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RÉSUMÉ DÉTAILLÉ

Ce chapitre résume le contenu de cette thèse d’une manière brève avec des détails per-

tinents. Nous décrivons ici les problèmes liés à la commande active du bruit, ainsi que

les différentes approches et propositions faites dans cette étude pour sa résolution. La

première section décrit le banc d’essai utilisé pour effectuer les tests et les essais pertinents à

ce travail. Ensuite, la méthodologie utilisée pour la modélisation du système requise dans le

processus de conception des contrôleurs est décrite. Les sections suivantes décrivent les études

proposées dans les configurations de feedback (rétroaction) et de feedforward (précompensa-

tion) pour le contrôle actif du bruit. Enfin, une dernière section présente les contributions et

conclusions pertinentes de ce travail.

1.1 Introduction

1.1.1 Motivation

Sans entrer dans la théorie avancée ou approfondir les détails, les principes de base du contrôle

actif du bruit (ANC) seront exposés et expliqués dans cette section. Quelques exemples de base

seront donnés pour énoncer le problème de contrôle qui sera associé à notre recherche. Tout ceci

est destiné à être présenté dans le contexte de notre travail.

Une des toutes premières mentions sur l’ANC a été faite par Henri Coandă dans les documents

d’un brevet français en 1930 [Coanda, 1930]. Quelques années plus tard, Paul Lueg a fait quelque

chose de similaire dans son travail et l’a mentionné dans un brevet [Lueg, 1934]. Quelque temps

plus tard, le terme est apparu dans une publication de Harry F. Olson [Olson and May, 1953],

cette fois dans un article de journal. En résumé, le problème à résoudre dans leur travail est

celui de couper le son et de supprimer un bruit entrant d’une source donnée, en utilisant un
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microphone pour les mesures, et l’ensemble formé d’un amplificateur et d’un haut-parleur pour

agir comme un actionneur. On a constaté que dans ces conditions, si les systèmes proposés étaient

capables de créer des ondes sonores avec des caractéristiques de fréquence similaires à celles

du bruit, mais avec un décalage de phase de 180◦, il était alors possible d’annuler les bruits

dans la région d’action des ondes sonores produites par le haut-parleur. Par exemple, l’une des

utilisations proposées de cette théorie est d’appliquer le système ANC près d’un opérateur de

machines bruyantes et de moteurs d’avions pour réduire le bruit qu’ils produisent.

Dans ce domaine de recherche, trois approches différentes de contrôle actif du bruit sont

considérées pour contrer le bruit, comme mentionné dans [Snyder, 2000] : celles avec un com-

portement passif, celles avec ce que nous pouvons appeler une action semi-active et enfin celles

avec une action pleinement active. L’approche passive, qui est la plus courante, consiste prin-

cipalement en l’utilisation de matériaux et de géométries aux caractéristiques spécifiques afin

d’isoler et d’amortir les effets des bruits, lorsque aucun algorithme de contrôle n’est impliqué.

Les avantages de cette technique sont la simplicité d’application dans les systèmes, avec une

robustesse inhérente en termes de contrôle, et un excellent rapport coût-bénéfice dans la plupart

des cas. Comme on pouvait s’y attendre, les inconvénients de l’utilisation d’une telle approche ont

été constatés lors de l’atténuation des très basses fréquences. Cette approche se caractérise par un

manque de flexibilité en termes de contrôle, ainsi que l’absence d’adaptation aux caractéristiques

changeantes de l’environnement et une dépendance à la dynamique physique et naturelle du

système. L’exemple le plus simple de l’insonorisation passive peut être vu dans l’isolation avec de

la mousse haute densité utilisée dans les tuyaux et les murs des bâtiments. Le résonateur de

Helmholtz, décrit dans [Olson and May, 1953, Fleming et al., 2007], est un exemple plus complexe,

mais toujours un exemple de ce concept.

La seconde approche est dite semi-active, car elle ne nécessite pas d’énergie supplémentaire

au système lui-même, mais elle utilise les informations acquises pour modifier les caractéristiques

des actionneurs passifs. Cette conceptualisation requiert plus d’éléments impliqués dans son fonc-

tionnement, comme un capteur ou un transducteur pour recueillir certaines informations données

du système. Cela présente l’avantage d’être plus flexible aux changements de la dynamique du

système, néanmoins la complexité de la mise en œuvre et les coûts augmentent considérablement.

Suivant l’exemple de l’approche précédente, il existe des modèles de résonateurs de Helmholtz

capables de modifier les dimensions de la chambre de résonance et donc de s’adapter entre une

plage de fonctionnement déterminée à sa fréquence propre, comme le montrent [de Bedout et al.,

1997] et [Matsuhisa et al., 1992].

Finalement, notre principal intérêt réside dans la troisième et dernière approche dans

laquelle l’intégralité de ce travail est incluse, le contrôle actif. Cette implémentation présente une

différence notable par rapport aux deux dernières options, car elle utilise des actionneurs qui

constituent une source d’énergie supplémentaire et externe au système lui-même. Ceci permet de

satisfaire différents objectifs. En ce qui concerne plus spécifiquement le contrôle actif du bruit

2
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(ANC), le domaine fréquentiel d’intérêt couvre le spectre audible humain moyen des fréquences,

approximativement entre 20 Hz et 20000 Hz. Les approches passives, pour des raisons physiques,

sont plus adaptées pour l’atténuation des hautes fréquences [Olson and May, 1953, Fuller and

von Flotow, 1995, Elliott, 2001]. Ceci ouvre une fenêtre d’opportunités pour les ANC, d’agir dans

le domaine des basses fréquences, où aucune autre approche ne peut fonctionner.

Parmi les nombreux exemples et utilisations de ces théories, l’un des exemples les plus

courants dans les applications de la vie réelle est celui des écouteurs avec des capacités de réduc-

tion du bruit ambiant pour une meilleure qualité audio et expérience sonore. Pour ce faire, on

mesure le bruit ambiant à l’aide d’un microphone intégré et on utilise cette information acquise

par le biais d’un algorithme de commande et du haut-parleur interne comme actionneur. La

Figure 1.1 détaille ce système. Dans le cas idéal, le signal ajouté doit être de même amplitude et

avec un déphasage de 180◦ (négatif) afin d’annuler complètement le bruit gênant. Des présen-

tations détaillées peuvent être trouvées dans les articles et documents de [Elliott and Nelson,

1993, Fuller and von Flotow, 1995, Guicking, 2007].

FIGURE 1.1. Atténuation externe du bruit dans les écouteurs grâce à un contrôle actif
du bruit.

1.1.2 Description du Problème

La base de ce travail a d’abord été établie dans les études réalisées par Aurelian Constantinescu

dans [Constantinescu, 2001], où le cas du contrôle actif des vibrations a été exposé. Par la suite,

des travaux réalisés par Alma, Airimitoaie [Alma, 2011, Airimiţoaie, 2012] et plus récemment

Castellanos [Silva, 2014] ont également été développés dans le domaine du contrôle des vibrations.

Mais il existe des similitudes entre vibrations mécaniques et acoustiques, car ce sont deux

phénomènes physiques qui peuvent être décrits par des ondes mécaniques, agissant simplement

dans différents environnements. Chacun de ces travaux disposait de bancs d’essais adaptés à

l’émulation de divers systèmes vibratoires mécaniques. Dans les conditions établies pour ces

projets, des théories ont été élaborées et mises à l’essai sur les bancs d’essai.
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Par exemple, il y a des études faites dans [Constantinescu and Landau, 2003] où un banc

d’essai de système de suspension active est utilisé pour l’application des théories sur lesquelles

cette thèse est basée. Dans [Alma et al., 2012] et [Landau et al., 2011a], nous pouvons trouver

les applications de suivi de ces théories faites par Alma sur un autre banc de test. Une relation

étroite entre les travaux décrits dans cette thèse est toujours présente parmi les études déjà

réalisées, ainsi que les travaux en cours réalisés à ce stade par Airimiţoaie, vus dans [Airimiţoaie

et al., 2011, Airimitoaie and Landau, 2016].

Il est remarquable de constater qu’il existe un vaste champ d’étude autour des AVC, et qu’il

existe de nombreuses approches différentes ; néanmoins l’un des principaux objectifs de cette

thèse est de garder trace de ces études spécifiques et de suivre le travail qui y est fait. Une fois

les similitudes et les bases énoncées, l’objectif est alors de focaliser la somme des efforts réalisés

dans le domaine ANC.

1.1.3 Configuration du système de contrôle

La Figure 1.2 représente un système de contrôle actif du bruit, ainsi qu’un contrôle actif des vi-

brations, qui envisage l’utilisation des compensateurs de feedback (rétroaction) et de feedforward

(précompensation). Ce système peut être décrit comme un système à deux entrées, deux sorties.

La première entrée correspond à la perturbation ou Disturbance s(t), avec des caractéristiques

inconnues et engendrée par une source non identifiée. La deuxième entrée peut être appelée

signal de commande u(t), soit la somme des signaux de commande de sortie individuels du

régulateur feedback K , et du compensateur feedforward N, u f b(t) et u f f (t) respectivement. Les

sorties de ce système seront celles obtenues à partir des mesures, puisque la première sortie

correspond au Bruit Résiduel y(t) du système, et la seconde sortie correspond à l’Image de la

Perturbation v(t). Dans notre cas, toutes les deux sont obtenues avec des microphones. Comme le

montre la Figure 1.2, la voie qui transmet la perturbation s(t) au bruit résiduel y(t) est définie

comme voie primaire. De la même façon, la voie secondaire est définie comme la voie qui transmet

le signal de commande u(t) au bruit résiduel y(t). En tant que tel, le bruit résiduel est défini

comme la somme de la sortie de la voie primaire, la perturbation p(t), et de la sortie de la voie

secondaire, désignée par z(t).

Dans les systèmes de contrôle actif du bruit et de contrôle actif des vibrations, un effet

secondaire appelé couplage positif interne est présent en raison du signal de contrôle u(t). Le fait

que les effets du signal de commande u(t) sont distribués omnidirectionnellement à travers le

système indique que cela aura également un effet sur les mesures v(t), destinées à recueillir une

information en corrélation avec la perturbation. Ce phénomène représente un couplage entre le

signal de commande u(t) et les mesures v(t). Cette voie est appelée emphvoie inverse (reverse

path), et ce couplage correspond à une retroaction positive interne. Il s’agit là d’un élément crucial

dans le développement de la théorie de la commande par anticipation, car ses effets peuvent

déstabiliser le système s’ils ne sont pas correctement pris en compte. Enfin, la voie entre la
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perturbation s(t) et les mesures à v(t) est appelée la voie image. Ainsi, nous pouvons affirmer que

les mesures v(t) sont formées par la somme de la sortie de la voie inverse, définie comme x(t) et

de la sortie de la voie image, définie comme l’ image de la pertubation pi(t).

Conformément à la terminologie de la théorie du contrôle, nous définirons la sortie y(t) du

système comme variable de performance, habituellement dénotée e(t). Dans ce contexte, nous

définissons notre objectif comme celui de minimiser le signal résultant e(t) (au sens d’un certain

critère), en compensant avec le signal de commande u(t), calculé à partir des mesures y(t) et v(t).

s(t)

+ Compensateur

Feedforward

Voie
Reverse

+
+

Voie
Primaire

Voie
Image

 
u(t) Voie

Secondaire

+

+ y(t)

p(t)

Compensateur

Feedback

-

p (t)i

  

u  (t)ff

u  (t)fb

v(t) z(t)

x(t)

 

FIGURE 1.2. Représentation bloc-diagramme du problème de commande combiné de
Feedback et Feedforward.

Les mesures du système peuvent être représentées sous forme vectorielle, telle que Y (t) =
[v(t), y(t)]T . De la même manière, en utilisant la notaion K pour le régulateur feedback et N pour

le compensateur feedforward, nous pouvons les les représenter sous forme vectorielle telle que

κ= [N,−K]T . On peut donc définir le signal de commande comme suit :

(1.1) u(t)= u f f −u f b = N ·v(t)−K · y(t)= κT ·Y (t).

Les notations utilisées pour les différentes parties du système sont : D correspond à la voie

primaire, G est conçue comme la voie secondaire, W représente la voie image et M symbolise le

voie inverse. Compte tenu de ces dénominations, nous pouvons redéfinir la figure 1.2, comme le

montre la Figure 1.3.

1.2 Le Banc d’Essai

L’application des algorithmes et des théories développés dans le domaine du contrôle actif du

bruit est une étape fondamentale, puisque les modèles sont basés sur des approximations de

systèmes décrits par des équations au dérivées partielles et ont un comportement non linéaire.

Cette condition inhérente crée un écart entre les résultats théoriques attendus et ceux que nous

pouvons rencontrer dans des applications réelles. C’est pourquoi l’une des meilleures approches

5



CHAPTER 1. RÉSUMÉ DÉTAILLÉ

s(t)

+
+

+

D

W M

G
u(t)

+

+ y(t)

p(t)

-
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u  (t)ff

u  (t)fb

v(t) z(t)

x(t)

 

N

K

FIGURE 1.3. Schéma de diagramme de bloc du problème de commande combiné de
feedback et de feedforward.

consiste à mettre à l’essai la théorie élaborée dans un environnement contrôlé, d’où la nécessité

de concevoir un banc d’essai pour nos études.

Différentes approches existent lorsque l’on parle de systèmes et d’environnements de test pour

le contrôle actif du bruit, comme dans [Venugopal and Bernstein, 2000, Cocchi et al., 2000, Hu

and Lin, 2000, Bordeneuve-Guibé and Nistor, 2002], pour n’en citer que quelques-uns. Compte

tenu de tout cela, il a été décidé d’adopter une approche légèrement différente de ce qui a été fait

jusqu’à présent. Il a été choisi, comme conception générale, un environnement fermé avec un

point initial fermé inhérent pour la source des perturbations agissant dans le système, et une

limite ouverte à son extrémité.

Au départ, le système est conçu comme une section de conduit de distribution d’air idéalisé,

comme ceux que l’on trouve dans les environnements industriels réels. Donnons, à titre d’exemple,

une machinerie ou un équipement donné fonctionnant près d’une conduite de distribution d’air

climatisé, qui est suffisamment près de la salle d’un bureau de l’installation pour être entendu.

L’isolation passive qu’un mur et ses matériaux assurent est limitée, et les conduits fournissent

un mode de transmission non isolé pour ces bruits. A titre d’exemple, nous pouvons voir le travail

effectué par [Zeng and de Callafon, 2006].

Plusieurs configurations ont été utilisées au cours de cette thèse. À titre d’exemple, la première

configuration est expliquée ici.

Les dimensions des composants et pièces utilisés dans cette première configuration se trouvent

dans la Figure 1.4. Nous pouvons voir l’angle de 45° formé par le haut-parleur de contrôle, marqué

(2) dans les Figures 3.3 et 1.6, et sa connexion au corps principal du banc de test. L’image de la

Figure 1.5 montre le banc d’essai réel. Quatre éléments importants y sont représentés :

(1) Haut-parleur de perturbation, utilisé comme source artificielle de bruits. Peut reproduire une

variété de perturbations avec des caractéristiques spécifiques. Utilisé pour alimenter le sys-

tème avec des perturbations qui vont de simples signaux sinusoïdaux à des enregistrements

audio dans des environnements réels.
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(2) Haut-parleur du contrôleur, utilisé comme actionneur pour le signal de contrôle introduit

dans le système par les algorithmes de commande. Il est connecté individuellement aux

ordinateurs, ce qui signifie qu’il dispose de connecteurs et d’amplificateurs indépendants

comme il le serait dans un système réel.

(3) Microphone des bruits résiduels, situé à l’extrémité ouverte du système et utilisé pour recueil-

lir et enregistrer les données de mesure de la sortie du système. Les informations acquises

par ce microphone sont mesurées en temps réel et utilisées dans des algorithmes feedback ou

feedforward.

(4) Microphone de l’image, situé le plus près possible de la source de perturbation afin d’obtenir

une première impression ou image de la perturbation avant qu’elle ne traverse le système.

Ce second capteur ne peut être utilisé que pour les algorithmes avec une configuration en

feedforward.

1.34 m
1.26 m

0.80 m
0.66 m

0.12 m

0.21 m

45
o

45
o

⌀0.10	m

⊣⊢0.002	m

FIGURE 1.4. Première configuration du banc d’essai expérimental.

La Figure 1.6 présente les mêmes éléments dans une représentation plus schématique. Ici,

nous pouvons voir inclus à la fois le PC de développement et le PC cible, utilisés pour développer

les algorithmes et leur application directe sur le banc d’essai. Plus important encore, nous

définissons pour la première fois la nomenclature utilisée tout au long de la thèse pour les

différents signaux trouvés dans nos schémas. Tout d’abord nous avons y(t) comme le Bruit

résiduel, qui est acquis par des mesures du microphone du bruit résiduel et envoyé au PC

cible. C’est le signal qu’un contrôleur testé vise à atténuer. Le deuxième en importance est u(t),

qui est le signal de contrôle. Il est calculé dans le PC cible et appliqué dans le système via

un amplificateur de puissance connecté au haut-parleur du contrôleur. Indépendamment des

différents algorithmes de calcul, un signal s(t) est défini comme la perturbation. Il est appliqué
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FIGURE 1.5. Photo de la première configuration du banc d’essai.

dans le système par l’intermédiaire d’un deuxième amplificateur indépendant connecté au haut-

parleur de la perturbation. Finalement, v(t) est le signal image de la perturbation, et n’est utilisé

que pour les configurations de type feedforward.

En tant que partie fondamentale de notre approche, nous définissons maintenant les trajec-

toires internes ou chemins à l’intérieur du système. La voie située entre la source de perturbation

située en (1) et le point où le bruit résiduel est mesuré, situé en (3), est appelé Voie Primaire.

Cette voie ainsi appelée est utile pour recréer la dynamique du système dans une simulation.

Plus important est le chemin situé entre le haut-parleur du contrôleur en (2) et le point où le

bruit résiduel est mesuré en (3). Ce chemin qui s’appelle Voie Secondaire est crucial dans la

conception des contrôleurs.

Puisque nous travaillons dans un environnement à temps discret, étant donné la fréquence

de coupure du système, une fréquence d’échantillonnage fs = 2500Hz a été choisie. Nous pouvons

maintenant décrire le système en nous basant sur un contrôleur feedback standard RST.

Dans ce cas, le système peut être décrit plus en détail par le diagramme donné dans la

Figure 1.7, où nous avons le modèle des voies primaire et secondaire donné en temps discret tel

que,

(1.2) G(q−1)= q−dG BG(q−1)
AG(q−1)

définit la voie secondaire G avec un retard pur donné par dG , et le contrôleur K est défini comme,

(1.3) K(q−1)= R(q−1)
S(q−1)

.
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FIGURE 1.6. Schéma de la première configuration du banc d’essai.

Dans le cas des simulations, nous aurons aussi besoin d’avoir le modèle du chemin primaire,

défini comme D de la même manière, de telle sorte que,

(1.4) D(q−1)= q−dD BD(q−1)
AD(q−1)

.

De cette manière, nous définissons le bruit résiduel comme suit

(1.5) y(t)=G(q−1) ·u(t)+ p(t),

et le signal de commande comme

(1.6) u(t)=−K(q−1) · y(t),

avec p(t) comme les perturbations affectant le système (à ne pas confondre avec le signal de

perturbation s(t) envoyé par le PC cible).

1.3 Identification du Modèle

Étant donné que nous avons besoin de la connaissance de la voie secondaire à des fins de

conception de contrôle, nous avons choisi une méthodologie d’identification de modèle à partir

des données expérimentales. L’identification des systèmes est une approche expérimentale pour

déterminer le modèle dynamique d’un système. Elle comprend quatre étapes :
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FIGURE 1.7. Schéma de commande Feedback.

1. Acquisition des données d’entrée-sortie dans le cadre d’un protocole expérimental et pré-

traitement des données.

2. Estimation de la complexité de la structure du modèle.

3. Estimation des paramètres du modèle.

4. Validation du modèle identifié à la fois pour la complexité du modèle et pour les valeurs des

paramètres.

Une opération d’identification complète doit comporter les quatre étapes indiquées ci-dessus.

Le signal d’excitation d’entrée typique est une Séquence binaire pseudo-aléatoire PRBS, qui est

un signal d’excitation persistant permettant une estimation unique des paramètres même pour

les systèmes d’ordre supérieur. Le type de modèle à identifier est un modèle paramétrique à

temps discret, qui permet de concevoir un algorithme de contrôle facilement implémentable sur

un ordinateur. La validation du modèle est le dernier point clé. Il est important de souligner qu’il

n’existe pas un seul algorithme qui puisse fournir un bon modèle dans tous les cas (c’est-à-dire

qui passe les tests de validation du modèle). L’identification du système doit être considérée

comme un processus itératif dont l’objectif est d’obtenir un modèle qui réussit l’essai de validation

du modèle et qui peut ensuite être utilisé en toute sécurité pour la conception des contrôleurs. La

procédure sera détaillée pour une identification de la voie secondaire de la première configuration

du système G. La même méthodologie a également été utilisée pour l’identification de la voie

inverse M (voie entre le signal de commande et la mesure de l’image de la perturbation), utilisée
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dans l’approche feedforward. Par la suite, les voies primaire et d’image, D et W, ont également

été identifiées de la même manière, bien qu’elles n’aient été utilisées que pour des simulations.

1.3.1 Acquisition des Données

Le système doit d’abord être excité avec un signal d’entrée riche en fréquences. Le protocole

expérimental doit assurer une excitation persistante pour le nombre de paramètres à estimer. Il

existe plusieurs méthodes pour y parvenir, néanmoins il a été montré dans [Ljung, 1999], que

pour identifier 2n paramètres, le signal d’excitation doit contenir au moins n+1 sinusoïdes de

fréquences distinctes. Pour aller au-delà de cette contrainte, lors des tests effectués à l’occasion

de ce travail, la version en temps discret d’un signal de bruit blanc, appelé Séquence Binaire

Pseudo-Aléatoire. (PRBS), a été utilisée car elle contient un grand nombre de sinusoïdes dont

l’énergie est également répartie sur le domaine fréquentiel. De plus, l’amplitude du signal

est constante, ce qui permet une sélection facile par rapport à la contrainte d’amplitude sur

l’entrée de l’installation. Les séquences binaires pseudo-aléatoires sont des signaux d’impulsions

rectangulaires modulées en largeur qui varient de façon aléatoire, mais qui ont une longueur

finie et se répètent périodiquement à long terme, donc pseudo-aléatoires.

L’un des points-clés est la conception d’une PRBS afin de satisfaire un compromis entre la

gamme de fréquences à couvrir, en particulier dans la région des basses fréquences, et la durée

du test. Il faut appliquer au moins une séquence complète de PRBS, et ses caractéristiques, y

compris sa durée, dépendront du nombre de cellules dans les registres utilisés pour sa génération.

Les PRBS sont engendrées par des registres à décalage avec feedback. La longueur maximale

d’une séquence est L = 2N −1, où N est le nombre de cellules du registre à décalage. Afin de

couvrir tout le spectre de fréquence engendré par une PRBS particulière, la longueur d’un test

doit être au moins égale à celle de la séquence.

L’amplitude de la PRBS doit aussi être prise en compte. Bien que la valeur choisie pour cette

grandeur puisse être très faible, elle devrait entraîner des variations de sortie plus importantes

que le niveau de bruit résiduel. Si le rapport signal/bruit est trop faible, la longueur d’essai doit

être augmentée afin d’obtenir une estimation satisfaisante des paramètres. A noter que dans

un grand nombre d’applications, l’augmentation significative du niveau de la PRBS peut être

indésirable compte tenu du caractère non linéaire des systèmes à identifier, comme dans notre

cas, car il s’agit d’identifier un modèle linéaire autour d’un point de fonctionnement.

1.3.2 Estimation de la Complexité

Il est extrêmement important de pouvoir estimer l’ordre du système à partir des données

d’entrée/sortie, car il est difficile d’en obtenir une estimation fiable à partir du raisonnement

physique. La sortie mesurée de l’installation est en général contaminée par le bruit. Ceci est

dû soit à l’effet de perturbations aléatoires agissant en différents points de l’installation, soit

à des bruits de mesure, soit à une (des) dynamique(s) du système non modélisée(s). Une façon
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courante de décrire ce phénomène est de définir le système comme le procédé + perturbations

G +η, donnant comme résultat y(t)=G(q−1)u(t)+η(t). Si on ajoute ces perturbations aléatoires

η, le système peut être représenté par une structure de type Auto-Regressive Moving Average

with external input (ARMAX) [Landau et al., 2016, Landau and Zito, 2006].

La Figure 1.8 montre la configuration du processus ARMAX considérée pour l’identification

de la voie secondaire, où u(t) est le signal envoyé au haut-parleur du contrôleur, y(t) est le bruit

résiduel mesuré en sortie du système, δ(t) est une source inconnue de perturbations définissant η

comme η(t)=O(q−1)δ(t).

+ +

																

					

FIGURE 1.8. Diagramme de processus ARMAX.

On peut donc définir la sortie du système perturbé comme suit :

(1.7) y(t)= q−dB(q−1)
A(q−1)

u(t)+ C(q−1)
A(q−1)

δ(t)=G(q−1)u(t)+O(q−1)δ(t),

dans laquelle le premier terme G(q−1) représente l’effet du contrôleur sur le système, et le second

terme O(q−1) concerne la somme des bruits de mesures.

Les polynômes A(q−1) et C(q−1) ont la forme

(1.8) A(q−1)= 1+
nA∑
k=1

akq−k = 1+a1q−1 +a2q−2 +·· ·+anA q−nA ,

et B(q−1) est défini comme suit

(1.9) B(q−1)=
nB∑

k=1
bkq−k = b1q−1 +b2q−2 +·· ·+bnB q−nB ,

où nB, nA, nC sont les ordres des polynômes A,B,C respectivement. La variable d correspond à

un retard pur entrée-sortie dans le système. Ainsi, d,nB,nA,nC sont les valeurs de commande

à estimer dans cette étape du processus. Pour simplifier, nous assignons alors arbitrairement

l’ordre de C(q−1) comme nC = nA, et définissons l’ordre estimé du système global comme n̂, avec

n̂ =max(nB +d,nA).
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1.3.3 Estimation des Paramètres

Les algorithmes utilisés pour l’estimation des paramètres dépendront des hypothèses faites sur

les caractéristiques de bruit des mesures η(t), qui doivent être confirmées par la validation du

modèle. Il est important de souligner qu’il n’existe pas de structure unique qui puisse décrire

toutes les situations rencontrées dans la pratique. De plus, il n’y a pas d’algorithmes d’estimation

des paramètres utilisables avec toutes les structures procédé + bruit possibles menant toujours

à des paramètres estimés non biaisés. C’est l’étape de validation qui permettra de décider quel

algorithme, et implicitement quel modèle de bruit, doit être utilisé.

Parmi les différents modèles, il a été constaté que le modèle ARMAX donne la meilleure

représentation dans ce cas, et entre les méthodes disponibles pour ce modèle, la méthode Output

Error with Extended Prediction (OEEPM), appelée XOLOE dans certaines publications [Landau

et al., 2016], donne les meilleurs résultats en matière de validation pour un modèle donné. Il

s’avère que le OEEPM peut être interprété comme une variante des moindres carrés étendus

(RELS) [Landau et al., 2016].

L’idée est d’identifier simultanément le modèle G(q−1) du système et le modèle de bruit

O(q−1), afin d’obtenir un erreur d’adaptation de prédiction qui soit asymptotiquement un bruit

blanc. En exprimant les polynômes en B(q−1)= q−1B∗(q−1), le modèle générant les données peut

être exprimé en:

y(t+1)=− A∗(q−1)y(t)+B∗(q−1)u(t−d)+C∗(q−1)δ(t)+δ(t+1)

=θTϕ0(t)+δ(t+1)
(1.10)

avec

θT =[a1,a2, . . . ,anA ,b1,b2, . . . ,bnB , c1, c2, . . . , cnC ],(1.11)

ϕT
0 (t)=[−y(t), . . . ,−y(t−nA +1),u(t−d), . . . ,u(t−d−nB +1),δ(t), . . . ,δ(t−nC +1)].(1.12)

Supposons que les paramètres sont connus et construisons un prédicteur qui donnera une

erreur de prédiction blanche:

(1.13) ŷ(t+1)=−A∗(q−1)y(t)y(t)+B∗(q−1)u(t−d)+C∗(q−1)δ(t).

De plus, comme le montre [Landau and Zito, 2006], ce prédicteur minimise E
{
[y(t+1)− ŷ(t+1)]2}

,

et ceci peut être manipulé pour implémenter un algorithme d’estimation (ou d’adaptation) de

paramètre récursif (PAA) comme celui utilisé et décrit dans [Landau et al., 2016].

1.3.4 Validation du Modèle

Le protocole d’identification considéré OEEPM appartient à la classe des méthodes basées sur le

blanchiment de l’erreur résiduelle, ce qui signifie que le prédicteur identifié ARMAX est optimal
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si l’erreur résiduelle ε(t)= y(t)− ŷ(t)= δ(t) est un bruit blanc. Si l’erreur de prédiction résiduelle

ε(t) est une séquence de bruit blanc, en plus d’obtenir des estimations de paramètres non biaisées,

cela signifie également que le modèle identifié donne la meilleure prédiction pour la sortie du

système dans le sens où il minimise la variance de ε(t). D’autre part, puisque l’erreur résiduelle

est un bruit blanc, elle n’est corrélée à aucune autre variable, alors toutes les corrélations entre

l’entrée et la sortie du système sont représentées par le modèle identifié et ce qui reste non

modélisé ne dépend pas de l’entrée u(t).

Avant de mettre en œuvre la méthode de validation, on suppose que I) la structure choisie est

correcte et représentative de la réalité, II) une méthode appropriée d’estimation des paramètres

pour la structure choisie a été utilisée, et III) les ordres polynomiaux nA,nB,nC et le retard d

ont été correctement choisis. Ensuite, l’erreur de prédiction ε(t) tend asymptotiquement vers un

bruit blanc, ce qui implique:

lim
t→∞E {ε(t)−ε(t− i)}= 0; i = 1,2, . . .

Soit ε(t) la séquence centrée des erreurs résiduelles de prédiction, ainsi nous avons:

R(i)= 1
Ns

Ns∑
t=1

ε(t)ε(t− i),(1.14)

Rn(i)= R(i)
R(0)

, i = 0,1,2, . . . ,nA, . . .(1.15)

avec imax ≥ nA, Ns nombre d’échantillons et R(i), Rn(i) les estimations d’autocorrélation et

d’autocorrélation normalisée. Dans la situation théorique où l’erreur de prédiction résiduelle

ε(t) séquence est parfaitement blanche et le nombre d’échantillons Ns est grand (Ns →∞), alors

Rn(i) = 0 pour tous les i. Cependant, dans la réalité, ce n’est jamais le cas et Rn(i) 6= 0 pour

i ≥ 1, puisque ε(t) contient des erreurs structurelles résiduelles provenant de mauvais ordres

polynomiaux, des effets non linéaires, des bruits non gaussiens, ou la valeur pour Ns est trop

petite. Une validation pratique largement testée sur des critères d’application est définie par

|RN (i)| ≤ 2.17p
Ns

, pour i ≥ 1.

1.3.5 Modèles Identifiés

Des modèles ont été identifiés à partir d’expériences réalisées dans les différentes configurations

du banc d’essai en appliquant la méthodologie d’identification des modèles décrite ci-dessus.

La figure 1.9 montre à titre d’exemple la caractéristique fréquentielle de la voie secondaire

estimée pour la première configuration du banc d’essai.
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FIGURE 1.9. Caractéristique fréquentielle de la voie secondaire identifiée pour la
première configuration du banc d’essai.

1.4 Configuration en Feedback

Le développement d’un contrôleur feedback (de rétroaction) adaptatif a été choisi pour le rejet des

perturbations à bande étroite en commençant par un simple contrôleur fixe pour les perturbations

tonales, puis en passant par un contrôleur fixe plus robuste en ce qui concerne les caractéristiques

de la perturbation, pour finalement obtenir le contrôleur feedback adaptatif auto-réglable avec

un paramétrage Youla-Kučera.

De la section précédente nous avons vu que le modèle à temps discret linéaire et invariant

dans le temps (LTI) de la voie secondaire utilisée pour concevoir le contrôleur sera décrit comme:

(1.16) G(q−1)= q−dG BG(q−1)
AG(q−1)

,

où les polynômes AG(q−1) et BG(q−1) sont définis comme:

AG(q−1)= 1+a1q−1 +·· ·+anAG
q−nAG ,(1.17)

BG(q−1)= b1q−1 +·· ·+bnBG
q−nBG ,(1.18)

avec dG comme retard pur du système en nombre de périodes d’échantillonnage.
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1.4.1 Contrôleurs linéaires

Nous avons aussi défini le contrôleur de feedback K(q−1) comme K(q−1)= RK (q−1)
SK (q−1) , de sorte que

(1.19) K(q−1)= RK

SK
=

r1q−1 +·· ·+ rnRK
q−nRK

1+ s1q−1 +·· ·+ snSK
q−nSK

.

+ +
-

FIGURE 1.10. Schéma de régulation en Feedback.

La figure 1.4.1 montre le schéma de régulation en boucle fermée décrit par ces équations. La

sortie du système y(t) et l’entrée u(t) sont décrites par y(t)=G(q−1)u(t)+p(t) et u(t)=−K(q−1)y(t),

qui peuvent être écrites comme :

y(t)= q−dG BG(q−1)
AG(q−1)

u(t)+ p(t),(1.20)

u(t)=−RK (q−1)
SK (q−1)

y(t),(1.21)

où p(t) représente l’effet des perturbations sur la sortie mesurée. En développant ces équations,

nous obtenons:

y(t)= AGSK

AGSK + q−dG BGRK
p(t)= AGSK

PFB
p(t),(1.22)

avec PFB(q−1) comme polynôme caractéristique du système en feedback, qui spécifie les pôles en

boucle fermée souhaités du système.

La fonction de transfert en boucle fermée entre la perturbation p(t) et la sortie du système

y(t), est appelée fonction de sensibilité de sortie (Syp) et est donnée par

(1.23) Syp = y(t)
p(t)

= AG(q−1)SK (q−1)
PFB(q−1)

.

De la même manière, la fonction de transfert entre la perturbation p(t) et l’entrée u(t) du

système est appelée fonction de sensibilité d’entrée (Sup) et est donnée par
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(1.24) Sup = u(t)
p(t)

=−AG(q−1)RK (q−1)
PFB(q−1)

.

Quelques contrôleurs linéaires fixes ont d’abord été conçus à l’aide de la technique de place-

ment des pôles et de calibrage des fonctions de sensibilité. Premièrement, afin d’atténuer forte-

ment les perturbations tonales, le principe du modèle interne (IMP) a été utilisé [Landau et al.,

2016, Francis and Wonham, 1976]. En bref, le IMP indique que pour rejeter complètement une

perturbation asymptotiquement (c’est-à-dire en état stationnaire), le contrôleur doit inclure le

modèle de la perturbation.

Comme la fréquence des perturbations tonales peut varier ou n’est pas parfaitement connue

dans un système ANC, un contrôleur robuste fixe a également été conçu pour prendre en compte

les caractéristiques possibles de la perturbation. Pour réaliser cette fonction, des filtres à réjection

de bande (band-stop filters) (BSF) ont été utilisés. La théorie de la conception des contrôleurs

linéaires feedback est le sujet principal de l’annexe E [Meléndez et al., 2017].

1.4.2 Contrôleur adaptatif

L’approche adaptative utilise le paramétrage Youla-Kučera du contrôleur, combiné avec le principe

du modèle interne. La référence de base pour cette approche utilisée dans le contrôle actif des

vibrations est [Landau et al., 2016]. La théorie du contrôleur FIR adaptatif en feedback est le

sujet principal de l’annexe A. [Landau et al., 2019c].

Pour adapter directement les paramètres du contrôleur, le paramétrage Youla-Kučera (YK)

du contrôleur est utilisé. Dans ce contexte, on considère un filtre de réponse impulsionnelle finie

(FIR) de la forme:

(1.25) Q(z−1)= q0 + q1z−1 +·· ·+ qnQ z−nQ ,

à laquelle est associé le vecteur paramètres θ = [q0 q1 . . . qnQ ]T .

Sous le paramétrage Youla-Kučera, les polynômes équivalents RK (z−1) et SK (z−1) du con-

trôleur K(q−1) prennent la forme:

RK (q−1)= R0 + AGQHS0 HR0(1.26)

SK (q−1)= S0 − q−dG BGQHS0 HR0 ,(1.27)

où AG , BG et dG correspondent au modèle identifié de la voie secondaire, R0(z−1), S0(z−1) sont

les polynômes du contrôleur central, et HS0 , HR0 sont les éléments fixes du contrôleur. Il est

remarquable de constater que sous le paramétrage YK utilisant une structure FIR pour le filtre

Q(z−1), les pôles en boucle fermée définis par le contrôleur central restent inchangés, de sorte
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que:

PFB(q−1)=AGSK + q−dG BGRK ,

=AG[S0 − q−dG BGQHS0 HR0]+ q−dG BG[R0 + AGQHS0 HR0],

=AGS0 + q−dG BGR0.

(1.28)

L’objectif est d’estimer une valeur pour Q de sorte que y(t) soit ramené à zéro.

Le schéma adaptatif est représenté dans la Figure 1.11, où PAA signifie Algorithme d’adaptation

paramétrique.

+ +

-

+

-

-

FIGURE 1.11. Schéma de paramétrage adaptatif Youla-Kučera.

L’observateur de la perturbation w(t) est défini par

(1.29) w(t)= AG(q−1)y(t)− q−dG BG(q−1)u(t)= AG(q−1)p(t).

L’estimation du polynôme Q au temps t est donnée par:

(1.30) Q̂(t, q−1)= q̂0(t)+ q̂1(t)q−1 +·· ·+ q̂nQ (t)q−nQ ,

et est caractérisé par le vecteur de paramètres

(1.31) θ̂T (t)= [q̂0(t) q̂1(t) . . . q̂nQ (t)].

L’ordre nQ du polynôme Q̂ est lié à l’ordre du dénominateur du modèle de perturbation.

Ce type de configuration permet de développer un algorithme d’adaptation de la forme:

(1.32) θ̂(t+1)= θ̂(t)+F(t)ϕ(t)ε(t+1),
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où le vecteur ϕ(t) est une fonction de l’observation w(t) de la perturbation, de telle sorte que

ϕ(t)= f {w(t),w(t−1), ...}, et

(1.33) ε(t+1)=
S0(q−1)

PFB(q−1)
w(t+1)− θ̂T (t)ϕ(t)

1+ϕT (t)F(t)ϕ(t)
,

et où la matrice de gain d’adaptation est définie comme:

(1.34) F(t+1)= 1
λ1(t)

F(t)− F(t)ϕ(t)ϕT (t)F(t)
λ1(t)
λ2(t)

+ϕT (t)F(t)ϕ(t)

 ,

avec 0<λ1(t)≤ 1, 0≤λ2(t)< 2, F(0)> 0 ; où λ1 et λ2 permettent d’obtenir différents profils pour l’

évolution du gain d’adaptation F(t). Finalement, le contrôle à appliquer est donné par:

(1.35) u(t+1)= −1
S0

[
R0 y(t+1)+HR0 HS0Q̂(t+1)w(t+1)

]
.

1.4.3 Résultats Expérimentaux

De nombreux essais expérimentaux ont été effectués pour prouver l’efficacité des controlleurs

conçus pour le banc d’essai. L’un de ces essais a été appelé essai d’interférence. Il est divisé en trois

parties principales. Le phénomène d’interférence apparait quand 2 perturbations sinusoïdales de

fréquences très proches sont appliquées sur un système. Comme on peut le voir sur la Figure 1.12,

la première partie correspond à un fonctionnement en boucle ouverte (perturbation dans le

système sans atténuation du contrôleur); dans la seconde partie, la boucle est fermée et le

contrôleur commence à atténuer le bruit, et la troisième partie montre le bruit résiduel après

modification des caractéristiques fréquentielles des perturbations.

Il est clair que le niveau d’atténuation est proche d’un rejet complet de la perturbation, même

dans le cas d’un éventuel changement des caractéristiques de la perturbation.

Un autre test a été désigné sous le nom de changements en échelon des fréquences, où la pertur-

bation est définie par deux ondes sinusoïdales tonales dont les changements des caractéristiques

fréquentielles sont décrits comme suit:

1. Référence pour le bruit ambiant, ni perturbations ni contrôle

2. Fréquences nominales, 170Hz + 285Hz

3. Perturbations -10Hz ,160Hz + 275Hz

4. Fréquences nominales, 170Hz + 285Hz

5. Perturbations +10Hz, 180Hz + 295Hz

6. Fréquences nominales, 170Hz + 285Hz
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FIGURE 1.12. Atténuation des interférences acoustiques par un contrôleur adaptatif en
feedback avec paramétrage YK.

La Figure 1.13 montre l’évolution dans le temps du bruit résiduel dans deux configurations. La

première correspond au comportement du système en boucle ouverte (pas d’action du régulateur),

tandis que la seconde affiche une excellente atténuation du bruit par le régulateur en boucle

fermée, même en présence de changements brusques (échelons) dans les caractéristiques de la

perturbation.

1.5 Configuration en Feedforward

La commande adaptative par feedforward pour la compensation des perturbations à large bande,

est largement utilisée lorsqu’un signal corrélé avec la perturbation (image de la perturbation)

est disponible [Kuo and Morgan, 1999, Elliott and Sutton, 1996, Elliott and Nelson, 1994].

Cependant, dans de nombreux systèmes, il existe un couplage physique positif entre le système

de compensation à effet de feedforward et la mesure de l’image de la perturbation, ce qui

entraîne souvent un état d’instabilité du système. En présence de ce couplage positif inhérent, le

compensateur adaptatif de feedforward doit contrecarrer et minimiser les effets de la perturbation

tout en assurant simultanément la stabilité de la boucle de couplage positive interne [Jacobson

et al., 2001, Kuo and Morgan, 1996].
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FIGURE 1.13. Changements en échelon des fréquences en utilisant le contrôleur adap-
tatif avec paramétrage YK.

1.5.1 Schéma de Commande Feedforward

En débutant par [Amara et al., 1999b] le contrôle adaptatif du bruit en feedback s’est révélé

être une solution efficace pour atténuer les perturbations tonales simples ou multiples [Amara

et al., 1999a], en profitant du modèle interne et du paramétrage Youla-Kučera du contrôleur du

feedback [Landau et al., 2019c, Meléndez et al., 2017]. Néanmoins, l’utilisation efficace de cette

approche dite de feedback pour l’atténuation du bruit à large bande est limitée par l’intégrale

de Bode. Pour tenir compte des caractéristiques inconnues et variables des perturbations bande

large, une approche adaptative est nécessaire. On peut donc dire que la compensation adaptative

du bruit par feedforward est particulièrement dédiée à l’atténuation du bruit à large bande avec

des caractéristiques inconnues et variables dans le temps.

Dans la Figure 1.14 on peut voir le diagramme général d’un schéma de commande en

feedforward, où D représente la fonction de transfert de la voie primaire et G la voie secondaire

de notre système. Dans cette configuration, le bloc N est utilisé pour le contrôleur feedforward.

De plus, W caractérise la fonction de transfert entre le haut-parleur de la perturbation et le

microphone de l’image, et la fonction de transfert M décrit le couplage feedback positif appelé

Voie Reverse. En plus des signaux existants dans un diagramme feedback, nous trouvons les

mesures v(t) utilisées pour obtenir le signal corrélé avec l’image de la perturbation i(t) qui est

par nature biaisée par la boucle interne positive créée par le signal de contrôle.

Ce phénomène est désigné comme une boucle de feedback interne positive ; c’est un phénomène

indésirable qui peut causer des instabilités dans ces systèmes et il doit être pris en compte lors

de la conception du contrôleur. Le couplage de la sortie du compensateur de feedforward avec la
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FIGURE 1.14. Schéma de commande Feedforward.

mesure v(t) à travers est représenté par M.

Comme pour la voie secondaire, le couplage feedback positif est caractérisé par la fonction de

transfert asymptotiquement stable:

(1.36) M(q−1)= q−dM BM(q−1)
AM(q−1)

,

L’objectif est d’estimer et d’adapter les paramètres du compensateur feedforward en N, de

sorte que le bruit résiduel mesuré soit minimisé au sens d’un certain critère. Le filtre feedforward

optimal inconnu IIR est défini par:

(1.37) N(q−1)= RN (q−1)
SN (q−1)

.

1.5.2 Algorithmes Feedforward Adaptatifs

En accord avec la Figure 1.15, le compensateur estimé est indiqué par N̂(q−1). Il est défini

comme N̂(t, q−1) lors de l’estimation (adaptation) de ses paramètres. Les compensateurs FIR sont

obtenus en prenant SN = 1.

L’entrée du compensateur de feedforward est notée v(t), et elle correspond à la somme entre

l’image perturbatrice en l’absence de compensation, et la sortie du chemin de feedback positif.

Comme nous l’avons vu précédemment, une formulation générale de l’algorithme d’adaptation

des paramètres (PAA) peut être décrite par:
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+

+

+
+

FIGURE 1.15. Schéma de commande Feedforward avec PAA.

θ̂(t+1)= θ̂(t)+F(t)ϕ(t)ε(t+1),(1.38)

ε(t+1)= ε◦(t+1)
1+ϕT (t)F(t)ϕ(t)

,(1.39)

F(t+1)= 1
λ1(t)

F(t)− F(t)ϕ(t)ϕT (t)F(t)
λ1(t)
λ2(t) +ϕT (t)F(t)ϕ(t)

 ,(1.40)

1≥λ1(t)> 0, 0≤λ2(t)< 2, F(0)> 0,(1.41)

ϕ(t)= Lϕ0(t)(1.42)

où θ̂(t) est un vecteur qui consiste en les paramètres estimés du contrôleur N au temps t,

ϕ(t) est un vecteur contenant les informations des mesures v(t+1),v(t), ... et û(t), û(t), û(t−1), ...

disponibles au temps t, L est un filtre défini par les paramètres système, et ε◦(t) est l’erreur

d’adaptation a priori.

En considérant la matrice de gain d’adaptation F(t) = γI, où I est la matrice identité, on

obtient un gain d’adaptation scalaire. De plus, le filtre L peut être défini de plusieurs façons. Il

en résulte plusieurs configurations possibles pour le calcul du régulateur feedforward, qui ont été

testées et comparées avec une approche couramment utilisée dans la littérature.

1.5.3 Paramétrage Youla-Kučera: Commande Feedforward

Afin d’isoler les problèmes liés à la stabilité de la boucle de feedback interne positif de l’objectif

du contrôleur qui est la minimisation du bruit résiduel, un paramétrage Youla-Kučera (YK) a été

utilisé. Au lieu d’un compensateur de feedforward standard IIR, une version similaire utilisant
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un paramétrage Youla-Kučera du compensateur de feedforward adaptatif a été installée.

De cette façon, un contrôleur central assurera la stabilité de la boucle de feedback positif

interne, tandis que ses performances sont améliorées en temps réel par l’adaptation directe des

paramètres du filtre Youla-Kučera Q(q−1). En prenant maintenant en compte un paramétrage

YK, le schéma illustré à la Figure 1.16 présente le schéma fonctionnel du compensateur adaptatif

avec un filtre Youla-Kučera Q̂(q−1) et un PAA. Les détails des algorithmes spécifiques peuvent

être trouvés dans [Landau et al., 2013, Landau et al., 2012].

+

+

+
+ +

+

+

FIGURE 1.16. Schéma de commande Feedforward utilisant un paramétrage Youla-
Kučera avec PAA.

En utilisant le paramétrage de Youla-Kučera, le compensateur IIR feedforward qui minimisera

le bruit résiduel peut être appelé Réponse Impulsionnelle Infinie Youla-Kučera (YK-IIR), et il est

décrit par:

(1.43) N̂(q−1)= RN (q−1)
SN (q−1)

= R0 AQ − AMBQ

S0 AQ − q−dM BMBQ
,

où le filtre Youla-Kučera estimé Q̂(q−1) a une structure IIR, telle que

(1.44) Q̂(q−1)= B̂Q(q−1)

ÂQ(q−1)
=

b̂Q
0 + b̂Q

1 q−1 + . . .+ b̂Q
nBQ

q−nBQ

1+ âQ
1 q−1 + . . .+ âQ

nAQ
q−nAQ

,
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et ses paramètres sont donnés par:

(1.45) θ̂T (t)= [b̂Q
0 (t), . . . , b̂Q

nBQ
(t), âQ

1 (t), . . . , âQ
nAQ

(t)].

Comme précédemment, l’algorithme d’adaptation des paramètres décrit dans Section 1.5.2

est à nouveau utilisé pour les compensateurs adaptatifs feedforward type Youla-Kučera, où il y a

encore plusieurs choix pour le filtre L qui peuvent être considérés.

Il est également possible d’utiliser un gain d’adaptation scalaire. En prenant AQ(q−1) = 1,

nous obtenons une configuration FIR Youla-Kučera (YK-FIR). Plusieurs options pour le filtre L et

le gain d’adaptation sont possibles aussi dans la configuration YK-FIR.

1.5.4 Résultats Expérimentaux

Plusieurs séries de longs tests ont été effectuées pour comparer les différentes options proposées

pour les algorithmes adaptatifs dans le cas de la compensation feedforward des bruits bande

large. A titre d’exemple, la figure 1.17 montre l’évolution dans le temps du bruit résiduel mesuré

pour un compensateur feedforward de type IIR. La première partie du test correspond à une

opération en boucle ouverte sans compensateur. Ici, nous pouvons également voir l’évolution de

l’atténuation globale dans le temps.

FIGURE 1.17. Performance du compensateur IIR. Le côté droit montre le niveau
d’atténuation atteint à un moment donné.

En raison des caractéristiques plus complexes des perturbations, la vitesse de convergence est

réduite par rapport à celle d’un régulateur en feedback, mais cela est tout à fait compréhensible

et constitue un comportement attendu. Même en présence de bruits à large bande, le contrôleur

feedforward atteint des niveaux élevés de rejet des perturbations.
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2
INTRODUCTION

This introductory chapter describes the basic problems of adaptive Active Noise Control

(ANC) and how this was related to the studies in Active Vibration control (AVC). This

has motivated the research and gives an overview of the main results in the literature.

To conclude, in the last two sections of this chapter, the original contributions of this work are

summarized, and an outline of the dissertation is given.

2.1 Motivation

Without going into advanced theory or looking deeply into details, the basic principles of Active

Noise Control (ANC) will be exposed and explained in this section. Some basic examples will be

given to state the control problem which will be associated with our research. All this is intended

to be presented as part of the context in our work.

One of the very first mentions about ANC was done by Henri Coandă in the documents of a

French patent in 1930 [Coanda, 1930]. A couple of years later Paul Lueg did something similar in

his work and mentioned it once again in [Lueg, 1934], yet another patent. Some time later the

term appeared in a publication by Harry F. Olson [Olson and May, 1953], this time in a journal’s

article. In brief, the problem to solve in their work is that of mute and suppress an incoming

noise of a given source, by using of a microphone for measurements, and the set of an amplifier

and a loudspeaker to act as an actuator. It was found that under those given conditions, if the

proposed systems were able to create sound waves with frequency characteristics similar to those

of the noise, but with a shift in phase of 180◦, then it was feasible to cancel noises in the action

region of the sound waves produced by the loudspeaker. As an example, one of the proposed uses

of this theory is to apply the ANC system near an operator of heavy machinery and airplanes

engines to reduce the noise created by them.
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In this field of research, three main different approaches of control methods are considered for

counteracting the noise, as mentioned in [Snyder, 2000]: those with passive behavior, those with

something we can call semi-active performance and finally those with a full active action. The

passive approach, which is the most common one, since it consist mainly in the use of material

and geometries with specific characteristics in order to isolate and damp the effects of noises,

where no control algorithms are involved. The advantages of this technique is the simplicity of

application into the systems, with an inherent robustness in terms of control, and a great cost-

benefit ratio in most of the cases. As expected, the downside of using such an approach difficulties

found when attenuating very low frequencies, its lack of flexibility in terms of control, as well as

the absence of adaptation to the environment’s changing characteristics and a dependency to the

system’s physical and natural dynamics. The most simple example of the passive noise control

can be seen in the isolation with high density foam used in pipes and buildings walls. A more

complex, but still an example of this concept is the Helmholtz resonator, which is described in

[Olson and May, 1953, Fleming et al., 2007].

The second approach is denominated as semi-active, since it does not proportionate any

additional energy to the system itself, but it uses information acquired from it to modify the

passive actuators characteristics. This conceptualization requires more parts involved in its

functioning, like a sensor or transducer to gather some given information from the system. This

has the advantages of being more flexible to changes in the system’s dynamics, nevertheless the

implementation complexity and cost increase substantially. Following the previous approach ex-

ample, there are designs of Helmholtz resonators with capacity to change the resonant chamber’s

dimensions and thus, to adapt between a determined range of operation its natural frequency, as

shown by [de Bedout et al., 1997] and [Matsuhisa et al., 1992].

Finally our main interest resides in the third and last approach in which the integrity of this

work is included, correspondingly called active control. This implementation has a distinguishable

difference regarding the late two options, that refers to the fact that these actuators supply an

additional and external source of energy to the system itself in the form of mechanical power,

which targets its behavior to fulfill specific variable objectives. Speaking more specifically about

Active Noise Control (ANC), the frequency domain of interest covers the average human audible

spectrum of frequencies, roughly between 20 Hz and 20000 Hz. Due to physical conditioning and

inherent characteristics of passive approaches, their frequency range of operation is constrained

to high frequencies, as stated in [Olson and May, 1953, Fuller and von Flotow, 1995, Elliott, 2001],

where attenuations of 40 dB were achieved in frequencies above 500 Hz. This opens a window

of opportunities for the ANC, to act at the low frequency domain, where no other approach can

perform.

Amongst the many examples and uses of these theories, one of the most common examples

found in real life applications is that of the headphones with environment noise reduction

capabilities for a better audio quality and sound experience. This is done by measuring the
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environmental noise with an embedded microphone and the use of this acquired information

through control algorithm and the internal speaker as an actuator. Figure 2.1 details a reference

to this system. In the ideal case, the added signal should be of equal magnitude and of 180◦ phase

shift (negative) so as to completely cancel the disturbing noise. Further background analysis

can be found in the articles and documents of [Elliott and Nelson, 1993, Fuller and von Flotow,

1995, Guicking, 2007].

FIGURE 2.1. External noise attenuation in headphones by use of Active Noise Control.

2.2 Problem Description

This section describes some generalities of the Active Noise Control problems treated throughout

this thesis. The main objective is to reduce the effects of a given perturbation in the system,

corresponding in this case to the effects produced by acoustic noise, at the specified location

of interest inside the system. A general overview and a description are given for the so called

system, as well as the control approaches used which are given in the following subsections.

2.2.1 Active Vibration Control

The base of this work were settled first in the studies done by Aurelian Constantinescu in

[Constantinescu, 2001], where the case of Active Vibration Control was exposed. Subsequently

works done by Alma, Airimiţoaie [Alma, 2011, Airimiţoaie, 2012] and more recently Castellanos

[Silva, 2014] were also developed in the field of vibration control, but there are similarities

between mechanical vibrations and acoustics, since they are both physical phenomena that can

be described by mechanical waves, just acting in different environments. Each of these works

had at its disposal test benches fitted to emulate diverse mechanical vibrational systems. Under

the conditions established for these projects, theories were developed and put to trial in the test

benches.
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An example, there are studies done in [Constantinescu and Landau, 2003] where an active

suspension system test bench is used for the application of theories in which this thesis settle its

basis. In [Alma et al., 2012] and [Landau et al., 2011a], we can find the follow up applications

done by Alma of these theories on a different test bench. A close relationship between the work

described in this thesis is still hold among the studies previously done, as well as the current

works made at this point by Airimiţoaie, a seen in [Airimiţoaie et al., 2011, Airimitoaie and

Landau, 2016].

It is remarkable to state that there exists a wide field of study around AVC, and there are

many different approaches, nevertheless one of the main objectives of this thesis is to keep track

of those specific studies and follow up the work done there. Once the similarities and bases are

stated, the aim is then to focus the sum of efforts done in the ANC field.

2.2.2 Control System Configuration

Figure 2.2 represents an Active Noise Control system, as well as an Active Vibration Control, as

we will see in the next subsection, which contemplates the use of both feedback and feedforward

compensators. This system can be described as a two input, two output system. The first input

corresponds to the perturbation or Disturbance s(t), with unknown characteristics and generated

by an as well unidentified source. The second input can be denominated as the Control Signal

u(t), being the sum of individual output control signals from the feedback regulator K , and

the feedforward compensator N, u f b(t) and u f f (t) correspondingly. The outputs of this system

will be those obtained from the measurements, as the first output corresponds to the system’s

Residual Noise y(t), and the second output corresponds to the Disturbance’s Image v(t), in our

case both gathered through microphones. As shown in Figure 2.2, the path that transmits the

perturbation s(t) to the residual noise y(t) is defined as Primary path. Similarly, the Secondary

path is defined as the path that transmits the control signal u(t) to the residual noise y(t). As

such, the residual noise is defined as the sum of the primary path’s output, the perturbation p(t);

and of the secondary path’s output, denoted as z(t).

Inherently in Active Noise Control and Active Vibration Control systems, a side effect called

internal positive coupling is present due to the control signal u(t). The fact that control signal

u(t) effects are omnidirectionally distributed through the system indicates that this will have

an effect as well in the measurements v(t), intended to gather an information correlated with

the disturbance. This phenomenon represents a coupling between the control signal u(t) and

the measurements v(t), where this path is defined as an internal positive feedback, or more

commonly Reverse path. This is a crucial part in the development of feedforward control theory,

since its effects can destabilize the system if not properly taken into account. Finally the path

formed between the perturbation s(t) and the measurements at v(t) is described by the Image

path. Thus, we can state that the measurements v(t) are formed by the sum of the reverse path’s

output, defined as x(t) and of the image path’s output, defined as the disturbance image pi(t).
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Accordingly with the control theory terminology, we will define the system’s output y(t) as the

performance variable, usually denotated as e(t). In this context we define our objective as that of

minimizing the resulting signal e(t), by compensating with the control signal u(t), calculated by

using the measurements y(t) and v(t).

s(t)

+ Feedforward

compensator

Reverse
path

+
+

Primary
path

Image
path

u(t) Secondary
path

+

+ y(t)

p(t)

Feedback

compensator

-

p (t)i

  

u  (t)ff

u  (t)fb

v(t) z(t)

x(t)

 

FIGURE 2.2. Block diagram representation of the combined feedback and feedforward
control problem. In green we can identify the blocks corresponding to the sys-
tem’s plant, meanwhile in blue the corresponding feedback K and feedforward N
compensators.

System’s measurements can be displayed in a vectorial disposition, such that Y (t)= [v(t), y(t)]T .

In the same way using the previously stated definition of feedback regulator K , and feedforward

compensator N, we can display them in a vectorial disposition such that κ= [N,−K]T . Thus, we

can define control signal as:

(2.1) u(t)= u f f −u f b = N ·v(t)−K · y(t)= κT ·Y (t).

The feedforward controller denomination attributed to N is motivated by the fact that v(t),

also called Correlated disturbance’s image, is measured upstream of the performance variable.

This assumes also that it is physically possible to obtain such a measurement. The situations

where this is not possible constitute feedback control problems, while the others are more

generally addressed in the literature as hybrid control.

A standard feedback representation in the form of a 2 input - 2 output system can also be

considered as shown in Figure 2.3. This representation is very well known in robust and optimal

control, and similar representation can be found in [Tay et al., 1997, Zhou et al., 1996]. The

equations associated with the feedback system representation are:

(2.2) Y (t)=
[

y(t)

v(t)

]
=

[
P11 P12

P21 P22

][
s(t)

u(t)

]
=

[
D G

W M

][
s(t)

u(t)

]
,

where the system, or plant parameters are defined, and D corresponds to the Primary path, G

is designed as the Secondary path, W represents the Image path and M symbolizes the Reverse
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s(t)

u(t)

y(t)

v(t)

FIGURE 2.3. General representation of a 2 input - 2 output Active Noise Control / Active
Vibration Control system.

path. Given these denominations, we can redefine the Figure 2.2, as displayed in the following

Figure 2.4.
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u  (t)ff

u  (t)fb

v(t) z(t)

x(t)

 

N

K

FIGURE 2.4. Block scheme of the combined feedback and feedforward control problem.

Equation (2.2), alongside with Equation (2.1), gives the overall representation of the ANC

system and the corresponding control law. From here two specific cases for this problem will be

addressed.

2.2.3 Feedback Control Problem

The feedback regulation is the first case. For this, it is common to provide a solution for reducing

narrow band perturbation, talking about their frequency domain. In general, the disturbances

will be supposed to represent vibrations coming from multiple narrow band disturbances sources.

It should be observed that in this context there is no feedforward compensator and N = 0. As

such, the previous general scheme can be reduced as in Figure 2.5.

Consequently we will have the residual noise measurement y(t)=Y (t), and the control signal

u(t) = u f b(t). For this configuration we will define the performance variable as the measured

system’s output, such that e(t)= y(t). A schematic representation of this simplified situation is

given in Figure 2.6.
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FIGURE 2.5. Reduced block diagram representation for a feedback control problem.
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FIGURE 2.6. Feedback control problem scheme.

This came from the fact that there are situations where a second transducer to measure an

image correlated with the disturbance cannot be used because the physical characteristics of

the process prevent it, thus feedback control techniques have to be applied. The Bode integral

limitations permit only narrow band disturbances to be reduced or rejected. Therefore, in this

part of the dissertation, objectives will be those of developing techniques for the compensation of

multiple stationary or variable sinusoidal disturbances.

2.2.4 Feedforward Control Problem

The feedforward noise compensation is the second case for this problem. A schematic represen-

tation of this situation is given in Figure 2.7. For this case, it can be observed that there is no

feedback regulator, thus K = 0.

Therefore, in this situation we obtain v(t) = Y (t) and u(t) = u f f (t). As mentioned earlier, it

is supposed that a transducer can be used that provides a correlated image of the disturbance

upstream of the performance variable e(t) = y(t), therefore allowing a feedforward regulation

approach to be implemented. Again a schematic representation of this simplified situation is

given in Figure 2.8.

This method is used in practical situations where large or wide band perturbations need to be

33



CHAPTER 2. INTRODUCTION

s(t)

+ Feedforward

compensator

+
+

Primary
path

Image
path

u(t) Secondary
path

+

+ y(t)

p(t)

Feedback

compensator

-

p (t)i

  

u  (t)ff

u  (t)fb

v(t) z(t)

x(t)

 

Reverse
path

FIGURE 2.7. Reduced block diagram representation for a feedforward control problem.
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FIGURE 2.8. Feedforward control problem schema.

reduced. In these cases, a pure feedback approach would be hindered by the limitations imposed

through the Bode integral [Hong and Bernstein, 1998] and only narrow band disturbances could

be compensated (as it will be shown in the next section).

To deal with large band disturbances, the scheme in Figure 2.8 can be used. It can be

immediately observed from this representation that the measured correlated image of the

disturbance v(t) will not only contain the significant information from the disturbance source but

it will also be contaminated by the control signal transmitted through the positive coupling path,

or Reverse path. The presence of this intrinsic positive feedback complicates the controller design

because it can cause instability.

In many of the research studies that begun to propose solutions for this problem, the influence

attributed to the positive feedback coupling was not taken into account [Widrow et al., 1975],

because it was either considered that its influence could be compensated or that it was too weak

to raise any problems. Several techniques have been reported in the literature for compensating

the positive feedback coupling’s effect, some being of mechanical nature and other being more

related to the control algorithm. One example concerning the second technique, called feedback

neutralization, has been described in [Kuo and Morgan, 1999, Nelson and Elliott, 1993] and

relies on a very good estimation of the feedback path’s model. However, it has been reported in

[Nelson and Elliott, 1993, Mosquera et al., 1999] that if the estimation is not accurate, then the
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possibility for instability still exists.

The algorithms presented in this dissertation are designed to provide good results in the

presence of this feedback coupling path and therefore there is no need for positive feedback path

cancellation. The use of adaptive control is motivated by the fact that in real applications, the

disturbance’s characteristics can vary in time or that the identified models might not be exact

representations of the system’s dynamics.

2.3 Literature Overview

It is important to note that the work done on this thesis is based on the studies previously

conducted, in particular the research done on the thesis by Tudor-Bogdan Airimiţoaie [Airimiţoaie,

2012]. Here we can find references to the development of Active Noise Control throughout history,

such as the description in [Miljković, 2016]. As described in 2.1, it is possible to differentiate three

main control methods in noise control theory, as mentioned in [Snyder, 2000]. The first approach

is referred to as passive in [Krysinski and Malburet, 2008], and new materials and configurations

for the attenuation of unwanted sound waves are currently being researched and developed. An

example is the so called acoustic black hole theory described in [Krylov, 2014], where basic physic

concepts are applied into the surfaces to produce the passive dampening. A more recent concept is

that of the metamaterials [Marchal, 2014], where the concept of internal structure and geometry

of the materials are further manipulated to achieve the desired objective [Guo et al., 2018a, Guo

et al., 2018b]. Regarding the semi-active approach, it is not part of the development of this thesis,

and a definition and examples can be found in [Babaee et al., 2016] and [Hansen et al., 2007]. For

the latter approach, a review of relevant contributions in the literature is made in this section,

regarding noise control theories in feedback and feedforward configurations. A comparative study

between these two approaches can be found in [Elliott and Sutton, 1996].

2.3.1 Feedback Rejection of Multiple Narrow Band Disturbances

In the field of applications it is not always possible to obtain the measurements necessary to

perform a feedforward control, and in these cases the feedback approach is a relevant option.

Given the characteristics and restrictions of this approach, especially the limitation of the Bode

integral, it is established that feedback control will be used mainly for perturbations with narrow

frequency bandwidths [Åström and Murray, 2008, Zhou et al., 1996]. In the case of this thesis, the

study is carried out on multiple simultaneous sinusoidal tonal disturbances with time varying

characteristics.

The basics of feedback control theory are described in [Landau et al., 2011b], where the

difference between adaptive control and adaptive regulation is discussed. It is observed there

that in classical adaptive control the objective is to track and attenuate a disturbance in the

presence of unknown and time-varying plant model parameters. Thus, the focus of adaptive
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control is put on the adaptation with respect to variations in the plant model’s parameters, where

the disturbance model is assumed to be known and invariant.

Adaptive regulation, on the other hand, can be described as an asymptotic attenuation of the

effects caused by disturbances of unknown characteristics that may vary over time. It is also

necessary to have a known model of the plant, and that it is possible to apply robust controls that

can overcome small variations in the parameters that may happen. Given this approach, it is not

necessary to make real-time estimations of the characteristics of the system model.

The studies conducted in this research are focused on the attenuation of disturbances with a

known system model, therefore adaptive regulation is considered. In [Amara et al., 1999b, Amara

et al., 1999a, Gouraud et al., 1997] is stated that it is possible to represent the perturbation in

the system as filtered white noise or Dirac impulse. In order to represent the disturbance, these

signals are filtered by a disturbance’s model, and to counteract their effects one of the main pro-

posals is the Internal Model Principle (IMP), described in [Valentinotti et al., 2003, Valentinotti,

2001, Hillerstrom and Sternby, 1994]. Using this method supposes that the disturbance’s model is

embedded into the controller, as done in [Tsypkin, 1997, Bengtsson, 1977, Francis and Wonham,

1976, Johnson, 1976]. In this way, its parameters must be continuously estimated, allowing the

system to react to possible unexpected changes in the disturbance’s characteristics. Although this

entails indirect adaptive control, [Landau et al., 2005] that direct adaptation is possible if one

uses the Youla-Kučera parametrization of all stable controllers.

A different approach is presented in [Marino and Tomei, 2007, Serrani, 2006, Ding, 2003,

Marino et al., 2003], where an adaptive observer is part of the system. This approach is mainly

focused on disturbances acting over the plant’s input, and additional hypotheses should be taken

into account before applying it to disturbances on the system’s output, such as the plant having

stable zeros, which is seldom the case for discrete time plant models. It is evident that although

the Internal Model Principle is not explicitly considered in this approach, the use of the observer

in the controller implies its use.

A direct approach that uses the concept of phase-locked loop is presented in [Bodson and

Douglas, 1997] and experimental results are provided in [Bodson, 2005], where its use can be

seen in the presence of sinusoidal disturbances with unknown characteristics. Using a single

error signal a perturbation’s frequency estimation is done alongside the disturbance cancellation.

Here, an adequate plant’s frequency response is required in the region which corresponds to our

frequency range of interest.

More recently furthers applications have been developed using the same concept in different

areas of interest, proving that the study of Active Noise Control for the narrow band disturbance

rejection by means of a feedback configuration is still relevant. Industry has found a source of

innovation for a growing market in environmental comfort as shown in [Carme et al., 2016],

where the theory and experimental results on a test setup are displayed, and focused in the

development of a specific product. Concerning also diverse problematic, [Sharma and Renu,
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2016, Lu et al., 2014] have stated applications for these theories on medical related problematic.

2.3.2 Feedforward Control of Broad-band Noises

One of the main differences between the first studies carried out in adaptive Feedforward Active

Noise Control and recent research is the fact of being aware of the existence of an internal

feedback coupling, and taking into account its effects on the system. The majority of the work

done in this field is based. Most of the work done in this area is based on the development of

applications of the gradient search algorithm in the Least Mean Squares (LMS) theory, first

introduced in introduced in [Widrow, 1971]. The main objective of the LMS method is to find the

minimum point on the Mean Square Error (MSE) surface by updating the parameters of a Finite

Impulse Response (FIR) filter in a direction which is an estimate of the steepest descent. For

these purposes, this algorithm uses the current sample of the squared error.

An improvement to this method was presented by [Burges, 1981] and [Widrow et al., 1981]

named Filtered-X Least Mean Squares (FxLMS), which uses a filtered version of the observations

measured as correlated signal with the disturbance for the adaptation algorithm. Burges’ research

in adaptive sound controllers and Widrow’s adaptive inverse control development, presented

adaptation of a FIR filter, and a secondary path model that has a relevant role in the adaptation

process. The observation vector had to be filtered through the secondary path’s model in order to

obtain good estimations. More important, both problems addressed by these authors presented

schemes without feedback coupling.

Despite the stability and the convex performance surface of the FIR filters, it is possible to

find situations when the use of Infinite Impulse Response (IIR) filters could be preferred. A good

example appears when good performance is looked, since the FIR approach often has to use a

large number of parameters because of their all zero form, while with a IIR filter, it is possible

to obtain similar performances with a significantly reduced number of parameters. Feintuch

proposed another method named Recursive Least Mean Squares (RLMS) in [Feintuch, 1976]

to adapt IIR filters, which is a variant of the basic LMS filter adaptation to the IIR structure.

This algorithm was later improved by using filtered observations in the same way as was done

in FxLMS, providing the Filtered-U Least Mean Squares (FuLMS) algorithm. The FuLMS was

first introduced in [Eriksson et al., 1987] for ANC and AVC applications, but no convergence

and stability analysis were provided. As an application example of this algorithm, the reduction

of noise inside jet aircraft, produced by the engines that are mounted directly on the fuselage

is described in [Billoud, 2001]. In the neighborhood of LMS algorithms, normally it is used an

approximate estimate of the steepest descent direction, obtained by taking the current sample’s

gradient of the squared error instead of taking that corresponding to the MSE gradient. An

improvement can be obtained in the denominated Filtered-V Least Mean Squares (FvLMS)

algorithm presented in [Crawford and Stewart, 1997], where the full-gradient is calculated.

Nevertheless, considering a slow adaptation of the parameters, some approximations can been
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done to reduce the algorithm’s numerical complexity. A difficult problem for adaptive IIR filters

in the context of ANC is their stability and convergence analysis. Compared to the output error

algorithms, this is results rather complicated due to the secondary path and internal feedback

coupling path. One way of analyzing the convergence, in a stochastic environment, is the ODE

method of Ljung ([Ljung and Söderström, 1983], first presented in [Ljung, 1977a] and applied

on the output error analysis estimation method of [Landau, 1976] in [Ljung, 1977b]). Using

this, it was possible to analyze the FuLMS algorithm properties in [Fraanje et al., 1999, Wang

and Ren, 2003]. Conditions are found so as to assure convergence with probability 1 in the case

of positive feedback coupling but with some restricting conditions, two of them being that a

vanishing adaptation gain has to be used and that the feedback path does not destabilize the

system.

A different approach for the stability and convergence analysis of adaptive algorithms is the

hyperstability theory. This was first proposed in the work of Vasile Mihai Popov presented in the

original publications [Popov, 1960, Popov, 1966] and then translated in [Popov, 1963, Popov, 1973].

One of the most important repercussions of this theory is its use in the design of stable adaptive

algorithms alongside positive dynamic systems. The initial framework for studying a given

adaptive system using the hyperstability was established in [Landau and Silveira, 1979, Landau,

1979, Landau, 1980] and a complete theoretical analysis can be found in [Landau et al., 2011c].

Unlike the Lyapunov approach, which is limited by the difficulty in finding appropriate Lyapunov

functions, a large family of adaptation laws leading to stable adaptive algorithms can be designed

using the hyperstability theory.

+ Linear
Time invariant

Nonlinear
Time varying

-

FIGURE 2.9. Standard representation of the analysis of adaptive systems using hyper-
stability theory.

The hyperstability mainly deals with the stability of systems class that can be represented as

done by [Johnson, 1979] in the form given in Figure 2.9. On this configuration, it is supposed

that the nonlinear and/or time-varying feedback block is such that it satisfies an input-output

relation of the form

(2.3)
k1∑

k=0
ω̄(k)ν(k)≥−γ2, for all k > 1

One of the early uses of hyperstability in the synthesis of adaptive algorithms was reported

in [Treichler et al., 1978, Larimore et al., 1980]. The Simple Hyperstable Adaptive Recursive
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Filter (SHARF) is convergent only for slow adaptation. The more complex Hyperstable Adaptive

Recursive Filter (HARF) version has, instead, been proven convergent under less restrictive

conditions [Johnson, 1979]. Both algorithms use filtering of the estimation error. A challenge

encountered in these algorithms and which makes them difficult to use in ANC systems is the

choice of a filter that assures the Strictly Positive Real (SPR) condition, especially due to the

existence of the secondary and reverse paths. Furthermore, they are not presented in an ANC

context, therefore the feedback coupling is not taken into account.

A filtered observations - filtered error variant of the HARF algorithm was presented in

[Mosquera et al., 1999]. The convergence is then established, based on the previously developed

theory. The implementation of this theory on an ANC system was experimented using feedback

cancellation, but the results were not satisfactory. Similarly to the SHARF algorithms, in [Snyder,

1994] a method applicable in active control without positive feedback coupling is formulated. In

contrast to the SHARF algorithms, filtering is done on the observation vector, whereas in the

aforementioned algorithms it was done on the estimation error. A way of choosing the filtering

is given. Yet another attempt to use the stability approach to design an adaptive algorithm

for ANC was proposed in [Jacobson et al., 2001]. However, some assumptions made in the

development of the theory restrict the application of this algorithm to specific cases and, as shown

in [Landau et al., 2011a], the algorithm can even become unstable in a general ANC problem.

More specifically, it was supposed that the secondary path is characterized by a SPR transfer

function, which is seldom true. In addition to these directions of research, much work was done

also on improving the numerical efficiency, especially in the case of RLS type algorithms and

references belonging to these methods can be found in [Montazeri and Poshtan, 2010, Montazeri

and Poshtan, 2011], but it has been limited to the case without positive feedback coupling. An

equation error algorithm has been presented in [Sun and Chen, 2002]. The approach is globally

convergent when the feedback coupling is not present and the measurement noise is zero. Where

there is a presence of measurement noise, it is shown that the result is biased. Also when feedback

exists, a local minimum is attained instead of a global one. In a way to overcome these problems,

a Steiglitz-McBride type IIR algorithm has been published in [Sun and Meng, 2004]. Simulation

results without feedback coupling are presented, yet another drawback of this algorithm appears

where the stability is assumed before hand, when in practice, the poles of a IIR filter may move

outside the unit circle and instability may then occur.

A different approach is considered in [Zeng and de Callafon, 2006], where a Model Based

Design (MBD) controller obtained using the Youla-Kučera (YK) parametrization of all stabilizing

controllers is implemented for a noise cancellation problem. The feedforward filter is first identi-

fied from open loop data and then an orthonormal basis function is designed, based on the method

presented in [Heuberger et al., 1995]. A further difference with previously mentioned research

results is that the parameters’ adaptation is not done continuously but at certain intervals during

which the system operates based on the last computed values. No stability analysis has been
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performed in this case either.

To conclude on this review of the various methods developed in the field of ANC, it is necessary

to mention also the H∞ and H2 MBD compensators. This approach has been considered in [Bai

and H.H.Lin, 1997, Rotunno and de Callafon, 2003]. However, the resulting compensator does

not have adaptation capabilities and its performance is not necessarily very good. Provided that

the high dimension of the resulting compensator can be reduced, it just may constitute an initial

value for the parameters of an adaptive or self-tuning feedforward compensator. In [Bai and

H.H.Lin, 1997], it is shown experimentally that the results obtained with the H∞ approach are

better than those achieved using the FuLMS adaptation algorithm, for a disturbance with known

spectral characteristics.

2.4 Contributions

The main objective of this work is the further development and comparison of diverse adaptive

algorithms for acoustic noise attenuation in a determined system. These given algorithms have

been used in previous projects for mechanical vibrations, and here they are extensively tested on a

test bench designed specifically for this purpose. Having in mind the disturbances’ characteristics,

either a feedback control configuration for narrow band perturbations, or a feedforward control

configuration for large band disturbances has been used.

In the initial Part I, aside of delivering an explanation of the test bench used for this work,

the following contributions are presented:

• Development of methodology for systems’ models identification based on measurements,

applied on an acoustic environment,

• Study of geometry and physical disposition of elements and their effects on the active

control and controllability over the resulting identified models.

As for the section corresponding to feedback in Part II, the contribution made can be summa-

rized as:

• Development of methodology for feedback control to reject narrow band disturbances based

on Band Stop Filters with adjustable frequency bandwidths and attenuations in order to

shape the output sensitivity functions,

• Analysis and implementation of the Youla-Kučera parametrization on the control scheme

of the feedback controller to improve the adaptation capabilities as well as the computation

efficiency,

• Thorough comparison between different approaches and algorithms tested on the test bench

designed for this purpose.
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Finally in part III of this work, the feedforward approach is addressed, and the main contri-

butions are:

• Analysis of different test bench configurations used and their effects on the control regarding

the delay in the models.

• Development of generalized feedforward compensation adaptive algorithms that take into

account the inherent existence of a positive feedback coupling in Active Noise Control

systems,

• Application of Youla-Kučera parameterized adaptive feedforward filters, either in a FIR or

IIR configuration,

• Exhaustive comparison between different algorithms and configurations, by analysis of

experiments performed on the test bench,

• Comparison between both feedback and feedforward approaches made under similar condi-

tions.

2.5 Dissertation Outline

After an explanation of the basis leading to this study in Chapter 2, we give a detailed description

of the ANC test bench used for the trials done for this dissertation in Chapter 3. a comparison with

more common approaches by other studies done in ANC is made. Geometries and dimensions are

given for all the different configurations used throughout these studies, as well as the specification

of the elements taking part in the test bench itself.

In the Chapter 4, the methodology utilized for the identification of all the linearized models,

both for controller design and identifications, is described step by step. Later, similar models from

different test bench configurations are discussed and compared.

In Chapter 5 of this thesis, theory for attenuation of tonal or narrow band disturbances

through a feedback control configuration is addressed. As a basis for comparison, non-adaptive

controllers theory is developed and applied, focusing primordially in shaping the system’s sensi-

tivity functions. Then a more complex approach is taken into account when the Youla-Kučera

(YK) parametrization is used for a self-tuning version of the previous controllers. Special care is

taken for the computational stress due to complex calculations, and the optimization of the time

required to perform them is done.

Finally, Chapter 6 expose and studies the feedforward control theory for rejection of broad

band disturbances, in the presence of an inherit internal coupling between the control signal and

the measured disturbance’s image present in ANC systems, that might induce a destabilization

of the system itself. Common adaptive algorithms are tested and compared with the proposed

Youla-Kučera parametrization.

41





Part I

Experimental Setup

43





C
H

A
P

T
E

R

3
PRACTICAL FIELD: TEST BENCH

Application of algorithms and theories developed in the Active Noise Control domain

is a fundamental step, since the models are based on approximations of systems with

non-linear and dynamic behavior. This inherent condition creates a discrepancy between

the expected theoretical results and the ones we may encounter in real applications. Because

of that, one of the best approaches is to actually test the theory developed under a controlled

environment. From here the need to design a test bench for our studies.

In this chapter, first an explanation of the test bench used is given, comparing it with different

approaches. The physical disposition of key elements is explained and detailed, comparing to

other works and detailing the different test bench configurations used. Technical specifications

about the main components are given as well as detailed diagrams of configurations used.

3.1 From Theory to Reality: Test Bench Design

Different approaches exist when talking about test systems and environments for Active Noise

Control, as in [Venugopal and Bernstein, 2000, Cocchi et al., 2000, Hu and Lin, 2000, Bordeneuve-

Guibé and Nistor, 2002], just to mention a few. Taking all this into account, it was decided to take

a slight different approach to what has been done up until now. It was chosen, as general design,

an enclosed environment with an inherent closed initial point for the source of disturbances

acting in the system, and an open boundary at its end.

This was initially intended to act as a section of an idealized duct of air distribution, as the

ones we can find in real industrial environments. Let us give, as an example, a given machinery

or equipment working near one conduct of air conditioning distribution, which is close enough

to an office’s room of the facility to be heard. The passive isolation that a wall and its materials
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possess is limited, and the ducts provide a non usually isolated way of transmission for these

noises. As an example we can see the work done by [Zeng and de Callafon, 2006].

A different application of the same idea is given in [Ben-Amara et al., 1999], where several

controller adaptation algorithms are implemented in a test bench to solve the noise cancellation

problem in a duct. In this work they address the fact that there are indeed differences between

expected results and observed performances, that are attributed to the nonlinearities present in

the test bench, and are not modeled in the design.

3.1.1 Control Actuator Placement

The main difference of the chosen configuration is seen at the control actuator positioning level.

Amongst the most common configurations, we can find those in [Sharma and Renu, 2016, Zimmer

et al., 2003, Carmona and Alvarado, 2000, Eriksson, 1991a], where there is a direct connection

with the main section of the system in a complete perpendicular orientation, and taking into

account the working fluid characteristics, allowing this actuator to be as close as possible to this

main section.

Given the fact that a phenomenon of positive coupling is inherent to the system itself (as it

will be explained in Section 6.3.1) and taken into account in some configurations for active control,

such as measurement to decrease the effects of this, a new configuration was proposed. The basic

scheme of the standard used setup in the field is displayed at Figure 3.1(a), where we can see

a 90° connection, and the path that a reverse coupling would take. In order to decrease these

undesirable but always present effects, a 45° connection, as in Figure 3.1(b), is implemented to

create a smoother junction between the control signal heading to the flux of residual noise in the

system, at the same time that makes a tougher path for the internal coupling.

More than one configuration were used during this thesis, due to some characteristics of the

obtained models, and explained at section 6.1.

3.2 Test Bench Configurations

3.2.1 First Configuration

The first approach was taken just having in mind only the idea of decreasing the effects that

an internal coupling presents. Dimensions of the components and parts used into this first

configurations can be found in Figure 3.2. Here we can see the 45° angles formed by the control

loudspeaker, marked as (2) in Figures 3.3 and 3.4, and its connection to the main body of the test

bench.

The image in Figure 3.3 shows the real test bench in the facilities were it is used. Four

important sections are depicted in it:
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(a)

Residual
Noise

Internal
Coupling

System section

(b)

Residual
Noise

Internal
Coupling

System section

Control
Actuator

FIGURE 3.1. (a) Standard control actuator positioning. (b) Proposed control actuator
positioning.

(1) Disturbance’s loudspeaker, used as an artificial source of noises. Can reproduce variety of

disturbances with specific characteristics. Used to feed the system with perturbations that go

from simple sinusoidal signals, to audio recordings in real environments.

(2) Controller’s loudspeaker, used as an actuator for the control signal fed into the system after

calculations of the algorithms. It is individually connected to the computers, meaning that it

has independent connectors and amplifier as it would be in a real system.

(3) Residual noise’s microphone, located at the open end of the system and used to gather and

record the measurements’ data of the system exit. Information acquired by this microphone

is measured in real time and used in algorithms with either a feedback or in feed-forward

configuration.

(4) Image’s microphone, a second sensor that may be used only for algorithms with a feed-forward

configuration. It is located as close to the source of disturbance as possible in order to get a
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1.34 m
1.26 m

0.80 m
0.66 m

0.12 m

0.21 m

45
o

45
o

⌀0.10	m

⊣⊢0.002	m

FIGURE 3.2. First experimental test bench configuration.

first impression or image of the disturbance before it crosses the system, thus called hereby

image microphone.

FIGURE 3.3. Photo of test bench’s first configuration.

Figure 3.4 displays these same four remarks in a more schematic representation. Here we

can see included both the development and target PC’s, used to develop the algorithms and their

direct application in the test bench. More important, we define for the first time the nomenclature

used throughout the whole thesis for the different signals found in our schemes. First of all

we have y(t) as the Residual Noise, which is acquired by measurements of the residual noise’s
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microphone and sent to the target PC. This is the signal that a given controller being tested aims

to attenuate. Second in importance is u(t) as the control signal. It is calculated in the target PC

and applied into the system through a power amplifier connected to the controller’s loudspeaker.

Independently to the different algorithms calculations, a signal s(t) is defined as the disturbance.

It is applied in the system through a second independent amplifier connected to the disturbance’s

loudspeaker. Lastly, v(t) is the perturbation or disturbance’s image, and is only used for the

algorithms in a feed-forward configuration.

As a fundamental part of our approach, we define now the inner trajectories or paths inside

the system. The path situated between the disturbance source located at (1), and the point where

residual noise is measured, located at (3) is named as Primary Path. This so called path is useful

to recreate the system’s dynamics in a simulation. More important is the path situated between

the Controller’s loudspeaker at (2) and the point where residual noise is measured in (3). This is

called Secondary Path and is crucial in the controllers’ design, as it will be shown in the following

sections.

FIGURE 3.4. Schema of test bench’s first configuration.

Since we are working in a discrete-time environment, given the cut-off frequency in the

system a sampling frequency fs = 2500Hz was chosen. We may now describe the system based

on a standard RST feedback controller as in figure 3.5, where G =G(q−1) is the discrete time

model of the plant, and where we will find that for our specific case, r(t)= 0.

Being that the case, the system can be further described by the diagram given in Figure 3.6,

49



CHAPTER 3. PRACTICAL FIELD: TEST BENCH

+ + +

-

y(t)

p(t)

r(t)
T

R

S
G

1

FIGURE 3.5. RST general controller scheme.

where we have the primary and secondary paths model given in discrete time such that,

(3.1) G(q−1)= q−dG BG(q−1)
AG(q−1)

defines the secondary path G with a pure delay given by dG , and the controller K is defined as,

(3.2) K(q−1)= R(q−1)
S(q−1)

.

For the case of simulations we will require to have the primary path’s model as well, defined

as D in the same way, such that,

(3.3) D(q−1)= q−dD BD(q−1)
AD(q−1)

.

In such manner, we define the residual noise as

(3.4) y(t)=G(q−1) ·u(t)+ p(t),

and the control signal as

(3.5) u(t)=−K(q−1) · y(t),

with p(t) as the perturbations affecting the system (not to be confused with the disturbance signal

s(t) sent from the target PC). Further explanations will be given regarding the feed-forward

configuration in the following sections (Chapter 6).

The resulting identified model for this first configuration’s secondary path can be seen in

Figure 3.7.
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FIGURE 3.6. Feedback control scheme.

0 200 400 600 800 1,000 1,200
−80

−60

−40

−20

0

20

Frequency [Hz]

M
ag

n
it
u
d
e
[d
B
]

Secondary path

FIGURE 3.7. First test bench configuration’s identified secondary path.

3.2.2 Second Configuration

For the second configuration used, as it can be seen in Figures 3.8 and 3.9, the geometry was

changed to improve some characteristics of the secondary path, more specifically the controllabil-

ity in some determined regions in the frequency domain, which is further explained in section
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6.1.

In order to improve the secondary path’s characteristics, it was found that since we use a

loudspeaker as a disturbance’s actuator, its diaphragm was acting as a passive damper [Baz, 2018,

Krysinski and Malburet, 2008]. This introduced a series of setbacks that may not appear in a real

system since disturbances are not configured to display passive dampening in real environment.

This was related to a mechanic engineering term defined as effective length ([Stanfield and Skaves,

2012]). By shortening the disturbance’s duct and changing the angles used as connection for the

control loudspeaker, we were able to modify this length and thus, alter the undesired conditions

present in the original design. However in this configuration the delay of the secondary path is

larger than the delay of the primary path.
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0.19 m

15
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⊣⊢0.002	m

0.09	m

∡20
o	
0.23	m

FIGURE 3.8. Second experimental test bench configuration.

FIGURE 3.9. Photo of test bench’s second configuration.

Results of the identified model for the second configuration’s secondary path are displayed in
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Figure 3.10.
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FIGURE 3.10. Second test bench configuration’s identified secondary path.
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3.2.3 Third Configuration

Finally a third and last configuration was implemented, where the test bench geometry was

changed so that both feedback and feedforward approaches could be tested in similar conditions.

The new geometrical dimensions are shown in Figure 3.11, and the actual test bench configuration

can be seen in Figure 3.12.

Here, both previous test bench configurations advantages were considered. First, the un-

wanted zero in the secondary’s path model was displaced to a mid-high frequency in order to

allow the feedback controllers to operate in the desired frequency region of attenuation. Secondly,

the difference between primary and secondary paths in terms of delay was taken into account to

have favorable conditions for the feedforward controller.

1.42 m
1.34 m

0.77 m
0.23 m

0.30 m

45
o

⌀0.10	m

⊣⊢0.002	m

FIGURE 3.11. Third experimental test bench configuration.

FIGURE 3.12. Photo of test bench’s third configuration.

Further information regarding the differences between these configurations and the expla-
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nation of their need are later done inChapter 6. Figure 3.13 shows the resulting identified path

corresponding to this third configuration’s secondary path is displayed. Figure 3.14 shows the

comparison between all different configurations secondary path identified models and their

differences in terms of frequency response.
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FIGURE 3.13. Third test bench configuration’s identified secondary path.

3.3 Technical Specifications

Among the components used in the test bench we enlist here the most important ones. First of all,

the pipes and connections are made of regular general purposes PVC non-scheduled, commonly

used in low pressure sewer drain systems. All PVC parts have a nominal diameter of 0.10m.

The loudspeakers used are a couple of Mark Audio Alpair 7 (Gen. 3) Extended Full-Range

emitter, Gold color cone model. In the attempt of creating an environment closer to reality,

speakers were enclosed into anechoic chambers made out for reducing radiation noises done back

the rear side of the speakers. They are made of half inch tick plywood, and filled with high density

acoustic isolating foam. This custom made chambers have dimensions of 0.15m×0.15m×0.12m,

with the configuration seen in Figure 3.15. Speakers are connected to two independent Extron XPA

2004 power amplifiers, with a working range from 20Hz to 20kHz for frequency response. As for

the microphones, a set of custom made Hutchinson Paulstra sensors are used for measurements.
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FIGURE 3.14. Secondary path models comparison. Frequency response of all test bench’s
configurations.

(a) (b)

FIGURE 3.15. Anechoic boxes Set up.

3.4 Concluding Remarks

The physical description of elements conforming the test bench was given, as well as a brief

explanation of the configuration and geometry used in its overall design, including the different

configurations proposed. A basic introduction of the terms that will be used through this work is

provided to start giving the basic notions and notations that will be recurring.
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4
IDENTIFICATION OF MODELS

Design of noise controllers requires some knowledge of the system where it is intended to

be applied. In this chapter, the methodology followed and the basic principles of dynamic

systems identification are first introduced. The choice for this system’s input signal used

for identification and the influence of disturbances is later discussed, as well as the constrains

imposed to high order models to agree with the parsimony principle, while keeping a good quality

of the models. The whole model identification procedure is completely detailed for one of the

models used in this project. Then the results obtained for the three configurations are displayed

and compared before the concluding remarks.

4.1 Basis of Model Identification

Model identification from experimental data is a well established methodology as described in

[Landau et al., 2016] and [Ljung, 1999]. Identification of systems is an experimental approach for

determining a system’s dynamic model. It includes four steps:

1. Input-output data acquisition under an experimental protocol and data pre-processing.

2. Estimation of the model’s structure complexity.

3. Calculation of the model parameters.

4. Validation of the identified model for both complexity of the model and parameter’s values.

A complete identification operation must comprise the four stages indicated above. The

typical input excitation signal is a Pseudo-Random Binary Sequence PRBS, which is a persistent

excitation signal allowing unique parameter estimation even for high order systems. The type
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of model to be identified is a discrete-time parametric model, which allows to design a control

algorithm straightforwardly implementable on a computer. Model validation is the final key point.

It is important to emphasize that it does not exist one single algorithm that can provide a good

model in all the cases (i.e. which passes the model validation tests). System identification should

be viewed as an iterative process which has as objective to obtain a model which passes the model

validation test and then can be used safely for control design. The procedure will be detailed for

an identification of the system’s first configuration secondary path G. The same methodology

has been also used for the reverse path’s M identification, used in the feedforward approach.

Subsequently the primary and image paths, D and W correspondingly, were also identified in the

same way, although they were used only for simulations.

4.2 Data Acquisition

For design and application reasons, since the objective was determined to reject tonal disturbances

up to 400Hz, the sampling frequency was selected as fs= 2500Hz (sampling time Ts= 0.0004s) i.e.

approximately 6 times the maximum frequency to attenuate, in accordance with recommendation

given in [Landau et al., 2016]. The theoretical band pass of the system is 1975Hz, using formula

given in [Zimmer et al., 2003].

4.2.1 Pseudo-Random Binary Sequence (PRBS)

In order to identify the corresponding models to each path, a methodology must be followed. First

the system has to be excited with an input signal rich in frequencies. The experimental protocol

should assure persistent excitation for the number of parameters to be estimated. There are

several methods to achieve this, nevertheless it was shown in [Ljung, 1999], that for identifying

2n parameters, the excitation signal should contain at least n+1 sines of distinct frequency. To go

beyond this constraint, during this work’s tests, the discrete-time version of a white noise signal,

called Pseudo-Random Binary Sequence (PRBS), has been used; since it contains a large number

of sines with energy equally distributed over the frequency domain. In addition, the signal’s

magnitude is constant, allowing an easy selection with respect to the magnitude constraint on

the plant input. Pseudo-random binary sequences are signals of rectangular pulses modulated in

width that vary randomly, but have a finite sequence length and repeat periodically in long term,

thus Pseudo-Random.

One of the key points is the design of a PRBS in order to satisfy a compromise between the

frequencies range to be covered, particularly those in the low frequencies region, and the test

duration. One should apply at least on complete PRBS sequence, and its characteristics, including

duration, will depend on the number of cells in the registers length used for its generation.

The PRBS are generated by means of shift registers with feedback. The maximum length of a

sequence is L = 2N −1, where N is the shift register’s number of cells. In order to cover the entire
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frequency spectrum generated by a particular PRBS, the length of a test must be at least equal

to the sequence’s length. In a large number of cases, the test duration L is chosen equal to the

sequence’s length.

The PRBS magnitude must also be considered. Although the value chosen for this magnitude

may be very low, it should lead to output variations larger than the residual noise level. If the

signal/noise ratio is too low, the test length must be augmented in order to obtain a satisfactory

parameter estimation. Note that in a large number of applications, the significant increase in the

PRBS level may be undesirable in view of the nonlinear character of the plants to be identified, as

in our case, since we are concerned with the identification of a linear model around an operating

point.

For identification in this work, the signal’s characteristics used are: magnitude = 0.15V,

register length = 17, sequence length of 217 − 1 = 131071samples, having a total duration of

L = 52.43s and guaranteeing a uniform power spectrum from about 50 Hz to 1250 Hz. This

is beyond the system’s band-pass estimated by using the non-parametric transfer function

estimation technique in [Zimmer et al., 2003].

4.2.2 Data Preprocessing

Since we identify the secondary path, and since the relationship between the input/output

signals (u(t)/y(t)), is that of a loudspeaker-microphone, the transfer functions will have a double

differentiator behavior, since the input is determined by the speaker’s coil position in [m], and

the output is the acoustic pressure measured by the microphone’s diaphragm in [Pa]= [kg/(ms2)].

This is considered as the system’s known part and so the objective is to identify the remaining

unknown part only. To do this, the input sequence will be filtered by a discrete-time double

differentiator

(4.1) Gdd(q−1)= (1− q−1)2 = 1−2q−1 + q−2,

with q−1 as the delay operator for the time domain as in q−n y(t)= y(t−n), such that

(4.2) u′(t)=Gdd(q−1) ·u(t),

The double differentiator will be concatenated with the identified model of the unknown part in

the final model. Finally the data acquired in y(t) and the new defined u′(t) are centered.

4.3 Order Estimation

It is extremely important being able to estimate the system’s order from input/output data since

it is hard from physical reasoning to get a reliable estimation of it. The plant measured output is

in general contaminated by noise. This is due either to the effect of random disturbances acting

at different points of the plant, to measurement noises, or unmodeled dynamics in the system’s
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plant. A common way of describe this phenomenon is define the system as the plant + disturbance

G +η, thus giving as result y(t)=G(q−1)u(t)+η(t). These random disturbances η are frequently

modeled by ARMA models, thus the plant + disturbance process is given by an Auto-Regressive

Moving Average with external input (ARMAX) model structure [Landau et al., 2016, Landau and

Zito, 2006].

4.3.1 ARMAX Structure

Figure 4.1 shows the ARMAX process configuration taken for the secondary path’s identification,

where u(t) is the signal sent to the controller’s loudspeaker (as in 3.2), y(t) is the system’s output

measured residual noise, δ(t) is an unknown source of disturbances defining η as η(t)=O(q−1)δ(t),

and the discrete-time model of the disturbed secondary path is given by the linear transfer

function G∗(q−1) describing the system as y(t)=G∗(q−1)u(t).

+ +

																

					

FIGURE 4.1. ARMAX process diagram.

Hence, we can define the disturbed plant’s output as:

(4.3) y(t)= q−dB(q−1)
A(q−1)

u(t)+ C(q−1)
A(q−1)

δ(t)=G(q−1)u(t)+O(q−1)δ(t),

in which the first term G(q−1) represents the controller effect or plant, and the second term O(q−1)

is attributed to the sum of measurements noise, random disturbances and unmodeled dynamics

remaining out the effective model, since in practice we assume δ(t)= 0, thus G(q−1)=G∗(q−1).

The polynomials A(q−1) and C(q−1) have the form

(4.4) A(q−1)= 1+
nA∑
k=1

akq−k = 1+a1q−1 +a2q−2 +·· ·+anA q−nA ,

and B(q−1) is defined as

(4.5) B(q−1)=
nB∑

k=1
bkq−k = b1q−1 +b2q−2 +·· ·+bnB q−nB ,

where nB, nA, nC are the polynomials orders respectively. The variable d corresponds to a pure

input-output delay in the system. As such, d,nB,nA,nC are the order values to estimate in this
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step of the process. For simplicity, we then arbitrarily assign the order for C(q−1) as nC = nA , and

define the overall system’s estimated order as n̂, with n̂ =max(nB +d,nA).

4.3.2 Instrumental Variable

A simple way for identifying the polynomial orders and the quantity of pure delays is based

on the least squares (LS) loss function. It is simple because it can be computed with only one

pass through the data using an orthogonal transformation [Ljung, 1999, Söderström and Stoica,

1988, Söderström, 1977]. In general the LS method does not give a consistent estimate for orders

when the second term O(q−1) of Equation (4.3) models is colored noise. A solution in that case is

to use the loss function of an ARMAX model, where G(q−1) is also identified simultaneously.

However, the use of an ARMAX model is not appropriate when O(q−1) is time-varying.

Moreover, the identification of an ARMAX model is highly nonlinear, and the exact minimum

of the loss function cannot be obtained. Finally, this approach has a high computational cost,

because it requires many passes through the data, for identifying the model’s parameters and

computing the loss function of each model. Another approach, the rank test, has been proposed by

[Guidorzi, 1981, Young et al., 1980, Wellstead, 1978] and others. The technique is based on testing

the rank of some matrices, and often the problem is to define a criterion for deciding whether or

not the considered matrix is of full rank [Söderström and Stoica, 1988]. Some solutions of the

problem for a stationary noise case have been given by [Hall, 1991, Stoica, 1981], and others.

For explaining the rank test we, take as an example a simplified version of Equation (4.3),

where the plant model is described by:

y(t)= [−a1 y(t−1)+b1u(t−1)]+ [−a2 y(t−2)+b2u(t−2)]+·· ·+ [−an̂ y(t− n̂)+bn̂u(t− n̂)],

=−
(

n̂∑
k=1

akq−k

)
y(t)+

(
n̂∑

k=1
bkq−k

)
u(t),

=−A(q−1)y(t)+B(q−1)u(t),

(4.6)

with A(q−1) and B(q−1) of estimated order n̂. From here we can define the data vectors

acquired from the experiments system output Y (t) and plant input U(t) as

(4.7) Y T (t)= [y(t), y(t−1), . . . ], UT (t)= [u(t),u(t−1), . . . ],

and the parameters vector from the identified model as

(4.8) θT = [a1,a2, . . . ,an̂,b1,b2, . . . ,bn̂].

Afterwards we construct the [2n̂]× [2n̂+1] matrix [Y (t)|R(n̂)] as:
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(4.9) [Y (t)|R(n̂)]=


y(t) y(t−1) u(t−1) . . . y(t− n̂) u(t− n̂)

y(t−1) y(t−2) u(t−2) . . . y(t− n̂−1) u(t− n̂−1)
...

...
...

. . .
...

...

y(t−2n̂−1) y(t−2n̂) u(t−2n̂) . . . y(t−3n̂−1) u(t−3n̂−1)

 ,

with the square [2n̂]× [2n̂] matrix R(n̂) defined by

(4.10) R(n̂)= [Y (t−1),U(t−1),Y (t−2),U(t−2), . . . ,Y (t− n̂),U(t− n̂)].

From here we can say that, if the model order n̂ given in Equation (4.6) is correct, the vector

Y (t) will be a linear combination of the columns in R(n̂), since Y (t)= R(n̂)θ and the matrix will

be rank deficient. If the real order of plant model is higher than n̂, the matrix (4.9) will be full

rank meaning that the estimated order n̂ was too small.

Unfortunately, as a consequence of the disturbances that may appear, this procedure cannot

directly be applied in practice. A more practical approach results from the observation that a

rank test problem can be approached by looking for a θ̂ which minimizes the following criterion

for an estimated value of the order n̂. This is where the LS loss function intervenes [Söderström

and Stoica, 1988], and we can define the criterion such that,

(4.11) VLS(n̂, N)=min
θ̂

1
N

∥∥Y (t)−R(n̂)θ̂
∥∥2

where N is the number of samples acquired in the test for model identification.

Finally it has been shown that it is possible to replace the matrix R(n̂), by a new reformulated

Instrumental Variable (IV) auxiliary observation matrix Z(n̂), as proposed in [Duong and Landau,

1996, Duong and Landau, 1994], whose elements are highly correlated with the uncontaminated

variables, and therefore representative, but uncorrelated with the measurements noise and

disturbances. Such an instrumental matrix Z(n̂) can be obtained, by replacing in the matrix

R(n̂), the columns Y (t−1),Y (t−2), . . . ,Y (t− n̂) by a corresponding delayed version of U(t−1) as

in Y (t)→U(t−L), where L ≥ 2n̂ [Duong and Landau, 1996], such that

(4.12) Z(n̂)= [U(t−1−L),U(t−1),U(t−L−2),U(t−2), . . . ,U(t− n̂−L),U(t− n̂)],

hence the criterion to minimize is defined as

(4.13) VIV (n̂, N)=min
θ̂

1
N

∥∥Y (t)−Z(n̂)θ̂
∥∥2 .
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4.3.3 Penalization

One of the main objectives of the identification is to estimate lower order models, due to the

parsimony principle, and therefore it is reasonable to add in the criterion a term which penalizes

the model’s complexity. Therefore, the penalized criterion for order estimation will take the form:

(4.14) JIV (n̂, N)=VIV (n̂, N)+S(n̂, N),

where the penalization term S(n̂, N) can take several forms. Results in this work were

obtained by using the penalization term S(n̂, N)= 2n̂ log N
N , so Equation (4.14) is reformulated as

(4.15) JIV (n̂, N)=VIV (n̂, N)+2n̂
log N

N
.

Since we have a fixed amount of data and N is a constant, the value for this model order that

the procedure is looking for can be described by

(4.16) n̂ =min
n̂

JIV (n̂).

A typical curve of the criterion JIV (n̂, N) evolution as a function of n̂ is shown in Figure 4.2.

FIGURE 4.2. Evaluation of the penalized instrumental variable criterion for order
estimation.

Once an estimated order n̂ is selected, one can apply a similar procedure to individually

estimate n̂A, n̂− d̂, n̂B + d̂, from which n̂A, n̂B, n̂C and d̂ are obtained.

From Equation (4.1) we recall that a known part of the model is given by the second order

polynomial Gdd(q−1), hence the final value for the order of polynomial B(q−1) will be expressed as

n̂B′ +2. Examples of the results obtained for the real estimation of the example taken can be seen

in Figure 4.3, where Figure 4.3(a) shows the results for n̂, Figure 4.3(b) for n̂B′ + d̂, Figure 4.3(c)

for n̂A, and Figure 4.3(d) for n̂− d̂. The order for polynomial C(q−1) is taken as n̂C = n̂A.
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As seen for the example in Figure 4.3(a), the minimum for criterion is very flat, which is

understandable since we are trying to approximate an infinite-dimensional system. It is therefore

necessary to explore the model’s properties for n̂ between 32 and beyond, in order to decide what

order to take. Two additional criteria will be used to decide upon the best order estimation: I)

comparison between the Power Spectral Densities (PSD) of the identified model’s output and the

output’s real data, in order to see if the identified model captures all the vibration modes in the

frequency range of operation, and II) comparison of the validation tests for the various models.

This will be further explained in 4.5.
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FIGURE 4.3. Order estimation using an Instrumental Variable and complexity penalty,
with estimation for (a) n̂, (b) n̂B′ + d̂, (c) n̂A, and (d) n̂− d̂.

The table 4.1 summarizes the estimated orders used for the secondary path model, along with

the orders for all remaining system’s paths models.

Path n nA nB d
Primary 38 34 27 9
Secondary 40 38 32 8
Reverse 37 33 30 7
Image 34 34 34 0

TABLE 4.1. First test bench configuration estimated orders used for the different system
models.

A remark that can be done at this point is the fact that for the specific case of an ANC system,
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the delays d can be sometimes calculated previously to the order estimation, since the sound

speed and the relative distances between the signal source (a loudspeaker in this test bench),

and the point of signal measurement, located at the microphone, can be determined.

4.4 Parameters Estimation

The algorithms used for parameter estimation will depend on the assumptions made on the

measurements noise η(t) characteristics, which have to be confirmed by the model validation (4.5).

It is important to emphasize that no single plant + noise structure exists that can describe all the

situations encountered in practice. Furthermore, there is no parameter estimation algorithms

that may be used with all possible plant + noise structures such that the estimated parameters

are always unbiased. It is the validation stage which will allow to decide what method, and

implicitly what noise model, has to be used.

4.4.1 Identification Method: OEEPM

Among various models, it was found that ARMAX model gives the best representation in this

case, and between the available methods for that model, Output Error with Extended Prediction

method (OEEPM), called XOLOE in some literature [Landau et al., 2016], brought the best

results in terms of validation for a given order model. It has been developed initially with the aim

to remove the strictly positive real condition required by the output error algorithm. It turns out

that the OEEPM can be interpreted as a variant of the Extended Least Squares (RELS) [Landau

et al., 2016].

From Equation (4.3), we have:

(4.17) A(q−1)y(t)= q−dB(q−1)u(t)+C(q−1)δ(t).

The idea is to simultaneously identify the plant model G(q−1) and the noise model O(q−1),

in order to obtain a prediction adaptation error which is asymptotically white. Expressing the

polynomials as B(q−1)= q−1B∗(q−1), the model generating data can be expressed as:

y(t+1)=− A∗(q−1)y(t)+B∗(q−1)u(t−d)+C∗(q−1)δ(t)+δ(t+1)

=θTϕ0(t)+δ(t+1)
(4.18)

with

θT =[a1,a2, . . . ,anA ,b1,b2, . . . ,bnB , c1, c2, . . . , cnC ],(4.19)

ϕT
0 (t)=[−y(t), . . . ,−y(t−nA +1),u(t−d), . . . ,u(t−d−nB +1),δ(t), . . . ,δ(t−nC +1)].(4.20)

Assume that the parameters are known and construct a predictor that will give a white

prediction error:
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(4.21) ŷ(t+1)=−A∗(q−1)y(t)+B∗(q−1)u(t−d)+C∗(q−1)δ(t).

Furthermore as shown in [Landau and Zito, 2006], this predictor will minimize E
{
[y(t+1)− ŷ(t+1)]2}

.

The prediction error, in the case of known parameters, is given by:

(4.22) ε(t+1)= y(t+1)− ŷ(t+1)= δ(t+1),

hence Equation (4.21) can be written as

(4.23) ŷ(t+1)=−A∗(q−1)y(t)+B∗(q−1)u(t−d)+C∗(q−1)ε(t),

and modifying Equation (4.18) with this new definition we get

(4.24) ε(t+1)=−C∗(q−1)[ε(t)−δ(t)]+δ(t+1),

thus C∗(q−1)[ε(t)−δ(t)]= 0, and since C(q−1) is an asymptotically stable polynomial, it results

that ε(t+1) will become white asymptotically.

In the adaptive version of this algorithm, the a priori adjustable predictor will take the form:

ŷ◦(t+1)=− Â∗(q−1, t)y(t)+ B̂∗(q−1, t)u(t−d)+ Ĉ∗(q−1, t)δ(t)

=− Â∗(q−1, t) ŷ(t)+ B̂∗(q−1, t)u(t−d)+{
Ĉ∗(q−1, t)δ(t)− Â∗(q−1, t)[y(t)− ŷ(t)]

}
,

(4.25)

that can be rewritten as

ŷ◦(t+1)=− Â∗(q−1, t) ŷ(t)+ B̂∗(q−1, t)u(t−d)+ Ĥ∗(q−1, t)ε(t)

=θ̂T (t)ϕ(t),
(4.26)

with Ĥ∗(q−1, t) = Ĉ∗(q−1, t)− Â∗(q−1, t) = ĥ1(t)+ q−1ĥ2(t)+ . . . , with ĥi(t) = ĉi(t)− âi(t) for

i = 1,2, . . . ,nH , where nH =max(nA,nC); and also getting

θ̂T (t)=[â1, â2, . . . , ânA , b̂1, b̂2, . . . , b̂nB , ĥ1, ĥ2, . . . , ĥnH ],(4.27)

ϕT (t)=[− ŷ(t), . . . ,− ŷ(t−nA +1),u(t−d), . . . ,u(t−d−nB +1),ε(t), . . . ,ε(t−nH +1)].(4.28)

Equation (4.26) corresponds to the adjustable predictor for the Output Error with Extended

Prediction model (OEEPM). From here, the recursive parameter estimation (or adaptation)

algorithm (PAA) used is described in [Landau et al., 2016], such that:
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θ̂(t+1)=θ̂(t)+F(t)ϕ(t)ε(t+1),(4.29)

F(t+1)−1 =λ1(t)F(t)−1 +λ2(t)ϕ(t)ϕT (t),(4.30)

ε(t+1)= ε◦(t+1)
1+ϕT (t)F(t)ϕ(t)

,(4.31)

with 0<λ1(t)≤ 1, 0≤λ2(t)≤ 2, F(0)> 0, F−1(t)>αF−1(0) for α> 0.

4.5 Model Validation

The considered identification protocol OEEPM belongs to the class of methods based on the

residual error’s whitening, meaning that the identified ARMAX predictor is optimal if the

residual error ε(t) is a white noise. If the residual prediction error ε(t) is a white noise sequence,

in addition to obtaining unbiased parameter estimates, this also means that the identified model

gives the best prediction for the plant output in the sense that it minimizes the variance of ε(t).

On the other hand, since the residual error is a white noise, it is not correlated with any other

variable, then all correlations between the input and output of the plant are represented by the

identified model and what remains unmodeled does not depend on the input u(t).

Before implementing the validation method it is assumed that I) the plant + noise structure

chosen is correct and representative of the reality, II) an appropriate parameter estimation

method for the structure chosen has been used, and III) the polynomials orders nA,nB,nC and

delay d have been correctly chosen. Then the prediction error ε(t) asymptotically tends toward a

white noise, which implies:

lim
t→∞E {ε(t)−ε(t− i)}= 0; i = 1,2, . . .

4.5.1 Whitening Test

Let ε(t) be the centered sequence of the residual prediction errors, so we have:

R(i)= 1
Ns

Ns∑
t=1

ε(t)ε(t− i),(4.32)

Rn(i)= R(i)
R(0)

, i = 0,1,2, . . . ,nA, . . .(4.33)

with imax ≥ nA, Ns number of samples and R(i), Rn(i) the autocorrelation and normalized

autocorrelation estimations. In the theoretical situation where the residual prediction error ε(t)

sequence is perfectly white and the number of samples Ns is large (Ns →∞), then Rn(i)= 0 for

all i. However, in real situations this is never the case and Rn(i) 6= 0 for i ≥ 1, since ε(t) contains
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residual structural errors from wrong polynomial orders, nonlinear effects, non-Gaussian noises,

or the value for Ns is too small.

A practical validation extensively tested on applications criterion is defined by:

(4.34) |RN (i)| ≤ 2.17√
Ns

, i ≥ 1.

This test has been defined taking into account the fact that for a white noise sequence

Rn(i) 6= 0 has an asymptotically Gaussian (normal) distribution with zero mean and standard

deviation σ 1p
Ns

. Equation (4.34) considers a confidence interval of 97% in the hypothesis test for

Gaussian distribution (with a z-score= 2.17 we get 2.17σ= 97%).

If Rn(i) obeys one-sided Gaussian distribution, there is only a probability of 1.5% that

|Rn(i)| > 2.17p
Ns

. Therefore, if a computed value Rn(i) falls outside the confidence interval range,

the hypothesis stating that ε(t) and ε(t− i) are independent is not satisfied, and model should be

rejected, since ε(t) would not be a white noise sequence.

If several identified models have the same complexity, the model given by the methods that

lead to the smallest |Rn(i)| should be preferred. Also a "too good" validation criterion indicates

that model simplifications may be possible.

Since for our example we estimate nA = nC = 38 from Table 4.1, we get that imax = 38. Results

of the Whitening Test for the identified model example of the secondary path can be seen in

Figure 4.4.
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FIGURE 4.4. Whiteness test for identified secondary path.

It can be noticed that not all autocorrelations satisfy the criterion limit of |Rn(i)| ≤ 2.17p
Ns

,

nevertheless among the several tests and approached realized for the models identifications, it

was found that being close enough to this limit in the first autocorrelations, corresponding to the

low frequencies in the identified model, gave good results.
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4.6 Identified Models

Models identified from experiments done in the different configurations of the test bench by

applying the model identification methodology are presented in this section. The primary and

image paths are used only for simulations; they are presented only for the first test bench

configuration.

4.6.1 First Configuration Models
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FIGURE 4.5. Identified primary path for first test bench configuration.

From Figure 4.5 we can see that the identified primary path of the first configuration has

very low gain at frequencies over 500 Hz, meaning than disturbances above this frequency

will be attenuated by the system itself and there is no use in apply a controller over those

frequencies. Same phenomenon happens with frequencies under 50 Hz, where the effects of the

double differentiator present on the model are evident.

In Figure 4.6 the most important point to highlight is the presence of a low damped zero

around 315 Hz. This zero generates a region of low gain where the controller won’t have attenua-

tion capabilities and thus compensation at those given frequencies must be avoided.
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FIGURE 4.6. Identified secondary path for first test bench configuration.
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FIGURE 4.7. Identified reverse path for first test bench configuration.
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FIGURE 4.8. Identified image path for first test bench configuration.

Once the problem of this zero was pointed out, a solution was proposed and Figure 4.9 displays

the secondary path of the second test bench configuration without low damped zeros in it, allowing

us to have a larger attenuation region.

At last Figure 4.11 the third test bench configuration’s secondary path, where the low damped

zero is present again, but the gain at frequencies near 70 Hz is higher in comparison with those

models of both previous configurations.
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4.6.2 Second Configuration Models
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FIGURE 4.9. Identified secondary path for second test bench configuration.
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FIGURE 4.10. Identified reverse path for second test bench configuration.
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4.6.3 Third Configuration Models
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FIGURE 4.11. Identified secondary path for third test bench configuration.
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FIGURE 4.12. Identified reverse path for third test bench configuration.
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4.7 Concluding Remarks

The basic elements for the identification of discrete-time models for dynamical systems have been

laid down in this chapter. The following facts have to be emphasized:

1. System identification includes four basic steps:

• input/output data acquisition under an experimental protocol,

• estimation or selection of the model complexity,

• estimation of the model parameters,

• validation of the identified model (structure of the model and values of parameters);

having in mind that this procedure has to be repeated (with appropriate changes at each

step) if the model validation fails.

2. Recursive or off-line parameter estimation algorithms can be used for the identification of

the plant model parameters.

3. The stochastic noises, which contaminate the measured output, may cause errors in the

parameter estimates (bias). For a specific type of noise, appropriate recursive identification

algorithms providing asymptotically unbiased estimates are available.

4. A unique plant + noise model structure that describes all the situations encountered in

practice neither exists, nor is there a unique identification method providing satisfactory

parameter estimates (unbiased estimations) in all situations.

5. Different test bench configurations have significant differences in terms of the models

identified, more important in the secondary path, defining the controller capabilities.
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FEEDBACK CONFIGURATION

Development of an adaptive feedback controller for narrow band disturbances is explained

step by step in this chapter. Starting with a simple fixed controller for tonal disturbances,

passing through a more robust fixed controller with respect to the disturbance’s charac-

teristics, and then finally get to the self tuning adaptive feedback controller in a Youla-Kučera

parametrization.

First of all, the basic specifications are that the attenuation of two tonal disturbances located

at 170 Hz and 285 Hz must be at least −40 dB, and the maximum amplification at any other

frequencies be less than 7 dB. This choice is due to the fact that, as can be seen in Figure 4.5,

the disturbance’s frequency gains expected in the primary path have high gain at 170 Hz and

285 Hz. Nevertheless, as Figure 4.6 shows, the control signal’s gains have a strong lost at 315 Hz

that renders the zone as non controllable. Furthermore, in order to improve robustness, the input

sensitivity function should be below −20 dB at frequencies over 600 Hz since they are beyond the

system’s band-pass.

5.1 Feedback Theory

For ease of notation, since in this chapter we make use exclusively of the secondary path models,

in the this feedback context we will redefine A(q−1)= AG(q−1), B(q−1)= BG(q−1) and d = dG . As

stated in the previous Chapter 3 and Chapter 4, the linear time invariant (LTI) discrete-time

model of the secondary path, or plant, used for controller design will be described as:

(5.1) G(q−1)= q−dB(q−1)
A(q−1)

,

where the polynomials A(q−1) and B(q−1) are defined as:
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A(q−1)= 1+a1q−1 +·· ·+anA q−nA ,(5.2)

B(q−1)= b1q−1 +·· ·+bnB q−nB ,(5.3)

with d as the plant pure time delay in number of sampling periods.

Also we defined the feedback controller K(q−1) as K(q−1) = RK (q−1)
SK (q−1) . Once again, since in

this chapter we are working exclusively within the feedback context, we redefine our controller

R(q−1)= RK (q−1) and S(q−1)= SK (q−1), such that

(5.4) K(q−1)= R
S

= r1q−1 +·· ·+ rnR q−nR

1+ s1q−1 +·· ·+ snS q−nS
.

+ +
-

FIGURE 5.1. Feedback regulation scheme.

Figure 5.1 shows the closed loop feedback regulation scheme described by these equations,

thus the plant’s output y(t) and the input u(t) are described by y(t) = G(q−1)u(t)+ p(t) and

u(t)=−K(q−1)y(t), than may be written as:

y(t)= q−dB(q−1)
A(q−1)

u(t)+ p(t),(5.5)

u(t)=−R(q−1)
S(q−1)

y(t),(5.6)

where p(t) represents the disturbances’ effect on the measured output (Section 3.2). Developing

these equations we obtain:

y(t)= AS
AS+ q−dBR

p(t)= AS
P

p(t),(5.7)

with P(q−1) as the system’s characteristic polynomial, which specifies the desired closed loop

poles of the system.
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5.2 Linear Controller Design

As stated before, the performance specifications required for the controller are that the attenua-

tion of two tonal disturbances located at 170 Hz and 285 Hz must be at least −40 dB, meanwhile

the maximum amplification at any other frequencies must be less than 7 dB. Furthermore, in

order to improve robustness, the input sensitivity function should be below −20 dB at frequencies

over 600 Hz. Moreover in a number of applications, the measured signal may contain specific

frequencies which should not be attenuated by the regulator. In such cases the system should be

in open-loop at these frequencies. Theory about feedback linear controller design was the main

topic in the conference paper at Appendix E [Meléndez et al., 2017].

5.2.1 Sensitivity Function Shaping

In order to impose some specific constrains to the controller, we redefine K(q−1) polynomials R

and S as:

R = HR ·R′ = HR · (r′1q−1 + . . .+ r′nR′ q
−nR′ ),(5.8)

S = HS ·S′ = HS · (1+ s′1q−1 + . . .+ s′nS′ q
−nS′ ),(5.9)

where HS(q−1) and HR(q−1) represent prespecified fixed parts of the controller, used for example

to incorporate the internal model of a disturbance, or to open the loop at some frequencies. Then

S′(q−1) and R′(q−1) are solutions of the Bezout equation defined in Equation (5.7) as:

(5.10) P = PD ·Paux = (A ·HS) ·S′+
(
q−dB ·HR

)
·R′,

where PD represents the stable or dominant poles of the plant and Paux are auxiliary poles. The

dominant closed loop poles PD have been chosen equal to those of the secondary path, thus P,

PD , Paux, B, A, d, HS, and HR are given.

Equation (5.10) has unique solution for S′ and R′ of minimal degree for

nP = deg
{
P(q−1)

}≤ nA +nHS +nB +nHR +d−1,(5.11)

nS′ = deg
{
S′(q−1)

}= nB +nHR +d−1,(5.12)

nR′ = deg
{
R′(q−1)

}= nA +nHS −1.(5.13)

This means that, if not specified otherwise, the order nP of polynomial P(q−1) can be smaller

in degree that the right side of the equation, and zeros will be added to pad P(q−1) and match

the right side. This zeros will be located at 0 Hz and might cause undesirable conditions in the

controller performance as it can be seen in Figure 5.3. Therefore, to overcome this problematic

auxiliary real poles can be added, determined by the design requirements, without augmenting
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the controller’s order. These auxiliary poles are generally chosen as high-frequency real poles in

the form:

(5.14) Paux(q−1)= (1− pi q−1)nPaux ,

with 0.05≤ pi ≤ 0.50, and nPaux ≤ nP − n̂P , for nP =max[deg
{
P(q−1)

}
] and nPaux calculated degree

of P(q−1). The introduction of auxiliary asymptotically stable real poles Paux(q−1) will cause in

general a decrease of the modulus of the sensitivity function.

From Figure 5.1, the closed-loop transfer function between the disturbance p(t) and the

system’s output y(t), is denominated as output sensitivity function (Syp) and is given by

(5.15) Syp = y(t)
p(t)

= A(q−1)S(q−1)
P(q−1)

.

In the same way, the transfer function between the disturbance p(t) and the plant’s input u(t)

is named input sensitivity function (Sup) and is given by

(5.16) Sup = u(t)
p(t)

=−A(q−1)R(q−1)
P(q−1)

.

As previously stated, in a number of applications, the measured signal may contain specific

frequencies which should not be attenuated by the regulator. In such cases the system should be

in open-loop at these frequencies. Equation (5.16) can be further developed such that

(5.17) Sup =−A(q−1)HR(q−1)R′(q−1)
P(q−1)

,

and therefore in order to make the input sensitivity function zero at a given frequency f , one

should introduce a pair of undamped zeros in HR(q−1), i.e.

(5.18) HR(q−1)= 1+βq−1 + q−2,

with

(5.19) β=−2cos
(
2π

f
fs

)
.

In many cases it is desired that the controller does not react to signals of frequencies close to

0.5 fs, corresponding to the Nyquist frequency, where the system’s gain is in general very low. In

such cases, we have HR(q−1)= (1+βq−1)2.

In active noise control systems, the secondary path gain at 0 Hz is zero due to the double

differentiator behaviour. It is therefore not reasonable to send a control signal at very low

frequencies and the system should operate in open-loop at this frequency too. To achieve this, we

get HR(q−1)= (1−βq−1)2.
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5.2.2 Internal Model Principle

In order to strongly attenuate the two tonal disturbances the Internal Model Principle (IMP)

has been used [Landau et al., 2016, Francis and Wonham, 1976]. In short, the IMP states that

in order to completely reject a disturbance asymptotically (i.e., in steady state), the controller

should include the disturbance model, so the designed of our RS controller requires a fixed part

HS to incorporate this disturbance’s model. As described in Section 4.3.1, we suppose that p(t) is

a deterministic disturbance, so it can be modeled as a signal passing through a discrete filter and

they can be modeled by:

(5.20) p(t)= Cp(q−1)
Ap(q−1)

δ(t),

with δ(t) as a Dirac impulse, and Ap,Cp co-prime polynomials. While in the case of stationary

disturbances Ap has roots on the unit circle, in practice the contribution of Cp is weak asymptoti-

cally and negligible for steady state analysis in comparison with Ap. Hence, the disturbance’s

energy is essentially represented by Ap.

As such, from Equations (5.9) and (5.15) we have:

(5.21) y(t)= A(q−1)
[
S′(q−1)HS(q−1)

]
P(q−1)

· Cp(q−1)
Ap(q−1)

δ(t),

where P(q−1) is an asymptotically stable polynomial that describes the system’s closed loop poles,

and where y(t) will converge towards zero asymptotically if and only if the polynomial S′(q−1) in

the RS controller includes the disturbance’s model as in S′(q−1)= Ap(q−1).

For the case of tonal disturbances, as stated in Equation 5.18, to make a sensitivity function

zero qt q given frequency f it is needed to introduce a pair uf undamped zeros, for this case in

HS, as in

(5.22) HS(q−1)= 1+αq−1 + q−2,

again with

(5.23) α=−2cos
(
2π

f
fs

)
.

Accordingly with the previously stipulated required specifications and constrains for the

linear controller design at the beginning of this section, a fixed tonal disturbance compensator

was designed using the tools hitherto described. By using the proper values in HR , we can see

in Figure 5.2 the effects of this fixed parts of the controller in its input sensitivity function Sup,

where at 0 Hz and 1250 Hz we have no gain, and less that 20 dB are achieved after 600 Hz.
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FIGURE 5.2. Input sensitivity function Sup of a fixed linear controller.

To display the effects and importance of each fixed component in the controller, Figure 5.3

shows the output sensitivity function Syp evolution, when using just the IMP for defining filters

HS, then adding the corresponding values in HR to modify Sup, and finally adding some auxiliary

poles in Paux(q−1) to fulfill the controller requirements.

0 200 400 600 800 1,000 1,200
−60

−40

−20

0

20

40

Frequency [Hz]

M
a
gn

it
u
d
e
[d
B
]

IMP
IMP +HR

IMP +HR + Paux

FIGURE 5.3. Evolution of the Output sensitivity function Syp of a fixed linear controller.
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5.3 Robust Controller Design

Since the tonal disturbances frequency may vary or is not perfectly known in an ANC system,

a robust controller has to be designed to take into account the possible characteristics of the

disturbance. Compensator is then designed to attenuate frequencies around 170Hz and 285Hz,

with a ±5Hz tolerance. Attenuation must be at least of −18dB in these regions and any undesired

amplification should be less than 6dB. Also since the model’s gain is low over 600Hz, and very low

damped complex zeros are present in high frequencies, the input sensitivity function’s magnitude

should be below −20dB at frequencies over 600Hz, in order to improve robustness with respect

to additive uncertainties and to avoid unnecessary control effort. Theory about feedback robust

controller design was one of the main topics in the journal paper at Appendix A [Landau et al.,

2019c].

5.3.1 Band Stop Filtering

Band Stop Filter (BSF) are used for shaping the output sensitivity function and the input

sensitivity function in order to meet the design specifications. Without loss of generality for this

explanation we make use of HSi but same would apply for HRi . We suppose now a simultaneous

introduction of a fixed part HSi , and a pair of auxiliary poles Pauxi in the form

(5.24)
HSi

Pauxi

= 1+α1q−1 +α2q−2

1+ρ1q−1 +ρ2q−2 ,

as result from the discretization of a continuous-time Band Stop Filter (BSF)

(5.25) FBSF(s)= s2 +2ζnumω0s+ω2
0

s2 +2ζdenω0s+ω2
0

,

using the bilinear transformation

(5.26) s = 2 fs
1− z−1

1+ z−1 ,

with the complex variable z−1 used to characterize the system’s behavior in the frequency

domain. This bilinear transformation assures a better approximation of a continuous-time model

by a discrete-time model in the frequency domain than the replacement of differentiation by a

simple difference, as in s = (1− z−1)/ fs.

These filters introduce a strong attenuation, or hole, at the normalized discretized frequency

(5.27) ωBSF = 2arctan
(
ω0

2 fs

)
,
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as a function of the ratio between ζnum/ζden. The attenuation magnitude is described by

(5.28) MBSF = 20log
(
ζnum

ζden

)
,

with ζnum < ζden. In practice, the values used to define a BSF are the central normalized frequency

fBSF[Hz], the desired attenuation MBSF[dB] at the given frequency, and the damping ζden, such

that:

ω0 =2 fs tan(π fBSF) ,

ζnum =10
MBSF

20 ζden.

The total set of BSF used with HS for shaping of the output sensitivity functions can be

obtained by the sum of 2nd order band-stop filters taking the form:

(5.29) BSFHS = HS (z−1)
Paux(z−1)

∣∣∣∣∣
BSF

=
n∏

i=1

HSi (z
−1)

Pauxi (z−1)
.

Same characteristics are applied using HR for shaping of the input sensitivity function in a

similar way.

An example of the use if these filters can be seen at Figure 5.4(a), where the different usage

of filters is displayed. If used alone, BSF create gains above the desired threshold, so auxiliary

poles and fixed parts in HR are added to correct and improve its performance. In Figure 5.4(b) we

can clearly see the attenuation achieved at 170Hz and 285Hz, with similar control capabilities

around those main frequencies, given them the desired ±5Hz tolerance or robustness.

5.4 Adaptive FIR controller

The adaptive approach uses the Youla-Kučera parametrization of the controller combined with

the Internal Model Principle. The basic reference for this approach used in active vibration

control is [Landau et al., 2016]. A key aspect of this methodology is the use of aforementioned

internal model principle (IMP), defined in Section 5.2.2. Feedback adaptive FIR controller theory

was the main topics in the journal paper at Appendix A [Landau et al., 2019c].

5.4.1 Youla-Kučera Parametrization

To build a direct adaptive filter, the Youla-Kučera (YK) parametrization of the controller is used.

In this context, one considers a finite impulse response (FIR) filter of the form:

(5.30) Q(z−1)= q0 + q1z−1 +·· ·+ qnQ z−nQ ,
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FIGURE 5.4. Output sensitivity function Syp: a) Evolution of the fixed robust controller,
and b) final controller zoomed region of interest.

to which is associated the parameters vector:

(5.31) θ = [q0 q1 . . . qnQ ]T .

Under Youla-Kučera parametrization or Q-parametrization, the equivalent polynomials

R(z−1) and S(z−1) of the controller K(q−1) take the form:
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R(q−1)= R0 + AQHS0 HR0(5.32)

S(q−1)= S0 − q−dBQHS0 HR0 ,(5.33)

with

R0(z−1)= r0
0 + r0

1z−1 + . . .+ r0
nR

z−nR0 = R′
0HR0(5.34)

S0(z−1)= 1+ s0
1z−1 + . . .+ s0

nS
z−nS0 = S′

0HS0 ,(5.35)

where A, B and d correspond to the identified model of the secondary path, R0(z−1), S0(z−1) are

the central controller’s polynomials, and HS0 , HR0 are the controller’s fixed parts. It is remarkable

to stand that under the YK parametrization using a FIR structure for the Q(z−1) filter, the closed

loop poles defined by the central controller remain unchanged, such that:

P(q−1)=AS+ q−dBR,

=A[S0 − q−dBQHS0 HR0]+ q−dB[R0 + AQHS0 HR0],

=AS0 + q−dBR0.

(5.36)

Using the output sensitivity function Syp, the expression of system residual noise, or output

can be written as:

y(t)=S0 − q−dBHS0 HR0Q
P

w(t)

S0

P
w(t)−Q

q−dBHS0 HR0

P
w(t),

(5.37)

with the disturbance’s observer w(t) defined by

(5.38) w(t)= A(q−1)y(t)− q−dB(q−1)u(t)= A(q−1)p(t).

Hence, the objective is to estimate a value for Q such that y(t) is driven to zero. Making the

filter Q suitable of an adaptation will have as result the block diagram in Figure 5.5, with the

Parameters Adaptation Algorithm PAA.

The polynomial Q estimation at time t is denoted:

(5.39) Q̂(t, q−1)= q̂0(t)+ q̂1(t)q−1 +·· ·+ q̂nQ (t)q−nQ ,

and is characterized by the parameter vector

(5.40) θ̂T (t)= [q̂0(t) q̂1(t) . . . q̂nQ (t)],
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FIGURE 5.5. Adaptive Youla-Kučera parametrization scheme.

where the order nQ of the polynomial Q̂ is related to the disturbance’s model denominator order

nAp . As explained in Section 5.2.2 we suppose that p(t) is a deterministic disturbance, like in

Equation (5.20). As such we have nQ = nAp −1.

Since this is a regulation problem, y(t) is expected to go towards zero and as such, it becomes

an a priori adaptation error denoted ε0(t+1) for a given estimated polynomial Q̂(t, q−1), such

that:

(5.41) ε0(t+1)= S0

P
w(t+1)− Q̂(t)

q−dB∗HS0 HR0

P
w(t),

with B(q−1)= q−1B∗(q−1). In a similar way, one can define an a posteriori error as:

(5.42) ε(t+1)= S0

P
w(t+1)− Q̂(t+1)

q−dB∗HS0 HR0

P
w(t),

which can be further expressed as

(5.43) ε(t+1)= [Q− Q̂(t+1)]
q−dB∗HS0 HR0

P
w(t)+η(t+1)

where Q is the unknown optimal filter, and η(t) tends asymptotically towards zero [Landau et al.,

2011c].

Now, denoting filtered versions of the observer output w(t) as:
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w1(t)=S0(q−1)
P(q−1)

w(t),(5.44)

w2(t)= q−dB∗HR0 HS0

P
w(t),(5.45)

and

(5.46) ϕT (t)= [w2(t) w2(t−1). . .w2(t−nQ)],

Equation (5.43) can be rewritten as:

(5.47) ε(t+1)= [θT − θ̂T (t+1)]ϕ(t)+η(t+1),

where η goes to zero. From here we can get:

ε(t+1)= w1(t+1)− θ̂T (t+1)ϕ(t),(5.48)

ε0(t+1)= w1(t+1)− θ̂T (t)ϕ(t).(5.49)

This type of equation allows immediately to develop an adaptation algorithm, so the Parame-

ters Adaptation Algorithm PAA is then defined by:

(5.50) θ̂(t+1)= θ̂(t)+F(t)ϕ(t)ε(t+1),

with

ε(t+1)= ε0(t+1)
1+ϕT (t)F(t)ϕ(t)

,(5.51)

ε0(t+1)= w1(t+1)− θ̂T (t)ϕ(t),(5.52)

and the Adaption Gain matrix defined as:

(5.53) F(t+1)= 1
λ1(t)

F(t)− F(t)ϕ(t)ϕT (t)F(t)
λ1(t)
λ2(t)

+ϕT (t)F(t)ϕ(t)


with 0<λ1(t)≤ 1, 0≤λ2(t)< 2, F(0)> 0; where λ1 and λ2 allow to obtain different profiles for the

adaptation gain F(t) evolution. Finally the control to be applied is given by:

(5.54) u(t+1)= −1
S0

[
R0 y(t+1)+HR0 HS0Q̂(t+1)w(t+1)

]
.

In adaptive regulation applications, one uses in general the constant trace profile, where λ1(t)

and λ2(t) are automatically chosen at each step in order to ensure a constant trace value of the

gain matrix F(t), such that:
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(5.55) tr {F(t+1)}= tr {F(t)}= tr {F(0)}= nG0

in which n is the number of parameters and G0 is the initial adaptation gain. Hence, the diagonal

matrix F(0) has the form:

(5.56) F(0)=


G0 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 G0


The values of λ1(t) and λ2(t) at each sampling instant are determined from the equation:

(5.57) trF(t+1)= 1
λ1(t)

tr
[
F(t)− F(t)ϕ(t)ϕT (t)F(t)

α(t)+ϕT (t)F(t)ϕ(t)

]
fixing the ratio α(t)=λ1(t)/λ2(t). This algorithm can be combined with the decreasing adaptation

gain or with the variable forgetting factor profiles for initialization [Landau et al., 2016]. One

switches to the constant trace algorithm when the adaptation gain’s trace becomes equal or

smaller than the assigned constant trace. Algorithms with constant scalar gain can be also

implemented with F(t)= F(0), but the results will be less good.

This scheme is implemented on top of the central controller R0, S0, which corresponds to the

robust controller designed in Section 5.3 from which the BSF filters on Syp have been removed,

preserving however the characteristics of Sup in high frequencies over 600 Hz for robustness

reasons.

5.4.2 U-D Parametrization

The calculation of parameters at each given sample can be highly demanding in terms of the task

execution time (TET) of the operation. Additionally, the adaptation gain equation is sensitive to

round-off errors. This problem is comprehensively discussed in [Landau et al., 2016, Bierman,

1977], where a U-D factorization has been developed to ensure the numerical robustness of the

PAA. To this end, the adaptation gain matrix is rewritten as:

(5.58) F(t)=U(t)∆(t)UT (t),

where U(t) is an upper triangular matrix with all diagonal elements equal to 1, and ∆(t) is a

diagonal matrix. By reformulating F(t) using this configuration allows the adaptation gain matrix

to remain positive definite so that the rounding errors do not affect the solution significantly.

For a detailed explanation of its use, let
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G(t)=∆(t)V (t),(5.59)

V (t)=U(t)Tϕ f (t),(5.60)

β(t)=1+V T (t)G(t),(5.61)

so we are able to define:

(5.62) Γ(t)= U(t)G(t)
β(t)

= F(t)ϕ f (t)

1+ϕT
f (t)F(t)ϕ f (t)

.

5.5 Comparative Results

Using the test bench described in Chapter 3 to apply the controllers designed in Sections 5.3 and

5.4 based on the model identified in Chapter 4, some real-time experiments were carried out in

order to compare the different controllers performances.

To do so, we carried out a set of different tests allowing us explode the adaptive capabilities of

the YK parametrization, but remaining in a fair ground for the fixed robust controller to enact.

5.5.1 Interference test

By interference, one refers to the physical effect occurring when two distinct waves with very

close frequencies act together, creating periodic outbursts in the resulting wave magnitude. The

interference test protocol is as follows:

• For 1s, the system operates in open loop and without any disturbance in order to get a

reference of the existing surrounding ambient noise.

• From 1s to 10s, the test bench works in open loop, in the presence of two pairs of sinusoidal

noise disturbances located at 170Hz and 170.5Hz, and 285Hz and 285.5Hz respectively.

• At 10s, the loop is closed and the controller begins to counteract the disturbance effect.

• The frequencies of the four signals are then increased at 21s by 10Hz. The corresponding

new values are 180Hz and 180.5Hz for the first pair and 295Hz and 295.5Hz for the second

pair, getting out of the attenuation regions of the robust controller.

Figure 5.6 shows the robust controller’s performance for the interference experiment in a time

domain, with delimited region for each of the four steps in the protocol. As long as the disturbance

frequencies are in the region of designed operation, a residual noise’s global attenuation of

39.86dB is obtained (between 10s and 21s). After 21s, since the disturbance’s frequencies are
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FIGURE 5.6. Acoustic interference attenuation using a robust controller.

outside the region of designed operation, the performance is unsatisfactory achieving a global

attenuation of only 7.94dB.

Figure 5.7 presents the results for a similar test using an adaptive controller. The number of

adjustable parameters in the Q-filter is 4 (nQ = 3) and an adaptation algorithm with constant trace

adaptation gain is used, where the value for adaptation gain trace used was: trF = 0.03 · (nQ +1).

It can be seen that after a negligible transient, a much better attenuation is obtained with

respect to the robust controller between 10s and 21s. The global attenuation obtained is 70.56dB.

Excellent levels of attenuation are also obtained once the disturbances frequencies move away

by 10Hz, achieving a global attenuation of 67.65dB, with a negligible adaptation transient. It is

remarkable to state that the filter Q order is not directly related to the controller performance,

and tests using nQ = 7, or 8 adjustable parameter, did not improve the performance.

Figure 5.8 displays the evolution of each Q-parameter with respect to time. From 0s to 10s,

all the parameters have values equal to zero since the controller is not working yet. Once the

loop is closed, the Q-parameters take almost instantly stable mean values. At 21s, the change in

frequencies leads to a quick adaptation towards the new values.

5.5.2 Step changes test

In this experiment, step changes in the frequencies of a pair of tonal noise disturbances are

considered, starting from their nominal values of 170Hz and 285Hz, with steps in the frequencies

of ±10Hz. The system is operated in open loop from 0s to 1s as reference for surrounding external

noises. here, two simultaneous signals of constant frequency act as perturbations. After a given

amount of time both frequencies are decreased or increased a determined value and remain
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FIGURE 5.7. Acoustic interference attenuation using an adaptive controller with YK
parametrization.
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FIGURE 5.8. Parameters evolution for acoustic interference test using an adaptive
controller with YK parametrization.

at those new constant frequencies for a period of time. At 1 s the system begin with both the

controller and disturbances signals in closed loop with perturbations of 170 Hz and 285 Hz as

nominal frequencies. After the next step, both signals are decreased −10 Hz. In the next span

both perturbations go back to their nominal frequencies. At next step the signals have an increase

of 10 Hz. Finally for the final period, disturbance’s frequencies have once again the nominal
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values. In order, the protocol for this test and corresponding step frequencies are:

• Reference for ambient noise, no disturbances nor control

• Nominal disturbances, 170Hz+285Hz

• −10Hz disturbances, 160Hz+275Hz

• Nominal disturbances, 170Hz+285Hz

• +10Hz disturbances, 180Hz+295Hz

• Nominal disturbances, 170Hz+285Hz

Figure 5.9 displays the robust controller performance. When the disturbances frequencies

are inside the designed region of the controller, attenuation levels are satisfactory. However for

−10Hz and +10Hz steps, since one operates outside the designed regions of attenuation, the

performance is unsatisfactory.
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FIGURE 5.9. Step changes in frequencies using the robust controller. Residual noise:
open loop vs closed loop.

The performance of the adaptive controller is illustrated in Fig. 5.10. The performance is

almost the same for all frequencies values and the residual noise is close to the ambient noise.

Adaptation transients are visible but very short. The same number of adjustable parameters

and same adaptation gain as in the previous experiments have been used. Evolution of the

Q-parameters is shown in Fig. 5.11.

Sinusoidal disturbances with continuously time- varying frequency
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FIGURE 5.10. Step changes in frequencies using the adaptive controller with YK
parametrization.
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FIGURE 5.11. Parameters evolution for step changes in frequencies test using an
adaptive controller with YK parametrization.

5.5.3 Continuously time-varying frequency test

In this experiment, a couple of tonal noise disturbances located at 160 Hz and 275 Hz are first

applied to the system from 1 s to 6 s. Then, their frequencies linearly increase until they reach

the values of 180 Hz and 295 Hz correspondingly at 27 s, after which their frequencies remain
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constant until 32 s. A protocol for the test can be described as:

• Reference for ambient noise, no disturbances nor control until 1 s,

• Nominal disturbances −10 Hz, 160Hz+275Hz from 1 s to 6 s,

• Linear increase in frequencies 6 s to 27 s

• Nominal disturbances +10 Hz, 180Hz+295Hz from 27 s to 32 s.

Figure 5.12 displays a comparison between the system’s residual noise when it is operated

in open loop and in closed loop using the robust controller. As the frequencies move within

the designed regions, a significant attenuation is obtained. However outside this zone, the

performance is not satisfactory.
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FIGURE 5.12. Residual noise in open loop vs closed loop using a robust controller under
the effect of tonal disturbances with variable frequencies.

Correspondingly, Fig. 5.13 displays the residual noise in open loop operation and with the

adaptive controller. Levels of attenuation achieved are globally much better.

The residual noise is comparable with the ambient noise measured between 0s and 1s. The

Q-parameters evolution is shown in Fig. 5.14.

5.6 Concluding Remarks

This chapter has shown that if the frequencies variation regions of multiple tonal noise distur-

bances are known and limited, an efficient robust feedback controller can be designed. Adding an
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FIGURE 5.13. Residual noise in open loop vs closed loop using the adaptive controller
with YK parametrization under the effect of tonal disturbances with variable
frequencies.
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FIGURE 5.14. Parameters evolution for the tonal disturbances with variable frequencies
test using an adaptive controller with YK parametrization.

adaptation feedback loop drastically enhances the performance of a robust controller in terms of

achieved attenuation and expansion of the regions of attenuation in the frequency domain. It has

been shown that techniques developed in the context of active vibration control [Landau et al.,

2016] can be successfully used for robust and adaptive feedback attenuation of multiple narrow
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band noise disturbances in ducts. The effective implementation of these techniques should take

into account the identified model characteristics of the compensation path and design guidelines

have been provided.
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Adaptive Feedforward Disturbance
Rejection
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6
FEEDFORWARD CONFIGURATION

In the case of presence of broadband disturbances a Feedforward approach is proposed for the

system. After undesirable conditions were found in the first test bench configuration, two more

setups are proposed to enable a better performance of a control system working in a feedforward

approach. Brief introduction about state of the art behind our denominated Feedforward approach

is given, followed by a detailed explanation about its theory. These different approaches are

described and then compared in a theoretical perspective. Using the same approaches, different

parametrization of the controller is proposed using the denominated Youla-Kučera parametriza-

tion. The theory and use of Infinite Impulse Response compensators, as well as the simplified

option using a Finite Impulse Response compensator are addressed. Finally a comparison of all

the algorithms proposed is done in the test bench, and relevant results are discussed.

6.1 Test Bench Configurations

Active control is particularly dedicated to attenuate low frequency noise, and due to a undesired

condition in the secondary path identified for the first test bench configuration, more specifically

a zero located at 315 Hz, new configurations for the test bench had to be proposed in order to

work under a feedforward configuration.

The effects of this undesired zero present in the secondary path model for the first test bench

configuration are such that the controller won’t have enough energy to perform any attenuation

at that specific frequency and those around it. This effects are close to partially open the loop

at those frequencies, leaving behind a region where the controller won’t perform, thus being

ineffective for a wide or broad brand attenuation attempt.

Nevertheless, this new second configuration brought a new problematic. Since the system

to performs with a feedforward schema, according with the theory, pure delays in our identified
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secondary path model should be less or equal than those delays found in the primary path;

otherwise some conditions required for the proper application of theories won’t be fulfilled.

6.1.1 Second Test Bench Configuration

It was found that, since the test bench uses a loudspeaker as disturbance’s actuator, its di-

aphragm acts as a passive damper [Baz, 2018, Krysinski and Malburet, 2008] for the control

signal produced at the controller loudspeaker. In this disposition of the experimental setting, an

unwanted reflection phenomenon is created, which lead to the presence of low damped complex

zeros, where the position of these zeros in the frequency domain depends upon the geometry of

the system. This was related to a mechanical engineering term defined as effective length, and

a deeper explanation of the physics describing the phenomenon can be found in [Stanfield and

Skaves, 2012]. This unwanted zeros introduced a series of inconvenient that may not appear in a

real system, since disturbance sources are not configured to display passive dampening in a real

environment.

As it can be seen in Figures 6.1 and 6.2, a second geometry was proposed for the test bench

in order to modify the length between the control actuator and the passive damper located in

the disturbance loudspeaker, named second test bench configuration. By shortening the duct

connecting the disturbance’s actuator with the rest of the system, and changing the angles used

for connecting the control loudspeaker the rest of the system, we were able to modify this so

called effective length and alter the undesired conditions present in our original design, thus

displacing the position in the frequency domain of the zeros created by the unwanted passive

damper.

An effective length between two points in a system includes the length of straight sections of

duct, but it also contemplates the addition of equivalent lengths corresponding to all the fittings

and couplings present to connect those straight sections, whose most of the time are longer than

the real lengths due to the additional friction and changes of direction and pressure created in

the flux of air. In this way, the dampening effect of the disturbance speaker’s diaphragm, coupled

with the control loudspeaker at that specific effective length gave as result the undesired zero in

the identified secondary path for the first configuration.

Once again the process for identification of the different path’s transfer functions was carried

on and new identified models were estimated. Results and images of the frequency response

of these paths can be found at 4.6.2. As a comparison between the first and second test bench

configurations, Figure 6.1.1 displays secondary paths identified for each configuration. Here we

can see the zero located at 315 Hz in the first configuration, and how this model differs from the

second configuration model, where these low damped zeros are no longer present. This second

configuration and its following identification of models brought as result a region in the frequency

domain up to 450 Hz without interruptions due to zeros in the model of the secondary path,

allowing us to have a control region roughly from 70 Hz to 450 Hz.
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FIGURE 6.1. Second experimental test bench configuration.

FIGURE 6.2. Photo of test bench’s second configuration.

Results of experiments performed on this second configuration of the test bench are not

explicitly presented in this thesis, and can be found in Appendix C and Appendix D [Airimiţoaie

et al., 2018, Landau et al., 2019a]. Even if the results and performance of the system were

according to expectations, it was found that while this configuration managed to solve the

problem of the zeros present due to unwanted dampening effects, it violates the conditions for

perfect matching [Landau et al., 2016].
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FIGURE 6.3. Identified secondary path for first and second test bench configurations.

6.1.2 Third Test Bench Configuration

To overcome the problematic regarding the model delay’s orders and the fact that the perfect

match conditions were not fulfilled, a third test bench configuration was proposed and presented

as in 3.2.3. The new geometry of the system satisfy the perfect match conditions, but presents

again a pair of low damped zeros located near 300 Hz, leaving a region for attenuation from 70 Hz

to 270 Hz approximately.

Accordingly with the nomenclature previously stipulated in Figure 3.4, the updated schema

for this third configuration can be seen in Figure 6.4. Here the residual noise’s microphone located

at (3) was displaced nearer the disturbance speaker (1). Similarly, sections of pipes connecting the

main body with the control speaker at (2) were shortened and the angles connecting the sections

were modified. The third and final configuration of the test bench can be seen in Figure 6.6, and

its dimensions are described in Figure 6.5.

As a comparison between all the three different test bench configurations, Figure 6.7 shows

the identified secondary paths for each of them, where we can a similar presence of a zero located

around 300 Hz in the first and last configurations, nevertheless this last setup of the test bench

allows us to have higher gain in frequencies between 50 Hz and 150 Hz.
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FIGURE 6.4. Schema of test bench’s feedforward configuration.
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FIGURE 6.5. Third experimental test bench configuration.

6.2 Introduction to Adaptive Feedforward Noise Attenuation

Adaptive feedforward control for broadband disturbance compensation is widely used when a

well correlated signal with the disturbance (image of the disturbance) is available [Kuo and

Morgan, 1999, Elliott and Sutton, 1996, Elliott and Nelson, 1994]. However, in many systems

there is a positive physical coupling between the feedforward compensation system and the

disturbance’s image measurement, which often leads to a condition of instability in the system.
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FIGURE 6.6. Photo of test bench’s third configuration.
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FIGURE 6.7. Identified secondary path for first, second and third test bench configura-
tions.

About this inherent positive feedback, the adaptive feedforward compensator should counteract

and minimize the disturbance effects while simultaneously assuring the stability related to the

internal positive feedback loop [Jacobson et al., 2001, Kuo and Morgan, 1996].

Starting with [Amara et al., 1999b] adaptive feedback noise control emerged as an efficient

solution for canceling single or multiple tonal disturbances [Amara et al., 1999a] taking advantage

of the internal model principle and the Youla-Kučera parametrization of the feedback controller
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[Landau et al., 2019c, Meléndez et al., 2017]. Nevertheless, the efficient use of this so called

feedback approach for attenuation of broad-band noise is limited by the Bode integral. Giving the

additional complexity that is inherent in the broadband disturbances, regarding unknown and

variable characteristics, an adaptive approach is required. Therefore one can say that the adaptive

feedforward noise compensation is particularly dedicated to the attenuation of broad-band noise

with unknown and time varying characteristics in this cases.

A major component of an adaptive feedforward compensator is the PAA. In ANC field, the

first algorithm used was the so called LMS [Widrow and Stearns, 1985] derived from a local

minimization of a quadratic criterion in terms of the residual noise. Many contributions have

been done on the properties analysis of this algorithm and the improvement of it. One of the ways

for improving the adaptation is filtering of the regressor vector, giving as results the FuLMS

[Eriksson, 1991b, Wang and Ren, 2003, Fraanje et al., 1999], which seems to be the most used

algorithm in recent publications [Xie et al., 2016, Zhu et al., 2012].

For the analysis of these algorithms in the presence of an internal positive feedback an

attempt is made in [Wang and Ren, 2003] where the asymptotic convergence in a stochastic

environment of the so called Filtered-U Least Mean Squares (FuLMS) algorithm in this context

is discussed. Further results on the same direction can be found in [Fraanje et al., 1999]. The

authors use Ljung’s ODE method [Ljung and Söderström, 1983] for the case of a scalar vanishing

adaptation gain. Unfortunately, this is not enough because nothing is said about the system

stability with respect to initial conditions and when a non vanishing adaptation gain is used

in order to keep the controller capabilities of adaptation. The authors have assumed that the

positive feedback does not destabilize the system which is not a realistic assumption.

A different approach emerged in the area of ANC, namely the adaptation algorithms design

starting from a stability point of view and taking into account from the beginning an internal

positive feedback. A first reference in ANC for a stability approach in the presence of an internal

positive feedback is [Johnson, 1976]. Unfortunately, the results applicability is very limited

since it is assumed that the secondary path has a simple positive gain, or it is characterized

by a SPR transfer function, which is a unrealistic hypothesis. So then the study is based in the

research done in AVC [Landau et al., 2011a], where it is provided a full synthesis procedure for

asymptotically stable adaptation algorithms using IIR feedforward compensators in the presence

of an internal feedback coupling. These algorithms can be used also in ANC as it will be shown

throughout this work. It is interesting to note that most of the algorithms used for the adaptive

feedforward compensation can be viewed as particular approximations of the algorithms derived

from stability considerations.
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6.3 Adaptive Feedforward Compensators Basic Theory

First, as it was done for the Feedback approach in Chapter 5, the primary path is characterized

by the asymptotically stable transfer operator:

(6.1) D(q−1)= q−dD BD(q−1)
AD(q−1)

,

where dD corresponds to the pure delay in sample times for the primary path and

BD(q−1)= bD
1 q−1 + . . .+bD

nBD
q−nBD ,(6.2)

AD(q−1)= 1+aD
1 q−1 + . . .+aD

nAD
q−nAD .(6.3)

In a similar way, the secondary path is characterized by the asymptotically stable transfer

operator:

(6.4) G(q−1)= q−dG BG(q−1)
AG(q−1)

,

where dG corresponds to the pure delay in sample times for the secondary path and

BG(q−1)= bG
1 q−1 + . . .+bG

nBG
q−nBG = q−1B∗

G(q−1),(6.5)

AG(q−1)= 1+aG
1 q−1 + . . .+aG

nAG
q−nAG .(6.6)

This can be represented in a feedforward diagram as in Figure 6.8,

+

+ y(t)

s(t)

N

Path

Primary Path

Residual
Noise

p(t)

+
+ v(t)

Secondary
P th

ge Path

FIGURE 6.8. Feedforward control scheme.

where D represents the primary path transfer function and G denotes the secondary path of

our system. In this configuration, the block N is used for the feedforward controller. Moreover,

we found that W characterize the transfer function between the disturbance’s speaker and the

image’s microphone, located in between (1) and (4) in Figure 6.4, and than the transfer function

M describes the positive feedback coupling called reverse path.
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In a similar fashion to a feedback configuration, y(t) is the system’s residual noise measured

by the microphone located at (3) in Figure 6.4; u(t) corresponds to the control signal sent to the

controller speaker in (2), s(t) is the disturbance signal sent to the disturbance’s speaker in (1).

Additionally to the signals seen in a feedback diagram, we find the measurements v(t) used to get

the signal correlated with the disturbance’s image i(t) which is inherently bias by the positive

internal loop created by the control signal.

6.3.1 Feedforward Compensator Design

Since the measurements required for the feedforward configuration call for an image of the

disturbance, it is acquired by the microphone located at (4) in Figure 6.4, nevertheless the control

signal will also be captured by this measures as an indirect effect, and the resulting measurements

are a sum of the the disturbance and the control signal. This phenomenon is denoted as a positive

internal feedback loop and is an undesired condition than can cause instabilities in these systems

and needs to be taken into account in the controller design stage. The feedforward compensator’s

output coupling with the measurement v(t) through is denoted by M. As indicated in Figure 6.8,

this coupling is a positive feedback.

Similarly to the primary and secondary paths, the positive feedback coupling is characterized

by the asymptotically stable transfer operator:

(6.7) M(q−1)= q−dM BM(q−1)
AM(q−1)

,

where dM corresponds to the pure delay in sample times for the reverse path and,

BM(q−1)= bM
1 q−1 + . . .+bM

nBM
q−nBM = q−1B∗

M(q−1),(6.8)

AM(q−1)= 1+aM
1 q−1 + . . .+aM

nAM
q−nAM .(6.9)

The objective is to estimate and adapt the feedforward compensator’s parameters N, such

that the measured residual noise be minimized in the sense of a certain criterion. The optimal

unknown IIR feedforward filter is defined by:

(6.10) N(q−1)= R(q−1)
S(q−1)

,

where the corresponding polynomials are defined as:

R(q−1)= r0 + r1q−1 + . . .+ rnR q−nR ,(6.11)

S(q−1)= 1+ s1q−1 + . . .+ snS q−nS = 1+ q−1S∗(q−1).(6.12)

Accordingly with Figure 6.9, the estimated compensator is denoted by N̂(q−1). It is defined

as N̂(θ̂, q−1) when it is a linear filter with constant coefficients; and N̂(t, q−1) during estimation

(adaptation) of its parameters. FIR compensators are obtained by taking S = 1 (i.e. si = 0,

∀i = 1 : nS).
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FIGURE 6.9. Feedforward control scheme with PAA.

The feedforward compensator’s input is denoted by v(t), and it corresponds to a sum between

the disturbance image in the absence of compensation, and of the positive feedback path’s

output. When there is no compensation, meaning to operate in a open-loop configuration, we have

v(t)= i(t).

We now remember that in adaptive control and estimation theory, a predicted output at a given

time t can be computed either on basis of the current parameter estimations, named a posteriori;

or on the basis of previous parameter estimations, denominated a priori. The a posteriori output

of the feedforward compensator, which is the control signal applied to the secondary path, is

denoted by û(t+1)= û(t+1|θ̂(t+1)). The input-output relationship for the estimated feedforward

compensator is given by an equation of the a priori output, such that:

û◦(t+1)= û(t+1|θ̂(t))= R̂(t, q−1)v(t+1)− Ŝ∗(t, q−1)û(t)

= θ̂T (t)ϕ0(t)=
[
θ̂T

R(t), θ̂T
S (t)

][
ϕv(t)

ϕû(t)

]
,(6.13)

where the controller’s estimated parameters vector θ̂(t) and ϕ0(t) are defined as

θ̂T (t)= [r̂1(t), . . . , r̂nR (t), ŝ0(t), . . . , ŝnS (t)]= [θ̂T
R(t), θ̂T

S (t)],(6.14)

ϕT
0 (t)= [v(t+1), . . . ,v(t−nR +1),−û(t), . . . ,−û(t−nS +1)]

= [ϕT
v (t+1),ϕT

û (t)],
(6.15)

and û(t), û(t−1), . . . are the a posteriori outputs of the feedforward compensator generated by

(6.16) û(t)= û(t|θ̂(t))= θ̂T (t)ϕ0(t−1),
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and where v(t+1), v(t), . . . are the measurements provided by the microphone located at (4) in

Figure 6.4, since v(t+1) is available before adaptation of parameters starts at time t+1.

The a priori output of the secondary path will be denoted ẑ◦(t+1):

(6.17) ẑ◦(t+1)= ẑ(t+1|θ̂(t))= q−dG B∗
G(q−1)

AG(q−1)
û(t),

meanwhile the a posteriori unmeasurable value of the secondary path’s output is denoted by:

(6.18) ẑ(t+1)= ẑ(t+1|θ̂(t+1))= q−dG BG(q−1)
AG(q−1)

û(t+1)=G(q−1)û(t).

The measured primary signal, also called reference, satisfies the equation:

(6.19) v(t+1)= q−dM B∗
M(q−1)

AM(q−1)
û(t)+ i(t+1),

while the residual error measured at (3) in 6.4, is described by the equation:

(6.20) y(t+1)= p(t+1)+ ẑ◦(t+1),

so the a priori adaptation error can be defined as

(6.21) ε◦(t+1)=−y(t+1)=−p(t+1)− ẑ◦(t+1).

Finally, the calculated a posteriori adaptation error, in this case similar to the residual error,

will be given by:

(6.22) ε(t+1)= ε(t+1|θ̂(t+1))=−p(t+1)− ẑ(t+1).

The development of a PAA for estimating in real-time the parameter’s vector θ̂ assumes that:

• A perfect matching condition can be satisfied and there exist a set of values θ for the

feedforward filter N(q−1), such that:

(6.23)
N(q−1)W(q−1)

1−N(q−1)M(q−1)
G(q−1)=−D(q−1)

• The characteristic polynomial Pint(q−1) of the internal feedback loop,

(6.24) Pint(q−1)= AM(q−1)S(q−1)− q−dM BM(q−1)R(q−1),

is a Hurwitz polynomial.

Now we can state that the parameter adaptation algorithm’s (PAA) objective will be then to

allow the compensator N̂(q−1, θ̂(t)) to approach the optimal compensator N(q−1), at least in the

frequency range of interest but assuring the asymptotic stability of the internal loop.

From the user point of view and taking into account the type of adaptive compensation

system’s operation, one has to consider two approaches for the adaptive schemes:
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• Adaptive operation. The adaptation is performed continuously with a non-vanishing adap-

tation gain and the feedforward compensator is updated at each sampling.

• Self-tuning operation. The adaptation procedure starts either on demand or when the

performance is unsatisfactory. A vanishing adaptation gain is used.

In this chapter, only the adaptive operation will be considered in the experimental evaluation

6.3.2 Parameter Adaptation Algorithm

As seen in Chapter 5, a general formulation for the parameter adaptation algorithm (PAA) can

be described by:

θ̂(t+1)= θ̂(t)+F(t)ϕ(t)ε(t+1),(6.25)

ε(t+1)= ε◦(t+1)
1+ϕT (t)F(t)ϕ(t)

,(6.26)

F(t+1)= 1
λ1(t)

F(t)− F(t)ϕ(t)ϕT (t)F(t)
λ1(t)
λ2(t) +ϕT (t)F(t)ϕ(t)

 ,(6.27)

1≥λ1(t)> 0, 0≤λ2(t)< 2, F(0)> 0,(6.28)

ϕ(t)= Lϕ0(t)(6.29)

where L is a filter defined by the system parameters, and λ1(t) and λ2(t) allow to obtain various

profiles for the adaptation gain matrix F(t). Four cases are of interest:

• Constant trace profile. λ1(t) and λ2(t) are adjusted continuously to maintain constant the

trace of the adaptation gain matrix. This allows to move in the optimal direction but

maintaining the adaptation capabilities. Nevertheless, for accelerating the adaptation

transient it may be useful to use a larger adaptation gain transiently.

• Decreasing adaptation gain. With λ1 = 1 and λ2 = 1, a self-tuning regime is defined. Can

also be used for initialization of the constant trace profile.

• Variable forgetting factor. This option can be also used for initialization of the constant trace

algorithm. The difference is that in this option λ1(0)< 1 but it will tend asymptotically to 1.

This allows to get transiently a higher adaptation gain than the one used in the constant

trace algorithm.

• Constant scalar adaptation gain. This is obtained by taking F(t)= γI where I is the identity

matrix, and γ is a chosen constant value. This approach gives a scalar adaptation gain.

As stated before, in order to initialize the algorithms, it is often the combined use of decreasing

gain with the constant trace, allowing the adaptation process to have a larger gain at beginning.

Once the adaptation gain matrix’s trace tr[F(t)] reaches the specific constant trace’s value desired,
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λ1 and λ2 switches to a constant trace profile. Same can be said about an initialization using a

variable forgetting factor instead of decreasing adaptation gain.

As previously, the adaptation gain matrix evolution is given by defined in Equation (6.27).

For the decreasing gain profile one chooses λ1(t)= λ1 = 1 and λ2(t)= λ2 = 1; meanwhile for the

variable forgetting factor profile we define λ2(t)=λ2 = 1, λ1(t)=λ0λ1(t−1)+1−λ0 and 0<λ0 < 1,

with typical values being λ1(0)= 0.95 to 0.99, and λ0 = 0.95 to 0.99. The difference with respect to

the decreasing gain profile is that the maximum value for adaptation gain occurs not at instant

t = 0, but after a certain horizon related to the particular values of λ1(0), λ0 and the number of

parameters to adapt.

Finally, in order to maintain a constant the trace profile, the values of λ1(t) and λ2(t) of the

adaptation gain matrix F(t) are determined from the equation:

(6.30) tr[F(t+1)]= 1
λ1(t)

tr
[
F(t)− F(t)ϕ(t)ϕT (t)F(t)

α+ϕT (t)F(t)ϕ(t)

]
fixing the ratio α=λ1(t)/λ2(t).

Moreover, by taking F(t) = γI, where I is the identity matrix, one gets a scalar adaptation

gain as in Table 6.1 and 6.2. The equation (6.25) for updating the parameter vector then becomes:

(6.31) θ̂(t+1)= θ̂(t)+γϕ(t)
ε◦(t+1)

1+γϕT (t)ϕ(t)
.

When using a scalar adaptation gain, it can be seen that for very small values of γ one can

approximate the above equation by

(6.32) θ̂(t+1)= θ̂(t)+γϕ(t)ε◦(t+1),

which is close to the adaptation algorithm used in FuLMS, who uses ϕ(t−1)ε◦(t) instead of

ϕ(t)ε◦(t+1), since the adaptation gain is small and the residual error would vary slowly otherwise.

In this experimentation setup, the updating of matrix F(t) is again done using the U −D

factorization for reasons of numerical robustness. The details of this algorithm are given in

Section 5.4.2. At this point the adaptation gain matrix F(t) is rewritten as:

(6.33) F(t)=U(t)∆(t)UT (t),

where U(t) is an upper triangular matrix with all diagonal elements equal to 1, and ∆(t) is a

diagonal matrix. This allows F(t) to remain positive definite so that the rounding errors do not

affect the solution significantly. An interesting option, taking into account the U−D factorization,

is to apply the desired profile on tr[∆(t)] instead of tr[F(t)] for simplification of calculations and

ease of computation time consumption, while the PAA objectives remains unchanged.

6.4 Feedforward Adaptive Algorithms Comparison

Table 6.1 and Table 6.2 summarize the most important algorithms used with an IIR configuration

of the feedforward compensator. In every case it is possible to perform with a FIR controller by
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using a fixed value for S = 1. These tables give a brief comparison between different approaches

exposed throughout this Chapter. The proposed approach with an adaptation based on a matrix

gain F(t), as well as its simplified counterpart who uses a scalar gain γ(t) in a similar fashion,

are compared with a more common approach FuLMS, than can be described as an even more

simplified scalar version of the previous two methodologies.

Table 6.1 starts showing the differences between them, by exposing the diverse ways of

computing and estimate the controller’s parameters vector θ̂(t+1) at the future instant in t+1

while using just past information from instants t and t−1. The complexity inherent to the matrix

structure is clear when comparing its adaptation gains calculation with those of a scalar approach.

Even though the vector ϕ0(t) definition remains unchanged, Table 6.2 shows a difference for

computing the vector ϕ(t) for each case. Derived from stability considerations, using a matrix gain

F(t) gives as result the adaptation algorithms Filtered-U Pseudo Linear Regression (FuPLR) and

Filtered-U Stability Based Algorithm (FuSBA). In a similar way and also derived from stability

considerations, the adaptation algorithms using scalar gain Normalized Filtered-U Least Mean

Squares (NFuLMS) and Scalar Filtered-U Stability Based Algorithm (SFuSBA). Lastly we can

find FuLMS approach, an algorithm that has been extensively used and is still common to be

found [Xie et al., 2016, Zhu et al., 2012].

A comparison that summarize the stability conditions in a deterministic context os also shown,

being a global asymptotic stability condition for any initial conditions on the IIR compensator’s

parameters, or a local asymptotic stability condition. A key element for assuring the stability of

the various algorithms is the filter L, as in Table 6.2. The definition of this filter helps to satisfy

the strictly positive real (SPR) condition for asymptotic stability and parameter convergence.

θ̂(t+1) Adaptation Gain

Matrix F(t+1)−1 =λ1(t)F(t)+λ2(t)ϕ(t)ϕT (t)
Approach

θ̂(t)+F(t)ϕ(t)
ε◦(t+1)

1+ϕT (t)F(t)ϕ(t) 0≤λ1(t)< 1, 0≤λ2(t)< 2, F(0)> 0

Scalar
Approach

θ̂(t)+γ(t)ϕ(t)
ε◦(t+1)

1+γϕT (t)ϕ(t)
γ(t)> 0

FuLMS θ̂(t)+γ(t)ϕ(t−1)ε◦(t) γ(t)> 0

TABLE 6.1. Comparison of algorithms for direct adaptive feedforward compensation in
an ANC system with acoustic coupling (1).

6.4.1 Adaptation Algorithm Stability: The Filter L

In order to clarify the importance of filtering the observation vector though the filter L, it is

important to note that the residual error equation can be expressed as [Landau et al., 2011a]:

(6.34) ε(t+1)= H(q−1)[θ− θ̂(t+1)]Tϕ(t),
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ϕT
0 (t) ϕ(t)= Lϕ0(t) Stability Condition

FuPLR: L =G
Matrix [v(t+1), . . . ,v(t−nR +1),

FuSBA: L = AM

P̂
G,

AMG
PL

− λ

2
= SPR

Approach −û(t), . . . ,−û(t−nS +1)]
P̂ = AM Ŝ− q−dM BM R̂ λ=max[λ2(t)]

NFuLMS: L =G
Scalar [v(t+1), . . . ,v(t−nR +1),

SFuSBA: L = AM

P̂
G,

AMG
PL

= SPR
Approach −û(t), . . . ,−û(t−nS +1)]

P̂ = AM Ŝ− q−dM BM R̂

[v(t), . . . ,v+1(t−nR +1), AM = 1, unknown
FuLMS −û(t), . . . ,−û(t−nS +1)]

FuLMS: L =G
stability condition

TABLE 6.2. Comparison of algorithms for direct adaptive feedforward compensation in
an ANC system with acoustic coupling (2).

where function H(q−1) is defines as

(6.35) H(q−1)= AM(q−1)G(q−1)
P(q−1)L(q−1)

and as stated before, the filtered vector ϕ(t) is defined by

(6.36) ϕ(t)= Lϕ0(t).

From these equations, one can understand that there is a phase difference between the resid-

ual error ε(t+1) and ϕ(t), and that ϕ(t)ε(t+1) is an approximation of the gradient vector’s inverse.

Therefore, for convergence purposes, the angle created between the directions of adaptation, and

that of the true gradient’s inverse, which is not computable, should be less than 90◦, fact that

is effectively assured by the SPR condition on H(q−1). For time-varying adaptation gains, the

condition is sharper, where

(6.37) H′(q−1)= H(q−1)− λ2

2
, max

t
[λ2(t)]≤λ2 < 2

is required to be SPR.

Several choices for the filter L are considered, each one leading to a different algorithm. In the

specific case where one uses a matrix adaptation gain F(t) is done, we can describe the following

algorithms:

FuPLR: L = Ĝ

FuSBA: L = AM
P̂

G with P̂ = AM Ŝ− qdM BM R̂
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The algorithm FuPLR, assuming that the SPR condition given in Table 6.2 is satisfied, assures

a global stability of the algorithm for any initial given conditions. This condition can be relaxed

for low adaptation gain provided that in the average, a SPR condition is true but the performance

will be impacted, as described in the works of [Landau et al., 2011a, Anderson et al., 1986]. In

order to improve the performance, it is needed to use the FuSBA algorithm, which tries to make

the H(q−1) transfer function close to 1. This will depend on how good the estimation in real-time

of P̂ is. This can be achieved once an acceptable estimation of the parameters in N̂ is available.

Therefore in order to use this approach, an initialization with the FuPLR algorithm should be

done. Is important to remember that in terms of stability, the FuSBA algorithm’s condition is a

local result. Strictly speaking, it is valid only in the

neighborhood of the equilibrium point. This algorithm assumes also that FuPLR despite that

the SPR is not satisfied, which means that ans SPR condition is satisfied in the average. Note

that in order to consider averaging arguments the adaptation gains should be enough small.

It also assumes that the estimated P̂ is asymptotically stable, which implies that requires an

inclusion of a stability test on P̂.

For the scalar adaptation gain one has the same choices for the filter L and the corresponding

algorithms issued from stability consideration have th same considerations as for the matrix

adaptation gain, as given in Table 6.2. These algorithms are described as:

NFuLMS: L =G

SFuSBA: L = AM
P̂

G with P̂ = AM Ŝ− qdM BM R̂

Where, in a similar way that the matrix approach, the SFuSBA should be initialized using

the NFuLMS.

The procedure followed at each sampling time for implementing the adaptive feedforward

compensation, in a given sample at time t+1, can be describes ass:

1. Get the measured image of the disturbance v(t+1), and the measured residual error y(t+1).

Then compute ε◦(t+1)=−y(t+1).

2. Update the values in ϕ0(t) with the new acquired measure v(t+1), and û(t) from the

previous sampling period.

3. Using filter L, calculate ϕ(t) as ϕ(t)= Lϕ0(t)

4. Estimate the parameter vector θ̂(t+1) using the corresponding PAA defined at Table 6.1,

in accordance with the chosen approach.

5. Calculate the adaptation gain for the current sample, also in accordance with the chosen

approach, as described in Table 6.1.

6. Using Equation (6.16), compute and apply the control û(t+1).
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6.5 Youla-Kučera Parametrized Adaptive Feedforward
Controller

In order to isolate the issues related with the positive internal feedback loop stability, from

the controller’s objective which is the residual noise’s minimization, and as previously done for

the feedback control approach in Section 5.4.1, a Youla-Kučera (YK) parametrization was used.

Instead of a standard IIR feedforward compensator, a similar version using a Youla-Kučera

parametrization of the adaptive feedforward compensator was settled.

In such way, a central controller will assure the internal positive feedback loop stability,

while its performance are enhanced in real-time by the direct parameters adaptation of the

Youla-Kučera Q(q−1) filter. In an extended format of the diagram presented in Figure 6.9, and

now taking into account a YK parametrization, the scheme shown in Figure 6.10 presents the

block diagram of the adaptive feedforward compensator with a Youla-Kučera estimated Q̂(q−1)

filter and a PAA. Details of the specific algorithms can be found in [Landau et al., 2013, Landau

et al., 2012].

+

+

+
+ +

+

+

FIGURE 6.10. Feedforward control scheme using a Youla-Kučera parametrization with
PAA.
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6.5.1 Infinite Impulse Response Youla-Kučera Controller

Using the Youla-Kučera parametrization, the optimal IIR feedforward compensator which will

minimize the residual noise can be denominated as Infinite Impulse Response Youla-Kučera

(YK-IIR) filter, and it is described by:

(6.38) N(q−1)= R(q−1)
S(q−1)

= R0 AQ − AMBQ

S0 AQ − q−dM BMBQ
,

where the optimal Youla-Kučera filter Q(q−1) has an IIR structure

(6.39) Q(q−1)= BQ(q−1)
AQ(q−1)

=
bQ

0 +bQ
1 q−1 + . . .+bQ

nBQ
q−nBQ

1+aQ
1 q−1 + . . .+aQ

nAQ
q−nAQ

,

with R0(q−1), S0(q−1)= 1+q−1S∗
0 (q−1) as the central controller’s polynomials meant to work as a

stabilizing filter, and AM(q−1), q−dM BM(q−1) are given in (6.7). As such, the estimated YK-IIR

filter can be expressed as:

(6.40) Q̂(q−1)= B̂Q(q−1)

ÂQ(q−1)
=

b̂Q
0 + b̂Q

1 q−1 + . . .+ b̂Q
nBQ

q−nBQ

1+ âQ
1 q−1 + . . .+ âQ

nAQ
q−nAQ

,

and its parameters are given by:

(6.41) θ̂T (t)= [b̂Q
0 (t), . . . , b̂Q

nBQ
(t), âQ

1 (t), . . . , âQ
nAQ

(t)]= [θ̂T
BQ

(t), θ̂T
AQ

(t)].

In a similar way as it was done in Section 6.3.1, the a priori output of the estimated feedfor-

ward compensator using a YK parametrization for the case of time-varying parameter estimates

is given by:

(6.42)
û◦(t+1)= û(t+1|θ̂(t))=−Ŝ∗(t, q−1)û(t)+ R̂(t, q−1)v(t+1),

=−S∗
0 û(t)+R0v(t+1)− Â∗

Q(t, q−1)ψ(t)+ B̂Q(t, q−1)w(t+1),

and

(6.43) û(t+1)=−S∗
0 û(t)+R0v(t+1)− Â∗

Q(t+1, q−1)ψ(t)+ B̂Q(t+1, q−1)w(t+1),

where we define ψ(t) as filter Q(q−1) output, such that ψ(t)= S0û(t)−R0v(t), and the resulting

signal w(t)= q−dM BM û(t)− AMv(t) used as input for the filter Q(q−1).

Then, the perfect matching condition for the YK-IIR parametrized feedforward filter becomes

(6.44)
AM(R0 AQ − AMBQ)

AQ(S0 AM − q−dM BMR0)
G =−D.
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Neglecting the time-varying operators property of non-commutativity, the residual noise

equation of is then given by:

(6.45) ε(t+1|θ̂)= AM(q−1)G(q−1)
AQ(q−1)P0(q−1)L(q−1)

[θ− θ̂]Tϕ(t),

with

(6.46) P0 = AMS0 − q−dM BMR0,

and ϕ(t)= L(q−1)ϕ0(t). We then redefine ϕ0(t) as:

ϕT
0 (t)= [w(t+1),w(t), . . . ,w(t−nBQ +1),ψ(t),ψ(t−1), . . . ,ψ(t−nAQ )],

= [ϕT
w(t+1),ϕT

ψ(t)].
(6.47)

The parameter adaption algorithm described in Section 6.3.2 is again used for the Youla-

Kučera feedforward compensators, and in the same way, there are several choices for the filter L

that can be considered, leading to different algorithms:

YK FuPLR: L =G,

YK FuSBA: L = AM
P̂

G with P̂ = ÂQ(AMS0 − q−dM BMR0)= ÂQP0,

where ÂQ is an estimation of the denominator for an ideal YK-IIR filter computed on the basis

of available parameters estimations of the filter Q̂. In order to implement the YK-IIR - FuSBA

algorithm, it is necessary to make an initialization over a certain horizon for obtaining an

estimation of ÂQ . This can be done by running the YK-IIR - FuPLR for a certain time to get an

estimate of ÂQ .

6.5.2 Finite Impulse Response Youla-Kučera Controller

For the case where a FIR Youla-Kučera (YK-FIR) configuration is desired, filters are obtained by

taking AQ(q−1)= 1.

The parameters vector of the optimal YK-FIR filter assuring perfect matching will be denoted

by:

(6.48) θT (t)= [bQ
0 (t), . . .bQ

nBQ (t)]= θT
BQ

(t),

The vector of parameters for the estimated Q̂ filter is described by:

(6.49) Q̂(q−1)= B̂Q(q−1)
1

= b̂Q
0 + b̂Q

1 q−1 + . . .+ b̂Q
nBQ

q−nBQ ,

so the estimation vector θ̂T is denoted by

(6.50) θ̂T (t)= [b̂Q
0 (t), . . . , b̂Q

nBQ
(t)]= θ̂T

BQ
(t).
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The major difference between the YK-IIR configuration and that proposed as YK-FIR, is

reflected in the residual noise evolution’s equation, described by::

(6.51) ε(t+1|θ̂)= AM(q−1)G(q−1)
P0(q−1)L(q−1)

[θ− θ̂]Tϕ(t),

with ϕ(t)= Lϕ0(t), and

(6.52) ϕ0(t)= [w(t+1), . . .w(t−nBQ +1)].

In Equation (6.51), the current poles of the internal closed loop, which will depend on the

time-varying parameters of AQ(q−1), are now fixed and defined by the central controller.

The objective will be then to select a filter, such that the transfer function

(6.53) H = AM(q−1)G(q−1)
P0(q−1)L(q−1)

is SPR when we use a constant adaptation gain, or the transfer function

(6.54) H′(q−1)= H(q−1)− λ2

2
, max

t
[λ2(t)]≤λ2 < 2

is SPR for time-varying adaptation gains.

Like for the IIR type compensators, condition in Equation (6.53) can be interpreted as that of

the gradient’s angle approximation implemented in the algorithm, and the non-computable true

gradient is less than 90◦ in all the directions [Landau et al., 2011c].

Several choices for the filter L will be considered, leading to different algorithms, as seen in

see Tables 6.3 and 6.4:

YK FuPLR: L = Ĝ,

YK FuSBA: L = AM
P0

G with P̂0 = AMS0 − q−dM BMR0.

The major difference with respect to the IIR compensators is that the FuSBA algorithm

assures in this case global stability and can be implemented from the start, since our polynomial

P is known from the beginning and remains unchanged during adaptation process. This is a

significant advantage.

As previously done in Section 6.4, Tables 6.3 and 6.4 give the adaptation gain’s details used in

the various cases proposed. Also as it was done before, the following procedure is applied at each

sampling time for implementing the adaptive feedforward compensation using a Youla-Kučera

structure. At a given time t+1, we have:

1. Get the measured image of the disturbance v(t+1), and the measured residual error y(t+1).

Then compute ε◦(t+1)=−y(t+1).

2. Update the values in ϕ0(t) with the new acquired measure v(t+1), and û(t) from the

previous sampling period.
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3. Using filter L, calculate ϕ(t) as ϕ(t)= Lϕ0(t)

4. Estimate the parameter vector θ̂(t+1) using the corresponding PAA defined at Table 6.3,

in accordance with the chosen approach.

5. Calculate the adaptation gain for the current sample, also in accordance with the chosen

approach, as described in Table 6.3.

6. Using Equation (6.43), compute and apply the control û(t+1).

θ̂(t+1) Adaptation Gain

Matrix
YK-IIR F(t+1)−1 =λ1(t)F(t)+λ2(t)ϕ(t)ϕT (t)

Matrix 0≤λ1(t)< 1, 0≤λ2(t)< 2, F(0)> 0
YK-FIR

θ̂(t)+F(t)ϕ(t)
ε◦(t+1)

1+ϕT (t)F(t)ϕ(t)

Scalar
YK-IIR

Scalar
YK-FIR

θ̂(t)+γ(t)ϕ(t)
ε◦(t+1)

1+γϕT (t)ϕ(t)
γ(t)> 0

TABLE 6.3. Comparison of algorithms for direct adaptive feedforward compensation in
an ANC system with acoustic coupling, using a YK parametrization (1).

Two major observations when using the Youla-Kučera parametrization can be made at this

point:

• If a FIR Q filter is used, the internal closed loop poles will be defined by the central

controller R0, S0 and they will remain unchanged independently of the Q filter parameters

values. The stability condition for the FuSBA algorithm is global.

• If an IIR Q filter is used, the internal closed loop poles will be defined by the central

controller, but additional poles corresponding to the denominator AQ from Q filter will be

added. The stability condition for the FuSBA algorithm is local and an initialization with

the FuPLR algorithm is necessary.

When using an YK-FIR structure, ÂQ ≡ 1, so implementation of a FuSBA-YK-FIR algorithm

is much simpler since P̂ = P̂0 is constant and known once the central controller is designed.

As for the direct feedforward algorithms described in Section 6.4, scalar adaptation gains can

also be used. The same choices for the filter L apply and the corresponding algorithms issued

from stability consideration are NFuLMS and SFuSBA, as seen in Tables 6.3 and 6.4.
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ϕT
0 (t) ϕ(t)= Lϕ0(t) Stability Condition

[w(t), . . . ,w(t−nBQ +1), FuPLR: L =G

Matrix ψ(t+1), . . . ,ψ(t−nAQ )] FuSBA: L = AM

P̂
G,

YK-IIR w(t)= q−dM BM û(t)− AMv(t) P̂ = AQ(AMS0 − q−dM BMR0)
AMG
PL

− λ

2
= SPR

ψ(t)= S0û(t)−R0v(t)

FuPLR: L =G λ=max[λ2(t)]
Matrix [w(t), . . . ,w(t−nBQ +1)]

FuSBA: L = AM

P̂
G,

YK-FIR w(t)= q−dM BM û(t)− AMv(t)
P̂ = AMS0 − q−dM BMR0

[w(t), . . . ,w(t−nBQ +1), NFuLMS: L =G

Scalar ψ(t+1), . . . ,ψ(t−nAQ )] SFuSBA: L = AM

P̂
G,

YK-IIR w(t)= q−dM BM û(t)− AMv(t) P̂ = AQ(AMS0 − q−dM BMR0)

ψ(t)= S0û(t)−R0v(t)
AMG
PL

= SPR

NFuLMS: L =G
Scalar [w(t), . . . ,w(t−nBQ +1)]

SFuSBA: L = AM

P̂
G,

YK-FIR w(t)= q−dM BM û(t)− AMv(t)
P̂ = AMS0 − q−dM BMR0

TABLE 6.4. Comparison of algorithms for direct adaptive feedforward compensation in
an ANC system with acoustic coupling, using a YK parametrization (2).

6.6 Test Bench Experimental Results

For the realization of experiments, experimental test were carried in the second and third test

bench configurations. Those obtained with the second configuration are presented in [Landau

et al., 2019a], found in Appendix D. As previously stated in Section 6.1, the third configuration

of the test bench was chosen as the best option to satisfy the proposed requirements. As it can

be seen in Figures 6.11 and 6.7, the frequency region of the third test bench configuration’s

identified secondary path has enough gain to perform roughly starting from 70 Hz to 270 Hz. It is

not recommended to enforce a controller’s performance beyond this point, since the existence of a

zero located at 300 Hz is quite clear and would let the control in a operation close to an open loop

behavior around those frequencies. So the following experiments will have as objective to test the

performance of diverse algorithms and approaches attempting the attenuation of disturbances

located between 70 Hz and 270 Hz.

A discretized version of a Gaussian white noise, in this case a PRBS, is filtered by a band-pass

filter, with band frequencies of 70 Hz to 270 Hz an used as disturbance signal. A first approach for
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FIGURE 6.11. Identified secondary path for the third test bench configuration.

these tests includes the use a single disturbance that remains unchanged throughout the whole

experiment, with a range of 70 Hz to 270 Hz. A regular test horizon of 180 s has been chosen as a

compromise between the time required to achieve many of the experiments, and the convergence

horizon. Longer tests have been carried on with a length of 600 s as horizon, showing the expected

improvement in performance.

After the disturbance characteristics and experiment length have been decided, we proceed

then to determine the optimal order for the controller adaptive filters, in this case N(q−1) for

the standard FF approach, and Q(q−1) for the YK parametrization. Here it is taken into account

the parsimony concept stating that a simpler controller should be chosen over a more complex

in the case that improvements in performance are not enough in relation to the additional

computational time required at each step inherent to a more complex controller, and may be an

implicit over-parametrization of the compensator.

Once we have decided the adaptive filter’s order, we test an compare the results given by

different Parameter Adaptation Algorithms (PAA). This include the test of approaches whom use a

scalar gain, and since it is intended to have a fair comparison between all the proposed algorithms

in this chapter, a profile of Constant Trace has been chosen for the algorithms using a matrix

gain. This is also done in this way since the controllers are intended to represent the application

in a real environment, where the constant trace profile is used for letting the controller remain

with adaptive capabilities in the case of changes in the disturbances characteristics.

At last, a small comparison of the selected choices using different initial conditions is done.
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Since all experiments are carried using a constant trace profile, the value for this trace is

increased gradually to look at the changes in performance, and eventually find a threshold for

the value that the system working under such conditions can handle.

6.6.1 Standard Feedforward Adaptive Results

As stated before, the first step is to select a proper order for the controller filter, and Table 6.5

shows the results obtained after a series of experiments different orders for the N(q−1) filter,

either in a IIR or FIR configuration. Results show that for a 180 s horizon in the experiments,

IIR controllers have an average better performance in comparison with the FIR counterpart.

Speaking now exclusively about the results gathered from IIR filters, is evident that the best

response came from the order 30 15/15 filter. In this particular case there seems to be a local

maximum for the parameter’s order, since a larger filter, 20/20 has a lost in performance and the

attenuation achieved is smaller that the lesser order controller.

Filter Filter Order Attenuation Test
Type [Num/Den] [dB] Duration

10/10 23.4
15/15 26.7IIR
20/20 25.6
20/0 18.4
30/0 21.0
40/0 21.0

FIR

50/0 20.8

180 s

TABLE 6.5. Standard controller order comparison for tests with 180 s horizon and a
70 Hz to 270 Hz disturbance. This comparison was done using standard FuSBA
algorithm and a profile of constant trace with a value of 0.002 per parameter.

Table 6.6 shows results from similar versions of the previous tests, where different order for

the N(q−1) filter were reviewed, but this time a 600 s horizon was chosen. This longer version

of the tests allowed to see the improvement in performance of controllers. Once again we found

that the results of IIR filter with order 30 and values of 15/15 is amongst the best performances,

alongside with the IIR filter of order 40 and values of 20/20. Increasing the complexity by 10 just

gives a 5% improvement in the performance, thus not giving enough arguments to change the

previous selection and keeping a complexity of 30 for the IIR filter, and values of 15/15 for its

numerator and denominator.

Table 6.7 show the results of test with similar experimental conditions, but using different

PAA. An horizon of 180 s was again used as test length, and a signal with frequencies between

70 Hz and 270 Hzis used as disturbance. Results for FuSBA are still showing good levels of
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Filter Filter Order Attenuation Test
Type [Num/Den] [dB] Duration

10/10 unstable
IIR 15/15 39.5

20/20 41.5 600 s
30/0 32.4

FIR
40/0 32.2

TABLE 6.6. Standard controller order comparison for tests with 600 s horizon and a
70 Hz to 270 Hz disturbance. This comparison was done using standard FuSBA
algorithm and a profile of constant trace with a value of 0.002 per parameter.

attenuation, nevertheless experiment with its scalar counterpart, SFuSBA, displayed a even

better performance.

Adaptation Attenuation Filter Test
Algorithm [dB] [Num/Den] Duration

FuPLR 23.7
FuSBA 26.7
NFuLMS 26.3 IIR [15/15] 180 s
SFuSBA 28.5
FuLMS 24.7

TABLE 6.7. Standard controller adaptation algorithms comparison for tests with 180 s
horizon and a 70 Hz to 270 Hz disturbance. This comparison was done using a
constant trace with a value of 0.002 per parameter (tr[F(t)]= tr[F]= 0.002(nR+nS))
for the matrix gain, and 0.002 per parameter (γ= 0.002(nR +nS)) for the scalar
gain approach.

As previously done, Table 6.8 presents longer duration experiments, with a length of 600 s

as horizon. Here is evident that for a longer duration, controller with a FuSBA approach has

outperform SFuSBA, and will be chosen as the best choice.

Since one of the most common algorithms used now a days is FuLMS, Table 6.9 shows a

comparison of results between performance of tests done with FuLMS, and the choice we made of

algorithm FuSBA. Since different approaches for the PAA have diverse limitations, we push to

their limits the performance of both algorithms by modifying the initial conditions of the PAA.

In order to have a fair comparison, one again the matrix approach was done using a constant

trace profile to have a similar base for comparison with the scalar case, as well as conditions of

operation closer to a real environment. The selected value for a constant trace tr[F(t)] = tr[F]

in the FuSBA experiments was chosen as tr[F] = tr[F]pp(nR + nS), where nR and nS are the

corresponding numerator and denominator orders of filter N(q−1), [15/15] accordingly with our

experimental results; and tr[F]pp is the desired value for the constant trace per parameter. In
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Adaptation Attenuation Filter Test
Algorithm [dB] [Num/Den] Duration

FuPLR 35.5
FuSBA 39.5
NFuLMS 35.1 IIR [15/15] 600 s
SFuSBA 36.8
FuLMS 34.6

TABLE 6.8. Standard controller adaptation algorithms comparison for tests with 600 s
horizon and a 70 Hz to 270 Hz disturbance. This comparison was done using a
constant trace with a value of 0.002 per parameter (tr[F(t)]= tr[F]= 0.002(nR+nS))
for the matrix gain, and 0.002 per parameter (γ= 0.002(nR +nS)) for the scalar
gain approach.

the case of experiments using a scalar FuLMS PAA, several values for γ were considered as

γ= γpp(nR +nS), where γpp is the desired value for the gain per parameter.

Adaptation Initial Condition Attenuation Filter Test
Algorithm (per parameter) [dB] [Num/Den] Duration

0.002 26.7
0.005 36.2
0.010 39.6

FuSBA tr[F]pp =
0.020 unstable IIR
0.002 24.7 [15/15]
0.008 34.2
0.020 37.8

FuLMS γpp =
0.040 unstable

180 s

TABLE 6.9. Standard controller initial condition comparison for tests with 180 s horizon
and a 70 Hz to 270 Hz disturbance. This comparison was done using different
constant trace values tr[F]pp (tr[F(t)] = tr[F] = tr[F]pp(nR + nS)) for the matrix
gain, and different values for γ (γ= γpp(nR +nS)) for the scalar gain approach.

In Table 6.9 we can see that even though augmenting the initial values for the gain has a

clear improvement in the performance and attenuation achieved, the PAA have limitations and

there are thresholds for them in terms of capabilities that must not be surpassed. Finally we can

see that FuSBA algorithm has a better performance than the FuLMS scalar approach, even if we

have different initial conditions for each one of them.

Figures 6.12 to 6.15 show results from the highlighted experiment in Table 6.9. First at

Figure 6.12 we have a comparison between the signal sent as disturbance to the system, denomi-

nated s(t), and the measurements gathered as residual noise in y(t). In this experiment, first 15 s

displays the system behavior in open loop, meaning that there is no compensation. Starting from
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15 s is clear that the controller had a positive effect counteracting the disturbance. Right axis

displays the attenuation’s value achieved at any given point with respect to the open loop section,

as

(6.55) Attenuation(t)[dB]= 20log10

( ‖yOL‖2
2

‖yCL(t)‖2
2

)
,

where yOL corresponds to the measures of residual noise while the system is in open loop such

that yOL = [y(15s), . . . , y(0s)], and yCL corresponds to the measures of residual noise while the

system is already being compensated by the controller, meaning that is performing in a closed

loop, and yCL(t) = [y(t), . . . , y(t− 15s)]. Even thou the experimental horizon is just 180 s, the

attenuation achieved is already 39.6 dB at that time, seemingly reaching a steady state.

FIGURE 6.12. Performance of IIR compensator of order [15/15] with FuSBA PAA and
constant trace profile (tr[F]pp = 0.010). Right side shows the level of attenuation
achieved at a given point in time, with 39.6 dB achieved at 180 s. Compensation
starts at 15 s.

Figure 6.13 show results in the frequency domain of this experiment. Here we can see

compared the power spectral densities (PSD) of yOL for the Open loop, and yCL(180s) for the

Closed loop. As expected from the open loop section where only the disturbance is present in the

measurements, its PSD show a clear high gain in the region corresponding to 70 Hz - 270 Hz. On

the other hand we have the closed loop PSD taken at t = 180s, where is evident the compensation

achieved at those given frequencies. As we remember from Figure 6.11, there are region with

very low gain in the secondary path and this becomes observable at the gain peak created around

325 Hz, where the controller is trying to perform and creating a perturbation with similar levels

to those of the attenuated disturbances.

Parameters adaptation evolution through time is displayed in Figure 6.14, where all the 30

estimated parameters from the filter N(q−1)= R
S of order [15/15] are displayed. Here it can be
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FIGURE 6.13. Comparison between measured noise’s PSD of a disturbance with frequen-
cies between 70 Hz and 270 Hz without compensation (Open loop), and measured
residual noise of the system at 180 s, using a standard FuSBA PAA with a constant
trace profile and tr[F]pp = 0.010 (Closed loop).

seen that many of the parameters values have reached a steady state and converged to a constant

value.
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FIGURE 6.14. Filter N(q−1)= R
S parameters evolution for a [15/15] standard IIR filter

using FuSBA PAA with a constant trace profile. Compensation starts at 15 s.

Finally Figure 6.15 show the values of adaptation gain matrix trace tr[F(t)], where a constant
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value of 0.3 is reached immediately after compensations starts.
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FIGURE 6.15. Evolution of adaptation matrix F ’s trace for a constant trace profile of a
FuSBA PAA. A value of tr[F]pp = 0.010 was chosen, so tr[F(t)]= tr[F]= 0.3
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6.6.2 Youla-Kučera Feedforward Adaptive Results

In a similar fashion than the procedures for standard feedforward compensation, the first step is

to select a proper order for the controller filter, and identical experimental conditions were used,

with a 70 Hz to 270 Hz disturbance applied in the third test bench configuration. Table 6.10 shows

the results obtained after a series of experiments different orders for the Q(q−1) filter, either

in a IIR or FIR configuration with 180 s horizon. Even if experimental results for YK-FIR are

stable for small order of the Q(q−1) filter, corresponding orders in a YK-IIR configuration display

better performance in terms of attenuation levels reached in an overall perspective. Between the

use of filters 30/30 and 40/40 there is a 3 dB improvement, but an increment of 20 additional

parameters, which increments considerably the computational process time, thus 30/30 filter is

chosen.

Filter Filter Order Attenuation Test
Type [Num/Den] [dB] Duration

20/20 unstable
25/25 29.0
30/30 30.2

YK-IIR

40/40 33.2
20/0 17.2
30/0 20.9
40/0 22.7
50/0 25.7
60/0 27.0
80/0 28.9

YK-FIR

100/0 31.2

180 s

TABLE 6.10. YK controller orders comparison for test with 180 s horizon and a 70 Hz to
270 Hz disturbance. This comparison was done using YK FuSBA algorithm and a
profile of constant trace with a value of 0.02 per parameter in the IIR case, and 0.5
for FIR case.

As done for the standard approach Table 6.11 shows the experimental results of test with the

chosen order 30/30 YK-IIR FuSBA, but an extended horizon of 600 s, as well as its counterpart

60/0 YK-FIR for comparison. The differences here are even higher, since even both tests shows

an improved attenuation level reached, YK-FIR has a 1.3 dB increase from its shorter test, while

YK-IIR has a 5.5 dB improvement. This shows once again that for the YK approach, an IIR filter

is the best choice for this configuration.

Table 6.12 show the results of test with similar experimental conditions with an 180 s horizon

and a signal with frequencies between 70 Hz and 270 Hz used as disturbance; but again using

different PAA for comparison proposes. Results were just a L =G filtering is used show similar and

unacceptable levels of attenuation, conditioning the system to use the more complex filtering of
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Filter Filter Order Attenuation Test
Type [Num/Den] [dB] Duration
YK-IIR 30/30 35.7
YK-FIR 60/0 28.3

600 s

TABLE 6.11. YK controller order comparison for tests with 600 s horizon and a 70 Hz to
270 Hz disturbance. This comparison was done using YK FuSBA algorithm and a
profile of constant trace with a value of 0.02 per parameter in the IIR case, and 0.5
for FIR case.

FuSBA and SFuSBA. As in the standard case, FuSBA was the final choice due to its performance

was the one with best levels of attenuation.

Adaptation Attenuation Filter Test
Algorithm [dB] [Num/Den] Duration

FuPLR 6.1
FuSBA 30.2
NFuLMS 6.1
SFuSBA 27.5

YK-IIR [30/30] 180 s

TABLE 6.12. YK controller adaptation algorithms comparison for tests with 180 s hori-
zon and a 70 Hz to 270 Hz disturbance. This comparison was done using a constant
trace with a value of 0.02 per parameter (tr[F(t)] = tr[F] = 0.02(nR +nS)) for the
matrix gain, and 0.02 per parameter (γ = 0.02(nR + nS)) for the scalar gain ap-
proach.

Finally experimental results were gathered for tests with a 30/30 YK-IIR filter and a

FuSBAPAA with constant trace profile. The value used to define the trace calculation was

augmented gradually and the results are displayed in Table 6.13.

Filter Order Initial Condition Attenuation Test
[Num/Den] (per parameter) [dB]

PAA
Duration

0.02 30.2
0.05 34.4
0.10 35.6

[30/30] tr[F]pp =
0.12 unstable

FuSBA 180 s

TABLE 6.13. YK controller initial condition comparison for tests with 180 s horizon and
a 70 Hz to 270 Hz disturbance. This comparison was done using different constant
trace values tr[F]pp (tr[F(t)] = tr[F] = tr[F]pp(nR +nS)) for the matrix gain, and
different values for γ (γ= γpp(nR +nS)) for the scalar gain approach.

Figures 6.16 to 6.15 show results from the highlighted experiment in Table 6.13. Once again

Figure 6.16 shows a comparison between the signal sent as disturbance to the system s(t), and
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the measurements gathered as residual noise in y(t). First 15 s represent the system behavior in

open loop. From 15 s the controller positive effects counteracting the disturbance are evident. In

this case the experimental horizon is just 180 s, and the attenuation achieved is 35.6 dB at that

time, but without reaching a steady state.

FIGURE 6.16. Performance of YK-IIR compensator order 30/30 with FuSBA PAA and
constant trace profile (tr[F]pp = 0.10). Right side shows the level of attenuation
achieved at a given point in time, with 35.6 dB achieved at 180 s. Compensation
starts at 15 s.

Figure 6.17 show results in the frequency domain of this experiment. Comparison between

the power spectral densities (PSD) of yOL for the Open loop, and yCL(180s) for the Closed loop is

done here. The open loop section show a clear high gain in the region corresponding to 70 Hz -

270 Hz accordingly with the disturbance frequencies. On the other hand we have the closed loop

PSD taken at t = 180s, where the compensation achieved at those given frequencies is shown. An

improvement regarding the standard approach is the fact that there are no more high-gain peaks

outside the attenuation region, with an almost negligible undesired gain in very low frequencies.

Parameters adaptation evolution through time is displayed in Figure 6.18, where all the 60

estimated parameters from the filter Q(q−1)= QB
QA

of order [30/30] are displayed. Here it can be

seen that many of the parameters values have yet to reach a steady state and have not completely

converged to a constant value.

Finally Figure 6.19 show the values of adaptation gain matrix trace tr[F(t)], where a constant

value of 6.0 is reached immediately after compensations starts.
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FIGURE 6.17. Comparison between measured noise’s PSD of a disturbance with frequen-
cies between 70 Hz and 270 Hz without compensation (Open loop), and measured
residual noise of the system at 180 s, using a YK FuSBA PAA with a constant trace
profile and tr[F]pp = 0.10 (Closed loop).
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FIGURE 6.18. Filter Q(q−1)= BQ
AQ

parameters evolution for a [30/30] YK-IIR filter using
FuSBA PAA with a constant trace profile. Compensation starts at 15 s.
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FIGURE 6.19. Evolution of adaptation matrix F ’s trace for a constant trace profile of a
YK FuSBA PAA. A value of tr[F]pp = 0.10 was chosen, so tr[F(t)]= tr[F]= 6.0
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6.7 Concluding Remarks

New configurations of the test bench were presented, where diverse physical phenoms affecting

controller’s performance were described. Basis and theory about the Feedforward approach were

given and related to the previous explained Feedback theory. Similar Parameter Adaptation

Algorithms were presented as it was done for in previous Chapters, but this time focused in a

Feedforward approach. The Youla-Kučera parametrization was again applied to improve some

characteristics in the control system. A full methodology for comparison between all different

variants in the configuration of controllers was established and tested in the test bench for

examination of real experimental results.

No definitive conclusion can be done about the general case of Active Noise Control, neverthe-

less results presented give an idea of the differences that diverse approaches and their variants

can bring. It is not yet possible to assure that the standard approach is better just because it

excels in attenuation levels regarding a YK parametrized system, if for example we found that

this last has a neater performance in terms of frequencies attenuated and lack of gain outside

the desired regions of performance, as well as a better ratio of computation time per parameter.
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CONCLUSIONS AND PERSPECTIVES

7.1 Concluding Remarks

The main concern of this thesis was the control of active noise systems. Depending on the

disturbance’s characteristics, either feedback or feedforward control methods are proposed. Both

operation approaches rely on accurate models of the system. Physical modeling can provide

qualitative results but fails to yield models that are usable in control design, since their high

order of complexity and the fact that they are not always an available solution rend them not

suitable for this scenario. Thus data based modeling was emphasized for acquiring such required

dynamic model identification. The main point in the methodology defined for identification based

on data, is to find a simplified approximate discrete transfer function of an infinite order dynamic

model of system’s secondary path, located between the compensator’s actuator and the residual

noise measurement point, used in both control design and active compensation. Additional

transfer functions have been identified as well, including a reverse path model of the inherent

internal coupling present while implementing feedforward compensation, located between the

control actuator and the source of the disturbance’s image required for this approach.

Part I

The procedure was investigated in detail starting with transfer the functions’ orders estimation

and continuing with parameters estimation and model’s validation, as well as related topics

developed in Chapter 4. This settled the basis for the first section in the paper published in

IEEE Transactions on Control Systems Technology, found in Appendix A [Landau et al., 2019c].

Methodology for identification of models was also one of the main topics approached during the

20th IFAC World Congress Toulouse 2017, with the presentation of Appendix E [Meléndez et al.,
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2017]. Shorter introductions to the topic are given in the following publications since it continued

to be a relevant point throughout subsequent theories and their applications.

To develop the theory of both identification and control design, as well as obtaining data

from experimental results, a relevant reconfigurable test-bench was designed and built. The

geometry and dimensions of such an experimental setup are indeed subject to redesign and

changes in order to explore different configurations, allowing to get various identified models

which, at the same time, permit us to have slightly distinct control capabilities. The active control

uses a loudspeaker as an actuator, so the main objective was to minimize the residual noise

at the considered point of measurement. A detailed explanation is given in Chapter 3, where

specifications of the test bench were given, alongside the relevant differences between all the

different geometrical configurations of the test bench and their corresponding identified models.

The first configuration was used in the first part of the thesis, and was described in [Meléndez

et al., 2017, Landau and Meléndez, 2017, Landau et al., 2019c]. The second configuration was the

main topic developed in the internal report [Landau et al., 2019a], while the third configuration

was used in the studies done in [Landau et al., 2019b, Airimiţoaie et al., 2018].

Part II

The feedback control approach was addressed in Chapter 5 for the case where the frequency

characteristics of the disturbances are either tonal or narrow-band time-varying. First, in order

to be able to compare the proposed adaptive noise control approach with simpler controllers,

the theory for a linear fixed controller design based on the identified models was presented,

by introducing and developing the concept of Internal Model Principle, later used as a base

for an adaptive controller in a more complex approach. A robust canceler was then proposed

and developed as a better variant of the linear controller, while keeping the non adaptability

characteristics. The concept of Band-Stop Filters was introduced to reduce the so called water-bed

effects, settling a base for the sensitivity function shaping theory also applied in the adaptive

control approach. A direct adaptive control algorithm was then proposed, still based on the

use of the internal model principle, but with a extended theory meant to be combined with the

Youla-Kučera parametrization of the controller. The estimated model’s quality for control design

was illustrated by the experimental performance of the controllers implemented on the test bench

in diverse tests setup conditions.

The most relevant results are on one hand those obtained in the case of multiple narrow

band disturbances located in distinct frequency regions which vary through time, and on the

other hand, those obtained in the case of frequency interference, occurring in the presence of

disturbances with very close frequencies creating a dynamic and non stationary perturbation.

Results gathered from these experiments were presented in the IEEE Transactions on Control

Systems Technology, Appendix A [Landau et al., 2019c], and the 20th IFAC World Congress

held on Toulouse in 2017, Appendix E [Meléndez et al., 2017]. Results achieved with the test
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bench were satisfactory, and a seemingly total attenuation was reached in many of the cases for

the experimental conditions of the tests, proving the efficiency of the developed feedback theory

applied to disturbances with either tonal or narrow-band time-varying characteristics.

Part III

Concerning the attenuation of broadband disturbances, a feedforward scheme was studied. This

approach requires a perturbation’s image, thus a signal highly correlated with the disturbance

needs to be obtained from the system. Given the flexible characteristics of the test bench, a second

sensor was added to perform this task, such that an additional measurement was available to

be integrated into the active noise control system. As explained in Chapter 6, this configuration

generates an internal positive acoustical feedback in the system between the compensation

actuator and the reference measurements source, which is a cause of instabilities in several cases

of compensators. Adaptive algorithms for feedforward active compensation have been developed

from a stability point of view. Nevertheless, in order to separate the problem of stabilizing the

internal positive feedback loop from the minimization of the residual noise, the Youla-Kučera

parametrization of the feedforward compensator had been proposed as a second available optional

approach; hence algorithms have been developed from a stability point of view for both standard

and YK parametrized configurations.

Experimental tests with for a feedforward system were done in the test bench and results were

obtained and studied. Since the different configurations proposed for the test bench have diverse

advantages and disadvantages, the feedforward experiments were designed accordingly for each

of the configurations as well. The second proposed test bench configuration is extensively detailed

and acts as the main topic in [Landau et al., 2019a] found at Appendix D, where the system

performs under undesirable conditions related to the minimal difference required between

the pure delays in the primary and secondary paths. Even though this topic was addressed

and extensive studies were done, this is not presented in this thesis since research about the

phenomenon and theories backing up the results are still under development and research, as

can be seen in [Landau et al., 2019b], found at Appendix B

The third test bench configuration was used for the experiments shown in Chapter 6, and in

[Airimiţoaie et al., 2018], see Appendix C. In [Landau et al., 2019b], a brief comparison between

second and third test bench configurations was made. It was proved that if taken into account,

the stability issues inherent to the feedforward approach can be properly managed while keeping

a good performance in terms of attenuation, even in the presence of broadband noises. Since

the frequency characteristics of the disturbances present a wide spectrum and portray a time-

variant dynamic, it is very hard to achieve a full attenuation of them; nevertheless very good and

interesting results were achieved using the proposed approaches.
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7.2 Future Work

Thorough the length of this thesis, feedback and feedforward algorithms have been addressed

individually, and the disturbances each methodology attempts to attenuate are as well individual

for each approach, using a feedback configuration for narrow band perturbations and a feed-

forward for broadband disturbances. Nevertheless, the simultaneous study of them is still a

promising field of research, that can be a followup of the work already done in this project.

First of all, a comparison under identical disturbances conditions can be done from the point

of view where both approaches, feedback and feedforward, are tested under perturbations with

similar frequency characteristics. The use of a feedback approach is preferred in some cases,

since it requires one measurement less and does not present as many instabilities issues as its

feedforward counterpart, however it use is limited to narrow band disturbances. This threshold

can be further tested to find an equilibrium point where more complex perturbation can still be

approached with a simpler feedback control, before appealing to a more complex feedforward

system. In the same way, the broadband control of the feedforward approaches can be expanded

to the narrow disturbances in some extent, enlarging the control capabilities of a system already

implementing this kind methodology.

This studies can lead as well to a simultaneous combined Feedback + Feedforward control

scheme, where the stability issues will be an important part of the system and will play a funda-

mental role in the design of the controllers. Whit this new combined approach, the disturbances

could be as well of combined characteristics, enlarging even further the control capabilities

already achieved by the individual components of the scheme. Theory enclosing the use of both

approaches simultaneously from a stability point of view can be developed with basis in the

individual theories of its components. Here could be more important the need of algorithms and

calculus simplification, since both control systems performing at the same time may increase

significantly the computation time required at each sample.
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Robust and Adaptive Feedback Noise Attenuation in Ducts

Ioan Doré Landau , Raúl Meléndez, Luc Dugard, and Gabriel Buche

Abstract— In this brief, the attenuation of sound propagation
in an air-handling duct using robust and adaptive feedback active
noise control (ANC) strategies is investigated. The case of multiple
narrow-band disturbances located in distinct frequency regions
and the interference occurring in the presence of disturbances
with very close frequencies are considered. The active control
uses a loudspeaker as a compensatory system. The objective is
to minimize the residual noise at the end of the duct segment
considered. The system does not use any additional sensors
for receiving real-time information upon the disturbances. This
brief illustrates the application of the techniques for active
vibration control presented by Landau et al. to this problem.
A hierarchical feedback control approach will be used. At the first
level, a robust linear controller will be designed taking advantage
of the knowledge of the domains of variation of the frequencies
of the noise disturbances. To further improve the performance,
a direct adaptive control algorithm will be added. Its design is
based on the use of the internal model principle combined with
the Youla–Kučera parameterization of the controller. Guidelines
for the design of the baseline (central) controller are provided.
Both robust and adaptive controls require the knowledge of the
discrete-time model of the compensation path, which is obtained
by identification from experimental data. Experimental results on
a relevant duct ANC test bench will illustrate the performance
of the proposed methodology.

Index Terms— Active noise control (ANC), adaptive control,
internal model principle (IMP), robust control, system
identification, Youla–Kučera (YK) parameterization.

I. INTRODUCTION

IN MOST cases, feed-forward noise compensation is cur-
rently used for active noise control (ANC) when a dis-

turbance’s image is available (a correlated measurement with
the disturbance) [2]–[5]. However, these solutions, inspired
by Widrow’s technique for adaptive noise cancellation [6],
ignore the possibilities offered by feedback control systems
and have a number of disadvantages: 1) they require the use
of an additional transducer; 2) difficult choice for its location;
and 3) in most cases, presence of a “positive” coupling
between the compensatory system and the disturbance image’s
measurement, which can cause instabilities [5]. To achieve the
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attenuation of the disturbance without measuring it, a feedback
solution can be considered. This is particularly suitable for
attenuating multiple time-varying narrow-band noise.

Residual noise can be described as the result of acoustic
waves that pass through the system, and the noise canceller’s
objective is to minimize it. In many cases, these waves can be
characterized in the frequency domain either as tonal distur-
bances or as narrow-band disturbances, both with unknown
and time-varying frequencies. The common framework is
the assumption that a narrow-band disturbance is the result
of a white noise or a Dirac impulse passed through the
“disturbance’s model.” More specifically, in discrete time,
the model for a single narrow-band or tonal disturbance is
a notch filter with poles on the unit circle and zeros inside
the unit circle (for details see [1]). In the context of this brief,
robustness should be understood as performance robustness
with respect to the variations of the characteristics of the
disturbance noise. This will be achieved by using either a
linear robust controller or an adaptive controller.

In managing the noise attenuation by feedback, the shape
of the modulus of the output sensitivity function (the trans-
fer function between the disturbance and the residual
noise) is fundamental both from performance and robust-
ness considerations. The output sensitivity function should be
appropriately shaped in order to avoid unwanted amplifications
in the neighborhood of the frequencies of the disturbances
which will be attenuated.

The problem of robust feedback noise attenuation in ducts
by shaping the output sensitivity function has been addressed
in [7]. This paper [8] considers the use of H∞ combined with
LMI for a robust control design of noise attenuation in ducts.
This paper [9] considers an H∞ approach to noise attenuation
in headphones. If the frequency of the tonal or narrow-band
disturbance is known, the "internal model principle" (IMP) can
be used to achieve a very strong attenuation. However, since
the frequencies of these noise disturbances vary, an adaptive
approach has to be considered. The combination of the IMP
with the Youla–Kučera (YK) parameterization has allowed the
development of a direct adaptive regulation scheme for active
vibration control [1] and this approach will be used in this brief
for active noise attenuation in ducts. This approach is different
from the approaches considered in [10]–[12], which ignore
IMP and YK parameterization and require adaptation of a
very large number of parameters. One should mention the pio-
neering work of [13] in using IMP and YK parameterization.
However, this paper uses different adaptation algorithms and
a different design for the central controller and goes beyond
the case of a single tonal disturbance.

Several problems have been considered in the field
of ANC. In this paper, one considers multiple unknown and

1063-6536 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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time-varying tonal disturbances located within two distinct
relatively small frequency ranges. To be specific, two cases
will be considered: 1) the case of two time-varying tonal
disturbances located in two distinct frequency regions and
2) the case of four simultaneous tonal disturbances, two
located in one limited frequency range and the other two in
another frequency range. In this context, a very important
problem is to be able to counteract the very low frequency
oscillations (interference), which are generated when the two
frequencies are very close. Since these disturbances are located
within two relatively small frequency ranges, it is possible
to consider a robust linear control design. The first case,
in the context of ANC in ducts, was considered in [7] and
the shaping of the output sensitivity function was achieved
using the convex optimization procedure introduced in [14]. It
will be shown in this brief that an elementary procedure for
shaping appropriately the modulus of the sensitivity functions
can be implemented by using stopband filters as shaping tools
(see [1] for details).

To further improve the performance, an algorithm for direct
adaptive rejection of the disturbances will be added [1]. This
algorithm uses the IMP and the YK parameterization of the
controller. The design of the central controller associated with
the YK parameterization should consider the presence of low
damped complex zeros in the plant model.

The real-time performance of the noise cancellers depends
upon the quality of the secondary path dynamic model used
for designing the feedback control law. Despite long years
of effort [15], [16], physical modeling is not relevant for
obtaining good models for control design. What is needed
in practice is a finite-dimension discrete-time model, which
reproduces the system’s dynamical behavior. Once such a
model is available, one can use digital control design tech-
niques readily implementable on a real-time computer. These
models can be obtained directly from data using system
identification techniques [1], [7], [17].

This brief is organized as follows. Section II describes
the experimental setup. Section III presents briefly the
equations describing the system model and the controller.
Section IV summarizes the identification procedure and pro-
vides the model of the secondary path used in the controller
design. Section V gives the specifications and the design
of the robust controller. Section VI provides the algorithm
used for adaptive disturbance rejection using the internal
model principle. Section VII presents the experimental results
obtained. Conclusions are given in Section VIII.

II. EXPERIMENTAL SETUP

The view of the test bench used for experiments is shown
in Fig. 1 and its detailed scheme is given in Fig. 2.

The speaker used as the source of disturbances is labeled
as 1, the control speaker is 2, and finally, at the pipe’s open
end, the microphone that measures the system’s output (resid-
ual noise) is denoted as 3. The transfer function between the
disturbance’s speaker and the microphone (1→3) is denomi-
nated Primary Path, while the transfer function between the
control speaker and the microphone (2→3) is denominated
Secondary Path. Both speakers are connected to an xPC Target

Fig. 1. Duct ANC test bench (photograph).

Fig. 2. Duct ANC test bench diagram.

computer with Simulink Real Time environment. y(t) is the
system’s output (residual noise measurement), u(t) is the
control signal, and p(t) is the disturbance. Both primary and
secondary paths have a double differentiator behavior, since as
input we have the voice coil displacement, and as output the air
acoustic pressure. A second computer is used for development,
design, and operation with MATLAB.

III. SYSTEM DESCRIPTION

The linear time invariant discrete-time model of the sec-
ondary path, or plant, used for the controller design is

G(z−1) = z−d B(z−1)

A(z−1)
= z−d B �(z−1)DF (z−1)

A(z−1)
(1)

where DF (z−1) = (1 − z−1)2 is a double differentiator filter
and

A(z−1) = 1 + a1z−1 + · · · + an A z−n A (2)

B �(z−1) = b1z−1 + · · · + bnB� z
−nB� (3)

with d as the plant pure time delay in a number of
sampling periods.1 The system’s order (without the double
differentiator) is

n = max(n A, nB � + d). (4)

1The complex variable z−1 is used to characterize the system’s behavior
in the frequency domain and the delay operator q−1 for the time-domain
analysis.
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Fig. 3. Feedback regulation scheme.

Fig. 3 shows the closed-loop feedback regulation scheme,
where the controller K is described by

K (z−1) = R

S
= r0 + r1z−1 + · · · + rnR z−nR

1 + s1z−1 + · · · + snS z−nS
. (5)

The plant’s output y(t) and the input u(t) may be written as
(see Fig. 3)

y(t) = q−d B(q−1)

A(q−1)
· u(t) + p(t) (6)

S(q−1) · u(t) = −R(q−1) · y(t). (7)

In (6), p(t) is the disturbances’ effect on the measured output2

and R(z−1) and S(z−1) are the polynomials in z−1 having the
following expressions:

R = HR · R� = HR · (r �
0 + r �

1z−1 + . . . + r �
nR� z

−nR� ) (8)

S = HS · S� = HS · (1 + s�
1z−1 + . . . + s�

nS� z
−nS� ) (9)

where HS(z−1) and HR(z−1) represent prespecified parts of
the controller (used, for example, to incorporate the inter-
nal model of a disturbance, or to open the loop at some
frequencies) and S�(z−1) and R�(z−1) are, in the present
context, the solutions of the Bezout equation

P = (A · HS) · S� + (z−d B · HR) · R�. (10)

In (10), P(z−1) represents the characteristic polynomial,
which specifies the desired closed-loop poles of the system.

The transfer functions between the disturbance p(t) and
the system’s output y(t) and the control input u(t), denoted,
respectively, output sensitivity and input sensitivity functions,
are given by

Syp(z
−1) = A(z−1)S(z−1)

P(z−1)
(11)

and

Sup(z−1) = − A(z−1)R(z−1)

P(z−1)
. (12)

IV. SYSTEM IDENTIFICATION

The design of the ANC requires the knowledge of the
dynamic model of the compensator system (the secondary
path). This model will be obtained by system identification
from experimental data [1], [17].

For design and application reasons (the objective is to reject
tonal disturbances up to 400 Hz), the sampling frequency was

2The disturbance passes through the primary path, and p(t) is its output.

selected as fs = 2500 Hz (Ts = 0.0004 s), i.e., approximately
six times the maximum frequency to attenuate, in accordance
with the recommendation given in [1].

The characteristics of the pseudorandom binary sequences
used as excitation signal are: magnitude = 0.15 V,
register length = 17, frequency divider of 1, and sequence
length: 217 − 1 = 131, 071 samples, guaranteeing a uni-
form power spectrum from about 70 to 1250 Hz. Since the
transfer functions have a double differentiator behavior (input:
speaker’s coil position and output: acoustic pressure), this
is considered as a system’s known part and the objective
is to identify the unknown part only. To do this, the input
sequence is filtered by a double discrete-time differentiator
DF = (1 − q−1)2, such that u�(t) = DF · u(t). The double
differentiator will be concatenated with the identified model
of the unknown part in the final models.

The next step in the identification procedure is the esti-
mation of the order n of the model from the experimental
data. The method of [1] and [18] has been used. Once an
estimated order n̂ is selected, one can apply a similar procedure
to estimate n̂ A, n̂− d̂, and n̂B � + d̂, from which n̂ A, n̂B � , and d̂
are obtained. The estimated order n̂ is selected as the value
which minimizes a certain criterion. The value of n̂ = 36
has been obtained, but since the minimum was relatively flat,
nearby values have also been considered. The final selection
has been done by checking what order allows: 1) to capture
all the oscillatory modes in the model and 2) to lead to the
best statistical validation once the parameters are identified.

Comparative parameter estimation considering various plant
and noise models and estimation algorithms led to the con-
clusion that an ARMAX model representation is the most
appropriate for this system, and the best results in terms of
statistical validation (whiteness test on the residual error) have
been obtained using the output error with extended prediction
model (OEEPM) (see [1] for the detail of the methodology).
Therefore, the OEEPM model n A = 38, n�

B = 30, and d = 8
(n = 38) has been chosen. It has 18 oscillatory modes
with damping comprised between 0.0097 and 0.3129. It has
also 13 pairs of stable and unstable oscillatory zeros with
damping comprised between −0.0159 and 0.5438. The very
low damped complex zeros and the unstable zeros are located
in the frequency domain over 500 Hz. The presence of these
low damped zeros makes the control system’s design difficult.
Fig. 4 gives the frequency characteristics of the identified
complete models for the primary and secondary paths.3

V. ROBUST CONTROL DESIGN

A. Control Specifications

The controller is designed to attenuate frequencies around
170 and 285 Hz, with a ±5 Hz tolerance. Attenuation must
be at least of −18 dB in these regions and any undesired
amplification should be less than 6 dB. In addition, since the
gain of the model is low over 600 Hz, and very low damped
complex zeros are present in high frequencies, the magnitude
of the input sensitivity function should be below −20 dB

3Primary path model has been identified using the same procedure. This
model is used for simulations only.
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Fig. 4. Frequency characteristics of the identified primary and secondary
paths’ models.

at frequencies over 600 Hz (in order to improve robustness
with respect to additive uncertainties and to avoid unnecessary
control effort).

In addition, the controller’s gain should be zero at 0 Hz
since the plant does not have gain at zero frequency, and the
controller’s gain should be zero also at the Nyquist frequency
(0.5 fs), for robustness reasons (the unstable zeros are close
to 0.5 fS ). These control specifications will be achieved
through the sensitivity functions’ shaping.

B. Design Procedure

To achieve the constraints at 0 Hz and at 0.5 fs , a fixed
part (HR)4 is introduced in the controller

HR(q−1) = (1 − q−1)(1 + q−1) = 1 − q−2. (13)

The use of auxiliary poles is done such that the characteristic
polynomial takes the form

P(z−1) = PD(z−1) · PF (z−1) (14)

where PD contains the dominant poles corresponding to the
poles of the identified dynamic model and PF includes the
auxiliary poles determined by the design requirements.

It is shown in [1] that a very accurate shaping of
the output or the input sensitivity functions can be
obtained by the use of the second-order band-stop fil-
ters (BSFs) of the form: [HSi (z

−1)/PF Si (z
−1)] and, respec-

tively [HRi (z
−1)/PF Ri (z

−1)]. Depending on whether the filter
is designed for shaping the output or the input sensitivity
function, the numerator of the filter is included in the fixed
part of the controller denominator HS0 or numerator HR0 ,
respectively. The filter denominator is always included in
the closed-loop characteristic polynomial. As such, the filter
denominator influences the design of the controller indirectly
in the computation of S� and R� as solutions of the Bezout
equation (10).

The steps for the linear controller’s design are as follows.

4 HRi , HSi , PF Ri , and PF Si will denote any given controller’s fixed part.

Fig. 5. Robust controller design—output sensitivity function evolution.

Fig. 6. Robust controller’s output sensitivity function evolution—zoomed-in
view.

1) Include all (stable) secondary path poles in the closed-
loop characteristic polynomial.

2) Open the loop at 0 and 1250 Hz by setting the fixed part
of the controller numerator as in (13).

3) Nine BSFs on Syp have been used around each of the
frequencies, where attenuation is desired in order to
assure the desired attenuation within ±5 Hz.

4) Eight BSFs have been used on Sup to reduce its magni-
tude above 600 Hz.

5) To improve robustness, 17 auxiliary real poles located
at 0.17 have been added to the characteristic polynomial.

Fig. 5 shows the characteristics of the output sensitivity
function. The effect of auxiliary poles is illustrated. A zoom
of the final characteristics is shown in Fig. 6.5

VI. ADAPTIVE CONTROL DESIGN

The adaptive approach uses the YK parameterization of the
controller combined with the IMP. The basic reference for this
approach used in active vibration control is [1].

A key aspect of this methodology is the use of the IMP. It is
supposed that p(t) is a deterministic disturbance given by

p(t) = Np(q−1)

Dp(q−1)
· δ(t) (15)

where δ(t) is a Dirac impulse and Np and Dp are the coprime
polynomials of degrees nNp and nDp , respectively. In the case

5The models and the robust controller can be downloaded from:
http://www.gipsa-lab.fr/raul.melendez/.
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of stationary narrow-band disturbances, the roots of Dp(z−1)
are on the unit circle.

A. Internal Model Principle [19]

The effect of the disturbance (15) upon the output

y(t) = A(q−1)S(q−1)

P(q−1)
· Np(q−1)

Dp(q−1)
· δ(t) (16)

where Dp(z−1) is a polynomial with roots on the unit
circle and P(z−1) is an asymptotically stable polynomial,
converges asymptotically toward zero if and only if the poly-
nomial S(z−1) in the RS controller has the form [based on (9)]

S(z−1) = Dp(z
−1)HS0(z

−1)S�(z−1). (17)

Thus, the prespecified part of S(z−1) should be chosen as
HS(z−1) = Dp(z−1)HS0(z

−1) and the controller is computed
solving

P = ADp HS0 S� + z−d B HR0 R� (18)

where P , Dp , A, B , HR0 , HS0, and d are given.6

To build a direct adaptive controller, the YK parameteriza-
tion of the controller is used. In the context of this brief, one
considers a finite impulse response (FIR) filter of the form

Q(z−1) = q0 + q1z−1 + · · · + qnQ z−nQ (19)

to which is associated the vector of parameters

θ = [q0 q1 . . . qnQ ]T . (20)

Under YK parameterization or Q-parameterization, the equiv-
alent polynomials R(z−1) and S(z−1) of the controller K (q−1)
take the form of

R(q−1) = R0 + A · Q · HS0 · HR0 (21)

S(q−1) = S0 − q−d B · Q · HS0 · HR0 (22)

with

R0(z
−1) = r0

0 + r0
1 z−1 + . . . + r0

nR
z−nR0 = R�

0 · HR0 (23)

S0(z
−1) = 1 + s0

1 z−1 + . . . + s0
nS

z−nS0 = S�
0 · HS0 (24)

where A, B , and d correspond to the identified model of
the secondary path, R0(z−1) and S0(z−1) are the central
controller’s polynomials, and HS0 and HR0 are the controller’s
fixed parts.7

Using the output sensitivity function, the expression of the
output can be written as

y(t) = S0

P
· w(t) − Q · q−dBHS0 HR0

P
· w(t) (25)

with

w(t) = A · y(t) − q−d B · u(t) = A · p(t) (26)

as a disturbance’s observer. The objective is to find a value
of Q such that y(t) is driven to zero.

A block diagram of the adaptive scheme is given in Fig. 7.

6Of course, it is assumed that Dp and B do not have common factors.
7Under YK parameterization using an FIR structure for the Q filter,

the closed-loop poles defined by the central controller remain unchanged.

Fig. 7. Adaptive YK parameterization scheme.

The estimation of the polynomial Q at time t is denoted as

Q̂(t, q−1) = q̂0(t) + q̂1(t)q
−1 + · · · + q̂nQ (t)q−nQ (27)

and is characterized by the parameter vector 8

θ̂T (t) = [q̂0(t) q̂1(t) . . . q̂nQ (t)]. (28)

Since this is a regulation problem, y(t) is expected to go
toward zero and as such, it is an a priori adaptation error
denoted ε0(t + 1) for a given estimated polynomial Q̂(t, q−1)

ε0(t + 1) = S0

P
· w(t + 1) − Q̂(t)

q−d B∗HS0 HR0

P
· w(t)

(29)

with B(q−1) = q−1 ·B∗(q−1). In a similar way, one can define
an a posteriori error as

ε(t + 1) = S0

P
· w(t + 1) − Q̂(t + 1)

q−d B∗HS0 HR0

P
· w(t)

(30)

which can be further expressed as

ε(t + 1) = [Q− Q̂(t + 1)] · q−d B∗HS0 HR0

P
· w(t)+η(t + 1)

(31)

where Q is the unknown optimal filter, and η(t) tends asymp-
totically toward zero (see [20] for details).

Denoting filtered versions of the observer output w(t) as

w1(t) = S0(q−1)

P(q−1)
· w(t) (32)

w2(t) = q−d B∗HR0 HS0

P
· w(t) (33)

and

ϕT (t) = [w2(t) w2(t − 1) . . .w2(t − nQ)] (34)

Equation (31) can be rewritten as

ε(t + 1) = [θT − θ̂T (t + 1)] · ϕ(t) + η(t + 1) (35)

8The order of the polynomial Q̂ is related to the order of the denominator
of the model of the disturbance nDp as nQ̂ = nDp − 1.



LANDAU et al.: ROBUST AND ADAPTIVE FEEDBACK NOISE ATTENUATION IN DUCTS 877

where η goes to zero. This type of equation allows immedi-
ately to develop an adaptation algorithm [20]

θ̂ (t + 1) = θ̂ (t) + F(t)ϕ(t)ε(t + 1) (36)

ε(t + 1) = ε0(t + 1)

1 + ϕT (t)F(t)ϕ(t)
(37)

ε0(t + 1) = w1(t + 1) − θ̂T (t)ϕ(t) (38)

F(t + 1) = 1

λ1(t)

[
F(t) − F(t)ϕ(t)ϕT (t)F(t)

λ1(t)
λ2(t)

+ ϕT (t)F(t)ϕ(t)

]
(39)

0 < λ1(t) ≤ 1; 0 ≤ λ2(t) < 2; F(0) > 0 (40)

where λ1 and λ2 allow to obtain different profiles for the
evolution of the adaptation gain F(t). Finally, the control to
be applied is given by

S0 · u(t + 1) =−R0 · y(t + 1) − HR0 HS0 Q̂(t + 1) · w(t + 1).

(41)

For the stability analysis of this algorithm, see [20].
In adaptive regulation applications, one uses in general the

constant trace algorithm. In this case, λ1(t) and λ2(t) are
automatically chosen at each step in order to ensure a constant
trace of the gain matrix (constant sum of the diagonal terms)

trF(t + 1) = trF(t) = trF(0) = nGI (42)

in which n is the number of parameters and G I is to be
suppressed the initial adaptation gain. The matrix F(0) has
the form

F(0) =
⎡
⎢⎣

G I 0
. . .

0 G I

⎤
⎥⎦ . (43)

The values of λ1(t) and λ2(t) at each sampling instant are
determined from the equation

trF(t + 1)= 1

λ1(t)
tr

[
F(t)− F(t)φ(t)φT (t)F(t)

α(t) + φT (t)F(t)φ(t)

]
(44)

fixing the ratio α(t) = λ1(t)/λ2(t). This algorithm can
be combined with the decreasing adaptation gain algo-
rithm or with the variable forgetting factor algorithm for
initialization [1]. One switches to the constant trace algorithm
when the trace of the adaptation gain becomes equal or smaller
than the assigned constant trace. Algorithms with constant
scalar gain can also be implemented [F(t) = F(0)], but the
results will be inferior.

This scheme is implemented on top of the central
controller, which corresponds to the robust controller designed
in Section V from which the BSF filters on Syp have been
removed (preserving, however, the characteristics of Sup in
high frequencies over 600 Hz for robustness reasons).

VII. EXPERIMENTAL RESULTS

The robust controller and the adaptive controller have been
tested on the experimental setup described in Section II under
several protocols.

Fig. 8. Acoustic interference attenuation using a robust controller. Noise
frequencies: 170 + 170.5 Hz and 285 + 285.5 Hz then 180 + 180.5 Hz and
295 + 295.5 Hz. Loop closed at 10 s.

Fig. 9. Acoustic interference attenuation using an adaptive controller. Noise
frequencies: 170+170.5 Hz and 285+285.5 Hz then 180+180.5 Hz and
295+295.5 Hz. Loop closed at 10 s.

A. Interference Test

The protocol is as follows. For 1 s, the system operates
in open loop and without any disturbance in order to get a
reference for the ambient noise. From 1 to 10 s, the test
bench works in open loop, in the presence of two pairs of
sinusoidal noise disturbances located at 170 and 170.5 and
285 and 285.5 Hz, respectively. At 10 s, the loop is closed
and the controller begins to counteract the disturbance effect.
The frequencies of the four signals are then increased at 21 s
by 10 Hz. The corresponding new values are 180 and 180.5 Hz
for the first pair and 295 and 295.5 Hz for the second pair
(leaving the attenuation regions of the robust controller).

Fig. 8 shows the robust controller’s performance for the
interference experiment. As long as the disturbance frequen-
cies are in the region of designed operation, a global attenua-
tion of 39.86 dB is obtained (between 10 and 21 s). After 21 s,
since the frequencies of the disturbances are outside the
region of designed operation, the performance is unsatisfactory
achieving a global attenuation of only 7.94 dB.9 Fig. 9 presents
the results for a similar test using the adaptive controller.
The number of adjustable parameters in the Q filter is 4
(nQ = 3) and an adaptation algorithm with constant trace
adaptation gain is used. The trace of the adaptation gain
used was: tr F = 0.03 · (nQ + 1). It can be seen that after
a negligible transient, a much better attenuation is obtained

9Audio files available at http://www.gipsa-lab.fr/raul.melendez/.
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Fig. 10. Parameters evolution for acoustic interference test using an adaptive
controller.

Fig. 11. Residual noise in open loop (green) and closed loop (blue)
using a robust controller under the effect of tonal disturbances with variable
frequencies.

with respect to the robust controller between 10 and 21 s. The
global attenuation obtained is 70.56 dB. Excellent levels of
attenuation are also obtained once the disturbances frequencies
move away by 10 Hz (global attenuation 67.65 dB), with a
negligible adaptation transient.10

Fig. 10 shows the evolution of each Q-parameter with
respect to time. From 0 to 10 s, all the parameters have values
equal to zero, since the controller is not working yet. Once the
loop is closed, the Q-parameters take almost instantly stable
mean values. At 21 s, the change in frequencies leads to a
quick adaptation toward the new values.

B. Sinusoidal Disturbances With Continuously
Time-Varying Frequency

In this experiment, two tonal noise disturbances located at
160 and 275 Hz are first applied to the system from 1 to 6 s.
Then, their frequencies linearly increase until they reach the
values of 180 and 295 Hz correspondingly at 27 s, after which
their frequencies remain constant.

Fig. 11 shows a comparison between the system’s residual
noise when it is operated in open loop and in closed loop
using the robust controller. As the frequencies move within
the designed attenuation regions, a significant attenuation is
obtained. However, outside this zone, the performance is not
satisfactory. Correspondingly, Fig. 12 shows the residual noise
in open-loop operation and with the adaptive controller. The

10Using nQ = 7 (eight adjustable parameters) does not improve the
performance.

Fig. 12. Residual noise in open loop (green) and closed loop (blue) using
an adaptive controller under the effect of tonal disturbances with variable
frequencies.

Fig. 13. Evolution of the controller parameters under the effect of tonal
disturbances with variable frequency

Fig. 14. Step changes in frequencies using the robust controller. Residual
noise in open loop (green) and in closed loop (blue).

levels of attenuation achieved are globally much better. The
residual noise is comparable with the ambient noise measured
between 0 s and 1 s. The evolution of the parameters is shown
in Fig. 13.

C. Step Changes in Frequencies

In this experiment, step changes in the frequencies of a
pair of tonal noise disturbances are considered, starting from
their nominal values of 170 and 285 Hz. The steps are of
±10 Hz and applied every 6.2 s. The system is operated in
open loop from 0 to 1 s. Fig. 14 shows the robust controller
performance. When the disturbances’ frequencies are inside
the attenuation region of the controller, the attenuation is
satisfactory. However, for −10 Hz and +10 Hz steps, since
one operates outside the designed regions of attenuation,
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Fig. 15. Step changes in frequencies using the adaptive controller. Residual
noise in open loop (green) and in closed loop (blue).

Fig. 16. Evolution of the parameters of the adaptive controller in the presence
of step changes in disturbances frequencies.

the performance is unsatisfactory. The performance of the
adaptive controller is shown in Fig. 15. The performance
is almost the same for all frequencies values and the resid-
ual noise is close to the ambient noise. The adaptation
transients are visible but very short. The same number of
adjustable parameters and the same adaptation gain as in the
previous experiments have been used. The evolution of the
Q-parameters is shown in Fig. 16.

VIII. CONCLUSION

This brief has shown that techniques developed in the con-
text of active vibration control [1] can be successfully used for
robust and adaptive feedback attenuation of multiple narrow-
band noise disturbances in ducts. The effective implementation
of these techniques should consider the characteristics of
the identified model of the compensation path, and design
guidelines have been provided.
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Abstract

Adaptive feedforward broad-band noise compensation is currently used when a correlated mea-
surement with the disturbance (an image of the disturbance) is available. Most of the active feed-
forward noise control systems feature an internal “positive” acoustical feedback between the com-
pensation system and the reference source (a correlated measurement with the disturbance) that has
to be taken into account. Adaptive algorithms for active feedforward noise attenuation have been
implemented such that the propagation delay between the compensatory actuator and the mea-
surement of the residual noise (the secondary path) be much smaller than the propagation delay
between the reference source (image of the incoming noise) and the measurement of the residual
noise (the primary path). Nevertheless, there are potential fields of applications in which the prop-
agation delay of the secondary path may be larger than the one of the primary path. The present
paper explores the behaviour of the available adaptive feedforward compensation algorithms in
this new context. The algorithms have been tested experimentally on a relevant test bench. All the
algorithms except the Youla–Kučera finite impulse response (YKFIR) adaptive compensator and
the standard FIR adaptive compensator using a stability based filtered adaptation (FUSBA) lead to
an unstable behavior. In terms of performance the YKFIR provides the best performance.

Keywords: active noise control, adaptive feedforward compensation, Youla–Kučera
parametrization, positive feedback coupling

1. Introduction

Adaptive feedforward broad-band noise compensation is currently used when a correlated
measurement with the disturbance (an image of the disturbance) is available. Most of the ac-
tive feedforward noise control systems feature an internal “positive” acoustic feedback between
the compensation system and the reference source (a correlated measurement with the disturbance)
that has to be taken into account.

Figure 1 gives the basic block diagram of the adaptive feedforward compensation in the pres-
ence of the internal positive coupling between the output of the compensator and the measurement
of the image of the incoming noise. The incoming noise propagates through the so called primary

1Corresponding author: Ioan Doré Landau (ioan-dore.landau@gipsa-lab.grenoble-inp.fr)
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Figure 1: Adaptive active noise feedforward compensation.

path and its effect is compensated through a secondary noise source (secondary path) driven by a
feedforward compensator. The input to the feedforward compensator is the sum of the image of
the incoming noise and of the internal acoustic positive feedback. Since this feedback is positive,
it raises of course stability problems. Stability analysis of the adaptive feedforward compensation
schemes became an important issue [1–3]. The stability analysis make the assumption that there
exists a compensator N such that the internal positive loop (formed by M and N in feedback) is
stable and such that the perfect matching of the primary path is achieved.2

One of the important aspects in active noise feedforward control is the transportation delay
related to the sound propagation speed [4]. Most of the implementations of the adaptive feedfor-
ward compensation systems are close to a collocation of the residual noise measurement and of the
secondary source used for compensation (see for example [5],[6]). More generally speaking, the
length between these two objects is much smaller than the length of the primary path (between the
reference microphone and the residual noise microphone). See for example [7]. A ratio of 3 to 6
seems to be the case in a number of applications (particularly true in the active noise compensation
in ducts).

Nevertheless, there are potential applications fields where the length of the secondary path may
be longer than the length of the primary path.3 In this case the delay associated with the dynamics
of the secondary path will be larger than the delay associated with the primary path.

When the delay characterizing the dynamic model of the secondary path is larger than the
delay of the primary path, even in the absence of the internal positive feedback, it just simply does
not exist a stable compensator assuring the “perfect matching”.4 One needs algorithms which will
minimize the residual noise and which will assure the stability of the scheme (and of course the
stability of the internal loop). The present paper does not propose new algorithms but tries to

2This hypothesis of perfect matching of the primary path can be relaxed under certain conditions taking into
account that the perfect matching should be achieved in practice in a limited frequency band (see [2]).

3This can occur when there are thermal constraints for the positioning of the secondary source.
4In the case of the internal feedback the effective compensator is the feedback connection of the compensator N

and of the reverse path M.
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evaluate in this context the available algorithms for adaptive feedforward compensation using a
relevant experimental test-bench.

As it will be shown in this paper, only the adaptive Youla–Kučera (YK) parametrized compen-
sator using a Finite Impulse Response (FIR) filter [3] and the Filtered u stability based algortithm
(FUSBA) associated to a standard FIR compensator [2, 8] assure a stable operation of the system.
All the other algorithms tested do not assure a stable operation. In terms of performance it is the
Youla–Kučera FIR adaptive feedforward compensator which has provided the best performance.
The reason for the good behavior of the Youla–Kučera parametrized FIR (YKFIR) algorithm is
that from the beginning the internal loop will be stable (by the appropriate design of the central
compensator) independently of the values of the parameters of the YKFIR filter which will be
adapted in order to minimize the residual noise. The standard FUSBA FIR adaptive compensator
provides less good performance and does not offer the possibility to assign the poles of the internal
closed-loop which unfortunately go extremely close to the unit circle. This raises questions about
its robustness.

All the algorithms have been tested in real-time on a relevant test bench and in simulation using
the identified models of the test bench. The performance of the Youla–Kučera FIR algorithm will
be thoroughly investigated.

The paper is organized as follows: In Section 2, the experimental setup will be described.
In Section 3, the basic equations describing the system will be presented in order to make un-
derstandable the various algorithms which will be reviewed in Sections 4 and 5. Section 6 will
show simulation results. The experimental results obtained on the test bench are summarized in
Section 7. Conclusions are given in Section 8. Appendix A provides an analysis of the possi-
ble stable/unstable equilibrium points for the various schemes. Appendix B provides simulation
results for a simplified YKFIR adaptive feedforward compensator.

2. Experimental Setup

The view of the test bench used for experiments is shown in Fig. 2 and in more detail in Fig. 3.
The actual dimensions of the test bench are given in Fig. 4.

The speaker used as the source of disturbances is labelled as 1, while the control speaker is
marked as 2. At pipe’s open end, the microphone that measures the system’s output (residual
noise e(t)) is denoted as 3. Inside the pipe, close to the source of disturbances, we can find
the second microphone, labelled as 4, for measuring the perturbation’s image, denoted as y(t).
Additionally, we denote u(t) the control signal and s(t) the disturbance. The transfer function
between the disturbance’s speaker and the microphone (1→3) is called Global Primary Path,
while the transfer function between the control speaker and the microphone (2→3) is denoted
Secondary Path. The transfer function between microphones (4→3) is called Primary Path. The
internal coupling found between (2→4) is denoted Reverse Path. These marked paths have a
double differentiator behaviour, since as input we have the voice coil displacement and as output
the air acoustic pressure.

Both speakers are connected to a xPC Target computer with Simulink Real-time R© environ-
ment through a pair of high definition power amplifiers and a data acquisition board. A second
computer is used for development, design and operation with Matlab R©. The sampling frequency
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Figure 2: Duct active noise control test bench (Photo).

Figure 3: Duct active noise control test bench diagram.
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Figure 4: Duct active noise control test bench dimensions.

has been chosen in accordance with the recommendations given in [8]. Taking into account that
disturbances up to 400 Hz need to be attenuated, a sampling frequency fs = 2500 Hz has been
chosen (Ts = 0.0004 sec), i.e., approximately six times the maximum frequency to attenuate.

In this configuration, speakers are isolated inside wood boxes filled with special foam in order
to create anechoic chambers and reduce the radiation noise produced. These boxes have dimen-
sions 0.15m×0.15m×0.12m, giving a chamber volume of 2.7L.

3. System Description

The primary (T ), secondary (G), and reverse (positive coupling) (M) paths are characterized
by the asymptotically stable transfer operators:

X(q−1) = q−dx
BX(q−1)

AX(q−1)
= q−dx

bX
1 q−1 + ...+bX

nBX
q−nBX

1+aX
1 q−1 + ...+aX

nAX
q−nAX

, (1)

with BX = q−1B∗X for any X ∈ {G,M,T}. Ĝ = q−dG B̂G
aG

, M̂ = q−dM B̂M
aM

, and T̂ = q−dT B̂T
aT

denote the
identified (estimated) models of G, M, and T . The system’s order is defined by (the indexes G, M,
and T have been omitted):

n = max(nA,nB +d). (2)

The models of the systems have been identified experimentally using the identification proce-
dure described in [9].
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Figure 5: Frequency characteristics of the Primary, Secondary and Reverse paths identified models.

The frequency characteristics5 of the identified models for the primary6, secondary and reverse
paths are shown in Fig. 5. These characteristics present multiple resonances (low damped complex
poles) and anti-resonances (low damped complex zeros).

One can see that the secondary path has sufficient gain between 150 to 425 Hz, which means
that disturbances can be efficiently attenuated in this zone. It is also clear that the reverse path has
a significant gain on a large frequency range so its effect can not be neglected.

The orders and the pure delays of the various identified models are given in Table 1. One
observes that the secondary path transfer operator has a pure delay of 9 sampling periods and the
primary path has a pure delay of 8 sampling periods (coherent values with the length of the two
paths - see Fig. 4).

Model nB nA d
Primary 20 27 8

Secondary 20 27 9
Reverse 33 33 4

Table 1: Orders of the identified system paths.

5It expresses the gain of the system in the frequency domain. The gain is a non-dimensional quantity.
6The primary path model has been exclusively used for simulation purposes only.
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4. Adaptive Infinite/Finite Impulse Response (IIR/FIR) feedforward compensators for Ac-
tive Noise Control (ANC)

The corresponding block diagrams in open-loop operation and with the compensator system
are shown in Fig. 6. The signal p(t) is the image of the disturbance measured when the com-
pensator system is not used (open-loop). The signal ŷ(t) denotes the effective output provided by
the measurement device when the compensator system is active and which will serve as input to
the adaptive feedforward compensator N̂. The output of this filter, denoted by û(t), is applied to
the actuator through an amplifier. The transfer function G (the secondary path) characterizes the
dynamics from the output of the filter N̂ to the residual noise measurement (amplifier + actuator
+ dynamics of the acoustic system). The unmeasurable value of the output of the primary path
(when the compensation is active) is denoted x(t).

Global primary path

Residual

 noise

Primary path

   Measurement of the

image of the disturbance

(a)

Global primary path

Positive feedback coupling

   Measurement of the

image of the disturbance

Secondary path

Residual

 noise

PAA

Primary path

Parameter adaptation algorithm

-1

 

Feedforward compensator+

+

+

+

(b)

Figure 6: Feedforward active noise control (ANC): in open-loop (a) and with adaptive feedforward compensator (b).

The coupling between the output of the feedforward compensator and the measurement ŷ(t)
through the compensator actuator is denoted by M. As indicated in Fig. 6, this coupling is a
“positive” feedback. The positive feedback may destabilize the system.7 The system is no longer
a pure feedforward compensator.

7Different solutions for reducing the effect of this internal positive feedback are reviewed in [10, 11].
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The objective is to adapt the parameters of the feedforward compensator N(q−1) such that the
measured residual noise be minimized in the sense of a certain criterion while assuring the stability
of the internal positive feedback loop. The optimal IIR feedforward filter (unknown) is defined by:

N(q−1) =
R(q−1)

S(q−1)
, (3)

where

R(q−1) = r0 + r1q−1 + . . .+ rnRq−nR, (4)
S(q−1) = 1+ s1q−1 + . . .+ snSq−nS = 1+q−1S∗(q−1). (5)

The estimated compensator is denoted by N̂(q−1) or N̂(ŵ,q−1) when it is a linear filter with
constant coefficients or N̂(t,q−1) during estimation (adaptation) of its parameters. The optimal
FIR compensator structure is obtained by taking S = 1 (i.e. si = 0, ∀i = 1 : nS).

The input of the feedforward compensator is denoted by ŷ(t) and it corresponds to the sum
between the disturbance image in the absence of compensation and of the output of the positive
feedback path. In the absence of the compensation loop (open-loop operation): ŷ(t) = p(t). The
a posteriori8 output of the feedforward compensator (which is the control signal applied to the
secondary path) is denoted by û(t +1) = û(t +1|ŵ(t +1)). The input-output relationship for the
estimated feedforward compensator is given by the equation of the a posteriori output:

û(t +1) = û(t +1|ŵ(t +1)) =−Ŝ∗(t +1,q−1)û(t)+ R̂(t +1,q−1)ŷ(t +1)

= ŵT (t +1)u(t) =
[
ŵT

S (t), ŵ
T
R(t)

][uû(t)
uŷ(t)

]
, (6)

where ŵ is the estimated parameter vector and u is the measurement vector. Their expressions are
given below:

ŵT (t) = [ŝ1(t), . . . ŝnS(t), r̂0(t), . . . r̂nR(t)] = [ŵT
S (t), ŵ

T
R(t)], (7)

uT (t) = [−û(t),−û(t−nS +1), ŷ(t +1), . . . ŷ(t−nR +1)] = [uT
û (t),u

T
ŷ (t)], (8)

and û(t), û(t−1), ... are the a posteriori outputs of the feedforward compensator generated by

û(t) = û(t|ŵ(t)) = ŵT (t)u(t−1), (9)

while ŷ(t +1), ŷ(t), . . . are the measurements provided by the primary transducer.9

The measured residual error satisfies the following equation:

e◦(t +1) = x(t +1)+ ẑ◦(t +1). (10)

8In adaptive control and estimation the predicted output at t can be computed either on the basis of the previous
parameter estimates (a priori) or on the basis of the current parameter estimates (a posteriori).

9ŷ(t +1) is available before adaptation of parameters starts at t +1.
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The a priori adaptation error is defined as

ν◦(t +1) =−e◦(t +1) =−x(t +1)− ẑ◦(t +1). (11)

The development or analysis of the PAA for estimating in real-time the parameter vector ŵ
assumes that

• (Perfect matching condition) There exists a value of the feedforward filter parameters such
that10

N
(1−NM)

G =−T (12)

• and the characteristic polynomial of the “internal” feedback loop:

P(z−1) = AM(z−1)S(z−1)−BM(z−1)R(z−1) (13)

is a Hurwitz polynomial.

So the objective of the adaptation algorithm will be to allow the compensator N̂ to approach
the optimal value at least in the frequency range of interest.

Nevertheless, in the context of the present paper these hypothesis are violated. What it is
expected is that the minimization of the residual error in a frequency band will lead to a stable
internal loop.

The various FIR/IIR adaptive compensation algorithm which have been tested are summarized
in Table 2. All the algorithms can be characterized by the use of a particular form of the parameter
adaptation algorithm (PAA) which will be presented next and of a specific ”regressor vector”
(observation vector) generated through the filtering of available measurements.

4.1. Parameter Adaptation Algorithm (PAA)
Based on stability considerations, a general form for the PAAs has been proposed in [12] which

can be expressed using the formalism of [13] as:

r(t) = u f (t) = L(q−1)u(t) (14)

k(t) =
F(t)r(t)

1+ rT (t)F(t)r(t)
(15)

ŵ(t +1) = ŵ(t)+k(t)ν◦(t +1) (16)

ν(t +1) =
ν◦(t +1)

1+ rT (t)F(t)r(t)
(17)

F(t +1) =
1

λ1(t)


F(t)− F(t)r(t)rT (t)F(t)

λ1(t)
λ2(t)

+ rT (t)F(t)r(t)


 (18)

1≥ λ1(t)> 0 ; 0≤ λ2(t)< 2 ; F(0)> 0 (19)

λ1(t) and λ2(t) allow to obtain various profiles for the adaptation gain matrix F(t). Four cases are
of interest:

10The parenthesis (q−1) or (z−1) will be omitted in some of the following equations to make them more compact.
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• Constant trace algorithm. λ1(t) and λ2(t) are adjusted continuously to maintain constant
the trace of the adaptation gain matrix. This allows to move in the optimal direction of the
least squares while maintaining the adaptation capabilities. Nevertheless, for accelerating
the adaptation transient it may be useful to use a larger adaptation gain transiently.

• Decreasing adaptation gain (λ1 = 1, λ2 = 1). This is used in self-tuning regime and for
initialization of the constant trace algorithm with a higher gain as well as for self-tuning
operation (convergence towards a fixed feedforward compensator).

• Variable forgetting factor. This option can be also used for initialization of the constant trace
algorithm. The difference is that in this option λ1(0)< 1 but it will tend asymptotically to 1.
This allows to get transiently a higher adaptation gain than the one used in the constant trace
algorithm [12].

• Constant scalar adaptation gain. This is obtained by taking F(t) = γI, where I is the identity
matrix. One gets a scalar adaptation gain. In this case k(t) is given by:

k(t) =
γr(t)

1+ γr(t)T r(t)
(20)

In order to maintain constant the trace of the adaptation gain matrix the values of λ1(t) and
λ2(t) are determined from the equation:

tr (F(t +1)) =
1

λ1(t)
tr
(

F(t)− F(t)r(t)rT (t)F(t)
α(t)+ rT (t)F(t)r(t)

)
(21)

fixing the ratio α(t) = λ1(t)/λ2(t).
The updating of matrix F(t) is done using the U-D factorization for numerical robustness

reason. The details of this algorithm can be found in [8, 12].11

When using a scalar adaptation gain, one can see that for very small values of γ one can
approximate Eq. (20) by k(t) = γr(t) and therefore Eq. (16) by

ŵ(t +1) = ŵ(t)+ γr(t)ν◦(t +1), (22)

which corresponds almost to the adaptation algorithm used in Filtered u least mean square (FULMS)
for IIR compensators [14] and to the filtered x least mean squares (FXLMS) for FIR compensators[15]
algorithms except that since the adaptation gain is small and the residual error will vary slowly the
quantity r(t)ν◦(t +1) is replaced by r(t−1)ν◦(t).

In Table 2, column 1 gives the adaptation algorithms using a matrix adaptation gain derived
from stability considerations: Filtered u pseudo linear regression (FUPLR) and Filtered u stabil-
ity based (FUSBA). Column 2 gives the adaptation algorithms using scalar adaptation gain also
derived from stability considerations: normalized filtered u least mean squares (NFULMS) and

11Routines for the implementation of the algorithm can be downloaded from http://www.gipsa-lab.
grenoble-inp.fr/˜ioandore.landau/adaptivecontrol/
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Paper Paper FULMS (FXLMS)
(Matrix gain) (Scalar gain) (Scalar gain)

ŵ(t +1) =ŵ(t)+ F(t)r(t)
1+rT (t)F(t)r(t)ν

◦(t +1)ŵ(t)+ γ(t)r(t)
1+γ(t)rT (t)r(t)ν

◦(t +1) ŵ(t)+ γ(t)r(t−1)ν◦(t)

Adapt.
gain

F(t +1)−1 = λ1(t)F(t)+

γ(t)> 0 γ(t)> 0+λ2(t)r(t)rT (t)
0≤ λ1(t)< 1,0≤ λ2(t)< 2

F(0)> 0
Adaptive Decr. gain and const. trace γ(t) = γ = const γ(t) = γ = const

Self λ2 = const. ∞
∑

t=1
γ(t) = ∞, lim

t→∞
γ(t) = 0

∞
∑

t=1
γ(t) = ∞, lim

t→∞
γ(t) = 0

tuning lim
t→∞

λ1(t) = 1

uT (t) = [−ŷ(t), . . . , û(t +1), . . .] [−ŷ(t), . . . , û(t +1), . . .] [−ŷ(t), . . . , û(t +1), . . .]

r(t) =

Lu(t) Lu(t)
FUPLR: L = Ĝ NFULMS: L = Ĝ Lu(t)

FUSBA: L = aM
P̂

Ĝ SFUSBA: L = aM
P̂

Ĝ L = Ĝ
P̂ = aMŜ− B̂MR̂ P̂ = aMŜ− B̂MR̂

M = BM
AM

BM = b1M z−1 +b2M z−2 + . . .
AM = 1+a1M z−1 +a2M z−2 + . . . AM = 1

Stability AMG
PL − λ

2 = SPR AMG
PL = SPR Unknown

condition λ = maxλ2(t)

Table 2: Algorithms for IIR (FIR) adaptive feedforward compensation in active noise control (ANC) with acoustic
coupling.

scalrar filtered u stability based (SFUSBA). Column 3 gives the now classical FULMS algorithm
which uses a scalar adaptation gain (and which corresponds to the FXLMS algorithm when us-
ing an FIR compensator). The connections with the NFULMS have been enhanced above. An
important observation is that the compensator can be implemented as a FIR or an IIR filter.

The last row of Table 2 summarizes the stability conditions in a deterministic context (asymp-
totic stability condition for any initial condition on the parameters of the IIR/FIR compensator
assuming that a perfect matching solution exist). Despite the fact that the basic hypotheses for
stability analysis are violated, it was observed that these “strictly positive real” (SPR) conditions
play a fundamental role even in the present context. The reason is that these SPR conditions
can be interpreted as approximation conditions with respect to the true gradient [16], namely the
approximated gradient used should be within an angle of ±90◦ with respect to the true gradient.

A key role in the various adaptation algorithms is played by the filter L, that helps to satisfy
the “strictly positive real condition”.

The following procedure is used at each sampling time for implementing the adaptive feedfor-
ward compensation:

1. Get the measured image of the disturbance ŷ(t + 1), the measured residual error e◦(t + 1),
and compute ν◦(t +1) =−e◦(t +1).
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2. Compute u(t) and r(t) using Eqs (8) and (14).
3. Estimate the parameter vector ŵ(t +1) using the PAA given in Eqs (14)-(16).
4. Compute and apply the control û(t +1) given in Eq. (6).

5. Youla–Kučera Parametrized Adaptive Feedforward Compensators

The rationale behind the use of the Youla–Kučera parametrized feedforward compensator is to
separate the problem of the stabilization of the positive internal loop from the problem of the min-
imization of the residual noise [5]. In order to achieve this, instead of a standard FIR or IIR feed-
forward compensator, one can use an Youla–Kučera parametrization of the adaptive feedforward
compensator. The central compensator will assure the stability of the internal positive feedback
loop and its performance are enhanced in real-time by the direct adaptation of the parameters of
the Youla–Kučera Q filter.

Global primary path

Positive feedback coupling (reverse path)

   Measurement of the

image of the disturbance

Secondary

path

Residual

noise

measurement

PAA

Primary path

Parameter adaptation algorithm

-1

 

Feedforward 

compensator

+

+

+

+

+-

+

+

Figure 7: Adaptive feedforward disturbance compensation using Youla–Kučera parametrization.

A block diagram of such an adaptive feedforward compensator is shown in Fig. 7. FIR and
IIR Q filters can be used. Details of the specific algorithms can be found in [3, 16]. The transfer
operators of the various paths of the ANC system have been given in Section 3.

The optimal Youla–Kučera IIR (YKIIR) feedforward compensator which will minimize the
residual noise can be written, using this parametrization, as:

N(q−1) =
R(q−1)

S(q−1)
=

AQ(q−1)R0(q−1)−BQ(q−1)AM(q−1)

AQ(q−1)S0(q−1)−BQ(q−1)BM(q−1)
(23)
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where the optimal Youla–Kučera filter Q(q−1) can have an IIR or a FIR structure:

Q(q−1) =
BQ(q−1)

AQ(q−1)
=

bQ
0 +bQ

1 q−1 + . . .+bQ
nBQ

q−nBQ

1+aQ
1 q−1 + . . .+aQ

nAQ
q−nAQ

(24)

R0(q−1), S0(q−1) = 1 + q−1S∗0(q
−1) are the polynomials of the central (stabilizing) filter and

AM(q−1), BM(q−1) are given in Eq. (1). The FIR Q filter corresponds to AQ = 1, i.e. aQ
i = 0

for i = 1 to nAQ .
An equivalent representation for the YK feedforward compensator is shown in Figure 8. This

equivalent representation allows to enhance the fact that for the particular case R0 = 0 the YK
feedforward compensator contains implicitly a ”neutralization filter” in order to compensate the
internal positive feedback present in the system.

Figure 8: Equivalent representation of the Youla Kučera compensator.

Details on YK algorithms for adaptive feedforward compensation can be found in [2],[16].
Table 3 summarizes the YK type adaptation algorithms used in the various cases as well as the
structure of the filters introduced for stability reasons. We will focus next on the YKFIR algorithm
which is the algorithm assuring a stable operation in the context of a delay of the secondary path
larger than the delay of the primary path.

5.1. Youla–Kučera Finite Impulse Response (YKFIR) Filter
Let’s begin by considering Youla–Kučera FIR filters, for which AQ(q−1) = 1. The estimated

YKFIR filter is denoted by Q̂(q−1) or Q̂(ŵ,q−1) when it is a linear filter with constant coefficients
or Q̂(t,q−1) during estimation (adaptation). The vector of parameters for the estimated Q̂ filter

Q̂(q−1) =
B̂Q(q−1)

1
= b̂Q

0 + b̂Q
1 q−1 + . . .+ b̂Q

nBQ
q−nBQ (25)

is denoted by
ŵT = [b̂Q

0 , . . . , b̂
Q
nBQ

] = ŵT
BQ
. (26)

The PAAs have been developed from a stability point of view assuming that:
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• (Perfect matching condition) There exists a value of the Q filter parameters such that

G ·AM(R0−AMBQ)

AMS0−BMR0
=−D (27)

• There exists a central feedforward compensator N0 (R0, S0) which stabilizes the internal
positive feedback loop formed by N0 and M and the characteristic polynomial of the closed-
loop

P0(z−1) = AM(z−1)S0(z−1)−BM(z−1)R0(z−1) (28)

is a Hurwitz polynomial12.

What it is important to underline, is that in the context of this paper while the first hypothesis is
violated, the second is definitely true since the central controller is designed such that the poles of
the internal closed loop be asymptotically stable (These poles remain constant independently of
the values of the parameters of the FIR Q filter13). This is a fundamental difference with respect
to the case of using a standard FIR adaptive compensator (see Section 4).
The control signal for the YKFIR is expressed as:

û(t +1) = û(t +1|ŵ(t +1)) =−S∗0(q
−1)û(t)+R0(q−1)ŷ(t +1)+ ŵT (t +1)u(t) (29)

where ŵ(t) and u(t) are given in Table 3. The PAAs are exactly of the same structure as those
given in Eqs (14)-(18). All the considerations regarding the type of adaptation gain and its profile
remain valid. In order to satisfy the positive real condition for stability, the introduction of the
filter L on the measured quantities is important.

Several choices for the filter L will be considered, leading to different algorithms (see Table 3):

FUPLR and NFULMS: L = Ĝ

FUSBA and SFUSBA: L = AM
P̂0

Ĝ with P̂0 = ÂMS0− B̂MR0

The major difference with respect to the standard IIR or FIR compensators as well as with
respect to YKIIR compensators is that the FUSBA algorithm can be implemented from the begin-
ning since the polynomial P̂0 is known and remains unchanged during the adaptation process (for
YKIIR the filter to be used will depend on currently estimated parameters). This is a significant
advantage and this is the key point for assuring a stable operation when the delay of the secondary
path is larger than the delay of the primary path.

12For R0 = 0 and S0 = 1 one has P0 = AM
13Connecting in positive feedback the YK compensator given in Eq. (23) for AQ = 1 with the reverse path M =

BM
AM

, it can be verified by simple calculations that the closed loop poles of the internal loop are given by Eq. (28)
independently of the values of the Q filter.
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YKIIR YKFIR YKIIR YKFIR
Matrix adaptation gain Scalar adaptation gain

ŵ(t +1) = ŵ(t)+ F(t)r(t)
1+rT (t)F(t)r(t)ν

◦(t +1) ŵ(t)+ γ(t)r(t)
1+γ(t)rT (t)r(t)ν

◦(t +1)

Adapt. gain
F(t +1)−1 = λ1(t)F(t)+λ2(t)r(t)rT (t) γ(t)> 0
0≤ λ1(t)< 1, 0≤ λ2(t)< 2, F(0)> 0

Adaptive Decr. gain and const. trace γ(t) = γ = const

Self tuning λ2 = const., lim
t→∞

λ1(t) = 1
∞
∑

t=1
γ(t) = ∞, lim

t→∞
γ(t) = 0

ŵ(t) = [b̂Q
0 , . . . ,a

Q
1 , . . .] [b̂Q

0 , . . .] [b̂Q
0 , . . . ,a

Q
1 , . . .] [b̂Q

0 , . . .]

uT (t) =
[α(t +1), . . . ,β (t), . . .] [α(t +1), . . .] [α(t +1), . . . ,β (t), . . .] [α(t +1), . . .]

α(t) = BMû(t)−AM ŷ(t) α(t) = BMû(t) α(t) = BMû(t)−AM ŷ(t)α(t) = BMû(t)
β (t) = S0û(t)−R0ŷ(t) −AM ŷ(t) β (t) = S0û(t)−R0ŷ(t) −AM ŷ(t)

P̂ = AQ(AMS0− B̂MR0) AMS0− B̂MR0 AQ(AMS0− B̂MR0) AMS0− B̂MR0
P = AQ(AMS0−BMR0) AMS0−BMR0 AQ(AMS0−BMR0) AMS0−BMR0

r(t) =
Lu(t) Lu(t)

FUPLR: L = Ĝ NFULMS: L = Ĝ
FUSBA: L = aM

P̂
Ĝ SFUSBA: L = aM

P̂
Ĝ

Stability AMG
PL − λ

2 = SPR (λ = maxλ2(t))
AMG
PL = SPRcondition

Table 3: Algorithms for Youla–Kučera parametrized adaptive feedforward compensation in ANC with acoustic cou-
pling.

5.2. Design of the Central Controller

The main objective of the central controller N0(q−1) = R0(q−1)
S0(q−1)

is to guarantee the stability
of the internal positive feedback loop. This can be achieved by using a pole placement design
technique (see also [8, Chapter 7]) taking into account that the feedback is positive. All stable
poles of the reverse path can be assigned as poles of the closed loop. In order to obtain a small
attenuation of the high amplitude picks, one can modify the damping of the poles at the frequencies
of those picks. Additional stable poles can be assigned and some fixed part can be added in order
to reach some specifications (opening of the loop at 0 Hz and at 0.5 fS, reducing the maximum of
the disturbance–residual noise sensitivity function, etc.). A very interesting particular case which
drastically simplify the implementation is to choose the desired poles of the internal closed loop
as P0 = AM. This can be achieved by taking S0 = 1 (S∗0 = 0) and R0 = 0. Not only the central
controller is drastically simplified but the FUPLR and FUSBA algorithms become identical and
therefore the filter L is simpler (simulation results for this algorithm are presented in Appendix B.

5.3. Youla–Kučera Parametrization—Some Remarks
Two major observations when using the Youla–Kučera parametrization have to be made:
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• If an FIR Q filter is used, the poles of the internal closed loop will be defined by the central
compensator R0, S0 and they will remain unchanged independently of the values of the
parameters of the Q filter.

• If an IIR Q filter is used, the poles of the internal closed loop will be defined by the central
controller but additional poles corresponding to the denominator of the estimated Q filter
will be added. When the delay of the secondary path is larger than the delay of the primary
path, it was observed that the denominator of the estimated Q filter becomes unstable. The
use of lattice form algorithms [17], [18] may be an issue in order to force the denominator
of the IIR Q filter to remain stable.

As for the standard IIR (FIR) feedforward adaptive compensators described in Section 4, scalar
adaptation gains can also be used. The implementation procedure is similar to that for the FIR
compensators except that ŵ(t) and r(t) are given in Table 3 and the control u(t + 1) is given in
Eq. (29).

6. Simulation Results

The objective of this section is to assess comparatively the performance of the various adaptive
feedforward compensation schemes for attenuating broad-band noise disturbances with unknown
and time-varying characteristics. All the algorithms mentioned in Tables 3 and 4 have been tested,
but only the FIR FUSBA and the YKFIR algorithms have assured a stable operation of the test
bench and of the simulations. Decreasing of the adaption gain only pushes forward in time the
instability phenomenon. As a consequence only the FIR FUSBA and the YKFIR FUSBA will be
further evaluated in terms of performance.

6.1. Number of Adjustable Parameters
The performance of the various compensators will depend on the number of parameters. For

a selected PAA various complexities of the feedforward compensator have been tested. A com-
promise between performance/complexity has to be considered and this value is used for further
investigation.

6.2. Type of Parameter Adaptation Algorithms
For a given complexity of the feedforward compensator (60 parameters) the performance ob-

tained with various PAAs have been evaluated. The attenuation is measured on a sample of 3s
as the ratio between the variance of the residual noise in the absence of the compensator and the
variance of the residual noise in the presence of the compensator. The obtained result is then
transformed into decibels.

6.3. Description of Simulations and Results
In this section, simulation results for the Youla-Kučera FIR and the standard FIR feedforward

compensators are presented. The disturbance signal used in these simulations is a pseudo random
binary sequence (PRBS) generated by a register with N = 15 cells passed through a band-pass
filter with cut-off frequencies at 150 Hz and 350 Hz. To make these simulation closer to the
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Filter type No. params. [num/den] Attenuation (dB)
YKFIR 20/0 13.28
YKFIR 30/0 14.55
YKFIR 40/0 19.25
YKFIR 50/0 19.53
YKFIR 60/0 21.02
YKFIR 70/0 21.82
YKFIR 80/0 22.01

Table 4: Influence of the number of parameters on the performance of the YKFIR adaptive compensator (150-350 Hz
broad-band disturbance, decreasing gain, 180 sec, simulation).

experimental case, we have introduced small changes in the poles and zeros of the reverse and
secondary path models used for the simulation of the system by making these closer to the unit
circle (as such there will be a difference between the values of the identified model parameters
used in the filters and the values of the parameters used in the simulator).

Filter type No. params. [num/den] Adaptation algorithm Att. (dB)
YKFIR 60/0 NFULMS (scalar gain) unstable
YKFIR 60/0 FUPLR (matrix gain) unstable
YKFIR 60/0 SFUSBA (scalar gain) 15.23
YKFIR 60/0 FUSBA (matrix gain) 21.02

Table 5: Influence of the adaptation algorithm on the performance of YKFIR adaptive compensators (150-350 Hz
broad-band disturbance, decreasing gain, 180 sec, simulation).

Table 4 summarizes the obtained attenuation results for the YKFIR adaptive filter for various
filter orders and the FUSBA adaptation algorithm with decreasing gain. The initial gain is chosen
to be of 0.1 per parameter, which implies an initial trace of the adaptation matrix of 0.1 times the
number of adapted parameters. The simulation is done over a time duration of 180 sec, where the
control algorithm is activated after 15 sec. From these results, it seems that the 60/0 filter order is
a good compromise in terms of attenuation vs. complexity. For the reamining simulation results,
the 60/0 order filter is used.

Table 5 shows a comparison of various adaptation algorithms for the 60/0 YKFIR feedforward
filter. For the scalar gain adaptation, an initial gain of 0.02 is used. Decreasing gain adaptation is
obtained by dividing the initial gain by (1+ t

10), where the variable t represents the time in seconds
since the beginning of the adaptation. The instability of the FUPLR and NFULMS alorithms is
the consequence of the violation of the SPR condition over a large frequency range.

For the standard FIR adaptive algorithm, Table 6 shows the influence of the number of parame-
ters on the obtained attenuation. These simulations results have been obtained by closing the loop
first at 15 sec using the FUPLR algorithm and then switching to the FUSBA algorithm at 50 sec.
The total simulation duration is of 180 sec. The decreasing gain algorithm is used to adapt the
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Filter type No. params. [num/den] Attenuation (dB)
FIR 20/0 6.66
FIR 30/0 7.67
FIR 40/0 8.16
FIR 50/0 8.33
FIR 60/0 8.37
FIR 70/0 8.43
FIR 80/0 8.51

Table 6: Influence of the number of parameters on the performance of the FIR adaptive compensator (150-350 Hz
broad-band disturbance, decreasing gain, 180 sec, simulation).

parameters with an initial gain of 0.01 per parameter. As for the YKFIR adaptive compensator,
the disturbance’s spectrum is between 150 and 350 Hz. An adaptive FIR compensator with 60
parameters has been considered for further evaluation.

Figure 9: Zoom for the comparison of the positive feedback loop poles when using YKFIR (◦) and FIR (×) adaptive
compensators (simulation).

Figure 9 can be used to compare the poles of the internal positive feedback loop when using
the adaptive YKFIR and the adaptive FIR compensators ( it is a zoom of the poles map showing
the 1/4 of the map). For the standard FIR there is a pair of poles in low frequencies which are very
close to the unit circle.
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7. Experimental Results

The objective of this section is to compare experimentally on the test bench described in Sec-
tion 2 the algorithms that showed stable results in simulation.

7.1. Protocols used for performance evaluation
In defining the experimental protocols, a number of performance indicators have to be taken

into account: definition of the testing signals, number of parameters to be adapted, type of PAA
used, duration of the experiment.

7.2. Testing Signals
The following type of disturbances have been considered

• broad-band noise with a flat DSP between 150 to 200 Hz, 225 to 275 Hz, 300 to 350 Hz,150
to 250 Hz, 250 to 350 Hz, 150 to 350 Hz and 150 to 350 Hz.

• PRBS noise with a flat DSP from 80 to 1250 Hz

• step change from a broad-band disturbance 150 -250 Hz to a broad-band disturbance 250
-350 Hz

A test horizon of 180 s has been chosen as a compromise between the time required to achieve
many of the experiments and the convergence horizon. Few tests have been carried on a larger
horizon showing the expected improvement in performance.

An important issue is the adaptation capabilities in the presence of step changes in the distur-
bance characteristics. The step changes occur at 180 sec.

7.3. Experimental Results for Adaptive Youla-Kuc̆era FIR Feedforward Compensators

Filter type No. params. [num/den] Attenuation (dB)
YKFIR 40/0 19.79
YKFIR 60/0 20.58
YKFIR 80/0 20.66

Table 7: Influence of the number of parameters on the performance of the YKFIR (150-350 Hz broad-band distur-
bance, 180 s experimental).

Table 7 gives results obtained with YKFIR FUSBA for various complexities of the Q FIR
filter on a 180 s experiment using a broad-band disturbance 150-350 Hz and a decreasing matrix
adaptation gain. The Q FIR filter with 60 parameters has been selected for further investigation.
Table 8 gives the performance of the 60 parameters YKFIR for various PAAs and a duration of
180 s for the experiment. It can be seen that the FUSBA (matrix adaptation gain) and the SFUSBA
(scalar adaptation gain) algorithms give the best results14.

14The lower perfance of the FUPLR and NFULMS algorithms can be explained by the fact that the strictly positive
real condition is violated over a significant frequency range.
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Filter type No. params. [num/den] Adaptation algorithm Att. (dB)
YKFIR 60/0 NFULMS (scalar gain) 5.57
YKFIR 60/0 FUPLR (matrix gain) 5.65
YKFIR 60/0 SFUSBA (scalar gain) 19.90
YKFIR 60/0 FUSBA (matrix gain) 20.94

Table 8: Influence of the adaptation algorithm on the performance of YKFIR adaptive compensators, 180 sec, experi-
mental.

Figure 10 gives the time-domain performance of the YKFIR configuration with 60 parameters
using the FUSBA algorithm. A constant trace adaptation gain has been used with a trace of
trace = 60×0.002. The system operates in open loop for 15 s. The attenuation is evaluated every
15 secs on a horizon of 15s. One can say that the system almost reaches final attenuation after
700 s. Table 9 gives information about the transient behaviour. One can see that after 180 s almost
90% of the final performance is achieved.

Filter type No. params. [num/den] Duration Attenuation (dB)
YKFIR 60/0 180s 20.58
YKFIR 60/0 800s 22.76

Table 9: Influence of the experiment’s length on the performance (150-350 Hz broad-band disturbance).

Figure 10: Performance of YKFIR adaptive compensator with 60 parameters (experimental).
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Filter type No. params. [num/den] Bandwidth Disturbance Att. (dB)
YKFIR 60/0 50Hz 150Hz-200Hz 32.33
YKFIR 60/0 50Hz 225Hz-275Hz 33.19
YKFIR 60/0 50Hz 300Hz-350Hz 29.30
YKFIR 60/0 100Hz 150Hz-250Hz 31.68
YKFIR 60/0 100Hz 250Hz-350Hz 23.94
YKFIR 60/0 200Hz 150Hz-350Hz 20.57
YKFIR 60/0 1250Hz PRBS 5.20

Table 10: Influence of the disturbance characteristics on the performance of the YKFIR adaptive compensator (exper-
imental).

Table 10 gives the performance of the YKFIR for various types of broad-band disturbances.
The duration of the experiment is of 180 sec. As expected, the attenuation depends on the band-
width of the disturbance.

Figure 11 shows the evolution of the output of the system using YKFIR adaptive feedforward
compensator with constant trace adaptation gain for a change in the characteristics of the dis-
turbance at t=180 sec. The first disturbance is a broad band disturbance located between 150 and
250 Hz, while the second one is a broad band disturbance located between 250-350 Hz (the system
operates in open-loop for the first 15 sec).

7.4. Experimental Results for FUSBA FIR adaptive compensators

Filter type No. params. Attenuation (dB)
FIR 20/0 9.20
FIR 30/0 9.95
FIR 40/0 9.98
FIR 50/0 10.04
FIR 60/0 10.35
FIR 80/0 10.07

Table 11: Influence of the number of parameters on the performance of standard FIR compensator (150-350 Hz
broad-band disturbance, 180sec experiment).

Table 11 gives results obtained with a standard FIR FUSBA compensator for various complex-
ities of the FIR filter on a 180 sec experiment using a broad-band disturbance 150-350 Hz. The
FIR filter with 60 parameters has been selected for further investigation.

Nevertheless, the difference observed on this shorter horizon does not allow to conclude clearly
for the compromise performance/complexity.

Figure 12 illustrates the performance of the FUSBA FIR using a constant trace adaptation gain
over a horizon of 800 sec (60 parameters). One can see that the steady-state operation has not yet
been obtained.
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Figure 11: Transient performance of YKFIR adaptive compensator (experimental). 0 to 180s: broad-band disturbance
150-250 Hz; 180 to 345 s: broad-band disturbance 250-350 Hz; open loop operation: 0 to 15 sec.

Figure 13 shows comparatively the PSD in open-loop and under the effect of the FUSBA FIR
compensator and of the FUSBA YKFIR compensator (each with 60 parameters, and the same
constant trace adaptation gain with trace = 60×0.002). Experiment duration: 800 sec. It can be
seen on this figure that the performance of the FUSBA YKFIR is better than the performance of
the FUSBA FIR compensator for the same complexity and the same adaptation gain. When using
FUSBA FIR scheme, the PSD of the residual noise shows the presence of two very significant
peaks (around 50 Hz and 450 Hz) correspondng to very low damped poles of the internal closed
loop. This questions the robustness of the scheme (instability risk).

8. Conclusions

Based on the experimental and simulation results presented, it can be concluded that the YK-
FIR adaptive compensator provides a stable operation and good performance of the adaptive feed-
forward active noise compensation system when the delay of the compensator path is larger than
the delay of the primary path (between the reference source and the residual noise measurement).
Its performance is much better than the one of a standard FIR adaptive compensator using the
FUSBA algorithm. In addition there are doubts upon the robustness of the FIR adaptive feed-
forward compensator. The main explanations for this good behaviour for the YKFIR adaptive
compensator using a FUSBA algorithm are that the internal positive closed-loop will remain sta-
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Figure 12: Performance of FUSBA FIR adaptive compensator (60 parameters, experimental).

ble independently of the values of the adaptive parameters and that the filter to be used for the
implementation of the parameter adaptation algorithm is fixed and provides a better approxima-
tion of the gradient than the other filtering options used in the various algorithms. Unfortunately,
the FULMS and FXLMS algorithms as well as the standard IIR compensators using FUPLR or
NFULMS algorithms do not work properly in this configuration (instability). While the YKIIR
configuration considered is also unstable, the use of a lattice type algorithms may lead to a stable
implementation and this is a subject of further investigation.

Appendix A. Stability/Instability Issues. A Qualitative Analysis

The objective of this appendix is to show that certain adaptive feedforward configurations,
in the presence of delay of the secondary path larger than the one of the primary path, present
instability risks. One considers the following example:
Primary path:15 T = BT

AT
= q−2

1 .

Reverse path: M = BM
AM

= q−1

1 .

Secondary path: G = BG
AG

=
q−2(1+a1Gq−1)

1 .
The secondary path is characterized by a pure delay of 2 sampling periods and a fractional

delay defined by the term (1+ a1Gq−1) (with a d.c. gain (1+ a1G)). For a1G > 1, the fractional

15In some examples, in order to simplify the analysis, we will consider T = αq−2.
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Frequency (Hz)

Figure 13: Power spectral density for FUSBA FIR and FUSBA YKFIR (60 parameters, experimental).

delay is larger than 0.5Ts and the associated zero is unstable (outside the unit circle) [19]. As such,
the delay of the secondary path is larger than the delay of the primary path. We will analyse the
system for various configurations of the adaptive feedforward compensator.

When “perfect matching” is achieved, we implicitly assume “persistance of excitation”, i.e.
residual error equal zero implies that parameters converge towards the values assuring perfect
matching.

Appendix A.1. IIR adaptive compensator
The IIR adaptive compensator considered has the following structure

N̂ =
r̂0

1+ ŝ1q−1 (A.1)

(the time argument has been omitted). The effective compensator constituted by N̂ in positive
feedback with M will be characterized by the transfer operator:

N̂CL =
r̂0

1+(ŝ1− r̂0)q−1 . (A.2)

The stability of the internal loop requires that the |ŝ1− r̂0| < 1. The possibility that this value
becomes > 1 asymptotically should be avoided.
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The compensation path (concatenation of the effective compensator and the secondary path)
denoted by C is characterized by the transfer operator:

C =
r̂0q−2(1+a1Gq−1)

1+(ŝ1− r̂0)q−1 . (A.3)

For perfect matching, one should have

r̂0q−2(1+a1Gq−1)

1+(ŝ1− r̂0)q−1 =−q−2. (A.4)

Clearly this can be achieved for r̂0 = −1; ŝ1− r̂0 = a1G and the adaptation mechanism will drive
the adjustable parameters towards these values. Therefore for a1G > 1, the internal loop will be
unstable.

Appendix A.2. FIR adaptive compensator
The adaptive compensator in this case will have the structure

N̂ =
r̂0

1
(A.5)

The effective compensator will be characterized by

N̂CL =
r̂0

1− r̂0q−1 . (A.6)

The compensation path will be characterized by

C =
r̂0q−2(1+a1Gq−1)

1− r̂0q−1 . (A.7)

For perfect matching one should have (in this case T = a1Gq−2)

r̂0q−2(1+a1Gq−1)

1− r̂0q−1 =−a1Gq−2. (A.8)

Clearly the equilibrium point will be −r̂0 = a1G and the system can become unstable for a1G > 1
(fractional delay larger than 0.5Ts).

Appendix A.3. YKIIR adaptive compensator
The adaptive compensator has a Youla-Kučera structure with

Q̂ =
b̂Q

0

1+ âQ
1 q−1

(A.9)
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The central controller is characterized by R0 = r0 and S0 = 1 (|r0|< 1). The compensator will be
given by

N̂ =
(1+ âQ

1 q−1)r0− b̂Q
0

(1+ âQ
1 q−1)− b̂Q

0 q−1
(A.10)

The effective compensator will be characterized by

N̂CL =
(1+ âQ

1 q−1)r0− b̂Q
0

(1+ âQ
1 q−1)(1− r0q−1)

. (A.11)

The compensation path will be characterized by

C =

[
(1+ âQ

1 q−1)r0− b̂Q
0

]
q−2(1+a1Gq−1)

(1+ âQ
1 q−1)(1− r0q−1)

(A.12)

For perfect matching one should have
[
(1+ âQ

1 q−1)r0− b̂Q
0

]
q−2(1+a1Gq−1)

(1+ âQ
1 q−1)(1− r0q−1)

=−a1Gq−2 (A.13)

It can be verified that âQ
1 = a1G and r0− b̂Q

0 =−a1G assure the perfect matching and this equilib-
rium point corresponds to an internal loop which will be unstable for a1G > 1.

Appendix A.4. YKFIR adaptive compensator
In this case

Q̂ =
b̂Q

0
1

; R0 = r0, S0 = 1 (|r0|< 1). (A.14)

The YKFIR feedforward compensator will be characterized by

N̂ =
r0− b̂Q

0

1− b̂Q
0 q−1

(A.15)

The effective feedforward compensator will be characterized by

N̂CL =
r0− b̂Q

0
1− r0q−1 . (A.16)

Therefore, the internal closed-loop can not become unstable since the closed loop pole is fixed and
depends only upon r0. This pole is asymptotically stable since |r0| < 1. The transfer operator of
the compensation path is characterized by

C =

(
r0− b̂Q

0

)
q−2(1+a1Gq−1)

1− r0q−1 (A.17)
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and the perfect matching condition becomes
(

r0− b̂Q
0

)
q−2(1+a1Gq−1)

1− r0q−1 =−q−2 (A.18)

Clearly the “perfect matching” condition can not be achieved for a1G > 1 . The error will be
characterized by

ε(t) = q−2


1+

(
r0− b̂Q

0

)
(1+a1Gq−1)

1− r0q−1


 p(t) (A.19)

The adaptation will try to minimize the error, but the internal loop will remain stable for all possible
values of b̂Q

0 . Augmenting the order of B̂Q will allow to further reduce the error but the internal
loop will remain stable.

Conclusion: This qualitative analysis has shown that for the case where the delay of the sec-
ondary path exceeds by more than 0.5Ts the delay of the primary path, the risk of instability occurs
for IIR, FIR and YKIIR feedforward compensators. For the YKFIR this risk does not exist and
the poles of the internal loop are fixed and defined by the central controller.

Appendix B. A simplified YKFIR adaptive compensator

Choosing R0 = 0 and S0 = 1 for the central controller, the FUPLR, NFULMS, FUSBA and
SFUSBA adaptation algorithms will use the same filter L = Ĝ (since in this case P = AM) and the
stability condition becomes : ”G/Ĝ−λ/2 should be strictly positive real” (where λ = 0 for scalar
adaptation gain). The parameters will be adapted using Eq. (16) with k(t) given by Eq. (15) for a
matrix adaptation gain and by Eq. (20) for a scalar adaptation gain. From Eq. (29) it results that
in this case the control û(t +1) is given by :

û(t +1) = û(t +1|ŵ(t +1)) = ŵT (t +1)u(t) (B.1)

A YKFIR compensator with 60/0 parameters has been considered for simulations. A distur-
bance with a flat spectrum between 150 and 350 Hz has been used as disturbing noise. Figure B.14
gives the time evolution of the residual noise for the case of a matrix adaptation gain with con-
stant trace (trace=60). Figure B.15 gives the time evolution of the residual noise for the case of a
scalar adaptation gain with a constant trace of 60 (i.e. a scalar gain γ = 1. Figure B.16 shows the
comparison between the PSD for the two adaptation schemes. the corresponding PSD ( computed
for the last 10s of the simulation). A global attenuation of 24.32 dB is obtained for the matrix
algorithm and 22.86 dB for the scalar one.
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Algorithms for adaptive feedforward noise
attenuation – A comparative experimental evaluation

Tudor-Bogdan Airimitoaie, Ioan Doré Landau, Raul Melendez, and Luc Dugard

Abstract—Adaptive feedforward broad-band noise compen-
sation is currently used when a correlated measurement with
the disturbance (an image of the disturbance) is available.
Most of the active feedforward noise control systems feature an
internal “positive” acoustical feedback between the compensation
system and the reference source (a correlated measurement
with the disturbance) which has to be taken into account.
Adaptive algorithms for active feedforward noise attenuation
have been developed since 1985 from local optimization point
of view and further improved and analysed. Later on, adaptive
algorithms for feedforward active vibration control have been
developed from a stability point of view and these algorithms
can be used in adaptive feedforward noise control. The various
algorithms existing in the literature of adaptive feedforward noise
control can be viewed as particular cases of the algorithms
developed from a stability point of view. In order to separate
the problem of stabilizing the internal positive feedback loop
from the minimization of the residual noise, the Youla–Kučera
parametrization of the feedforward noise compensator has been
proposed by Zeng and de Callafon (2006). This approach can
be extended to the adaptive case and has been extensively
studied in the field of active vibration control. Nevertheless, this
approach can be used also in the adaptive active noise control.
The paper tries to present, in an unified manner, the available
algorithms and compensator structures for adaptive feedforward
noise attenuation and to propose a comparative experimental
evaluation on a relevant experimental test-bench (a duct silencer).
A number of improvements of the current algorithms are also
proposed and tested.

Index Terms—active noise control, adaptive feedforward com-
pensation, Youla–Kučera parametrization, positive feedback cou-
pling.

LIST OF ACRONYMS

ANC Active Noise Control
ANVC Active Noise and Vibration Control
AVC Active Vibration Control
FIR Finite Impulse Response
FULMS Filtered-u least mean squares
FUPLR Filtered-u pseudo linear regression
FUSBA Filtered-u stability based algorithm
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FXLMS Filtered-x least mean squares
IIR Infinite Impulse Response
FIRYK Youla–Kučera parametrized IIR adaptive

feedforward compensator using a FIR
Youla–Kučera filter

IIRYK Youla–Kučera parametrized IIR adaptive
feedforward compensator using an IIR
Youla–Kučera filter

LMS Least mean squares
NFULMS Normalized FULMS
PAA Parameter Adaptation Algorithm
PRBS Pseudo random binary sequence
PSD Power Spectral Density
SFUSBA Scalar FUSBA
SPR Strictly Positive Real (transfer function)
TET Task execution time

I. INTRODUCTION

ADAPTIVE feedforward noise attenuation is widely used
when a well correlated signal with the disturbance (image

of the disturbance) is available ([1], [2], [3], [4]). The first
references go back roughly to 1985 ([5]). In many systems,
there is a positive acoustical coupling between the feedforward
compensation system and the measurement of the image of the
disturbance. This often leads to the instability of the system. In
the context of this inherent “positive” feedback, the adaptive
feedforward compensator should minimize the effect of the
disturbance while simultaneously assuring the stability of the
internal positive feedback loop. This problem has been clearly
identified by the mid nineties [6], [7].

At the end of the nineties ([8]), adaptive feedback noise
control emerged as an efficient solution for cancelling single or
multiple tonal disturbances ([9], [10]) taking advantage of the
internal model principle and the Youla–Kučera parametrization
of the feedback controller. Nevertheless, the efficient use of
the feedback approach for attenuation of broad-band noise
is limited by the Bode integral. Therefore one can say that
the adaptive feedforward noise compensation is particularly
dedicated to the attenuation of broad-band noise with unknown
and time-varying characteristics. For this reason, the present
paper will focus on the experimental evaluation of the various
feedforward compensator structures and adaptation algorithms
in the presence of broad-band noise disturbances.
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A major component of such a system is the PAA. In the
field of ANC, the first algorithm used was the so called least
mean squares (LMS) ([5]) derived from a local minimization
of a quadratic criterion in terms of the residual noise. Many
contributions have been done on the analysis of the properties
of this algorithm and the improvement of the algorithm. Filter-
ing of the regressor vector was one of the ways for improving
the adaptation and the so called “Filtered-U LMS” (FULMS)
([11], [12], [13]) seems to be the most used algorithm in recent
publications ([14], [15]).

For the analysis of these algorithms in the presence of an
internal positive feedback an attempt is made in [12] where
the asymptotic convergence in a stochastic environment of
the FULMS algorithm is discussed. Further results on the
same direction can be found in [13]. The authors use the
Ljung’s ODE method ([16]) for the case of a scalar vanishing
adaptation gain. Unfortunately, this is not enough because
nothing is said about the stability of the system with respect
to initial conditions and when a non-vanishing adaptation gain
is used (to keep adaptation capabilities). The authors have
assumed that the positive feedback does not destabilize the
system which is not a realistic assumption.

A different approach emerged in the area of ANVC, namely
the design of the adaptation algorithms starting from a stability
point of view and taking into account the internal positive
feedback from the beginning. A first reference in ANC for
a stability approach in the presence of the internal positive
feedback is ([7]). Unfortunately, the applicability of the results
is very limited since one assumes that the secondary (compen-
satory) path has a simple positive gain or it is characterized by
a SPR transfer function (unrealistic hypothesis). In the field of
AVC, the paper [17] provides a full synthesis procedure for
asymptotically stable adaptation algorithms using IIR feed-
forard compensators in the presence of the internal feedback.
These algorithms can be used also in ANC as it will be shown
in this paper. It is important to note that most of the algorithms
used for the adaptive feedforward compensation can be viewed
as particular approximations of the algorithms derived from
stability considerations.

An interesting idea is presented in the paper [4]: separate
the stabilization of the internal positive feedback loop from the
minimization of the residual noise. This can be done by using
a Youla–Kučera parametrization of the feedforward compen-
sator. A tuning procedure based on system identification has
been proposed and tested on a silencer. This idea has been
used in [18], [19] for developing direct adaptive feedforward
compensation schemes using Youla–Kučera parametrization
of FIR or IIR form for the feedforward compensator. These
algorithms have been extensively tested and compared with
other algorithms in the field of AVC [20]. Nevertheless, they
can be used also in the field of ANC as it will be shown in
this paper. These algorithms have a number of advantages with
respect to IIR feedforward compensators including:
• Possibility to pre-assign the poles of the internal posi-

tive closed-loop (not possible with IIR(FIR) feedforward
compensators);

• Easier satisfaction of the positive real condition for sta-
bility.

The objectives of this paper are:
• To comparatively evaluate experimentally in the context

of ANC the various algorithms developed in AVC from
the stability point of view and the algorithms currently
used in ANC for attenuating broad-band noise distur-
bances;

• To compare experimentally the performance of Youla–
Kučera parametrized feedforward compensators with
those of the IIR (FIR) adaptive feedforward compensators
for various types of PAA;

• To try to present in an unified manner the various PAA
used in ANVC.

• To evaluate comparatively the complexity of the various
configurations in terms of “performance” and “task exe-
cution time” (TET).

The experimental evaluation of the various algorithms and
compensator configurations is done under identical protocols
on an experimental test-bench which represents the core of a
duct silencer.

The paper is organized as follows: in Section II, the exper-
imental setting is presented. Section III describes the various
paths of the system and gives their experimentally identi-
fied frequency characteristics (the identification procedure is
presented in Appendix A). The IIR adaptive compensators
together with the corresponding PAA are reviewed in Section
IV. In Section V the Youla–Kučera based adaptive feedforward
algorithms are presented. Section VI presents the results of
the comparative experimental evaluation. Conclusions of these
evaluations are given in Section VII.

II. EXPERIMENTAL SETUP

The view of the test-bench used for experiments is shown
in Fig. 1 and its detailed scheme is given in Fig. 2. The actual
dimensions of the test-bench are given in Fig. 3.

Fig. 1. Duct active noise control test-bench (Photo).

The speaker used as the source of disturbances is labeled
as 1, while the control speaker is marked as 2. At pipe’s
open end, the microphone that measures the system’s output
(residual noise e(t)) is denoted as 3. Inside the pipe, close to
the source of disturbances, the second microphone, labeled
as 4, measures the perturbation’s image, denoted as y(t).
Additionally, we denote u(t) the control signal, and s(t) the
disturbance. The transfer function between the disturbance’s
speaker and the microphone (1→3) is called Global Primary
Path, while the transfer function between the control speaker
and the microphone (2→3) is denoted Secondary Path. The
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Fig. 2. Duct active noise control test-bench diagram.
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Fig. 3. Duct active noise control test-bench dimensions.

transfer function between microphones (4→3) is called Pri-
mary Path. The internal coupling found between (2→4) is
denoted Reverse Path. These marked paths have a double
differentiator behavior, since as input we have the voice coil
displacement and as output the air acoustical pressure.

Both speakers are connected to an xPC Target computer
with Simulink Real-time R© environment through a pair of
high definition power amplifiers and a data acquisition card.
A second computer is used for development, design and
operation with Matlab R©. The sampling frequency has been
chosen in accordance with the recommendations given in [20].
Taking into account that disturbances up to 400 Hz may need
to be attenuated, a sampling frequency fs = 2500 Hz has
been chosen (Ts = 0.0004 sec), i.e., approximately six times
the maximum frequency to attenuate.

In this configuration, speakers are isolated inside wood
boxes filled with special foam in order to create anechoic
chambers and reduce the radiation noise produced. These
boxes have dimensions 0.15 m × 0.15 m × 0.12 m, giving a
chamber volume of 2.7 L.

III. SYSTEM DESCRIPTION

The primary (T ), secondary (G), and reverse (positive
coupling) (M ) paths are characterized by the asymptotically
stable transfer operators:

X(q−1) = q−dx
BX(q−1)

AX(q−1)

= q−dx
bX1 q

−1 + ...+ bXnBX
q−nBX

1 + aX1 q
−1 + ...+ aXnAX

q−nAX
, (1)

with BX = q−1B∗X for any X ∈ {G,M, T}. Ĝ = q−dG B̂G

ÂG
,

M̂ = q−dM B̂M

ÂM
, and T̂ = q−dT B̂T

ÂT
denote the identified

(estimated) models of G, M, and T. Both BG and BM have a
one step discretization delay.

The system’s order is defined by (the indexes G, M , and T
have been omitted):

n = max(nA, nB + d). (2)
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Fig. 4. Frequency characteristics of the Primary, Secondary and Reverse paths
identified models.

The frequency characteristics of the identified models for
the primary1, secondary and reverse paths are shown in Fig. 4.
These characteristics present multiple resonances (low damped
complex poles)2 and anti-resonances (low damped complex
zeros).

One can see that the secondary path has a high gain between
70 to 270 Hz, which means that disturbances can be efficiently
attenuated in this zone. It is also clear that the reverse path
has a significant gain on a large frequency range so its effect
can not be neglected. The orders of the identified models are
given in Table I.

Model nB nA d

Primary (global) 20 24 7
Secondary 27 26 6

Reverse 22 25 5
TABLE I

ORDERS OF THE IDENTIFIED SYSTEM PATHS.

Details concerning the experimental model identification are
given in Appendix A.

IV. IIR (FIR) ADAPTIVE FEEDFORWARD NOISE
COMPENSATORS

The corresponding block diagrams in open-loop operation
and with the compensator system are shown in Fig. 5. The
signal w(t) is the image of the disturbance measured when

1The primary path model has been exclusively used for simulation purposes
only.

2The lowest damping is around 0.01.
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the compensator system is not used (open-loop). The signal
ŷ(t) denotes the effective output provided by the measurement
device when the compensator system is active and which will
serve as input to the adaptive feedforward compensator N̂ .
The output of this filter, denoted by û(t), is applied to the
actuator through an amplifier. The transfer function G (the
secondary path) characterizes the dynamics from the output
of the compensator N̂ to the residual noise measurement
(amplifier + actuator + dynamics of the acoustical system).
The unmeasurable value of the output of the primary path
(when the compensation is active) is denoted x(t).

Global primary path

Residual

 noise

Primary path

   Measurement of the

image of the disturbance

(a)

Global primary path

Positive feedback coupling

   Measurement of the

image of the disturbance

Secondary path

Residual

 noise

PAA

Primary path

Parameter adaptation algorithm

-1

Feedforward compensator+

+

+

+

(b)

Fig. 5. Feedforward AVC: in open-loop (a) and with adaptive feedforward
compensator (b).

The coupling between the output of the feedforward com-
pensator and the measurement ŷ(t) through the compensator
actuator is denoted by M . As indicated in Fig. 5, this coupling
is a “positive” feedback. The positive feedback may destabilize
the system.3 The system is no longer a pure feedforward
compensator.

The objective is to estimate (and to adapt) the parameters of
the feedforward compensator N(q−1) such that the measured
residual noise be minimized in the sense of a certain crite-
rion. The optimal IIR feedforward compensator (unknown) is
defined by:

N(q−1) =
R(q−1)

S(q−1)
, (3)

where

R(q−1) = r0 + r1q
−1 + . . .+ rnR

q−nR , (4)
S(q−1) = 1 + S1q

−1 + . . .+ SnS
q−nS

= 1 + q−1S∗(q−1). (5)

The estimated compensator is denoted by N̂(q−1) or
N̂(θ̂, q−1) when it is a linear filter with constant coefficients
or N̂(t, q−1) during estimation (adaptation) of its parameters.
FIR compensators are obtained by taking S = 1 (i.e. si = 0,
∀i = 1 : nS).

The input of the feedforward compensator is denoted by
ŷ(t) and it corresponds to the sum between the disturbance

3Different solutions for reducing the effect of this internal positive feedback
are reviewed in [6], [3].

image in the absence of compensation and of the output of
the positive feedback path. In the absence of the compensation
loop (open-loop operation): ŷ(t) = w(t). The a posteriori4

output of the feedforward compensator (which is the control
signal applied to the secondary path) is denoted by û(t +
1) = û(t + 1|θ̂(t + 1)). The input-output relationship for the
estimated feedforward compensator is given by the equation
of the a priori output:

û◦(t+ 1) = û(t+ 1|θ̂(t))
= −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)ŷ(t+ 1)

= θ̂T (t)φ(t) =
[
θ̂TS (t), θ̂TR(t)

] [φû(t)
φŷ(t)

]
, (6)

where

θ̂T (t) = [ŝ1(t), . . . ŝnS
(t), r̂0(t), . . . r̂nR

(t)]

= [θ̂TS (t), θ̂TR(t)], (7)

φT (t) = [−û(t),−û(t− nS + 1), ŷ(t+ 1), . . . ŷ(t− nR + 1)]

= [φTû (t), φTŷ (t)], (8)

and û(t), û(t − 1), ... are the a posteriori outputs of the
feedforward compensator generated by

û(t) = û(t|θ̂(t)) = θ̂T (t)φ(t− 1), (9)

where ŷ(t + 1), ŷ(t), . . . are the measurements provided by
the primary transducer.5

The measured residual error satisfies the following equation:

e◦(t+ 1) = x(t+ 1) + ẑ◦(t+ 1). (10)

The a priori adaptation error is defined as

ν◦(t+ 1) = −e◦(t+ 1) = −x(t+ 1)− ẑ◦(t+ 1). (11)

The a posteriori adaptation (residual) error (which is com-
puted) will be given by:

ν(t+ 1) = ν(t+ 1|θ̂(t+ 1)) = −x(t+ 1)− ẑ(t+ 1). (12)

When using an estimated filter N̂ with constant parameters:
û◦(t) = û(t), ẑ◦(t) = ẑ(t) and ν◦(t) = ν(t).

The development of the PAA for estimating in real-time the
parameter vector θ̂ assumes that
• (Perfect matching condition) There exists a value of the

feedforward compensator parameters such that6

N

(1−NM)
G = −T (13)

• and the characteristic polynomial of the “internal” feed-
back loop:

P (z−1) = AM (z−1)S(z−1)−BM (z−1)R(z−1) (14)

is a Hurwitz polynomial

4In adaptive control and estimation the predicted output at t can be
computed either on the basis of the previous parameter estimates (a priori)
or on the basis of the current parameter estimates (a posteriori).

5ŷ(t+ 1) is available before adaptation of parameters starts at t+ 1.
6The parenthesis (q−1) or (z−1) will be omitted in some of the following

equations to make them more compact.
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So the objective of the adaptation algorithm will be to allow
the compensator N̂ to approach the optimal compensator N
at least in the frequency range of interest but assuring the
asymptotic stability of the internal loop.

From the user point of view and taking into account the type
of operation of adaptive disturbance compensation systems,
one has to consider two modes of operation of the adaptive
schemes:

• Adaptive operation. The adaptation is performed con-
tinuously with a non-vanishing adaptation gain and the
feedforward compensator is updated at each sampling.

• Self-tuning operation. The adaptation procedure starts
either on demand or when the performance is unsatis-
factory. A vanishing adaptation gain is used.

Parameter Adaptation Algorithm (PAA)

A general formulation of the parameter adaptation algorithm
is given below [21]:

θ̂(t+ 1) = θ̂(t) + F (t)Φ(t)ν(t+ 1) (15)

ν(t+ 1) =
ν◦(t+ 1)

1 + ΦT (t)F (t)Φ(t)
(16)

F (t+ 1) =
1

λ1(t)


F (t)− F (t)Φ(t)ΦT (t)F (t)

λ1(t)
λ2(t)

+ ΦT (t)F (t)Φ(t)


 (17)

1 ≥ λ1(t) > 0 ; 0 ≤ λ2(t) < 2;F (0) > 0 (18)
Φ(t) = φf (t) (19)

where λ1(t) and λ2(t) allow to obtain various profiles for the
adaptation gain matrix F (t). Four cases are of interest:

• Constant trace algorithm. λ1(t) and λ2(t) are adjusted
continuously to maintain constant the trace of the adap-
tation gain matrix. This allows to move in the optimal
direction while maintaining the adaptation capabilities.

• Decreasing adaptation gain (λ1 = 1, λ2 = 1). This
is used in self-tuning regime and in some situations for
initialization of the constant trace algorithm.

• Variable forgetting factor. The difference with respect
to the decreasing adaptation gain is that in this option
λ1(0) < 1 but it will tend asymptotically to 1. This allows
to get transiently a higher adaptation gain.

• Constant scalar adaptation gain. This is obtained by
taking F (t) = γI where I is the identity matrix. One
gets a scalar adaptation gain.

To initialize the algorithms often one can use the com-
bination of the “decreasing gain” with the “constant trace”
(i.e., allowing a larger gain at the beginning of the adaptation
process) or the combination of the “variable forgetting factor”
with the “constant trace”. In both cases one switches to the
constant trace when the trace of the adaptation gain matrix
F (t) reaches the specific desired trace.

The evolution of the adaptation gain matrix is given by:

F (t+ 1) =
1

λ1(t)


F (t)− F (t)Φ(t)ΦT (t)F (t)

λ1(t)
λ2(t)

+ ΦT (t)F (t)Φ(t)


 . (20)

For the decreasing gain one chooses

λ1(t) = λ1 = 1 ; λ2(t) = λ2 = 1 (21)

In the variable forgetting factor case, the evolution of λ1(t) is
given by

λ1(t) = λ0λ1(t− 1) + 1− λ0 ; 0 < λ0 < 1 (22)

with
λ2(t) = λ2 = 1 (23)

the typical values being:

λ1(0) = 0.95 to 0.99 ; λ0 = 0.95 to 0.99

The values of λ1(t) and λ2(t) in order to maintain constant
the trace of the adaptation gain matrix are determined from
the equation:

tr (F (t+ 1)) =
1

λ1(t)
tr

(
F (t)− F (t)Φ(t)ΦT (t)F (t)

α(t) + ΦT (t)F (t)Φ(t)

)

fixing the ratio α(t) = λ1(t)/λ2(t) = const. (a typical value
is α = 1).

The updating of matrix F(t) is done using the U-D factor-
ization for numerical robustness reasons. The details of this
algorithm7 are given in [20, Appendix B].

By taking F (t) = γI , where I is the identity matrix, one
gets a scalar adaptation gain (see columns 3 and 4 of Table II).
The equation (15) for updating the parameter vector becomes:

θ̂(t+ 1) = θ̂(t) + γΦ(t)
ν◦(t+ 1)

1 + γΦT (t)Φ(t)
. (24)

When using scalar adaptation gain, one can see that for very
small values of γ one can approximate the above equation by

θ̂(t+ 1) = θ̂(t) + γΦ(t)ν◦(t+ 1) (25)

which corresponds almost to the adaptation algorithm used
in FULMS except that since the adaptation gain is small and
the residual error varies slowly, the quantity Φ(t)ν◦(t+ 1) is
replaced by Φ(t− 1)ν◦(t).

Filtering of the residual error

An interesting practical issue is the use of a filtered residual
error (noise) in the adaptation algorithm. This idea comes from
adaptive filtering and identification ([22], [7]). For a general
presentation see [20]. A recent application of adaptation error
filtering to AVC is presented in [23]. The use of this filtering
on one hand may contribute to satisfy the SPR condition for
stability and on the other hand (which is the most important)
it will shape the resulting spectral density.8

In this case the adaptation error takes the form

ν◦(t) = −
[
e◦(t) + V ∗(q−1)e(t− 1)

]
, (26)

where the filter V (q−1) is given as

V (q−1) = 1 + v1q
−1 + . . .+ vnV

q−nV = 1 + q−1V ∗(q−1).

7Routines for the implementation of the algorithm can be downloaded from
http://www.gipsa-lab.grenoble-inp.fr/∼ioandore.landau/adaptivecontrol/

8In fact it will modify the quadratic criterion minimized by the adaptation
algorithm by introducing a frequency dependent weight.
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Summary of the algorithms for adaptive IIR (FIR) compen-
sators

Table II summarizes the most important algorithms used
with an IIR (FIR) configuration of the feedforward compen-
sator. Column 1 gives the adaptation algorithms using a matrix
adaptation gain derived from stability considerations (FUPLR
and FUSBA). Column 2 gives the adaptation algorithms using
scalar adaptation gain also derived from stability consider-
ations (NFULMS and SFUSBA). Column 3 gives the now
classical FULMS algorithm (which corresponds to the FXLMS
algorithm when using an FIR compensator) which uses a scalar
adaptation gain. The connections with the NFULMS have been
enhanced above.

The last two rows of Table II summarize the stability con-
ditions in a deterministic context (global asymptotic stability
condition for any initial condition on the parameters of the
compensator or local asymptotic stability condition) and the
convergence condition in a stochastic environment (conver-
gence of the parameters in the presence of a measurement
noise affecting the residual noise measurement, assuming that
the system is already asymptotically stable in deterministic
context and that the parameters evolve inside the zone where
the internal positive feedback loop is stable for each time t
[21]).

A key role in the stability of the various adaptation algo-
rithms is played by the filter L operating on the observation
vector φ. It helps to satisfy the “strictly positive real condition”
for asymptotic stability and parameter convergence.

For understanding the roles played by the filter L introduced
on the observation vector, it is important to note that the
equation of the residual error can be expressed as (see [17]):

ν(t+ 1) = H(q−1)[θ − θ̂(t+ 1)]Tφf (t) (27)

where

H(q−1) =
AM (q−1)G(q−1)

P (q−1)L(q−1)
(28)

and
φf (t) = Lφ(t). (29)

From these equations, one can understand that there is a phase
difference between the residual error ν(t + 1) and φf (t) and
that φf (t)ν(t + 1) is an approximation of the inverse of the
gradient vector. Therefore, for convergence, the angle between
the direction of adaptation and the direction of the inverse of
the true gradient (not computable) should be less than 90◦

which is effectively assured by the SPR stability condition on
H . For time-varying adaptation gains, the stability condition
is sharper:

H ′(q−1) = H(q−1)− λ2
2
, max

t
(λ2(t)) ≤ λ2 < 2 (30)

should be SPR.
Several choices for the filter L will be considered, leading

to different algorithms. For the case of matrix adaptation gain
one has:

FUPLR: L = Ĝ
FUSBA: L = ÂM

P̂
Ĝ with P̂ = ÂM Ŝ − B̂M R̂

The algorithm FUPLR, assuming that the SPR condition
given in Table II is satisfied, assures a global stability of
the algorithm for any initial conditions. The SPR stability
condition can be relaxed for low adaptation gain provided
that, in the average, the SPR condition is true (see [24], [16],
[17]) but the performance will be impacted. To improve the
performance one has to use the FUSBA algorithm which tries
to make the H(q−1) transfer function close to 1. This will
depend on how good the estimation in real-time of P̂ is.
This can be achieved once an acceptable estimation of the
parameters of N̂ is available. Therefore, in order to use this
algorithm, an initialization with the FUPLR algorithm should
be done9.

For the scalar adaptation gain one has the same choices
for the filter L and the corresponding algorithms issued
from stability consideration are (see column 3 of Table II):
NFULMS and SFUSBA. The same considerations as for the
matrix adaptation gain are valid in the case of constant scalar
adaptation gain. The SFUSBA should be initialized using the
NFULMS. Note also that FULMS and NFULMS use the same
type of filter.

The following procedure is used at each sampling time for
implementing the adaptive feedforward compensation:

1) Get the measured image of the disturbance ŷ(t+ 1), the
measured residual error e◦(t+ 1), and compute ν◦(t+
1) = −e◦(t+ 1).

2) Compute φ(t) and φf (t) using (8) and (29).
3) Estimate the parameter vector θ̂(t + 1) using the PAA

(15)-(19).
4) Compute (using (9)) and apply the control û(t+ 1).

V. YOULA–KUČERA PARAMETRIZED ADAPTIVE
FEEDFORWARD COMPENSATORS

The rationale behind the use of the Youla–Kučera
parametrized feedforward compensator is to separate the prob-
lem of the stabilization of the positive internal loop from the
problem of the minimization of the residual noise.

In order to achieve this, instead of a standard IIR feedfor-
ward compensator, one can use an Youla–Kučera parametriza-
tion of the adaptive feedforward compensator. The central
compensator will assure the stability of the internal positive
feedback loop and its performance are enhanced in real-time
by the direct adaptation of the parameters of the Youla–Kučera
Q filter.

A block diagram of such an adaptive feedforward compen-
sator is shown in Fig. 6. FIR and IIR Q filters can be used.
Details of the specific algorithms can be found in [18], [19].
The transfer operators of the various paths of the AVC system
have been described in Section III.

9For the FUSBA algorithm the stability condition is a “local” result. Strictly
speaking, it is valid only in the neighborhood of the equilibrium point. It
assumes indeed that the estimated P̂ is asymptotically stable. This requires
inclusion of a stability test on P̂ .
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Paper (Matrix gain) Paper (Scalar gain) FULMS (Scalar gain)

θ̂(t+ 1) = θ̂(t) + F (t)Φ(t)
ν◦(t+1)

1+ΦT (t)F (t)Φ(t)
θ̂(t) + γ(t)Φ(t)

ν◦(t+1)

1+γ(t)ΦT (t)Φ(t)
θ̂(t) + γ(t)Φ(t− 1)ν◦(t)

Adapt.
gain

F (t+ 1)−1 = λ1(t)F (t)+

γ(t) > 0 γ(t) > 0+λ2(t)Φ(t)ΦT (t)
0 ≤ λ1(t) < 1, 0 ≤ λ2(t) < 2

F (0) > 0
Adaptive Decr. gain and const. trace γ(t) = γ = const γ(t) = γ = const

Self λ2 = const. ∞∑
t=1

γ(t) =∞, lim
t→∞

γ(t) = 0
∞∑
t=1

γ(t) =∞, lim
t→∞

γ(t) = 0tuning lim
t→∞

λ1(t) = 1

φT (t) = [−ŷ(t), . . . , û(t+ 1), . . .] [−ŷ(t), . . . , û(t+ 1), . . .] [−ŷ(t), . . . , û(t+ 1), . . .]

Φ(t) =

Lφ(t) Lφ(t)

FUPLR: L = Ĝ NFULMS: L = Ĝ Lφ(t)

FUSBA: L = ÂM

P̂
Ĝ SFUSBA: L = ÂM

P̂
Ĝ L = Ĝ

P̂ = ÂM Ŝ − B̂M R̂ P̂ = ÂM Ŝ − B̂M R̂
M = BM

AM

BM = b1M z−1 + b2M z−2 + . . . BM = b1M z−1 + b2M z−2 + . . . BM = b1M z−1 + b2M z−2 + . . .
AM = 1 + a1M z−1 + a2M z−2 + . . . AM = 1 + a1M z−1 + . . . AM = 1

Stability AMG
PL

− λ
2

= SPR AMG
PL

= SPR Unknown
condition λ = maxλ2(t)

Conv. AMG
PL

− λ
2

= SPR AMG
PL

= SPR
G
PĜ

= SPR
condition λ = λ2

TABLE II
COMPARISON OF ALGORITHMS FOR DIRECT ADAPTIVE FEEDFORWARD COMPENSATION IN ANC WITH ACOUSTICAL COUPLING.

Global primary path

Positive feedback coupling (reverse path)

   Measurement of the

image of the disturbance

Secondary

path

Residual

noise

measurement
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Primary path

Parameter adaptation algorithm
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+

+

+

+
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+

+

Fig. 6. Adaptive feedforward disturbance compensation using Youla–Kučera
parametrization.

Infinite Impulse Response Youla–Kučera compensators
(IIRYK)

The optimal IIR feedforward compensator which will mini-
mize the residual noise can be written, using the Youla–Kučera
parametrization, as

N =
R

S
=
AQR0 −BQAM
AQS0 −BQBM

(31)

where the optimal Youla–Kučera filter Q(q−1) has an IIR
structure

Q(q−1) =
BQ(q−1)

AQ(q−1)
=
bQ0 + bQ1 q

−1 + . . .+ bQnBQ
q−nBQ

1 + aQ1 q
−1 + . . .+ aQnAQ

q−nAQ

and R0(q−1), S0(q−1) = 1+q−1S∗0 (q−1) are the polynomials
of the central (stabilizing) compensator 10 and AM (q−1),

10The characteristic polynomial of the internal loop with the central
compensator: P0 = AMS0 −BMR0 is a Hurwitz polynomial.

BM (q−1) are given in (1). The estimated IIRYK filter is
expressed as:

Q̂(q−1) =
B̂Q(q−1)

ÂQ(q−1)
=
b̂Q0 + b̂Q1 q

−1 + . . .+ b̂QnBQ
q−nBQ

1 + âQ1 q
−1 + . . .+ âQnAQ

q−nAQ

and its parameters are given by

θ̂T = [b̂Q0 , . . . , b̂
Q
nBQ

, âQ1 , . . . , â
Q
nAQ

] = [θ̂TBQ
, θ̂TAQ

]. (32)

The estimated IIRYK filter is denoted by Q̂(q−1) or Q̂(θ̂, q−1)
when it is a linear filter with constant coefficients or Q̂(t, q−1)
during estimation (adaptation). The a priori output of the esti-
mated feedforward compensator using an IIRYK parametriza-
tion for the case of time-varying parameter estimates is given
by (using (31))

û◦(t+ 1) = û(t+ 1|θ̂(t))
= −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)ŷ(t+ 1)

= −S∗0 û(t) +R0ŷ(t+ 1)− ÂQ(t, q−1)∗β(t)

+B̂Q(t, q−1)α(t+ 1), (33)

and

û(t+ 1) = −S∗0 û(t) +R0ŷ(t+ 1)− ÂQ(t+ 1, q−1)∗β(t)

+B̂Q(t+ 1, q−1)α(t+ 1), (34)

where β(t) = S0û(t) − R0ŷ(t) (see also Fig. 6). The
development of the PAA assumes that:
• (perfect matching condition) For the IIRYK parametrized

feedforward compensator there exists a value of the
parameters Q such that

G ·AM (R0AQ −AMBQ)

AQ(AMS0 −BMR0)
= −T. (35)

• the characteristic polynomial of the resulting internal
loop:

P = AQ(AMS0 −BMR0) = AQP0, (36)
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is a Hurwitz polynomial.
The equation of the residual error can be expressed as ([19]:

ν(t+ 1|θ̂) =
AM (q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
[θ − θ̂]Tφf (t) (37)

with

φf (t) = L(q−1)φ(t)

= [αf (t+ 1), . . . αf (t− nBQ
+ 1),

βf (t), βf (t− 1), . . . βf (t− nAQ
)] (38)

where αf (t+ 1) = L(q−1)α(t+ 1), βf (t) = L(q−1)β(t), and

φ(t) = [α(t+ 1), . . . α(t− nBQ
+ 1),

β(t), β(t− 1), . . . β(t− nAQ
)] (39)

The PAA described in Section IV is used also for the Youla–
Kučera feedforward compensators. Several choices for the
filter L will be considered, leading to different algorithms:

FUPLR: L = Ĝ
FUSBA: L = ÂM

P̂
Ĝ with

P̂ = ÂQ(ÂMS0 − B̂MR0) = ÂQP̂0,

where ÂQ is an estimation of the denominator of the ideal
IIRYK filter computed on the basis of available estimates
of the parameters of the filter Q̂. In order to implement
the FUSBA - IIRYK algorithm, it is necessary to make an
initialization over a certain horizon for obtaining an estimation
of ÂQ. This can be done by running the FUPLR -IIRYK for
a certain time to get an estimate of ÂQ.

Finite Impulse Response Youla–Kučera Compensators
(FIRYK)

FIR Youla–Kučera filters are obtained by taking AQ(q−1) =
1. The vector of parameters of the optimal FIRYK filter
assuring perfect matching will be denoted by

θT = [bQ0 , . . . b
Q
nBQ

] = θTBQ
. (40)

The vector of parameters for the estimated Q̂ filter

Q̂(q−1) =
B̂Q(q−1)

1
= b̂Q0 + b̂Q1 q

−1+ . . .+ b̂QnBQ
q−nBQ (41)

is denoted by

θ̂T = [b̂Q0 , . . . , b̂
Q
nBQ

] = θ̂TBQ
. (42)

The major difference between the IIRYK configuration and
the FIRYK configuration is reflected in the equation describing
the evolution of the residual noise:

ν(t+ 1|θ̂) =
AM (q−1)G(q−1)

P0(q−1)L(q−1)
[θ − θ̂]Tφf (t) (43)

with

φf (t) = [αf (t+1), . . . αf (t−nBQ
+1)] = L(q−1)φ(t), (44)

where αf (t+ 1) = L(q−1)α(t+ 1) and

φ(t) = [α(t+ 1), . . . α(t− nBQ
+ 1)] (45)

In eq. 43 the current poles of the internal closed-loop will no
more depend upon the time-varying parameters of AQ and are
now fixed and defined by the central compensator.

The objective is to select a filter L such that the transfer
function

H =
AM (q−1)G(q−1)

P0(q−1)L(q−1)
(46)

is SPR when a constant adaptation gain is used or that the
transfer function

H ′(q−1) = H(q−1)− λ2
2
, max

t
(λ2(t)) ≤ λ2 < 2 (47)

is SPR for time-varying adaptation gains.
Several choices for the filter L will be considered, leading

to different algorithms (see Table III):
FUPLR: L = Ĝ
FUSBA: L = ÂM

P̂0
Ĝ with P̂0 = ÂMS0 − B̂MR0

The major difference with respect to the IIR and IIRYK
compensators is that the FUSBA algorithm assures in this
case global asymptotic stability and can be implemented from
the beginning since the polynomial P̂0 is known from the
beginning and remains unchanged during adaptation process.
This is a significant advantage.

Table III gives the details of the adaptation gains used
in the various cases as well as the structure of the filters.
The implementation procedure is similar to that for the IIR
compensators except that (8), (29), and (9) are replaced,
respectively, by (39), (38), and (34) for IIRYK (or (45), (44),
and (34) for FIRYK).

Design of the Central Compensator

The same central compensator N0(q−1) = R0(q
−1)

S0(q−1) can be
used for FIRYK or IIRYK. The main objective is to guarantee
the stability of the internal positive feedback loop. This can
be achieved by using a pole placement design technique (see
also [20, Chapter 7]) taking into account that the feedback is
positive. All stable poles of the reverse path can be assigned
as poles of the closed-loop (one can change their damping in
order to impose a desired minimum value for the damping of
the complex poles). Additional stable poles can be assigned.
Sensitivity functions of the internal closed-loop have to be
checked.

Youla–Kučera Parametrization—Some Remarks

Two major observations when using the Youla–Kučera
parametrization have to be made:
• If an FIR Q filter is used, the poles of the internal closed-

loop will be defined by the central compensator R0, S0

and they will remain unchanged independently of the
values of the parameters of the Q filter. The stability
condition for the FUSBA algorithm is global.

• If an IIR Q filter is used, the poles of the internal
closed-loop will be defined by the central compensator
but additional poles corresponding to the denominator of
the Q filter will be added. The stability condition for the
FUSBA algorithm is local and an initialization with the
FUPLR algorithm is necessary.
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IIRYK FIRYK IIRYK FIRYK
Matrix adaptation gain Scalar adaptation gain

θ̂(t+ 1) = θ̂(t) + F (t)Φ(t)
ν◦(t+1)

1+ΦT (t)F (t)Φ(t)
θ̂(t) + γ(t)Φ(t)

ν◦(t+1)

1+γ(t)ΦT (t)Φ(t)

Adapt. gain F (t+ 1)−1 = λ1(t)F (t) + λ2(t)Φ(t)ΦT (t)
γ(t) > 0

0 ≤ λ1(t) < 1, 0 ≤ λ2(t) < 2, F (0) > 0
Adaptive Decr. gain and const. trace γ(t) = γ = const

Self tuning λ2 = const., lim
t→∞

λ1(t) = 1
∞∑
t=1

γ(t) =∞, lim
t→∞

γ(t) = 0

θ̂(t) = [b̂Q0 , . . . , â
Q
1 , . . .] [b̂Q0 , . . .] [b̂Q0 , . . . , â

Q
1 , . . .] [b̂Q0 , . . .]

φT (t) =
[α(t+ 1), . . . , β(t), . . .] [α(t+ 1), . . .] [α(t+ 1), . . . , β(t), . . .] [α(t+ 1), . . .]

α(t) = BM û(t)−AM ŷ(t) α(t) = BM û(t) α(t) = BM û(t)−AM ŷ(t) α(t) = BM û(t)
β(t) = S0û(t)−R0ŷ(t) −AM ŷ(t) β(t) = S0û(t)−R0ŷ(t) −AM ŷ(t)

P̂ = ÂQ(ÂMS0 − B̂MR0) ÂMS0 − B̂MR0 ÂQ(ÂMS0 − B̂MR0) ÂMS0 − B̂MR0
P = AQ(AMS0 −BMR0) AMS0 −BMR0 AQ(AMS0 −BMR0) AMS0 −BMR0

Φ(t) =
Lφ(t) Lφ(t)

FUPLR: L = Ĝ SFUPLR: L = Ĝ

FUSBA: L = ÂM

P̂
Ĝ SFUSBA: L = ÂM

P̂
Ĝ

Stability AMG
PL

− λ
2

= SPR (λ = maxλ2(t)) AMG
PL

= SPRcondition
Conv. AMG

PL
− λ

2
= SPR (λ = λ2) AMG

PL
= SPRcondition

TABLE III
COMPARISON OF ALGORITHMS FOR YOULA–KUČERA PARAMETRIZED ADAPTIVE FEEDFORWARD COMPENSATION IN ANC WITH ACOUSTICAL

COUPLING.

When using an FIRYK structure, ÂQ ≡ 1 and the im-
plementation of the FUSBA algorithm is much simpler since
P̂ = P̂0 is constant and known once the central compensator
is designed.

As for the direct feedforward algorithms described in
Section IV, scalar adaptation gains can also be used. The
same choices for the filter L apply and the corresponding
algorithms issued from stability consideration are: NFULMS
and SFUSBA (see also Table III).

VI. EXPERIMENTAL RESULTS

The objective of this section is to asses comparatively the
performance of the various adaptive feedforward compensation
schemes for attenuating broad-band noise disturbances with
unknown and time-varying characteristics.

In defining the experimental protocols, a number of indica-
tors have to be taken into account:
• Testing signals
• Type of structure for the feedforward compensator
• Number of parameters to be adapted
• Type of PAA used
• Computer load (complexity).

Testing Signals

Two broad band disturbances have been considered
• noise with a flat PSD between 70 and 270 Hz
• step change from a flat disturbance 70 - 170 Hz to a flat

disturbance 170 - 270 Hz
These disturbances have been obtained using a PRBS with
N = 15 and amplitude 0.1 passed through band-pass Butter-
worth filters of order 7 with the cut-off frequencies as indicated
above.

A test horizon of 180 s has been chosen as a compromise
between the time required to achieve all the experiments and
the convergence horizon. For the best algorithms a few tests
have been carried out on a larger horizon of 600 s showing
the expected improvement in performance.

For testing the adaptation capabilities in the presence of step
changes of the disturbance characteristics, a horizon of 360s
with a step change occurring at 180 s has been selected.

Type of Structure

Standard IIR and FIR (particular case of IIR) compensators
will be considered as well as the FIRYK and IIRYK compen-
sators.

Number of Adjustable Parameters

The performances of the various compensators will depend
on the number of parameters. A compromise between number
of parameters and performance in terms of global attenuation
and computer load is considered when choosing the number
of parameters.

Type of Parameter Adaptation Algorithms

For this paper only the adaptive operation will be consid-
ered in the experimental evaluation. This means that only
the ”constant trace adaption gain” and the constant scalar
adaptation gain will be considered. For a given complexity
of the feedforward compensator the performances obtained
with various PAA have been evaluated. The attenuation is
measured on a sample of 15 s. One expresses the ratio
between the variance of the residual noise in the absence of
the compensator and the variance of the residual noise in the
presence of the compensator in dB.
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Computer Load

The indicator of the complexity of a scheme is given by the
maximum TET (Task Execution Time) which measures the
maximum duration of computation over a sampling period.

A. Results for IIR (FIR) Adaptive Feedforward Compensators

For each type of compensator the comparison has been done
under the following protocols:

• Given PAA and variable number of parameters to be
adapted

• Fixed number of parameters and various parameter adap-
tation algorithms

The PAA used for the experiments are implemented using an
initial diagonal gain matrix with a gain of 0.002 per parameter.

Filter type No. params. [num/den] Attenuation [dB] max. TET [s]
FIR 20/0 18.4 8.76e-5
FIR 30/0 21.0 9.79e-5
FIR 40/0 21.0 1.07e-4
FIR 50/0 20.8 1.16e-4

TABLE IV
INFLUENCE OF THE NUMBER OF PARAMETERS ON THE PERFORMANCE OF
THE STANDARD FIR ADAPTIVE FEEDFORWARD COMPENSATOR USING THE

FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 180 S
EXPERIMENTS).

Filter type No. params. [num/den] Attenuation [dB]
FIR 30/0 32.4
FIR 40/0 32.2

TABLE V
EXPERIMENTAL RESULTS USING FIR ADAPTIVE COMPENSATOR WITH THE

FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 600 S
EXPERIMENTS).

We begin our discussion with the choice of the number of
parameters (complexity) for both the FIR and the IIR compen-
sators. The standard FIR adaptive feedforward compensator
has been tested first. Experimental results for various number
of parameters are shown in Table IV and Table V. From these
tables, one can conclude that the FIR with 30/0 parameters is
the best compromise in terms of performance over number of
parameters.

Filter type No. params. [num/den] Attenuation [dB]
IIR 10/10 23.4
IIR 15/15 26.7
IIR 20/20 25.6

TABLE VI
INFLUENCE OF THE NUMBER OF PARAMETERS ON THE PERFORMANCE OF
THE STANDARD IIR ADAPTIVE FEEDFORWARD COMPENSATOR USING THE

FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 180 S
EXPERIMENTS).

A similar evaluation has been done for the standard IIR
adaptive feedforward compensator. From the examination of
the Table VI and Table VII one can conlude that 15/15

Filter type No. params. [num/den] Attenuation [dB] max. TET [s]
IIR 15/15 39.5 8.92e-5
IIR 20/20 41.5 9.30e-5

TABLE VII
EXPERIMENTAL RESULTS USING IIR ADAPTIVE COMPENSATOR WITH THE

FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 600 S
EXPERIMENTS).

parameters11 gives the best compromise between performance
and number of parameters. This IIR compensator has the
same total number of parameters as the FIR compensator 30/0
evaluated previously.

Adaptation algorithm Attenuation [dB] max. TET [s]
Matrix (FUSBA) 39.5 8.92e-5
Matrix (FUPLR) 35.5 7.01e-5
Scalar (SFUSBA) 36.8 8.17e-5
Scalar (NFULMS) 35.1 6.63e-5
Scalar (FULMS) 34.6 6.14e-5

TABLE VIII
EXPERIMENTAL RESULTS FOR IIR 15/15 ADAPTIVE COMPENSATORS

USING VARIOUS ADAPTATION ALGORITHMS (70-270 HZ BROAD-BAND
DISTURBANCE, 600 S EXPERIMENTS).

It results that for a total number of 30 adapted parameters,
the IIR 15/15 compensator gives the best results compared
with the FIR with 30 parameters.

The IIR structure with 15/15 parameters has been chosen to
be further evaluated. Results obtained using various adaptation
algorithms are shown in Table VIII. These experiments have
been run over 600 s. The maximum TET is also indicated. It
can be observed that the matrix gain FUSBA algorithm gives
the best results. The corresponding scalar version shows a loss
of 6.8 % in performance and a reduction of the maximum
TET by 8.4 %. The FULMS algorithm gives the lowest
performance.

Figure 7 illustrates the evolution of the residual noise and
of the attenuation over an horizon of 600 s for the IIR 15/15
feedforward compensator using the FUSBA algorithm with a
matrix adaptation gain. Attenuation reaches almost the steady
state value at 600 s.

Figure 8 shows the PSD for the FIR 30/0 and the IIR 15/15
using the FUSBA algorithm with matrix adaptation gain.
Both compensators assure a significant attenuation of the
disturbance. Nevertheless, both PSD show a strong unwanted
amplification (around 325 Hz in the case of the IIR and around
350 Hz for the FIR) which is caused by the presence of very
low damped poles in the internal closed-loop (the algorithm
guarantees only that the final closed-loop poles will be inside
the unit circle but these poles can be very close to the unit
circle).

Figure 9 shows an estimation of the output sensitivity
function of the internal loop (at 600 s) for the IIR 15/15 com-
pensator. There is a peak of 25 db at 315 Hz (corresponding to
a modulus margin12 of 0.06) and there is a pair of low damped

11The first number indicates the number of adjustable parameters at the
numerator and the second indicates the number of the adjustable parameters
at the denominator.

12The modulus margin gives the minimum distance between the Nyquist
plot and the critical point [−1, 0].
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Fig. 7. Residual noise using the IIR 15/15 adaptive compensators using
FUSBA matrix adaptation (70-270 Hz disturbance, 600 s experiments).
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Fig. 8. PSD comparison of FIR 30/0 and IIR 15/15 standard adaptive
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compensator (70-270 Hz disturbance, 600 s experiments).

closed-loop poles at 315 Hz with a damping of 0.0090. This
explains the peak in the PSD of the residual noise.

Figure 10 shows the phase of the estimated AM

P for the
IIR 15/15 adaptive compensator using the FUSBA and the
FUPLR algorithms. Since this transfer operator is not strictly
positive real between 330 and 360 Hz, one can understand the
beneficial effect of using the FUSBA algorithm (by filtering
additionally the regressor by AM

P ). In the mean time, by aver-
aging arguments, since the energy of the signal is concentrated
between 70 to 270 Hz where AM

P is strictly positive real, the
FUPLR (and the NFULMS) is stable.
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Fig. 10. Phase of AM
P

for the IIR 15/15 adaptive compensator (70-270 Hz
disturbance, 600 s experiments).

Fig. 11. Residual noise of the IIR 15/15 adaptive feedforward compensator
for a change of disturbance from 170 - 270 Hz to 70 - 170 Hz at 180 s.

Figure 11 illustrates the adaptation capabilities of the IIR
15/15 FUSBA compensator. These experiments are run over
360 s. For the first 15 s, the system is in open-loop and the
disturbance 70 - 170 Hz is applied until 10 s and then the
disturbance 170 - 270 Hz is applied from 10 to 15 s. The
adaptive compensation system is in operation from 15 to 360 s.
During this period, the disturbance 170 - 270 Hz is applied
from 15 to 180 s and the disturbance 70 - 170 Hz is applied
from 180 to 360 s.

B. Results for IIRYK Adaptive Feedforward Compensators

The initial diagonal adaptation gain matrix used for IIRYK
compensators has been set at 0.02 per parameter.

Filter type No. params. [num/den] Attenuation [dB] max. TET [s]
IIRYK 25/25 29.0 7.85e-5
IIRYK 30/30 30.2 8.41e-5
IIRYK 40/40 33.2 1.01e-4

TABLE IX
INFLUENCE OF THE NUMBER OF PARAMETERS ON THE PERFORMANCE OF
THE IIRYK ADAPTIVE FEEDFORWARD COMPENSATOR USING THE FUSBA

ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 180 S
EXPERIMENTS).

The number of parameters for the Youla-Kučera
parametrized adaptive compensators has been chosen such
that the maximum TET be equivalent to the one obtained
for the standard IIR adaptive compensator with matrix gain.
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Table IX shows that a total of 60 (30/30) parameters can be
adapted for a maximum TET that is close to the one for the
standard IIR 15/15 adaptive compensator given in Table VII.
Table X shows the attenuation that can be obtained if the

Filter type No. params. [num/den] Attenuation [dB] max. TET [s]
IIRYK 30/30 35.7 8.51e-5

TABLE X
EXPERIMENTAL RESULTS USING IIRYK ADAPTIVE COMPENSATOR WITH

THE FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 600 S
EXPERIMENTS).

experiment is run over 600 s. The difference with respect
to the 180 s long experiment is less significant than for the
standard IIR compensator case. This is due to the fact that the
IIRYK adaptive compensator converges more rapidly. Figure

Adaptation algorithm Attenuation [dB] max. TET [s]
Matrix (FUSBA) 30.2 8.41e-5
Matrix (FUPLR) 6.1 8.32e-5
Scalar (SFUSBA) 27.5 7.10e-5
Scalar (SFUPLR) 6.1 6.77e-5

TABLE XI
EXPERIMENTAL RESULTS FOR IIRYK 30/30 ADAPTIVE COMPENSATORS
USING VARIOUS ADAPTATION ALGORITHMS (70-270 HZ BROAD-BAND

DISTURBANCE, 180 S EXPERIMENTS).

12 illustrates the evolution of the residual noise and of the
attenuation over an horizon of 600 s for the IIRYK 15/15
feedforward compensator using the FUSBA algorithm with a
matrix adaptation gain. Attenuation reaches almost the steady
state value at 600 s. Table XI gives a comparison of the
various adaptation algorithms in terms of global attenuation
and maximum TET. Clearly the FUSBA and the SFUSBA
give the best results. The loss in performance when using a
scalar adaptation gain is around 9% and the corresponding
reduction of the maximum TET is about 15%. To understand
why the FUPLR gives in this case far less good results than
the FUSBA, one has to look at the phase of the estimated
AM

P shown in Figure 13. One can see that AM

P is not positive
real between 50 - 120 Hz, 160 - 310 Hz and 350 - 890 Hz.
It is clear that in a large frequency spectrum the adaptation
will not move in the right direction.

Figure 14 shows the PSD for the IIRYK 30/30 using the
FUSBA algorithm. The peak at 306 Hz is due to a pole in the
denominator of the Youla-Kučera filter at the same frequency
with a damping of 0.00265.

Figures 15 shows the adaptation capabilities of the IIRYK
adaptive compensator with 30/30 parameters. The same pro-
tocol is used as in the case of the standard IIR. The transients
are shorter than for the IIR 15/15 while the steady states are
comparable (even if one is better in high frequencies (IIRYK)
and the other one is better in lower frequencies (IIR)).

C. Results for FIRYK Adaptive Feedforward Compensators

The initial gain of the adaptation algorithms used for FIRYK
compensators has been set at 0.5 per parameter (this is possible
since in this case one can take advantage of the global

Fig. 12. Residual noise using the IIRYK 30/30 adaptive compensators with
FUSBA matrix adaptation (70-270 Hz disturbance, 600 s experiments).
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Fig. 13. Phase of AM
P

for the IIRYK 30/30 adaptive compensator (70-270 Hz
disturbance, 600 s experiments).
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Fig. 14. PSD of the IIRYK 30/30 adaptive compensators using FUSBA matrix
adaptation (70-270 Hz disturbance, 600 s experiments).

Filter type No. params. [num/den] Attenuation [dB] max. TET [s]
FIRYK 20/0 17.2 6.43e-5
FIRYK 30/0 20.9 6.72e-5
FIRYK 40/0 22.7 7.06e-5
FIRYK 50/0 25.7 7.51e-5
FIRYK 60/0 27.0 7.87e-5
FIRYK 80/0 28.9 9.36e-5
FIRYK 100/0 31.2 1.11e-4

TABLE XII
INFLUENCE OF THE NUMBER OF PARAMETERS ON THE PERFORMANCE OF

THE FIRYK ADAPTIVE FEEDFORWARD COMPENSATOR USING THE
FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 180 S

EXPERIMENTS).
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Fig. 15. Residual noise of the IIRYK 30/30 adaptive feedforward compensator
for a change of disturbance from 170 - 270 Hz to 70 - 170 Hz at 180 s.

character of the stability condition for the FUSBA algorithm).

Table XII shows a comparison of the attenuation and
maximum TET for various complexities of the FIRYK com-
pensator. The FIRYK with 60 parameters (same number as

Filter type No. params. [num/den] Attenuation [dB] max. TET [s]
FIRYK 60/0 28.3 8.03e-5

TABLE XIII
EXPERIMENTAL RESULTS USING FIRYK ADAPTIVE COMPENSATOR WITH

THE FUSBA ALGORITHM (70-270 HZ BROAD-BAND DISTURBANCE, 600 S
EXPERIMENTS).

for the IIRYK) has been chosen for further investigation.
A 600 s experiment has been conducted for this FIRYK
compensator and the results are given in Table XIII. Figure
16 shows both the time evolution of the residual error and of
the attenuation. While the adaptation is much faster compared
with the previous schemes, the steady state is less good (28.3
dB compared with the 35.7 dB for the IIRYK 30/30 and the
39.5 dB for the IIR 15/15 and the 32.4 for the FIR 30/0). Note
however that the maximum TET is slightly smaller than for
the other two schemes.

Adaptation algorithm Attenuation [dB] max. TET [s]
Matrix (FUSBA) 27.0 7.87e-5
Matrix (FUPLR) unstable -
Scalar (SFUSBA) 26.7 6.75e-5
Scalar (SFUPLR) unstable -

TABLE XIV
EXPERIMENTAL RESULTS FOR FIRYK 60/0 ADAPTIVE COMPENSATORS
USING VARIOUS ADAPTATION ALGORITHMS (70-270 HZ BROAD-BAND

DISTURBANCE, 180 S EXPERIMENTS).

Table XIV gives a comparison of the various adaptation
algorithms in terms of global attenuation and maximum TET.
It was observed that the FUPLR is unstable and this can be
understood when looking to the phase plot of the estimated
AM

P given in Figure 17. It can be observed that AM

P is not
positive real in a large frequency range from 110 Hz to 760 Hz
13 and one absolutely needs to use the FUSBA algorithm. The

13Averaging can not be used since the region of non positive realness is
much larger than the region where AM

P
is SPR even within the range 70 -

270 Hz.

loss in performance when using a scalar adaptation gain is very
small in this case (1%) while the computer load decreases by
14%.

Figure 18 shows the PSD of the FIRYK 60/0 using the
FUSBA algorithm. The loss in performance with respect to
the other schemes seems to be specifically in the region
210-270 Hz. Nevertheless, this curve indicates that the peak
around 325 Hz is lower than in the previous cases (it will
depend in fact on the design of the central compensator).
The estimated pair of complex poles around this frequency
have a damping of 0.04 (348 Hz) much higher than for the
other schemes. Figure 19 shows the estimation of the output
sensitivity function of the internal loop for the FIRYK 60/0
using the FUSBA algorithm. Note that the shape of this curve
depends exclusively on the design of the central compensator
and is not affected by the evolution of the Q filter parameters.
As one can see, the maximum is about 10 dB which assures
from the beginning of the adaptation process a modulus margin
greater than 0.3.

Fig. 16. Residual noise using the FIRYK 60/0 adaptive compensators with
FUSBA matrix adaptation (70-270 Hz disturbance, 600 s experiments).
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Fig. 17. Phase of AM
P

for the FIRYK 60/0 adaptive compensator (70-270 Hz
disturbance, 600 s experiments).

Figure 20 shows the adaptation capabilities of the FIRYK
adaptive compensator with 60/0 parameters. The same proto-
col is used as in the case of the standard IIR. As expected, the
adaption transient is very fast and in addition the maximum
value of the residual noise during the adaptation transient is
much smaller compared with the IIR and the IIRYK.
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Fig. 18. PSD of the FIRYK 60/0 adaptive compensators using FUSBA matrix
adaptation (70-270 Hz disturbance, 600 s experiments).
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Fig. 19. Internal loop output sensitivity function for the FIRYK 60/0 adaptive
compensator (70-270 Hz disturbance, 600 s experiments).

Fig. 20. Residual noise of the FIRYK 60/0 adaptive feedforward compensator
for a change of disturbance from 170 - 270 Hz to 70 - 170 Hz at 180 s.

Filtering the Residual Noise for Parameter Adaptation

Figure 21 illustrates the effect of using a filtered residual
noise in the adaptation algorithm upon the PSD of the residual
noise. The comparison is done using the IIRYK 30/30 compen-
sator with the FUSBA algorithm over 180 s (similar behavior
is obtained also for the other compensator structures). The
residual noise filter considered is a low pass FIR filter given
by

V (q−1) = 1 + 0.9q−1 (48)

The frequency response of this filter is shown in Fig. 22.
As it can be observed, this filter enhances the attenuation
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Fig. 21. PSD comparison of the residual noise in open-loop (solid grey line),
using the adaptive compensator without filtering of the residual noise (solid
black line), and using the adaptive compensator with filtering of the residual
noise (dotted black line).

of disturbances at low frequencies. The global attenuation
obtained with and without this filter is given in Table XV.
One can see an improvement of about 9% when the filter is
used.
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Fig. 22. Residual error filter.

Filter type No. params. Residual noise filter Atn. [dB]
IIRYK 30/30 V (q−1) = 1 30.2
IIRYK 30/30 V (q−1) = 1 + 0.9q−1 32.9

TABLE XV
EXPERIMENTAL RESULTS USING IIRYK ADAPTIVE COMPENSATOR WITH

AND WITHOUT RESIDUAL NOISE FILTER (70-270 HZ BROAD-BAND
DISTURBANCE, 180 S EXPERIMENTS).

Performance comparison - a summary

For a comparable complexity in terms of computer load,
the IIR feeforward compensator with the matrix adaptation
gain using the FUSBA algorithm provides the best steady state
results in terms of attenuation followed by the IIRYK, FIR and
FIRYK. In terms of adaptation transients, the FIRYK provides
the best results. In terms of safety of operation (stability of the
internal positive loop) without any doubt the FIRYK using the
FUSBA algorithm (matrix adaptation gain) is the good choice
since in this case the stability of the internal positive loop
depends exclusively upon the stabilizing central compensator.
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The steady state performance of the FIRYK can be enhanced
by augmenting the number of adjustable parameters (which
will increase however the computer load).

The use of the scalar adaptation gain leads to a slight degra-
dation of the performances but does not lead to a substantial
reduction of the computer load.

The use of a filtered residual noise measurement for adap-
tation may improve the overall performance.

VII. CONCLUSION

This study has provided the opportunity to assess com-
paratively the properties of various algorithms which can be
used for adaptive feedforward noise compensation taking into
account the inherent presence, in most of the applications, of
an internal positive coupling. In many practical applications
instabilities have been encountered using classical algorithms
(FXLMS, FULMS, etc.) which do not take into account this
internal positive coupling.

Based on extensive experimental tests one can state that
FIRYK adaptive compensator structure using the FUSBA
(or SFUSBA) algorithm is the good solution for a robust
operation of the feedforward active noise attenuation. The
main argument is that the stability of the internal positive
loop is guaranteed by the design of the central compensator
and is not influenced by the evolution of the adjustable filter
parameters.

APPENDIX
IDENTIFICATION OF THE EXPERIMENTAL TEST-BENCH

The PRBS characteristics used in the identification pro-
cess as excitation signal was: magnitude = 0.14 V,
register length = 15, frequency divider of 1, sequence length:
215 − 1 = 32, 767 samples, guaranteeing an flat power
spectrum up to 1250 Hz.

Since the transfer functions have a double differentiator
behaviour (input: speaker’s coil position, output: acoustical
pressure), this is considered as the system’s known part. The
objective being to identify the unknown part only, the input
sequence is filtered by a double discrete-time differentiator
DF = (1 − q−1)2 such that u′(t) = DF · u(t). The double
differentiator is added to the identified model of the unknown
part in order to obtain the complete model.

Once the input-output data have been acquired, the next
step in the identification procedure is to estimate the order n
of the model from experimental data (see (2)). The method
of Duong ([20], [25]) has been used. Once an estimated order
n̂ is selected, one can apply a similar procedure to estimate
n̂A, n̂−d̂, and n̂B′+d̂, from which n̂A, n̂B′ and d̂ are obtained
(nB′ is the order of the model’s numerator without the double
differentiator). In the method of Duong, the minimum of a
quadratic criterion in terms of an unbiased plant-model error
penalized by a complexity terms is searched. Fig. 23 shows in
detail the system’s order estimation results for the secondary
path.

The value of n̂ = 25 minimizes the Duong criterion,
but since the minimum is relatively flat, nearby values have
also been considered. The final selection has been done by

0 5 10 15 20 25 30 33 35 40 45 50

Order N

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

J
IV

(N
) 

c
ri
te

ri
o
n

Fig. 23. Penalized criterion for order estimation (secondary path).

checking what order allows to capture all the oscillatory modes
in the model and leads to the best statistical validation once the
parameters are identified. For the secondary path, this order
has been found to be n̂ = 33 (see Table I).

Comparative parameter estimations considering various
plant + noise models and estimation algorithms led to the
conclusion that an ARMAX model representation is the most
appropriate for this system and the best results in terms of
statistical validation (whiteness test on the residual error) have
been obtained using the Output Error with Extended Prediction
Model (termed OEEPM or XOLOE). See [20] and [26] for
more details on the methodology.
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Abstract: This paper emphasizes the design methodology for active tonal noise feedback cancellers
starting from data collected on the system. To design such control systems, an accurate dynamic model
of the system is necessary. Physical modeling can provide qualitative results but fails to yield enough
accurate models for control design. The main point in the methodology is identification of primary path
(noise propagation) and secondary path (compensation) models from data. The procedure is investigated
in details starting with transfer functions’ order estimations, continuing with parameters estimation
and model’s validation. The second aspect is the design of a noise canceller using the Internal Model
Principle and the sensitivity function shaping in order to reduce the ”water-bed” effect. The estimated
model’s quality for control design is illustrated by the experimental performance of a tonal noise
feedback canceller implemented on a test bench.

Keywords: Active noise control, System Identification, Internal model principle, Band stop filters,
Sensitivity functions.

1. INTRODUCTION

Active noise control (ANC) has been under research for many
years and applied in various kind of applications. In most cases
feed-forward broadband noise compensation is currently used
for ANC when a disturbance’s image is available (correlated
measurement with the disturbance). See Elliott and Nelson
(1994), Elliott and Sutton (1996), Kuo and Morgan (1999),
Zeng and de Callafon (2006).

However, these solutions, inspired by Widrows technique for
adaptive noise cancellation, see Widrow and Stearns (1985),
ignore the possibilities offered by feedback control systems
and have a number of disadvantages: they require the use of
an additional transducer, difficult choice for its location and
presence, in most cases, of a ”positive” coupling between the
compensator system and the disturbance image’s measurement,
which can cause instabilities. To achieve the disturbance’s
rejection (asymptotically) without measuring it, a feedback
solution can be considered.

Residual noise can be described as the result of acoustic waves
which pass trough the system, and the noise cancellers’ objec-
tive is to attenuate it. In many cases, these waves can be char-
acterized in the frequency domain either as tonal disturbances
or as narrow band perturbations. The common framework is
the assumption that a narrow band disturbance is the result of
a white noise or a Dirac impulse passed through the ”distur-
bance’s model.” In the case of tonal (narrow band) noise distur-
bances, the basic idea is to use the ”internal model principle”
to get a strong attenuation, combined with output sensitivity
function shaping, in order to avoid unwanted amplifications in
the tonal disturbances’ neighborhoods.

? Financial support thanks to Consejo Nacional de Ciencia y Tecnologı́a de
México, CONACyT.

However, the real time performance of the noise cancellers
strongly depends on the secondary path dynamic model’s qual-
ity used for designing the feedback control law. Many studies
have been carried out to develop dynamic models for control
design, starting from the basic physical equations describing
the system and trying to determine, from the systems’ geom-
etry, the values of some basic constants. See Nelson and El-
liott (1993). Zimmer and Lipshitz (2003) give a very complete
evaluation of the physical modeling in the context of active
noise control in ducts. Unfortunately on one hand the resulting
models are not very good, since it is hard for a given system
to find the correct physical constants, and on the other hand it
is a PDE model for which there are not simple control design
methods available.

What is needed in practice is a finite dimension discrete-
time model which reproduces the system’s dynamical behavior.
Once such a model is available, one can use digital control de-
sign techniques readily implementable on a real time computer.
These models can be obtained directly from data using sys-
tem identification techniques, see Ljung (1999); Landau et al.
(2016); Carmona and Alvarado (2000). However these discrete-
time models for active noise compensation present a number of
peculiarities which require to develop a specific identification
procedure. One of the major objectives of the paper is to clarify
how system identification from data should be done in the
context of active noise control. Previous identification results
given in Ben Amara et al. (1999) and Zeng and de Callafon
(2006) have been also considered.

The final quality test for an identified model is to verify how
close are the real-time experimental results obtained and the
designed controller’s performances in simulation. As shown
later, the results are very close, which indicates that the pro-
posed procedure is reliable. Two control problems have been
considered: the rejection of two tonal disturbances, and strong



attenuation of interferences, caused by tonal disturbances with
very close frequencies. The Internal Model Principle (IMP)
combined with the sensitivity functions’ shaping will be used
for control design.

2. EXPERIMENTAL SETUP

The test bench used for the experiments is shown in Fig. 1, and
its detailed scheme is given in Fig. 2. The speaker used as the
source of disturbances is labeled as 1, the control speaker is
2 and finally, at pipe’s open end, the microphone that measures
the system’s output (residual noise) is denoted as 3. The transfer
function between the disturbance’s speaker and the microphone
(1→3) is denominated Primary Path, while the transfer func-
tion between the control speaker and the microphone (2→3) is
denominated Secondary Path. Both speakers are connected to a
xPC Target computer with Simulink Real Timer environment
through a pair of high definition power amplifiers and a data
acquisition card. The current signals u(t) and p(t) are amplified
and reach the speakers’ voice coils and displace them, gener-
ating movement in the diaphragms and thus, sound waves. In
Fig. 2, y(t) is the system’s output (residual noise measurement).
Both primary and secondary paths have a double differentiator
behavior, since as input we have the voice coil displacement,
and as output the air acoustic pressure. A second computer is
used for development, design and operation with Matlabr.

Fig. 1: Noise control test bench (Photo).

Fig. 2: Noise control test bench diagram.

PVC pipes of 0.10 m diameter are used in this test bench, with
couplings of 135◦ for the control speaker. Distances between
disturbance speaker and microphone are 1.65 m, and to control
input 0.80 m. Speakers are isolated inside wood boxes filled
with special foam in order to create anechoic chambers and
reduce the radiation noise produced.

3. SYSTEM DESCRIPTION

The linear time invariant (LTI) discrete-time model of the
secondary path, or plant, used for controller design is

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−dB′(z−1)

A(z−1)
DF(z−1), (1)

where DF(z−1) is a double differentiator filter and

A(z−1) = 1+a1z−1 + · · ·+anAz−nA , (2)

B′(z−1) = b1z−1 + · · ·+bnB′ z
−nB′ , (3)

with d as the plant pure time delay in number of sampling
periods 1 . The system’s order is

n = max(nA,nB′ +d) (4)

Fig. 3: Feedback regulation scheme.

Figure 3 shows the closed loop feedback regulation scheme,
where the controller K is described by

K(z−1) =
R
S
=

r0 + r1z−1 + · · ·+ rnRz−nR

1+ s1z−1 + · · ·+ snS z−nS
. (5)

The plant’s output y(t) and the input u(t) may be written as (see
Fig. 3):

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t), (6)

S(q−1) ·u(t) =−R(q−1) · y(t). (7)

In (6), p(t) is the disturbances’ effect on the measured output 2

and R(z−1), S(z−1) are polynomials in z−1 having the following
expressions:

R = HR ·R′ = HR · (r′0 + r′1z−1 + . . .+ r′nR′
z−nR′ ), (8)

S = HS ·S′ = HS · (1+ s′1z−1 + . . .+ s′nS′
z−nS′ ), (9)

where HS(z−1) and HR(z−1) represent prespecified parts of the
controller (used for example to incorporate the internal model
of a disturbance, or to open the loop at some frequencies) and
S′(z−1) and R′(z−1) are solutions of the Bezout equation:

P = PD ·PF = (A ·HS) ·S′+
(

z−dB ·HR

)
·R′. (10)

In (10) P(z−1) represents the characteristic polynomial, which
specifies the desired closed loop poles of the system. PD repre-
sents the stable poles of the plant and PF are auxiliary poles.

The transfer functions between the disturbance p(t) and the
system’s output y(t) and the control input u(t), denoted respec-
tively output and input sensitivity functions, are given by

Syp(z−1) =
A(z−1)S(z−1)

P(z−1)
(11)

1 The complex variable z−1 is used to characterize the system’s behavior in the
frequency domain and the delay operator q−1 for the time domain analysis.
2 The disturbance passes through the primary path, and p(t) is its output.



and

Sup(z−1) =−A(z−1)R(z−1)

P(z−1)
, (12)

4. DATA DRIVEN SYSTEM IDENTIFICATION

Model identification from experimental data is a well estab-
lished methodology (see Landau et al. (2016); Ljung (1999)).
Identification of systems is an experimental approach for deter-
mining a system’s dynamic model. It includes four steps:

1. Input-output data acquisition under an experimental pro-
tocol and data pre-processing.

2. Estimation of the model complexity.
3. Estimation of the model parameters.
4. Validation of the identified model (complexity of the

model and values of the parameters).

A complete identification operation must comprise the four
stages indicated above. The typical input is a PRBS, which is
a persistent excitation signal allowing unique parameter esti-
mation even for high order system. Model validation is the final
key point. It is important to emphasize that it does not exist
one single algorithm that can provide in all the cases a good
model (i.e. which passes the model validation tests). System
identification should be viewed as an iterative process which
has as objective to obtain a model which passes the model
validation test and then can be used safely for control design.
The procedure will be detailed for the secondary path’s identi-
fication. The same methodology has been used for the primary
path identification also (which is used only for simulation), and
only the final results will be given.

4.1 Data Acquisition under the experimental protocol

For design and application reasons (the objective is to reject
tonal disturbances up to 400 Hz), the sampling frequency was
selected as fs = 2500Hz (Ts = 0.0004s) i.e. approximatively
6 times the maximum frequency to attenuate, in accordance
with recommendation given in (see Landau et al. (2016)). The
theoretical band pass of the system is 1975 Hz, using formula
given in Zimmer and Lipshitz (2003).

The experimental protocol should assure persistent excitation
for the number of parameters to be estimated, thus a PRBS
has been used. This signal’s magnitude is constant allowing an
easy selection with respect to the magnitude constraint on the
plant input. One of the key points is the design of a PRBS in
order to satisfy a compromise between the frequencies range to
be covered (particularly those in the low frequencies region),
and the test duration. One should apply at least on complete
PRBS sequence, and its characteristics, including duration, will
depend on the number of cells in the registers length used for
its generation.

For identification, the signals’ characteristics used in both paths
are: magnitude = 0.15V, register length = 17, frequency di-
vider of 1, sequence length of 217 − 1 = 131,071 samples,
guaranteeing a uniform power spectrum from about 70 Hz to
1250 Hz. Since the transfer functions have a double differentia-
tor behavior, this is considered as a system’s known part and the
objective will be to identify the unknown part only. To do this,
the input sequence will be filtered by a double discrete-time
differentiator DF = (1−q−1)2 such that u′(t) = DF ·u(t). The
double differentiator will be concatenated with the identified
model of the unknown part in the final models.

4.2 Complexity Estimation

The basic idea in complexity estimation is to have, on one
hand an unbiased estimator of the system parameters, which
allows to obtain an unbiased evolution of the prediction error
quadratic criterion that tends toward zero when the correct
order is reached, and on the other hand a penalty term for
the model’s complexity. In order to get an unbiased estimation
of the error criterion, the instrumental variable approach is
used, see Landau et al. (2016); Duong and Landau (1996). This
assumes that the system is described by Y (t) = Z(n̂)θ̂n̂, where
θ̂ T

n̂ = [â1, · · · , ân̂, b̂1, · · · , b̂n̂], and n̂ is the estimated order. So,
Z(n̂) = [U(t −L−1),U(t −1), · · · ,U(t −L− n̂),U(t − n̂)]

are the delayed inputs with L > n̂, and Y (t), U(t) are defined by

Y T (t) = [y(t),y(t −1)...]; UT (t) = [u′(t),u′(t −1)...].
The least squares criterion defined in Landau et al. (2016) is

VIV (n̂,N) = min
θ̂

1
N

∥∥Y (t)−Z(n̂)θ̂n̂
∥∥2

, (13)

where N is the number of samples. Adding a term which
penalizes the model’s complexity leads to

JIV (n̂,N) =VIV (n̂,N)+2n̂
logN

N
. (14)

When identifying finite dimensional discrete-time models, JIV
will show a minimum value, function of n̂, allowing to define
the estimated order of the model. Once an estimated order n̂ is
selected, one can apply a similar procedure to estimate n̂A, n̂−
d̂, and n̂B′ + d̂, from which n̂A, n̂B′ and d̂ are obtained.

Results for the secondary path order estimation (without the
double differentiator) are shown in Fig. 4, where both non-
penalized and penalized criteria VIV , JIV are represented. As it
can be seen, the minimum is very flat (which is understandable
since we are trying to approximate an infinite-dimensional sys-
tem). It is therefore necessary to explore the model’s properties
for n between 32 and 42, in order to decide what order to take.
Two additional criteria will be used to decide upon the best
order estimation: I) comparison between the Power Spectral
Densities (PSD) of the identified model’s output, and the out-
put’s real data (in order to see if the identified model captures all
the vibrations modes in the frequency range of operation); and
II) comparison of the validation tests for the various models.

To do this it is necessary to estimate the values of nA, nB′ and
d for each order n selected, and to proceed with parameter
estimation. To illustrate the details of orders estimations, the
model with n = 40 is considered (the procedure for other values
of n is similar). For the secondary path, Fig.4b shows that
the minimum for n−d is 32. From Fig.4c one can see that
the minimum for nA is given by nA = 38. From Fig.4d one
concludes that nB′ +d = 38. Taking in account the definition
of order n, one concludes that nA = 38, nB′ = 30 and d = 8,
therefore the effective estimated order of this model is ne = 38.
Similarly for a model with n = 38, one gets nA = 37, nB′ = 30,
d = 8 (which means an effective order ne = 38) 3 .

4.3 Parameters Estimation

The algorithms used for parameter estimation will depend on
the assumptions made on the measurements’ noise character-
istics, which have to be confirmed by the model validation.
3 Complete model’s nB = nB′ +2, due to the double differentiator addition.
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Fig. 4: Secondary path, Instrumental Variable order estimation.

It is important to emphasize that none single plant + noise
structure exists that can describe all the situations encountered
in practice. It is the validation stage which will allow to decide
what method (and implicitly what noise model) has to be used.
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(b) Model with n = 38.

Fig. 5: Whiteness validation tests for the secondary path.

Among various models, it was found that the ARMAX model
gives the best representation in this case, and between the
available methods for that model, Output Error with Extended
Prediction method (XOLOE) brought the best results in terms of
validation for a given order model. The details of the algorithm
are given in Landau et al. (2016), section 5.4.2.

4.4 Model Validation

The validation procedure associated with the identification of
ARMAX models is based on a whiteness test.

Whiteness test: Let {ε(t)} be the centered (measured value
minus average) sequence of the residual prediction errors. One
computes estimations of the normalized autocorrelations as:

R(i) =
1
N

N

∑
t=1

ε(t)ε(t − i) (15)

R(0) =
1
N

N

∑
t=1

ε2(t) ; RN(i) =
R(i)
R(0)

(16)

i = 1,2,3, . . . ,nA, . . . ,n

One considers as a validation criterion (extensively tested on
applications):

RN(0) = 1 ; |RN(i)| ≤ 2.17√
N

; i ≥ 1. (17)

Fig. 5 shows the validation results (whiteness test) for the
unknown part model with n = 40 (effective ne = 38) and
n = 38 (ne = 38). The results are summarized in Table 1.
Model n = 40 leads to better results, which is confirmed in
Fig. 6 where the PSD of real data’s measures is compared
with the two complete models outputs’ PSD (including the
double differentiator). Therefore the XOLOE model n = 40 is
chosen. It has 18 oscillatory modes with damping comprised
between 0.0097 and 0.3129; also 13 pairs of oscillatory zeros
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Fig. 7: Frequency characteristics of the identified primary and
secondary paths models

with damping comprised between −0.0159 and 0.5438. The
presence of these low damped zeros make the control system’s
design difficult. Fig. 7 gives the frequency characteristics of
the identified complete models for the primary and secondary
paths.

Table 1: Summary of Whiteness tests validations
Method Model Error Maximum RN(i)

energy RN(i) over limit
XOLOE n = 40 1.3307e-06 0.0154 15
XOLOE n = 38 1.3337e-06 0.0177 14

5. CONTROLLER DESIGN

The basic specifications are that the attenuation of two tonal
disturbances located at 170 Hz and 285 Hz must be at least
−40 dB, and the maximum amplification at other frequencies
be less than 7 dB. Furthermore, in order to improve robustness,
the input sensitivity function should be below −20 dB at fre-
quencies over 600 Hz (beyond the system’s bandpass).

In order to strongly attenuate the two tonal disturbances the
IMP has been used, so the RS controller to be designed requires
a fixed part HS to incorporate the disturbance’s model, as
described in section 3. See (Landau et al., 2016). The tonal
disturbances can be modeled by:

p(t) =
Np(q−1)

Dp(q−1)
·δ (t), (18)

with δ (t) as a Dirac impulse. Dp has roots on the unit circle.
In practice, the contribution of Np is negligible for steady state
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analysis in comparison with Dp. Then HS(q−1) = Dp(q−1), and
for this specific case, HS = HS1HS2 where:

HSi(q
−1) = Dpi(q

−1) = 1−2cos
(

2π
fi

fs

)
q−1 +q−2, (19)

with f1 = 170Hz and f2 = 285Hz. Also, since the system
has a zero gain at 0 Hz and a very low gain at 1250 Hz,
the loop has been opened at these frequencies by choosing
HR = (1+q−1)(1−q−1). The dominant closed loop poles PD
have been chosen equal to those of the secondary path. Eq. (10)
has unique solution for S′ and R′ of minimal degree for

nP =degP(z−1)≤ nA +nHS +nB +nHR +d −1, (20)

nS′ =degS′(z−1) = nB +nHR +d −1, (21)

nR′ =degR′(z−1) = nA +nHS −1. (22)
Fig. 8 shows the resulting output sensitivity function Syp (curve
IMP+HR). The specifications for maximum gain are violated.
To overcome this, 30 auxiliary real poles with value pi = 0.25
have been added in the form PF(z−1) = (1− piz−1)nF , without
augmenting the controller’s order (curve IMP+HR +Pol). The
resulting sensitivity function is improved but the limit is still
violated. To further shape the sensitivity function, Band-Stop
Filters (BSF) have been used (Landau et al. (2016)); 3 on Syp,
and 3 on Sup to obtain a correct behavior (see table 2). The
resulting output sensitivity function is shown in Fig. 8. Also the
resulting input sensitivity function is shown in Fig. 9.

Table 2: Band-Stop Filters for sensitivity functions.
Freq.[Hz] Ampli.[dB] Freq.[Hz] Ampli.[dB]

90 -6.00 600 -6.00
Syp 231 -8.00 Sup 800 -1.00

370 -5.00 945 +5.00



Fig. 10 displays the system’s output for a simulation using
the models estimated for the primary and secondary paths. A
pair of sinusoidal signals at 170 Hz and 285 Hz were used as
disturbances p(t) from 1 s to 11 s. Control starts at 6 s and ends
at 11 s. A global attenuation of 86.4 dB was achieved, with
attenuations of −88.6 dB at 170 Hz, and −94 dB at 285 Hz.
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Fig. 10: Simulation results.

6. EXPERIMENTAL RESULTS

The experimental results have been obtained by implementing
the designed controller on the test-bench described in Section 2.

Fig. 11 shows the result for a real time test. Two tonal sinusoidal
signals at 170 Hz and 285 Hz were used as disturbances p(t)
from 1 s to 11 s. Control starts by closing the loop at 6 s and
ends at 11 s. Performances during the first second and the
last one are used as a reference for the ambient noise (no
control, no disturbance). A global attenuation of 76.88 dB was
achieved, with disturbance attenuations of −94.5 dB at 170 Hz,
and −94 dB at 285 Hz. These results are very close to those
obtained in simulation. Fig. 12 displays the effective residual
PSD estimation, calculated as a difference between the open-
loop PSD and the closed-loop PSD of the residual noise.
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Fig. 11: Real-time experiment results: tonal disturbances.

Fig. 13 displays the results for a second real-time test. Two
pairs of sinusoidal interference signals (170 Hz+170.5 Hz and
285 Hz+285.5 Hz) with amplitude of 0.14 V were used as
disturbances p(t) from 1 s to 20 s. Control starts by closing the
loop at 10 s and ends at 20 s. Performances during first and last
second are used as a reference for ambient noise again. A global
attenuation of 59.55 dB was achieved.
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Active Noise Control : Adaptive vs. Robust Approach

Ioan Doré Landau, Raúl Meléndez

Abstract—Active noise control is often concerned with the
strong attenuation of single or multiple tonal noise disturbances
which may have unknown and time varying frequencies. Cur-
rently in applications, adaptive feed-forward compensation is
used which requires the use of an additional transducer and
introduces an instability risk due to a positive internal coupling.
However for these types of noise a feedback approach can be
efficiently used and this will be illustrated in this paper. One
considers the case of two tonal disturbances located in two
distinct frequency regions subject to frequency variations within
a given range as well the case of interferences between tonal
disturbances of very close frequencies. The objective is to mini-
mize the measured residual noise in a predefined location. These
problems occurs often in ventilation systems (active silencers).
To solve these problems robust and adaptive solutions are
considered. A robust controller design using sensitivity function
shaping is considered. The maximum achievable attenuation is
inverse proportional to the range of frequency variations of
the tonal disturbances. To further improve the performance an
add-on direct adaptive feedback approach using the Internal
Model Principle and the Youla Kucera parametrization is
considered. The adaptive approach allows both to improve
the performance within the given frequency ranges as well
as to extend the admissible domain of frequencies variations.
Experimental results obtained on a relevant test bench will
illustrate the performance of the two designs.

Index Terms—Active noise control, System Identification, In-
ternal model principle, Youla-Kučera parametrization, Adaptive
control, Robust control.

I. INTRODUCTION

Active disturbance rejection is a key issue in active vibra-
tion control and active noise control. The popular approach
for active noise control is to use adaptive feed-forward com-
pensation. This approach, inspired by Widrows technique for
adaptive noise cancellation, see [1], ignores the possibilities
offered by feedback control systems and have a number
of disadvantages: 1) it requires the use of an additional
transducer for obtaining an image of the disturbance, 2)
difficult choice for positioning this additional transducer
and, 3) in most cases, there exists a ”positive” coupling
between the compensator system and the disturbance image’s
measurement, which can cause instabilities. See for example
[2]. To achieve the disturbance’s rejection (asymptotically)
without measuring it, a feedback solution can be considered.
This approach is particularly pertinent for single or multiple
time varying tonal or narrowband disturbance noise.

The common framework is the assumption that a narrow
band or a tonal disturbance noise is the result of a white

Financial support thanks to Consejo Nacional de Ciencia y tecnologı́a de
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R. Meléndez is with Univ. Grenoble Alpes, CNRS, GIPSA-lab, F-
38000 Grenoble, France, (e-mail: Raul.Melendez, Ioan-Dore.Landau@gipsa-
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noise or a Dirac impulse passed through the ”disturbance’s
model.” More specifically the model for a single narrow-band
or tonal disturbance is a notch filter with poles on the unit
circle and zeros inside the unit circle (for details see [3]).

In managing the vibration attenuation by feedback, the
shape of the modulus of the “output sensitivity function” (the
transfer function between the disturbance and the residual
acceleration/force) is fundamental both from performance
and robustness considerations. Three basic concepts are to
be considered: the Bode Integral, the Modulus margin and
the Internal Model Principle (IMP). The problem of robust
control design in the context of active noise control has been
considered in [4] and the shaping of the output sensitivity
function has been achieved using the convex optimization
procedure introduced in [5]. See also [6], [7] for Hinf and
LMI approaches.

In this paper, one considers multiple unknown and time
varying tonal disturbances located within two distinct rel-
atively small frequency ranges. To be specific, two cases
will be considered: (i) the case of two time varying tonal
disturbances located in two distinct frequency regions and
(ii) the case of four simultaneous tonal disturbances, two
located in one limited frequency range and the other two in
another frequency range. In this context, a very important
problem is to be able to counteract the very low frequency
oscillations which are generated when the two frequencies are
very close (interference). Since these disturbances are located
within two relatively small frequency ranges, it is possible to
consider a robust linear control design which will shape the
output sensitivity function in such a way that a sufficient
attenuation is introduced in these two frequency regions
but avoiding significant amplification at other frequencies
(both for performance and robustness reason). It will be
shown in this paper that an elementary procedure for shaping
appropriately the modulus of the sensitivity functions can be
implemented using stop band filters as shaping tools. For a
basic reference on this approach see [3].

To further improve the performance an add-on direct adap-
tive feedback approach using the Internal Model Principle
and the Youla Kucera parametrization is considered [3]. The
adaptive approach allows both to improve the performance
within the given frequency ranges as well as to extend the
admissible domain of frequencies variations. See also [8].

The performance of these approaches depend to a large ex-
tent on the quality of the dynamic model of the compensator
system used for controller design. To obtain such reliable
model, identification from data of a finite dimensional dis-
crete time model has to be used since the physical modeling
does not in general provide enough good models for design.
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Experimental results on a noise silencer for noise attenu-
ation in ducts will illustrate comparatively the performance
of the robust and adaptive approach.

II. THE TEST BENCH

The detailed scheme of the noise silencer test bench used
for the experiments is given in Fig. 1. Its actual photo
is shown in Fig. 2. The speaker used as the source of
disturbances is labeled as 1, the control speaker is 2 and
finally, at pipe’s open end, the microphone that measures
the system’s output (residual noise) is denoted as 3. The
transfer function between the disturbance’s speaker and the
microphone (1→3) is denominated Primary Path, while the
transfer function between the control speaker and the micro-
phone (2→3) is denominated Secondary Path. Both speakers
are connected to a PC Target computer with Simulink Real
Time R© environment through a pair of high definition power
amplifiers and a data acquisition card. In Fig. 1, y(t) is the
system’s output (residual noise measurement) and u(t) is
the control signal. Both primary and secondary paths have
a double differentiator behaviour, since as input we have
the voice coil displacement, and as output the air acoustic
pressure. A second computer is used for development, design
and operation with Matlab R©.

Fig. 1. Active noise control test bench diagram.

Fig. 2. Active noise control test bench (Photo).

PVC pipes of 0.10 m diameter are used in this test bench,
with couplings of 135◦ for the control speaker. Distances

between disturbance loudspeaker and microphone are 1.65 m,
and to control input 0.80 m. Speakers are isolated inside
wood boxes filled with special foam in order to create
anechoic chambers and reduce the radiation noise produced.

III. SYSTEM DESCRIPTION

The linear time invariant (LTI) discrete-time model of the
secondary path, (the plant), used for controller design is

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−dB′(z−1)DF(z−1)

A(z−1)
, (1)

where DF(z−1) = (1− z−1)2 is a double differentiator filter
and

A(z−1) = 1+a1z−1 + · · ·+anA z−nA , (2)

B′(z−1) = b1z−1 + · · ·+bnB′ z
−nB′ , (3)

with d as the plant pure time delay in number of sampling
periods1. The system’s order (without the double differentia-
tor) is:

n = max(nA,nB′ +d) (4)

Fig. 3. Feedback regulation scheme.

Figure 3 shows the closed loop feedback regulation
scheme2, where the controller K is described by:

K(z−1) =
R
S

=
r0 + r1z−1 + · · ·+ rnR z−nR

1+ s1z−1 + · · ·+ snS z−nS
. (5)

The plant’s output y(t) and the input u(t) may be written
as (see Fig. 3):

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t), (6)

S(q−1) ·u(t) =−R(q−1) · y(t). (7)

In (6), p(t) is the disturbances’ effect on the measured
output3 and R(z−1), S(z−1) are polynomials in z−1 having
the following expressions:

R = HR ·R′ = HR · (r′0 + r′1z−1 + . . .+ r′nR′
z−nR′ ), (8)

S = HS ·S′ = HS · (1+ s′1z−1 + . . .+ s′nS′
z−nS′ ), (9)

1The complex variable z−1 is used to characterize the system’s behavior
in the frequency domain and the delay operator q−1 for the time domain
analysis.

2The measurement noise is not represented
3The disturbance passes through the primary path, and p(t) is its output.
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where HS(z−1) and HR(z−1) represent prespecified parts of
the controller (used for example to incorporate the internal
model of a disturbance, or to open the loop at some frequen-
cies) and S′(z−1) and R′(z−1) are solutions of the Bezout
equation:

P = (A ·HS) ·S′+
(

z−dB ·HR

)
·R′. (10)

In (10) P(z−1) represents the characteristic polynomial,
which specifies the desired closed loop poles of the system.

The transfer functions between the disturbance p(t) and
the system’s output y(t) and the control input u(t), denoted
respectively output sensitivity and input sensitivity functions,
are given by

Syp(z−1) =
A(z−1)S(z−1)

P(z−1)
(11)

and

Sup(z−1) =−A(z−1)R(z−1)

P(z−1)
, (12)

IV. SYSTEM IDENTIFICATION

System identification from experimental data (see [3],
[9]) will be used for obtaining the dynamic model of the
compensator system used for controller design .

For design and application reasons (the objective is to re-
ject tonal disturbances up to 400 Hz), the sampling frequency
was selected as fs = 2500Hz (Ts = 0.0004s) i.e. approxima-
tively 6 times the maximum frequency to attenuated (see [3]).

A Pseudo Random Binary Sequence (PRBS) has been
used as excitation signal. Its characteristics are: magnitude =
0.15V, register length = 17, frequency divider of 1, sequence
length of 217 − 1 = 131,071 samples, guaranteeing a uni-
form power spectrum from about 70 Hz to 1250 Hz. Since
the transfer functions has a double differentiator behaviour
(input: speaker’s coil position, output: acoustic pressure), this
is considered as a system’s known part and the objective
will be to identify the unknown part only. To do this, the
input sequence will be filtered by a double discrete-time
differentiator DF = (1−q−1)2 such that u′(t) = DF ·u(t). The
double differentiator will be concatenated with the identified
model of the unknown part in the final model used for
controller design.

The criterion used for order estimation has the form:

JIV (n̂,N) = VIV (n̂,N)+2n̂
logN

N
, (13)

where n̂ is the estimated order of the system and N is
the number of data and the optimal estimated order is the
one which minimize the criterion JIV . The first term of the
criterion VIV (n̂,N) is a prediction error criterion to which
a term penalizing the model’s complexity is added. The
effective order estimation was done using the algorithms
given in [3], [10] which uses instrumental variables for
obtaining an unbiased value for the error criterion VIV since
one can not ignore the measurement noise. Once an estimated
order n̂ is selected, one can apply a similar procedure to
estimate n̂A, n̂− d̂, and n̂B′ + d̂, from which n̂A, n̂B′ and d̂
are obtained.
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Fig. 4. Frequency characteristics of the identified primary and secondary
paths models.

A model with the orders n=40, nA=38, nB’=30 and d=8
has been chosen.

Comparison of several models obtained with various pa-
rameter estimation algorithms in terms of statistical valida-
tion led to the conclusion that an ARMAX model repre-
sentation is the most appropriate for this system. Among
the various methods which can be used for this structure4,
XOLOE algorithm gives the best results for a given order
model, in terms of whiteness test validation (see [3]).

Therefore the XOLOE model with n = 40 has been chosen.
It has 18 oscillatory modes with damping comprised between
0.0097 and 0.3129; also 13 pairs of oscillatory zeros with
damping comprised between −0.0159 and 0.5438. Fig. 4
gives the frequency characteristics of the identified complete
models for the primary and secondary paths5.

V. ROBUST CONTROL DESIGN

Control specifications

The controller will be designed to attenuate in regions
of ±5Hz around the two nominal frequencies 170Hz and
285Hz. The attenuation must be al least of −17dB and any
undesired amplification should be less that 7dB. Also since
our model may be not fully representative of the system’s
behaviour at high frequencies, magnitudes at the input sen-
sitivity function should be below −20dB at frequencies over
600Hz (improving robustness versus additive plant model
uncertainties in high frequencies).

In addition the gain of the controller should be zero at
0 Hz since the plant does not have gain at zero frequency
and the gain of the controller should be zero also at the
Nyquist frequency (0.5 fs) for robustness reasons. These
control specifications will be achieved through the sensitivity
functions’ shaping.

4Recursive Extended Least Squares (RELS), Output Error with Extended
Prediction Model (OEEPM) or (XOLOE), Recursive Maximum Likelihood
(RML)

5Primary path model has been identified using the same procedure. This
model is used for simulations only
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Design procedure

To achieve the constraints at 0Hz and at 0.5 fs, a fixed part
(HR) 6 will be introduced in the controller:

HR(q−1) = (1−q−1)(1+q−1) = 1−q−2, (14)

Three major tools will be used for design
• Choice of the dominant poles
• Use of the band stop filters for shaping the sensitivity

functions
• Choice of the auxiliary poles for further improving

performance and robustness
The use of auxiliary poles will be done such that the

characteristic polynomial take the form

P(z−1) = PD(z−1) ·PF(z−1), (15)

where PD are the dominant poles obtained from the identified
dynamic model, and PF will be the auxiliary poles determined
by the controller’s requirements.

It is shown in [3] that very accurate shaping of the output
or the input sensitivity functions can be obtained by the use
of band-stop filters (BSF). These are IIR filters obtained from
the discretization of continuous-time filters of the form

F(s) =
s2 +2ζnumω0s+ω2

0

s2 +2ζdenω0s+ω2
0

(16)

using the bilinear transform s = 2
T s

1−z−1

1+z−1 . The use of BSFs

introduces an attenuation M = 20log
(

ζnum
ζden

)
at the normal-

ized discretized frequency ωd = 2 ·arctan
(

ω0TS
2

)
. Depending

on whether the filter is designed for shaping the output
or the input sensitivity function, the numerator of the dis-
cretized filter is included in the fixed part of the controller
denominator HS0 or numerator HR0 , respectively. The filter
denominator is always included in the desired closed loop
characteristic polynomial. As such, the filter denominator
influences the design of the controller indirectly since S′0 and
R′0 are solutions of the Bezout equation (10). These filters
will be used for a fine shaping of both the output and input
sensitivity functions.

The steps for the design of the linear controller are:
1) include all (stable) secondary path poles in the closed

loop characteristic polynomial.
2) open the loop at 0 Hz and at 1250 Hz by setting the

fixed part of the controller numerator as in Eq. (14).
3) 7 BSFs on Syp have been used around each of the

frequencies where attenuation is desired in order to
assure the desired attenuation within ±5 Hz .

4) 11 BSF has been used on Sup to reduce its magnitude
above 600 Hz.

5) to improve robustness 17 auxiliary real poles located at
0.17 have been added to the characteristic polynomial.

Figure 5 shows the characteristics of the output sensitivity
function through the various steps of the design. The perfor-
mance and robustness specifications are achieved (as well as
on the input sensitivity function, not shown here).

6Hi,HRi ,HRi ,PFi will denote any given controller’s fixed part.
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Fig. 5. Robust controller design: Output sensitivity function.

VI. ADAPTIVE CONTROL DESIGN

The adaptive approach uses the Youla-Kucera parametriza-
tion of the controller combined with the Internal Model
Principle. The basic reference for this approach used in active
vibration control is [3] A key aspect of this methodology is
the use of the Internal Model Principle (IMP). It is supposed
that p(t) is a deterministic disturbance given by

p(t) =
Np(q−1)

Dp(q−1)
·δ (t), (17)

where δ (t) is a Dirac impulse and Np, Dp are coprime
polynomials of degrees nNp and nDp , respectively7. In the
case of stationary narrow-band disturbances, the roots of
Dp(z−1) are on the unit circle.

Internal Model Principle[11]: The effect of the distur-
bance (17) upon the output

y(t) =
A(q−1)S(q−1)

P(q−1)
· Np(q−1)

Dp(q−1)
·δ (t), (18)

where Dp(z−1) is a polynomial with roots on the unit circle
and P(z−1) is an asymptotically stable polynomial, converges
asymptotically towards zero iff the polynomial S(z−1) in the
RS controller has the form (based on eq. (9))

S(z−1) = Dp(z−1)HS0(z
−1)S′(z−1). (19)

Thus, the pre-specified part of S(z−1) should be chosen as
HS(z−1) = Dp(z−1)HS0(z

−1) and the controller is computed
solving

P = ADpHS0S′+ z−dBHR0R′, (20)

where P, Dp, A, B, HR0 , HS0 and d are given8.
In the context of this paper for the Youla-Kučera parametriza-
tion, one considers a finite impulse response (FIR) filter of
the form:

Q(z−1) = q0 +q1z−1 + · · ·+qnQz−nQ , (21)

to which one associate the vector of parameters:

θ = [q0 q1 . . .qnQ ]T . (22)

7Throughout the paper, nX denotes the degree of the polynomial X .
8Of course, it is assumed that Dp and B do not have common factors.
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Under Youla-Kučera parametrization or Q-parametrization,
the equivalent polynomials R(z−1) and S(z−1 of the controller
K(q−1) take the form

R(q−1) = R0 +A ·Q ·HS0 ·HR0 (23)

S(q−1) = S0−q−dB ·Q ·HS0 ·HR0 , (24)

with

R0(z−1) = r0
0 + r0

1z−1 + . . .+ r0
nR

z−nR0 = R′0 ·HR0 (25)

S0(z−1) = 1+ s0
1z−1 + . . .+ s0

nS
z−nS0 = S′0 ·HS0 , (26)

where A, B and d correspond to the identified model of the
secondary path, R0(z−1), S0(z−1) are the central controller’s
polynomials, and HS0 , HR0 are the controller fixed parts.

Using the output sensitivity function, the expression of the
output can be written as:

y(t) =
S0

P
·w(t)−Q · q−dBHS0HR0

P
·w(t), (27)

with
w(t) = A · y(t)−q−dB ·u(t) = A · p(t) (28)

as a disturbance’s observer. The objective is to find a value
of Q such that y(t) is driven to zero.

A block diagram of the adaptive scheme is given in Figure
6.

Fig. 6. Adaptive Youla-Kučera parametrization scheme.

The estimation of the polynomial Q at time t is denoted:

Q̂(t,q−1) = q̂0(t)+ q̂1(t)q−1 + · · ·+ q̂nQ(t)q−nQ (29)

and is caracterized by the parameter vector:

θ̂(t) = [q̂0(t) q̂1(t) . . . q̂nQ(t)]T , (30)

Since this is a regulation problem y(t) is expected to go to
zero and as such it is an a priori adaptation error denoted
ε0(t +1) for a given estimated polynomial Q̂(t,q−1):

ε0(t +1) =
S0

P
·w(t +1)− Q̂(t)

q−dB∗HS0HR0

P
·w(t), (31)

with B(q−1) = q−1 ·B∗(q−1) . In a similar way, we can define
an a posteriori error like

ε(t +1) =
S0

P
·w(t +1)− Q̂(t +1)

q−dB∗HS0HR0

P
·w(t), (32)

which can be further expressed as

ε(t +1) = [Q− Q̂(t +1)] · q−dB∗HS0HR0

P
·w(t)+η(t +1)

(33)
where η(t) tends asymptotically towards zero ( see [3]for
details).

Denoting filtered versions of observer output w(t) as

w1(t) =
S0(q−1)

P(q−1)
·w(t) (34)

w2(t) =
q−dB∗HR0HS0

P
·w(t) (35)

and
ϕT (t) = [w2(t) w2(t−1) . . .w2(t−nQ)], (36)

Eq. (33) can be rewritten as:

ε(t +1) = [θ T − θ̂ T (t +1)] ·ϕ(t)+η∗(t +1). (37)

This type of equation allows immediately to develop an
adaptation algorithm (see [12]):

θ̂(t +1) = θ̂(t)+F(t)ϕ(t)ε(t +1) (38)

ε(t +1) =
ε0(t +1)

1+ϕT (t)F(T )ϕ(t)
(39)

ε0(t +1) = w1(t +1)− θ̂ T (t)ϕ(t). (40)

F(t +1) =
1

λ1(t)

⎡
⎢⎢⎣F(t)− F(t)ϕ(t)ϕT (t)F(t)

λ1(t)
λ2(t)

+ϕT (t)F(t)ϕ(t)

⎤
⎥⎥⎦ (41)

where λ1, λ2 allows to obtain different profiles for the
evolution of the adaptation gain F(t). Finally the control to
be applied is given by

S0 ·u(t +1) =−R0 ·y(t +1)−HR0HS0Q̂(t +1) ·w(t +1). (42)

For the stability analysis of this algorithm see[12].

VII. EXPERIMENTAL RESULTS

The robust and adaptive design have been comparatively
evaluated on the duct silencer described in Section II. For all
the adaptive experiments nQ = 3 (4 parameters)

A. Interference test

Figure 7 shows the performance of the robust controller in
the presence of two pairs of sinusoidal noise signals acting si-
multaneously, and located first at170Hz and 170.5Hz, 285Hz
from 10s to 20s and then with modified central frequencies
located at 285.5Hz, 180Hz and 180.5Hz, and respectively at
295Hz and 295.5Hz. One can see that the controller gives
good performance from 10s to 20s (global attenuation of
36.56 dB) but the performance is degraded after 20s and this
is understandable since one operates outside the the region
considered for the design. Figure 8 shows the performance
of the adaptive controller for the same configuration. The
performance are very good (global attenuation of 71.45 dB).
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Fig. 7. Acoustic interference attenuation using a robust controller. Noise
frequencies:170,170.5,285,285.5 Hz then 180,180.5,295, 295.5 Hz.

Fig. 8. Acoustic interference attenuation using an adaptive controller. Noise
frequencies:170,170.5,285,285.5 Hz then 180,180.5,295, 295.5 Hz.

B. Step Changes in Frequency

In this test, two simultaneous signals of constant frequency
act as disturbances. After a given amount of time a step
change in the frequencies of both signals is done. Both fre-
quencies are decreased or increased with a constant value and
remain at those new constant frequencies for 4s . Figures 9
and 10 show the performance of the robust and adaptive
controller. The red curves gives the magnitude of the residual
noise in open loop and the blue curves give the magnitude
of the residual noise in closed loop. The frequencies of
the disturbances are indicated in the plots. One can clearly
see that the adaptive controller has better performance than
the robust controller even within the frequency domain of
variations used for robust controller design.

VIII. CONCLUSION

The paper has shown that robust and adaptive approaches
can be considered for active attenuation of multiple narrow
band noise disturbances by feedback. However the adaptive
approach offer better performance.
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Fig. 9. Step changes in frequencies using the robust controller.
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Why one should use Youla-Kucera parametrization in adaptive
feeforward noise attenuation?

Ioan Doré Landau, Tudor-Bogdan Airimitoaie, Raul Melendez, and Luc Dugard

Abstract— A crucial problem in adaptive feedforward noise
attenuation is the presence of an “internal” positive acoustical
feedback between the compensation system and the reference
source which is a cause of instabilities. Adaptive algorithms
for feedforward active compensation having an infinite impulse
response (IIR) or a finite impulse response (FIR) structure have
been developed from a stability point of view. Nevertheless, in
order to separate the problem of stabilizing the internal positive
feedback loop from the minimization of the residual noise,
the Youla–Kučera (YK) parametrization of the feedforward
compensator has been proposed and algorithms have been
developed from a stability point of view. Since the stability
of the internal loop is a key issue in practice, the present
paper using a unified presentation of the algorithms available
discusses the stability conditions associated with the various
algorithms and their properties. It is shown that the FIRYK
configuration offers, from the stability point of view, the best
option. Experimental results obtained on a relevant test-bench
will illustrate the theoretical analysis.

I. INTRODUCTION
Adaptive feedforward broad-band noise compensation is

currently used when a correlated measurement with the
disturbance (an image of the disturbance) is available. Most
of the active feedforward noise control systems feature an
internal “positive” acoustical feedback between the com-
pensation system and the reference source (a correlated
measurement with the disturbance). This internal positive
feedback loop often leads to the instability of the system
if it is not taken into account in the design stage ([1]).

Positive feedback coupling

Secondary path

Primary path

Feedforward

compensator

+

+

+

+

disturbance

Fig. 1. Adaptive active noise feedforward compensation.

Figure 1 gives the basic block diagram of the adaptive
feedforward compensation in the presence of the internal
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positive coupling between the output of the compensator
and the measurement of the image of the incoming noise.
The incoming noise propagates through the so called primary
path and its effect is compensated through a secondary noise
source (secondary path) driven by a feedforward compen-
sator. The input to the feedforward compensator is the sum of
the image of the incoming noise and of the internal acoustical
positive feedback.

Single and multiple narrow-band disturbances can be effi-
ciently attenuated by adaptive feedback configurations ([2],
[3]). Nevertheless, the efficient use of the feedback approach
for attenuation of broad-band noise is limited by the Bode
integral. Therefore adaptive feedforward noise compensation
is particularly dedicated to the attenuation of broad-band
noise with unknown and time-varying characteristics.

Stability analysis of the adaptive feedforward compensa-
tion schemes taking into account the internal positive loop
is an important aspect (see [4], [5], [6], [7], [8]). The
stability analysis makes the assumption that there exists a
compensator N such that the internal positive loop (formed
by M and N in feedback) is stable and such that the perfect
matching of the primary path is achieved.1

Starting with [6], a new approach emerged in the area
of active noise and vibration control (ANVC), namely the
design of the adaptation algorithms starting from a stability
point of view and taking into account the internal positive
feedback from the beginning. In the field of active vibration
control (AVC), the paper [7] provides a full synthesis pro-
cedure for asymptotically stable adaptation algorithms using
infinite impulse response (IIR) feedforard compensators in
the presence of the internal feedback. These algorithms can
be used also in active noise control (ANC) as it will be shown
in this paper.

Since assuring the stability of the internal positive feed-
back loop is essential in applications, in [9] it is proposed
to separate the stabilization of the internal positive feedback
loop from the minimization of the residual noise by using a
Youla–Kučera (YK) parametrization of the feedforward com-
pensator. A tuning procedure based on system identification
has been proposed and tested on a silencer. This idea has
been used in [10] for developing direct adaptive feedforward
compensation schemes using the YK parametrization of
finite impulse response (FIR) form or IIR form [11] for the
feedforward compensator. While these algorithms have been
developed and tested in the context of AVC [8], they can be

1This hypothesis of perfect matching of the primary path can be relaxed
under certain conditions (see [7]).



used also in the field of ANC. Even if the various algorithms
proposed for IIR or FIR compensators assure the stability
of the full system under some strictly positive real (SPR)
conditions, they do not guarantee that the poles of the internal
positive loop are not too close to the unit circle. One may ask
if such a situation may occur. Considering the block diagram
shown in Fig. 1, one can view this system as a Model
Reference Adaptive System. In order to achieve perfect
matching, the internal closed loop which is the effective
feedforward compensator will try to cancel all the zeros of
the secondary path which are not zeros of the primary path.
This will imply that the poles of the internal closed loop will
tend towards the zeros of the secondary path. Unfortunately,
as it will be shown in the experimental section, the model
of the secondary path in the context of noise attenuation
in ducts (typical application field) have very low damped
complex zeros. Therefore, as it will be shown, despite very
good attenuation properties, the FIR (IIR) compensators will
lead to the presence of closed-loop poles extremely close to
the unit circle. So the problem of securing a disk of radius
less than 1 is very important from a practical point of view,
even if one has to accept slightly less good performances. YK
parametrized adaptive feedforward compensators can offer
such a solution. An FIRYK configuration will allow to define
from the beginning the desired closed-loop poles (design of
the central controller) and these poles will remain unchanged
independently of the values of the parameters of the FIRYK
filter.

The FIRYK configuration offers also another advantage:
by an appropriate design of the central controller one can
remove the SPR condition for stability (or more exactly,
it will only depend on the precision of the estimation
of the reverse path M, and current techniques of system
identification extract excellent models from data).

There is also another advantage of using an FIRYK
configuration. A necessary condition for perfect matching is
that the transportation delay2 of the secondary path should be
smaller or equal than the transportation delay of the primary
path. For most applications till recently, the design of the
physical system has been done such that this constraint be
satisfied. Nevertheless, there are potential application fields
where, because of thermal constraints, this condition can not
be fulfilled. It will be shown that despite the violation of
the delay constraints, the FIRYK can still operate with good
performance while all the other configurations except the FIR
are unstable (but the FIR gives poor performance).

The paper is organized as follows: in Section II, the
various structures and algorithms will be presented under a
unified form called “Generalized Youla-Kučera”. Section III
will examine comparatively various particular configurations
and algorithms proposed in terms of stability conditions.
Results obtained on an experimental test-bench (a core of
a duct silencer) will illustrate some important properties of
the algorithms in Section IV.

2The transportation delay is directly related to the speed of the sound and
the geometry of the system.

II. BASIC EQUATIONS AND NOTATIONS

The block diagram associated with an adaptive feeforward
compensator using a generalized Youla-Kučera structure for
adaptive feedforward compensators is shown in Fig. 2.

Global primary path

Positive feedback coupling 

   Measurement of the

image of the disturbance

Secondary

path

Residual

noise

measurement

PAA

Primary path

Parameter adaptation algorithm

-1

 

Feedforward 

compensator

+ +

+

+

+-

+
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Fig. 2. Adaptive feedforward disturbance compensation using the gener-
alized Youla–Kučera parametrization.

The primary (T ), secondary (G), and reverse (positive
coupling) (M ) paths represented in Fig. 2 are characterized
by the asymptotically stable transfer operators:

X(q−1) =
BX(q−1)

AX(q−1)
=

bX1 q
−1 + ...+ bXnBX

q−nBX

1 + aX1 q
−1 + ...+ aXnAX

q−nAX
,

(1)
with BX = q−1B∗

X for any X ∈ {D,G,M}. Ĝ = B̂G

ÂG
,

M̂ = B̂M

ÂM
, and D̂ = B̂D

ÂD
denote the identified (estimated)

models of G, M, and D.
Polynomials AZ and BZ are defined as:

AZ = aZ0 + aZ1 q
−1 + ... (2)

BZ = bZ1 q
−1 + ... (3)

The optimal feedforward compensator which will mini-
mize the residual noise can be written as:

N =
R

S
=
AQR0 −BQAZ
AQS0 −BQBZ

(4)

where the optimal filter Q(q−1) has an IIR structure

Q =
BQ
AQ

=
bQ0 + bQ1 q

−1 + . . .+ bQnBQ
q−nBQ

1 + aQ1 q
−1 + . . .+ aQnAQ

q−nAQ

(5)

and R0(q−1), S0(q−1) = 1+q−1S∗
0 (q−1) are the polynomi-

als of the central (stabilizing) filter and AZ(q−1), BZ(q−1)
are given in (2) and (3)3.

The estimated QIIR filter is denoted by Q̂(q−1) or
Q̂(θ̂, q−1) when it is a linear filter with constant coefficients
or Q̂(t, q−1) during estimation (adaptation). The vector of
parameters of the optimal QIIR filter assuring perfect match-
ing will be denoted by

θT = [bQ0 , . . . , b
Q
nBQ

, aQ1 , . . . , a
Q
nAQ

] = [θTBQ
, θTAQ

]. (6)

3The following notation for polynomials will be used throughout this
paper: A(q−1) = a0 +

∑nA
i=1 aiq

−i = a0 + q−1A∗(q−1).



The vector of parameters for the estimated Q̂IIR filter

Q̂(q−1) =
B̂Q(q−1)

ÂQ(q−1)
=
b̂Q0 + b̂Q1 q

−1 + . . .+ b̂QnBQ
q−nBQ

1 + âQ1 q
−1 + . . .+ âQnAQ

q−nAQ

(7)
is denoted by

θ̂T = [b̂Q0 , . . . , b̂
Q
nBQ

, âQ1 , . . . , â
Q
nAQ

] = [θ̂TBQ
, θ̂TAQ

]. (8)

The input of the feedforward filter (called also reference)
is denoted by ŷ(t) and it corresponds to the measurement
provided by the primary microphone. In the absence of the
compensation loop (open-loop operation) ŷ(t) = w(t). The
output of the feedforward compensator (which is the control
signal applied to the secondary path) is denoted by û(t+1) =
û(t+ 1/θ̂(t+ 1)) (a posteriori output).

The a priori output of the estimated feedforward compen-
sator using an IIRYK parametrization for the case of time-
varying parameter estimates is given by (using (4))

û◦(t+ 1) = û(t+ 1|θ̂(t))
= −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)ŷ(t+ 1)

= −S∗
0 û(t) +R0ŷ(t+ 1)− ÂQ(t, q−1)∗β(t)

+B̂Q(t, q−1)α(t+ 1), (9)

and

û(t+ 1) = −S∗
0 û(t) +R0ŷ(t+ 1)− ÂQ(t+ 1, q−1)∗β(t)

+B̂Q(t+ 1, q−1)α(t+ 1), (10)

where β(t) = S0û(t)−R0ŷ(t) (see also Fig. 2).
The objective is to develop stable recursive algorithms for

adaptation of the parameters of the Q filter such that the
measured residual error (noise in ANC) be minimized in the
sense of a certain criterion. This has to be done for broad-
band disturbances w(t) (or s(t)) with unknown and variable
spectral characteristics and an unknown primary path model.

The algorithms for adaptive feedforward compensation
have been developed under the following basic hypotheses

1) (Perfect matching condition) There exists a value of
the Q parameters such that

G ·AM (R0AQ −AZBQ)

AQ(AMS0 −BMR0)−BQ(BZAM −BMAZ)
= −T.

2) The characteristic polynomial of the internal closed-
loop for AQ = 1 and BQ = 0

P0(z−1) = AM (z−1)S0(z−1)−BM (z−1)R0(z−1)

is a Hurwitz polynomial.
3) (Stability of the internal loop) The characteristic poly-

nomial of the internal closed-loop for the values of
AQ and BQ assuring perfect matching is a Hurwitz
polynomial:

P = AQ(AMS0 −BMR0)−BQ(BZAM −BMAZ)

A first step in the development of the algorithms is to es-
tablish for a fixed estimated compensator a relation between
the error on the Q-parameters (with respect to the optimal

values) and the adaptation error ν. This is summarized in the
following lemma.

Lemma 1: Under the hypotheses 1–3 for the system
described by eqs. (1)–(10) using an estimated generalized
Youla-Kučera parameterized feedforward compensator with
constant parameters, one has:

ν(t+ 1/θ̂) =
AMG

AQP0 −BQ(BZAM −BMAZ)
[θ− θ̂]Tφ(t),

(11)
with φ(t) given by:

φT (t) = [α(t+ 1), α(t), . . . , α(t− nBQ
+ 1),

− β(t),−β(t− 1), . . . ,−β(t− nAQ
)]. (12)

where:

α(t+ 1) =BM û(t+ 1)−AM ŷ(t+ 1) =

=B∗
M û(t)−AM ŷ(t+ 1) (13a)

β(t) =S0û(t)−R0ŷ(t). (13b)
The proof of this lemma follows the proof given in

Appendix A of [11] with the appropriate change of notations
and is omitted.

For assuring the stability of the system, one needs to filter
the observation vector φ(t). Filtering the vector φ(t) through
an asymptotically stable filter L(q−1) = BL

AL
, (11) for θ̂ =

constant becomes

ν(t+ 1/θ̂) =
AMG

(AQP0 −BQ(BZAM −BMAZ))L
·

· [θ − θ̂]Tφf (t) (14)

with

φf (t) = L(q−1)φ(t) = [αf (t+ 1), . . . , αf (t− nBQ
+ 1),

βf (t), βf (t− 1), . . . , βf (t− nAQ
)] (15)

where

αf (t+ 1) = L(q−1)α(t+ 1), βf (t) = L(q−1)β(t). (16)

When the parameters of Q̂ evolve over time and neglecting
the non-commutativity of the time-varying operators, eq. (14)
transforms into4

ν(t+ 1/θ̂(t+ 1)) =
AMG

[AQP0 −BQ(BZAM −BMAZ)]L
·

· [θ − θ̂(t+ 1)]Tφf (t). (17)

Equation (17) has the standard form for an a posteriori
adaptation error ([12]), which immediately suggests to use

4Nevertheless, exact algorithms can be developed taking into account the
non-commutativity of the time varying operators - see [12].



the following parameter adaptation algorithm (PAA):

θ̂(t+ 1) = θ̂(t) + F (t)ψ(t)ν(t+ 1) ; (18a)

ν(t+ 1) =
ν0(t+ 1)

1 + ψT (t)F (t)ψ(t)
; (18b)

F (t+ 1) =
1

λ1(t)


F (t)− F (t)ψ(t)ψT (t)F (t)

λ1(t)
λ2(t)

+ ψT (t)F (t)ψ(t)


 (18c)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2;F (0) > 0 (18d)
ψ(t) = φf (t), (18e)

where λ1(t) and λ2(t) allow to obtain various profiles for the
matrix adaptation gain F (t) (see [12]). By taking λ2(t) ≡ 0
and λ1(t) ≡ 1, one gets a constant adaptation gain matrix.
Choosing F = γI , γ > 0 one gets a scalar adaptation
gain. The equation (18a) for updating the parameter vector
becomes:

θ̂(t+ 1) = θ̂(t) + γΦ(t)
ν◦(t+ 1)

1 + γΦT (t)Φ(t)
. (19)

III. SPECIFIC CASES

1) For AZ = −1, BZ = 0, R0 = 0, S0 = 1:
we are in the context of IIR (FIR) adaptive feedforward
compensators discusssed in [7]. In this context there are two
basic algorithms:
FUPLR (Filtered-U pseudo linear regression): L = Ĝ and
FUSBA (Filtered-U stability based algorithm): L = ÂM

P̂
Ĝ,

with P̂ = ÂM Ŝ − B̂M R̂.
The stability condition for FUPLR is: AMG

PĜ
− λ

2 = SPR
with λ = maxλ2(t) and for the FUSBA the stability
condition is: AM P̂G

ÂMPĜ
− λ

2 = SPR (λ = maxλ2(t)). For the
FUSBA algorithm, the SPR condition is milder. Note that
the FUSBA algorithm requires initialization over a certain
horizon using FUPLR. This implies that the SPR condition
for FUPLR is fulfilled at least in the average [13], [7]. Note
that the stability conditions for FUPLR is “global” while
for the FUSBA is “local” (one implicitly assumes that the
FUPLR algorithm brings the parameters in the vicinity of
the equilibrium point).

2) For AZ = AM , BZ = BM : we are in the context
of the IIRYK feedforward compensator which has been dis-
cussed in [11]. In this context one has two basic algorithms:
FUPLR: L = Ĝ and
FUSBA: L = ÂM

P̂
Ĝ, where P̂ = ÂQ(AMS0 − BMR0).

The stability condition associated to the FUPLR is that
AMG

PĜ
− λ

2 = SPR (λ = maxλ2(t)) and the stability

condition associated with th FUSBA is that: AM P̂G

ÂMPĜ
− λ

2 =

SPR (λ = maxλ2(t)).
In this case also the FUSBA algorithm requires initializa-

tion using the FUPLR algorithm.5 This implies that the SPR
condition for the FUPLR is satisfied at least on the average.
The FUPLR stability condition is “global” while the FUSBA
condition is “local”.

5Or with an approximated FUSBA algorithm (using the filter L =
AM
P0

Ĝ).

3) For AZ = AM , BZ = BM , AQ = 1: we are in the
context of the FIRYK feedforward compensator (see [11]).
One can consider two adaptation algorithms:
FUPLR: L = Ĝ and
FUSBA: L = ÂM

P̂0
Ĝ, where P̂0 = (ÂMS0 − B̂MR0).

The stability condition associated with the FUPLR is
that: AMG

P0Ĝ
− λ

2 = SPR (λ = maxλ2(t)). The stability

condition associated with the FUSBA is that: AM P̂0G

ÂMP0Ĝ
− λ

2 =

SPR (λ = maxλ2(t)). In this case, for both FUPLR
and FUSBA the stability conditions are “global”. The main
difference with respect to the previous cases is twofold:

• The FUSBA algorithm can be implemented from the
beginning since P0 is known and constant and the
stability condition is global.

• The design of the central controller can be used for
fulfilling the SPR conditions.6

If the central controller is designed such that P̂0 = ÂM , then
FUPLR and FUSBA are almost the same and the fulfillment
of the SPR condition will depend only on the quality of the
estimation of the transfer M. This is a key point because not
only the stability of the internal loop will be assured for any
finite value of the parameters of the FIR Youla-Kučera filter
but in addition the system will be operated under a global
stability condition easy to fulfill and allowing to use high
values of the adaptation gain leading to fast adaptation.

A consequence of this property is that the YKFIR con-
figuration can be safely used even if the perfect matching
condition is not fulfilled. Such a situation occurs in practice
when the pure delay (propagation delay) on the secondary
path is larger than the pure delay of the primary path. This
will be illustrated in the experimental results section.

For all the configurations, scalar adaptation gains can also
be used. The same filter L is used and the algorithms cor-
responding to FUPLR and FUSBA are termed: NFULMS7

and SFUSBA respectively. The stability conditions are the
same as for the matrix case except that in this case λ = 0.

Youla–Kučera Parametrization—Some Remarks

Two major observations when using the Youla–Kučera
parametrization have to be made:

• If an FIR Q filter is used, the poles of the internal
closed-loop will be defined by the central compensator
R0, S0 and they will remain unchanged independently
of the values of the parameters of the Q filter. The
stability condition for the FUSBA algorithm is global.

• If an IIR Q filter is used, the poles of the internal closed-
loop will be defined by the central compensator but
additional poles corresponding to the denominator of
the Q filter will be added. The stability condition for
the FUSBA algorithm is local and an initialization with
the FUPLR algorithm is necessary.

6The main objective of the central controller is to stabilize the internal
loop.

7For the case of FIR and IIR structures the FXLMS and respectively the
FULMS can be interpreted as approximations of the NFULMS algorithm.



IV. EXPERIMENTAL RESULTS

The core of a noise silencer is used as a test bench. Two
configurations have been considered: Configuration A shown
in Fig. 3 (the pure delay of the secondary path is smaller
than the pure delay of the primary path) and configuration
B shown in Fig. 4 (the pure delay of the secondary path is
larger than the pure delay of the primary path).

Fig. 3. Duct active noise control test-bench. Configuration A (Photo).

Fig. 4. Duct active noise control test-bench. Configuration B (Photo).

Fig. 5. Duct active noise control test-bench diagram.

Figure 5 gives the block diagram of the system. The
speaker used as the source of disturbances is labeled as
1, while the control speaker is marked as 2. At the pipe’s
open end, the microphone that measures the system’s output
(residual noise e(t)) is denoted as 3. Inside the pipe, close to
the source of disturbances, the second microphone, labeled as
4, measures the image of the incoming noise, denoted as ŷ(t).
The various paths are indicated on the figure. The system
is connected to an xPC Target computer with Simulink
Real-time R© environment. The sampling frequency is fs =
2500 Hz. The various paths have been identified by standard
experimental identification techniques which are described
in [14]. The various paths’ models are characterized by
the presence of multiple very low damped complex poles

and complex zeros. The orders for the various models are
summarized in Table I for configurations A and B.

Config. A A A B B B
Model nB nA d nB nA d

Primary (global) 20 24 7 20 27 8
Secondary 27 26 6 20 27 9

Reverse 22 25 5 33 33 4

TABLE I
ORDERS OF THE IDENTIFIED SYSTEM PATHS.CONFIGURATION A AND B.

1) Configuration A: The objective is to illustrate first the
properties of the FIRYK configuration and the importance
of the design of the central controller for the fulfillment
of the SPR condition for stability. In the first design, the
central controller introduces some attenuation in the region
of operation (70 to 270 Hz). In the second design, the
central controller was computed such that P0 = ÂM without
introducing attenuation. Table II gives the results obtained
using the two different central controllers with 60 adapted
parameters. In the case P0 6= ÂM , the FUPLR algorithm

Cl. Poles P0 6= ÂM P0 = ÂM

Adaptation algorithm Atten. [dB] Atten. [dB]
Matrix (FUSBA) 27.0 27.3
Matrix (FUPLR) unstable 27.2
Scalar (SFUSBA) 26.7 27.1
Scalar (SFUPLR) unstable 27.2

TABLE II
EXPERIMENTAL RESULTS FOR FIRYK 60/0 ADAPTIVE COMPENSATORS

USING VARIOUS ADAPTATION ALGORITHMS (70-270 HZ BROAD-BAND

DISTURBANCE, 180 S EXPERIMENTS).

is unstable. This can be easily understood by looking to
the phase of the estimated transfer function ÂM

P0
shown in

Fig. 6 (obtained when using the FUSBA algorithm). Since
the noise to be attenuated has an almost flat power spectral
density (PSD) between 70 and 270 Hz, it is clear that the SPR
condition is violated in a too large frequency spectrum (even
using averaging arguments). By using the second design, for
both FUPLR and FUSBA, the SPR condition will be the
same and both algorithms will be stable and will provide
identical performances as illustrated in Table II.

Figure 7 shows the PSD in open loop and in the presence
of the FIRYK compensator8. As it can be seen, there is
no significant amplification at the frequencies outside the
attenuation zone. The estimation of the output sensitivity
function of the internal loop for the FIRYK 60/0 using
the FUSBA algorithm shows a maximum below 10 dB
(modulus margin greater than 0.3). Figure 8 shows the PSD
of an FIR and of an IIR adaptive compensator. Despite
the fact that they assure a better attenuation in the region
70-270 Hz there is a very strong amplification outside the
attenuation zone indicating the presence of a pair of very
low damped complex poles (in the region around 320 Hz).

8The number of the parameters of the compensator is denoted by nb/na
(nb for the numerator, nb for the denominator)
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for the FIRYK 60/0 adaptive compensator (70-270 Hz
disturbance, 600 s experiments).
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Fig. 7. PSD of the FIRYK 60/0 adaptive compensators using FUSBA
matrix adaptation (70-270 Hz disturbance, 600 s experiments).
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Fig. 8. PSD comparison of FIR 30/0 and IIR 15/15 standard adaptive
compensators using FUSBA matrix adaptation (70-270 Hz disturbance,
600 s experiments).

Further analysis shows for the IIR configuration that the
estimated output sensitivity function has a maximum of 26
dB in this region corresponding to a modulus margin of less
than 0.06 (extremely close to instability).

2) Configuration B: In this configuration, all compen-
sators are unstable except the FIR and the FIRYK. Figure 9
shows the PSD of the residual noise obtained over a test
horizon of 800 s for the FIR and the FIRYK compensators.
Clearly the FIRYK compensator offers much better results
in terms of attenuation (20.6 dB versus 10.4 dB for a broad
band noise covering the range 150-350 Hz).

V. CONCLUDING REMARK

In summary one can say that the FIRYK adaptive feed-
forward compensator offers a robust solution (with respect
to the risk of instability of the internal loop) for adaptive
feedforward noise attenuation.

0 200 400 600 800 1000 1200

Frecuency [Hz]

-150

-140

-130

-120

-110

-100

-90

-80

-70

P
S

D
 i
n

 d
B

 (
V

2
/H

z
)

Power Spectral Density - Open loop vs Closed loop

Fig. 9. PSD of the FIR and the FIRYK adaptive compensators using
FUSBA (60 parameters, 150-350 Hz disturbance, 800 s experiments).
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Evaluation expérimentale des techniques d’atténuation active de bruit
par contre-réaction adaptative

I. Landau, R. Melendez, L. Dugard. GIPSA-LAB – France.

Les techniques d’atténuation active de bruit par contre-réaction offre de performances très

intéressantes et sont d’une complexité moindre que les techniques de compensation active de

bruit par pré-compensation adaptative. Par rapport aux techniques utilisant la pré-compensation

adaptative, elles ont l’avantage de ne pas nécessiter un microphone supplémentaire pour obtenir

une image du bruit perturbateur, de nécessiter un nombre plus réduit de paramètres à adapter,

et de ne pas introduire une réaction interne positive source de possible instabilités. Ces tech-

niques font appel au principe du modèle interne (le régulateur doit contenir le modèle de la

perturbation) et utilisent la paramétrisation Youla-Kucera pour le régulateur qui permet de

réduire significativement le nombre de paramètres à adapter. Les algorithmes d’adaptation

paramétriques utilisés sont de type à gain d’adaptation matriciel ou scalaire. On évaluera les

performances de ces approches en présence de plusieurs configurations: a) Perturbation tonales

(bande étroite) multiples de fréquences inconnues et variables; b) Atténuation des phénomènes

d’interférence pour des perturbations tonales ayant des fréquences rapprochées, inconnues et

variable; c) Atténuation dynamique de bruit tonal de fréquence variable; d) Atténuation de

bruit bande large (plus exactement d’une largeur de bande limitée). Les mesures concernent:

l’atténuation globale, l’atténuation des raies, l’amplification maximale à d’autre fréquences que

celles qui sont atténues, durée des transitoires. Des fichiers audio illustreront les performances

en complément des différentes courbes. Les expérimentations seront faites sur un banc de test

existant au GIPSA-Lab consistant en un tube principal excité par un haut-parleur (voie primaire

de propagation) sur le quel est branché en amont du microphone de mesure du bruit résiduel

un autre tube par lequel le bruit de compensation produit par un haut-parleur commandé est

envoyé (la voie secondaire).
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[Airimiţoaie, 2012] Airimiţoaie, T.-B. (2012). Commande robuste et calibrage des systèmes de

contrôle actif de vibrations. PhD thesis, Université de Grenoble.
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[Landau et al., 2016] Landau, I. D., Airimiţoaie, T.-B., and Castellanos-Silva, A. (2016). Adaptive

and Robust Active Vibration Control: Methodology and Tests. Springer, London.
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Abstract

The aim of this thesis is the development and application of different control methods
for Active Noise Control in the presence of uncertain and time-varying disturbances. A
model-based controller design is applied and a full methodology for model identification

is introduced. In this context, a reconfigurable test bench based on a noise silencer for ducts
has been designed and built. It is fully equipped with sensors and actuators in order to test the
developed algorithms in diverse configurations.

A feedback scheme is established for the case where narrow-band disturbances are present.
Based on the Internal Model Principle, fixed linear and robust controllers are designed and com-
pared with the proposed adaptive feedback controller using a Youla-Kučera parametrization. For
the case where disturbances have broadband characteristics, a feedforward scheme is proposed.
This approach requires the introduction of an additional sensor which creates an internal positive
coupling, requiring a specific design in order to avoid possible instabilities. In this framework,
Infinite (IIR) and Finite (FIR) Impulse Responses adaptive feedforward compensators, as well as
Youla-Kučera parametrized adaptive feedforward compensators are compared.

The estimated models’ quality for control design as well as the control capabilities themselves
are illustrated by the experimental performance of the controllers implemented on the test bench
for various tests setup conditions.

Résumé

Le but de cette thèse est le développement et l’application de différentes méthodes de
contrôle pour le contrôle actif du bruit en présence de perturbations incertaines et variables
dans le temps. Une conception de contrôleur basée sur un modèle est appliquée et une

méthodologie complète pour l’identification du modèle est introduite. Dans ce contexte, un banc
d’essai reconfigurable basé sur un silencieux de bruit pour gaines a été conçu et construit. Il est
entièrement équipé de capteurs et d’actionneurs afin de tester les algorithmes développés dans
diverses configurations.

Un schéma contre-réaction feedback est établi pour les cas où des perturbations en bande
étroite sont présentes. Sur la base du Principe du Modèle Interne, des contrôleurs linéaires fixes
et robustes sont conçus et comparés avec le contrôleur par contre-réaction adaptatif proposé
en utilisant un paramétrage Youla-Kučera. Dans le cas où les perturbations présentent des
caractéristiques à large bande, un système de rétroaction feedforward est proposé. Cette ap-
proche nécessite l’introduction d’un capteur supplémentaire qui crée un couplage positif interne,
nécessitant une conception spécifique afin d’éviter d’éventuelles instabilités. Dans ce cadre, les
compensateurs adaptatifs IIR et FIR, ainsi que les compensateurs adaptatifs avec paramétrage
Youla-Kučera sont comparés.

La qualité des modèles estimés pour la conception des contrôles ainsi que les capacités de
contrôle elles-mêmes sont illustrées par les performances expérimentales des contrôleurs mis en
œuvre sur le banc d’essai pour diverses conditions de configuration des tests.
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