S. Siregar, R. H. Groenwold, and F. De-heer, Performance of the original EuroSCORE, Eur J Cardiothorac Surg, vol.41, pp.746-54, 2012.

N. Maynard, D. Bihari, and R. Beale, Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure, JAMA, vol.270, pp.1203-1210, 1993.

D. R. Dantzker, The gastrointestinal tract. The canary of the body?, JAMA, vol.270, pp.1247-1248, 1993.

P. E. Spronk, D. F. Zandstra, and C. Ince, Bench-to-bedside review: sepsis is a disease of the microcirculation, Crit Care, vol.8, pp.462-468, 2004.

N. A. Vellinga, C. Ince, and E. C. Boerma, Microvascular dysfunction in the surgical patient, Curr Opin Crit Care, vol.16, pp.377-83, 2010.

C. A. Den-uil, W. K. Lagrand, and M. Van-der-ent, Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock, Eur Heart J, vol.31, pp.3032-3039, 2010.

A. C. Guyton and J. E. Hall, Textbook of Medical Physiology 12th edition, 2010.

B. I. Levy, E. L. Schiffrin, and J. J. Mourad, Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus, Circulation, vol.118, pp.968-976, 2008.

R. Jaffe, T. Charron, and G. Puley, Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention, Circulation, vol.117, pp.3152-156, 2008.

S. S. Segal, Regulation of blood flow in the microcirculation, Microcirculation, vol.12, pp.33-45, 2005.

D. Backer, D. Ortiz, J. A. Salgado, and D. , Coupling microcirculation to systemic hemodynamics, Curr Opin Crit Care, vol.16, pp.250-254, 2010.

D. Backer, D. Donadello, K. Favory, and R. , Link between coagulation abnormalities and microcirculatory dysfunction in critically ill patients, Curr Opin Anaesthesiol, vol.22, pp.150-154, 2009.

R. N. Pittman, Oxygen gradients in the microcirculation, Acta Physiol (Oxf), vol.202, pp.311-322, 2011.

V. V. Kislukhin, Stochasticity of flow through microcirculation as a regulator of oxygen delivery, Theor Biol Med Model, vol.7, p.29, 2010.

R. N. Pittman, Oxygen transport in the microcirculation and its regulation, Microcirculation, vol.20, pp.117-154, 2013.

H. A. Struijker-boudier, A. E. Rosei, and P. Bruneval, Evaluation of the microcirculation in hypertension and cardiovascular disease, Eur Heart J, vol.28, pp.2834-2840, 2007.

D. Backer, D. Donadello, K. Cortes, and D. O. , Monitoring the microcirculation, J Clin Monit Comput, vol.26, pp.361-366, 2012.

D. Backer, D. Ospina-tascon, G. Salgado, and D. , Monitoring the microcirculation in the critically ill patient: current methods and future approaches, Intensive Care Med, vol.36, pp.1813-1825, 2010.

E. C. Boerma, P. H. Van-der-voort, and P. E. Spronk, Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis, Crit Care Med, vol.35, pp.1055-1060, 2007.

Z. Turek, V. Cerný, and R. Parízková, Noninvasive in vivo assessment of the skeletal muscle and small intestine serous surface microcirculation in rat: sidestream dark-field (SDF) imaging, Physiol Res, vol.57, pp.365-371, 2008.

V. Cerný, Z. Turek, and R. Parízková, In situ assessment of the liver microcirculation in mechanically ventilated rats using sidestream dark-field imaging, Physiol Res, vol.58, pp.49-55, 2009.

J. Creteur, D. Backer, D. Sakr, and Y. , Sublingual capnometry tracks microcirculatory changes in septic patients, Intensive Care Med, vol.32, pp.516-523, 2006.

C. L. Verdant, D. Backer, D. Bruhn, and A. , Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis, Crit Care Med, vol.37, pp.2875-2881, 2009.

H. Vink and B. R. Duling, Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries, Circ Res, vol.79, pp.581-589, 1996.

B. M. Van-den-berg, M. Nieuwdorp, and E. Stroes, Glycocalyx and endothelial (dys)function: from mice to men, Pharmacol Rep, vol.58, pp.75-80, 2006.

C. A. Vlahu, B. A. Lemkes, and D. G. Struijk, Damage of the endothelial glycocalyx in dialysis patients, J Am Soc Nephrol, vol.23, pp.1900-1908, 2012.

S. A. Bartels, R. Bezemer, and D. M. Milstein, The microcirculatory response to compensated hypovolemia in a lower body negative pressure model, Microvasc Res, vol.82, pp.374-380, 2011.

P. W. Elbers, A. Ozdemir, and M. Van-iterson, Microcirculatory imaging in cardiac anesthesia: ketanserin reduces blood pressure but not perfused capillary density, J Cardiothorac Vasc Anesth, vol.23, pp.95-101, 2009.

B. Atasever, C. Boer, and M. Van-der-kuil, Quantitative imaging of microcirculatory response during nitroglycerin-induced hypotension, J Cardiothorac Vasc Anesth, vol.25, pp.140-144, 2011.

J. Pottecher, S. Deruddre, and J. L. Teboul, Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients, Intensive Care Med, vol.36, pp.1867-1874, 2010.

E. C. Boerma and C. Ince, The role of vasoactive agents in the resuscitation of microvascular perfusion and tissue oxygenation in critically ill patients, Intensive Care Med, vol.36, pp.2004-2018, 2010.

A. Dubin, M. O. Pozo, and C. A. Casabella, Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study, Crit Care, vol.13, p.92, 2009.

S. Maier, W. R. Hasibeder, and C. Hengl, Effects of phenylephrine on the sublingual microcirculation during cardiopulmonary bypass, Br J Anaesth, vol.102, pp.485-491, 2009.

W. Karzai, M. Günnicker, and G. Scharbert, Effects of dopamine on oxygen consumption and gastric mucosal blood flow during cardiopulmonary bypass in humans, Br J Anaesth, vol.77, pp.603-606, 1996.

C. Jung, C. Rödiger, and M. Fritzenwanger, Acute microflow changes after stop and restart of intraaortic balloon pump in cardiogenic shock, Clin Res Cardiol, vol.98, pp.469-475, 2009.

C. A. Den-uil, W. K. Lagrand, and M. Van-der-ent, The effects of intra-aortic balloon pump support on macrocirculation and tissue microcirculation in patients with cardiogenic shock, Cardiology, vol.114, pp.42-46, 2009.

L. D. Munsterman, P. W. Elbers, and A. Ozdemir, Withdrawing intra-aortic balloon pump support paradoxically improves microvascular flow, Crit Care, vol.14, p.161, 2010.

B. Atasever, M. Van-der-kuil, and C. Boer, Red blood cell transfusion compared with gelatin solution and no infusion after cardiac surgery: effect on microvascular perfusion, vascular density, hemoglobin, and oxygen saturation, Transfusion, vol.52, pp.2452-2458, 2012.

P. Cabrales and A. G. Tsai, Plasma viscosity regulates systemic and microvascular perfusion during acute extreme anemic conditions, Am J Physiol Heart Circ Physiol, vol.291, pp.2445-2452, 2006.

P. Cabrales, A. G. Tsai, and M. Intaglietta, Increased plasma viscosity prolongs microhemodynamic conditions during small volume resuscitation from hemorrhagic shock, Resuscitation, vol.77, pp.379-386, 2008.

B. Y. Salazar-vázquez, J. Martini, C. Negrete, and A. , Microvascular benefits of increasing plasma viscosity and maintaining blood viscosity: counterintuitive experimental findings, Biorheology, vol.46, pp.167-179, 2009.

X. He, F. Su, and F. S. Taccone, Cardiovascular and microvascular responses to mild hypothermia in an ovine model, Resuscitation, vol.83, pp.760-766, 2012.

P. O. Joachimsson, F. Sjöberg, and M. Forsman, Adverse effects of hyperoxemia during cardiopulmonary bypass, J Thorac Cardiovasc Surg, vol.112, pp.812-819, 1996.

M. Kamler, D. Wendt, and N. Pizanis, Deleterious effects of oxygen during extracorporeal circulation for the microcirculation in vivo, Eur J Cardiothorac Surg, vol.26, pp.564-570, 2004.

A. G. Tsai, P. Cabrales, and R. M. Winslow, Microvascular oxygen distribution in awake hamster window chamber model during hyperoxia, Am J Physiol Heart Circ Physiol, vol.285, pp.1537-1545, 2003.

M. E. Van-genderen, A. Lima, and M. Akkerhuis, Persistent peripheral and microcirculatory perfusion alterations after out-of-hospital cardiac arrest are associated with poor survival, Crit Care Med, vol.40, pp.2287-2294, 2012.

P. W. Elbers, A. Ozdemir, and R. H. Heijmen, Microvascular hemodynamics in human hypothermic circulatory arrest and selective antegrade cerebral perfusion, Crit Care Med, vol.38, pp.1548-1553, 2010.

T. Kunihara, S. Sasaki, and N. Shiiya, Near infrared spectrophotometry reflects cerebral metabolism during hypothermic circulatory arrest in adults, ASAIO J, vol.47, pp.417-421, 2001.

N. J. Koning, A. B. Vonk, and L. J. Van-barneveld, Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics, J Appl Physiol, vol.112, pp.1727-1734, 2012.

M. P. O'neil, J. C. Fleming, and A. Badhwar, Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: microcirculatory and systemic effects, Ann Thorac Surg, vol.94, pp.2046-2053, 2012.

P. W. Elbers, J. Wijbenga, and F. Solinger, Direct observation of the human microcirculation during cardiopulmonary bypass: effects of pulsatile perfusion, J Cardiothorac Vasc Anesth, vol.25, pp.250-255, 2011.

G. Grubhofer, P. Mares, and A. Rajek, Pulsatility does not change cerebral oxygenation during cardiopulmonary bypass, Acta Anaesthesiol Scand, vol.44, pp.586-591, 2000.

N. J. Koning, B. Atasever, and A. B. Vonk, The effects of pulsatile cardiopulmonary bypass on microcirculatory perfusion: perspectives from a null-result study, J Cardiothorac Vasc Anesth, vol.25, p.24, 2011.

R. T. Mathie, S. K. Ohri, and B. E. Keogh, Nitric oxide activity in patients undergoing cardiopulmonary bypass, J Thorac Cardiovasc Surg, vol.112, pp.1394-1395, 1996.

S. K. Ohri, C. W. Bowles, and R. T. Mathie, Effect of cardiopulmonary bypass perfusion protocols on gut tissue oxygenation and blood flow, Ann Thorac Surg, vol.64, pp.163-170, 1997.

F. Pinaud, L. Loufrani, and B. Toutain, In vitro protection of vascular function from oxidative stress and inflammation by pulsatility in resistance arteries, J Thorac Cardiovasc Surg, vol.142, pp.1254-1262, 2011.

J. M. Murkin, J. S. Martzke, and A. M. Buchan, A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. I. Mortality and cardiovascular morbidity, J Thorac Cardiovasc Surg, vol.110, pp.340-348, 1995.

K. M. Taylor, W. H. Bain, and K. G. Davidson, Comparative clinical study of pulsatile and non-pulsatile perfusion in 350 consecutive patients, Thorax, vol.37, pp.324-330, 1982.

C. A. Den-uil, E. Klijn, and W. K. Lagrand, The microcirculation in health and critical disease, Prog Cardiovasc Dis, vol.51, pp.161-170, 2008.

N. G. Özarslan, B. Ayhan, and M. Kanbak, Comparison of the effects of sevoflurane, isoflurane, and desflurane on microcirculation in coronary artery bypass graft surgery, J Cardiothorac Vasc Anesth, vol.26, pp.791-798, 2012.

D. Backer, D. Dubois, M. J. Schmartz, and D. , Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia, Ann Thorac Surg, vol.88, pp.1396-1403, 2009.

C. A. Den-uil, W. K. Lagrand, and P. E. Spronk, Impaired sublingual microvascular perfusion during surgery with cardiopulmonary bypass: a pilot study, J Thorac Cardiovasc Surg, vol.136, pp.129-134, 2008.

A. Bauer, S. Kofler, and M. Thiel, Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results, Anesthesiology, vol.107, pp.939-945, 2007.

D. Backer, D. Dubois, M. J. Schmartz, and D. , Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia, Ann Thorac Surg, vol.88, pp.1396-1403, 2009.

A. Bauer, S. Kofler, and M. Thiel, Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results, Anesthesiology, vol.107, pp.939-945, 2007.

B. Atasever, C. Boer, and P. Goedhart, Distinct alterations in sublingual microcirculatory blood flow and hemoglobin oxygenation in on-pump and off-pump coronary artery bypass graft surgery, J Cardiothorac Vasc Anesth, vol.25, pp.784-90, 2011.

N. J. Koning, A. B. Vonk, and L. J. Van-barneveld, Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics, J Appl Physiol, vol.112, pp.1727-1734, 2012.

G. S. Murphy and R. C. Groom, Optimal perfusion during cardiopulmonary bypass: an evidence-based approach, Anesth Analg, vol.108, pp.1394-1417, 2009.

P. Cabrales, J. Martini, and M. Intaglietta, Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity, Am J Physiol Heart Circ Physiol, vol.291, pp.581-90, 2006.

B. Y. Salazar-vázquez, J. Martini, C. Negrete, and A. , Microvascular benefits of increasing plasma viscosity and maintaining blood viscosity: Counterintuitive experimental findings, Biorheology, vol.46, pp.167-179, 2009.

N. J. Koning, B. Atasever, and A. Vonk, Changes in microcirculatory perfusion and oxygenation during on-pump and off-pump cardiac surgery, J Cardiothorac Vasc Anesth, vol.28, pp.1331-1371, 2014.

J. Papp, A. Toth, and B. Sandor, The influence of on-pump and off-pump coronary artery bypass grafting on hemorheological parameters, Clin Hemorheol Microcirc, vol.49, pp.331-377, 2011.

R. Ascione, A. Ghosh, and B. C. Reeves, Retinal and cerebral microembolization during coronary artery bypass surgery: a randomized, controlled trial, Circulation, vol.112, pp.3833-3841, 2005.

B. Atasever, C. Boer, and R. Speekenbrink, Cardiac displacement during off-pump coronary artery bypass grafting surgery: effect on sublingual microcirculation and cerebral oxygenation, Interact Cardiovasc Thorac Surg, vol.13, pp.573-580, 2011.

D. Backer, D. Hollenberg, S. Boerma, and C. , How to evaluate the microcirculation: report of a round table conference, Crit Care, vol.11, p.101, 2007.

P. Cabrales, Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia, Am J Physiol Heart Circ Physiol, vol.293, pp.1206-1221, 2007.

P. Donndorf, F. Kühn, and B. Vollmar, Comparing microvascular alterations during minimal extracorporeal circulation and conventional cardiopulmonary bypass in coronary artery bypass graft surgery: A prospective, randomized study, J Thorac Cardiovasc Surg, vol.144, pp.677-83, 2011.

K. Yuruk, R. Bezemer, and M. Euser, The effects of conventional extracorporeal circulation versus miniaturized extracorporeal circulation on microcirculation during cardiopulmonary bypassassisted coronary artery bypass graft surgery, Interact Cardiovasc Thorac Surg, vol.15, pp.364-70, 2012.

A. Sezai, M. Shiono, and K. Nakata, Effects of pulsatile CPB on interleukin-8 and endothelin-1 levels, Artif Organs, vol.29, pp.708-721, 2005.

F. Onorati, A. S. Rubino, and S. Nucera, Off-pump coronary artery bypass surgery versus standard linear or pulsatile cardiopulmonary bypass: endothelial activation and inflammatory response, Eur J Cardiothoracic Surg, vol.37, pp.897-904, 2010.

A. M. Grigore, C. F. Murray, and H. Ramakrishna, A core review of temperature regimens and neuroprotection during cardiopulmonary bypass: does rewarming rate matter?, Anesth Analg, vol.109, pp.1741-51, 2009.

B. Atasever, C. Boer, and P. Goedhart, Distinct alterations in sublingual microcirculatory blood flow and hemoglobin oxygenation in on-pump and off-pump coronary artery bypass graft surgery, J Cardiothorac Vasc Anesth, vol.25, pp.784-90, 2011.

A. Bauer, S. Kofler, and M. Thiel, Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results, Anesthesiology, vol.107, pp.939-945, 2007.

D. Backer, D. Dubois, M. J. Schmartz, and D. , Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia, Ann Thorac Surg, vol.88, pp.1396-1403, 2009.

Y. Sakr, M. J. Dubois, D. Backer, and D. , Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock, Crit Care Med, vol.32, pp.1825-1856, 2004.

S. Trzeciak, R. P. Dellinger, and J. E. Parrillo, Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival, Ann Emerg Med, vol.49, pp.88-98, 2007.

P. Hornick and K. Taylor, Pulsatile and nonpulsatile perfusion: the continuing controversy, J Cardiothorac Vasc Anesth, vol.11, pp.310-315, 1997.

J. M. Murkin, J. S. Martzke, and A. M. Buchan, A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. I. Mortality and cardiovascular morbidity, J Thorac Cardiovasc Surg, vol.110, pp.340-348, 1995.

K. M. Taylor, W. H. Bain, and K. G. Davidson, Comparative clinical study of pulsatile and non-pulsatile perfusion in 350 consecutive patients, Thorax, vol.37, pp.324-330, 1982.

S. Watarida, A. Mori, and M. Onoe, A clinical study on the effects of pulsatile cardiopulmonary bypass on the blood endotoxin levels, J Thorac Cardiovasc Surg, vol.108, pp.620-625, 1994.

P. W. Elbers, J. Wijbenga, and F. Solinger, Direct Observation of the Human Microcirculation During Cardiopulmonary Bypass: Effects of Pulsatile Perfusion, J Cardiothorac Vasc Anest, vol.25, pp.250-255, 2011.

J. A. Gaer, A. D. Shaw, and R. Wild, Effect of cardiopulmonary bypass on gastrointestinal perfusion and function, Ann Thorac Surg, vol.57, pp.371-375, 1994.

R. T. Mathie, S. K. Ohri, and B. E. Keogh, Nitric oxide activity in patients undergoing cardiopulmonary bypass, J Thorac Cardiovasc Surg, vol.112, pp.1394-1395, 1996.

S. K. Ohri, C. W. Bowles, and R. T. Mathie, Effect of cardiopulmonary bypass perfusion protocols on gut tissue oxygenation and blood flow, Ann Thorac Surg, vol.64, pp.163-170, 1997.

A. Undar, T. Masai, and O. H. Frazier, Pulsatile and nonpulsatile flows can be quantified in terms of energy equivalent pressure during cardiopulmonary bypass for direct comparisons, ASAIO J, vol.45, pp.610-614, 1999.

G. Wright, Cardiac function by means of pulsatile blood pumps, J Cardiovasc Thorac Anesth, vol.11, pp.299-309, 1997.

O. Traub and B. C. Berk, Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force, Arterioscler Thromb Vasc Biol, vol.18, pp.677-685, 1998.

Y. Li, J. Zheng, and I. M. Bird, Effects of pulsatile shear stress on signaling mechanisms controlling nitric oxide production, endothelial nitric oxide synthase phosphorylation, and expression in ovine fetoplacental artery endothelial cells, Endothelium, vol.12, pp.21-39, 2005.

M. Noris, M. Morigi, and R. Donadelli, Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions, Circ Res, vol.76, pp.536-579, 1995.

E. Lanzarone, F. Gelmini, and M. Tessari, Preservation of endothelium nitric oxide release by pulsatile flow cardiopulmonary bypass when compared with continuous flow, Artif Organs, vol.33, pp.926-960, 2009.

N. J. Koning, A. B. Vonk, and L. J. Van-barneveld, Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics, J Appl Physiol, vol.112, pp.1727-1734, 2012.

R. Bezemer, S. A. Bartels, and J. Bakker, Clinical review: Clinical imaging of the sublingual microcirculation in the critically ill -where do we stand?, Crit Care, vol.16, p.224, 2012.

M. F. Humer, P. T. Phang, and B. P. Friesen, Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs, J Appl Physiol, vol.81, pp.895-904, 1996.

V. Schmitz, K. D. Schaser, and P. Olschewski, In vivo visualization of early microcirculatory changes following ischemia/reperfusion injury in human kidney transplantation, Eur Surg Res, vol.40, pp.19-25, 2008.

C. G. Ellis, R. M. Bateman, and M. D. Sharpe, Effect of a maldistribution of microvascular blood flow on capillary O(2) extraction in sepsis, Am J Physiol Heart Circ Physiol, vol.282, pp.156-164, 2002.

C. Lam, K. Tyml, and C. Martin, Microvascular perfusion is impaired in a rat model of normotensive sepsis, J Clin Invest, vol.94, pp.2077-83, 1994.

D. Goldman, Theoretical models of microvascular oxygen transport to tissue, Microcirculation, vol.15, pp.795-811, 2008.

D. Backer, D. Creteur, J. Dubois, and M. J. , Microvascular alterations in patients with acute severe heart failure and cardiogenic shock, Am Heart J, vol.147, pp.91-100, 2004.

S. Jhanji, C. Lee, and D. Watson, Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications, Intensive Care Med, vol.35, pp.671-678, 2009.

Y. Sakr, M. J. Dubois, D. Backer, and D. , Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock, Crit Care Med, vol.32, pp.1825-1856, 2004.

S. Trzeciak, R. P. Dellinger, and J. E. Parrillo, Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival, Ann Emerg Med, vol.49, pp.88-98, 2007.

G. Gutierrez, The rate of oxygen release and its effect on capillary O2 tension: a mathematical analysis, Respir Physiol, vol.63, pp.79-96, 1986.

D. C. Angus and T. Van-der-poll, Severe sepsis and septic shock, N Engl J Med, vol.29, pp.840-51, 2013.

N. J. Koning, A. B. Vonk, and M. I. Meesters, Microcirculatory perfusion is preserved during off-pump but not on-pump cardiac surgery, J Cardiothorac Vasc Anest, vol.28, pp.336-377, 2014.

P. T. Goedhart, M. Khalilzada, and R. Bezemer, Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation, Opt Express, vol.15, pp.15101-15114, 2007.

D. Backer, D. Hollenberg, S. Boerma, and C. , How to evaluate the microcirculation: report of a round table conference, Crit Care, vol.11, p.101, 2007.

B. Atasever, C. Boer, and P. Goedhart, Distinct alterations in sublingual microcirculatory blood flow and hemoglobin oxygenation in on-pump and off-pump coronary artery bypass graft surgery, J Cardiothorac Vasc Anesth, vol.25, pp.784-90, 2011.

I. H. Sarelius and B. R. Duling, Direct measurement of microvessel hematocrit, red cell flux, velocity, and transit time, Am J Physiol, vol.243, pp.1018-1044, 1982.

A. E. Taylor and T. M. Moore, Capillary fluid exchange, Am J Physiol, vol.277, pp.203-210, 1999.

D. Goldman, R. M. Bateman, and C. G. Ellis, Effect of decreased O2 supply on skeletal muscle oxygenation and O2 consumption during sepsis: role of heterogeneous capillary spacing and blood flow, Am J Physiol Heart Circ Physiol, vol.290, pp.2277-2285, 2006.

J. Schumacher, W. Eichler, and M. Heringlake, Intercompartmental fluid volume shifts during cardiopulmonary bypass measured by A-mode ultrasonography, Perfusion, vol.19, pp.277-81, 2004.

E. Hirleman and D. F. Larson, Cardiopulmonary bypass and edema: physiology and pathophysiology, Perfusion, vol.23, pp.311-333, 2008.

D. Rocca, G. Coccia, and C. , Acute lung injury in thoracic surgery, Curr Opin Anaesthesiol, vol.26, pp.40-46, 2013.

T. E. Woodcock and T. M. Woodcock, Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy, Br J Anaesth, vol.108, pp.384-94, 2012.

G. P. Van-nieuw-amerongen, R. Draijer, and M. A. Vermeer, Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA, Circ Res, vol.83, pp.1115-1138

P. Kumar, Q. Shen, and C. D. Pivetti, Molecular mechanisms of endothelial hyperpermeability: implications in inflammation, Expert Rev Mol Med, vol.11, p.19, 2009.

H. K. Brekke, S. M. Hammersborg, and S. Lundemoen, Isoflurane in contrast to propofol promotes fluid extravasation during cardiopulmonary bypass in pigs, Anesthesiology, vol.119, pp.861-70, 2013.

F. Onorati, G. Santarpino, and G. Tangredi, Intra-aortic balloon pump induced pulsatile perfusion reduces endothelial activation and inflammatory response following cardiopulmonary bypass, Eur J Cardiothorac Surg, vol.35, pp.1012-1021, 2009.

H. Miao, Y. L. Hu, and Y. T. Shiu, Effects of flow patterns on the localization and expression of VEcadherin at vascular endothelial cell junctions: in vivo and in vitro investigations, J Vasc Res, vol.42, pp.77-89, 2005.

C. V. Serrano, J. A. Souza, and N. H. Lopes, Reduced expression of systemic proinflammatory and myocardial biomarkers after off-pump versus on-pump coronary artery bypass surgery: a prospective randomized study, J Crit Care, vol.25, pp.305-317, 2010.

H. Eikemo, O. F. Sellevold, and V. Videm, Markers for endothelial activation during open heart surgery, Ann Thorac Surg, vol.77, pp.214-223, 2004.

V. Toprak, B. H. Sirin, and D. Tok, The effect of cardiopulmonary bypass on the expression of inducible nitric oxide synthase, endothelial nitric oxide synthase, and vascular endothelial growth factor in the internal mammary artery, J Cardiothorac Vasc Anesth, vol.20, pp.63-70, 2006.

E. D. Verrier and E. N. Morgan, Endothelial response to cardiopulmonary bypass surgery, Ann Thorac Surg, vol.66, pp.17-26, 1998.

A. M. Morariu, M. H. Maathuis, and S. A. Asgeirsdottir, Acute isovolemic hemodilution triggers proinflammatory and procoagulatory endothelial activation in vital organs: role of erythrocyte aggregation, Microcirculation, vol.13, pp.397-409, 2006.

H. J. Guretzki, E. Schleicher, and K. D. Gerbitz, Heparin induces endothelial extracellular matrix alterations and barrier dysfunction, Am J Physiol, vol.267, pp.946-54, 1994.

M. Farstad, J. K. Heltne, and S. E. Rynning, Can the use of methylprednisolone, vitamin C, or alphatrinositol prevent cold-induced fluid extravasation during cardiopulmonary bypass in piglets?, J Thorac Cardiovasc Surg, vol.127, pp.525-559, 2004.

C. Bianchi, E. G. Araujo, and K. Sato, Biochemical and structural evidence for pig myocardium adherens junction disruption by cardiopulmonary bypass, Circulation, vol.104, pp.319-343, 2001.

T. A. Khan, C. Bianchi, and E. Araujo, Aprotinin preserves cellular junctions and reduces myocardial edema after regional ischemia and cardioplegic arrest, Circulation, vol.112, pp.196-201, 2005.

A. Constantinescu, J. A. Spaan, and E. K. Arkenbout, Degradation of the endothelial glycocalyx is associated with chylomicron leakage in mouse cremaster muscle microcirculation, Thromb Haemost, vol.105, pp.790-801, 2011.

M. Nieuwdorp, M. C. Meuwese, and H. L. Mooij, Tumor necrosis factor-alpha inhibition protects against endotoxin-induced endothelial glycocalyx perturbation, Atherosclerosis, vol.202, pp.296-303, 2009.

M. Nieuwdorp, T. W. Van-haeften, and M. C. Gouverneur, Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo, Diabetes, vol.55, pp.480-486, 2006.

M. C. Meuwese, H. L. Mooij, and M. Nieuwdorp, Partial recovery of the endothelial glycocalyx upon rosuvastatin therapy in patients with heterozygous familial hypercholesterolemia, J Lipid Res, vol.50, pp.148-53, 2009.

C. A. Vlahu, B. A. Lemkes, and D. G. Struijk, Damage of the endothelial glycocalyx in dialysis patients, J Am Soc Nephrol, vol.23, pp.1900-1908, 2012.

M. G. Snoeijs, H. Vink, and N. Voesten, Acute ischemic injury to the renal microvasculature in human kidney transplantation, Am J Physiol Renal Physiol, vol.299, pp.1134-1174, 2010.

A. Donati, E. Damiani, and R. Domizi, Alteration of the sublingual microvascular glycocalyx in critically ill patients, Microvasc Res, vol.90, pp.86-95, 2013.

D. H. Lee, M. J. Dane, and B. M. Van-den-berg, Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion, PLoS One, vol.9, p.96477, 2014.

M. J. Dane, M. Khairoun, and D. H. Lee, Association of kidney function with changes in the endothelial surface layer, Clin J Am Soc Nephrol, vol.9, pp.698-704, 2014.

X. He, F. Su, and F. S. Taccone, Cardiovascular and microvascular responses to mild hypothermia in an ovine model, Resuscitation, vol.83, pp.760-766, 2012.

B. Atasever, M. Van-der-kuil, and C. Boer, Red blood cell transfusion compared with gelatin solution and no infusion after cardiac surgery: effect on microvascular perfusion, vascular density, hemoglobin, and oxygen saturation, Transfusion, vol.52, pp.2452-2460, 2012.

N. J. Koning, A. B. Vonk, and L. J. Van-barneveld, Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics, J Appl Physiol, vol.112, pp.1727-1761, 2012.

C. Lam, K. Tyml, and C. Martin, Microvascular perfusion is impaired in a rat model of normotensive sepsis, J Clin Invest, vol.94, pp.2077-83, 1994.

M. S. Strunden, A. Bornscheuer, and A. Schuster, Glycocalyx degradation causes microvascular perfusion failure in the ex vivo perfused mouse lung: hydroxyethyl starch 130/0.4 pretreatment attenuates this response, Shock, vol.38, pp.559-66, 2012.

X. Marechal, R. Favory, and O. Joulin, Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress, Shock, vol.29, pp.572-578, 2008.

P. Cabrales, B. Y. Vázquez, and A. G. Tsai, Microvascular and capillary perfusion following glycocalyx degradation, J Appl Physiol, vol.102, pp.2251-2260, 2007.

A. R. Pries, T. W. Secomb, and M. Sperandio, Blood flow resistance during hemodilution: effect of plasma composition, Cardiovasc Res, vol.37, pp.225-260, 1998.

D. Backer, D. Dubois, M. J. Schmartz, D. Koch, and M. , Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia, Ann Thorac Surg, vol.88, pp.1396-403, 2009.

N. J. Koning, A. B. Vonk, and M. I. Meesters, Microcirculatory perfusion is preserved during off-pump but not on-pump cardiac surgery, J Cardiothorac Vasc Anesth, vol.28, pp.336-377, 2014.

P. T. Goedhart, M. Khalilzada, and R. Bezemer, Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation, Opt Express, vol.12, pp.15101-15115, 2007.

S. A. Nashef, F. Roques, and P. Michel, European system for cardiac operative risk evaluation (EuroSCORE), Eur J Cardiothorac Surg, vol.16, pp.9-13, 1999.

D. Bruegger, L. Schwartz, and D. Chappell, Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on-and off-pump coronary artery bypass surgery, Basic Res Cardiol, vol.106, pp.1111-1132, 2011.

M. Gouverneur, J. A. Spaan, and H. Pannekoek, Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx, Am J Physiol Heart Circ Physiol, vol.290, pp.458-460, 2006.

R. A. Kozar, Z. Peng, and R. Zhang, Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock, Anesth Analg, vol.112, pp.1289-95, 2011.

M. Jacob, D. Bruegger, and M. Rehm, The endothelial glycocalyx affords compatibility of Starling's principle and high cardiac interstitial albumin levels, Cardiovasc Res, vol.73, pp.575-586, 2007.

M. Floer, M. Götte, and M. K. Wild, Enoxaparin improves the course of dextran sodium sulfate colitis in syndecan-1 deficient mice, Am J Pathol, vol.176, pp.146-157, 2010.

S. Yini, Z. Heng, and A. Xin, Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model, Acta Anaesthesiol Scand, vol.59, pp.160-169, 2015.

T. Nakano, R. Tominaga, and I. Nagano, Pulsatile flow enhances endothelium-derived nitric oxide release in the peripheral vasculature, Am J Physiol Heart Circ Physiol, vol.278, pp.1098-104, 2000.

B. F. Becker, D. Chappell, and D. Bruegger, Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential, Cardiovasc Res, vol.87, pp.300-310, 2010.

T. E. Woodcock and T. M. Woodcock, Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy, Br J Anaesth, vol.108, pp.384-94, 2012.

M. Jacob, M. Rehm, and M. Loetsch, The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation, J Vasc Res, vol.44, pp.435-478, 2007.

N. J. Koning, L. E. Simon, and P. Asfar, Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass, Am J Physiol Heart Circ Physiol, vol.307, pp.967-75, 2014.

A. E. Taylor and T. M. Moore, Capillary fluid exchange, Am J Physiol, vol.277, pp.203-210, 1999.

N. J. Koning, B. Atasever, and A. B. Vonk, Changes in microcirculatory perfusion and oxygenation during cardiac surgery with or without cardiopulmonary bypass, J Cardiothorac Vasc Anesth, vol.28, pp.1331-1371, 2014.

N. J. Koning, A. B. Vonk, and L. J. Van-barneveld, Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics, J Appl Physiol, vol.112, pp.1727-1761, 2012.

N. J. Koning, L. E. Simon, and P. Asfar, Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass, Am J Physiol Heart Circ Physiol, vol.307, pp.967-75, 2014.

D. Goldman, R. M. Bateman, and C. G. Ellis, Effect of decreased O2 supply on skeletal muscle oxygenation and O2 consumption during sepsis: role of heterogeneous capillary spacing and blood flow, Am J Physiol Heart Circ Physiol, vol.290, pp.2277-2285, 2006.

M. F. Humer, P. T. Phang, and B. P. Friesen, Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs, J Appl Physiol, vol.81, pp.895-904, 1996.

K. R. Walley, Heterogeneity of oxygen delivery impairs oxygen extraction by peripheral tissues: theory, J Appl Physiol, vol.81, pp.885-94, 1996.

S. Trzeciak, R. P. Dellinger, and J. E. Parrillo, Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival, Ann Emerg Med, vol.49, pp.88-98, 2007.

H. Gomez, C. Ince, D. Backer, and D. , A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury, Shock, vol.41, pp.3-11, 2014.

C. Ince, The central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury, Nephron Clin Pract, vol.127, pp.124-132, 2014.

M. A. Matthay and G. A. Zimmerman, Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management, Am J Respir Cell Mol Biol, vol.33, pp.319-346, 2005.

A. Bauer, S. Kofler, and M. Thiel, Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results, Anesthesiology, vol.107, pp.939-984, 2007.

D. Backer, D. Dubois, M. J. Schmartz, and D. , Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anaesthesia, Ann Thorac Surg, vol.88, pp.1396-1403, 2009.

N. J. Koning, A. B. Vonk, and M. I. Meesters, Microcirculatory perfusion is preserved during off-pump but not on-pump cardiac surgery, J Cardiothorac Vasc Anest, vol.28, pp.336-377, 2014.

P. Cabrales, A. G. Tsai, and J. A. Frangos, Oxygen delivery and consumption in the microcirculation after extreme hemodilution with perfluorocarbons, Am J Physiol Heart Circ Physiol, vol.287, pp.320-350, 2004.

A. M. Morariu, M. H. Maathuis, and S. A. Asgeirsdottir, Acute isovolemic haemodilution triggers proinflammatory and procoagulatory endothelial activation in vital organs: role of erythrocyte aggregation, Microcirculation, vol.13, pp.397-409, 2006.

F. M. Konrad, E. G. Mik, and S. I. Bodmer, Acute normovolemic haemodilution in the pig is associated with renal tissue edema, impaired renal microvascular oxygenation, and functional loss, Anesthesiology, vol.119, pp.256-69, 2013.

B. Atasever, M. Van-der-kuil, and C. Boer, Red blood cell transfusion compared with gelatin solution and no infusion after cardiac surgery: effect on microvascular perfusion, vascular density, hemoglobin, and oxygen saturation, Transfusion, vol.52, pp.2452-2460, 2012.

K. Yuruk, E. Almac, and R. Bezemer, Blood transfusions recruit the microcirculation during cardiac surgery, Transfusion, vol.51, pp.961-968, 2011.

R. Ascione, C. T. Lloyd, and M. J. Underwood, Inflammatory response after coronary revascularization with or without cardiopulmonary bypass, Ann Thorac Surg, vol.69, pp.1198-204, 2000.

S. Baez, An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy, Microvascular Research, vol.5, pp.384-94, 1973.

G. B. Mackensen, Y. Sato, and B. Nellgård, Cardiopulmonary bypass induces neurologic and neurocognitive dysfunction in the rat, Anesthesiology, vol.95, pp.1485-91, 2001.

F. De-lange, K. Yoshitani, and M. V. Podgoreanu, A novel survival model of cardioplegic arrest and cardiopulmonary bypass in rats: a methodology paper, J Cardiothorac Surg, vol.19, p.51, 2008.

S. G. Li, D. C. Randall, and D. R. Brown, Roles of cardiac output and peripheral resistance in mediating blood pressure response to stress in rats, Am J Physiol, vol.274, pp.1065-1074, 1998.

C. L. Verdant, D. Backer, D. Bruhn, and A. , Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis, Crit Care Med, vol.37, pp.2875-81, 2009.

C. G. Ellis, R. M. Bateman, and M. D. Sharpe, Effect of a maldistribution of microvascular blood flow on capillary O(2) extraction in sepsis, Am J Physiol Heart Circ Physiol, vol.282, pp.156-164, 2002.

M. C. Kneyber, R. P. Gazendam, and H. W. Niessen, Mechanical ventilation during experimental sepsis increases deposition of advanced glycation end products and myocardial inflammation, Crit Care, vol.13, p.87, 2009.

J. L. Wautier and A. M. Schmidt, Protein glycation: A firm link to endothelial cell dysfunction, Circulation Research, vol.95, pp.233-241, 2004.

A. Baidoshvili, P. A. Krijnen, and K. Kupreishvili, N(epsilon)-(carboxymethyl)lysine depositions in intramyocardial blood vessels in human and rat acute myocardial infarction: a predictor or reflection of infarction?, Arterioscler Thromb Vasc Biol, vol.26, pp.2497-503, 2006.

H. Bomberg, B. Bierbach, and S. Flache, Vasopressin Aggravates Cardiopulmonary Bypass-Induced Gastric Mucosal Ischemia, Eur Surg Res, vol.54, pp.75-86, 2015.

P. W. Elbers, A. Ozdemir, and M. Van-iterson, Microcirculatory imaging in cardiac anaesthesia: ketanserin reduces blood pressure but not perfused capillary density, J Cardiothorac Vasc Anesth, vol.23, pp.95-101, 2009.

S. Maier, W. R. Hasibeder, and C. Hengl, Effects of phenylephrine on the sublingual microcirculation during cardiopulmonary bypass, Br J Anaesth, vol.102, pp.485-91, 2009.

A. Azau, P. Markowicz, and J. J. Corbeau, Increasing mean arterial pressure during cardiac surgery does not reduce the rate of postoperative acute kidney injury, Perfusion, vol.29, pp.496-504, 2014.

L. Mcnicol, M. Lipcsey, and R. Bellomo, Pilot alternating treatment design study of the splanchnic metabolic effects of two mean arterial pressure targets during cardiopulmonary bypass, Br J Anaesth, vol.110, pp.721-729, 2013.

E. Lanzarone, F. Gelmini, and M. Tessari, Preservation of endothelium nitric oxide release by pulsatile flow cardiopulmonary bypass when compared with continuous flow, Artif Organs, vol.33, pp.926-960, 2009.

P. Donndorf, F. Kühn, and B. Vollmar, Comparing microvascular alterations during minimal extracorporeal circulation and conventional cardiopulmonary bypass in coronary artery bypass graft surgery: a prospective, randomized study, J Thorac Cardiovasc Surg, vol.144, pp.677-83, 2012.

R. Hall, Identification of inflammatory mediators and their modulation by strategies for the management of the systemic inflammatory response during cardiac surgery, J Cardiothorac Vasc Anesth, vol.27, pp.983-1033, 2013.

C. G. Ellis, J. Jagger, and M. Sharpe, The microcirculation as a functional system, Crit Care, vol.9, pp.3-8, 2005.

O. Eichelbrönner, A. Sielenkämper, and G. Cepinskas, Endotoxin promotes adhesion of human erythrocytes to human vascular endothelial cells under conditions of flow, Crit Care Med, vol.28, pp.1865-70, 2000.

C. M. Goddard, M. F. Allard, and J. C. Hogg, Prolonged leukocyte transit time in coronary microcirculation of endotoxemic pigs, Am J Physiol, vol.269, pp.1389-97, 1995.

R. M. Bateman, M. D. Sharpe, and C. G. Ellis, Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide, Crit Care, vol.7, pp.359-73, 2003.

A. R. Pries, K. Ley, and M. Claassen, Red cell distribution at microvascular bifurcations, Microvasc Res, vol.38, pp.81-101, 1989.

P. Cabrales, A. G. Tsai, and M. Intaglietta, Microvascular pressure and functional capillary density in extreme hemodilution with low-and high-viscosity dextran and a low-viscosity Hb-based O2 carrier, Am J Physiol Heart Circ Physiol, vol.287, pp.363-73, 2004.

M. V. Kameneva, A. Undar, and J. F. Antaki, Decrease in red blood cell deformability caused by hypothermia, hemodilution, and mechanical stress: factors related to cardiopulmonary bypass, ASAIO J, vol.45, pp.307-317, 1999.

R. H. Habib, A. Zacharias, and T. A. Schwann, Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcome, Crit Care Med, vol.33, pp.1749-56, 2005.

M. Ranucci, F. Romitti, and G. Isgrò, Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations, Ann Thorac Surg, vol.80, pp.2213-2233, 2005.

A. X. Garg, P. J. Devereaux, and S. Yusuf, Kidney function after off-pump or on-pump coronary artery bypass graft surgery: a randomized clinical trial, JAMA, vol.311, pp.2191-2199, 2014.

R. M. Jongman, J. G. Zijlstra, and W. F. Kok, Off-pump CABG surgery reduces systemic inflammation compared with on-pump surgery but does not change systemic endothelial responses: a prospective randomized study, Shock, vol.42, pp.121-129, 2014.

D. Backer, D. Dubois, M. J. Schmartz, and D. , Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia, Ann Thorac Surg, vol.88, pp.1396-403, 2009.

N. J. Koning, A. B. Vonk, and L. J. Van-barneveld, Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics, J Appl Physiol, vol.112, pp.1727-1761, 2012.

N. J. Koning, D. Lange, F. Vonk, and A. B. , Impaired microcirculatory perfusion in a rat model of cardiopulmonary bypass: the role of hemodilution, Am J Physiol Heart Circ Physiol, vol.310, pp.550-558, 2016.

C. S. Brudney, P. Gosling, and M. Manji, Pulmonary and renal function following cardiopulmonary bypass is associated with systemic capillary leak, J Cardiothorac Vasc Anesth, vol.19, pp.188-92, 2005.

C. Clajus, A. Lukasz, and S. David, Angiopoietin-2 is a potential mediator of endothelial barrier dysfunction following cardiopulmonary bypass, Cytokine, vol.60, pp.352-361, 2012.

N. J. Koning, M. A. Overmars, and C. E. Van-den-brom, Endothelial hyperpermeability after cardiac surgery with cardiopulmonary bypass as assessed using an in vitro bioassay for endothelial barrier function, Br J Anaesth, vol.116, pp.223-255, 2016.

S. N. Jerome, T. Akimitsu, and R. J. Korthuis, Leukocyte adhesion, edema, and development of postischemic capillary no-reflow, Am J Physiol, vol.267, pp.1329-1365, 1994.

R. M. Bateman, M. D. Sharpe, and C. G. Ellis, Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide, Crit Care, vol.7, pp.359-73, 2003.

C. G. Ellis, R. M. Bateman, and M. D. Sharpe, Effect of a maldistribution of microvascular blood flow on capillary O(2) extraction in sepsis, Am J Physiol Heart Circ Physiol, vol.282, pp.156-64, 2002.

A. Krogh, The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue, J Physiol, vol.52, pp.409-424, 1919.

M. Türegün, E. Güdemez, and P. Newman, Blockade of platelet endothelial cell adhesion molecule-1 (PECAM-1) protects against ischemia-reperfusion injury in muscle flaps at microcirculatory level, Plast Reconstr Surg, vol.104, pp.1033-1073, 1999.

C. F. Waller, Imatinib mesylate. Recent Results Cancer Res, vol.201, pp.1-25, 2014.

J. Aman, J. Van-bezu, and A. Damanafshan, Effective treatment of edema and endothelial barrier dysfunction with imatinib, Circulation, vol.126, pp.2728-2766, 2012.

E. Letsiou, A. N. Rizzo, and S. Sammani, Differential and opposing effects of imatinib on LPS-and ventilator-induced lung injury, Am J Physiol Lung Cell Mol Physiol, vol.308, pp.259-69, 2015.

S. Baez, An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy, Microvascular Research, vol.5, pp.384-94, 1973.

F. De-lange, J. M. Dieleman, and B. Jungwirth, Effects of cardiopulmonary bypass on neurocognitive performance and cytokine release in old and diabetic rats, Br J Anaesth, vol.99, pp.177-83, 2007.

S. G. Li, D. C. Randall, and D. R. Brown, Roles of cardiac output and peripheral resistance in mediating blood pressure response to stress in rats, Am J Physiol, vol.274, pp.1065-1074, 1998.

C. C. Stübs, O. Picker, and J. Schulz, Acute, short-term hypercapnia improves microvascular oxygenation of the colon in an animal model of sepsis, Microvasc Res, vol.90, pp.180-186, 2013.

A. H. Gandjbakhche, R. F. Bonner, and A. E. Arai, Visible-light photon migration through myocardium in vivo, Am J Physiol, vol.277, pp.698-704, 1999.

A. Baidoshvili, P. A. Krijnen, and K. Kupreishvili, N(epsilon)-(carboxymethyl)lysine depositions in intramyocardial blood vessels in human and rat acute myocardial infarction: a predictor or reflection of infarction?, Arterioscler Thromb Vasc Biol, vol.26, pp.2497-503, 2006.

M. C. Kneyber, R. P. Gazendam, and H. W. Niessen, Mechanical ventilation during experimental sepsis increases deposition of advanced glycation end products and myocardial inflammation, Crit Care, vol.13, p.87, 2009.

Z. Sun, X. Wang, and X. Deng, Phagocytic and intestinal endothelial and epithelial barrier function during the early stage of small intestinal ischemia and reperfusion injury, Shock, vol.13, pp.209-225, 2000.

S. L. Gao, Y. Zhang, and S. Y. Zhang, The hydrocortisone protection of glycocalyx on the intestinal capillary endothelium during severe acute pancreatitis, Shock, vol.43, pp.512-519, 2015.

M. A. Hidalgo, K. A. Shah, and B. J. Fuller, Cold ischemia-induced damage to vascular endothelium results in permeability alterations in transplanted lungs, J Thorac Cardiovasc Surg, vol.112, pp.1027-1062, 1996.

M. Corada, M. Mariotti, and G. Thurston, Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo, Proc Natl Acad Sci U S A, vol.96, pp.9815-9835, 1999.

A. M. Dvorak and D. Feng, A new endothelial cell permeability organelle, J Histochem Cytochem, vol.49, pp.419-451, 2001.

N. J. Koning, A. B. Vonk, and H. Vink, Side-by-Side Alterations in Glycocalyx Thickness and Perfused Microvascular Density During Acute Microcirculatory Alterations in Cardiac Surgery, Microcirculation, vol.23, pp.69-74, 2016.

N. J. Koning, L. E. Simon, and P. Asfar, Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass, Am J Physiol Heart Circ Physiol, vol.307, pp.967-75, 2014.

A. Bauer, S. Kofler, and M. Thiel, Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results, Anesthesiology, vol.107, pp.939-984, 2007.

S. Maier, W. R. Hasibeder, and C. Hengl, Effects of phenylephrine on the sublingual microcirculation during cardiopulmonary bypass, Br J Anaesth, vol.102, pp.485-91, 2009.

P. W. Elbers, A. Ozdemir, and M. Van-iterson, Microcirculatory imaging in cardiac anesthesia: ketanserin reduces blood pressure but not perfused capillary density, J Cardiothorac Vasc Anesth, vol.23, pp.95-101, 2009.

H. Bomberg, B. Bierbach, and S. Flache, Vasopressin induces rectosigmoidal mucosal ischemia during cardiopulmonary bypass, J Card Surg, vol.29, pp.108-123, 2014.

F. Pinaud, L. Loufrani, and B. Toutain, In vitro protection of vascular function from oxidative stress and inflammation by pulsatility in resistance arteries, J Thorac Cardiovasc Surg, vol.142, pp.1254-62, 2011.

P. Cabrales, A. G. Tsai, and M. Intaglietta, Microvascular pressure and functional capillary density in extreme hemodilution with low-and high-viscosity dextran and a low-viscosity Hb-based O2 carrier, Am J Physiol Heart Circ Physiol, vol.287, pp.363-73, 2004.

A. Stein, L. V. De-souza, and C. R. Belettini, Fluid overload and changes in serum creatinine after cardiac surgery: predictors of mortality and longer intensive care stay. A prospective cohort study, Crit Care, vol.16, p.99, 2012.

S. Trzeciak, R. P. Dellinger, and J. E. Parrillo, Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival, Ann Emerg Med, vol.49, pp.88-98, 2007.

D. Backer, D. Creteur, J. Dubois, and M. J. , Microvascular alterations in patients with acute severe heart failure and cardiogenic shock, Am Heart J, vol.147, pp.91-100, 2004.

S. Jhanji, C. Lee, and D. Watson, Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications, Intensive Care Med, vol.35, pp.671-678, 2009.

J. Prowle, S. M. Bagshaw, and R. Bellomo, Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm, Curr Opin Crit Care, vol.18, pp.585-92, 2012.

H. Gomez, C. Ince, D. Backer, and D. , A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury, Shock, vol.41, pp.3-11, 2014.

C. Ince, The central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury, Nephron Clin Pract, vol.127, pp.124-132, 2014.

M. A. Matthay and G. A. Zimmerman, Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management, Am J Respir Cell Mol Biol, vol.33, pp.319-346, 2005.

J. Verheij, A. Van-lingen, and P. G. Raijmakers, Effect of fluid loading with saline or colloids on pulmonary permeability, oedema and lung injury score after cardiac and major vascular surgery, Br J Anaesth, vol.96, pp.21-30, 2006.

A. Haase-fielitz, R. Bellomo, and P. Devarajan, Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery: a prospective cohort study, Crit Care Med, vol.37, pp.553-560, 2009.

H. R. De-geus, C. Ronco, M. Haase, L. Jacob, A. Lewington et al., The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: A potential tool to monitor acute tubular damage, J Thorac Cardiovasc Surg, vol.151, pp.1476-81, 2016.

K. Birnie, V. Verheyden, D. Pagano, M. Bhabra, K. Tilling et al.,

, UK AKI in Cardiac Surgery Collaborators: Predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery, Crit Care, vol.18, p.606, 2014.

J. W. Pickering, M. T. James, and S. C. Palmer, Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies, Am J Kidney Dis, vol.65, pp.283-93, 2015.

A. M. Gaffney and R. N. Sladen, Acute kidney injury in cardiac surgery, Curr Opin Anaesthesiol, vol.28, pp.50-59, 2015.

D. Paparello, T. M. Yau, and E. Young, Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update, Eur J Cardiothorac Surg, vol.21, pp.232-244, 2002.

A. N. Rizzo, J. Aman, G. P. Van-nieuw-amerongen, and S. M. Dudek, Targeting Abl kinases to regulate vascular leak during sepsis and acute respiratory distress syndrome, Arterioscler Thromb Vasc Biol, vol.35, pp.1071-1080, 2015.

D. Mokhtari, T. Li, T. Lu, and N. Welsh, Effects of Imatinib Mesylate (Gleevec) on human islet NF-kappaB activation and chemokine production in vitro, PLoS One, vol.6, p.24831, 2011.

R. Hall, Identification of inflammatory mediators and their modulation by strategies for the management of the systemic inflammatory response during cardiac surgery, J Cardiothorac Vasc Anesth, vol.27, pp.983-1033, 2013.

N. J. Koning, B. Atasever, A. B. Vonk, and C. Boer, Changes in microcirculatory perfusion and oxygenation during cardiac surgery with or without cardiopulmonary bypass, J Cardiothorac Vasc Anesth, vol.28, pp.1331-1371, 2014.

H. R. De-geus, M. G. Betjes, and J. Bakker, Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges, Clin Kidney J, vol.5, pp.102-108, 2012.

M. Haase, R. Bellomo, and A. Haase-fielitz, Neutrophil gelatinase-associated lipocalin, Curr Opin Crit Care, vol.16, pp.526-558, 2010.

F. M. Konrad, E. G. Mik, S. I. Bodmer, N. B. Ates, H. F. Willems et al., Acute normovolemic hemodilution in the pig is associated with renal tissue edema, impaired renal microvascular oxygenation, and functional loss, Anesthesiology, vol.119, pp.256-69, 2013.

M. Vives, R. Callejas, P. Duque, G. Echarri, D. N. Wijeysundera et al., Modern hydroxyethyl starch and acute kidney injury after cardiac surgery: a prospective multicentre cohort, Br J Anaesth, vol.117, pp.458-463, 2016.

E. M. Chislock and A. M. Pendergast, Abl family kinases regulate endothelial barrier function in vitro and in mice, PLoS One, vol.8, 2013.

J. Prowle, S. M. Bagshaw, and R. Bellomo, Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm, Curr Opin Crit Care, vol.18, pp.585-92, 2012.

C. Ince, The central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury, Nephron Clin Pract, vol.127, pp.124-132, 2014.

M. A. Matthay and G. A. Zimmerman, Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management, Am J Respir Cell Mol Biol, vol.33, pp.319-346, 2005.

S. Trzeciak, R. P. Dellinger, and J. E. Parrillo, Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival, Ann Emerg Med, vol.49, pp.88-98, 2007.

Y. Sakr, M. J. Dubois, D. Backer, and D. , Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock, Crit Care Med, vol.32, pp.1825-1856, 2004.

M. Ranucci, F. Romitti, and G. Isgrò, Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations, Ann Thorac Surg, vol.80, pp.2213-2233, 2005.

M. L. Ellsworth, C. G. Ellis, and R. S. Sprague, Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle, Acta Physiol (Oxf), vol.216, pp.265-76, 2016.

P. Cabrales, A. G. Tsai, and J. A. Frangos, Oxygen delivery and consumption in the microcirculation after extreme hemodilution with perfluorocarbons, Am J Physiol Heart Circ Physiol, vol.287, pp.320-350, 2004.

M. Noris, M. Morigi, and R. Donadelli, Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions, Circ Res, vol.76, pp.536-579, 1995.

E. Lanzarone, F. Gelmini, and M. Tessari, Preservation of endothelium nitric oxide release by pulsatile flow cardiopulmonary bypass when compared with continuous flow, Artif Organs, vol.33, pp.926-960, 2009.

F. Pinaud, L. Loufrani, and B. Toutain, In vitro protection of vascular function from oxidative stress and inflammation by pulsatility in resistance arteries, J Thorac Cardiovasc Surg, vol.142, pp.1254-62, 2011.

D. Bruegger, L. Schwartz, and D. Chappell, Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on-and off-pump coronary artery bypass surgery, Basic Res Cardiol, vol.106, pp.1111-1132, 2011.

M. Rehm, D. Bruegger, and F. Christ, Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia, Circulation, vol.116, pp.1896-906, 2007.

B. F. Becker, M. Jacob, and S. Leipert, Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases, Br J Clin Pharmacol, vol.80, pp.389-402, 2015.

P. Cabrales, B. Y. Vázquez, and A. G. Tsai, Microvascular and capillary perfusion following glycocalyx degradation, J Appl Physiol, vol.102, pp.2251-2260, 2007.

G. Gutierrez, The rate of oxygen release and its effect on capillary O2 tension: a mathematical analysis, Respir Physiol, vol.63, pp.79-96, 1986.

C. F. Waller, Imatinib mesylate. Recent Results Cancer Res, vol.201, pp.1-25, 2014.

J. Aman, J. Van-bezu, and A. Damanafshan, Effective treatment of edema and endothelial barrier dysfunction with imatinib, Circulation, vol.126, pp.2728-2766, 2012.

E. Letsiou, A. N. Rizzo, and S. Sammani, Differential and opposing effects of imatinib on LPS-and ventilator-induced lung injury, Am J Physiol Lung Cell Mol Physiol, vol.308, pp.259-69, 2015.

A. Stein, L. V. De-souza, and C. R. Belettini, Fluid overload and changes in serum creatinine after cardiac surgery: predictors of mortality and longer intensive care stay. A prospective cohort study, Crit Care, vol.16, p.99, 2012.

T. Von-spiegel, S. Giannaris, and G. J. Wietasch, Effects of dexamethasone on intravascular and extravascular fluid balance in patients undergoing coronary bypass surgery with cardiopulmonary bypass, Anesthesiology, vol.96, pp.827-861, 2002.

R. P. Whitlock, P. J. Devereaux, and K. H. Teoh, Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial, Lancet, vol.386, pp.1243-53, 2015.

J. M. Dieleman, A. P. Nierich, and P. M. Rosseel, Intraoperative high-dose dexamethasone for cardiac surgery: a randomized controlled trial, JAMA, vol.308, pp.1761-1768, 2012.

C. Ince, The rationale for microcirculatory guided fluid therapy, Curr Opin Crit Care, vol.20, pp.301-309, 2014.

M. W. Dünser, J. Takala, and A. Brunauer, Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach, Crit Care, vol.17, p.326, 2013.

A. Harrois, L. Dupic, and J. Duranteau, Targeting the microcirculation in resuscitation of acutely unwell patients, Curr Opin Crit Care, vol.17, pp.303-310, 2011.

P. H. Van-der-voort, M. Van-zanten, and R. J. Bosman, Testing a conceptual model on early opening of the microcirculation in severe sepsis and septic shock: a randomised controlled pilot study, Eur J Anaesthesiol, vol.32, pp.189-98, 2015.

E. C. Boerma, M. Koopmans, and A. Konijn, Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial, Crit Care Med, vol.38, pp.93-100, 2010.

N. J. Koning, L. E. Simon, and P. Asfar, Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass, Am J Physiol Heart Circ Physiol, vol.307, pp.967-75, 2014.

M. F. Humer, P. T. Phang, and B. P. Friesen, Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs, J Appl Physiol, vol.81, pp.895-904, 1996.

W. C. Aird, Phenotypic heterogeneity of the endothelium: II. Representative vascular beds, Circ Res, vol.100, pp.174-90, 2007.

P. E. Marik, Sublingual capnography: a clinical validation study, Chest, vol.120, pp.923-930, 2001.

C. L. Verdant, D. Backer, D. Bruhn, and A. , Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis, Crit Care Med, vol.37, pp.2875-81, 2009.

D. Backer, D. Ortiz, J. A. Salgado, and D. , Coupling microcirculation to systemic hemodynamics, Curr Opin Crit Care, vol.16, pp.250-254, 2010.

S. Jhanji, C. Lee, and D. Watson, Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications, Intensive Care Med, vol.35, pp.671-678, 2009.

D. Backer, D. Creteur, J. Dubois, and M. J. , Microvascular alterations in patients with acute severe heart failure and cardiogenic shock, Am Heart J, vol.147, pp.91-100, 2004.

S. Trzeciak, J. V. Mccoy, P. Dellinger, and R. , Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis, Intensive Care Med, vol.34, pp.2210-2217, 2008.

S. Jhanji, A. Vivian-smith, and S. Lucena-amaro, Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial, Crit Care, vol.14, p.151, 2010.

W. C. Aird, The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome, Blood, vol.101, pp.3765-77, 2003.

T. E. Woodcock and T. M. Woodcock, Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy, Br J Anaesth, vol.108, pp.384-94, 2012.

R. Szulcek, H. J. Bogaard, and G. P. Van-nieuw-amerongen, Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility, J Vis Exp, vol.28, p.85, 2014.

K. M. Taylor, W. H. Bain, and K. G. Davidson, Comparative clinical study of pulsatile and non-pulsatile perfusion in 350 consecutive patients, Thorax, vol.37, pp.324-354, 1982.

J. M. Murkin, J. S. Martzke, and A. M. Buchan, J Thorac Cardiovasc Surg, vol.110, pp.340-348, 1995.

C. S. Alphonsus and R. N. Rodseth, The endothelial glycocalyx: a review of the vascular barrier, Anaesthesia, vol.69, pp.777-84, 2014.

. De-cardiochirurgen, . Alexander, . Douglas, R. Evert, and . En-stefan, Als een van de eerste onderzoeksstudenten die regelmatig bij jullie operaties was, moet mijn aanwezigheid voor jullie een lichte verstoring van de routine geweest zijn. Desondanks was ik altijd welkom, ook op de moeilijke momenten, Bedankt voor het mogelijk maken van onze klinische studies

. De-perfusionisten, . Dennis, . Ko, . Mike, and R. Renard, Wim en in het bijzonder Lerau, jullie hulp speelde een grote rol in onze klinische studies en bij de opzet van het hartlongmachine model in de rat, Het is duidelijk

. De-onderzoeksstudenten-die-hebben-meegeholpen-aan-de-studies-van-dit-proefschrift, . Els, L. Ivan, M. Martijn, T. En et al., Dankzij jullie was het mogelijk dat we de vaart hielden in de lopende studies terwijl ik coschappen liep of als ik in Frankrijk zat. Hartelijk dank voor jullie inzet voor de studies van dit proefschrift! Dr. B. Atasever, beste Bektas, het lijkt alweer eeuwen geleden dat jij mij als tweedejaars student op sleeptouw nam voor onze eerste studie op de operatiekamers

A. Het-secretariaat-van-de-anesthesiologie, I. Godelieve, and . En-noëlle, jullie zijn niet alleen voor het functioneren van de afdeling van groot belang, maar ook voor het de voortgang van mijn onderzoek (en zeker ook opleiding). Inez, alles wat ikzelf niet besteld of geregeld kreeg, was bij jou altijd zo voor elkaar

. Het-secretariaat-van-de-cardiochirurgie, C. Bianca, and R. En, Ik herinner me nog altijd de meegestuurde koekjes toen ik in het lab in Angers jullie pakketje opende. Het is tekenend voor jullie warmte en niet-aflatende interesse, zelfs na al die jaren. Bedankt voor jullie ondersteuning. Alle medewerkers van de Intensive Care Volwassenen van het VUmc, bedankt voor de medewerking aan de klinische studies van het huidige proefschrift

, Mélanie et Lionel, merci pour leur accueil chaleureux, les viennoiseries des vendredis matins, et toute votre aide, même quand ma maitrise du Français était affreuse à cette époque. Grâce à votre aide, j'ai passé un stage très agréable, appris un peu de Français, et posé les bases pour le retour en clinique et les études expérimentales de cette thèse, Merci pour cette période mémorable et ces excellents souvenirs

. F. Dr, B. De-lange, and . Fellery, jouw cardio-anesthesiologische kennis en ervaring met het hartlongmachine model in de rat waren van onschatbare waarde voor dit proefschrift

, Maar meest van al waardeer ik jouw immer positieve instelling. Dank voor al jouw ondersteuning! Dr, Bastiaanse, beste Jacqueline, bedankt voor jouw hulp met het opzetten van intravitaalmicroscopie van de cremasterspier bij de rat was van grote waarde voor het verdere verloop van onze experimentenseries

.. P. Dr and P. Borgdorff, het door jou met veel zorg opgezette lab waar ik in terecht kwam, was een perfecte basis om onze studies te beginnen. Ik heb bewondering voor jouw bevlogenheid en de passie voor cardiovasculair onderzoek, tot op hoge leeftijd (edoch niet geestelijk!). Een groot deel van de vaardigheden voor het uitvoeren van dierexperimenteel onderzoek heb ik van jou mogen leren

. D. Prof, . Niessen, and . Hans, hoewel de schoonheid van het vak pathologie tijdens de studie aan mij voorbij was gegaan, ben ik het dankzij jou later alsnog gaan zien en waarderen. Altijd kon je op korte termijn tijd vrijmaken voor een gezamenlijke beoordeling van de coupes, en daar wist je altijd ook een waardevol onderwijsmoment voor mij van te maken

. D. Prof, . Tangelder, and . Geert-jan, niet alleen als voormalig afdelingshoofd van de Fysiologie, maar vooral ook als expert op microcirculatie-onderzoek heb ik veel van u mogen leren, Uw betrokkenheid bij de opstartfase van onze labstudies was niet alleen erg waardevol maar ook zeer aangenaam

C. Anouk, R. (. Anesthesiologie, ). Henk, M. Peter-en-sjoerd, (. Fmt),-aimée et al., Ibrahim en Mark (Pathologie) jullie hebben mij op verschillende manieren geholpen bij de opzet en uitvoer van de labstudies. De overgang naar het lab was een geheel nieuwe ervaring voor mij als geneeskundestudent en later als arts-assistent. Dankzij jullie is deze periode voor mij een stuk soepeler en aangenamer verlopen en kijk ik er met veel plezier op terug

. Rianne, ik heb jouw veelzijdigheid en jouw centrale rol in jullie lab van enige afstand mogen aanschouwen, maar desondanks kan ik wel zeggen dat het uniek is. Gecombineerd met jouw noordelijke nuchterheid is het een groot plezier met je te mogen samenwerken

. M. Dr, . Van-meurs, and M. Beste, weinig mensen kunnen met zoveel enthousiasme over hun vak en hun onderzoek vertellen als jij. Het is tekenend voor jouw passie voor zowel de klinische taken als voor het preklinisch onderzoek, Ik hoop dat we onze samenwerking nog lang voort kunnen zetten

N. J. Koning, B. Atasever, A. B. Vonk, and C. Boer, The effects of pulsatile cardiopulmonary bypass on microcirculatory perfusion: perspectives from a null-result study, J Cardiothorac Vasc Anesth, vol.25, p.24, 2011.

N. J. Koning, A. B. Vonk, L. J. Van-barneveld, A. Beishuizen, B. Atasever et al., Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics, J Appl Physiol, vol.112, pp.1727-1761, 2012.

N. J. Koning and C. Boer, Reply to Pancheva, Panchev, and Pancheva, J Appl Physiol, vol.114, p.1759, 2013.

N. J. Koning, J. Stens, B. Atasever, and C. Boer, Perioperatieve veranderingen in de perfusie en oxygenatie van de microcirculatie, NTvA, vol.26, pp.18-23, 2013.

N. J. Koning, B. Atasever, A. B. Vonk, and C. Boer, Changes in Microcirculatory Perfusion and Oxygenation During Cardiac Surgery With or Without Cardiopulmonary Bypass, J Cardiothorac Vasc Anesth, vol.28, pp.1331-1340, 2014.

M. V. Koning, N. J. Koning, H. M. Koning, and M. Van-kleef, Relationship between Sensory Stimulation and Side Effects in Percutaneous Radiofrequency Treatment of the Trigeminal Ganglion, Pain Pract, vol.14, pp.581-588, 2014.

N. J. Koning, A. B. Vonk, M. I. Meesters, T. Oomens, M. Verkaik et al., Microcirculatory perfusion is preserved during off-pump but not on-pump cardiac surgery, J Cardiothorac Vasc Anesth, vol.28, pp.336-377, 2014.

N. J. Koning, L. E. Simon, P. Asfar, C. Baufreton, and C. Boer, Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass

, Am J Physiol Heart Circ Physiol, vol.307, pp.967-75, 2014.

M. P. Hoefeijzers, T. Horst, L. H. Koning, N. J. Vonk, A. B. Boer et al., The Pulsatile Perfusion Debate in Cardiac Surgery: Answers From the Microcirculation?, J Cardiothorac Vasc Anesth, vol.29, pp.761-768, 2015.

J. Stens, S. P. De-wolf, R. J. Van-der-zwan, N. J. Koning, N. A. Dekker et al., Microcirculatory perfusion during different perioperative haemodynamic strategies, Microcirculation, vol.22, pp.267-75, 2015.

M. V. Koning, N. J. Koning, and H. M. Koning, Reduced Effect of Percutaneous Retrogasserian Glycerol Rhizolysis in Trigeminal Neuralgia Affecting the Third Branch, Pain Practice, vol.15, pp.217-239, 2015.

N. J. Koning, A. B. Vonk, H. Vink, and C. Boer, Side-by-Side Alterations in Glycocalyx Thickness and Perfused Microvascular Density During Acute Microcirculatory Alterations in Cardiac Surgery, Microcirculation, vol.23, pp.69-74, 2016.

N. J. Koning, M. A. Overmars, C. E. Van-den-brom, J. Van-bezu, L. E. Simon et al., Endothelial hyperpermeability after cardiac surgery with cardiopulmonary bypass as assessed using an in vitro bioassay for endothelial barrier function, Br J Anaesth, vol.116, pp.223-255, 2016.

N. J. Koning, F. De-lange, A. B. Vonk, Y. Ahmed, C. E. Van-den-brom et al., Impaired microcirculatory perfusion in a rat model of cardiopulmonary bypass: the role of hemodilution

, Am J Physiol Heart Circ Physiol, vol.310, pp.550-558, 2016.

V. Souday, N. J. Koning, B. Perez, F. Grelon, A. Mercat et al., Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial, PLoS One, vol.11, p.154761, 2016.

M. I. Meesters, N. J. Koning, J. W. Romijn, S. A. Loer, and C. Boer, Clinical decision versus thromboelastometry based fresh frozen plasma transfusion in cardiac surgery

, Br J Anaesth, vol.118, pp.458-459, 2017.

, he performed a five month research internship in France at the Université d'Angers, supervised by prof.dr. C. Baufreton (Department of Cardiovascular Surgery), where the basis for the experimental studies of the current thesis was formed. Nick continued his research as a parttime PhD student besides his medical studies under the shared supervision of professors Boer and Baufreton. He received awards for the best oral presentation at the 2012 scientific meetings of the Dutch Society for Anesthesiology and of the Dutch Society for Microcirculation and Vascular Biology, Biography | 231 B Biography Nick Julius Koning was born on the 20 th of June, 1988 in Heemskerk, the Netherlands. Following graduation from high school in 2006 at "OSG Piter Jelles" in Leeuwarden (cum laude), he started studying medicine at the, 2010.