A. Anantharaman and E. Cancès, Existence of minimizers for kohn-sham models in quantum chemistry, vol.26, pp.2425-2455, 2009.

V. Bach, Error bound for the Hartree-Fock energy of atoms and molecules, Communications in mathematical physics, vol.147, issue.3, pp.527-548, 1992.

X. Blanc, E. Cancès, and M. Dupuy, Variational projector augmentedwave method, Comptes Rendus Mathematique, vol.355, issue.6, pp.665-670, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01637724

X. Blanc, E. Cancès, and M. Dupuy, Variational projector augmentedwave method: theoretical analysis and preliminary numerical results, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01637724

A. D. Becke, A new mixing of Hartree-Fock and local density-functional theories, The Journal of Chemical Physics, vol.98, issue.2, pp.1372-1377, 1993.

J. Bezanson, A. Edelman, S. Karpinski, and . Shah, Julia: A fresh approach to numerical computing, SIAM review, vol.59, issue.1, pp.65-98, 2017.

. Gb, . Bachelet, M. Dr-hamann, and . Schlüter, Pseudopotentials that work: From H to Pu, Physical Review B, vol.26, issue.8, p.4199, 1982.

P. E. Blochl, Projector augmented-wave method, Phys. Rev. B, vol.50, pp.17953-17979, 1994.

C. Bardos and M. Merigot, Asymptotic decay of the solution of a second-order elliptic equation in an unbounded domain. Applications to the spectral properties of a Hamiltonian, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, vol.76, issue.4, pp.323-344, 1977.

E. Cancès and G. Dusson, Discretization error cancellation in electronic structure calculation: a quantitative study, ESAIM: Mathematical Modelling and Numerical Analysis, 2017.

E. Cancès, M. Defranceschi, W. Kutzelnigg, C. L. Bris, and Y. Maday, Computational quantum chemistry: A primer, Special Volume, Computational Chemistry, vol.10, pp.3-270, 2003.

E. Cancès and C. L. Bris, Can we outperform the DIIS approach for electronic structure calculations?, International Journal of Quantum Chemistry, vol.79, issue.2, pp.82-90, 2000.

E. Cancès and C. L. Bris, On the convergence of SCF algorithms for the hartree-fock equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.34, issue.4, pp.749-774, 2000.

I. Catto, C. L. Bris, and P. Lions, On the thermodynamic limit for Hartree-Fock type models, Annales de l'IHP Analyse non linéaire, vol.18, pp.687-760, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00157679

I. Catto, C. L. Bris, and P. Lions, On some periodic Hartree-type models for crystals, Annales de l'IHP Analyse non linéaire, vol.19, pp.143-190, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00157675

E. Cancès, C. L. Bris, and Y. Maday, Méthodes mathématiques en chimie quantique. Une introduction, Mathématiques & Applications, vol.53

. Springer, , 2006.

P. A. Christiansen, Y. S. Lee, and K. S. Pitzer, Improved ab initio effective core potentials for molecular calculations, The Journal of Chemical Physics, vol.71, issue.11, pp.4445-4450, 1979.

E. Cancès and N. Mourad, A mathematical perspective on density functional perturbation theory, Nonlinearity, vol.27, issue.9, p.1999, 2014.

E. Cancès and N. Mourad, Existence of optimal norm-conserving pseudopotentials for Kohn-Sham models, 2015.

H. Chen and R. Schneider, Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.49, issue.3, pp.755-785, 2015.

M. Dupuy, Projector augmented-wave method: analysis in a one-dimensional setting, 2017.

M. Dupuy, The variational projector augmented-wave method for the planewave discretization of linear Schrödinger operators, 2018.

G. Dusson, Estimation d'erreur pour des problèmes aux valeurs propres linéaires et non-linéaires issus du calcul de structure électronique, Yvon et Piquemal, 2017.

M. Stephen and P. Eastham, The spectral theory of periodic differential equations, 1973.

I. Egorov and B. Schulze, Pseudo-differential operators, singularities, applications, vol.93, 2012.

L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol.19, 2010.

S. Fournais, M. Hoffmann-ostenhof, T. Hoffmann-ostenhof, and T. Sørensen, Sharp regularity results for Coulombic many-electron wave functions, Communications in mathematical physics, vol.255, issue.1, pp.183-227, 2005.

S. Fournais, M. Hoffmann-ostenhof, T. Hoffmann-ostenhof, and T. Sørensen, Analytic structure of solutions to multiconfiguration equations, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.31, p.315208, 2009.

J. Furthmüller, . Käckell, G. Bechstedt, and . Kresse, Extreme softening of Vanderbilt pseudopotentials: General rules and case studies of first-row and d-electron elements, Physical Review B, vol.61, issue.7, p.4576, 2000.

. Wmc-foulkes, . Mitas, and . Rj-needs, Quantum Monte Carlo simulations of solids, Reviews of Modern Physics, vol.73, issue.1, p.33, 2001.

M. Fuchs and M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Computer Physics Communications, vol.119, issue.1, pp.67-98, 1999.

H. Flad, R. Schneider, and B. Schulze, Asymptotic regularity of solutions to Hartree-Fock equations with Coulomb potential, Mathematical Methods in the Applied Sciences, vol.31, issue.18, pp.2172-2201, 2008.

A. Filippetti, D. Vanderbilt, Y. Zhong, G. B. Cai, and . Bachelet, Chemical hardness, linear response, and pseudopotential transferability, Physical Review B, vol.52, issue.16, p.11793, 1995.

X. Gonze, P. Käckell, and M. Scheffler, Ghost states for separable, norm-conserving, Iab initioP pseudopotentials, Phys. Rev. B, vol.41, pp.12264-12267, 1990.

D. Gontier, Mathematical contributions to the calculations of electronic structures, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01271846

X. Gonze, R. Stumpf, and M. Scheffler, Analysis of separable potentials, Physical Review B, vol.44, issue.16, p.8503, 1991.

S. Goedecker, J. Teter, and . Hutter, Separable dual-space Gaussian pseudopotentials, Physical Review B, vol.54, issue.3, p.1703, 1996.

H. Hellmann, A new approximation method in the problem of many electrons, The Journal of Chemical Physics, vol.3, issue.1, pp.61-61, 1935.

P. Hohenberg, W. Kohn, ;. Naw-holzwarth, . Matthews, . Dunning et al., Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-planewave formalisms for density-functional calculations of solids, Physical Review B, vol.136, issue.3B, p.864, 1964.

E. Hunsicker, V. Nistor, and J. O. Sofo, Analysis of periodic Schrödinger operators: regularity and approximation of eigenfunctions, Journal of Mathematical Physics, vol.49, issue.8, p.83501, 2008.

M. Hoffmann-ostenhof, J. Hoffmann-ostenhof, and . Swetina, Pointwise bounds on the asymptotics of spherically averaged L2-solutions of one-body Schrödinger equations, Ann. Inst. Henri Poincaré Anal. Physique théorique, vol.42, issue.4, pp.341-361, 1985.

M. Hoffmann-ostenhof, T. Hoffmann-ostenhof, and H. Stremnitzer, Local properties of Coulombic wave functions, Communications in mathematical physics, vol.163, issue.1, pp.185-215, 1994.

. Dr-hamann, C. Schlüter, and . Chiang, Norm-conserving pseudopotentials, Physical Review Letters, vol.43, issue.20, p.1494, 1979.

W. Hunziker, On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta, vol.39, pp.451-462, 1966.

D. R. Jafaev, The point spectrum in the quantum mechanical problem of many particles, Izv. Akad. Nauk SSSR Ser. Mat, vol.40, issue.4, pp.908-948, 1976.

F. Jollet, M. Torrent, and N. Holzwarth, Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format, Computer Physics Communications, vol.185, issue.4, pp.1246-1254, 2014.

. Dd-koelling and . Go-arbman, Use of energy derivative of the radial solution in an augmented plane wave method: application to copper, Journal of Physics F: Metal Physics, vol.5, issue.11, p.2041, 1975.

T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics, Communications on Pure and Applied Mathematics, vol.10, issue.2, pp.151-177, 1957.

L. Kleinman and . Bylander, Efficacious form for model pseudopotentials, Physical Review Letters, vol.48, issue.20, p.1425, 1982.

P. Luis-r-kahn, D. G. Baybutt, and . Truhlar, Ab initio effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons, The Journal of Chemical Physics, vol.65, issue.10, pp.3826-3853, 1976.

G. Kerker, Non-singular atomic pseudopotentials for solid state applications, Journal of Physics C: Solid State Physics, vol.13, issue.9, p.189, 1980.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, pp.11169-11186, 1996.

A. Khein, Analysis of separable nonlocal pseudopotentials, Physical Review B, vol.51, issue.23, p.16608, 1995.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, vol.59, pp.1758-1775, 1999.

A. Vladimir, . Kozlov, J. Vg-mazia, and . Rossmann, Elliptic boundary value problems in domains with point singularities, vol.52, 1997.

A. Peter and . Kuchment, Floquet theory for partial differential equations, vol.60, 2012.

S. Steven-g-louie, M. Froyen, and . Cohen, Nonlinear ionic pseudopotentials in spin-density-functional calculations, Physical Review B, vol.26, issue.4, p.1738, 1982.

H. Elliott and . Lieb, Density functionals for coulomb systems, International Journal of Quantum Chemistry, vol.24, issue.3, pp.243-277, 1983.

P. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Communications in Mathematical Physics, vol.109, issue.1, pp.33-97, 1987.

K. Laasonen, A. Pasquarello, and R. Car, Changyol Lee, and David Vanderbilt. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials, Phys. Rev. B, vol.47, pp.10142-10153, 1993.

A. William, . Lester, S. Stuart-m-rothstein, and . Tanaka, Recent advances in quantum Monte Carlo methods, World Scientific, vol.92, 2002.

A. Levitt and M. Torrent, Parallel eigensolvers in plane-wave Density Functional Theory, Computer Physics Communications, vol.187, pp.98-105, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01323703

R. B. Melrose, The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics. A K Peters, Ltd, vol.4, 1993.

E. Warren and . Pickett, Pseudopotential methods in condensed matter applications, Computer Physics Reports, vol.9, issue.3, pp.115-197, 1989.

C. James, L. Phillips, and . Kleinman, New Method for Calculating Wave Functions in Crystals and Molecules, Phys. Rev, vol.116, pp.287-294, 1959.

P. Pulay, Improved SCF convergence acceleration, Journal of Computational Chemistry, vol.3, issue.4, pp.556-560, 1982.

C. Rostgaard, The projector augmented-wave method, 2009.

M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, 1978.

M. Beth-ruskai, Absence of discrete spectrum in highly negative ions, Communications in Mathematical Physics, vol.82, issue.4, pp.457-469, 1982.

M. Israel and . Sigal, Geometric methods in the quantum many-body problem. Nonexistence of very negative ions, Communications in Mathematical Physics, vol.85, issue.2, pp.309-324, 1982.

. Im-sigal, How many electrons can a nucleus bind, Annals of Physics, vol.157, issue.2, pp.307-320, 1984.

S. Robert and W. Harrison, Reformulation of the screened HeineAbarenkov model potential, Physical Review, vol.163, issue.3, p.604, 1967.

C. John and . Slater, Wave functions in a periodic potential, Physical Review, vol.51, issue.10, p.846, 1937.

J. P. Solovej, Proof of the ionization conjecture in a reduced Hartree-Fock model. Inventiones mathematicae, vol.104, pp.291-311, 1991.

W. Stenger, On perturbations of finite rank, J. Math. Anal. Appl, vol.28, pp.625-635, 1969.

G. Teschl, Ordinary differential equations and dynamical systems, Graduate Studies in Mathematics, vol.140, 2012.

M. Teter, Additional condition for transferability in pseudopotentials, Physical Review B, vol.48, issue.8, p.5031, 1993.

C. William, J. J. Topp, and . Hopfield, Chemically motivated pseudopotential for sodium, Physical Review B, vol.7, issue.4, p.1295, 1973.

. Ar-tackett, G. E. Holzwarth, and . Matthews, A Projector Augmented Wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis, Computer Physics Communications, vol.135, issue.3, pp.348-376, 2001.

M. Torrent, ;. François, . Jollet, ;. François, G. Bottin et al., Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure, Computational Materials Science, vol.42, issue.2, pp.337-351, 2008.

N. Troullier and J. Martins, Efficient pseudopotentials for plane-wave calculations, Physical review B, vol.43, issue.3, 1991.

D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, vol.41, pp.7892-7895, 1990.

V. Barth and C. D. Gelatt, Validity of the frozen-core approximation and pseudopotential theory for cohesive energy calculations, Physical Review B, vol.21, issue.6, p.2222, 1980.

. Clasine-van-winter, Theory of finite systems of particles. I. The Green function, Mat.-Fys. Skr. Danske Vid. Selsk, vol.2, issue.8, p.60, 1964.

S. A. and G. M. ?islin, Finiteness of a discrete spectrum of many-particle Hamiltonians in symmetry spaces (coordinate and momentum representations)

, Teoret. Mat. Fiz, vol.32, issue.1, pp.70-87, 1977.

F. Hans and . Weinberger, Variational methods for eigenvalue approximation, vol.15, 1974.

M. Weinert, E. Wimmer, and A. J. Freeman, Total-energy all-electron density functional method for bulk solids and surfaces, Phys. Rev. B, vol.26, pp.4571-4578, 1982.

G. M. ?islin, A study of the spectrum of the Schrödinger operator for a system of several particles, Trudy Moskov. Mat. Ob??, vol.9, pp.81-120, 1960.

G. M. ?islin and A. G. Sigalov, The spectrum of the energy operator for atoms with fixed nuclei on subspaces corresponding to irreducible representations of the group of permutations, Izv. Akad. Nauk SSSR Ser. Mat, vol.29, pp.835-860, 1965.