, Robustesse de l'outil de diagnostic au vieillissement de la pile mesures de tension et d'impédance. La mise en oeuvre de modules de dégradation a permis au modèle de bon fonctionnement de suivre l'évolution de la tension pendant les 1000 heures. Le calcul de la résistance de membrane est adapté et permet de suivre l'évolution de la résistance hautes fréquences de la pile

, 63% pour des pressions faibles mais seulement de 20% pour une chute de température ou une augmentation d'humidité. Pour la tension, l'écart expérience-modèle commence à être trop important à partir de 900h de dégradations, le taux de fausses alarmes atteint 30%. On voit ici une limite de l'utilisation unique du taux de dégradation pour décrire la chute de la tension, Le taux de bonne isolation est de plus de 99% pour deux des défauts considérés dans l'étude (pressions élevées et humidités faibles)

, Ainsi la compréhension des mécanismes à l'oeuvre dans la chute de la résistance hautes fréquences doit être étudiée. Des expériences de caractérisations de la couche de diffusion sont nécessaire et un modèle de dégradation de celle-ci devrait être créé. Il doit permettre de suivre l'évolution de la résistance pendant le vieillissement de la pile. Les caractérisations expérimentales ont montré que le vieillissement rend la mesure de ré-sistance hautes fréquences moins sensible à l'apparition d'un défaut F 1 (chute de température) ou F 2 (augmentation de l'humidité relative). Pour améliorer les performances de diagnostic, il est possible de se focaliser sur l'obtention de nouveaux résidus. Ceux-ci devront permettre d'obtenir des indicateurs qui dépendent fortement de l'apparition de ces défauts, Le suivi et recalage de ces coefficients en boucle fermée permettrait de maintenir la précision du modèle pour décrire le comportement de la pile pendant le vieillissement

, Co2 emissions from fuel combustion highlights 2017, IEA, 2017.

C. Robin, Développement d'un modèle prédictif de durée de vie d'une pile PEMFC pour une application aéronautique : étude des interactions entre le coeur de pile et les conditions d'opération du système, 2015.

C. Robin, M. Gerard, M. Quinaud, J. Arbigny, and Y. Bultel, Proton exchange membrane fuel cell model for aging predictions : Simulated equivalent active surface area loss and comparisons with durability tests, Journal of Power Sources, vol.326, pp.417-427, 2016.

, Directive 93/59/cee du conseil du 28 juin, 1993.

. Reglement, , vol.715, 2007.

. Reglement, , vol.333, 2014.

A. Sassi, E. Rohart, and G. Belot, Post-traitement des émissions polluantes des moteurs thermiques à combustion interne moteurs à allumage par compression. Techniques de l'ingenieur Combustion dans les moteurs thermiques et environnement

A. Sassi, E. Rohart, and G. Belot, Post-traitement des émissions polluantes des moteurs thermiques à combustion interne moteurs à allumage commandé. Techniques de l'ingenieur Combustion dans les moteurs thermiques et environnement

H. Engerer and M. Horn, Natural gas vehicles : An option for europe, Energy Policy, vol.38, issue.2, pp.1017-1029, 2010.

A. Lallemand, Convertisseurs thermomecaniques cycles moteurs à gaz : Beau de Rochas et Diesel. Techniques de l'ingenieur Conversion et

M. Reyhanian and V. Hosseini, Various effects of reformer gas enrichment on natural-gas, iso-octane and normal-heptane hcci combustion using artificial inert species method, Energy Conversion and Management, vol.159, pp.7-19, 2018.

J. Trapy, Moteur à allumage commande. Techniques de l'ingénieur Technologie des moteurs thermiques

D. Benita, Panorama et évaluation des différentes filières d'autobus urbains, 2015.

W. J. Requia, M. Mohamed, C. D. Higgins, A. Arain, and M. Ferguson, How clean are electric vehicles ? Evidence-based review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health, Atmospheric Environment, vol.185, pp.64-77, 2018.

M. E. Biresselioglu, M. D. Kaplan, and B. K. Yilmaz, Electric mobility in europe : A comprehensive review of motivators and barriers in decision making processes, Transportation Research Part A : Policy and Practice, vol.109, pp.1-13, 2018.

, Information trends : 6,500 hydrogen fuel cell vehicles have been sold globally, vol.2, 2018.

J. D. Holladay, J. Hu, D. L. King, and Y. Wang, An overview of hydrogen production technologies, Catalysis Today, vol.139, pp.244-260, 2009.

C. Herradon, R. Molina, J. Marugan, and J. A. Botas, Experimental assessment of the cyclability of the Mn2O3/MnO thermochemical cycle for solar hydrogen production, International Journal of Hydrogen Energy, 2018.

M. S. Yazici, M. A. Azder, O. Salihoglu, and F. G. Boyaci-san, Ultralow Pt loading on CVD graphene for acid electrolytes and PEM fuel cells, International Journal of Hydrogen Energy, 2018.

H. Girault, Electrochimie physique et analytique. Presses Polytechniques et Universitaires Romandes, 2001.

D. Digby and . Macdonald, Reflections on the history of electrochemical impedance spectroscopy, Electrochim. Acta, vol.51, pp.1376-1388, 2006.

X. Yuan, H. Wang, J. C. Sun, and J. Zhang, AC impedance technique in PEM fuel cell diagnosis. a review, International Journal of Hydrogen Energy, vol.32, issue.17, pp.4365-4380, 2007.

H. Kumpulainen, T. Peltonen, U. Koponen, M. Bergelin, M. Valkiainen et al., situ voltammetric characterization of PEM fuel cell catalyst layers, 2002.

S. Wasterlain, D. Candusso, F. Harel, D. Hissel, and X. François, Development of new test instruments and protocols for the diagnostic of fuel cell stacks, at the 12th Ulm ElectroChemical Talks (UECT) :2015 Technologies on Batteries and Fuel Cells, vol.196, pp.5325-5333, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01006663

F. Micoud, Influence d'un support MOx (M = W, Ti) sur les propriétés Electrocatalytiques de nanoparticules de platine, 2009.

C. Robin, M. Gerard, A. A. Franco, and P. Schott, Multi-scale coupling between two dynamical models for PEMFC aging prediction, International Journal of Hydrogen Energy, vol.38, issue.11, pp.4675-4688, 2013.

A. Taniguchi, T. Akita, K. Yasuda, and Y. Miyazaki, Analysis of degradation in PEMFC caused by cell reversal during air starvation, International Journal of Hydrogen Energy, vol.33, pp.2323-2329, 2008.

G. Fontes, Modélisation et caractérisation de la pile PEM pour l'étude des intérac-tions avec les convertisseurs statiques, 2005.

P. Corbo, F. Migliardini, and O. Veneri, An experimental study of a PEM fuel cell power train for urban bus application, Journal of Power Sources, vol.181, pp.363-370, 2008.

T. Jahnke, G. Futter, A. Latz, T. Malkow, G. Papakonstantinou et al., Performance and degradation of proton exchange membrane fuel cells : State of the art in modeling from atomistic to system scale, Journal of Power Sources, vol.304, pp.207-233, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01889545

J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang et al., A review of PEM fuel cell durability : Degradation mechanisms and mitigation strategies, Journal of Power Sources, vol.184, issue.1, pp.104-119, 2008.

W. Schmittinger and A. Vahidi, A review of the main parameters influencing long-term performance and durability of PEM fuel cells, Journal of Power Sources, vol.180, pp.1-14, 2008.

M. Chandesris, R. Vincent, L. Guetaz, J. Roch, D. Thoby et al., Membrane degradation in PEM fuel cells : From experimental results to semi-empirical degradation laws, International Journal of Hydrogen Energy, 2017.

F. A. De-bruijn, V. A. Dam, and G. J. Janssen, Review : Durability and degradation issues of PEM fuel cell components, Fuel Cells, vol.8, issue.1, pp.3-22, 2008.

J. Healy, C. Hayden, T. Xie, K. Olson, R. Waldo et al., Aspects of the chemical degradation of PFSA ionomer used in PEM fuel cells, Fuel Cells, vol.5, issue.2, pp.302-308, 2005.

F. Nandjou, J. Poirot-crouvezier, M. Chandesris, J. Blachot, C. Bonnaud et al., Impact of heat and water management on PEM fuel cells degradation in automotive application, J. Power Sources, vol.326, pp.182-192, 2016.

M. Kim, N. Jung, K. Eom, S. J. Yoo, J. Y. Kim et al., Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells, Journal of Power Sources, vol.266, pp.332-340, 2014.

E. Endoh, S. Terazono, H. Widjaja, and Y. Takimoto, Degradation study of MEA for PEMFCs under low humidity conditions, Electrochemical and Solid-State Letters, vol.7, issue.7, pp.209-211, 2004.

S. Knights, K. Colbow, J. St-pierre, and D. Wilkinson, Aging mechanisms and lifetime of PEFC and DMFC, J. Power Sources, vol.127, pp.127-134, 2004.

A. Taniguchi, T. Akita, K. Yasuda, and Y. Miyazaki, Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation, Journal of Power Sources, vol.130, pp.42-49, 2004.

J. Kang, D. W. Jung, S. Park, J. Lee, J. Ko et al., Accelerated test analysis of reversal potential caused by fuel starvation during PEMFCs operation, International Journal of Hydrogen Energy, vol.35, pp.3727-3735, 2010.

K. H. Wong and E. Kjeang, Mitigation of chemical membrane degradation in fuel cells : Understanding the effect of cell voltage and iron ion redox cycle, ChemSusChem, vol.8, issue.6, pp.1072-1082, 2015.

R. Isermann, Fault-Diagnosis Systems, 2006.

H. L. , Van Trees. Detection, Estimation, and Modulation Theory, Part I : Detection, Estimation, and Linear Modulation Theory, 2004.

Q. Yang, A. Aitouche, and B. O. Bouamama, Fault detection and isolation of PEM fuel cell system by analytical redundancy, Control Automation (MED), 2010 18th Mediterranean Conference on, pp.1371-1376, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00758671

D. Rotondo, R. M. Fernandez-canti, S. Tornil-sin, J. Blesa, and V. Puig, Robust fault diagnosis of proton exchange membrane fuel cells using a Takagi-Sugeno interval observer approach, International Journal of Hydrogen Energy, vol.41, issue.4, pp.2875-2886, 2016.

R. Toscano, Commande et diagnostic des systèmes dynamiques, modélisation, analyse, commande par PID et par retour d'état, diagnostic, 2004.

J. Brunet, D. Jaume, M. Labarrère, A. Rault, and M. Verge, Détection et diagnostic de pannes : approche par modélisation

R. Isermann, Supervision, fault-detection and fault-diagnosis methods : an introduction, 1997.

J. Gertler and D. Singer, A new structural framework for parity equation-based failure detection and isolation, Automatica, vol.26, issue.2, pp.381-388, 1990.

B. Dubuisson, Diagnostic, intelligence artificielle et reconnaissance des formes, 2001.

J. Kittler, Feature selection and extraction, 1986.

G. Saporta, Probabilités, analyse de donnés et statistique

K. Medjaher-&-n.-zerhouni and A. Mechraoui, Bayesian based fault diagnosis : application to an electrical motor, 2008.

V. Venkatasubramanian, R. Vaidyanathan, and Y. Yamamoto, Process fault detection and diagnosis using neural networks -I. steady-state processes, Computers & Chemical Engineering, vol.14, issue.7, pp.699-712, 1990.

A. Widodo and B. S. Yang, Support vector machine in machine monitoring and fault diagnosis. Mechanical Systems and Signal Processing 21, pp.2560-2574, 2007.

L. H. Chiang, E. L. Russell, and R. D. Braatz, Fault detection and diagnosis in industrial systems, Advanced Textbooks in Control and Signal Processing, 2001.

R. B. Randall, Frequency Analysis. Bruel & Kjaer, 1987.

N. Y. Steiner, D. Hissel, P. Moçotéguy, and D. Candusso, Non intrusive diagnosis of polymer electrolyte fuel cells by wavelet packet transform, International Journal of Hydrogen Energy, vol.36, issue.1, pp.740-746, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01221045

G. Hinds, In situ diagnostics for polymer electrolyte membrane fuel cells, Current Opinion in Electrochemistry, vol.5, issue.1, pp.11-19, 2017.

M. Jouin, R. Gouriveau, D. Hissel, M. Pera, and N. Zerhouni, Prognostics and Health Management of PEMFC : State of the art and remaining challenges, International Journal of Hydrogen Energy, vol.38, issue.35, pp.15307-15317, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00872866

J. Wu, X. Z. Yuan, H. Wang, M. Blanco, J. J. Martin et al., Diagnostic tools in PEM fuel cell research : Part I Electrochemical techniques, International Journal of Hydrogen Energy, vol.33, issue.6, pp.1735-1746, 2008.

L. S. Martins, J. E. Gardolinski, J. V. Vargas, J. C. Ordonez, S. C. Amico et al., The experimental validation of a simplified PEMFC simulation model for design and optimization purposes, Applied Thermal Engineering, vol.29, issue.14, pp.3036-3048, 2009.

K. Tüber, D. Pócza, and C. Hebling, Visualization of water buildup in the cathode of a transparent PEM fuel cell, Journal of Power Sources, vol.124, issue.2, pp.403-414, 2003.

T. Suzuki, Y. Tabuchi, S. Tsushima, and S. Hirai, Measurement of water content distribution in catalyst coated membranes under water permeation conditions by magnetic resonance imaging, International Journal of Hydrogen Energy, vol.36, issue.9, pp.5479-5486, 2011.

T. Hamaz, C. Cadet, F. Druart, and G. Cauffet, Diagnosis of PEM fuel cell stack based on magnetic fields measurements, IFAC Proceedings Volumes, vol.47, pp.11482-11487, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00982658

B. Legros, P. Thivel, Y. Bultel, M. Boinet, and R. P. Nogueira, Acoustic emission : Towards a real-time diagnosis technique for proton exchange membrane fuel cell operation, Journal of Power Sources, vol.195, issue.24, pp.8124-8133, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01887937

R. Satija, D. L. Jacobson, M. Arif, and S. A. Werner, In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells, Journal of Power Sources, vol.129, issue.2, pp.238-245, 2004.

P. Pei, Y. Li, H. Xu, and Z. Wu, A review on water fault diagnosis of PEMFC associated with the pressure drop, Applied Energy, vol.173, pp.366-385, 2016.

F. Barbir, H. Gorgun, and X. Wang, Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells, Journal of Power Sources, vol.141, issue.1, pp.96-101, 2005.

J. Chen and B. Zhou, Diagnosis of PEM fuel cell stack dynamic behaviors, Journal of Power Sources, vol.177, issue.1, pp.83-95, 2008.

J. O'rourke, M. Ramani, and M. Arcak, In situ detection of anode flooding of a PEM fuel cell, International Journal of Hydrogen Energy, vol.34, issue.16, pp.6765-6770, 2009.

M. A. Rubio, K. Bethune, A. Urquia, and J. St-pierre, Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise, International Journal of Hydrogen Energy, vol.41, issue.33, pp.14991-15001, 2016.

Z. Li, R. Outbib, S. Giurgea, D. Hissel, S. Jemei et al., Online implementation of SVM based fault diagnosis strategy for PEMFC systems, Applied Energy, vol.164, pp.284-293, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02004078

S. M. Niya and M. Hoorfar, Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique -A review, Journal of Power Sources, vol.240, pp.281-293, 2013.

W. Merida, D. A. Harrington, J. M. Le-canut, and G. Mclean, Characterisation of proton exchange membrane fuel cell (PEMFC) failures via electrochemical impedance spectroscopy, Journal of Power Sources, vol.161, pp.264-274, 2006.

C. Brunetto, A. Moschetto, and G. Tina, PEM fuel cell testing by electrochemical impedance spectroscopy. Electric Power Systems Research, vol.79, pp.17-26, 2009.

J. O'rourke, M. Ramani, and M. Arcak, Using electrochemical impedance to determine airflow rates, International Journal of Hydrogen Energy, vol.33, issue.17, pp.4694-4701, 2008.

X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang et al., AC impedance diagnosis of a 500W PEM fuel cell stack : Part I : Stack impedance, J. Power Sources, vol.161, issue.2, pp.920-928, 2006.

X. Yuan, C. Jian, H. Sun, J. Wang, and . Zhang, AC impedance diagnosis of a 500W PEM fuel cell stack : Part II : Individual cell impedance, Journal of Power Sources, vol.161, issue.2, pp.929-937, 2006.

J. M. Le-canut, R. M. Abouatallah, and D. A. Harrington, Detection of membrane drying, fuel cell flooding, and anode catalyst poisoning on PEMFC stacks by electrochemical impedance spectroscopy, J. Electrochem. Soc, vol.153, pp.857-864, 2006.

A. Miege, F. Steffen, T. Luschtinetz, S. Jakubith, and M. Freitag, Real Time Water Detection for Adaptive Control Strategy in Pemfc-systems, WHEC 2012 Conference Proceedings -19th World Hydrogen Energy Conference, vol.29, pp.431-437, 2012.

S. J. Andreasen, J. R. Vang, and S. K. Kaer, High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy, International Journal of Hydrogen Energy, vol.36, issue.16, pp.9815-9830, 2009.

K. R. Cooper and M. Smith, Electrical test methods for on-line fuel cell ohmic resistance measurement, Journal of Power Sources, vol.160, pp.1088-1095, 2006.

M. Becherif, M. Péra, D. Hissel, and Z. Zheng, Determination of the health state of fuel cell vehicle for a clean transportation, Journal of Cleaner Production, vol.171, pp.1510-1519, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02130113

D. Hissel and M. C. Pera, Diagnostic and health management of fuel cell systems : Issues and solutions, Annual Reviews in Control, vol.42, pp.201-211, 2016.

Z. Zheng, R. Petrone, M. C. Pera, D. Hissel, M. Becherif et al., A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems, International Journal of Hydrogen Energy, vol.38, issue.21, pp.8914-8926, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00906703

Z. Li, R. Outbib, D. Hissel, and S. Giurgea, Data-driven diagnosis of PEM fuel cell : A comparative study, Control Engineering Practice, vol.28, pp.1-12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01113297

Z. Li, R. Outbib, S. Giurgea, D. Hissel, and Y. Li, Fault detection and isolation for Polymer Electrolyte membrane Fuel Cell systems by analyzing cell voltage generated space, Applied Energy, vol.148, pp.260-272, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02004071

Z. Li, R. Outbib, S. Giurgea, and D. Hissel, Diagnosis for PEMFC systems : A datadriven approach with the capabilities of online adaptation and novel fault detection, IEEE Transactions on Industrial Electronics, vol.62, issue.8, pp.5164-5174, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02004105

Z. Li, R. Outbib, S. Giurgea, D. Hissel, A. Giraud et al., Fault diagnosis for fuel cell systems : A data-driven approach using high-precise voltage sensors, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02130793

P. Singh and D. Reisner, Fuzzy Logic-Based State-of-Health Determination of PEM Fuel Cells

J. Hua, J. Li, M. Ouyang, L. Lu, and L. Xu, Proton exchange membrane fuel cell system diagnosis based on the multivariate statistical method, International Journal of Hydrogen Energy, vol.36, issue.16, pp.9896-9905, 2009.

M. Ibrahim, U. Antoni, N. Steiner, S. Jemei, C. Kokonendji et al., Signal-based diagnostics by wavelet transform for proton exchange membrane fuel cell, The International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability TMREES15, vol.74, pp.1508-1516, 2015.

E. Pahon, N. Steiner, S. Jemei, D. Hissel, and P. Moçotéguy, A signal-based method for fast PEMFC diagnosis, Applied Energy, vol.165, pp.748-758, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02130958

R. Petrone, Z. Zheng, D. Hissel, M. C. Pera, C. Pianese et al., A review on model-based diagnosis methodologies for PEMFCs, International Journal Of Hydrogen Energy, vol.38, pp.7077-7091, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00906701

N. Steiner, D. Hissel, P. Moçotéguy, and D. Candusso, Diagnosis of polymer electrolyte fuel cells failure modes (flooding and drying out) by neural networks modeling, International Journal of Hydrogen Energy, vol.36, issue.4, pp.3067-3075, 2011.

N. Fouquet, C. Doulet, C. Nouillant, G. Dauphin-tanguy, and B. Ould-bouamama, Model based PEM fuel cell state-of-health monitoring via ac impedance measurements, Journal of Power Sources, vol.159, pp.905-913, 2006.

M. Shao, X. Zhu, H. Cao, and H. Shen, An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system, Energy, vol.67, pp.268-275, 2014.

S. Lira, V. Puig, and J. Quevedo, Robust LPV model-based sensor fault diagnosis and estimation for a PEM fuel cell system, Control and Fault-Tolerant Systems (SysTol), 2010 Conference on, pp.819-824, 2010.

S. Lira, V. Puig, J. Quevedo, and A. Husar, LPV observer design for PEM fuel cell system : Application to fault detection, Journal of Power Sources, vol.196, issue.9, pp.4298-4305, 2010.

. Bibliographie,

D. Hissel, M. C. Pera, and J. M. Kauffmann, Diagnosis of automotive fuel cell power generators, Journal of Power Sources, vol.128, pp.239-246, 2004.

C. Lebreton, M. Benne, C. Damour, N. Yousfi-steiner, B. Grondin-perez et al., Fault Tolerant Control Strategy applied to PEMFC water management, International Journal of Hydrogen Energy, vol.40, issue.33, pp.10636-10646, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221979

L. A. Riascos, F. G. Cozman, P. E. Miyagi, and M. G. Simoes, Bayesian Network Supervision on Fault Tolerant Fuel Cells, Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the, vol.2, pp.1059-1066, 2006.

L. A. Riascos, M. G. Simoes, and P. E. Miyagi, A bayesian network fault diagnostic system for proton exchange membrane fuel cells, Journal of Power Sources, vol.165, issue.1, pp.267-278, 2007.

L. A. Riascos, M. G. Simoes, and P. E. Miyagi, On-line fault diagnostic system for proton exchange membrane fuel cells, Journal of Power Sources, vol.175, issue.1, pp.419-429, 2008.

M. Ciureanu and R. Roberge, Electrochemical impedance study of PEM fuel cells. Experimental diagnostics and modeling of air cathode, J. Phys. Chem. B, vol.105, pp.3531-3539, 2001.

F. Nandjou, J. Poirot-crouvezier, M. Chandesris, and Y. Bultel, A physic-based model to predict the local current and temperature in PEMFCs at the cell scale, Proceedings for the 6th international conference on Fundamentals and Development of Fuel Cells, 2015.

C. Robin, M. Gérard, J. Arbigny, P. Schott, L. Jabbour et al., Development and experimental validation of a PEM fuel cell 2d-model to study heterogeneities effects along large-area cell surface, Int. J. Hydrogen Energy, vol.40, issue.32, pp.10211-10230, 2015.

J. Poirot-crouvezier, Modélisation dynamique des phénomènes hydrauliques, thermiques et électriques dans un groupe électrogène à pile à combustible destiné à l'application automobile, 2000.

Y. Liu, M. Murphy, D. Baker, W. Gu, C. Ji et al., Determination of electrode sheet resistance in cathode catalyst layer by ac impedance, ECS Transactions, vol.11, issue.1, pp.473-484, 2007.

M. Chandesris, C. Robin, M. Gerard, and Y. Bultel, Investigation of the difference between the low frequency limit of the impedance spectrum and the slope of the polarization curve, Electrochimica Acta, vol.180, pp.581-590, 2015.

O. Antoine, Y. Bultel, and R. Durand, Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside nafion, Journal of Electroanalytical Chemistry, vol.499, pp.85-94, 2001.

Y. Bultel, L. Genies, O. Antoine, P. Ozil, and R. Durand, Modeling impedance diagrams of active layers in gas diffusion electrodes : diffusion, ohmic drop effects and multistep reactions, Journal of Electroanalytical Chemistry, vol.527, pp.143-155, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00418106

S. K. Roy, M. E. Orazem, and B. Tribollet, Interpretation of low-frequency inductive loops in PEM fuel cells, Journal of the Electrochemical Society, vol.154, issue.12, p.61, 2007.

I. Pivac, D. Bezmalinovi?, and F. Barbir, Catalyst degradation diagnostics of proton exchange membrane fuel cells using electrochemical impedance spectroscopy, International Journal of Hydrogen Energy, vol.43, issue.29, pp.13512-13520, 2018.

L. Mao, L. Jackson, and T. Jackson, Investigation of polymer electrolyte membrane fuel cell internal behaviour during long term operation and its use in prognostics, Journal of Power Sources, vol.362, pp.39-49, 2017.

M. Gerard, C. Robin, M. Chandesris, and P. Schott, Polymer Electrolyte Fuel Cells Lifetime Prediction By a Full Multi-Scale Modeling Approach, vol.75, pp.35-43, 2016.

S. H. Frensch, A. C. Olesen, S. S. Araya, and S. K. Kaer, Model-supported characterization of a PEM water electrolysis cell for the effect of compression, Electrochimica Acta, vol.263, pp.228-236, 2018.