).

Remark 6.1. Note that a projective presheaf with E-transfers is a projective object in
the category of presheaves with E-transfers. On the other hand, this is not true anymore
for projective sheaves with E-transfers.

Definition 6.2. A projective resolution of a bounded above complex of sheaves K is a
projective complex (of sheaves) with a quasi-isomorphism P −→ K.

In the definition above, if K is already projective we may take P = K.

Now let S, T ∈ Sm/k and Y be a scheme with morphisms S Y
f

oo
g

// T where g
is smooth. In this section, we consider the functors

ϕ : C̃orS −→ C̃orT
X 7−→ (XY )T ∼= X ×S Y

and
ψ : SmS −→ SmT

X 7−→ X ×S Y
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determined by the triple (Y, S, T ). We have a commutative diagram

Sm/S
ψ

//

γ̃
��

Sm/T

γ̃
��

C̃orS
ϕ

// C̃orT .

Recall from Lemma 5.7 the definitions of ϕ∗ and ϕ∗.

Lemma 6.1. For any X ∈ Sm/S, we have

ϕ∗(c̃S(X)) ∼= c̃T (ψ(X))

as presheaves with E-transfers.

Proof. For any F ∈ P̃Sh(T ),

HomT (ϕ
∗(c̃S(X)), F ) ∼= HomS(c̃S(X), ϕ∗F ) ∼= F (ψ(X)).

Lemma 6.2. The functor ϕ∗ maps sheaves with E-transfers to sheaves with E-transfers.

Proof. It suffices to show that for any finite Nisnevich covering {Ui} of X ∈ Sm/S, the
following sequence is exact

0 −→ G(X) −→ ⊕iG(Ui) −→ ⊕i,jG(Ui ×X Uj)

where G = ϕ∗F for some F ∈ S̃h(T ). This follows easily.

The following lemma can be proved using a method similar to the one we used in the
proof of Proposition 5.15.

Lemma 6.3. Let f : F −→ G be morphism in P̃Sh(S) such that ã(f) is an isomorphism,
then ã(ϕ∗(f)) is also an isomorphism.

Before stating the next result, recall that the category of presheaves with E-transfers
has enough projective objects (see for instance Remark 6.1). In particular, it is possible
to derive any left-exact functor (say, to the category of abelian groups).

Proposition 6.1. For any F ∈ P̃Sh(S),

ã((Liϕ
∗)ã(F )) ∼= ã((Liϕ

∗)F )

as sheaves with E-transfers for any i ≥ 0, where Liϕ
∗ means the ith left derived functor

of ϕ∗.

Proof. We show first that for any presheaf with E-transfers F with ã(F ) = 0 we have

ã(Liϕ
∗(F )) = 0

for any i ≥ 0. Suppose that the above statement is proved. For any presheaf with
E-transfers F , we can then consider the natural morphism

θ : F −→ ã(F ).
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We have
ã(coker(θ)) = ã(ker(θ)) = 0.

Hence for any i ≥ 0, we have

ã(Liϕ
∗ã(F )) ∼= ã(Liϕ

∗Im(θ)) ∼= ã(Liϕ
∗F )

by using long exact sequences. Hence the statement follows.
Now we prove the first claim by induction on i. The claim is true for i = 0 and we

then suppose that it’s true for i < n. For any F ∈ P̃Sh(S), we have a surjection

⊕x∈F (X)c̃S(X) −→ F

defined by each section of F on each X ∈ Sm/S. Since ã(F ) = 0, there exists for any
X ∈ Sm/S and any x ∈ F (X) a finite Nisnevich covering Ux −→ X of X such that
x|Ua = 0. Then, the composite

⊕x∈F (X)c̃S(Ux) −→ ⊕x∈F (X)c̃S(X) −→ F

is trivial and we obtain a surjection

⊕x∈F (X)H0(C̆(Ux/X)) −→ F

with kernel K. Proposition 5.10 implies that

ã(Hp(C̆(U/X))) = 0

for any Nisnevich covering U −→ X and any p ∈ Z and consequently ã(K) = 0 as well.
We have a hypercohomology spectral sequence

(Lpϕ
∗)Hq(C̆(U/X)) =⇒ (Lp+qϕ

∗)C̆(U/X).

Hence
ã((Lnϕ

∗)C̆(U/X)) ∼= ã((Lnϕ
∗)H0(C̆(U/X)))

by induction hypothesis. But

ã((Lnϕ
∗)C̆(U/X)) ∼= ã(Hn(ϕ

∗C̆(U/X)))

by definition of hypercohomology and the latter vanishes since we have

ϕ∗C̆(U/X) = C̆(ψU/ψX)

by the previous lemmas. So

ã((Lnϕ
∗)H0(C̆(U/X))) = 0

and
ã(Lnϕ

∗F ) ∼= ã(Ln−1ϕ
∗K) = 0

by the long exact sequence and the induction hypothesis.

Proposition 6.2. The functor ϕ∗ takes acyclic projective complexes to acyclic projective
complexes.
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Proof. For any projective F ∈ S̃h(S), F = ã(G) for some projective G ∈ P̃Sh(S) by
definition. So

ã((Liϕ
∗)F ) ∼= ã((Liϕ

∗)G) = 0

for any i > 0 by the proposition above. Let

0 −→ K −→ F −→ P −→ 0

be a short exact sequence of sheaves with E-transfers with ã((Liϕ
∗)P ) = 0 for any i > 0.

Then the sequence is still exact after applying ϕ∗ by the long exact sequence. Then the
statement follows easily.

Proposition 6.3. We have an exact functor

Lϕ∗ : D−(S) −→ D−(T )

which maps any K ∈ D−(S) to ϕ∗P , where P is a projective resolution K.

Proof. By the proposition above, the class of projective complexes is adapted (see [GM03,
III.6.3]) to the functor ϕ∗. We may now apply [GM03, III.6.6].

In the sequel, we’ll write ϕ∗ in place of Lϕ∗ for convenience. We now apply the general
results above to ⊗S, f# and f ∗.

Proposition 6.4. 1. The category D−(S) is endowed with a tensor product defined by

⊗S : D−(S) × D−(S) −→ D−(S)
(K , L) 7−→ P ⊗S Q

,

where P,Q are projective resolutions of K,L respectively, and P ⊗S Q is the total
complex of the bicomplex {Pi ⊗S Qj}. Moreover, for any K ∈ D−(S), the functor
K ⊗S − is exact.

2. Suppose that f : S −→ T is a smooth morphism in Sm/k. Then, there is an exact
functor

f# : D−(S)→ D−(T )

defined on objects by K 7→ f#P , where P is a projective resolution of K.

3. Suppose that f : S −→ T is a morphism in Sm/k. There is an exact functor

f ∗ : D−(T )→ D−(S)

defined on objects by K 7→ f ∗P , where P is a projective resolution of K.

Proof. 1. Let Y ∈ Sm/S. In the definition of ϕ, we take (Y, S, T ) := (Y, S, S) and

then ϕ∗F ∼= F ⊗S Z̃S(Y ) for any F ∈ S̃h(S) by Proposition 5.14.

Given an acyclic projective complex P and a projective sheaf F , the complex of
sheaves F ⊗S P is also acyclic by Proposition 6.2 and by definition of projectiveness.
It follows that for any projective complex K the complex P ⊗S K is also acyclic
by the spectral sequence of the bicomplex {Pi ⊗S Kj}. Then for any projective
complexes P,Q,R and quasi-isomorphism a : P −→ Q, the morphism a⊗SR is still
a quasi-isomorphism since we have

Cone(a⊗S R) ∼= Cone(a)⊗S R

and the latter one acyclic. The statement follows easily.
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2. In the definition of ϕ, we take (Y, S, T ) := (S, S, T ) and apply Proposition 6.3.

3. In the definition of ϕ, we take (Y, S, T ) := (T, S, T ) and apply Proposition 6.3.

Proposition 6.5. Let f : S −→ T be a smooth morphism in Sm/k. We then have an
adjoint pair

f# : D−(S) ⇋ D−(T ) : f ∗.

Proof. By Proposition 5.23, it is easy to see that there is an adjunction

f# : K−(S) ⇋ K−(T ) : f ∗.

Since f ∗ : S̃h(T ) −→ S̃h(S) has both a left adjoint and a right adjoint, it’s an exact
functor and Lf ∗ ∼= f ∗ in this case. Suppose that K ∈ D−(S), L ∈ D−(T ) and that
p : P −→ K is a projective resolution of K. Note then that f#K = f#P by definition.

We now construct a morphism

θ : HomD−(S)(f#K,L) −→ HomD−(T )(K, f
∗L)

as follows. Suppose that s ∈ HomD−(S)(f#K,L) is written as a right roof (see [GM03,
III.2.9])

R

f#P

a

==

L.
b

__

By adjunction, a induces a morphism a′ : P −→ f ∗R. Then we define θ(s) to the
composite of the right roof

f ∗R

P
a′

==

f ∗L
f∗b

bb

with p−1. This morphism is well-defined since f ∗ is exact.
Next, we construct a morphism

ξ : HomD−(T )(K, f
∗L) −→ HomD−(S)(f#K,L)

as follows. Suppose that t ∈ HomD−(T )(K, f
∗L) and that t ◦ p is written as a left roof

(see [GM03, III.2.8])
R

a

��

b

!!

P f ∗L

where R is also projective. By adjunction, b induces a morphism b′ : f#R −→ L and we
define ξ(t) to be the left roof

f#R
f#a

||

b′

!!

f#P L.

This morphism is well-defined by Proposition 6.2 applied to f#. To conclude, one checks
that θ and ξ are inverse to each other by direct computation.
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In [CD09, Theorem 1.7], they put a model structure M on the category of unbounded
complexes of sheaves with E-transfers over S. This is a cofibrantly generated model
structure where the cofibrations are the I-cofibrations ([Hov07, Definition 2.1.7]) where I

consists of the morphisms Sn+1Z̃S(X) −→ DnZ̃S(X) for any X ∈ Sm/S ([CD09, 1.9] for
notations) and weak equivalences are quasi-morphisms of complexes.

Proposition 6.6. Bounded above projective complexes are cofibrant objects in M.

Proof. Suppose that P is a bounded above projective complex and that we have an I-
injective ([Hov07, Definition 2.1.7]) morphism f : A −→ B between unbounded complexes
with a morphism g : P −→ B. We have to show that g = f ◦ h for some h : P −→ A.

We construct h by induction. Suppose that for any m ≥ n we have constructed a
morphism hm : Pm −→ Am such that gm = fm ◦ hm and dA ◦ hm = hm ◦ dP . As
P is bounded above, this is certainly the case for n large enough. We now construct
hn−1 : P n−1 −→ An−1 satisfying the same property, that is, making the following diagram
commute

An−1 dA //

fn−1

��

An

fn

��

P n−1

hn−1

dd

gn−1zz

dP // P n

hn
aa

gn}}

Bn−1 dB // Bn.

By definition, we have a split surjection F −→ P n−1 where F is a free sheaf with E-
transfers. So, we may assume that P n−1 is free of the form ⊕iZ̃S(Xi) where Xi ∈ Sm/S.
For every i, we have two morphisms:

ui : Z̃S(Xi) −→ P n−1 −→ Bn−1 −→ Bn

and
vi : Z̃S(Xi) −→ P n−1 −→ P n −→ An

which give a commutative square with a lifting since f is I-injective:

SnZ̃S(Xi)
vi //

��

A

f

��

Dn−1Z̃S(Xi)
ui //

wi

::

B.

One checks directly that ⊕iwi : P
n−1 −→ An−1 is the required morphism.

The model structure M is stable and left proper so it induces a triangulated structure
T′ on D(S) ([Ayo07, Theoreme 4.1.49]). The classical triangulated structure of D(S) or
D−(S) is denoted by T.

Proposition 6.7. The natural functor

i : (D−(S),T) −→ (D(S),T′)

is fully faithful exact.

Proof. Any distinguished triangle T in (D−(S),T) is isomorphic in D−(S) to a distin-
guished triangle in T of the form

A
f

// B // Cone(f) // A[1] ,
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where all arrows come from explicit morphisms between chain complexes ([GM03, III.3.3
and III.3.4]). By [Hir03, Proposition 8.1.23], there exists a commutative diagram

A′ g
//

a
��

B′

b
��

A
f

// B

such that (A′, a) (resp. (B′, b)) is a fibrant cofibrant approximation of A (resp. B) and
g is a cofibration in M. So the triangle T is isomorphic in D(S) to the distinguished
triangle

A′ g
// B′ // Cone(g) // A′[1]

in T. By [CD09, Lemma 1.10] and [Ayo07, Théorème 4.1.38], the shift functors −[n] and
−[n]′ in T and T′, respectively, coincide on cofibrant objects in M. So we have a natural
isomorphism η : −[n] −→ −[n]′ where ηK = idK[n] if K is cofibrant in M. It follows that
the triangle above is distinguished in T′ by [Ayo07, Definition 4.1.45]. So the functor i is
exact and it’s clearly fully faithful.

Observe now that we can define ⊗S, f
∗ and f# on D(S) by [CD09, Theorem 1.18 and

Proposition 2.3].

Proposition 6.8. 1. We have a commutative diagram (up to a natural isomorphism)

D−(S)×D−(S)
⊗S //

��

D−(S)

��

D(S)×D(S)
⊗S // D(S).

2. Suppose that f : S −→ T is a morphism in Sm/k. We have a commutative diagram
(up to a natural isomorphism)

D−(T )
f∗

//

��

D−(S)

��

D(T )
f∗

// D(S)

3. Suppose that f : S −→ T is a smooth morphism in Sm/k. We have a commutative
diagram (up to a natural isomorphism)

D−(S)
f#

//

��

D−(T )

��

D(S)
f#

// D(T )

Proof. This follows by direct computation using Proposition 6.6.

6.1.2 Effective Motives

The following definition comes from [MVW06, Definition 9.2].

Definition 6.3. Define EA to be the smallest thick subcategory of D−(S) such that
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1. Cone(Z̃S(X ×k A
1) −→ Z̃S(X)) ∈ EA.

2. EA is closed under arbitrary direct sums if it exists in D−(S).

Set WA to be the class of morphisms in D−(S) whose cone is in EA. Define

D̃M
eff,−

(S) = D−(S)[W−1
A ]

to be the category of effective motives over S. The morphisms in D−(S) becoming iso-
morphisms after localization by WA are called A1-weak equivalences.

Before proceeding further, we give an example of an A1-weak equivalence. Recall that
a morphism p : E −→ X in Sm/S is an An-bundle if there is an open covering {Ui} of X
such that p−1(Ui) ∼= Ui ×k A

n for any i.

Proposition 6.9. Let p : E −→ X in Sm/S be an An-bundle. Then, Z̃S(p) : Z̃S(E) −→

Z̃S(X) is an A1-weak equivalence.

Proof. For any X ∈ Sm/S, the projection Z̃S(X ×k An) −→ Z̃S(X) is an A1-weak
equivalence by definition. Suppose that we have two open sets U1 and U2 of X such
that the statement is true over U1, U2 and U1 ∩ U2 and set Ei = p−1(Ui). We have a
commutative diagram with exact rows

0 // Z̃S(E1 ∩ E2) //

��

Z̃S(E1)⊕ Z̃S(E2) //

��

Z̃S(p
−1(E1 ∪ E2)) //

��

0

0 // Z̃S(U1 ∩ U2) // Z̃S(U1)⊕ Z̃S(U2) // Z̃S(U1 ∪ U2) // 0

by Proposition 5.12. So the statement is also true over U1 ∪ U2. To conclude, we pick a
finite open covering {Ui} of X such that p−1(Ui) ∼= Ui ×k A

n for every i and proceed by
induction on the number of open sets.

Definition 6.4. ([MVW06, Definition 9.17]) A complex K ∈ D−(S) is called A1-local if
for every A1-equivalence f : A −→ B, the induced map

HomD−(S)(B,K) −→ HomD−(S)(A,K)

is an isomorphism.

Before stating the next result, recall that one can associate to any complex of sheaves
K its Suslin complex C∗K ([MVW06, Definition 2.14]).

Proposition 6.10. Let K ∈ D−(S).

1. The natural map K −→ C∗K is an A1-weak equivalence.

2. If S = pt, the complex C∗K is A1-local.

3. If S = pt, the functor C∗ induces an endofunctor of D−(pt).

Proof. 1. The proof of [MVW06, Lemma 9.15] goes through in our setting.

2. Use Remark 5.1 and mimic the proof of [DF17, Theorem 3.2.9 and Corollary 3.2.11].
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3. It’s easy to check that C∗ induces an endofunctor of K−(pt). If f : K −→ L
is a quasi-isomorphism, then Cone(f) is acyclic. By (1), the natural morphism
Cone(f) −→ C∗Cone(f) is an A1-equivalence. Hence it’s an quasi-isomorphism by
(2) and [MVW06, Lemma 9.21]. So C∗Cone(f) = Cone(C∗f) is acyclic and C∗f is
a quasi-isomorphism.

We now pass to the definition of motivic cohomology.

Definition 6.5. ([MVW06, Definition 14.17]) Let X ∈ Sm/k and let p, q ∈ Z, q ≥ 0.
The groups

Hp,q
E (X,Z) = Hom

D̃M
eff,−

(pt)
(Z̃pt(X), Z̃pt(q)[p])

are called E-motivic cohomology groups of X.

Proposition 6.11. The functor ϕ of Proposition 6.3 induces an exact functor

ϕ∗ : D̃M
eff,−

(S) −→ D̃M
eff,−

(T )

which is determined by the following commutative diagram

D−(S)
ϕ∗

//

��

D−(T )

��

D̃M
eff,−

(S)
ϕ∗

// D̃M
eff,−

(T ).

Proof. Let E be the full subcategory of D−(S) which consists of those complexes K ∈
D−(S) who satisfy ϕ∗K ∈ EA. It’s a thick subcategory of D−(S). For any X ∈ Sm/S,
ϕ∗ maps

Z̃S(X ×k A
1) −→ Z̃S(X)

to
Z̃T ((ψX)×k A

1) −→ Z̃T (ψX).

Therefore EA ⊆ E by definition of EA and exactness of ϕ∗. It follows that ϕ∗ preserves
objects in EA. Hence ϕ∗ preserves A1-weak equivalences by exactness of ϕ∗. Then the
statement follows from [Kra10, Proposition 4.6.2].

Proposition 6.12. 1. There is a tensor product

⊗S : D̃M
eff,−

(S)× D̃M
eff,−

(S) −→ D̃M
eff,−

(S)

which is determined by the following commutative diagram

D−(S)×D−(S)
⊗S //

��

D−(S)

��

D̃M
eff,−

(S)× D̃M
eff,−

(S)
⊗S // D̃M

eff,−
(S).

Furthermore, for any K ∈ D̃M
eff,−

(S), the functor K ⊗S − is exact.

2. Suppose that f : S −→ T is a smooth morphism in Sm/k. There is an exact functor

f# : D̃M
eff,−

(S) −→ D̃M
eff,−

(T )
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which is determined by the following commutative diagram

D−(S)
f#

//

��

D−(T )

��

D̃M
eff,−

(S)
f#

// D̃M
eff,−

(T ).

3. Suppose that f : S −→ T is a morphism in Sm/k. There is an exact functor

f ∗ : D̃M
eff,−

(T ) −→ D̃M
eff,−

(S)

which is determined by the following commutative diagram

D−(T )
f∗

//

��

D−(S)

��

D̃M
eff,−

(T )
f∗

// D̃M
eff,−

(S).

Proof. 1. Suppose that Y ∈ Sm/S. In the definition of ϕ, we take (Y, S, T ) :=

(Y, S, S). Then ϕ∗F ∼= F ⊗S Z̃S(Y ) for any F ∈ S̃h(S) by Proposition 5.14. Now,

given an A1-weak equivalence a, Z̃S(Y )⊗Sa is also an A1-weak equivalence by Propo-
sition 6.11 (applied to ϕ). We may now apply the method used in the third para-
graph of [MVW06, Lemma 9.5] to show that the functorK⊗S− : D−(S) −→ D−(S)
preserves A1-weak equivalences for any K ∈ D−(S). Finally we apply [Kra10,
Proposition 4.6.2] to the functor K ⊗S −.

2. In the definition of ϕ, we take (Y, S, T ) := (S, S, T ) and apply Proposition 6.11.

3. In the definition of ϕ, we take (Y, S, T ) := (T, S, T ) and apply Proposition 6.11.

Proposition 6.13. Let f : S −→ T be a smooth morphism in Sm/k. We have an adjoint
pair

f# : D̃M
eff,−

(S) ⇋ D̃M
eff,−

(T ) : f ∗.

Proof. The same method as in Proposition 6.5 applies since ϕ∗ preserves EA by Proposition
6.11.

Proposition 6.14. Let f : S −→ T be a morphism in Sm/k.

1. For any K,L ∈ D̃M
eff,−

(T ), we have

f ∗(K ⊗S L) ∼= (f ∗K)⊗S (f
∗L).

2. If f is smooth, then for any K ∈ D̃M
eff,−

(S) and L ∈ D̃M
eff,−

(T ), we have

f#(K ⊗S f
∗L) ∼= (f#K)⊗S L.

Proof. This follows immediately from Proposition 5.20 and Proposition 5.25.

In [CD09, Proposition 3.5] and [DF17, Definition 3.2.1], the category D̃M
eff

(S) is
defined as the the Verdier localization of D(S) with respect to the homotopy invariance

conditions. Now, this localization induces a triangulated structure on D̃M
eff

(S) ([Kra10,
Lemma 4.3.1]).
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Proposition 6.15. The exact functor D−(S)→ D(S) of Proposition 6.7 induces an exact

functor D̃M
eff,−

(S) −→ D̃M
eff

(S) which is determined by the commutative diagram
(Proposition 6.7)

D−(S) //

��

D(S)

��

D̃M
eff,−

(S) // D̃M
eff

(S).

This functor is fully faithful if S = pt.

Proof. For the first statement, we use [Kra10, Proposition 4.6.2]. For the second state-

ment, we note that we have for any K,L ∈ D̃M
eff,−

(pt) a commutative diagram

Hom
D̃M

eff,−
(pt)

(K,L) u //

α

��

Hom
D̃M

eff,−
(pt)

(C∗K,C∗L)

��

HomD−(pt)(C∗K,C∗L)
γ

oo

∼=

��

Hom
D̃M

eff
(pt)

(K,L) v // Hom
D̃M

eff
(pt)

(C∗K,C∗L)) HomD(pt)(C∗K,C∗L)
β

oo

,

where u, v, γ and β are isomorphisms by Proposition 6.10. So α is an isomorphism.

To conclude this section, we note that the versions of ⊗S, f
∗, f# in both categories

are compatible as in Proposition 6.8.

6.2 Symmetric Spectra

In this section, we introduce spectra in order to stabilize the category D̃M
eff,−

(S). The
main reference is [CD13, 5.3].

6.2.1 Symmetric Spectra

Let A be a symmetric closed monoidal abelian category with arbitrary products. We can
define the category of symmetric sequences A S as in [CD13, Definition 5.3.5]. It is also
a closed symmetric monoidal abelian category by [CD13, Definition 5.3.7] and [HSS00,
Lemma 2.1.6]. Here, if we have two symmetric sequences A and B, we define A⊗S B by

(A⊗S B)n = ⊕pSn ×Sp×Sn−p (Ap ⊗ Bn−p).

Then we define HomS(A,B) by

HomS(A,B)n =
∏

p

HomSp
(Ap, Bn+p),

where HomSp
(Ap, Bn+p) (with the obvious Sn-action) is the kernel of the map

Hom(Ap, Bn+p)
(σ∗−(1×σ)∗)

//
∏

σ∈Sp
Hom(Ap, Bn+p) .

(see [HSS00, Definition 2.1.3] and [HSS00, Theorem 2.1.11])

Proposition 6.16. In the context above, for any symmetric sequences A, B, C, we have

Hom(A⊗S B,C) ∼= Hom(A,HomS(B,C))

naturally.
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Proof. Giving a morphism from A⊗S B to C is equivalent to giving Sp × Sq-equivariant
maps

fp,q : Ap ⊗ Bq −→ Cp+q.

That is equivalent to giving Sp-equivariant maps

gp,q : Ap −→ Hom(Bq, Cp+q)

such that for any σ ∈ Sq,

Hom(σ,Cp+q) ◦ gp,q = Hom(Bq, idSp × σ) ◦ gp,q.

This just says that gp,q factor through HomSq
(Bq, Cp+q).

The abelian structure of A S is just defined termwise. Moreover, we have adjunctions

i0 : A ⇋ A
S : ev0

and
−{−i} : A

S
⇋ A

S : −{i}(i ≥ 0)

as in [CD13, 5.3.5.1] and [CD09, 6.4.1].
Now suppose that R ∈ A . Then Sym(R) ∈ A S is a commutative monoid object as in

[CD13, 5.3.8]. Define SpR(A ) to be the category of Sym(R)-modules in A S. Its objects
are called symmetric R-spectra. It’s also a symmetric closed monoidal abelian category
by [HSS00, Theorem 2.2.10] and Proposition 6.16. (The corresponding tensor product
and inner-hom are just denoted by ⊗ and Hom for convenience)

We have an adjunction

Sym(R)⊗S − : A
S
⇋ SpR(A ) : U,

where U is the forgetful functor. Thus we get an adjunction

Σ∞ : A ⇋ SpR(A ) : Ω∞,

where Σ∞ = (Sym(R)⊗S −) ◦ i0, Ω
∞ = ev0 ◦ U and Σ∞ is monoidal.

We have a canonical identification

A⊗S (B{−i}) = (A⊗S B){−i}

and a morphism
A⊗S (B{i}) −→ (A⊗S B){i}

defined by the composite

A⊗S (B{i}) −→ (A⊗S (B{i})){−i}{i} = (A⊗S (B{i}{−i})){i} −→ (A⊗S B){i}.

Restricting the functors −{−i} and −{i} on symmetric R-spectra, we get an adjunction

−{−i} : SpR(A ) ⇋ SpR(A ) : −{i},

where the module structure Sym(R) ⊗S (A{−i}) −→ A{−i} of A{−i} is obtained by
applying −{−i} to the module structure of A and the module structure Sym(R) ⊗S

(B{i}) −→ B{i} of B{i} is obtained via the composite

Sym(R)⊗S (B{i}) −→ (Sym(R)⊗S B){i} −→ B{i},

where the last arrow is just the shift of the module structure of B. Moreover, we still
have an isomorphism

A⊗S (B{−i}) ∼= (A⊗S B){−i}

and a morphism
A⊗S (B{i}) −→ (A⊗S B){i}

defined in the same way as above.
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Definition 6.6. ([CD13, Definition 5.3.16]) For any S ∈ Sm/k, define

✶S{1} = Sym(coker(Z̃S(S) −→ Z̃S(Gm)))

and
✶
′
S{1} = Sym(coker(c̃S(S) −→ c̃S(Gm))).

Then define Sp(S) to be Sp✶S{1}(S̃h(S)) and Sp
′(S) to be Sp✶′

S{1}
(P̃Sh(S)).

We have an adjunction

ã : P̃Sh(S)S ⇋ S̃h(S)S : õ

where both functors are defined termwise (see Proposition 5.11) and ã is monoidal by
definition. Restricting the above functors on modules, we also obtain an adjunction

ã : Sp′(S) ⇋ Sp(S) : õ,

where the module structure ✶S{1}⊗
S

S ã(A) −→ ã(A) of ã(A) is obtained via sheafication
and the module structure ✶′

S{1} ⊗
S

S õ(B) −→ õ(B) of õ(B) is obtained via the module
structure of B and the sheafication map ✶

′
S{1} ⊗

S

S õ(B) −→ ✶S{1} ⊗
S

S B. The functor ã
is again monoidal.

Now, let f : S −→ T be a morphism in Sm/k. We have an adjunction

f ∗ : S̃h(T )S ⇋ S̃h(S)S : f∗

where both functors are defined termwise (see Proposition 5.19) and f ∗ is monoidal by
Proposition 5.20, (4). Restricting the above functors on spectra, we also obtain an ad-
junction

f ∗ : Sp(T ) ⇋ Sp(S) : f∗,

where the module structure ✶S{1} ⊗
S

S f
∗A −→ f ∗A of f ∗A is induced by the module

structure of A via f ∗ and the module structure ✶T{1}⊗
S

T f∗B −→ f∗B of f∗B is obtained
using the composite

✶T{1} ⊗
S

T f∗B −→ f∗(✶S{1} ⊗
S

S f
∗f∗B) −→ f∗(✶S{1} ⊗

S

S B) −→ f∗B.

The functor f ∗ is also monoidal by construction of the tensor product (see [HSS00, Lemma
2.2.2]). The same construction gives an another adjunction

f ∗ : Sp′(T ) ⇋ Sp′(S) : f∗.

Suppose further that f is smooth. We have an adjunction

f# : S̃h(S)S ⇋ S̃h(T )S : f ∗

where both functors are defined termwise (see Proposition 5.23) and

f#(A⊗
S

S f
∗B) ∼= (f#A)⊗

S

T B

also holds by Proposition 5.25, (4). Restricting the above functors on spectra, we get an
adjunction

f# : Sp(S) ⇋ Sp(T ) : f ∗,

where the module structure ✶T{1} ⊗
S f#A −→ f#A of f#A is as follows

✶T{1} ⊗
S

T f#A
∼= f#(✶S{1} ⊗

S

S A) −→ f#A.
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Moreover, we also have
f#(A⊗S f

∗B) ∼= (f#A)⊗T B

for spectra by construction of the tensor product (see [HSS00, Lemma 2.2.2]). The same
construction gives yet another adjunction

f# : Sp′(S) ⇋ Sp′(T ) : f ∗.

One checks that when F=−⊗S A, f#, f
∗, −{−i}, −{i}, Σ∞ or Ω∞, there is a natural

isomorphism ã ◦ F ∼= F ◦ ã.
Let i ≥ 0. For any F ∈ S̃h(S), we have

(Σ∞F ){i} ∼= Σ∞(Z̃tr(G
∧1
m )⊗i ⊗S F ).

Moreover, for any X ∈ Sm/S,

HomSp(S)((Σ
∞Z̃S(X)){−i}, A) = Ai(X)

and
HomSp′(S)((Σ

∞c̃S(X)){−i}, B) = Bi(X).

So (Σ∞Z̃S(X)){−i} (resp. (Σ∞c̃S(X)){−i}) are systems of generators of Sp(S) (resp.
Sp′(S)) ([CD09, 6.7] and [CD13, 5.3.11]). This enables us to imitate the methods used in
Section 6.1.

6.2.2 Derived Categories

We denote by D−
Sp(S) (resp. DSp(S)) the derived category of bounded above (resp. un-

bounded) complex of spectra in Sp(S).

Proposition 6.17. Let X,U ∈ Sm/S and p : U −→ X be a Nisnevich covering. For
any i ∈ N, the complex (Σ∞C̆(U/X)){−i} (defined by termise application), is exact after
sheafifying as a complex of Sp(S).

Proof. One easily see that (Σ∞A){−i} = Sym(Z′
S{1}) ⊗

S

S (i0(A){−i}) for any A ∈

P̃Sh(S). Then the statement follows from the equality

C̆(U/X)⊗prS c̃S(Y ) = C̆(U ×S Y/X ×S Y )

for any Y ∈ Sm/S and Proposition 5.10.

Definition 6.7. We call a spectrum A ∈ Sp′(S) free if it’s a direct sum of spectra of the
form (Σ∞c̃S(X)){−i}. We call A projective if it’s a direct summand of a free spectrum.
A spectrum in Sp(S) is called free (resp. projective) if it’s the sheafication of a free (resp.
projective) spectrum in Sp′(S). A bounded above complex of spectra in Sp(S) is called free
(projective) if all its terms are free (projective).

Definition 6.8. A projective resolution of a bounded above spectrum complex K is a
projective complex with a quasi-isomorphism P −→ K.

Now let S, T ∈ Sm/k, j ≥ 0 and Y be a scheme with morphisms S Y
f

oo
g

// T
where g is smooth. Consider in this section the adjunctions

φ∗ = {−j} ◦ g# ◦ f
∗ : Sp(S) ⇋ Sp(T ) : φ∗ = f∗ ◦ g

∗ ◦ {j}

ϕ∗ = {−j} ◦ g# ◦ f
∗ : Sp′(S) ⇋ Sp′(T ) : ϕ∗ = f∗ ◦ g

∗ ◦ {j}

and the functor
ψ : SmS −→ SmT

X 7−→ X ×S Y
.

They are determined by the quadruple (Y, S, T, j).
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Proposition 6.18. For any F ∈ Sp′(S),

ã((Liϕ
∗)ã(F )) ∼= ã((Liϕ

∗)F )

as spectra in Sp(S) for any i ≥ 0, where Liϕ
∗ means the ith left derived functor of ϕ∗.

Proof. Arguing as in the proof of Proposition 6.1, we see that it suffices to treat the case
of spectra F ∈ Sp′(S) satisfying ã(F ) = 0. We prove it by induction on i. The claim is
true for i = 0 and we suppose that it’s also true for i < n.

For any F ∈ Sp′(S), we have a surjection

⊕x∈Ft(X),t≥0(Σ
∞c̃S(X)){−t} −→ F

defined by each section of Ft on each X ∈ Sm/S. Since ã(F ) = 0, there exists for any
x ∈ Ft(X) and X ∈ Sm/S a finite Nisnevich covering Ux −→ X such that x|Ux = 0.
Then, the composite

⊕a∈Ft(X),t≥0(Σ
∞c̃S(Ua)){−t} −→ ⊕a∈F (X),t≥0(Σ

∞c̃S(X)){−t} −→ F

is trivial and we have a surjection

⊕a∈F (X),t≥0H0((Σ
∞C̆(Ua/X)){−t}) −→ F

with kernel K. Proposition 6.17 implies that

ã(Hp((Σ
∞C̆(U/X)){−t})) = 0

for any Nisnevich covering U −→ X, t ≥ 0 and p ∈ Z and therefore ã(K) = 0 as well.
We have a hypercohomology spectral sequence

(Lpϕ
∗)Hq((Σ

∞C̆(U/X)){−t}) =⇒ (Lp+qϕ
∗)((Σ∞C̆(U/X)){−t})

and consequently

ã((Lnϕ
∗)((Σ∞C̆(U/X)){−t})) ∼= ã((Lnϕ

∗)H0((Σ
∞C̆(U/X)){−t}))

by induction hypothesis. But

ã((Lnϕ
∗)(Σ∞C̆(U/X)){−t}) ∼= ã(Hn(ϕ

∗((Σ∞C̆(U/X)){−t})))

by definition of hypercohomology and the latter vanishes since we have

ϕ∗((Σ∞C̆(U/X)){−t}) = (Σ∞C̆(ψU/ψX)){−t− j}.

So,
ã((Lnϕ

∗)H0((Σ
∞C̆(U/X)){−t})) = 0

and
ã(Lnϕ

∗F ) ∼= ã(Ln−1ϕ
∗K) = 0

by the long exact sequence and the induction hypothesis.

The same proofs as in Propositions 6.2 and 6.3 yield the following two propositions.

Proposition 6.19. Let functor φ∗ takes acyclic projective complexes to acyclic projective
complexes.
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Proposition 6.20. We have an exact functor

Lφ∗ : D−
Sp(S) −→ D−

Sp(T )

which maps any K ∈ D−
Sp(S) to φ

∗P , where P is a projective resolution K.

According to our conventions, we’ll just write φ∗ in place of Lφ∗. We now apply the
general results above to the functors ⊗S, f# and f ∗.

Proposition 6.21. 1. There is a tensor product

⊗S : D−
Sp(S) × D−

Sp(S) −→ D−
Sp(S)

(K , L) 7−→ P ⊗S Q
,

where P,Q are projective resolutions of K,L respectively and P ⊗S Q is the total
complex of the bicomplex {Pi ⊗S Qj}. Moreover, for any K ∈ D−

Sp(S), the functor
K ⊗S − is exact.

2. Suppose that f : S −→ T is a smooth morphism in Sm/k. Then, there is an exact
functor

f# : D−
Sp(S) −→ D−

Sp(T )
K 7−→ f#P

,

where P is a projective resolution of K.

3. Suppose that f : S −→ T is a morphism in Sm/k. There is then an exact functor

f ∗ : D−
Sp(T ) −→ D−

Sp(S)
K 7−→ f ∗P

,

where P is a projective resolution of K.

4. For i ≥ 0 there is an exact functor

−{−i} : D−
Sp(S) −→ D−

Sp(S)
K 7−→ P{−i}

,

where P is a projective resolution of K.

Proof. In (1), (2) and (3), take j = 0 in the definition of φ and proceed as in the proof of
Proposition 6.4. For (4), take the quadruple (S, S, S, i) and use Proposition 6.20.

Proposition 6.22. 1. If f : S −→ T is a smooth morphism in Sm/k, we have an
adjoint pair

f# : D−
Sp(S) ⇋ D−

Sp(T ) : f
∗.

2. We have an adjoint pair

−{−i} : D−
Sp(S) ⇋ D−

Sp(S) : −{i}.

Proof. The same as Proposition 6.5 since −{i} is an exact functor.

Now we are going to compare D−
Sp(S) with D

−(S) defined in Section 6.1.

Proposition 6.23. The functor Σ∞ : S̃h(S) −→ Sp(S) takes acyclic projective complexes
of sheaves to acyclic projective complexes of spectra.
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Proof. Let P be a projective sheaf. Then

(Σ∞P )n = ✶S{1}
⊗n ⊗S Pn

by definition and a tensor product between projective sheaves is again projective. So
Σ∞P is projective.

Let Q be an acyclic projective complex of sheaves. Then Σ∞Q consists of complexes
of the form ✶S{1}

⊗n ⊗S Q. They are all acyclic by Proposition 6.2.

Proposition 6.24. There is an exact functor

LΣ∞ : D−(S) −→ D−
Sp(S)

which maps K to Σ∞P , where P is a projective resolution of K.

Proof. The same as Proposition 6.3.

As usual, we will write Σ∞ instead of LΣ∞ for convenience.

Proposition 6.25. There is an adjoint pair

Σ∞ : D−(S) ⇋ D−
Sp(S) : Ω

∞.

Proof. The same as Proposition 6.5 since Ω∞ is an exact functor.

Proposition 6.26. The functor Σ∞ : D−(S) −→ D−
Sp(S) is fully faithful.

Proof. Let K,L ∈ D−(S) with respective projective resolutions P,Q. Then, there is a
commutative diagram

HomD−(S)(K,L)
Σ∞

//

∼=

��

HomD−

Sp(S)
(Σ∞K,Σ∞L)

∼=

��

HomD−(S)(P,Q)
Σ∞

// HomD−

Sp(S)
(Σ∞P,Σ∞Q)

∼=

��

HomD−(S)(P,Ω
∞Σ∞Q).

Finally we observe that Ω∞Σ∞Q = Q.

Proposition 6.27. 1. We have a commutative diagram (up to a canonical isomor-
phism)

D−(S)×D−(S)
⊗S //

Σ∞×Σ∞

��

D−(S)

Σ∞

��

D−
Sp(S)×D

−
Sp(S)

⊗S // D−
Sp(S)

.

2. Let f : S −→ T be a morphism in Sm/k. We have a commutative diagram (up to
a canonical isomorphism)

D−(T )
f∗

//

Σ∞

��

D−(S)

Σ∞

��

D−
Sp(T )

f∗
// D−

Sp(S).
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3. Suppose that f : S −→ T is a smooth morphism in Sm/k. We then have a commu-
tative diagram (up to a canonical isomorphism)

D−(S)
f#

//

Σ∞

��

D−(T )

Σ∞

��

D−
Sp(S)

f#
// D−

Sp(T ).

Proof. This follows by direct computations.

In [CD09, Theorem 1.7], they define a model structure MSp on the category of
unbounded complexes of symmetric spectra over S. This is a cofibrantly generated
model structure where the cofibrations are the I-cofibrations ([Hov07, Definition 2.1.7])

where I consists of the morphisms Sn+1(Σ∞Z̃S(X){−i}) −→ Dn(Σ∞Z̃S(X){−i}) for any
X ∈ Sm/S and i ≥ 0 and weak equivalences are quasi-morphisms between complexes.
The same proof as the one of Proposition 6.6 applies to give the following result.

Proposition 6.28. Bounded above projective complexes are cofibrant objects in MSp.

Now, MSp is stable and left proper so it induces a triangulated structure T′ on DSp(S)
([Ayo07, Theoreme 4.1.49]). The classical triangulated structure of DSp(S) or D

−
Sp(S) is

denoted by T.

Proposition 6.29. The natural functor

(D−
Sp(S),T) −→ (DSp(S),T

′)

is fully faithful exact.

Proof. The same as for Proposition 6.7.

Finally, we note that the various versions of ⊗S, f
∗, f#, Σ

∞, −{−i}, i ≥ 0 are com-
patible as in Proposition 6.8.

6.2.3 Effective Motivic Spectra

Definition 6.9. ([CD13, 5.2.15]) Define EA to be the smallest thick subcategory of D−
Sp(S)

such that

1. (Σ∞Cone(Z̃S(X ×k A
1) −→ Z̃S(X))){−i} ∈ EA, i ≥ 0.

2. EA is closed under arbitrary direct sums if it exists in D−
Sp(S).

Set WA to be the class of morphisms in D−
Sp(S) whose cone is in EA. Finally, define

D̃M
eff,−

Sp (S) = D−
Sp(S)[W

−1
A ].

A morphism in D−
Sp(S) is called a levelwise A1-equivalence if it becomes an isomorphism

in D̃M
eff,−

Sp (S).

Definition 6.10. ([CD13, 5.3.20]) A complex K ∈ D−
Sp(S) is called levelwise A1-local if

for every levelwise A1-equivalence f : A −→ B, the induced map

HomD−

Sp(S)
(B,K) −→ HomD−

Sp(S)
(A,K)

is an isomorphism.
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Proposition 6.30. A complex K = (Kn) ∈ D
−
Sp(S) is levelwise A1-local if and only if for

every n ≥ 0, the complex Kn is A1-local in D−(S).

Proof. The proof of [MVW06, Lemma 9.20] applies. The complex K is levelwise A1-local
if and only if for every X ∈ Sm/S, n ∈ Z and i ≥ 0, the map

HomD−

Sp(S)
((Σ∞Z̃S(X)){−i}[n], K) −→ HomD−

Sp(S)
((Σ∞Z̃S(X × A1)){−i}[n], K)

is an isomorphism. One uses Proposition 6.22 and Proposition 6.25 to conclude.

For every A = (An) ∈ Sp(S) and X ∈ Sm/S, we define AX by (An)
X = (AXn ). The

module structure ✶S{1} ⊗
S AX −→ AX is given by the composite

✶S{1} ⊗
S AX −→ (✶S{1} ⊗

S A)X −→ AX .

The functor AX is contravariant with respect to morphisms in Sm/S. It follows that we
can define the Suslin complex C∗A of A by (C∗A)n = C∗An.

Proposition 6.31. Let K ∈ D−
Sp(S).

1. The natural map K −→ C∗K is a levelwise A1-equivalence.

2. If S = pt, the complex C∗K is levelwise A1-local.

3. If S = pt, the functor C∗ induces an endofunctor of D−
Sp(pt).

Proof. 1. We have a natural morphism Σ∞Z̃S(X) ⊗S AX −→ A defined by the com-
posite

✶S{1}
⊗p⊗SZ̃S(X)⊗SA

X
q −→ Z̃S(X)⊗S(✶S{1}

⊗p⊗SAq)
X −→ Z̃S(X)⊗SA

X
p+q −→ Ap+q

for every p, q ≥ 0. This morphism is compatible with module actions so it induces
a morphism

Σ∞Z̃S(X)⊗S A
X −→ A.

We then obtain a morphism

AX −→ Hom(Σ∞Z̃S(X), A)

and we can use the same proof as in [MVW06, Lemma 9.15] to conclude.

2. By the proposition above and Proposition 6.10.

3. By Proposition 6.10 since quasi-isomorphisms in D−
Sp(pt) are defined levelwise.

Proposition 6.32. A morphism f : A −→ B in D−
Sp(pt) is a levelwise A1-equivalence if

and only if for every n ≥ 0, the morphism

fn = Ω∞(f{n}) : An −→ Bn

is an A1-equivalence in D−(pt).

Proof. The morphism f is a levelwise A1-equivalence if and only if C∗f is a quasi-
isomorphism by Proposition 6.31. The latter property can be checked levelwise.
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Proposition 6.33. Let φ be the functor as before. We have an exact functor

φ∗ : D̃M
eff,−

Sp (S) −→ D̃M
eff,−

Sp (T )

which is determined by the following commutative diagram

D−
Sp(S)

φ∗
//

��

D−
Sp(T )

��

D̃M
eff,−

Sp (S)
φ∗

// D̃M
eff,−

Sp (T )

Proof. For any X ∈ Sm/S, φ∗ maps

Σ∞(Z̃S(X ×k A
1) −→ Z̃S(X)){−i}

to
Σ∞(Z̃T ((ψX)×k A

1) −→ Z̃T (ψX)){−i− j}.

So the statement follows by the same method as in Proposition 6.11.

Proposition 6.34. 1. Then tensor product on D−
Sp(S) induces a tensor product

⊗S : D̃M
eff,−

Sp (S)× D̃M
eff,−

Sp (S) −→ D̃M
eff,−

Sp (S),

which is determined by the following commutative diagram

D−
Sp(S)×D

−
Sp(S)

⊗S //

��

D−
Sp(S)

��

D̃M
eff,−

Sp (S)× D̃M
eff,−

Sp (S)
⊗S // D̃M

eff,−

Sp (S).

Furthermore, for any K ∈ D̃M
eff,−

Sp (S), the functor K ⊗S − is exact.

2. Letf : S −→ T be a smooth morphism in Sm/k. There is an exact functor

f# : D̃M
eff,−

Sp (S) −→ D̃M
eff,−

Sp (T ),

which is determined by the following commutative diagram

D−
Sp(S)

f#
//

��

D−
Sp(T )

��

D̃M
eff,−

Sp (S)
f#

// D̃M
eff,−

Sp (T ).

3. Suppose that f : S −→ T is a morphism in Sm/k. There is then an exact functor

f ∗ : D̃M
eff,−

Sp (T ) −→ D̃M
eff,−

Sp (S),

which is determined by the following commutative diagram

D−
Sp(T )

f∗
//

��

D−
Sp(S)

��

D̃M
eff,−

Sp (T )
f∗

// D̃M
eff,−

Sp (S).
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4. For any i ≥ 0, there is an exact functor

−{−i} : D̃M
eff,−

Sp (S) −→ D̃M
eff,−

Sp (S),

which is determined by the following commutative diagram

D−
Sp(S)

−{−i}
//

��

D−
Sp(S)

��

D̃M
eff,−

Sp (S)
−{−i}

// D̃M
eff,−

Sp (S).

5. For any i ≥ 0, there is an exact functor

−{i} : D̃M
eff,−

Sp (pt) −→ D̃M
eff,−

Sp (pt),

which is determined by the following commutative diagram

D−
Sp(pt)

−{i}
//

��

D−
Sp(pt)

��

D̃M
eff,−

Sp (pt)
−{i}

// D̃M
eff,−

Sp (pt).

Proof. For (1), (2), (3), take j = 0 in the definition of φ and proceed as in Proposition
6.12, using Proposition 6.33. For (4), take the quadruple (S, S, S, i) and use Proposition
6.33. Finally, (5) holds by Proposition 6.32.

Proposition 6.35. 1. Let f : S −→ T be a smooth morphism in Sm/k. We have an
adjoint pair

f# : D̃M
eff,−

Sp (S) ⇋ D̃M
eff,−

Sp (T ) : f ∗.

2. We have an adjoint pair

−{−i} : D̃M
eff,−

Sp (pt) ⇋ D̃M
eff,−

Sp (pt) : −{i}.

Proof. The same as in Proposition 6.5.

Proposition 6.36. 1. There is an exact functor

Σ∞ : D̃M
eff,−

(S) −→ D̃M
eff,−

Sp (S)

determined by the following commutative diagram

D−(S) Σ∞

//

��

D−
Sp(S)

��

D̃M
eff,−

(S) Σ∞

// D̃M
eff,−

Sp (S).

2. There is an exact functor

Ω∞ : D̃M
eff,−

Sp (pt) −→ D̃M
eff,−

(pt)

determined by the following commutative diagram

D−
Sp(pt)

Ω∞

//

��

D−(pt)

��

D̃M
eff,−

Sp (pt) Ω∞

// D̃M
eff,−

(pt).
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Proof. 1. This follows from the fact that tensor products with Z̃S(G
∧1
m ) preserves A1-

equivalences, together with Proposition 6.32.

2. This follows by Proposition 6.32.

Proposition 6.37. There is an adjoint pair

Σ∞ : D̃M
eff,−

(pt) ⇋ D̃M
eff,−

Sp (pt) : Ω∞.

Proof. The same as in Proposition 6.5.

Proposition 6.38. The functor Σ∞ : D̃M
eff,−

(pt) −→ D̃M
eff,−

Sp (pt) is fully faithful.

Proof. The same as in Proposition 6.26.

Proposition 6.39. 1. We have a commutative diagram (up to a canonical isomor-
phism)

D̃M
eff,−

(S)× D̃M
eff,−

(S)
⊗S //

Σ∞×Σ∞

��

D̃M
eff,−

(S)

Σ∞

��

D̃M
eff,−

Sp (S)× D̃M
eff,−

Sp (S)
⊗S // D̃M

eff,−

Sp (S).

2. Suppose that f : S −→ T is a morphism in Sm/k. We have a commutative diagram
(up to a canonical isomorphism)

D̃M
eff,−

(T )
f∗

//

Σ∞

��

D̃M
eff,−

(S)

Σ∞

��

D̃M
eff,−

Sp (T )
f∗

// D̃M
eff,−

Sp (S).

3. Suppose that f : S −→ T is a smooth morphism in Sm/k. Then, we have a
commutative diagram (up to a canonical isomorphism)

D̃M
eff,−

(S)
f#

//

Σ∞

��

D̃M
eff,−

(T )

Σ∞

��

D̃M
eff,−

Sp (S)
f#

// D̃M
eff,−

Sp (T ).

Proof. This follows by direct computations.

In [CD09, Proposition 3.5] and [CD13, Proposition 5.2.16], the category D̃M
eff

Sp (S) is
defined as the the Verdier localization of DSp(S) with respect to the homotopy invariance

conditions. It follows that the localization induces a triangulated structure on D̃M
eff

Sp (S)
([Kra10, Lemma 4.3.1]).

Proposition 6.40. There is an exact functor D̃M
eff,−

Sp (S) −→ D̃M
eff

Sp (S) which is de-
termined by the commutative diagram

D−
Sp(S)

//

��

DSp(S)

��

D̃M
eff,−

Sp (S) // D̃M
eff

Sp (S).

It is fully faithful when S = pt.
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Proof. The same as Proposition 6.15 by using Proposition 6.31.

As usual, there are compatibility results between the natural inclusion and ⊗S, f
∗,

f#, Σ
∞, −{−i}, i ≥ 0.

6.2.4 Stable Categories of Motives

Definition 6.11. ([CD13, 5.3.23]) Define EΩ to be the smallest thick subcategory of

D̃M
eff,−

Sp (S) such that

1. Cone((Σ∞Z̃S(X){1}{−1} −→ Σ∞Z̃S(X)){−i}) ∈ EΩ for every X ∈ Sm/S, i ≥ 0.

2. EΩ is closed under arbitrary direct sums if it exists in D̃M
eff,−

Sp (S).

Set WΩ to be the class of morphisms in D̃M
eff,−

Sp (S) whose cone is in EΩ. Define

D̃M
−
(S) = D̃M

eff,−

Sp (S)[W−1
Ω ]

to be the category of stable motives over S. A morphism in D̃M
eff,−

Sp (S) is called a stable

A1-equivalence if it becomes an isomorphism in D̃M
−
(S).

Definition 6.12. A complex K ∈ D̃M
eff,−

Sp (S) is called Ω-local if for every stable A1-
equivalence f : A −→ B, the induced map

Hom
D̃M

eff,−

Sp (S)
(B,K) −→ Hom

D̃M
eff,−

Sp (S)
(A,K)

is an isomorphism.

The same method as in the proof of Proposition 6.34 yields the following proposition.

Proposition 6.41. 1. The tensor product on D̃M
eff,−

Sp (S) induces a tensor product

⊗S : D̃M
−
(S)× D̃M

−
(S) −→ D̃M

−
(S),

which is determined by the following commutative diagram

D̃M
eff,−

Sp (S)× D̃M
eff,−

Sp (S)
⊗S //

��

D̃M
eff,−

Sp (S)

��

D̃M
−
(S)× D̃M

−
(S)

⊗S // D̃M
−
(S).

Furthermore, for any K ∈ D̃M
−
(S), the functor K ⊗S − is exact.

2. Suppose that f : S −→ T is a smooth morphism in Sm/k. Then, there is an exact
functor

f# : D̃M
−
(S) −→ D̃M

−
(T ),

which is determined by the following commutative diagram

D̃M
eff,−

Sp (S)
f#

//

��

D̃M
eff,−

Sp (T )

��

D̃M
−
(S)

f#
// D̃M

−
(T ).

78



3. Let f : S −→ T be a morphism in Sm/k. There is an exact functor

f ∗ : D̃M
−
(T ) −→ D̃M

−
(S),

which is determined by the following commutative diagram

D̃M
eff,−

Sp (T )
f∗

//

��

D̃M
eff,−

Sp (S)

��

D̃M
−
(T )

f∗
// D̃M

−
(S).

4. For any i ≥ 0, there is an exact functor

−{−i} : D̃M
−
(S) −→ D̃M

−
(S),

which is determined by the following commutative diagram

D̃M
eff,−

Sp (S)
−{−i}

//

��

D̃M
eff,−

Sp (S)

��

D̃M
−
(S)

−{−i}
// D̃M

−
(S).

We denote by Σ∞,st the composite

D̃M
eff,−

(S) Σ∞

// D̃M
eff,−

Sp (S) // D̃M
−
(S) .

Lemma 6.4. Let C be a symmetric monoidal category and let T ∈ C . If there exists
U ∈ C such that U ⊗ T ∼= ✶, then there are isomorphisms

ev : U ⊗ T −→ ✶, coev : ✶ −→ T ⊗ U

such that T is strongly dualizable ([CD13, 2.4.30]) with dual U under these two maps.

Proof. Let F = −⊗ U and G = −⊗ T . Then the condition gives an endoequivalence

F : C ⇋ C : G

i.e. two natural isomorphisms a : FG −→ id and b : id −→ GF . We can then construct
the following two morphisms

θ : Hom(FX, Y ) G // Hom(GFX,GY ) b∗ // Hom(X,GY )

and
η : Hom(X,GY ) F // Hom(FX,FGY )

a∗ // Hom(FX, Y )

for every X, Y ∈ C . Let θ1 be the composite

F
idF×b

// FGF
a×idF // F

and θ2 be

G
b×idG // GFG

idG×a
// G .

Then (η ◦ θ)(f) = θ1(X) ◦ f and (θ ◦ η)(g) = g ◦ θ2(Y ). So θ is an isomorphism, hence F
is a left adjoint of G (vice versa).
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As a straightforward consequence of the above lemma, we obtain the following result.

Proposition 6.42. The element Σ∞,st(Z̃S(G
∧1
m )) has a strong dual (Σ∞,st

✶S){−1} in

D̃M
−
(S) with the evaluation and coevaluation maps being isomorphisms.

As a consequence, we can define C(i) to be C⊗SΣ
∞,st(✶S(i)) and C(−i) to be C{−i}[i]

for any C ∈ D̃M
−
(S) and any i ≥ 0.

Proposition 6.43. ([CD13, Proposition 5.3.25]) Suppose that E = C̃H. Then, the
functor

Σ∞,st : D̃M
eff,−

(pt) −→ D̃M
−
(pt)

is fully faithful.

Proof. We first prove that for every projective C ∈ D̃M
eff,−

(pt), Σ∞C ∈ D̃M
eff,−

Sp (pt) is
Ω-local. Arguing as in [MVW06, Lemma 9.20], this is equivalent to the morphism

Hom(Σ∞Z̃pt(X){1}{−1}{−i},Σ∞(C[n])) −→ Hom(Σ∞Z̃pt(X){−i},Σ∞(C[n]))

being an isomorphism for any X ∈ Sm/S, any i ≥ 0 and any n ∈ Z. This follows from
the following commutative diagram

Hom(Σ∞Z̃pt(X){1}{−1}{−i},Σ∞(C[n])) //

��

Hom(Σ∞Z̃pt(X){−i},Σ∞(C[n]))

��

Hom(Σ∞Z̃pt(X){1}{−1},Σ∞(C[n]){i}) //

��

Hom(Σ∞Z̃pt(X),Σ∞(C[n]){i})

��

−{1}

rr

Hom(Σ∞Z̃pt(X){1},Σ∞(C[n]){i+ 1})

��

Hom(Z̃S(X),✶pt{1}
⊗i ⊗ (C[n]))

✶pt{1}⊗−

rr

Hom(✶pt{1} ⊗ Z̃pt(X),✶pt{1}
⊗i+1 ⊗ (C[n]))

and [FØ16, Theorem 5.0.1]. Let now K,L ∈ D̃M
eff,−

(pt) be two projective resolutions of
P,Q respectively. The statement follows then from the following commutative diagram

Hom
D̃M

eff,−
(pt)

(K,L) Σ∞,st
//

∼=

��

Hom
D̃M

−

(pt)
(Σ∞,stK,Σ∞,stL)

∼=

��

Hom
D̃M

eff,−
(pt)

(P,Q) Σ∞,st
//

Σ∞

**

Hom
D̃M

−

(pt)
(Σ∞,stP,Σ∞,stQ)

Hom
D̃M

eff,−

Sp (pt)
(Σ∞P,Σ∞Q)

∼=

OO

and Proposition 6.38.

Proposition 6.44. Let f : S −→ T be a smooth morphism in Sm/k. We have an adjoint
pair

f# : D̃M
−
(S) ⇋ D̃M

−
(T ) : f ∗.

Proof. The same as Proposition 6.5.
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Proposition 6.45. Suppose that f : S −→ T is a morphism in Sm/k.

1. For any K,L ∈ D̃M
−
(T ), we have

f ∗(K ⊗S L) ∼= (f ∗K)⊗S (f
∗L).

2. If f is smooth, then for any K ∈ D̃M
−
(S) and L ∈ D̃M

−
(T ), we have

f#(K ⊗S f
∗L) ∼= (f#K)⊗S L.

Proof. Everything can be checked termwise by the discussion in Section 6.2.1.

In [CD13, Proposition 5.3.23], the category D̃M(S) is defined as the the Verdier local-

ization of D̃M
eff

Sp (S) with respect toWΩ. As usual, the localization induces a triangulated

structure on D̃M(S) ([Kra10, Lemma 4.3.1]). Here is a weak result which is enough for
our purpose:

Proposition 6.46. There is an exact functor D̃M
−
(S) −→ D̃M(S) which is determined

by the commutative diagram

D̃M
eff,−

Sp (S) //

��

D̃M
eff

Sp (S)

��

D̃M
−
(S) // D̃M(S).

When E = C̃H and S = pt, the morphism

Hom
D̃M

−

(S)
(X, Y ) −→ HomD̃M(S)(X, Y )

is an isomorphism if X and Y are of the form (Σ∞,stA){−i}, i ≥ 0.

Proof. The first statement follows from [Kra10, Proposition 4.6.2]. We have thus a com-
mutative diagram (up to a natural isomorphism)

D̃M
eff,−

(S) //

Σ∞,st

��

D̃M
eff

(S)

Σ∞,st

��

D̃M
−
(S) // D̃M(S).

Now let E = C̃H and S = pt. If the statement holds for X, Y , we say that P(X, Y )
holds. If P(X, Y ) is true, then for any X ′ ∼= X and Y ′ ∼= Y , P(X ′, Y ′) is also true.
It follows then from Proposition 6.42 and the fact that the natural inclusion is monoidal
that P(X{−1}, Y {−1}) is also true.

By Proposition 6.15, Proposition 6.43 and the diagram above, P(Σ∞,stA,Σ∞,stB) is

true for any A,B ∈ D̃M
eff,−

(pt). Hence the statement follows.

To conclude, we note as usual that the various versions of ⊗S, f
∗, f#, −{−i}, i ≥ 0

are compatible with the inclusion.
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Chapter 7

Orientations on Symplectic Bundles

and Applications

7.1 Orientations on Symplectic Bundles

In this section, we consider E-correspondences with E = C̃H, i.e. MW-correspondences.
We are going to prove the quaternionic projective bundle theorem and derive the existence
of a Gysin triangle over any smooth base S (under some conditions). We first recall
the comparison results between MW-motivic cohomology groups and Chow-Witt groups
established in [DF17].

Proposition 7.1. For any C ∈ D−(S) and any i ∈ N, we have an isomorphism of
functors Smop

k → Ab

HomD−(S)(Z̃S(−), C[i]) ∼= Hi(−, C).

Further, let X be a smooth scheme, Z ⊂ X be a closed subset and U = X \ Z. Then, we
have an isomorphism of functors D−(S)→ Ab

HomD−(S)(Z̃S(X)/Z̃S(U),−[i]) ∼= Hi
Z(X,−).

Proof. The first statement is obtained using the universal property of [GM03, page 188].
For the second statement, one first proves that

HomS̃h(S)(Z̃S(X)/Z̃S(U),−) ∼= −Z(X),

where the right hand side denotes sections with support in Z, defined by the left exact
sequence

0 −→ FZ(X) −→ F (X) −→ F (U).

Consequently, both terms have the same hypercohomology functor. Additionally, we have
Exti(F,−) ∼= HomD−(S)(F,−[i]) for any sheaf with MW-transfers F , yielding the second
statement.

Let now X ∈ Sm/S. For any two morphisms fi : Z̃S(X) −→ Ci, i = 1, 2 in

D̃M
eff,−

(S), we denote by f1 ⊠ f2 the composite

Z̃S(X)
△

// Z̃S(X)⊗S Z̃S(X)
f1⊗f2

// C1 ⊗S C2 .

In case we have two morphisms fi : Z̃S(X) −→ Z̃S(ni)[2ni] in D̃M
eff,−

(S), we denote by
f1f2 the composite

Z̃S(X)
f1⊠f2

// Z̃S(n1)[2n1]⊗ Z̃S(n2)[2n2]
⊗

// Z̃S(n1 + n2)[2(n1 + n2)] .
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Proposition 7.2. Let X ∈ Sm/k, Z ⊆ X be a closed subset and i ≥ 0. Then

H2i
Z (X,C∗Z̃pt(i)) ∼= C̃H

i

Z(X),

and in particular

H2i(−, C∗Z̃pt(i)) ∼= C̃H
i
(−)

functorially in X. Moreover, the following diagram commutes for any i, j ≥ 0 (here

D̃M
eff

= D̃M
eff,−

(pt))

Hom
D̃M

eff (Z̃pt(X), Z̃pt(i)[2i])×HomD̃M
eff (Z̃pt(X), Z̃pt(j)[2j]) //

·

��

C̃H
i
(X)× C̃H

j
(X)

·
��

Hom
D̃M

eff (Z̃pt(X), Z̃pt(i+ j)[2(i+ j)]) // C̃H
i+j

(X)

where the right-hand map is the intersection product on Chow-Witt groups. Consequently,

we have isomorphisms Hom
D̃M

eff (Z̃pt(X), Z̃pt(i)[2i]) −→ C̃H
i
(X) which send id

Z̃pt
to 1

when i = 0 and X = pt.

Proof. See [DF17, Corollary 4.2.6].

7.1.1 Grassmannian Bundles and Quaternionic Projective Bun-

dles

In this section, we recall the basics on Grassmannian bundles and quaternionic projective
bundles. Although these are well-known objects, we include their definitions here for the
sake of notations. The reader may refer to [KL72], [Sha94] for Grassmannians, [Kle69]
for Grassmannian bundles and [PW10] for quaternionic projective bundles. Let S be a
k-scheme.

Definition 7.1. Let k be a field, r be an integer and 1 ≤ n ≤ r. Consider the ring

A(n, r) = k[pi1,...,in |1 ≤ i1, . . . , in ≤ r]

and the ideal I(n, r) ⊆ A(n, r) generated by





∑n+1
t=1 (−1)

t−1pi1...in−1jtpj1...jt−1,jt+1,...jn+1 with 1 ≤ i1, . . . , in−1, j1, . . . , jn+1 ≤ r,

pi1,...,in if the indices are not distinct,

pi1,...,in − sgn(σ)pσ(i1),...,σ(in) for σ ∈ Sn.

The scheme
Gr(n, r) = Proj(A(n, r)/I(n, r))

is the Grassmannian of rank n quotients of a k-vector space of rank r.

Definition 7.2. Let X be an S-scheme, E be locally free of rank r on X and 1 ≤ n ≤ r.
Define a functor

F : X − Schop −→ Set
f : T −→ X 7−→ {F ⊆ f ∗E |f ∗E /F is locally free of rank n}

with functorial maps defined by pull-backs.
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Proposition 7.3. The functor F is representable by an X-scheme GrX(n,E ), the Grass-
mannian bundle of rank n quotients of E . Further, if E ∼= O⊕r

X , then GrX(n,E ) ∼=
Gr(n, r)×k X over X.

Proof. See [Kle69, Proposition 1.2].

Let p : GrX(n,E ) −→ X be the structure map. There is a universal element F ⊆ p∗E
with quotient of rank n. The vector bundle (p∗E /F )∨ is called the tautological bundle
of GrX(n,E ), denoted by U . Its dual is just called the dual tautological bundle, denoted
by U ∨.

Definition 7.3. Let E 6= 0 be a locally free sheaf of rank n over a scheme X. Then E

is called symplectic if it’s equipped with a skew-symmetric (v · v = 0) and non degenerate
inner product m : E × E −→ OX (hence n is always even).

Now, let f : X −→ Y be a morphism of schemes and (E ,m) be a symplectic bundle
on Y . Then (f ∗E , f ∗(m)) is also a symplectic bundle, where f ∗(m) is the pull back of the
map E −→ E ∨ induced by m.

The following is a basic tool when dealing with non degeneracy of inner products.

Proposition 7.4. Let f : X −→ Y be a morphism between schemes and E be a locally
free sheaf of finite rank over Y with an inner product m : E × E −→ OX . Then for any
x ∈ X, m is non degenerate at f(x) if and only if f ∗(m) is non degenerate at x.

Proof. This is basically because f induces local homomorphisms between stalks.

The following proposition can be seen from the case of vector spaces.

Proposition 7.5. Suppose that we have an injection i : E1 −→ E2, where E2 is symplectic
and mE2 |E1 is non degenerate. Define E ⊥

1 (U) := E1(U)
⊥ for every U . Then E ⊥

1 is again
a symplectic bundle with inner product inherited from E2 and there exists a unique p :
E2 −→ E1 with p ◦ i = idE1 and Im(idE2 − i ◦ p) ⊆ E ⊥

1 .

Definition 7.4. Let X be an S-scheme and let (E ,m) be a symplectic bundle over X.
Define a functor

H : X − Schop −→ Set
f : T −→ X 7−→ {F ⊆ f ∗E |f ∗(m)|F non degenerate, f ∗E /F v.b. of rank rk(E )− 2}

with functorial maps defined by pull-backs.

Definition 7.5. Let

HP n = D+(
n+1∑

i=1

pi,i+n+1) ⊆ Gr(2, 2n+ 2),

where pi,i+n+1 means the class of pi,i+n+1 in the quotient.

Proposition 7.6. The functor H is representable by a scheme HGrX(E ). Further, if

(E ,m) ∼=

(
O⊕2n+2
X ,

(
I

−I

))
, then HGrX(E ) ∼= HP n ×k X over X.

Proof. We have the structure map π : GrX(2n,E ) −→ X and the tautological exact
sequence

0 −→ F −→ π∗
E −→ U

∨ −→ 0.

Define
HGrX(E ) = {x ∈ GrX(2n,E )|π∗(m)|F is non degenerate at x}.
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We prove that HomX(T,HGrX(E )) ∼= H(T ) for any X-scheme f : T −→ X. By
definition, HGrX(E ) is an open subset of GrX(2n,E ). Then, any X-morphism a : T −→
HGrX(E ) induces an X-morphism b : T −→ GrX(2n,E ) and this gives an exact sequence

0 −→ K −→ f ∗
E −→ C −→ 0

obtained by applying b∗ on the exact sequence in the beginning. By definition ofHGrX(E ),
f ∗(m)|K is non degenerate. Conversely, given a morphism b : T −→ GrX(2n,E ) such that
f ∗(m)|K is non degenerate as above, so π∗(m)|F is non degenerate at every point in Im(b)
by Proposition 7.4. So Im(b) ⊆ HGrX(E ).

For the second statement, consider an X-scheme f : T −→ X and an X-morphism
b : T −→ Gr(2, 2n + 2) ×k X. Then b factors through HP n ×k X if and only if the
composite

c : T −→ Gr(2, 2n+ 2)×k X −→ Gr(2, 2n+ 2)

factors through HP n. Denote the structure map Gr(2, 2n+2) −→ pt by p. Then we have
the tautological exact sequence

0 −→ F −→ p∗O⊕2n+2
pt −→ U

∨ −→ 0

as in the beginning. Then one proves that c factor through HP n if and only if the inner

product

(
p∗O⊕2n+2

pt ,

(
I

−I

))
is non degenerate after restriction to c∗U (taking the

dual of the exact sequence above). Considering morphisms Spec K −→ T where K is a
field, we can assume T = Spec K. Then the non vanishing of the formula

∑n+1
i=1 pi,i+n+1

in the Definition 7.5 is just equivalent to the non degeneracy required above.

Definition 7.6. We will call the scheme HGrX(E ) the quaternionic projective bundle of
E .

Let p : HGrX(E ) −→ X be the structure map. Then, there is a universal element F ⊆
p∗E which is just obtained by the restriction of the universal element of the Grassmannian
bundle to HGrX(E ). The vector bundle F itself is called the tautological bundle of
HGrX(E ), denoted by U . Its dual is just called the dual tautological bundle, denoted by
U ∨. We will use the same symbol U for all tautological bundles defined above if there
is no confusion. Note that both U and U ∨ are symplectic by Proposition 7.5.

7.1.2 Quaternionic Projective Bundle Theorem

The following proposition can also be found in [MVW06, Corollary 15.3] and [SV00,
Proposition 4.3].

Proposition 7.7. Let S ∈ Sm/k. For any correspondence theory E and n ≥ 1, we have
an isomorphism

Z̃S((A
n \ 0)× S) ∼= Z̃S ⊕ Z̃S(n)[2n− 1]

in D̃M
eff,−

(S).

Proof. We denote the point (1, . . . , 1) ∈ An by 1 for any n. Then it suffices to prove that

Z̃S((A
n \ 0)× S, 1) ∼= Z̃S(n)[2n− 1]

by induction. For n = 1 this is by definition.
In general, write x1, . . . , xn for the coordinates of An and set U1 = D(x1), U2 =⋃n

i=2D(xi). Note that U1 = (A1 \ 0)×An−1×S, U2 = A1× (An−1 \ 0)×S and U1 ∩U2 =
(A1 \ 0)× (An−1 \ 0)× S.
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We have a commutative diagram in the category of sheaves with E-transfers:

Z̃S(U1 ∩ U2, 1) // Z̃S(U1, 1)⊕ Z̃S(U2, 1)

��

Z̃S(U1 ∩ U2, 1) // Z̃S((A
1 \ 0)× S, 1)⊕ Z̃S((A

n−1 \ 0)× S, 1)

where the right-hand vertical map is the sum of the respective projections. Considering
the relevant sheaves as complexes concentrated in degree 0 and taking cones, we obtain a
commutative diagram of triangles in D−(S)

Z̃S(U1 ∩ U2, 1) // Z̃S(U1, 1)⊕ Z̃S(U2, 1)

��

// C

��

Z̃S(U1 ∩ U2, 1) // Z̃S((A
1 \ 0)× S, 1)⊕ Z̃S((A

n−1 \ 0)× S, 1) // C ′

(7.1)

It follows from Proposition 5.10 that the map Z̃S(U1, 1)⊕ Z̃S(U2, 1)→ Z̃S((A
n \ 0)×S, 1)

induces a quasi-isomorphism C → Z̃S((A
n \ 0)× S, 1). Using now Lemma 5.6, we obtain

a morphism of complexes Z̃S(((A
1 \ 0) × S, 1) ∧ ((An−1 \ 0) × S, 1))[1] → C ′ which is a

quasi-isomorphism.

Applying now the exact localization functor D−(S) → D̃M
eff,−

(S) to (7.1) and us-

ing Proposition 6.9, we see that the map C → C ′ is an isomorphism in D̃M
eff,−

(S).

Altogether, we have obtained an isomorphism in D̃M
eff,−

(S) of the form

Z̃S((A
n \ 0)× S, 1)→ Z̃S(((A

1 \ 0)× S, 1) ∧ ((An−1 \ 0)× S, 1))[1].

Now, the wedge product on the right-hand side can be computed as

Z̃S(((A
1\0)×S, 1))⊗S Z̃S(((A

n−1\0)×S, 1)) ∼= Z̃S(1)[1]⊗S Z̃S(n−1)[2n−3] ∼= Z̃S(n)[2n−2]

in D̃M
eff,−

(S) by Proposition 5.16 and induction hypothesis. Hence we are done.

Recall now that for any smooth scheme X and any v ∈PX , we have groups

C̃H
i
(X, v) := C̃H

i
(X, det(v))

for any i ∈ N. We now discuss the notion of orientation of a vector bundle.

Definition 7.7. Let X ∈ Sm/k and let E be a vector bundle over X. A section s ∈
det(E )∨(X) is called an orientation of E if s trivializes det(E )∨. A vector bundle with an
orientation is called orientable.

Definition 7.8. Let X ∈ Sm/k and E be an orientable vector bundle of rank n over
X with an orientation s. Define e(E ) to be the map such that the following diagram
commutes (see [Fas08, Définition 13.2.1]):

C̃H
0
(X)

c̃n(E )
//

e(E )
��

C̃H
n
(X,−E )

C̃H
n
(X)

s
∼=

88

where c̃n(E ) is the Euler class of E . If n = 2, define the first Pontryagin class under

the orientation s of E to be −e(E )(1) ∈ C̃H
2
(X) (see [AF16, remark before Proposition

3.1.1]), which is denoted by p1(E ).
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Definition 7.9. Let E be a vector bundle of rank n over X ∈ Sm/S and let s be an
orientation of E . The map

e(E ) : C̃H
0
(X) −→ C̃H

n
(X)

defined above gives an element

e(E )(1) ∈ HomDMeff,−(pt)(Z̃pt(X), Z̃pt(n)[2n]).

It induces a morphism
θ : Z̃S(X) −→ Z̃S(n)[2n]

by Proposition 6.13, which is called the Euler class of E over S under the orientation s.
If n = 2, then −θ is called the first Pontryagin class under the orientation s of E over

S, which is still denoted by p1(E ).

The following lemma is obvious.

Lemma 7.1. Let (E ,m) be a vector bundle of rank 2 over a scheme X with a skew-
symmetric inner product. Then m is non degenerate iff the induced map

∧2
E −→ OX is

an isomorphism.

Hence for any symplectic bundle of rank 2, there is a canonical orientation induced by
the dual of the isomorphism in the above lemma.

Definition 7.10. Let E1,E2 be two vector bundles over a scheme X with orientations
s1, s2 respectively. An isomorphism f : E1 −→ E2 is called orientation preserving if
det(f)∨(s2) = s1.

Proposition 7.8. Let E1,E2 be two orientable vector bundles of rank n over a smooth
scheme X with orientations s1, s2, respectively. If there is an orientation preserving
isomorphism f : E1 −→ E2, then e(E1) = e(E2).

Proof. Let Ej be the total space of Ej, pj : Ej −→ X be the structure map and zj : X −→
Ej be the zero section for j = 1, 2. We have a diagram

C̃H
0
(X)

c̃n(E1)
//

c̃n(E2) ''

C̃H
n
(X,−E1) C̃H

n
(X)

s1oo

s2
ww

C̃H
n
(X,−E2)

−f

OO

in which the right triangle commutes since f is orientation preserving. Hence we only
have to prove that the left triangle commutes. For this, use the following commutative
diagrams which can be catenated:

C̃H
0
(X)

−s1+s1//

−s2+s2

""

C̃H
0
(X,E1 − E1)

C̃H
0
(X,E1 − E2)

idE1
−f

OO

C̃H
0
(X,E2 − E2)

(f+idE2
)−1

OO
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C̃H
0
(X,E1 − E1)

z1∗ // C̃H
n
(E1,−p

∗
1E1) C̃H

n
(X,−E1)

p∗1oo

C̃H
0
(X,E1 − E2)

OO

z1∗ // C̃H
n
(E1,−p

∗
1E2)

−p∗1(f)

OO

C̃H
0
(X,E2 − E2)

OO

z2∗ // C̃H
n
(E2,−p

∗
2E2)

f∗

OO

C̃H
n
(X,−E2).

p∗2oo

p∗1
hh

−f

OO

As an application, if two symplectic bundles of rank 2 are isomorphic (including their
inner products) then their first Pontryagin classes under the canonical orientations are
equal. Note that if they are just isomorphic as vector bundles, the statement is not true
any more, since we can use automorphisms of trivial bundles.

Our next aim is to calculate the motive of HP n. Let x1, . . . , x2n+2 be the coordinates
of the underlying vector space of HP n. For any a = 1, . . . , n+1, set Va =

∑
i 6=a+n+1 k ·xi,

Xa
0 = HP n \Gr(2, Va). We have a diagram:

Spec k

HP n−1

v

OO

k
$$

(∗)

(Xn+1
0 )c

π

99

j
//

u

BB

HP n,

w

[[

where u, v, w are the structure maps, (Xn+1
0 )c is the closed complement of Xn+1

0 in HP n,

k

((
x1, . . . , x2n
y1, . . . , y2n

))
=

(
x1, . . . , xn, 0, xn+1, . . . , x2n, 0
y1, . . . , yn, 0, yn+1, . . . , y2n, 0

)
,

j is the inclusion and

π

((
x1, . . . , x2n+1, 0
y1, . . . , y2n+1, 0

))
=

(
x1, . . . , xn, xn+2, . . . , x2n+1

y1, . . . , yn, yn+2, . . . , y2n+1

)

(here,

(
v1
v2

)
means a two dimensional subspace written in its coordinates spanned by

v1, v2 in a k-vector space). Note that the lower diagram doesn’t commute, i.e. k ◦ π 6= j.

Proposition 7.9. The following results hold:

1.
π∗(U ∨

HPn−1) ∼= j∗(U ∨
HPn)

as symplectic bundles.

2. If z : HP n −→ U ∨ is the zero section of U ∨ then there is a section s of U ∨ such
that we have a transversal cartesian square (see [AF16, Theorem 2.4.1]):

(Xn+1
0 )c

j
//

j

��

HP n

z

��

HP n
s

// U ∨
HPn .
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Proof. See [PW10, Theorem 4.1, (d), (e)].

Theorem 7.1. For any n ≥ 0, we have

Z̃pt(HP
n) ∼= ⊕ni=0Z̃pt(2i)[4i]

in D̃M
eff,−

(pt).

Proof. Set Ua
n =

⋃a
i=1X

i
0 ⊆ HP n. The normal bundle N(X1

0 )
c/HPn is symplectic by re-

placing Xn+1
0 byX1

0 in Proposition 7.9. So the normal bundle Na := N(Ua\X1
0 )/Ua

is also

symplectic of rank 2 and has a canonical orientation sa. Moreover, we have an A2-bundle
π : (X1

0 )
c −→ HP n−1 by [PW10, Theorem 3.2], and then Ua−1

n \X1
0 is also an A2-bundle

over Ua−1
n−1 .

Now we prove by induction that

Z̃pt(U
a
n)
∼= ⊕a−1

i=0 Z̃pt(2i)[4i].

This is true for a = 1 by [PW10, Theorem 3.4(a)] and Proposition 6.9. We thus suppose
it’s true for some a ≥ 1 and prove the result for a+ 1. Let then

θ : Z̃pt(U
a
n) −→ ⊕

a−1
i=0 Z̃pt(2i)[4i]

be such an isomorphism.

We claim that the inclusion j : Z̃pt(U
a
n) −→ Z̃pt(U

a+1
n ) splits in D̃M

eff,−
(pt). Indeed,

Proposition 7.2 yields a commutative diagram in which the vertical homomorphisms are
isomorphisms

Hom
D̃M

eff,−
(pt)

(Z̃pt(U
a+1
n ), Z̃pt(U

a
n))

j
//

θ

��

Hom
D̃M

eff,−
(pt)

(Z̃pt(U
a
n), Z̃pt(U

a
n))

θ

��

Hom
D̃M

eff,−
(pt)

(Z̃pt(U
a+1
n ),⊕a−1

i=0 Z̃pt(2i)[4i])
j

//

��

Hom
D̃M

eff,−
(pt)

(Z̃pt(U
a
n),⊕

a−1
i=0 Z̃(2i)[4i])

��⊕a−1
i=0 C̃H

2i
(Ua+1

n )
j∗

//
⊕a−1

i=0 C̃H
2i
(Ua

n).

It suffices then to prove that for any i = 0, 2, . . . , 2a− 2, the pull-back

j∗ : C̃H
i
(Ua+1

n ) −→ C̃H
i
(Ua

n)

is an isomorphism since the first horizontal arrow in the above diagram will then also be
an isomorphism.

We use induction on a again to prove the claim on j∗. The case i = 0 is easy.
Hence, we may suppose that i > 0, which implies that a, n > 1. The result now follows
by induction, using the following commutative diagrams (see [Fas08, Remarque 10.4.8],
[Fas08, Corollaire 10.4.10] and [Fas08, Corollaire 11.3.2]) and noting that the exact rows
in the first one are split by [PW10, Theorem 3.4(a)]:

0 // C̃H
i

Ua+1
n \X1

0
(Ua+1

n ) //

��

C̃H
i
(Ua+1

n ) //

��

C̃H
i
(X1

0 ) // 0

0 // C̃H
i

Ua
n\X

1
0
(Ua

n) // C̃H
i
(Ua

n) // C̃H
i
(X1

0 ) // 0

,
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C̃H
i−2

(Ua+1
n \X1

0 )
∼=

sa+1

//

��

C̃H
i−2

(Ua+1
n \X1

0 , Na+1)
∼=

Thom
//

��

C̃H
i

Ua+1
n \X1

0
(Ua+1

n )

��

C̃H
i−2

(Ua
n \X

1
0 )

∼=
sa

// C̃H
i−2

(Ua
n \X

1
0 , Na)

∼=

Thom
// C̃H

i

Ua
n\X

1
0
(Ua

n)

,

C̃H
i−2

(Ua
n−1)

∼=

A2−bundle
//

��

// C̃H
i−2

(Ua+1
n \X1

0 )

��

C̃H
i−2

(Ua−1
n−1)

∼=

A2−bundle
//// C̃H

i−2
(Ua

n \X
1
0 ).

Now, we have an exact sequence of sheaves by Proposition 5.10

0 −→ Z̃pt(U
a
n ∩X

a+1
0 ) −→ Z̃pt(U

a
n)⊕ Z̃pt(X

a+1
0 ) −→ Z̃pt(U

a+1
n ) −→ 0,

yielding an exact triangle in D̃M
eff,−

(pt). Moreover, we have an A1-bundle p : A4n+1 −→
Xa+1

0 (see [PW10, Theorem 3.4(a)]) and it follows that

Z̃pt(U
a
n ∩X

a+1
0 ) ∼= Z̃pt(A

2a \ 0× A4n−2a+1) ∼= Z̃⊕ Z̃pt(2a)[4a− 1]

by Proposition 7.7. Killing one point, we get a distinguished triangle in D̃M
eff,−

(pt)

Z̃pt(2a)[4a− 1] −→ Z̃pt(U
a
n) −→ Z̃pt(U

a+1
n ) −→ Z̃pt(2a)[4a].

We have proved that j splits and therefore

Z̃pt(U
a+1
n ) ≃ Z̃pt(U

a
n)⊕ Z̃pt(2a)[4a]

completing the induction process.

Now we want to improve Theorem 7.1 and find an explicit isomorphism using the first
Pontryagin class of the dual tautological bundle on HP n.

The following proposition has a very similar version in [PW10, Theorem 8.1], but the
twists are considered here.

Proposition 7.10. Let w : HP n → Spec(k) be the structure map. Then the map

fn,i : C̃H
0
(Spec(k)) −→ C̃H

2i
(HP n)

x 7−→ w∗(x) · p1(U
∨)i

is an isomorphism of abelian groups for i = 0, . . . , n. Here, U ∨ is endowed with its
canonical orientation.

Proof. We prove the result by induction on n and use the notation of Diagram (*) above.
If n = 0, there is nothing to prove.

We first note that j∗(U ∨
HPn) ∼= N(Xn+1

0 )c/HPn by Proposition 7.9. Now, we have a

commutative diagram with split exact row for any i ≥ 0 (as in Theorem 7.1)

0 // C̃H
2i−2

((Xn+1
0 )c,−j∗UHPn)

j∗
// C̃H

2i
(HP n) // C̃H

2i
(Xn+1

0 ) // 0

C̃H
2i−2

((Xn+1
0 )c,−j∗UHPn + j∗UHPn)

t

OO

j∗
// C̃H

2i
(HP n,UHPn)

t′

OO

C̃H
2i−2

((Xn+1
0 )c)

o

OO

C̃H
2i−2

(HP n−1)π∗

oo C̃H
0
(Spec k)

fn−1,i−1

oo

,
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where t (resp. t′) is induced (Definition 7.7) by the canonical orientation of j∗UHPn (resp.
UHPn) and o is the cancellation map induced by the canonical orientation. On the other
hand, we have an A1-bundle

p : A4n+1 −→ Xa
0

by [PW10, Theorem 3.4(a)]. It follows that the statement is true for i = 0. Moreover, it

follows that C̃H
2i
(Xn+1

0 ) = 0 if i > 0. Thus j∗ is an isomorphism if i > 0. In this case,
the map −j∗ ◦ t ◦ o ◦ π

∗ ◦ fn−1,i−1 will also be an isomorphism. It suffices to show that it
is equal to fn,i to conclude.

Pick s ∈ C̃H
0
(Spec k). Then

− j∗(t(o(π
∗(fn−1,i−1(s)))))

=− j∗(t(o(π
∗(v∗(s) · p1(U

∨
HPn−1)i−1))))

by definition

=− t′(j∗(o(π
∗(v∗(s)) · j∗(p1(U

∨
HPn)i−1))))

by Axiom 10, Proposition 7.9 and the square in the diagram

=− t′(j∗(o(π
∗(v∗(s)))) · p1(U

∨
HPn)i−1)

by Axiom 18 for j

=− t′(j∗(o(j
∗(w∗(s)))) · p1(U

∨
HPn)i−1)

by Axiom 9

=− t′(j∗(j
∗(w∗(s)) · o(1)) · p1(U

∨
HPn)i−1)

by Axiom 7, Axiom 10 and functoriality of pull-back with respect to twists

=− t′(w∗(s) · j∗(o(1)) · p1(U
∨
HPn)i−1)

by Axiom 18 for j

=− w∗(s) · t′(j∗(o(1))) · p1(U
∨
HPn)i−1

by functoriality of products with respect to twists.

Denote the map

C̃H
0
(HP n) −→ C̃H

0
(HP n,−UHPn + UHPn)

by o′. So we see that

t′(j∗(o(1))) = t′(j∗j
∗(o′(1))) = t′(s∗(z∗(o

′(1)))) = t′((p∗)−1(z∗(o
′(1)))) = e(U ∨

HPn)(1)

by Axiom 16, yielding the result.

Lemma 7.2. Let X be a smooth scheme and let i, j ≥ 0. Then

Hom
D̃M

eff,−
(pt)

(Z̃pt(X)(i)[2i], Z̃pt(j)[2j]) =

{
0 if i > j.

C̃H
j−i

(X) if i ≤ j.

Proof. If i ≤ j, the lemma follows from Proposition 7.2 and [FØ16, Theorem 5.0.1].
Suppose then that i > j. The exact sequence of sheaves with MW-transfers

0→ Z̃pt(A
i \ 0)→ Z̃pt(A

i)→ Z̃pt(A
i)/Z̃pt(A

i \ 0)→ 0

yields an exact triangle in D̃M
eff,−

(pt) of the form

Z̃pt(A
i \ 0)→ Z̃pt(A

i)→ Z̃pt(A
i)/Z̃pt(A

i \ 0)→ Z̃pt(A
i \ 0)[1]
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As Z̃pt(A
i) ≃ Z̃pt(Spec(k)) by Proposition 6.9, we see that the first map is split. Conse-

quently, we get an isomorphism

Z̃pt(A
i)/Z̃pt(A

i \ 0) ≃ Z̃pt(A
i \ 0, 1)[1]

and it follows from Proposition 7.7 that Z̃pt(A
i)/Z̃pt(A

i \ 0) ≃ Z̃pt(i)[2i] in D̃M
eff,−

(pt).
Therefore,

Z̃pt(X)(i)[2i] ≃ Z̃pt(X × Ai)/Z̃pt(X × (Ai \ 0))

and it follows from Propositions 7.1 and 7.2 that

Hom
D̃M

eff,−
(pt)

(Z̃pt(X)(i)[2i], Z̃pt(j)[2j]) ≃ C̃H
j

X×0(X × Ai) = 0.

Corollary 7.1. For any i, j ≥ 0, we have

Hom
D̃M

eff,−
(pt)

(Z̃pt(i)[2i], Z̃pt(j)[2j]) =

{
0 if i 6= j.

C̃H
0
(k) if i = j.

In other terms, the motives Z̃pt(i)[2i] are mutually orthogonal in the triangulated category

D̃M
eff,−

(pt).

Lemma 7.3. Let C be an additive category. Let M , Mi, i = 1, . . . , n be objects in C such
that HomC (Mi,Mj) = 0 if i 6= j. Suppose that there is an isomorphism ϕ :M −→ ⊕iMi.
Then, a morphism ϕ′ :M −→ ⊕iMi is an isomorphism if and only if ϕ′

i is a free generator
of HomC (M,Mi) as left EndC (Mi)-module for any i, where ϕ′

i is the composite of ϕ′ and
the ith projection.

Proof. Suppose that ϕ′ is an isomorphism. We prove that ϕ′
i a free generator ofHomC (M,Mi)

as a left EndC (Mi)-module. We note that the action is free since ϕ′
i is surjective. Now,

suppose that ψ ∈ HomC (M,Mi). Since HomC (Mi,Mj) = 0 if i 6= j, we see that
ψ = (ψ ◦ ϕ′−1 ◦ ii) ◦ (ϕ

′
i) where ii is the natural map from Mi to the direct sum. Hence ψ

can be generated by ϕ′
i and ϕ

′
i is indeed a free generator.

Conversely, if we have a morphism ϕ′ :M −→ ⊕iMi such that ϕ′
i is a free generator of

HomC (M,Mi), then ϕ
′
i = fi◦ϕi for some isomorphism fi. Hence ϕ

′ is also an isomorphism.

Theorem 7.2. The map

Z̃pt(HP
n)

∑
p1(U ∨)i

// ⊕ni=0Z̃pt(2i)[4i]

is an isomorphism in D̃M
eff,−

(pt). Here, U ∨ is endowed with its canonical orientation.

Proof. By Theorem 7.1, Corollary 7.1 and Lemma 7.3, it remains to prove that p1(U
∨)i

is a free generator of Hom
D̃M

eff,−
(pt)

(Z̃pt(HP
n), Z̃pt(2i)[4i]). By [FØ16, Theorem 5.0.1],

the ring End
D̃M

eff,−
(pt)

(Z̃pt(2i)[4i]) is commutative, so we only have to prove that p :=

p1(U
∨)i generates Hom

D̃M
eff,−

(pt)
(Z̃pt(HP

n), Z̃pt(2i)[4i]).

Using the notation of Diagram (*), we see that the composite

Hom
D̃M

eff,−
(pt)

(Z̃pt, Z̃pt)
w // Hom

D̃M
eff,−

(pt)
(Z̃pt(HP

n), Z̃pt)

·pi

��

Hom
D̃M

eff,−
(pt)

(Z̃pt(HP
n), Z̃pt(2i)[4i])
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is an isomorphism by Proposition 7.10. Now given a map

ψ ∈ Hom
D̃M

eff,−
(pt)

(Z̃pt(HP
n), Z̃pt(2i)[4i]),

we can find its preimage λ under the map above. So we have a commutative diagram:

Z̃pt(2i)[4i]

Z̃pt(HP
n)

△
//

ψ --

pi

""

Z̃pt(HP
n)⊗ Z̃pt(HP

n)
id⊗w

//

pi⊗w

))

Z̃pt(HP
n)⊗ Z̃pt

pi⊗λ
// Z̃pt(2i)[4i]⊗ Z̃pt

OO

Z̃pt(2i)[4i]⊗ Z̃pt

id⊗λ
55

uu

Z̃pt(2i)[4i]

showing that ψ is generated by pi. We are done.

For any S ∈ Sm/k, we have a projection pS : HP n
S −→ HP n and we set U ∨

S = p∗SU
∨.

Theorem 7.3. The map

Z̃S(HP
n
S )

p1(U ∨

S )i
// ⊕ni=0Z̃S(2i)[4i]

is an isomorphism in D̃M
eff,−

(S). Here, U ∨
S is endowed with its canonical orientation.

Proof. We have a commutative diagram

p∗Z̃pt(HP
n)

p∗(p1(U ∨))
// p∗Z̃pt(2)[4]

Z̃S(HP
n
S )

∼=

OO

p1(U ∨

S )
// Z̃S(2)[4].

∼=

OO

Hence the result follows by the commutative diagram

p∗Z̃pt(HP
n)

p∗(p1(U ∨))i
// ⊕ni=0p

∗Z̃pt(2i)[4i]

Z̃S(HP
n
S )

p1(U ∨

S )i
//

∼=

OO

⊕ni=0Z̃S(2i)[4i],

∼=

OO

where the upper horizontal arrow is an isomorphism by the theorem above.

Theorem 7.4. Let X ∈ Sm/S and let (E ,m) be a symplectic vector bundle of rank 2n+2
on X. Let π : HGrX(E )→ X be the projection. Then, the map

Z̃S(HGrX(E ))
π⊠p1(U ∨)i

// ⊕ni=0Z̃S(X)(2i)[4i]

is an isomorphism in D̃M
eff,−

(S) functorial for X in Sm/S. Here, U ∨ is endowed with
its canonical orientation.
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Proof. We first prove that the map

Z̃S(HGrX(E ))
π⊠p1(U ∨)i

// ⊕ni=0Z̃S(X)(2i)[4i]

is functorial in X. Let then f : Y → X be a morphism of S-schemes. We have a
commutative diagram

HGrY (f
∗E ) //

π
��

HGrX(E )

π
��

Y
f

// X

yielding a commutative diagram in D̃M
eff,−

(S)

Z̃S(HGrY (f
∗E )) //

π

��

Z̃S(HGrX(E ))

π

��

Z̃S(Y )
f

// Z̃S(X).

On the other hand, we have a commutative diagram

Z̃S(HGrY (f
∗E )) //

p1(U ∨)i

��

Z̃S(HGrX(E ))

p1(U ∨)i

��

Z̃S(2i)[4i] Z̃S(2i)[4i]

for any i by Proposition 7.2 and naturality of the first Pontryagin class (Proposition 7.8).
Consequently, we get a commutative diagram

Z̃S(HGrY (f
∗E )) //

π⊠p1(U ∨)i

��

Z̃S(HGrX(E ))

π⊠p1(U ∨)i

��

⊕iZ̃S(Y )(2i)[4i]
⊕if(2i)[4i]

// ⊕iZ̃S(X)(2i)[4i]

proving that the map is natural.
Let’s now prove the first statement. We pick a finite open covering {Uα} of X such

that

(E ,m)|Uα
∼=

(
O⊕2n+2
Uα

,

(
I

−I

))

for every α and we work by induction on the number of the open sets. If there is just one
open set, HGrX(E ) ∼= HP n×kX and we conclude tensoring the isomorphism of Theorem

7.3 with Z̃S(X).
Suppose next that X = U1 ∪ U2 and the argument holds for (E ,m)|U1 , (E ,m)|U2

and (E ,m)|U1∩U2 . Set Ei for the restrictions of E to Ui and E12 for its restriction to the
intersection. Using Proposition 5.10, we obtain exact triangles

Z̃S(U1 ∩ U2)→ Z̃S(U1)⊕ Z̃S(U2)→ Z̃S(X)→ Z̃S(U1 ∩ U2)[1] (7.2)

and

Z̃S(HGr(E12))→ Z̃S(HGr(E1))⊕ Z̃S(HGr(E2))→ Z̃S(HGr(E ))→ (. . .)[1]. (7.3)
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Tensoring with Z̃S(2i)[4i] being exact, we obtain shifted versions of (7.2) and a diagram

Z̃S(HGr(E12)) //

π⊠p1(U ∨)i

��

Z̃S(HGr(E1))⊕ Z̃S(HGr(E2)) //

π⊠p1(U ∨)i

��

Z̃S(HGr(E )) //

π⊠p1(U ∨)i

��

(. . .)[1]

��

⊕iZ̃S(U1 ∩ U2)(2i)[4i] // ⊕i(Z̃S(U1)⊕ Z̃S(U2))(2i)[4i] // ⊕iZ̃S(X)(2i)[4i] // (. . .)[1].

(7.4)
The two left-hand squares commute by naturality, and we now prove that the third also
commutes. We have a commutative diagram

Z̃S(HGr(E )) //

π

��

Z̃S(HGr(E12))[1]

π[1]

��

Z̃S(X) // Z̃S(U1 ∩ U2)[1].

Tensoring with the morphism corresponding to the i-th power of the first Pontryagin class
Z̃S(HGr(E ))→ Z̃S(2i)[4i], we obtain a commutative diagram

Z̃S(HGr(E ))⊗ Z̃S(HGr(E )) //

π⊗p1(U ∨)i

��

Z̃S(HGr(E12))⊗ Z̃S(HGr(E ))[1]

π⊗p1(U ∨)i[1]
��

Z̃S(X)⊗ Z̃(2i)[4i] // Z̃S(U1 ∩ U2)⊗ Z̃S(2i)[4i][1].

(7.5)

On the other hand, the open cover

(HGr(E1)×HGr(E )) ∪ (HGr(E2)×HGr(E )) = HGr(E )×HGr(E )

yields a Mayer-Vietoris triangle, and the commutative diagrams

HGr(Ei) //

��

HGr(E )

��

HGr(Ei)×HGr(E ) // HGr(E )×HGr(E ),

in which the first vertical arrow is the product of the identity and the inclusion and the
second vertical arrow is the diagonal map, induce a morphism of Mayer-Vietoris triangles
and in particular a commutative diagram

Z̃S(HGr(E )) //

△
��

Z̃S(HGr(E12))[1]

��

Z̃S(HGr(E ))⊗ Z̃S(HGr(E )) // Z̃S(HGr(E12))⊗ Z̃S(HGr(E ))[1]

(7.6)

where the right-hand vertical map is the tensor of the identity with the morphism Z̃S(HGr(E12))→

Z̃S(HGr(E )).
Concatenating Diagrams (7.5) and (7.6), we obtain that the third triangle in (7.4) also

commutes. Moreover, our induction hypothesis and the five lemma imply that the third
morphism in (7.4) is an isomorphism as well.

We conclude the proof of the theorem by observing that we may reduce the case of
a general covering {Uα} of X to the case of a covering by two open subschemes using
induction again.
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Arguing as in [PW10, Theorem 8.2], we can deduce a similar version of Pontryagin
classes for Chow-Witt rings.

Proposition 7.11. Let X ∈ Sm/k, E be a symplectic bundle of rank 2n+ 2 over X and
k = min{⌊ j

2
⌋, n}. Then the map

θj : ⊕
k
i=0C̃H

j−2i
(X)

p∗·p1(U ∨)i
// C̃H

j
(HGrX(E ))

is an isomorphism, where j ≥ 0, p : HGrX(E ) −→ X is the structure map and U ∨ is the
dual tautological bundle endowed with its canonical orientation.

Proof. Write D̃M in place of D̃M
eff,−

(pt) for convenience. We applyHomD̃M(−, Z̃pt(j)[2j])
to both sides of the isomorphism in Theorem 7.4. Note that we have an isomorphism for
i ≤ ⌊ j

2
⌋

HomD̃M(Z̃pt(X)(2i)[4i], Z̃pt(j)[2j]) −→ C̃H
j−2i

(X)

by Proposition 7.2.

Now suppose that we have an element s ∈ C̃H
j−2i

(X), i ≤ k, which corresponds

to a morphism ϕ : Z̃pt(X) −→ Z̃pt(j − 2i)[2j − 4i]. We conclude the proof using the
commutative diagrams

Z̃pt(HGrX(E ))

p⊠p1(U ∨)i

��

(ϕ◦p)⊠p1(U ∨)i

**

Z̃pt(X)⊗ Z̃pt(2i)[4i]
ϕ⊗id

// Z̃(j − 2i)[2j − 4i]⊗ Z̃pt(2i)[4i] // Z̃pt(j)[2j]

and

⊕ki=0HomD̃M(Z̃pt(X)(2i)[4i], Z̃pt(j)[2j])
Hom(−,Z̃pt(j)[2j])

∼=
//

∼=
��

HomD̃M(Z̃pt(HGrX(E )), Z̃pt(j)[2j])

∼=
��

⊕ki=0C̃H
j−2i

(X)
p∗·p1(U ∨)i

// C̃H
j
(HGrX(E )).

Definition 7.11. In the above proposition, set ζ := p1(U
∨) and

θ−1
2n+2(ζ

n+1) := (ζi) ∈ ⊕
n+1
i=1 C̃H

2i
(X).

Define p0(E ) = 1 ∈ C̃H
0
(X) and pa(E ) = (−1)a−1ζi for 1 ≤ a ≤ n + 1. The class pa(E )

is called the ath Pontryagin class of E . These classes are uniquely characterized by the
Pontryagin polynomial

ζn+1 − p∗(p1(E ))ζn + . . .+ (−1)n+1p∗(pn+1(E )) = 0.

Remark 7.1. We show that pi(E) = 0 for i > 0 if E is a trivial symplectic bundle. It

suffices to show that p1(U
∨) = 0. If X = pt, this is clear since C̃H

2
(pt) = 0. For general

cases, E is the pull-back of a trivial symplectic bundle over pt, hence p1(U
∨) vanishes

also.
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7.1.3 The Gysin Triangle

Definition 7.12. Let X ∈ Sm/S and Y ⊆ X be a closed subset. For any correspondence
theory E, consider the quotient sheaf with E-transfers

M̃Y (X) := Z̃S(X)/Z̃S(X \ Y ).

Its image in D̃M
eff,−

(S) will be called the relative motive of X with support in Y (see
[D07, Definition 2.2] and the remark before [SV00, Corollary 5.3]). By abuse of notation,

we still denote it by M̃Y (X).

Our aim in this section is to compute the relative motives in some situations. For this,
we’ll need the following notion.

Definition 7.13. Suppose that X ∈ Sm/S and that E is a vector bundle over X. For

any correspondence theory, define ThS(E) = M̃X(E) where X ⊆ E is the zero section of
E. The motive ThS(E) is called the Thom space of E.

The following result is sometimes called homotopy purity.

Proposition 7.12. Let X ∈ Sm/S and Y ⊆ X be a smooth closed subscheme. Then for
any correspondence theory, we have

M̃Y (X) ∼= ThS(NY/X)

in D̃M
eff,−

(S).

Proof. Use [P09, Theorem 2.2.8] and Proposition 7.13 below. Alternatively, one may use
[MV98, §3, Theorem 2.23] and the sequence of functors of [DF17, §3.2.4.a].

Proposition 7.13. Let f : X −→ Y be an étale morphism in Sm/S, Z ⊆ Y be a closed
subset of Y such that the map f : f−1(Z) −→ Z is an isomorphism (here, the schemes

are endowed with their reduced structure). Then the map M̃f−1(Z)(X) −→ M̃Z(Y ) is an
isomorphism of sheaves with E-transfers for any correspondence theory E.

Proof. By the condition given, we get a Nisnevich covering f ∐ id : X ∐ (Y \Z) −→ Y of
Y . So we have a commutative diagram with exact (after sheafication) rows and columns
by Proposition 5.10:

0

��

0

��

c̃S(Y \ Z)

��

c̃S(Y \ Z)

��

c̃S((X ∐ (Y \ Z))×Y (X ∐ (Y \ Z))) //

r

++

c̃S(X ∐ (Y \ Z))
f∐id

//

��

c̃S(Y ) //

��

0

c̃S(X)
q

//

��

c̃S(Y )/c̃(Y \ Z)

��

// 0

0 0.

We want to show that ker(q) = c̃S(X \ f
−1(Z)) after sheafication, yielding the state-

ment. We clearly have c̃S(X \f
−1(Z)) ⊆ ker(q) and r maps onto ker(q) after sheafication.
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So it suffices to show that Im(r) ⊆ c̃S(X \ f
−1(Z)). The sheaf c̃S((X ∐ (Y \Z))×Y (X ∐

(Y \ Z))) is decomposed into four direct components

c̃S(X ×Y X), c̃S(X ×Y (Y \ Z)), c̃S((Y \ Z)×Y X), c̃S((Y \ Z)×Y (Y \ Z))

via disjoint unions so we just have to calculate their images under r respectively. The
calculations for the last three components are easy and we only explain the computation
of the first one.

We have a Cartesian square

X ×Y X
p1

//

p2
��

π

$$

X

f
��

X
f

// Y.

Then for any x ∈ π−1(Z), p1(x) = p2(x) and the morphisms k(p1(x)) −→ k(x) induced
by p1 and p2 are equal since f−1(Z) ∼= Z. So by [Mil80, Corollary 3.13], p1 = p2 on
the connected component containing x. Hence p1 = p2 on a closed and open set U
containing π−1(Z). Now, c̃S(X×Y X) = c̃S(U)⊕ c̃S(U

c) and so r|c̃S(U) = 0. It follows that
Im(r|c̃S(Uc)) ⊆ c̃S(X \ f

−1(Z)). So we have proved that Im(r) ⊆ c̃S(X \ f
−1(Z)).

As a consequence, we see that the study of relative motives (of smooth schemes)
reduces to the study of Thom spaces. With this in mind, suppose that X is a smooth
scheme and that (E ,m) is a symplectic vector bundle of rank 2n over X with total space
E. We now study the Thom space of E. Recall first that, as in the discussion before
[PW10, Theorem 4.1], OX⊕E ⊕OX is also a symplectic vector bundle with inner product
given by the matrix 


0 0 1
0 m 0
−1 0 0


 .

Definition 7.14. Let X and E be as above.

1. Define N− by the cartesian square

GrX(2n,E ⊕OX)
i // GrX(2n,OX ⊕ E ⊕OX)

N−

OO

// HGrX(OX ⊕ E ⊕OX),

j

OO

where i is induced by the projection p23 : OX ⊕ E ⊕ OX −→ E ⊕ OX and j is the
inclusion (see Proposition 7.6).

2. Set

N = {x ∈ GrX(2n,OX⊕E⊕OX)| E
′ −→ p∗(OX⊕E⊕OX) −→ p∗(OX⊕OX) iso. at x},

where p : GrX(2n,OX ⊕ E ⊕OX) −→ X is the structure map and

0 −→ E
′ −→ p∗(OX ⊕ E ⊕OX) −→ E

′′ −→ 0

is the tautological exact sequence. Note that N is an open set of the Grassmannian
GrX(2n,OX ⊕ E ⊕OX).
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3. Set

V = {x ∈ GrX(2n,E ⊕OX)|F
′ −→ q∗(E ⊕OX) −→ q∗OX is an isomorphism at x},

where q : GrX(2n,E ⊕OX) −→ X is the structure map and

0 −→ F
′ −→ q∗(E ⊕OX) −→ F

′′ −→ 0

is the tautological exact sequence. As above, note that V is an open set of GrX(2n,E⊕
OX).

The notations of N− and N come from [PW10, Theorem 4.1], but our treatment is
slightly different.

Lemma 7.4. 1) Let T be an X-scheme and let f : T −→ GrX(2n,OX ⊕ E ⊕ OX) be an
X-morphism. Then

Im(f) ⊆ N ⇐⇒ f ∗
E

′ −→ (p◦f)∗(OX⊕E⊕OX) −→ (p◦f)∗(OX⊕OX) is an isomorphism.

Consequently, N− ⊆ N ∩HGrX(OX ⊕ E ⊕OX).
2) Let T be an X-scheme and let f : T −→ GrX(2n,E ⊕OX) be an X-morphism. Then

Im(f) ⊆ V ⇐⇒ f ∗
F

′ −→ (q ◦ f)∗(E ⊕OX) −→ (q ◦ f)∗OX is an isomorphism.

Furthermore, N− = V .

Proof. 1) =⇒ Easy. For the ⇐= part, set

C = Coker(E ′ −→ p∗(OX ⊕ E ⊕OX) −→ p∗(OX ⊕OX)).

We see that N = Supp(C)c. Since f−1(Supp(C)) = Supp(f ∗C), f−1(Supp(C)) = ∅ hence
f−1(N) = T . So Im(f) ⊆ N .

For the second statement, let v : N− −→ X be the structure map. The bundle N− has
a map ϕ towards GrX(2n,OX⊕E⊕OX) hence we have a subbundleK ⊆ v∗(OX⊕E⊕OX).
Since ϕ factors through GrX(2n,E ⊕OX), the first inclusion v

∗OX −→ v∗(OX ⊕E ⊕OX)
factors through K, which makes v∗OX a subbundle of K. Since ϕ also factors through
HGrX(OX ⊕ E ⊕ OX), the inner product is non degenerate on K. So for every x ∈ N−,
there is an affine neighborhood U of x such that K(U) is a free ON−(U)-module with a
basis (1, 0, 0) and (x1, x2, x3). Hence x3 ∈ ON−(U)∗ by non degeneracy. It follows that
the map K −→ v∗(OX ⊕ E ⊕ OX) −→ v∗(OX ⊕ OX) is surjective on U . So we see that
N− ⊆ N by the first statement.

2) The first statement can be proved as in 1). For the second statement, we have a
commutative diagram with exact rows:

0 // K ′ // v∗(OX ⊕ E ) // G // 0

0 // K ′ ⊕OX
//

p1

OO

v∗(OX ⊕ E ⊕OX) //

p12

OO

G // 0

.

Hence there is a section in K ′(N−) which maps to (1, s, 0) in v∗(OX ⊕ E ⊕ OX). This
section turns the map K ′ −→ v∗(OX ⊕ E ) −→ v∗OX into an isomorphism. So N− ⊆ V .
The inclusion V ⊆ N− can be proved using a similar method.

Lemma 7.5. Let T be an X-scheme and f : T −→ GrX(2n,OX ⊕ E ⊕ OX) be an X-
morphism. Let ϕ be the composite

(p ◦ f)∗OX
i1 // (p ◦ f)∗(OX ⊕ E ⊕OX) // f ∗E ′′ .

Then

Im(f) ⊆ GrX(2n,E ⊕OX)
c ⇐⇒ ϕ is injective and has a locally free cokernel.

99



Proof. We have

Im(f) ⊆ GrX(2n,E ⊕OX)
c ⇐⇒ ∀g : Spec K −→ T, Im(f ◦ g) ⊆ GrX(2n,E ⊕OX)

c,

where K is a field. So let’s assume T = Spec K. In this case,

Im(f) ⊆ GrX(2n,E ⊕OX)
c ⇐⇒ f does not factor through GrX(2n,E ⊕OX),

and the latter condition is equivalent to ϕ 6= 0. Hence

Im(f) ⊆ GrX(2n,E ⊕OX)
c ⇐⇒ ∀g : Spec K −→ T, g∗(ϕ) 6= 0.

Now we may assume that T is affine and use the residue fields of T . Locally, the map ϕ
is of the form (ai) : A −→ A⊕2n and the condition just says that the ideal (ai) is the unit
ideal. This is equivalent to (ai) being injective and Coker((ai)) being projective. This
just says that ϕ is injective and has a locally free cokernel.

Consider next the following square

N− l //

v

��

N

u

��

X z
// E

where l is given by N− ⊆ N and v is just the structure map (of N−). Let r : N −→ X
be the structure map of N . We have the tautological exact sequence

0 −→ r∗(OX ⊕OX) −→ r∗(OX ⊕ E ⊕OX) −→ r∗E −→ 0
(1, 0) 7−→ (1, s1, 0) (∗∗)
(0, 1) 7−→ (0, s2, 1)

and u is induced by s1. Finally, z is the zero section of E.

Proposition 7.14. The above square is a Cartesian square.

Proof. The map l induces an exact sequence

0 −→ v∗(OX ⊕OX) −→ v∗(OX ⊕ E ⊕OX) −→ v∗E −→ 0.
(1, 0) 7−→ (1, s, 0)

But (1, 0, 0) belongs to the kernel, so s = 0. Hence the square commutes and is Cartesian.

Now, we use the square

N w //

u

��

E

π

��

E π
// X,

where w is induced by s2 in (**). We see right away that it’s a Cartesian square and it
follows that u is an A2n-bundle.

The third step in our calculation of ThS(E) is the following theorem. It has a similar
version in [PW10, Proposition 4.3], but we are not considering the same embedding as
there.
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Proposition 7.15. For any correspondence theory,

ThS(E) ∼= M̃N−(N) ∼= M̃N−(HGrX(OX ⊕ E ⊕OX))

in D̃M
eff,−

(S).

Proof. The first isomorphism comes from Proposition 7.14 and the fact that u : N −→ E
is an A2n-bundle. The second isomorphism follows from N− ⊆ N ∩HGrX(OX ⊕E ⊕OX)
by Lemma 7.4 and Proposition 7.13.

By Lemma 7.5, the natural embedding HGrX(E ) −→ HGrX(OX ⊕ E ⊕ OX) factors
through (N−)c and thus we have a map i : HGrX(E ) −→ (N−)c.

Proposition 7.16. For any correspondence theory,

Z̃S(i) : Z̃S(HGrX(E )) −→ Z̃S((N
−)c)

is an isomorphism in D̃M
eff,−

(S).

Proof. Follows from the proof of [PW10, Theorem 5.2].

Finally, the following theorem completes the calculation. Its proof is similar to the
proof of [D07, Lemma 2.12].

Theorem 7.5. Let X be a smooth S-scheme and let E be a symplectic bundle of rank 2n
over X. Then

ThS(E) ∼= Z̃S(X)(2n)[4n]

in D̃M
eff,−

(S).

Proof. By Proposition 7.16, M̃N−(HGrX(OX⊕E ⊕OX)) is just the cone of the embedding
i : HGrX(E ) −→ HGrX(OX⊕E⊕OX). By Theorem 7.4, we have a commutative diagram
where the vertical arrows are isomorphisms

Z̃S(HGrX(E )) //

��

Z̃S(HGrX(OX ⊕ E ⊕OX))

��

⊕n−1
i=0 Z̃S(X)(2i)[4i] // ⊕ni=0Z̃S(X)(2i)[4i].

Now, i pulls back the tautological bundle to the tautological bundle, giving the result.

Putting everything together, we obtain the following result. The triangle appearing
in the statement is called the Gysin triangle.

Theorem 7.6. Let X ∈ Sm/S be a smooth scheme and let Y ⊆ X be a smooth closed sub-
scheme of codimension 2n with a symplectic normal bundle. Then we have a distinguished
triangle

Z̃S(X \ Y ) −→ Z̃S(X) −→ Z̃S(Y )(2n)[4n] −→ Z̃S(X \ Y )[1]

in D̃M
eff,−

(S).

Proof. Follows from Theorem 7.5 and Proposition 7.12.
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7.2 Duality for Proper Schemes and Applications

In this section, we are going to prove that Z̃pt(X) is strongly dualizable in D̃M
−
(pt)

for proper X ∈ Sm/k. Then, we explicitly calculate its dual by using orientations on
symplectic bundles. Finally we use our results to compute the group of morphisms in

D̃M
eff,−

(pt) between smooth proper schemes over k. For this we need to involve the
stable A1-derived category DA1(S) over S introduced in [CD13, Example 5.3.31] and use
the duality result on that category. For clarity, we describe our procedure using the
following picture:

Duality in DA1(S) =⇒ Duality in D̃M(S) =⇒ Duality in D̃M
−
(pt) =⇒ Theorem 7.7.

Let’s briefly review the construction of DA1(S), the reader may also refer to [CD13,
Section 5] and [DF17a, Section 1].

Define Sh(S) to be category of Nisnevich sheaves of abelian groups on Sm/S. The
Yoneda representative of the functor F 7−→ F (X) for any X ∈ Sm/S is denoted by

ZS(X). The functor γ̃ : Sm/S −→ C̃orS in Proposition 5.6 and Lemma 5.7 gives us an
adjunction

γ̃∗ : Sh(S) ⇋ S̃h(S) : γ̃∗.

The category Sh(S) is a symmetric monoidal category with ZS(X)⊗S ZS(Y ) ∼= ZS(X×S
Y ) and γ̃∗ is a monoidal functor. For any f : S −→ T in Sm/k, the same method as the
one used in Proposition 5.19 yields an adjunction

f ∗ : Sh(T ) ⇋ Sh(S) : f∗.

Further, f ∗γ̃∗ ∼= γ̃∗f ∗ since there is a similar equality for their right adjoints. If f is
smooth, there is an adjunction

f# : Sh(S) ⇋ Sh(T ) : f ∗

as in Proposition 5.23 and f#γ̃
∗ ∼= γ̃∗f# by the same argument as above.

As in Section 6.2.1, we define SSp(S) to be the category of symmetric ✶S{1}-spectra
of Sh(S), where

✶S{1} = Coker(ZS(S) −→ ZS(Gm)).

There are adjunctions
Σ∞ : Sh(S) ⇋ SSp(S) : Ω∞

and
γ̃∗ : SSp(S) ⇋ Sp(S) : γ̃∗

and we can also define ⊗S, f
∗, f∗, f#, −{−i} and −{i} (i ≥ 0) on SSp(S). Moreover, γ̃∗

commutes with f ∗ and f# and is monoidal as above.
In [CD09, Theorem 1.7], they put a model structure MS on the category of unbounded

complexes of objects in Sh(S). This is a cofibrantly generated model structure where the
cofibrations are the I-cofibrations where I consists of the morphisms Sn+1(ZS(X)) −→
Dn(ZS(X)) for any X ∈ Sm/S and weak equivalences are quasi-morphisms between
complexes. The homotopy category of MS is denoted by DS(S). Moreover, MS is stable
and left proper so it induces a triangulated structure on DS(S).

Localizing DS(S) with respect to the morphisms

ZS(X ×k A
1) −→ ZS(X)

as in Section 6.1, we get a category Deff
A1 (S) with the induced triangulated structure.
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In [CD09, Theorem 1.7], they also define a model structure MSSp on the category
of unbounded complexes of symmetric spectra in Sh(S). This is again a cofibrantly
generated model structure where the cofibrations are the I-cofibrations where I consists
of the morphisms Sn+1(Σ∞ZS(X){−i}) −→ Dn(Σ∞Z̃S(X){−i}) for any X ∈ Sm/S and
i ≥ 0 and weak equivalences are quasi-morphisms between complexes. The homotopy
category of MSSp is denoted by DSSp(S). Moreover, MSSp is stable and left proper so it
induces a triangulated structure on DSSp(S).

Localizing DSSp(S) with respect to the morphisms

(Σ∞ZS(X ×k A
1) −→ Σ∞ZS(X)){−i}, i ≥ 0

as in Section 6.2.3, we get a category with the induced triangulated structure. Localizing
further that category with respect to

(Σ∞ZS(X){1}{−1} −→ Σ∞ZS(X)){−i}

as in Section 6.2.3, we obtain the category DA1(S), with the induced triangulated struc-
ture. Moreover, we have an exact functor

Σ∞,st : Deff
A1 (S) −→ DA1(S).

The stage being set, we now calculate the inverse of the Thom space for any vector
bundle, using the methods of Section 7.1.

Proposition 7.17. For any correspondence theory, we have:

1. Suppose that f : S −→ T is a morphism in Sm/k, that X ∈ Sm/T and that E is a
vector bundle over X. Then we have

f ∗ThT (E) ∼= ThS(f
∗E)

in D̃M
eff,−

(S), where f ∗E is the vector bundle over XS induced by E.

2. Suppose that f : S −→ T is a smooth morphism in Sm/k, that X ∈ Sm/S and that
E is a vector bundle over X. Then we have

f#ThS(E) ∼= ThT (E)

in D̃M
eff,−

(S).

3. ([CD13, Remark 2.4.15]) Suppose E1 and E2 are vector bundles over X ∈ Sm/k.
Then

ThX(E1)⊗X ThX(E2) ∼= ThX(E1 ⊕ E2)

in D̃M
eff,−

(X).

Proof. The proofs of (1) and (2) being easy, we only prove (3). The total space of E1⊕E2 is
just E1×XE2. By definition, for any vector bundle E over X, ThX(E) is quasi-isomorphic
the complex

Z̃S(E \X) −→ Z̃S(E).

Hence the left hand side is the total complex

Z̃S((E1\X)×X (E2\X)) −→ Z̃S((E1\X)×XE2)⊕Z̃S(E1×X (E2\X)) −→ Z̃S(E1×XE2).

By Proposition 5.10, the complex

Z̃S((E1 \X)×X (E2 \X)) −→ Z̃S((E1 \X)×X E2)⊕ Z̃S(E1 ×X (E2 \X))
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is quasi-isomorphic to
0 −→ Z̃S((E1 ×X E2) \X)

since
(E1 ×X E2) \X = (E1 \X)×X E2 ∪ E1 ×X (E2 \X).

Hence we have a quasi-isomorphism

Z̃S((E1 \X)× (E2 \X)) //

��

Z̃S((E1 \X)× E2)⊕ Z̃S(E1 × (E2 \X)) //

��

Z̃S(E1 × E2)

0 // Z̃S((E1 × E2) \X) // Z̃S(E1 × E2).

Proposition 7.18. Let E be a vector bundle of rank n over X ∈ Sm/k. Then we have

(Σ∞,stThX(E))
−1 ∼= (Σ∞,stThX(E

∨))(−2n)[−4n]

in D̃M
−
(X).

Proof. By Proposition 7.17 and Theorem 7.5, we have

ThX(E)⊗X ThX(E
∨) ∼= ThX(E ⊕ E

∨) ∼= ✶X(2n)[4n]

in D̃M
eff,−

(X). Now the statement follows from Proposition 6.42 and the fact that Σ∞,st

is monoidal.

Since we have a monoidal exact functor D̃M
eff,−

(X) −→ D̃M
eff

(X), the same proof
as above yields the following result.

Proposition 7.19. Let E be a vector bundle of rank n over X ∈ Sm/k. Then we have

(Σ∞,stThX(E))
−1 ∼= (Σ∞,stThX(E

∨))(−2n)[−4n]

in D̃M(X).

We’ll need the following properties of the stable A1-derived category, which can be for
instance found in [DF17a, 1.1.7 and Theorem 1.1.10].

Proposition 7.20. 1. For any f : S −→ T in Sm/k, we have an adjoint pair of exact
functors

f ∗ : DA1(T ) ⇋ DA1(S) : f∗.

2. For any smooth f : S −→ T in Sm/k, we have an adjoint pair of exact functors

f# : DA1(S) ⇋ DA1(T ) : f ∗

and for any A ∈ DA1(S) and B ∈ DA1(T ), we have

(f#A)⊗ B ∼= f#(A⊗ f
∗B).

3. For any f : S −→ T in Sm/k, we have a functor

f! : DA1(S) −→ DA1(T ).

If f is proper, we have
f! ∼= f∗.

If f is smooth, we have

f! ∼= f#(−⊗ (Σ∞,stThS(TS/T ))
−1).
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Proposition 7.21. Let S ∈ Sm/k and f : X −→ S be a smooth proper morphism. Then
Σ∞,stZS(X) ∈ DA1(S) is strongly dualizable with dual f#(Σ

∞,stThX(TX/S)
−1).

Proof. For any A,B ∈ DA1(S), we have

HomD
A1 (S)

(Σ∞,stZS(X)⊗S A,B)

∼=HomD
A1 (S)

(f#f
∗A,B)

by Proposition 7.20, (2)
∼=HomD

A1 (S)
(A, f∗f

∗B)

by Proposition 7.20, (1) and (2)
∼=HomD

A1 (S)
(A, f!f

∗B)

by Proposition 7.20, (3)
∼=HomD

A1 (S)
(A, f#(f

∗B ⊗X (Σ∞,stThX(TX/S))
−1))

by Proposition 7.20, (3)
∼=HomD

A1 (S)
(A,B ⊗S f#(Σ

∞,stThX(TX/S)
−1))

by Proposition 7.20, (2).

.

Proposition 7.22. Let S ∈ Sm/k and let f : X −→ S be a smooth proper morphism.

Then Σ∞,stZ̃S(X) ∈ D̃M(S) is strongly dualizable with dual

(Σ∞,stThS(ΩX/S))(−2d)[−4d],

where d = dX − dS := dimX − dimS.

Proof. Since we have a monoidal exact functor γ∗ : DA1(S) −→ D̃M(S) which commutes

with f# up to a natural isomorphism, Σ∞,stZ̃S(X) ∈ D̃M(S) is strongly dualizable with
dual f#(Σ

∞,stThX(TX/Y )
−1) by Proposition 7.21. Now, Proposition 7.19 yields

(Σ∞,stThX(TX/S))
−1 ∼= (Σ∞,stThX(ΩX/S))(−2d)[−4d].

Finally, we have

f#((Σ
∞,stThX(ΩX/S))(−2d)[−4d]) ∼= (Σ∞,stThS(ΩX/S))(−2d)[−4d].

Now we have a monoidal exact functor D̃M
−
(pt) −→ D̃M(pt) which commutes with

−{−i}, i ≥ 0 up to a natural isomorphism. Then by Proposition 6.46, we have the
following result.

Proposition 7.23. Let X ∈ Sm/k be a proper scheme. Then Σ∞,stZ̃pt(X) ∈ D̃M
−
(pt)

is strongly dualizable with dual

(Σ∞,stThpt(ΩX/k))(−2dX)[−4dX ].

The following theorem gives a computation of the hom-groups in the category of
(effective) MW-motives in case the objects are smooth proper.

Theorem 7.7. Let X, Y ∈ Sm/k with Y proper. Then

Hom
D̃M

eff,−
(pt)

(Z̃pt(X), Z̃pt(Y )) ∼= C̃H
dY
(X × Y,−TX×Y/X).
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Proof. Let p : Y −→ pt be the structure map of Y and let q : X×Y −→ Y be the second
projection. We have

Hom
D̃M

eff,−
(pt)

(Z̃pt(X), Z̃pt(Y ))

∼=Hom
D̃M

−

(pt)
(Σ∞,stZ̃pt(X),Σ∞,stZ̃pt(Y ))

by Proposition 6.43

∼=Hom
D̃M

−

(pt)
(Σ∞,stZ̃pt(X)⊗ (Σ∞,stThpt(ΩY/k))(−2dY )[−4dY ],Σ

∞,st
✶pt)

by Proposition 7.23

∼=Hom
D̃M

−

(pt)
(Σ∞,stZ̃pt(X)⊗ (Σ∞,stThpt(ΩY/k)),Σ

∞,st
✶pt(2dY )[4dY ])

by Proposition 6.42

∼=Hom
D̃M

−

(pt)
(Σ∞,st(Z̃pt(X)⊗ Thpt(ΩY/k)),Σ

∞,st
✶pt(2dY )[4dY ])

∼=Hom
D̃M

eff,−
(pt)

(Z̃pt(X)⊗ Thpt(ΩY/k),✶pt(2dY )[4dY ])

by Proposition 6.43

∼=Hom
D̃M

eff,−
(pt)

(Z̃pt(X)⊗ p#ThY (ΩY/k),✶pt(2dY )[4dY ])

by Proposition 7.17

∼=Hom
D̃M

eff,−
(pt)

(p#(p
∗Z̃pt(X)⊗ ThY (ΩY/k)),✶pt(2dY )[4dY ])

by Proposition 6.14

∼=Hom
D̃M

eff,−
(pt)

(p#(Z̃Y (X × Y )⊗ ThY (ΩY/k)),✶pt(2dY )[4dY ])

∼=Hom
D̃M

eff,−
(pt)

(p#(q#(✶X×Y )⊗ ThY (ΩY/k)),✶pt(2dY )[4dY ])

∼=Hom
D̃M

eff,−
(pt)

(p#(q#q
∗ThY (ΩY/k)),✶pt(2dY )[4dY ])

by Proposition 6.14
∼=Hom

D̃M
eff,−

(pt)
(Thpt(ΩX×Y/X),✶pt(2dY )[4dY ])

by Proposition 7.17

∼=C̃H
dY
(X × Y,−TX×Y/X)

by the discussion after [DF17, Remark 4.2.7].
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Chapter 8

MW-Correspondences as a

Correspondence Theory

In this section, we are going to sketch of the proof of Theorem 4.1. It’s incomplete and
will be completed in the future. We will always assume E = C̃H in this section.

For any scheme X and x ∈ X, set Ωx = mx/m
2
x and Λx = det(mx/m

2
x).

Definition 8.1. Let G be an abelian group, and let M , N be G-sets. Define

M ×G N =M ×N/ ∼, (m,n) ∼ (m′, n′)⇐⇒ (m,n) = (gm′, g−1n′) for some g ∈ G.

The set M ×G N is endowed with the action of G defined by g(m,n) = (gm, n).

Definition 8.2. Let G be an abelian group and let M be a G-set. We denote the group
algebra of G over Z by Z[G] and the free abelian group generated by M by Z[M ]. Then
Z[M ] is a Z[G]-module.

The following lemma is straighforward.

Lemma 8.1. 1. Let M , N be G-sets, then

Z[M ×G N ] ∼= Z[M ]⊗Z[G] Z[N ].

2. Let G −→ H be a morphism of abelian groups and let M be a G-set. Then

Z[M ×G H] ∼= Z[M ]⊗Z[G] Z[H]

as Z[H]-modules.

Definition 8.3. Let R be a commutative ring. We set Q(R) = R∗/(R∗)2 as an abelian
group and for any one dimensional free R-module L we define

Q(L) = L∗/ ∼, x ∼ y ⇐⇒ x = r2y for some r ∈ R∗

as a Q(R)-sets.

The following lemma is straighforward.

Lemma 8.2. 1. Let L1, L2 be one dimensional free R-modules, then

Q(L1 ⊗R L2) ∼= Q(L1)×Q(R) Q(L2).

2. Let L be a one dimensional free R-module, then

Q(L∨) ∼= HomQ(R)(Q(L), Q(R)).
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3. Let S be an R-algebra and L be a one dimensional free R-module, then

Q(L⊗R S) ∼= Q(L)×Q(R) Q(S)

as Q(S)-sets.

Proposition 8.1. The categories PX (Definition 4.4) for X ∈ Sm/k satisfy Axiom 1.

Proof. We set F = Z/2Z. From the definition of PX , we see that for every A =
(E1, · · · , En), rk(A) is well defined in Z/2Z, independent of isomorphisms in PX . Hence
there is a rank morphism rkX : PX −→ Z/2Z.

Define a bifunctor

+ : PX × PX −→ PX

((E1, · · · , En) , (F1, · · · , Fm)) 7−→ (E1, · · · , En, F1, · · · , Fm).

It is easy to see that this operation endows PX with the structure of a Picard category
with −(E1, · · · , En) = (E∨

n , · · · , E
∨
1 ). For any A,B ∈ PX , we attach a commutativity

isomorphism
c = c(A,B) : A⊕ B −→ B ⊕ A

by
(−1)rkX(A)rkX(B)iddet(A)⊗det(B).

This turns PX into a commutative Picard category.
There is an obvious functor i : (V ect(X), iso) −→ PX sending E to (E) and f :

E1 −→ E2 to det(f). Moreover, for every exact sequence

0 −→ E1 −→ E3 −→ E2 −→ 0,

we attach the isomorphism (E3) −→ (E1, E2) given by the isomorphism detE3 −→ detE1⊗
detE2 sending α∧β to α⊗β for any local base α (resp. β) of E1 (resp. E3). This functor
satisfies all conditions given in Definition 3.3.

Finally, for any f : X −→ Y in Sm/k, we define f ∗ : PY −→PX by f ∗(E1, · · · , En) =
(f ∗E1, · · · , f

∗En).

We set KMW
n (F, L) = KMW

n (F )⊗Z[Q(F )]Z[Q(L)] ([Mor12, Remark 2.21]) for every one
dimensional F -vector space L. For every X ∈ Sm/k, x ∈ X, T closed in X and v ∈PX ,
define

KMW
n (k(x),Λ∗

x ⊗ v) = KMW
n (k(x),Λ∗

x ⊗k(x) det(v)|k(x))

and
Cn
RS,T (X;KMW

m ; v) =
⊕

y∈X(n)∩T

KMW
m−n(k(y),Λ

∗
y ⊗ v),

where X(n) is the set of points of codimension n in X ([Mor12, Chapter 4]).
Now for every X ∈ Sm/k, i ∈ N, v ∈ PX and T closed in X, we define the groups

required by Axiom 2 to be of the form

C̃H
i

T (X, v) = H i(C∗
RS,T (X;KMW

i ; v)).

Then, Axiom 3 just comes from the extension of supports in Chow-Witt groups.
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8.1 Operations without Intersection

Lemma 8.3. Let f : X −→ X ′ be a smooth morphism in Sm/k, and let x ∈ X with
[k(x) : k(f(x))] <∞. Then we have an isomorphism

Q(Λ∗
x)
∼= Q(ω∨

X/X′ |k(x))×Q(k(x)) Q(Λ
∗
f(x) ⊗ k(x))

(the Qs will be ignored in the sequel for convenience).

Proof. If k(x) is separable over k(f(x)), then we have a commutative diagram with exact
rows and columns

0 0

ΩX/X′ |k(x)

OO

ΩX/X′ |k(x)

OO

0 // Ωx
//

OO

ΩX/k|k(x) //

OO

Ωk(x)/k
// 0

0 // Ωf(x) ⊗ k(x) //

OO

ΩX′/k|k(f(x)) ⊗ k(x) //

OO

Ωk(f(x))/k ⊗ k(x) //

∼=

OO

0

0

OO

0

OO

so we have an isomorphism

Λ∗
x
∼= ωX/X′ |∨k(x) ⊗ (Λ∗

f(x) ⊗ k(x))

which induces an isomorphism

Q(Λ∗
x)
∼= Q(ωX/X′ |∨k(x))×Q(k(x)) Q(Λ

∗
f(x) ⊗ k(x)).

If the field extension is not separable, we only have the horizontal exact sequences and the
middle vertical arrows. But Q(ωk(x)/k) ∼= Q(ωk(f(x))/k ⊗ k(x)) still holds ([Mor12, Lemma
4.1]), so we have isomorphisms

Q(Λ∗
x)

−→Q(ωk(x)/k)×Q(k(x)) Q(ω
∨
k(x)/k)×Q(k(x)) Q(Λ

∗
x)

−→Q(ωk(x)/k)×Q(k(x)) Q(ω
∨
X/k|k(x))

−→Q(ωk(x)/k)×Q(k(x)) Q(ω
∨
X/X′ |k(x))×Q(k(x)) Q(ω

∨
X′/k|k(f(x)) ⊗ k(x))

−→Q(ωk(x)/k)×Q(k(x)) Q(ω
∨
X/X′ |k(x))×Q(k(x)) Q(ω

∨
k(f(x))/k ⊗ k(x))×Q(k(x)) Q(Λ

∗
f(x) ⊗ k(x))

−→Q(ωk(x)/k)×Q(k(x)) Q(ω
∨
X/X′ |k(x))×Q(k(x)) Q(ω

∨
k(x)/k)×Q(k(x)) Q(Λ

∗
f(x) ⊗ k(x))

−→Q(ω∨
X/X′ |k(x))×Q(k(x)) Q(Λ

∗
f(x) ⊗ k(x)).

This coincides with the isomorphism we obtained in the case of separable field extension
by applying Theorem 3.1, (2) to the digram above.

Lemma 8.4. Let f : X −→ X ′ be a closed immersion in Sm/k and let x ∈ X (so that
k(x) = k(f(x))). Then we have an isomorphism

Λ∗
f(x)
∼= Λ∗

x ⊗ detN
∨
X/X′ |k(x).
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Proof. This follows by the following commutative diagram with exact rows and columns

0 0

0 // Ωx
//

OO

ΩX/k|k(x) //

OO

Ωk(x)/k
// 0

0 // Ωf(x)
//

OO

ΩX′/k|k(f(x)) //

OO

Ωk(f(x))/k
// 0

N∨
X/X′ |k(x)

OO

N∨
X/X′ |k(x)

OO

0

OO

0

OO

Lemma 8.5. Let f : X −→ X ′ be a smooth morphism in Sm/k, and let x ∈ X with
codim(x) = codim(f(x)). Then, we have an isomorphism

Ωx
∼= Ωf(x) ⊗k(f(x)) k(x).

Proof. The cotangent map
Ωf(x) ⊗k(f(x)) k(x) −→ Ωx

of f is injective and the two vector spaces have the same dimension codim(x).

Lemma 8.6. Let X1, X2 ∈ Sm/k, x1 ∈ X1, x2 ∈ X2 and let y be the generic point of
some component of x1 × x2. Then we have an isomorphism

Ωy
∼= Ωx1 ⊗k(x1) k(y)⊕ Ωx2 ⊗k(x2) k(y).

Proof. We have the following commutative diagram with exact rows and columns (same
if we exchange X1 and X2)

0

��

0

��

0

��

0 // Ωx1 ⊗ k(y) //

��

p∗1ΩX1/k|k(y) //

��

q∗1Ωx1/k|k(y) //

��

0

0 // Ωy
//

��

ΩX1×X2/k|k(y) //

��

Ωx1×x2/k|k(y) //

��

0

0 // Ωx2 ⊗ k(y) //

��

p∗2ΩX2/k|k(y) //

��

q∗2Ωx2/k|k(y) //

��

0

0 0, 0

where pi : X1 ×X2 −→ Xi and qi : x1 × x2 −→ xi are the projections and Ωx1×x2/k|k(y) =
Ωy/k|k(y).

Definition 8.4. (Axiom 8) Let f : X −→ X ′ be a smooth morphism, and let x ∈ X with
codim(x) = codim(f(x)). For any v ∈PX′, we have an obvious morphism

KMW
n (k(f(x)),Λ∗

f(x) ⊗ v) −→ KMW
n (k(x),Λ∗

x ⊗ f
∗v)
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by Lemma 8.5. This induces a pull-back morphism ([Fas08, Corollaire 10.4.2])

f ∗ : C̃H
n

T (X
′, v) −→ C̃H

n

f−1(T )(X, f
∗(v))

for every T ∈ Zn(X). It is functorial with respect to v.

Remark 8.1. The pull-back along closed immersions is much more difficult and we will
discuss this in Section 8.2.

The following proposition is obvious.

Proposition 8.2. (Axiom 9) The pull-back between smooth morphisms is functorial and
f ∗(1) = 1.

Definition 8.5. (Axiom 11) Let f : X −→ X ′ be a smooth morphism and let C ∈
Zi+df (X) be finite over X ′. We define the push-forward (Proposition 8.6)

f∗ : C̃H
i+df

C (X, f ∗v − TX/X′) −→ C̃H
i

f(C)(X
′, v)

as the composite for every x ∈ C ∩X(i+df )

KMW
0 (k(x),Λ∗

x ⊗ f
∗v ⊗ ωX/X′) // KMW

0 (k(x), ω∨
X/X′ ⊗ (Λ∗

f(x) ⊗ k(x))⊗ f
∗v ⊗ ωX/X′)

Tr
k(x)
k(f(x))

��

KMW
0 (k(f(x)),Λ∗

f(x) ⊗ v)

where the horizontal arrow is induced by Lemma 8.3, while the vertical arrow is the trace
map composed with the isomorphism of virtual vector bundles cancelling the first and last
bundle. The push-forward for smooth morphisms is functorial with respect to v.

It’s clear by definition that Axiom 20 is satisfied.

Definition 8.6. (Axiom 13) Let f : X −→ X ′ be a closed immersion and let C ∈
Zi+df (X). We define the push-forward (Proposition 8.7)

f∗ : C̃H
i+df

C (X,NX/X′ + f ∗v) −→ C̃H
i

f(C)(X
′, v)

by the isomorphism induced by Lemma 8.4

KMW
0 (k(x),Λ∗

x ⊗ detNX/X′ ⊗ f ∗v) // KMW
0 (k(f(x)),Λ∗

f(x) ⊗ v)

for every x ∈ C ∩ X(i+df ). The push-forward for closed immersions is functorial with
respect to v.

Remark 8.2. Suppose that f : X −→ X ′ is a morphism of schemes and that C ∈
Zi+df (X) is such that C = x for some x ∈ X. Suppose further that C is also closed in
X ′. Then, we have an exact sequence

0 −→ TX/X′ |k(x) −→ Ω∗
x −→ Ω∗

f(x) −→ 0;

if f is a closed immersion, we have an exact sequence

0 −→ Ω∗
x −→ Ω∗

f(x) −→ NX/X′ |k(x) −→ 0.
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So, we can identify Ω∗
x with Nx/X |k(x) since the latter satisfies the same exact sequences

when C is smooth. Hence in the context above, the push-forward associated to f with
support C is completely determined by the composite

NC/X + f ∗v|C − TX/X′ |C −→ TX/X′ |C +NC/Y + f ∗v|C − TX/X′ |C −→ NC/Y + f ∗v|C

in case f is smooth and by the isomorphism

NC/X +NX/X′ |C + f ∗v|C −→ NC/Y + f ∗v|C

if f is a closed immersion.
This inspires us to convert equations of twisted Chow-Witt groups into equations of

virtual objects. Then use the method described in Chapter 3. This is the main idea we
will use in this chapter.

We now explain the differentials in the Rost-Schmid complex. Suppose thatX ∈ Sm/k
and that Y = y for some y ∈ X. Let further Z = z for some z ∈ Y (1) and v ∈ PX . We
now define the differential

∂yz : KMW
n (k(y),Λ∗

y ⊗ v) −→ KMW
n−1 (k(z),Λ

∗
z ⊗ v).

Suppose at first that Y is normal. Then the exact sequence

IY /I
2
Y −→ ΩX/k|Y −→ ΩY/k −→ 0

is also left exact at the stalk of z, and we have a commutative diagram with exact rows

0 // IY /I
2
Y |k(z) //

i
��

ΩX/k|k(z) // ΩY/k|k(z) //

��

0

0 // IZ/I
2
Z |k(z) // ΩX/k|k(z) // ΩZ/k|k(z) // 0.

The map i is injective with cokernel mz/m
2
z, where mz is the maximal ideal of OY,z. Thus,

we have an exact sequence

0 −→ (mz/m
2
z)

∨ −→ (IZ/I
2
Z)

∨|k(z) −→ (IY /I
2
Y )

∨|k(z) −→ 0.

Now choose a free basis a of (IY /I
2
Y )

∨
z , e of (mz/m

2
z)

∨ and t of det(v)z. Hence a is also
a free basis of Ω∗

y = (IY /I
2
Y )

∨|k(y) and (e, a) is a free basis of Ω∗
z = (IZ/I

2
Z)

∨|k(z) by the
sequence above. We define the map ∂ by

KMW
n (k(y),Λ∗

y ⊗ v) −→ KMW
n−1 (k(z),Λ

∗
z ⊗ v)

s⊗ a⊗ t 7−→ ∂ez(s)⊗ (e ∧ a)⊗ t
,

where ∂ez is the usual partial map for Milnor-Witt groups. This map is independent of
the choice of a, e, t.

In general, let Ỹ be the normalization of Y with morphism π : Ỹ −→ Y and let
{zi} = π−1(z). We have an isomorphism (the same for z)

Λ∗
y
∼= ωk(y)/k ⊗ ω

∨
X/k|k(y).

Now fix zi. We find that ΩO
Ỹ ,zi

/k satisfies

ΩO
Ỹ ,zi

/k ⊗ k(y) = Ωk(y)/k.
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Also, we have an exact sequence

0 −→ mzi/m
2
zi
−→ ΩO

Ỹ ,zi
/k ⊗ k(zi) −→ Ωk(zi)/k −→ 0.

So, choose a free basis ei of (mzi/m
2
zi
)∨, ci of ΩO

Ỹ ,zi
/k, d of (Ω∨

X/k)z and l of det(v)z. We

define ∂i by the following composite

KMW
n (k(y),Λ∗

y ⊗ v)

−→KMW
n (k(y), ωk(y)/k ⊗ ω

∨
X/k ⊗ v)

−→KMW
n−1 (k(zi), (mzi/m

2
zi
)∨ ⊗ (ωO

Ỹ ,zi
/k ⊗ k(zi))⊗k(zi) (ω

∨
X/k|k(z) ⊗k(z) v|k(z)))

−→KMW
n−1 (k(zi), ωk(zi)/k ⊗k(zi) (ω

∨
X/k|k(z) ⊗k(z) v|k(z)))

−→KMW
n−1 (k(zi), (ωk(z)/k ⊗ k(zi))⊗k(zi) (ω

∨
X/k|k(z) ⊗k(z) v|k(z)))

−→KMW
n−1 (k(zi), (ωk(z)/k ⊗k(z) ω

∨
X/k|k(z) ⊗k(z) v|k(z))⊗k(z) k(zi))

−→KMW
n−1 (k(z), ωk(z)/k ⊗k(z) ω

∨
X/k|k(z) ⊗k(z) v|k(z))

−→KMW
n−1 (k(z),Λ

∗
z ⊗ v),

where the second arrow is defined by

s⊗ ci ⊗ d⊗ l 7−→ ∂eizi (s)⊗ ei ⊗ (ci ⊗ 1)⊗ d⊗ l,

which is independent of the choice of ei. Then we define ∂yz =
∑
∂i. This definition

coincides with the definition just given when Y is normal by applying Theorem 3.1, (4)
to the following commutative diagram with exact columns and rows

0

��

0

��

0 // TZ/k|k(z) // TY/k|k(z)

��

// (mz/m
2
z)

∨ //

��

0

0 // TZ/k|k(z) // TX/k|k(z) //

��

(IZ/I
2
Z)

∨|k(z) //

��

0

(IY /I
2
Y )

∨|k(z)

��

(IY /I
2
Y )

∨|k(z)

��

0 0.

Remark 8.3. Here we would like to treat a kind of linearity of ∂yz . Let s ∈ K
MW
n (k(y),Λ∗

y⊗
v).

1. Suppose that f ∈ O∗
Y,z and that n = 0, we want to show that

∂yz ([f ]s) = [f ]∂yz (s).

It suffices to show the formula for each ∂i. We see that ∂i = Tr
k(zi)
k(z) ◦ ∂

ei
zi

and

∂eizi ([f ]s) = ǫ[f ]∂eizi (s). Suppose that ∂eizi (s) =< a > η. Then

Tr
k(zi)
k(z) (ǫ[f ] < a > η)

=Tr
k(zi)
k(z) ((< f > − < 1 >) < a >)

=(< f > − < 1 >)Tr
k(zi)
k(z) (< a >)

=[f ]Tr
k(zi)
k(z) (< a > η).

Then the claim is proved.
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2. If we have another line bundle M over X and m is a free basis of Mz (so it’s also
a free basis of My), we have

∂yz (s⊗m) = ∂yz (s)⊗m.

We note nevertheless that this doesn’t hold for a general free basis of My. indeed,
if we replace m by λ ·m, where λ ∈ k(y)∗, then λ plays a role in the computation of
the residue maps.

Remark 8.4. It’s obvious that any morphism v1 −→ v2 in PX will induce an isomor-
phism between the corresponding Rost-Schmid complexes.

Definition 8.7. ([CF18]) Let Xa ∈ Sm/k and let xa ∈ Xa for a = 1, 2. Let y be the
generic point of some component of x1 × x2. For every sa ∈ K

MW
n (k(xa),Λ

∗
xa ⊗ va), we

define

s1 × s2 =
∑

y

c(p∗1(v1), p
∗
2(Λ

∗
x2
))(p∗1(s1)⊗ p

∗
2(s2)) ∈ ⊕yK

MW
n+m(k(y),Λ

∗
y ⊗ (p∗1(v1) + p∗2(v2))),

where pi : y −→ xi is the projection (note the use of Lemma 8.6). It is called the exterior
product between s1 and s2. The exterior product is functorial with respect to twists and
extension of supports.

We will denote p∗1(v1) + p∗2(v2) by v1 × v2 for convenience.
Now we focus of a special case of the proof that the right exterior product with an

element in Chow-Witt groups (with support) is a chain complex map between Rost-
Schmid complexes, while the left exterior product is not.

Proposition 8.3. Let X,X ′ ∈ Sm/k, v ∈PX , v
′ ∈PX′ and let Y ∈ Zi(X), T ∈ Zj(X ′)

be smooth. Suppose that β ∈ C̃H
j

T (X
′, v′). Then the following diagram commutes

⊕s∈(Y×T )(0)K
MW
n (k(s),Λ∗

s ⊗ (v × v′)) ∂ // ⊕u∈(X×X′)(i+j+1)KMW
n−1 (k(u),Λ

∗
u ⊗ (v × v′))

⊕y∈Y (0)KMW
n (k(y),Λ∗

y ⊗ v)
∂ //

×β

OO

⊕z∈Y ∩X(i+1)KMW
n−1 (k(z),Λ

∗
z ⊗ v)

×β

OO
.

That is, for every β ∈ C̃H
j

T (X
′, v′) and α ∈ ⊕y∈Y (0)KMW

n (k(y),Λ∗
y ⊗ v), we have

∂(α× β) = ∂(α)× β.

Moreover, we have
∂(β × α) =< −1 >j+rkX′ (v′) β × ∂(α).

Proof. We may assume that Y and T are irreducible. We check the commutativity after
projecting to each u ∈ (X×X ′)(i+j+1). It suffices to let u be a generic point of z×T , where
z ∈ Y ∩X(i+1), since otherwise both terms vanish. Set Z = z. We have a commutative

114



diagram with exact columns and rows (we write X × Y by XY for short)

0

��

0

��

NZT/Y T

��

NZT/Y T

��

0 // NZT/XT
//

��

NZT/XX′

��

// NXT/XX′ |ZT //

∼=
��

0

0 // NY T/XT |ZT //

��

NY T/XX′ |ZT //

��

NY T/Y X′ |ZT // 0

0 0.

We have projection maps p1 : ZT −→ Z and p2 : ZT −→ T . By Theorem 3.1, (1), we
have a commutative diagram

p∗1(NZ/Y +NY/X |Z + v|Z) + p∗2(NT/X′ + v′|T ) //

��

p∗1(NZ/Y ) +NY T/XX′ |ZT + p∗1(v|Z) + p∗2(v
′|T )

��

p∗1(NZ/X + v|Z) + p∗2(NT/X′ + v′|T )

��

NZT/Y T +NY T/XX′ |ZT + p∗1(v|Z) + p∗2(v
′|T )

��

NZT/XT + p∗1(v|Z) +NY T/Y X′ |ZT + p∗2(v
′|T ) // NZT/XX′ + p∗1(v|Z) + p∗2(v

′|T ),

which gives the first equation. For the second one, we compute directly using the first
equation using Proposition 8.4 (which still holds in this context):

∂(β × α)

=∂(< −1 >(i+rkX(v))(j+rkX′ (v′)) c(q∗1v1, q
∗
2v2)(α× β))

= < −1 >(i+rkX(v))(j+rkX′ (v′)) c(q∗1v1, q
∗
2v2)(∂(α× β))

= < −1 >(i+rkX(v))(j+rkX′ (v′)) c(q∗1v1, q
∗
2v2)(∂(α)× β)

= < −1 >j+rkX′ (v′) β × ∂(α),

where q1, q2 are the respective projections of X ×X ′ on the corresponding factor.

Definition 8.8. The exterior product of Definition 8.7 induces a pairing

C̃H
n1

T1
(X1, v1)× C̃H

n2

T2
(X2, v2) −→ C̃H

n1+n2

T1×T2
(X1 ×X2, v1 × v2)

for every Xa ∈ Sm/k, Ta ∈ Z
na(Xa) smooth and va ∈ PXa for a = 1, 2 by Proposition

8.3. It’s called the exterior product between Chow-Witt groups.

Proposition 8.4. (Axiom 5 and 6) In the context above, the exterior product is associative
and satisfies

s1 × s2 =< −1 >
(codim(x1)+rkX1

(v1))(codim(x2)+rkX2
(v2)) c(p∗2(v2), p

∗
1(v1))(s2 × s1)

where sa ∈ C̃H
na

Ta(Xa, va).

Proof. Associativity comes from Definition 3.3, (3) and the second statement follows from
the definition of the commutativity isomorphism in Proposition 8.1.
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Proposition 8.5. (Axiom 10) Let fa : Ya −→ Xa be smooth morphisms in Sm/k for
a = 1, 2. Then, we have

(f1 × f2)
∗(s1 × s2) = f ∗

1 (s1)× f
∗
2 (s2).

Proof. This follows from Lemma 8.5 and Lemma 8.6.

Now, we would like to prove a special case that the the push-forwards defined in
Definition 8.5 and Definition 8.6 form a chain complex morphism between Rost-Schmid
complexes, just to explain how to treat the twists.

Proposition 8.6. Suppose that Z ⊆ Y ⊆ X are schemes with X and Y smooth. Suppose
that Y = y in X and that Z = z in Y for some z ∈ Y (1). Suppose moreover that
f : X −→ X ′ is a smooth morphism, that v ∈ PX′ and that Y is also a closed subset of
X ′. Then we have a commutative diagram

KMW
n (k(y),Λ∗

y ⊗ f
∗v ⊗ ωX/X′) ∂ //

f∗
��

KMW
n−1 (k(z),Λ

∗
z ⊗ f

∗v ⊗ ωX/X′)

f∗
��

KMW
n (k(f(y)),Λ∗

f(y) ⊗ v)
∂ // KMW

n−1 (k(f(z)),Λ
∗
f(z) ⊗ v).

Proof. We have the following commutative diagram with exact rows and columns

0

��

0

��

NZ/Y

��

NZ/Y

��

0 // TX/X′ |Z // NZ/X

��

// NZ/X′
//

��

0

0 // TX/X′ |Z // NY/X |Z //

��

NY/X′ |Z //

��

0

0 0.

Now the statement is to prove that the following diagram commutes

NZ/Y +NY/X |Z + f ∗v|Z − TX/X′ |Z //

��

NZ/Y + TX/X′ |Z +NY/X′ |Z + f ∗v|Z − TX/X′ |Z

��

NZ/X + f ∗v|Z − TX/X′ |Z

��

NZ/Y +NY/X′ |Z + f ∗v|Z

��

TX/X′ |Z +NZ/X′ + f ∗v|Z − TX/X′ |Z // NZ/X′ + f ∗v|Z .

We have the following commutative diagrams

TX/X′ |Z +NZ/X′ + f ∗v|Z − TX/X′ |Z // NZ/X′ + f ∗v|Z

TX/X′ |Z +NZ/Y +NY/X′ |Z + f ∗v|Z − TX/X′ |Z //

OO

NZ/Y +NY/X′ |Z + f ∗v|Z

OO
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NZ/Y +NY/X |Z + f ∗v|Z − TX/X′ |Z //

��

NZ/Y + TX/X′ |Z +NY/X′ |Z + f ∗v|Z − TX/X′ |Z

��

NZ/X + f ∗v|Z − TX/X′ |Z

��

TX/X′ |Z +NZ/Y +NY/X′ |Z + f ∗v|Z − TX/X′ |Z

TX/X′ |Z +NZ/X′ + f ∗v|Z − TX/X′ |Z

22

,

where the second one comes from Theorem 3.1, (3). Then, the result follows by combining
the two diagrams above.

Proposition 8.7. Suppose that Z ⊆ Y ⊆ X are schemes with X and Y smooth. Suppose
that Y = y in X and that Z = z in Y for z ∈ Y (1). Suppose moreover that f : X −→ X ′

is a closed immersion and that v ∈PX′. Then we have a commutative diagram

KMW
n (k(y),Λ∗

y ⊗ detNX/X′ ⊗ f ∗v) ∂ //

f∗
��

KMW
n−1 (k(z),Λ

∗
z ⊗ detNX/X′ ⊗ f ∗v)

f∗
��

KMW
n (k(f(y)),Λ∗

f(y) ⊗ v)
∂ // KMW

n−1 (k(f(z)),Λ
∗
f(z) ⊗ v).

Proof. The diagram commutes because of the following commutative diagram by Defini-
tion 3.3, (3)

NZ/Y +NY/X |Z +NX/X′ |Z + f ∗v|Z //

��

NZ/X +NX/X′ |Z + f ∗v|Z

��

NZ/Y +NY/X′ |Z + f ∗v|Z // NZ/X′ + f ∗v|Z .

Proposition 8.8. Let X
f

// Y
g

// Z be morphisms in Sm/k, v ∈ PZ and let C ∈
Zi+dg◦f (X).

1. (Axiom 12) Suppose that f , g are smooth and that C is also a closed subset in Z.
Then the following diagram commutes

C̃H
i+dg◦f

C (X, (g ◦ f)∗v − TX/Z) //

(g◦f)∗

((

C̃H
i+dg◦f

C (X, (g ◦ f)∗v − f ∗TY/Z − TX/Y )

f∗
��

C̃H
i+dg

f(C)(Y, g
∗v − TY/Z)

g∗
��

C̃H
i

g(f(C))(Z, v).

2. (Axiom 14) Suppose that f , g are closed immersions. Then, the following diagram
commutes

C̃H
i+dg◦f

C (X,NX/Z + (g ◦ f)∗v) //

(g◦f)∗

((

C̃H
i+dg◦f

C (X,NX/Y + f ∗NY/Z + (g ◦ f)∗v)

f∗
��

C̃H
i+dg

f(C)(Y,NY/Z + g∗v)

g∗
��

C̃H
i

g(f(C))(Z, v).
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3. (Axiom 19, (1)) Suppose that f is a closed immersion, that g and g ◦ f are smooth
and that C is also a closed subset of Z. Then the following diagram commutes

C̃H
i+dg◦f

C (X,NX/Y + f ∗g∗v − f ∗TY/Z)

f∗
��

// C̃H
i+dg◦f

C (X, f ∗g∗v +NX/Y − f
∗TY/Z)

��

C̃H
i+dg

f(C)(Y, g
∗v − TY/Z)

g∗
��

C̃H
i+dg◦f

C (X, f ∗g∗v − TX/Z)

(g◦f)∗

ss

C̃H
i

g(f(C))(Z, v).

4. (Axiom 19, (2)) Suppose that g is smooth, and that f and g◦f are closed immersions.
Then the following diagram commutes

C̃H
i+dg◦f

C (X,NX/Y + f ∗g∗v − f ∗TY/Z)

f∗
��

// C̃H
i+dg◦f

C (X,−f ∗TY/Z +NX/Y + f ∗g∗v)

��

C̃H
i+dg

f(C)(Y, g
∗v − TY/Z)

g∗
��

C̃H
i+dg◦f

C (X,NX/Z + f ∗g∗v)

(g◦f)∗

rr

C̃H
i

g(f(C))(Z, v).

Proof. 1. This follows from the following commutative diagram

NC/X + f ∗g∗v|C − TX/Z |C //

��

NC/X + f ∗g∗v|C − f
∗TY/Z |C − TX/Y |C

��

TX/Y |C +NC/Y + f ∗g∗v|C − f
∗TY/Z |C − TX/Y |C

��

NC/Y + f ∗g∗v|C − f
∗TY/Z |C

��

f ∗TY/Z |C +NC/Z + f ∗g∗v|C − f
∗TY/Z |C

��

TX/Z |C +NC/Z + f ∗g∗v|C − TX/Z |C // NC/Z + f ∗g∗v|C

using Definition 3.3, (3).

2. Essentially the same as in (1).
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3. We are going to prove that the following diagram commutes

NC/X +NX/Y |C + f ∗g∗v|C − f
∗TY/Z |C //

��

NC/X + f ∗g∗v|C +NX/Y |C − f
∗TY/Z |C

��

NC/Y + f ∗g∗v|C − f
∗TY/Z |C

��

NC/X + f ∗g∗v|C +NX/Y |C −NX/Y |C − TX/Z |C

��

f ∗TY/Z |C +NC/Z + f ∗g∗v|C − f
∗TY/Z |C

��

NC/X + f ∗g∗v|C − TX/Z |C

��

NC/Z + f ∗g∗v|C TX/Z |C +NC/Z + f ∗g∗v|C − TX/Z |Coo

.

Let A = TX/Z |C+NX/Y |C+NC/Z+f
∗g∗v|C−NX/Y |C−TX/Z |C . We have commutative

diagrams

f ∗TY/Z |C +NC/Z + f ∗g∗v|C − f
∗TY/Z |C //

��

A

��

NC/Z + f ∗g∗v|C // TX/Z |C +NC/Z + f ∗g∗v|C − TX/Z |C

NC/X +NX/Y |C + f ∗g∗v|C −NX/Y |C − TX/Z |C

��
++NC/X + f ∗g∗v|C − TX/Z |C

��

A

ss

TX/Z |C +NC/Z + f ∗g∗v|C − TX/Z |C .

Furthermore, there is a commutative diagram with exact rows and columns

0

��

0

��

0 // TX/Z |C //

��

NC/X

��

// NC/Z
// 0

0 // f ∗TY/Z |C //

��

NC/Y
//

��

NC/Z
// 0

NX/Y |C

��

NX/Y |C

��

0 0

and by Theorem 3.1, (2), we have a commutative diagram

NC/X +NX/Y |C + f ∗g∗v|C − f
∗TY/Z |C //

��

NC/X +NX/Y |C + f ∗g∗v|C − f
∗TY/Z |C

��

NC/Y + f ∗g∗v|C − f
∗TY/Z |C

��

TX/Z |C +NC/Z |C +NX/Y |C + f ∗g∗v|C − f
∗TY/Z |C

��

f ∗TY/Z |C +NC/Z + f ∗g∗v|C − f
∗TY/Z |C // A.

The proof follows easily.
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4. We are going to prove that the following diagram commutes

NC/X +NX/Y |C + f ∗g∗v|C − f
∗TY/Z |C //

��

NC/X − f
∗TY/Z |C +NX/Y |C + f ∗g∗v|C

��

NC/Y + f ∗g∗v|C − f
∗TY/Z |C

��

NC/X − f
∗TY/Z |C + f ∗TY/Z |C +NX/Z |C + f ∗g∗v|C

��

f ∗TY/Z |C +NC/Z + f ∗g∗v|C − f
∗TY/Z |C

��

NC/X +NX/Z |C + f ∗g∗v|C

rr

NC/Z + f ∗g∗v|C .

We have a commutative diagram

f ∗TY/Z |C +NC/Z + f ∗g∗v|C − f
∗TY/Z |C //

��

f ∗TY/Z |C +NC/X +NX/Z |C + f ∗g∗v|C − f
∗TY/Z |C

��

NC/Z + f ∗g∗v|C // NC/X +NX/Z |C + f ∗g∗v|C .

Furthermore, there is a commutative diagram with exact rows and columns

0

��

0

��

f ∗TY/Z |C

��

f ∗TY/Z |C

��

0 // NC/X
// NC/Y

��

// NX/Y |C //

��

0

0 // NC/X
// NC/Z

//

��

NX/Z |C //

��

0

0 0.

By Theorem 3.1, (3), we have a commutative diagram

NC/X +NX/Y |C + f ∗g∗v|C − f
∗TY/Z |C //

��

NC/X + f ∗TY/Z |C +NX/Z |C + f ∗g∗v|C − f
∗TY/Z |C

��

NC/Y + f ∗g∗v|C − f
∗TY/Z |C

��

f ∗TY/Z |C +NC/Z + f ∗g∗v|C − f
∗TY/Z |C // f ∗TY/Z |C +NC/X +NX/Z |C + f ∗g∗v|C − f

∗TY/Z |C

and the proof follows.

Proposition 8.9. (Axiom 19, (3)) Suppose that we have a Cartesian square of smooth
schemes

X ′ v //

g

��

X

f
��

Y ′ u // Y,
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where u is smooth and f is a closed immersion: Let s ∈ PY and let C ∈ Zn+df+dv(X ′)
be also closed in Y . Then the following diagram commutes

C̃H
n+df+dv

C (X ′, NX′/Y ′ + g∗u∗s− g∗TY ′/Y )
g∗

//

��

C̃H
n+du

g(C) (X, u
∗s− TY ′/Y )

u∗

��

C̃H
n+df+dv

C (X ′, v∗NX/Y + u∗f ∗s− TX′/X)

v∗
��

C̃H
n

u(g(C))(Y, s)

C̃H
n+df

v(C) (X,NX/Y + f ∗s).

f∗

33

Proof. We are going to show that the following diagram commutes

NC/X′ +NX′/Y ′ |C + g∗u∗s|C − g
∗TY ′/Y |C

��

// NC/Y ′ + g∗u∗s|C − g
∗TY ′/Y |C

��

NC/X′ + v∗NX/Y |C + g∗u∗s|C − TX′/X |C

��

g∗TY ′/Y |C +NC/Y + g∗u∗s|C − g
∗TY ′/Y |C

��

TX′/X |C +NC/X + v∗NX/Y |C + g∗u∗s|C − TX′/X |C

��

NC/Y + g∗u∗s|C

NC/X + v∗NX/Y |C + g∗u∗s|C .

22

We have a commutative diagram with exact rows and columns

0

��

0

��

TX′/X |C

��

∼= // g∗TY ′/Y |C

��

0 // NC/X′
//

��

NC/Y ′

��

// NX′/Y ′ |C //

∼=
��

0

0 // NC/X
//

��

NC/Y
//

��

v∗NX/Y |C // 0

0 0.

So, we have a commutative diagram by Theorem 3.1, (1)

NC/Y ′
//

��

NC/X′ +NX′/Y ′ |C

��

g∗TY ′/Y |C +NC/Y

��

TX′/X |C +NC/X +NX′/Y ′ |C

g∗TY ′/Y |C +NC/X + v∗NX/Y |C .

33

Then the statement follows easily from the data above.
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Proposition 8.10. Suppose that we have a Cartesian square of smooth schemes

X ′ v //

g
��

X

f
��

Y ′ u // Y.

1. (Axiom 15) Suppose that f , u are smooth, that s ∈PY and that C ∈ Zn+df (X) is
a closed subset of Y . Then the following diagram commutes

C̃H
n+df

C (X, f ∗s− TX/Y )
f∗

//

v∗

��

C̃H
n

f(C)(Y, s)

u∗

��

C̃H
n+df

v−1(C)(X
′, v∗f ∗s− v∗TX/Y )

g∗
// C̃H

n

g(v−1(C))(Y
′, u∗s).

2. (Axiom 16) Suppose that f is a closed immersion, that s ∈ PY and that C ∈
Zn+df (X). Suppose moreover that u is smooth. Then the following diagram com-
mutes

C̃H
n+df

C (X,NX/Y + f ∗s)
f∗

//

v∗

��

C̃H
n

f(C)(Y, s)

u∗

��

C̃H
n+df

v−1(C)(X
′, v∗NX/Y + v∗f ∗s)

g∗
// C̃H

n

g(v−1(C))(Y
′, u∗s).

Proof. 1. We have a commutative diagram by functoriality of v∗ with respect to twists

NC/X + f ∗v|C − TX/Y |C //

��

TX/Y |C +NC/Y + f ∗s|C − TX/Y |C

��

Nv−1(C)/X′ + v∗f ∗s|v−1(C) − TX′/Y ′ |v−1(C)

��

NC/Y + f ∗s|C

��

TX′/Y ′ |v−1(C) +Nv−1(C)/Y ′ + v∗f ∗s|v−1(C) − TX′/Y ′ |v−1(C)
// Nv−1(C)/Y ′ + f ∗s|v−1(C).

2. We have a commutative diagram by functoriality of v∗ with respect to twists

NC/X +NX/Y |C + f ∗s|C //

��

NC/Y + f ∗s|C

��

Nv−1(C)/X′ +NX′/Y ′ |v−1(C) + v∗f ∗s|v−1(C)
// Nv−1(C)/Y ′ + v∗f ∗s|v−1(C).

Proposition 8.11. 1. (Axiom 17) Suppose that f : X −→ Y is a smooth morphism in
Sm/k, that v ∈PY and that C ∈ Zn+df (X) is a smooth closed subset of Y . Then,
for any Z ∈ Sm/k, any v′ ∈ PZ and any D ∈ Zm(Z), the following diagrams
commute

C̃H
n+df

C (X, f ∗v − TX/Y )× C̃H
m

D(Z, v
′)

×
//

f∗×id

��

C̃H
n+df+m

C×D (X × Z, (f ∗v − TX/Y )× v
′)

c
��

C̃H
n+df+m

C×D (X × Z, (f ∗v × v′)− TX×Z/Y×Z)

(f×id)∗
��

C̃H
n

f(C)(Y, v)× C̃H
m

D(Z, v
′)

×
// C̃H

n+m

f(C)×D(Y × Z, v × v
′)
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C̃H
m

D(Z, v
′)× C̃H

n+df

C (X, f ∗v − TX/Y )
×

//

id×f∗
��

C̃H
n+df+m

D×C (Z ×X, v′ × (f ∗v − TX/Y ))

(id×f)∗
��

C̃H
m

D(Z, v
′)× C̃H

n

f(C)(Y, v)
×

// C̃H
n+m

D×f(C)(Z × Y, v
′ × v).

2. (Axiom 18) Suppose that f : X −→ Y is a closed immersion in Sm/k, that v ∈PY

and that C is a smooth closed subset of X. Then for any Z ∈ Sm/k, any v′ ∈PZ

and any D ∈ Zm(Z), the following diagrams commute

C̃H
n+df

C (X,NX/Y + f ∗v)× C̃H
m

D(Z, v
′)

×
//

f∗×id
��

C̃H
n+df+m

C×D (X × Z, (NX/Y + f ∗v)× v′)

(f×id)∗
��

C̃H
n

f(C)(Y, v)× C̃H
m

D(Z, v
′)

×
// C̃H

n+m

f(C)×D(Y × Z, v × v
′)

C̃H
m

D(Z, v
′)× C̃H

n+df

C (X,NX/Y + f ∗v)
×

//

id×f∗

��

C̃H
n+df+m

D×C (Z ×X, v′ × (NX/Y + f ∗v))

c
��

C̃H
n+df+m

D×C (Z ×X, (v′ × f ∗v) +NX×Z/Y×Z)

(id×f)∗
��

C̃H
m

D(Z, v
′)× C̃H

n

f(C)(Y, v)
×

// C̃H
n+m

D×f(C)(Z × Y, v
′ × v).

Proof. We have projections p1 : C ×D −→ C and p2 : C ×D −→ D.

1. For the first diagram, we are going to prove that the following diagram commutes

(NC/X + f ∗v|C − TX/Y |C , ND/Z + v′|D) //

f∗
��

p∗1(NC/X + f ∗v|C − TX/Y |C) + p∗2(ND/Z + v′|D)

��

(NC/Y + f ∗v|C , ND/Z + v′|D)

��

NC×D/X×Z + p∗1(f
∗v|C) + p∗2(v

′|D)− TX×Z/Y×Z |C×D

(f×id)∗
��

p∗1(NC/Y + f ∗v|C) + p∗2(ND/Z + v′|D) // NC×D/Y×Z + p∗1(f
∗v|C) + p∗2(v

′|D).

We have a commutative diagram

(NC/X + f ∗v|C − TX/Y |C , ND/Z + v′|D) //

f∗
��

p∗1(NC/X + f ∗v|C − TX/Y |C) + p∗2(ND/Z + v′|D)

p∗1(f∗)+p
∗

2(id)

uu

(NC/Y + f ∗v|C , ND/Z + v′|D)

��

p∗1(NC/Y + f ∗v|C) + p∗2(ND/Z + v′|D)

and then we just have to show the following diagram commutes

p∗1(NC/X + f ∗v|C − TX/Y |C) + p∗2(ND/Z + v′|D)

��
p∗1(f∗)+p

∗

2(id)

ww

NC×D/X×Z + p∗1(f
∗v|C) + p∗2(v

′|D)− TX×Z/Y×Z |C×D

(f×id)∗
��

p∗1(NC/Y + f ∗v|C) + p∗2(ND/Z + v′|D) // NC×D/Y×Z + p∗1(f
∗v|C) + p∗2(v

′|D).
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This follows from Theorem 3.1, (1) and the following commutative diagram with
exact rows and columns

0

��

0

��

p∗1(TX/Y |C)

��

∼= // TX×Z/Y×Z |C×D

��

0 // p∗1NC/X
//

��

NC×D/X×Z

��

// p∗2ND/Z
// 0

0 // p∗1NC/Y
//

��

NC×D/Y×Z
//

��

p∗2ND/Z
// 0

0 0.

For the second diagram, we suppose that α ∈ C̃H
n+df

C (X, f ∗v − TX/Y ) and that

β ∈ C̃H
m

D(Z, v
′). Moreover, we have a commutative diagram

X

f
��

X × Z
p1

oo
p2

//

f×id
��

D

Y Y × Z.
q1

oo

q2

;;

Then

(id× f)∗(β × α)

=(f × id)∗(< −1 >
(n+rkY (v))(m+rkZ(v′)) c(p∗1(f

∗v − TX/Y ), p
∗
2(v

′))(α× β))

by Proposition 8.4

= < −1 >(n+rkY (v))(m+rkZ(v′)) (f × id)∗(c(p
∗
1(f

∗v − TX/Y ), p
∗
2(v

′))(α× β))

= < −1 >(n+rkY (v))(m+rkZ(v′)) (f × id)∗((c(p
∗
1(f

∗v), p∗2(v
′)) ◦ c(−p∗1TX/Y , p

∗
2(v

′)))(α× β))

= < −1 >(n+rkY (v))(m+rkZ(v′)) c(q∗1(v), q
∗
2(v

′))((f × id)∗(c(−p
∗
1TX/Y , p

∗
2(v

′))(α× β)))

by functoriality of push-forwards with respect to twists

= < −1 >(n+rkY (v))(m+rkZ(v′)) c(q∗1(v), q
∗
2(v

′))(f∗(α)× β))

by the first diagram

=β × f∗(α)

by Proposition 8.4.

2. For the first diagram, we are going to prove that the following diagram commutes

(NC/X +NX/Y |C + f ∗v|C , ND/Z + v′) //

��

p∗1(NC/X +NX/Y |C + f ∗v|C) + p∗2(ND/Z + v′)

��

(NC/Y + f ∗v|C , ND/Z + v′)

��

NC×D/X×Z +NX×Z/Y×Z |C×D + p∗1(f
∗v|C) + p∗2(v

′)

��

p∗1(NC/Y + f ∗v|C) + p∗2(ND/Z + v′) // NC×D/Y×Z + p∗1(f
∗v|C) + p∗2(v

′).
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We have a commutative diagram

(NC/X +NX/Y |C + f ∗v|C , ND/Z + v′) //

��

p∗1(NC/X +NX/Y |C + f ∗v|C) + p∗2(ND/Z + v′)

p∗1(f∗)+p
∗

2(id)

uu

(NC/Y + f ∗v|C , ND/Z + v′)

��

p∗1(NC/Y + f ∗v|C) + p∗2(ND/Z + v′).

Hence we just have to show that the following diagram commutes

p∗1(NC/X +NX/Y |C + f ∗v|C) + p∗2(ND/Z + v′)

��
p∗1(f∗)+p

∗

2(id)

xx

NC×D/X×Z +NX×Z/Y×Z |C×D + p∗1(f
∗v|C) + p∗2(v

′)

��

p∗1(NC/Y + f ∗v|C) + p∗2(ND/Z + v′) // NC×D/Y×Z + p∗1(f
∗v|C) + p∗2(v

′).

This follows fromTheorem 3.1, (2) together with the following commutative diagram
with exact rows and columns

0

��

0

��

0 // p∗1NC/X
//

��

NC×D/X×Z

��

// p∗2ND/Z
// 0

0 // p∗1NC/Y
//

��

NC×D/Y×Z
//

��

p∗2ND/Z
// 0

p∗1(NX/Y |C)

��

∼= // NX×Z/Y×Z |C×D

��

0 0.

The second diagram follows by the same method as in the proof of the second
diagram of (1).

8.2 Intersection with Divisors

In this section, we discuss a special case of intersection, namely pull-backs along a divi-
sor with smooth support. The constructions here basically come from [CF18], but the
treatments of push-forwards are possibly different.

Definition 8.9. Let X ∈ Sm/k and let D = {(Ui, fi)} be a Cartier divisor on X. Suppose

that C ∈ Zn(X), s ∈ C̃H
n

C(X, v) and that dim(C ∩ |D|) < dim(C). Let

s =
∑

a

sa ⊗ ua ⊗ va ∈ ⊕ya∈X(n)KMW
0 (k(ya),Λ

∗
ya ⊗ v)
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where sa ⊗ ua ⊗ va ∈ K
MW
0 (k(ya),Λ

∗
ya ⊗ v) and ya ∈ X

(n). For every x ∈ {ya} ∩X
(n+1),

suppose that x ∈ Ui for some i (and then ya ∈ Ui also). Then, fi ∈ O
∗
X,ya

since ya /∈ |D|

and consequently we have a well-defined element fi ∈ k(ya). Set

ordx(D ·s) =
∑

x∈ya

∂yax (< −1 >codim(ya) [fi]sa⊗ua⊗fi⊗va) ∈ K
MW
0 (k(x),Λ∗

x⊗L (−D)⊗v).

Then define

D · s =
∑

x∈X(n+1)

ordx(D · s) ∈ ⊕x∈X(n+1)KMW
0 (k(x),Λ∗

x ⊗L (−D)⊗ v).

It’s functorial with respect to v by Remark 8.4.

Lemma 8.7. The definition of ordx(D · s) above is independent of the choice of i and fi
and

D · s ∈ C̃H
n+1

C∩|D|(X,L (−D) + v).

Proof. For any other j and fj with x ∈ Uj, we have fj/fi ∈ O
∗
X,x. Moreover, we have

∑

x∈ya

∂yax (sa ⊗ ua ⊗ va) = 0

since s ∈ C̃H
n

C(X, v). So we have
∑

x∈ya

∂yax (sa ⊗ ua ⊗ fi ⊗ va) = 0

and ∑

x∈ya

∂yax (sa ⊗ ua ⊗ fj ⊗ va) = 0

by Remark 8.3, (2). Moreover,

[fj]sa ⊗ ua ⊗ fj ⊗ va

=([fj/fi]+ < fj/fi > [fi])sa ⊗ ua ⊗ fj ⊗ va

=[fj/fi]sa ⊗ ua ⊗ fj ⊗ va + [fi]sa ⊗ ua ⊗ fi ⊗ va.

Hence
∑

x∈ya

∂yax ([fj]sa ⊗ ua ⊗ fj ⊗ va)

=∂yax (
∑

x∈ya

[fj/fi]sa ⊗ ua ⊗ fj ⊗ va) + ∂yax (
∑

x∈ya

[fi]sa ⊗ ua ⊗ fi ⊗ va)

=∂yax (
∑

x∈ya

[fi]sa ⊗ ua ⊗ fi ⊗ va),

which shows that ordx(D · s) is well-defined.
If x /∈ |D|, then fi ∈ O

∗
ya,x. So

ordx(D · s)

=
∑

x∈ya

∂yax (< −1 >codim(ya) [fi]sa ⊗ ua ⊗ fi ⊗ va)

=
∑

x∈ya

[fi]∂
ya
x (< −1 >codim(ya) sa ⊗ ua ⊗ fi ⊗ va)

by Remark 8.3, (1)

=0.
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Hence the support of D · s is contained in C ∩ |D|.
Finally let’s prove that ∂(D · s) = 0, where for every z, we denote

∑
y,z∈y ∂

y
z by ∂z and

the differential map ∂ is then just (∂z). For this, we prove that

∂u(D · s) :=
∑

x∈X(n+1),u∈x

∂xu(ordx(D · s)) = 0

for u ∈ X(n+2). If u ∈ Ui, then

ordx(D · s) =
∑

x∈ya

∂yax (< −1 >codim(ya) [fi]sa ⊗ ua ⊗ fi ⊗ va)

by definition. So let t =
∑

a < −1 >
codim(ya) [fi]sa ⊗ ua ⊗ fi ⊗ va.

∑

x∈X(n+1),u∈x

∂xu(ordx(D · s)) =
∑

x∈X(n+1),u∈x

∂xu(∂x(t)) = ∂u(∂(t)) = 0.

Definition 8.10. (Axiom 8) Let X ∈ Sm/k and let D be a smooth effective Cartier
divisor on X. Let i : |D| −→ X be the inclusion and let ND/X

∼= i∗L (D) be its normal

bundle. Suppose that v ∈ PX , that C ∈ Zn(X) and that s ∈ C̃H
n

C(X, v) and that
dim(C ∩ |D|) < dim(C). We have a push-forward isomorphism

i∗ : C̃H
n

C∩|D|(|D|, i
∗
L (D) + i∗L (−D) + i∗v) −→ C̃H

n+1

C∩|D|(X,L (−D) + v).

Denote by s(L (D)) the isomorphism i∗v −→ i∗L (D) + i∗L (−D) + i∗v and define

i∗(s) ∈ C̃H
n

C∩|D|(|D|, i
∗v)

to be the unique element such that

i∗(s(L (D))(i∗(s))) = D · s.

It’s functorial with respect to v.

Proposition 8.12. Let Xa ∈ Sm/k, va ∈PXa and Ca ∈ Z
na(Xa) be smooth for a = 1, 2.

Further, let αa ∈ C̃H
na

Ca
(Xa, va), pa : X1 × X2 −→ Xa be the projections and let Da be

smooth effective Cartier divisors on Xa. Then

(D1 · α1)× α2 = p∗1(D1) · (α1 × α2)

and
c(p∗1v1, p

∗
2L (−D2))(α1 × (D2 · α2)) = p∗2(D2) · (α1 × α2).

Proof. We prove the first assertion. Since both sides live in the group

C̃H
n1+n2+1

p−1
1 (|D1|∩C1)∩p

−1
2 (C2)

(X1 ×X2, p
∗
1L (−D1) + (v1 × v2)),

it suffices to check their components at any generic point u in t1 × t2 where t1 ∈ (|D1| ∩

C1)
(0), t2 ∈ C

(0)
2 . Suppose that D1 = {(Ui, fi)} and that t1 ∈ Ui. At u, we then have

(D1 · α1)× α2

=∂t1(< −1 >
n1 [fi]⊗ fi ⊗ α1)× α2

=∂(< −1 >n1 [fi]⊗ fi ⊗ α1)× α2

=∂(< −1 >n1 ([fi]⊗ fi ⊗ α1)× α2)

by Proposition 8.3.

=∂u(< −1 >
n1 ([fi]⊗ fi ⊗ α1)× α2)

=∂u(< −1 >
n1 ([p∗1(fi)]⊗ p

∗
1(fi)⊗ (α1 × α2))

=p∗1(D1) · (α1 × α2).
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For the second assertion, we exchange the role of X1 and X2 as before:

c(p∗1v1, p
∗
2L (−D2))(α1 × (D2 · α2))

= < −1 >(n1+rkX1
(v1))(n2+rkX2

(v2)) c(p∗2v2, p
∗
1v1)((D2 · α2)× α1)

by Proposition 8.4

= < −1 >(n1+rkX1
(v1))(n2+rkX2

(v2)) c(p∗2v2, p
∗
1v1)(p

∗
2(D2) · (α2 × α1))

by the first equation

= < −1 >(n1+rkX1
(v1))(n2+rkX2

(v2)) p∗2(D2) · c(p
∗
2v2, p

∗
1v1)(α2 × α1)

by the functoriality of intersections with respect to twists

=p∗2(D2) · (α1 × α2)

by Proposition 8.4.

Proposition 8.13. 1. (Axiom 17) Let f : X −→ Y be a smooth morphism in Sm/k,
C ∈ Zi+df (X) be smooth and closed in Y , D be a Cartier divisor over Y with

dim(|D| ∩ f(C)) < dim(f(C)) and α ∈ C̃H
i+df

C (X, f ∗v − TX/Y ). Then

D · f∗(α) = f∗(f
∗(D) · α).

2. (Axiom 18) Let f : X −→ Y be a closed immersion in Sm/k, C ∈ Zi+df (X) be
smooth, D be a Cartier divisor over Y with dim(|D| ∩ f(C)) < dim(f(C)) and let

α ∈ C̃H
i+df

C (X,NX/Y + f ∗v). Then

D · f∗(α) = f∗(c(L (−f ∗D), NX/Y )(f
∗(D) · α)).

Proof. 1. Both sides live in the same Chow-Witt group, so we check their components
at any generic point y of f(C)∩ |D|. Suppose that D = {(Ui, fi)}, y ∈ Ui. We have
a commutative diagram

(L (−D)|C , NC/X + f ∗v|C − TX/Y |C)
(id,f∗)

//

��

(L (−D)|C , NC/Y + f ∗v|C)

��

L (−D)|C +NC/X + f ∗v|C − TX/Y |C
id+f∗

//

��

L (−D)|C +NC/Y + f ∗v|C

��

NC/X + L (−D)|C + f ∗v|C − TX/Y |C
f∗

// NC/Y + L (−D)|C + f ∗v|C .

At y, we then have

D · f∗(α)

=∂y(< −1 >
i [fi]⊗ fi ⊗ f∗(α))

=∂y(< −1 >
i+df f∗([f ∗(fi)]⊗ f

∗(fi)⊗ α))

by the diagram above

=f∗∂y(< −1 >
i+df [f ∗(fi)]⊗ f

∗(fi)⊗ α)

by Proposition 8.6

=f∗(f
∗(D) · α).
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2. Both sides live in the same Chow-Witt group, so we check their components at any
generic point y of f(C) ∩ |D|. Suppose that D = {(Ui, fi)}, y ∈ Ui. We then have
a commutative diagram

(L (−D)|C , NC/X +NX/Y |C + f ∗v|C)
(id,f∗)

//

��

(L (−D)|C , NC/Y + f ∗v|C)

��

L (−D)|C +NC/X +NX/Y |C + f ∗v|C
id+f∗

//

��

L (−D)|C +NC/Y + f ∗v|C

��

NC/X +NX/Y |C + L (−D)|C + f ∗v|C
f∗

// NC/Y + L (−D)|C + f ∗v|C .

At y, we then have

D · f∗(α)

=∂y(< −1 >
i [fi]⊗ fi ⊗ f∗(α))

=∂y(< −1 >
i+df f∗([f ∗(fi)]⊗ f

∗(fi)⊗ α))

by the diagram above

=f∗∂y(< −1 >
i+df [f ∗(fi)]⊗ f

∗(fi)⊗ α)

by Proposition 8.7

=f∗(c(L (−f ∗D), NX/Y )(f
∗(D) · α)).

Now we are ready for basic formulas concerning pull-backs along divisors. We will use
the notation of Definition 8.10.

Proposition 8.14. (Axiom 10) For a = 1, 2, let Xa ∈ Sm/k, Da be effective smooth
divisors over Xa, va ∈ PXa, Ca ∈ Z

na(Xa) be smooth with dim(Ca ∩ |Da|) < dim(Ca),

αa ∈ C̃H
na

Ca
(Xa, va) and ia : |Da| −→ Xa be inclusions. Then we have

i∗1(α1)× α2 = (i1 × id)
∗(α1 × α2)

α1 × i
∗
2(α2) = (id× i2)

∗(α1 × α2).

Proof. We denote the projection X1×X2 −→ Xa by pa. For the first assertion, it suffices
to check the equation after application of the isomorphism (i1 × id)∗ ◦ s(L (p∗1D1)) on
both sides. We have

(i1 × id)∗(s(L (p∗1D1))(i
∗
1(α1)× α2))

=(i1 × id)∗((s(L (D1))i
∗
1(α1))× α2)

by bifunctoriality of exterior products with respect to twists

=i1∗(s(L (D1))i
∗
1(α1))× α2

by Proposition 8.11

=(D1 · α1)× α2

=p∗1(D1) · (α1 × α2)

by Proposition 8.12

=(i1 × id)∗(s(L (p∗1D1))((i1 × id)
∗(α1 × α2))).
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The second equation follows by exchanging the roles of X1 and X2:

α1 × i
∗
2(α2)

= < −1 >(n1+rkX1
(v1))(n2+rkX2

(v2)) c(q∗2i
∗
2v2, q

∗
1v1)(i

∗
2(α2)× α1)

= < −1 >(n1+rkX1
(v1))(n2+rkX2

(v2)) c(q∗2i
∗
2v2, q

∗
1v1)((i2 × id)

∗(α2 × α1))

= < −1 >(n1+rkX1
(v1))(n2+rkX2

(v2)) (i2 × id)
∗(c(p∗2v2, p

∗
2v1)(α2 × α1))

by functoriality of pull-backs with respect to twists

=(id× i2)
∗(α1 × α2).

Proposition 8.15. Suppose that we have a Cartesian square of smooth schemes

X ′ v //

g

��

X

f
��

Y ′ u // Y,

where u is a closed immersion, dim(X ′) = dim(X)− 1 and dim(Y ′) = dim(Y )− 1.

1. (Axiom 16) If f is a closed immersion , s ∈ PY , C ∈ Zn+df (X) is smooth and
dim(u−1(f(C))) < dim(f(C)), the following diagram commutes

C̃H
n+df

C (X,NX/Y + f ∗s)
f∗

//

v∗

��

C̃H
n

f(C)(Y, s)

u∗

��

C̃H
n+df

v−1(C)(X
′, v∗NX/Y + v∗f ∗s)

g∗
// C̃H

n

g(v−1(C))(Y
′, u∗s).

2. (Axiom 15) If f is smooth, s ∈PY and C ∈ Zn+df (X) is smooth and closed in Y ,
the following diagram commutes

C̃H
n+df

C (X, f ∗s− TX/Y )
f∗

//

v∗

��

C̃H
n

f(C)(Y, s)

u∗

��

C̃H
n+df

v−1(C)(X
′, v∗f ∗s− v∗TX/Y )

g∗
// C̃H

n

g(v−1(C))(Y
′, u∗s).

Proof. The conditions give us a unique effective smooth divisor D (resp. D′) over Y (resp.
X) such that |D| = Y ′ (resp. |D′| = X ′). Moreover, we have D′ = f ∗(D). It suffices to
check the equation after application of u∗ ◦ s(L (D)) on both sides.

1. Suppose that α ∈ C̃H
n+df

C (X,NX/Y + f ∗s). We then have

u∗(s(L (D))(u∗f∗(α)))

=D · f∗(α)

=f∗(c(L (−D′), NX/Y )(D
′ · α))

by Proposition 8.13, (2)

=f∗(c(L (−D′), NX/Y )(v∗(s(L (D′))(v∗(α)))))

=f∗v∗((c(v
∗
L (−D′), v∗NX/Y ) ◦ s(L (D′)))(v∗(α)))

=u∗g∗((c(v
∗
L (D′) + v∗L (−D′), v∗NX/Y ) ◦ s(L (D′)))(v∗(α)))

by Proposition 8.8

=u∗(s(L (D))(g∗(v
∗(α))))

by functoriality of push-forwards with respect to twists.
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2. Suppose that α ∈ C̃H
n+df

C (X, f ∗s− TX/Y ). We then have

u∗(s(L (D))(u∗f∗(α)))

=D · f∗(α)

=f∗(D
′ · α)

by Proposition 8.13, (1)

=f∗(v∗((s(L (D′))(v∗(α)), v∗L (D′)− v∗L (D′) + v∗f ∗s− v∗TX/Y )))

=u∗(g∗((g
∗s(L (D))(v∗(α)), g∗u∗L (D)− g∗u∗L (D) + v∗f ∗s− TX′/Y ′)))

by Proposition 8.9

=u∗(s(L (D))(g∗v
∗(α)))

by functoriality of push-forwards with respect to twists.
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[CD09] D. C. Cisinski, F. Déglise, Local and Stable Homological Algebra in Grothendieck
Abelian Categories, Homology Homotopy Appl., Volume 11, Number 1 (2009), 219-260.
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