J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities, Nat Rev Cancer, vol.17, issue.1, pp.20-37, 2017.

E. Blanco, H. Shen, and M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat Biotechnol, vol.33, issue.9, pp.941-951, 2015.

R. A. Petros and J. M. Desimone, Strategies in the design of nanoparticles for therapeutic applications, Nat Rev Drug Discov, vol.9, issue.8, pp.615-627, 2010.

A. Z. Wang, R. Langer, and O. C. Farokhzad, Nanoparticle delivery of cancer drugs, Annu Rev Med, vol.63, pp.185-198, 2012.

M. E. Lobatto, V. Fuster, Z. A. Fayad, and W. J. Mulder, Perspectives and opportunities for nanomedicine in the management of atherosclerosis, Nat Rev Drug Discov, vol.10, issue.11, pp.835-852, 2011.

O. Veiseh, B. C. Tang, K. A. Whitehead, D. G. Anderson, and R. Langer, Managing diabetes with nanomedicine: challenges and opportunities, Nat Rev Drug Discov, vol.14, issue.1, pp.45-57, 2015.

O. C. Farokhzad and R. Langer, Impact of Nanotechnology on Drug Delivery, ACS Nano, vol.3, issue.1, pp.16-20, 2009.

, Advances in Drug Delivery, Annu Rev Mater Res, vol.41, issue.1, pp.1-20, 2011.

Q. Sun, Z. Zhou, N. Qiu, and Y. Shen, Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization, Adv Mater, 2017.

J. Shi, A. R. Votruba, O. C. Farokhzad, and R. Langer, Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications, vol.10, pp.3223-3230, 2010.

P. P. Adiseshaiah, R. M. Crist, S. S. Hook, and S. E. Mcneil, Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer, Nat Rev Clin Oncol, vol.13, issue.12, pp.750-765, 2016.

M. Wacker, Nanocarriers for intravenous injection-the long hard road to the market, Int J Pharm, vol.457, issue.1, pp.50-62, 2013.

W. Gao, Y. Zhang, Q. Zhang, and L. Zhang, Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery, Ann Biomed Eng, vol.44, issue.6, pp.2049-2061, 2016.

N. A. Peppas, K. M. Wood, and J. O. Blanchette, Hydrogels for oral delivery of therapeutic proteins, Expert Opin Biol Ther, vol.4, issue.6, pp.881-887, 2004.

T. R. Hoare and D. S. Kohane, Hydrogels in drug delivery: Progress and challenges, Polymer, vol.49, issue.8, pp.1993-2007, 2008.

J. J. Kang-mieler and W. F. Mieler, Thermo-Responsive Hydrogels for Ocular Drug Delivery, Dev Ophthalmol, vol.55, pp.104-111, 2016.

R. Sheshala, Y. Y. Kok, J. M. Ng, R. R. Thakur, and K. Dua, Situ Gelling Ophthalmic Drug Delivery System: An Overview and Its Applications, vol.9, pp.237-248, 2015.

C. Karavasili and D. G. Fatouros, Smart materials: in situ gel-forming systems for nasal delivery, Drug Discov Today, vol.21, issue.1, pp.157-166, 2016.

C. M. Caramella, S. Rossi, F. Ferrari, M. C. Bonferoni, and G. Sandri, Mucoadhesive and thermogelling systems for vaginal drug delivery, Adv Drug Deliv Rev, vol.92, pp.39-52, 2015.

S. R. Feldman, Principles of topical treatment: advancement in gel vehicle technology, J Drugs Dermatol JDD, vol.13, issue.4, pp.423-427, 2014.

M. Cully, Inflammatory diseases: Hydrogel drug delivery for inflammatory bowel disease, Nat Rev Drug Discov, vol.14, issue.10, pp.678-679, 2015.

R. Vaishya, V. Khurana, S. Patel, and A. K. Mitra, Long-Term Delivery of Protein Therapeutics, Expert Opin Drug Deliv, vol.12, issue.3, pp.415-440, 2015.

K. Y. Lee and D. J. Mooney, Hydrogels for tissue engineering, Chem Rev, vol.101, issue.7, pp.1869-1879, 2001.

F. M. Chen and X. Liu, Advancing biomaterials of human origin for tissue engineering, Prog Polym Sci, vol.53, pp.86-168, 2016.

N. K. Singh and D. S. Lee, In situ gelling pH-and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery, J Control Release, vol.193, pp.214-227, 2014.

A. Fakhari and J. A. Subramony, Engineered in-situ depot-forming hydrogels for intratumoral drug delivery, J Control Release, vol.220, pp.465-475, 2015.

R. A. Siegel, Stimuli sensitive polymers and self-regulated drug delivery systems: a very partial review, J Control Release, vol.190, pp.337-351, 2014.

A. Vashist, Y. K. Gupta, and S. Ahmad, Recent advances in hydrogel based drug delivery systems for the human body, J Mater Chem B, vol.2, issue.2, pp.147-166, 2013.

S. Merino, C. Martín, K. Kostarelos, M. Prato, and . Vázquez, Nanocomposite Hydrogels: 3D PolymerNanoparticle Synergies for On-Demand Drug Delivery, ACS Nano, vol.9, issue.5, pp.4686-4697, 2015.

R. Roux, C. Ladavière, A. Montembault, and T. Delair, Particle assemblies: Toward new tools for regenerative medicine, vol.33, pp.997-1007, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00867839

P. Schexnailder and G. Schmidt, Nanocomposite polymer hydrogels, Colloid Polym Sci, vol.287, issue.1, pp.1-11, 2009.

V. Thomas, M. M. Yallapu, B. Sreedhar, and S. K. Bajpai, Breathing-in/breathing-out approach to preparing nanosilver-loaded hydrogels: Highly efficient antibacterial nanocomposites, J Appl Polym Sci, vol.111, issue.2, pp.934-944, 2009.

Y. Mohan, K. Lee, T. Premkumar, and K. E. Geckeler, Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications, Polymer, vol.48, issue.1, pp.158-164, 2007.

R. Langer, Perspectives and challenges in tissue engineering and regenerative medicine, Adv Mater, vol.21, pp.3235-3236, 2009.

B. D. Ratner, Reducing capsular thickness and enhancing angiogenesis around implant drug release systems, J Control Release, vol.78, issue.1-3, pp.211-218, 2002.

Q. Wang, L. Wang, M. S. Detamore, and C. Berkland, Biodegradable Colloidal Gels as Moldable Tissue Engineering Scaffolds, vol.20, pp.236-239, 2008.

R. Fuhrer, E. K. Athanassiou, N. A. Luechinger, and W. J. Stark, Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility, Small, vol.5, issue.3, pp.383-388, 2009.

F. Li, D. P. Josephson, and A. Stein, Colloidal assembly: the road from particles to colloidal molecules and crystals, Angew Chem Int Ed Engl, vol.50, issue.2, pp.360-88, 2011.

J. Zhang, Y. Li, X. Zhang, and B. Yang, Colloidal Self-Assembly Meets Nanofabrication: From TwoDimensional Colloidal Crystals to Nanostructure Arrays, Adv Mater, vol.22, issue.38, pp.4249-4269, 2010.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-marzán, Directed self-assembly of nanoparticles, ACS Nano, vol.4, issue.7, pp.3591-3605, 2010.

K. J. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, Nanoscale forces and their uses in self-assembly, Small, vol.5, issue.14, pp.1600-1630, 2009.

Q. Wang, J. Wang, Q. Lu, M. S. Detamore, and C. Berkland, Injectable PLGA based colloidal gels for zeroorder dexamethasone release in cranial defects, Biomaterials, vol.31, issue.18, pp.4980-4986, 2010.

Z. Gu, A. A. Aimetti, Q. Wang, T. T. Dang, Y. Zhang et al., Injectable Nano-Network for Glucose-Mediated Insulin Delivery, ACS Nano, vol.7, issue.5, pp.4194-4201, 2013.

R. C. Ghanami, B. R. Saunders, C. Bosquillon, K. M. Shakesheff, and C. Alexander, Responsive particulate dispersions for reversible building and deconstruction of 3D cell environments, Soft Matter, vol.6, issue.20, pp.5037-5044, 2010.

M. R. Fraylich, R. Liu, S. M. Richardson, P. Baird, J. Hoyland et al., Thermally-triggered gelation of PLGA dispersions: towards an injectable colloidal cell delivery system, J Colloid Interface Sci, vol.344, issue.1, pp.61-69, 2010.

Y. Liang, Y. Qiao, S. Guo, L. Wang, Y. Zhai et al., Investigation on injectable, thermally and physically gelable poly(ethylene glycol)/poly(octadecanedioic anhydride) amphiphilic triblock co-polymer nanoparticles, J Biomater Sci Polym Ed, vol.23, issue.1-4, pp.465-482, 2012.

P. Resnier, S. David, N. Lautram, G. J. Delcroix, A. Clavreul et al., EGFR siRNA lipid nanocapsules efficiently transfect glioma cells in vitro, Int J Pharm, vol.454, issue.2, pp.748-755, 2013.

C. Simonsson, G. Bastiat, M. Pitorre, A. S. Klymchenko, J. Béjaud et al., Internanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules, Eur J Pharm Biopharm, vol.98, pp.47-56, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01280528

G. Bastiat, C. O. Pritz, C. Roider, F. Fouchet, E. Lignières et al., A new tool to ensure the fluorescent dye labeling stability of nanocarriers: a real challenge for fluorescence imaging, J Control Release, vol.170, issue.3, pp.334-342, 2013.

E. Moysan, Y. González-fernández, N. Lautram, J. Béjaud, G. Bastiat et al., An innovative hydrogel of gemcitabine-loaded lipid nanocapsules: when the drug is a key player of the nanomedicine structure, Soft Matter, vol.10, issue.11, pp.1767-1777, 2014.

N. Wauthoz, G. Bastiat, E. Moysan, A. Cie?lak, K. Kondo et al., Safe lipid nanocapsule-based gel technology to target lymph nodes and combat mediastinal metastases from an orthotopic non-small-cell lung cancer model in SCID-CB17 mice, Nanomedicine Nanotechnol Biol Med, vol.11, issue.5, pp.1237-1245, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392447

M. S. Sasso, G. Lollo, M. Pitorre, S. Solito, L. Pinton et al., Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloidderived suppressor cells and potentiate cancer immunotherapy, Biomaterials, vol.96, pp.47-62, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01392469

E. Moysan, G. Bastiat, and J. P. Benoit, Gemcitabine versus Modified Gemcitabine: a review of several promising chemical modifications, Mol Pharm, vol.10, issue.2, pp.430-444, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00787112

S. Vrignaud, J. Hureaux, S. Wack, J. P. Benoit, and P. Saulnier, Design, optimization and in vitro evaluation of reverse micelle-loaded lipid nanocarriers containing erlotinib hydrochloride, Int J Pharm, vol.436, issue.1-2, pp.194-200, 2012.

S. Vrignaud, N. Anton, P. Gayet, J. P. Benoit, and P. Saulnier, Reverse micelle-loaded lipid nanocarriers: A novel drug delivery system for the sustained release of doxorubicin hydrochloride, Eur J Pharm Biopharm, vol.79, issue.1, pp.197-204, 2011.

S. Vrignaud, N. Anton, C. Passirani, J. P. Benoit, and P. Saulnier, Aqueous core nanocapsules: a new solution for encapsulating doxorubicin hydrochloride, Drug Dev Ind Pharm, vol.39, issue.11, pp.1706-1711, 2013.

N. Anton, P. Saulnier, C. Gaillard, E. Porcher, S. Vrignaud et al., Aqueous-core lipid nanocapsules for encapsulating fragile hydrophilic and/or lipophilic molecules, Langmuir, vol.25, issue.19, pp.11413-11419, 2009.

H. Almeida, M. H. Amaral, P. Lobão, and J. M. Lobo, Pluronic ® F-127 and Pluronic Lecithin Organogel (PLO): main features and their applications in topical and transdermal administration of drugs, J Pharm Pharm Sci, vol.15, issue.4, pp.592-605, 2012.

R. Kumar and O. P. Katare, Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review, vol.6, pp.298-310, 2005.

A. Vintiloiu, M. Lafleur, G. Bastiat, and J. C. Leroux, situ-forming oleogel implant for rivastigmine delivery, vol.25, pp.845-852, 2008.

G. Bastiat, F. Plourde, A. Motulsky, A. Furtos, Y. Dumont et al., Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer's disease, Biomaterials, vol.31, issue.23, pp.6031-6038, 2010.

G. Bastiat and J. C. Leroux, Pharmaceutical organogels prepared from aromatic amino acid derivatives, J Mater Chem, vol.19, issue.23, pp.3867-3877, 2009.

F. Plourde, A. Motulsky, A. C. Couffin-hoarau, D. Hoarau, H. Ong et al., First report on the efficacy of l-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs, J Control Release, vol.108, issue.2-3, pp.433-441, 2005.

D. Wang, J. Zhao, X. Liu, F. Sun, Y. Zhou et al., Parenteral thermo-sensitive organogel for schizophrenia therapy, in vitro and in vivo evaluation, Eur J Pharm Sci, vol.60, pp.40-48, 2014.

. Iii and . Bibliographie,

J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities, Nat. Rev. Cancer, vol.17, issue.1, pp.20-37, 2017.

R. A. Petros and J. M. Desimone, Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov, vol.9, pp.615-627, 2010.

E. Blanco, H. Shen, and M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat. Biotechnol, vol.33, pp.941-951, 2015.

J. Shi, Z. Xiao, N. Kamaly, and O. C. Farokhzad, Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation, Acc. Chem. Res, vol.44, pp.1123-1134, 2011.

P. P. Adiseshaiah, R. M. Crist, S. S. Hook, and S. E. Mcneil, Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer, Nat. Rev. Clin. Oncol, vol.13, issue.12, pp.750-765, 2016.

M. E. Lobatto, V. Fuster, Z. A. Fayad, and W. J. Mulder, Perspectives and opportunities for nanomedicine in the management of atherosclerosis, Nat. Rev. Drug. Discov, vol.10, issue.11, pp.835-52, 2011.

O. Veiseh, B. C. Tang, K. A. Whitehead, D. G. Anderson, and R. Langer, Managing diabetes with nanomedicine: challenges and opportunities, Nat. Rev. Drug. Discov, vol.14, issue.1, pp.45-57, 2015.

J. Shi, A. R. Votruba, O. C. Farokhzad, and R. Langer, Nanotechnology in drug delivery and tissue engineering: from discovery to applications, Nano Lett, vol.10, pp.3223-3230, 2010.

J. J. Kang-mieler and W. F. Mieler, Thermo-Responsive Hydrogels for Ocular Drug Delivery, Dev. Ophthalmol, vol.55, pp.104-111, 2016.

R. Sheshala, Y. Y. Kok, J. M. Ng, R. R. Thakur, R. R. et al., Situ Gelling Ophthalmic Drug Delivery System: An Overview and Its Applications, vol.9, pp.237-248, 2015.

C. Karavasili and D. G. Fatouros, Smart materials: in situ gel-forming systems for nasal delivery, Drug Discov. Today, vol.21, issue.1, pp.157-166, 2016.

C. M. Caramella, S. Rossi, F. Ferrari, M. C. Bonferoni, and G. Sandri, Mucoadhesive and thermogelling systems for vaginal drug delivery, Adv. Drug Deliv. Rev, vol.92, pp.39-52, 2015.

M. Cully, Inflammatory diseases: Hydrogel drug delivery for inflammatory bowel disease, Nat. Rev. Drug Discov, vol.14, issue.10, pp.678-679, 2015.

S. R. Feldman, Principles of topical treatment: advancement in gel vehicle technology, J. Drugs Dermatol, vol.13, issue.4, pp.423-427, 2014.

R. Vaishya, V. Khurana, S. Patel, and A. K. Mitra, Long-term delivery of protein therapeutics, Expert Opin. Drug Deliv, vol.12, issue.3, pp.415-440, 2015.

N. K. Singh and D. S. Lee, In situ gelling pH-and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery, J. Control. Release, vol.193, pp.214-227, 2014.

F. M. Chen and X. Liu, Advancing biomaterials of human origin for tissue engineering, Prog. Polym. Sci, vol.53, pp.86-168, 2016.

L. Gu and D. J. Mooney, Biomaterials and emerging anticancer therapeutics: engineering the microenvironment, Nat. Rev. Cancer, vol.16, issue.1, pp.56-66, 2016.

R. Mulik, V. Kulkarni, and R. S. Murthy, Chitosan-based thermosensitive hydrogel containing liposomes for sustained delivery of cytarabine, Drug Dev. Ind. Pharm, vol.35, issue.1, pp.49-56, 2009.

W. Ding, Y. Li, X. Hou, G. Li, and G. , Bleomycin A6-loaded anionic liposomes with in situ gel as a new antitumoral drug delivery system, Drug Deliv, vol.23, issue.1, pp.88-94, 2014.

A. Hussain, A. Samad, M. Ramzan, M. N. Ahsan, Z. Ur-rehman et al., Elastic liposome-based gel for topical delivery of 5-fluorouracil: in vitro and in vivo investigation, Drug Deliv, vol.23, issue.4, pp.1115-1129, 2015.

Y. Guan, G. Lin, and W. Shao, Preparation and evaluation of propranolol hydrochloride liposomal gel, Chin. J. Pharm. Biotechnol, vol.21, pp.525-529, 2014.

Y. Guan, T. Zuo, M. Chang, F. Zhang, T. Wei et al., Propranolol hydrochloride-loaded liposomal gel for transdermal delivery: Characterization and in vivo evaluation, Int. J. Pharm, vol.487, issue.1-2, pp.135-141, 2015.

W. Wang, P. Zhang, W. Shan, J. Gao, and W. Liang, A novel chitosan-based thermosensitive hydrogel containing doxorubicin liposomes for topical cancer therapy, J. Biomater. Sci. Polym. Ed, vol.24, issue.14, pp.1649-1659, 2013.

T. Arai, O. Benny, T. Joki, L. G. Menon, M. Machluf et al., Novel local drug delivery system using thermoreversible gel in combination with polymeric microspheres or liposomes, Anticancer Res, vol.30, issue.4, pp.1057-1064, 2010.

C. L. Peng, Y. H. Shih, K. S. Liang, P. F. Chiang, C. H. Yeh et al., Development of in situ forming thermosensitive hydrogel for radiotherapy combined with chemotherapy in a mouse model of hepatocellular carcinoma, Mol. Pharm, vol.10, issue.5, pp.1854-1864, 2013.

J. Xing, X. Qi, Y. Jiang, X. Zhu, Z. Zhang et al., Topotecan hydrochloride liposomes incorporated into thermosensitive hydrogel for sustained and efficient in situ therapy of H22 tumor in Kunming mice, Pharm. Dev. Technol, vol.20, issue.7, pp.1-8, 2015.

J. Y. Fang, S. H. Hsu, Y. L. Leu, and J. W. Hu, Delivery of cisplatin from Pluronic co-polymer systems: liposome inclusion and alginate coupling, J. Biomater. Sci. Polym. Ed, vol.20, issue.7-8, pp.1031-1047, 2009.

U. M. Le, D. S. Shaker, B. R. Sloat, and Z. Cui, A thermo-sensitive polymeric gel containing a gadolinium (Gd) compound encapsulated into liposomes significantly extended the retention of the Gd in tumors, Drug Dev. Ind. Pharm, vol.34, issue.4, pp.413-418, 2008.

K. Sutoris, J. Rakusan, M. Karaskova, J. Mattova, J. Benes et al., Novel topical photodynamic therapy of prostate carcinoma using hydroxyaluminum phthalocyanine entrapped in liposomes, Anticancer Res, vol.33, issue.4, pp.1563-1568, 2013.

S. Li, Y. Q. Qiu, S. H. Zhang, and Y. H. Gao, A novel transdermal fomulation of 18?-glycyrrhetic acid with lysine for improving bioavailability and efficacy, Skin Pharmacol. Physiol, vol.25, issue.5, pp.257-268, 2012.

I. Ero?lu, E. Azizo?lu, M. Ozyaz?c?, M. Nenni, H. Gürer-orhan et al., Effective topical delivery systems for corticosteroids: dermatological and histological evaluations, Drug Deliv, vol.23, issue.5, pp.1502-1513, 2016.

M. Manconia, J. Pendás, N. Ledón, T. Moreira, C. Sinico et al., Phycocyanin liposomes for topical anti-inflammatory activity: in-vitro in-vivo studies, J. Pharm. Pharmacol, vol.61, issue.4, pp.423-430, 2009.

C. Puglia, D. Trombetta, V. Venuti, A. Saija, and F. Bonina, Evaluation of in-vivo topical anti-inflammatory activity of indometacin from liposomal vesicles, J. Pharm. Pharmacol, vol.56, issue.10, pp.1225-1232, 2004.

M. Fadel, M. Salah, N. Samy, and S. Mona, Liposomal methylene blue hydrogel for selective photodynamic therapy of acne vulgaris, J. Drugs Dermatol, vol.8, issue.11, pp.983-990, 2009.

M. A. Fadel and A. A. Tawfik, New topical photodynamic therapy for treatment of hidradenitis suppurativa using methylene blue niosomal gel: a single-blind, randomized, comparative study, Clin. Exp. Dermatol, vol.40, issue.2, pp.116-122, 2015.

D. Pornpattananangkul, V. Fu, S. Thamphiwatana, L. Zhang, M. Chen et al., In vivo treatment of Propionibacterium acnes infection with liposomal lauric acids, Adv. Healthc. Mater, vol.2, issue.10, pp.1322-1328, 2013.

L. A. Gnann, R. F. Castro, L. A. Azzalis, D. Feder, F. F. Perazzo et al., Hematological and hepatic effects of vascular epidermal growth factor (VEGF) used to stimulate hair growth in an animal model, BMC Dermatol, vol.13, p.15, 2013.

M. Franz-montan, E. De-paula, F. C. Groppo, A. L. Silva, J. Ranali et al., Liposomeencapsulated ropivacaine for intraoral topical anesthesia, Oral Surg. Oral Med. Oral Pathol, Oral Radiol. Endod, vol.110, issue.6, pp.800-804, 2010.

M. Franz-montan, E. De-paula, F. C. Groppo, A. L. Silva, J. Ranali et al., Liposomal delivery system for topical anaesthesia of the palatal mucosa, Br. J. Oral Maxillofac. Surg, vol.50, issue.1, pp.60-64, 2012.

M. Franz-montan, A. L. Silva, L. F. Fraceto, M. C. Volpato, E. De-paula et al., Liposomal encapsulation improves the duration of soft tissue anesthesia but does not induce pulpal anesthesia, J. Clin. Anesth, vol.22, issue.5, pp.313-317, 2010.

M. Franz-montan, D. Baroni, G. Brunetto, V. R. Sobral, C. M. Silva et al., Liposomal lidocaine gel for topical use at the oral mucosa: characterization, in vitro assays and in vivo anesthetic efficacy in humans, J. Liposome Res, vol.25, issue.1, pp.11-19, 2015.

P. Mura, F. Maestrelli, M. L. González-rodríguez, I. Michelacci, C. Ghelardini et al., Development, characterization and in vivo evaluation of benzocaine-loaded liposomes, Eur. J. Pharm. Biopharm, vol.67, issue.1, pp.86-95, 2007.

S. Ahmed, S. S. Imam, A. Zafar, A. Ali, M. Aqil et al., Gull A, In vitro and preclinical assessment of factorial design based nanoethosomes transgel formulation of an opioid analgesic, Artif. Cells Nanomed. Biotechnol, vol.44, issue.8, pp.1793-1802, 2016.

M. Caron, G. Besson, S. L. Etenna, A. Mintsa-ndong, S. Mourtas et al., Protective properties of non-nucleoside reverse transcriptase inhibitor (MC1220) incorporated into liposome against intravaginal challenge of Rhesus macaques with RT-SHIV, Virology, vol.405, issue.1, pp.225-233, 2010.

Y. Yang, R. Ou, S. Guan, X. Ye, B. Hu et al., A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use, Drug Deliv, vol.22, issue.8, pp.1086-1093, 2015.

P. K. Gaur, M. Bajpai, S. Mishra, and A. Verma, Development of ibuprofen nanoliposome for transdermal delivery: Physical characterization, in vitro/in vivo studies, and anti-inflammatory activity, Artif. Cells Nanomed. Biotechnol, vol.44, issue.1, pp.370-375, 2016.

W. He, X. Guo, M. Feng, and N. Mao, In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in-situ gels, Int. J. Pharm, vol.458, issue.2, pp.305-314, 2013.

S. Meng, Z. Chen, L. Yang, X. Zhang, J. Guo et al., High-efficient nano-carrier gel systems for testosterone propionate skin delivery, Pharm. Dev. Technol, vol.20, issue.6, pp.724-729, 2015.

M. A. El-nabarawi, E. R. Bendas, R. T. El-rehem, and M. Y. Abary, Transdermal drug delivery of paroxetine through lipid-vesicular formulation to augment its bioavailability, Int. J. Pharm, vol.443, issue.1-2, pp.307-317, 2013.

S. Das, G. Singh, and A. B. Baker, Overcoming disease-induced growth factor resistance in therapeutic angiogenesis using recombinant co-receptors delivered by a liposomal system, Biomaterials, vol.35, issue.1, pp.196-205, 2014.

Z. Wu, X. Zou, L. Yang, S. Lin, J. Fan et al., Thermosensitive hydrogel used in dual drug delivery system with paclitaxel-loaded micelles for in situ treatment of lung cancer, Colloids Surf. B Biointerfaces, vol.122, pp.90-98, 2014.

J. K. Kim, Y. W. Won, K. S. Lim, and Y. H. Kim, Low-molecular-weight methylcellulose-based thermoreversible gel/pluronic micelle combination system for local and sustained docetaxel delivery, Pharm. Res, vol.29, issue.2, pp.525-534, 2012.

M. T. Sheu, H. J. Jhan, C. Y. Su, L. C. Chen, C. E. Chang et al., Codelivery of doxorubicincontaining thermosensitive hydrogels incorporated with docetaxel-loaded mixed micelles enhances local cancer therapy, Colloids Surf. B Biointerfaces, vol.143, pp.260-270, 2016.

A. J. De-graaf, I. I. Azevedo-próspero-dos-santos, E. H. Pieters, D. T. Rijkers, C. F. Van-nostrum et al., A micelle-shedding thermosensitive hydrogel as sustained release formulation, J. Control. Release, vol.162, issue.3, pp.582-590, 2012.

Y. Yang, J. Wang, X. Zhang, W. Lu, and Q. Zhang, A novel mixed micelle gel with thermo-sensitive property for the local delivery of docetaxel, J. Control. Release, vol.135, issue.2, pp.175-182, 2009.

Y. M. Kim and S. C. Song-s-c, Targetable micelleplex hydrogel for long-term, effective, and systemic siRNA delivery, Biomaterials, vol.35, issue.27, pp.7970-7977, 2014.

C. Gong, Q. Wu, Y. Wang, D. Zhang, F. Luo et al., A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing, vol.34, pp.6377-6387, 2013.

M. Shen, Y. Y. Xu, Y. Sun, B. S. Han, and Y. R. Duan, Preparation of a Thermosensitive Gel Composed of a mPEG-PLGA-PLL-cRGD Nanodrug Delivery System for Pancreatic Tumor Therapy, ACS Appl. Mater. Interfaces, vol.7, issue.37, pp.20530-20537, 2015.

E. J. Cho, B. Sun, K. O. Doh, E. M. Wilson, S. Torregrosa-allen et al., Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer, Biomaterials, vol.37, pp.312-319, 2015.

R. V. Contri, L. A. Frank, M. Kaiser, A. R. Pohlmann, and S. S. Guterres, The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids, Int. J. Nanomedicine, vol.9, pp.951-962, 2014.

S. Khurana, P. M. Bedi, and N. K. Jain, Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam, Chem. Phys. Lipids, pp.65-72, 2013.

W. Zhang, D. Zu, J. Chen, J. Peng, Y. Liu et al., Bovine serum albumin-meloxicam nanoaggregates laden contact lenses for ophthalmic drug delivery in treatment of postcataract endophthalmitis, Int. J. Pharm, vol.475, issue.1-2, pp.25-34

N. Nagai and Y. Ito, Therapeutic effects of gel ointments containing tranilast nanoparticles on paw edema in adjuvant-induced arthritis rats, Biol. Pharm. Bull, vol.37, issue.1, pp.96-104, 2014.

N. Nagai, C. Yoshioka, and Y. Ito, Topical therapies for rheumatoid arthritis by gel ointments containing indomethacin nanoparticles in adjuvant-induced arthritis rat, J. Oleo Sci, vol.64, issue.3, pp.337-346

N. Nagai, A. Iwamae, S. Tanimoto, C. Yoshioka, and Y. Ito, Pharmacokinetics and Antiinflammatory Effect of a Novel Gel System Containing Ketoprofen Solid Nanoparticles, Biol. Pharm. Bull, vol.38, issue.12, pp.1918-1924, 2015.

H. A. Shah and R. P. Patel, Statistical modeling of zaltoprofen loaded biopolymeric nanoparticles: Characterization and anti-inflammatory activity of nanoparticles loaded gel, Int. J. Pharm. Investig, vol.5, issue.1, pp.20-27, 2015.

X. Li, R. Fan, A. Tong, M. Yang, J. Deng et al., In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing, Int. J. Pharm, vol.495, issue.1, pp.560-571, 2015.

P. Kaur, T. Garg, B. Vaidya, A. Prakash, G. Rath et al., Brain delivery of intranasal in situ gel of nanoparticulated polymeric carriers containing antidepressant drug: behavioral and biochemical assessment, J. Drug Target, vol.23, issue.3, pp.275-286, 2015.

D. K. Pandurangan, P. Bodagala, V. K. Palanirajan, and S. Govindaraj, Formulation and evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel, Int. J. Pharm. Investig, vol.6, issue.1, pp.56-62, 2016.

A. A. Mostafa, M. H. Zaazou, L. C. Chow, A. A. Mahmoud, D. Y. Zaki et al., Injectable nanoamorphous calcium phosphate based in situ gel systems for the treatment of periapical lesions, Biomed. Mater. Bristol. Engl, vol.10, issue.6, p.65006, 2015.

N. Wauthoz, G. Bastiat, E. Moysan, A. Cie?lak, K. Kondo et al., Safe lipid nanocapsule-based gel technology to target lymph nodes and combat mediastinal metastases from an orthotopic non-small-cell lung cancer model in SCID-CB17 mice, Nanomedicine, vol.11, issue.5, pp.1237-1245, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392447

C. Bastiancich, K. Vanvarenberg, B. Ucakar, M. Pitorre, G. Bastiat et al., Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma, J. Control. Release, vol.225, pp.283-293, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388804

Y. Liang, Y. Qiao, S. Guo, L. Wang, Y. Zhai et al., Investigation on injectable, thermally and physically gelable poly(ethylene glycol)/poly(octadecanedioic anhydride) amphiphilic triblock co-polymer nanoparticles, J. Biomater. Sci. Polym. Ed, vol.23, issue.1-4, pp.465-482, 2012.

Q. Wang, J. Wang, Q. Lu, M. S. Detamore, and C. Berkland, Injectable PLGA based colloidal gels for zeroorder dexamethasone release in cranial defects, Biomaterials, vol.31, issue.18, pp.4980-4986, 2010.

Z. Gu, A. A. Aimetti, Q. Wang, T. T. Dang, Y. Zhang et al., Injectable nano-network for glucose-mediated insulin delivery, ACS Nano, vol.7, issue.5, pp.4194-4201, 2013.

C. Kojima, E. Nishisaka, T. Suehiro, K. Watanabe, A. Harada et al., The synthesis and evaluation of polymer prodrug/collagen hybrid gels for delivery into metastatic cancer cells, Nanomedicine, vol.9, issue.6, pp.767-775, 2013.

R. Rupp, S. L. Rosenthal, and L. R. Stanberry, VivaGel (SPL7013 Gel): a candidate dendrimer--microbicide for the prevention of HIV and HSV infection, Int. J. Nanomedicine, vol.2, issue.4, pp.561-566, 2007.

M. Y. Chen, I. Y. Millwood, H. Wand, M. Poynten, M. Law et al., A randomized controlled trial of the safety of candidate microbicide SPL7013 gel when applied to the penis, J. Acquir. Immune Defic. Syndr, vol.50, issue.4, pp.375-380, 2009.

J. O'loughlin, I. Y. Millwood, H. M. Mcdonald, C. F. Price, J. M. Kaldor et al., Safety, tolerability, and pharmacokinetics of SPL7013 gel (VivaGel): a dose ranging, phase I study, vol.37, pp.100-104, 2010.

I. Mcgowan, K. Gomez, K. Bruder, I. Febo, B. A. Chen et al., MTN-004 Protocol Team, Phase 1 randomized trial of the vaginal safety and acceptability of SPL7013 gel (VivaGel) in sexually active young women (MTN-004), AIDS, vol.25, issue.8, pp.1057-1064, 2011.

C. R. Cohen, J. Brown, A. B. Moscicki, E. A. Bukusi, J. R. Paull et al., A phase I randomized placebo controlled trial of the safety of 3% SPL7013 Gel (VivaGel ® ) in healthy young women administered twice daily for 14 days, PLoS One, vol.6, issue.1, p.16258, 2011.

A. B. Moscicki, R. Kaul, Y. Ma, M. E. Scott, I. I. Daud et al., , p.3

, StarPharma LTD 7013 gel (VivaGel) to assess expanded safety, J. Acquir. Immune Defic. Syndr, vol.59, issue.2, pp.134-140, 2012.

W. R. Holmes, L. Maher, and S. L. Rosenthal, Attitudes of men in an Australian male tolerance study towards microbicide use, Sex. Health, vol.5, issue.3, pp.273-278, 2008.

A. Carballo-diéguez, R. Giguere, C. Dolezal, B. A. Chen, J. Kahn et al., Tell Juliana": acceptability of the candidate microbicide VivaGel ® and two placebo gels among ethnically diverse, sexually active young women participating in a phase 1 microbicide study, AIDS Behav, vol.16, issue.7, pp.1761-1774, 2012.

C. F. Price, D. Tyssen, S. Sonza, A. Davie, S. Evans et al., SPL7013 Gel (VivaGel ® ) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans, PLoS One, vol.6, issue.9, p.24095, 2011.

S. Inui, H. Aoshima, A. Nishiyama, and S. Itami, Improvement of acne vulgaris by topical fullerene application: unique impact on skin care, Nanomedicine, vol.7, issue.2, pp.238-241, 2011.

T. Fujimoto, S. Ito, M. Ito, H. Kanazawa, and S. Yamaguchi, Induction of different reactive oxygen species in the skin during various laser therapies and their inhibition by fullerene, Lasers Surg. Med, vol.44, issue.8, pp.685-694, 2012.

. Viii and . Bibliographie,

U. Gatzemeier, F. A. Shepherd, T. L. Chevalier, P. Weynants, B. Cottier et al., Activity of gemcitabine in patients with non-small cell lung cancer: a multicentre, extended phase II study, Eur J Cancer, vol.32, pp.243-248, 1996.

A. L. Thomas, G. Cox, R. A. Sharma, W. P. Steward, F. Shields et al., Gemcitabine and paclitaxel associated pneumonitis in non-small cell lung cancer: report of a phase I/II doseescalating study, Eur J Cancer, vol.36, pp.2329-2334, 2000.

E. Kontopodis, A. Kotsakis, N. Kentepozidis, K. Syrigos, N. Ziras et al., A phase II, open-label trial of bortezomib (VELCADE ® ) in combination with gemcitabine and cisplatin in patients with locally advanced or metastatic non-small cell lung cancer, Cancer Chemother Pharmacol, vol.77, pp.949-956, 2016.

N. Wauthoz, G. Bastiat, E. Moysan, A. Cie?lak, K. Kondo et al., Safe lipid nanocapsule-based gel technology to target lymph nodes and combat mediastinal metastases from an orthotopic non-small-cell lung cancer model in SCID-CB17 mice, Nanomedicine, vol.11, pp.1237-1245, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392447

E. Moysan, Y. González-fernández, N. Lautram, J. Béjaud, G. Bastiat et al., An innovative hydrogel of gemcitabine-loaded lipid nanocapsules: when the drug is a key player of the nanomedicine structure, Soft Matter, vol.10, pp.1767-1777, 2014.

D. E. Koppel, Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants, J Chem Phys, vol.57, pp.4814-4820, 1972.

B. J. Frisken, Revisiting the method of cumulants for the analysis of dynamic light-scattering data, Appl Opt, vol.40, pp.4087-4091, 2001.

M. Smoluchowski, Contribution à la théorie de l'endosmose électrique et de quelques phénomènes corrélatifs, Bulletin de l'Académie des sciences de Cracovie, pp.182-200, 1903.

R. Ihaka and R. Gentleman, R: A Language for Data Analysis and Graphics, J Comput Graph Stat, vol.5, pp.299-314, 1996.

B. Heurtault, P. Saulnier, B. Pech, M. C. Venier-julienne, J. E. Proust et al., The influence of lipid nanocapsule composition on their size distribution, Eur J Pharm Sci, vol.18, pp.55-61, 2003.

L. Kozerski, H. Sierzputowska-gracz, W. Krzyzosiak, M. Bratek-wiewiórowska, M. Jaskólski et al., Comparative structural analysis of cytidine, ethenocytidine and their protonated salts III. 1H, 13C and 15N NMR studies at natural isotope abundance, Nucleic Acids Res, vol.12, pp.2205-2223, 1984.

G. Bastiat, C. O. Pritz, C. Roider, F. Fouchet, E. Lignières et al., A new tool to ensure the fluorescent dye labeling stability of nanocarriers: a real challenge for fluorescence imaging, J Control Release, vol.170, pp.334-342, 2013.

C. Simonsson, G. Bastiat, M. Pitorre, A. S. Klymchenko, J. Béjaud et al., Inter-nanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules, Eur J Pharm Biopharm, vol.98, pp.47-56, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01280528

. Ix and . Bibliographie,

E. Moysan, Y. González-fernández, N. Lautram, J. Béjaud, G. Bastiat et al., An innovative hydrogel of gemcitabine-loaded lipid nanocapsules: when the drug is a key player of the nanomedicine structure, Soft Matter, vol.10, pp.1767-1777, 2014.

, The dissolution procedure: development and validation, Monograph, The United States Pharmacopeial Convention, 2011.

S. S. Iyer, W. H. Barr, and H. T. Karnes, Profiling in vitro drug release from subcutaneous implants: a review of current status and potential implications on drug product development, Biopharm Drug Dispos, vol.27, pp.157-170, 2006.

D. J. Burgess, D. J. Crommelin, A. S. Hussain, and M. L. Chen, Assuring quality and performance of sustained and controlled release parenterals: EUFEPS workshop report, AAPS PharmSci, vol.6, pp.100-111, 2015.

H. M. Kinnunen, V. Sharma, L. R. Contreras-rojas, Y. Yu, C. Alleman et al., A novel in vitro method to model the fate of subcutaneously administered biopharmaceuticals and associated formulation components, J Control Release, vol.214, pp.94-102, 2015.

N. Fogh-andersen, B. M. Altura, B. T. Altura, and O. Siggaard-andersen, Composition of interstitial fluid, vol.41, pp.1522-1525, 1995.

J. R. Fraser, T. C. Laurent, and U. B. Laurent, Hyaluronan: its nature, distribution, functions and turnover, J Intern Med, vol.242, pp.27-33, 1997.

G. Bastiat, C. O. Pritz, C. Roider, F. Fouchet, E. Lignières et al., A new tool to ensure the fluorescent dye labeling stability of nanocarriers: a real challenge for fluorescence imaging, J Control Release, vol.170, pp.334-342, 2013.

C. Simonsson, G. Bastiat, M. Pitorre, A. S. Klymchenko, J. Béjaud et al., Internanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules, Eur J Pharm Biopharm, vol.98, pp.47-56, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01280528

S. R. Hingorani, L. Wang, A. S. Multani, C. Combs, T. B. Deramaudt et al., Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice, Cancer Cell, vol.7, pp.469-483, 2005.

R. E. Stopczynski, D. P. Normolle, D. J. Hartman, H. Ying, J. J. Deberry et al., Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma, Cancer Res, vol.74, pp.1718-1727, 2014.

G. L. Roux, H. Moche, A. Nieto, J. P. Benoit, F. Nesslany et al., Cytotoxicity and genotoxicity of lipid nanocapsules, Toxicol In Vitro, vol.41, pp.189-199, 2017.

, AFSSAPS -Groupe de travail « innovation non clinique », Recommandations relatives à l'évaluation toxicologique des médicaments sous forme nanoparticulaire, 2011.

F. Descat, Hématologie du rat : hémogramme et myélogramme, thèse de l'école nationale vétérinaire de Toulouse, 2002.

A. H. Fischer, K. A. Jacobson, J. Rose, and R. Zeller, Hematoxylin and eosin staining of tissue and cell sections, CSH Protoc, 2008.

, La réaction inflammatoire : Les inflammations, Collège Français des Pathologistes (CoPath)

G. Bastiat, F. Plourde, A. Motulsky, A. Furtos, Y. Dumont et al., Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer's disease, Biomaterials, vol.31, pp.6031-6038, 2010.

. Iii and . Bibliographie,

M. S. Sasso, G. Lollo, M. Pitorre, S. Solito, L. Pinton et al., Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy, Biomaterials, vol.96, pp.47-62, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01392469

N. Wauthoz, G. Bastiat, E. Moysan, A. Cie?lak, K. Kondo et al., Safe lipid nanocapsule-based gel technology to target lymph nodes and combat mediastinal metastases from an orthotopic non-small-cell lung cancer model in SCID-CB17 mice, Nanomedicine Nanotechnol Biol Med, vol.11, issue.5, pp.1237-1245, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392447

G. V. Gamboa, S. D. Palma, A. Lifschitz, M. Ballent, C. Lanusse et al., Ivermectin-loaded lipid nanocapsules: toward the development of a new antiparasitic delivery system for veterinary applications, Parasitol Res, vol.115, pp.1945-1953, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388814

M. Pitorre, G. Bastiat, E. Marie-dit, J. P. Chatel, and . Benoit, Passive and specific targeting of lymph nodes: the influence of the administration route, Eur J Nanomedicine, vol.7, pp.121-128, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392440

. Vi and . Bibliographie,

A. L. Lainé, E. Adriaenssens, G. Vessières, C. Jaouen, E. Corbet et al., The in vivo performance of ferrocenyl tamoxifen lipid nanocapsules in xenografted triple negative breast cancer, Biomaterials, vol.34, pp.6949-6956, 2013.

E. Allard, C. Passirani, E. Garcion, P. Pigeon, A. Vessières et al., Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas, J Control Release, vol.130, pp.146-153, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00343557

A. C. Groo, M. Bossiere, L. Trichard, P. Legras, J. P. Benoit et al., In vivo evaluation of paclitaxelloaded lipid nanocapsules after intravenous and oral administration on resistant tumor, Nanomed, vol.10, pp.589-601, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01153494

A. C. Groo, P. Saulnier, J. C. Gimel, J. Gravier, C. Ailhas et al., Fate of paclitaxel lipid nanocapsules in intestinal mucus in view of their oral delivery, Int J Nanomedicine, vol.8, pp.4291-4302, 2013.

B. Saliou, O. Thomas, N. Lautram, A. Clavreul, J. Hureaux et al., Development and in vitro evaluation of a novel lipid nanocapsule formulation of etoposide, Eur J Pharm Sci, vol.50, pp.172-180, 2013.

F. B. Furnari, T. Fenton, R. M. Bachoo, A. Mukasa, J. M. Stommel et al., Malignant astrocytic glioma: genetics, biology, and paths to treatment, Genes Dev, vol.21, pp.2683-2710, 2007.

C. Bastiancich, P. Danhier, V. Préat, and F. Danhier, Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma, J Control Release, vol.243, pp.29-42, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02076746

L. Bauchet, H. Mathieu-daudé, P. Fabbro-peray, V. Rigau, M. Fabbro et al., Club de Neuro-Oncologie of the Société Française de Neurochirurgie (CNO-SFNC), Société Française de Neuropathologie (SFNP), Association des NeuroOncologues d'Expression Française (ANOCEF), Oncological patterns of care and outcome for 952 patients with newly, Société Française de Neurochirurgie (SFNC), vol.12, pp.725-735, 2004.

S. A. Grossman and J. F. Batara, Current management of glioblastoma multiforme, Semin Oncol, vol.31, pp.635-644, 2004.

T. A. Dolecek, J. M. Propp, N. E. Stroup, and C. Kruchko, CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States, vol.14, pp.1-49, 2005.

V. K. Ho, J. C. Reijneveld, R. H. Enting, H. P. Bienfait, P. Robe et al., Changing incidence and improved survival of gliomas, Dutch Society for Neuro-Oncology (LWNO), vol.50, pp.2309-2318, 2014.

S. Lönn, L. Klaeboe, P. Hall, T. Mathiesen, A. Auvinen et al., Incidence trends of adult primary intracerebral tumors in four Nordic countries, Int J Cancer, vol.108, pp.450-455, 2004.

M. C. Mabray, R. F. Barajas, and S. Cha, Modern Brain Tumor Imaging, Brain Tumor Res Treat, vol.3, pp.8-23, 2015.

R. Stupp, W. P. Mason, M. J. Van-den, M. Bent, B. Weller et al., European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, The National Cancer Institute of Canada Clinical Trials Group, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N Engl J Med, vol.352, pp.987-996, 2005.

N. R. Smoll, K. Schaller, and O. P. Gautschi, Long-term survival of patients with glioblastoma multiforme (GBM), J Clin Neurosci, vol.20, pp.670-675, 2013.

S. A. Chowdhary, T. Ryken, and H. B. Newton, Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: a meta-analysis, J Neurooncol, vol.122, pp.367-382, 2015.

S. Dixit, M. Hingorani, S. Achawal, and I. Scott, The sequential use of carmustine wafers (Gliadel ® ) and post-operative radiotherapy with concomitant temozolomide followed by adjuvant temozolomide: a clinical review, Br J Neurosurg, vol.25, pp.459-469, 2011.

D. A. Bota, A. Desjardins, J. A. Quinn, M. L. Affronti, and H. S. Friedman, Interstitial chemotherapy with biodegradable BCNU (Gliadel ® ) wafers in the treatment of malignant gliomas, Ther Clin Risk Manag, vol.3, pp.707-715, 2007.

T. A. Juratli, G. Schackert, and D. Krex, Current status of local therapy in malignant gliomas--a clinical review of three selected approaches, Pharmacol Ther, vol.139, pp.341-58, 2013.

K. Messaoudi, A. Clavreul, and F. Lagarce, Toward an effective strategy in glioblastoma treatment. Part I: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide, Drug Discov Today, vol.20, pp.899-905, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392441

J. N. Sarkaria, G. J. Kitange, C. D. James, R. Plummer, H. Calvert et al., Mechanisms of chemoresistance to alkylating agents in malignant glioma, Clin Cancer Res, vol.14, pp.2900-2908, 2008.

, Guilford Pharmaceuticals, NDA #20,637 Food and Drug Agency, 2001.

P. P. Wang, J. Frazier, and H. Brem, Local drug delivery to the brain, Adv Drug Deliv Rev, vol.54, pp.987-1013, 2002.

S. Brem, B. Tyler, K. Li, G. Pradilla, F. Legnani et al., Local delivery of temozolomide by biodegradable polymers is superior to oral administration in a rodent glioma model, Cancer Chemother Pharmacol, vol.60, pp.643-650, 2007.

B. Tyler, K. D. Fowers, K. W. Li, V. R. Recinos, J. M. Caplan et al., A thermal gel depot for local delivery of paclitaxel to treat experimental brain tumors in rats, J Neurosurg, vol.113, pp.210-217, 2010.

A. K. Vellimana, V. R. Recinos, L. Hwang, K. D. Fowers, K. W. Li et al., Combination of paclitaxel thermal gel depot with temozolomide and radiotherapy significantly prolongs survival in an experimental rodent glioma model, J Neurooncol, vol.111, pp.229-236, 2013.

M. Roger, A. Clavreul, N. T. Huynh, C. Passirani, P. Schiller et al., Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy, Int J Pharm, vol.423, pp.63-68, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01878529

S. Vinchon-petit, D. Jarnet, A. Paillard, J. P. Benoit, E. Garcion et al., In vivo evaluation of intracellular drug-nanocarriers infused into intracranial tumours by convection-enhanced delivery: distribution and radiosensitisation efficacy, J Neurooncol, vol.97, pp.195-205, 2010.

E. Allard, D. Jarnet, A. Vessières, S. Vinchon-petit, G. Jaouen et al., Local delivery of ferrociphenol lipid nanocapsules followed by external radiotherapy as a synergistic treatment against intracranial 9L glioma xenograft, Pharm Res, vol.27, pp.56-64, 2010.

E. Allard, N. T. Huynh, A. Vessières, P. Pigeon, G. Jaouen et al., Dose effect activity of ferrocifen-loaded lipid nanocapsules on a 9L-glioma model, Int J Pharm, vol.379, pp.317-323, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01230396

C. Bastiancich, K. Vanvarenberg, B. Ucakar, M. Pitorre, G. Bastiat et al., Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma, J Control Release, vol.225, pp.283-293, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388804

S. Galbán, B. Lemasson, T. M. Williams, F. Li, K. A. Heist et al., DW-MRI as a Biomarker to Compare Therapeutic Outcomes in Radiotherapy Regimens Incorporating Temozolomide or Gemcitabine in Glioblastoma, PLoS ONE, vol.7, issue.4, 2012.

E. Moysan, Y. González-fernández, N. Lautram, J. Béjaud, G. Bastiat et al., An innovative hydrogel of gemcitabine-loaded lipid nanocapsules: when the drug is a key player of the nanomedicine structure, Soft Matter, vol.10, pp.1767-1777, 2014.

S. Chatelin, A. Constantinesco, and R. Willinger, Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations, Biorheology, vol.47, pp.255-276, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00591614

N. Wauthoz, G. Bastiat, E. Moysan, A. Cie?lak, K. Kondo et al., Safe lipid nanocapsule-based gel technology to target lymph nodes and combat mediastinal metastases from an orthotopic non-small-cell lung cancer model in SCID-CB17 mice, Nanomedicine Nanotechnol Biol Med, vol.11, pp.1237-1245, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392447

E. Moysan, G. Bastiat, and J. P. Benoit, Gemcitabine versus Modified Gemcitabine: a review of several promising chemical modifications, Mol Pharm, vol.10, pp.430-444, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00787112

A. Paillard, F. Hindré, C. Vignes-colombeix, J. P. Benoit, and E. Garcion, The importance of endo-lysosomal escape with lipid nanocapsules for drug subcellular bioavailability, Biomaterials, vol.31, pp.7542-54, 2010.

E. Garcion, A. Lamprecht, B. Heurtault, A. Paillard, A. Aubert-pouessel et al., A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats, Mol Cancer Ther, vol.5, pp.1710-1722, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00129865

G. Carpinelli, B. Bucci, I. D'agnano, R. Canese, F. Caroli et al., Gemcitabine treatment of experimental C6 glioma: the effects on cell cycle and apoptotic rate, Anticancer Res, vol.26, pp.3017-3024, 2006.

J. Balzeau, M. Pinier, R. Berges, P. Saulnier, J. P. Benoit et al., The effect of functionalizing lipid nanocapsules with NFL-TBS.40-63 peptide on their uptake by glioblastoma cells, Biomaterials, vol.34, pp.3381-3389, 2013.

R. Berges, J. Balzeau, A. C. Peterson, and J. Eyer, A tubulin binding peptide targets glioma cells disrupting their microtubules, blocking migration, and inducing apoptosis, Mol Ther J Am Soc Gene Ther, vol.20, pp.1367-1377, 2012.

A. Bocquet, R. Berges, R. Frank, P. Robert, A. C. Peterson et al., Neurofilaments Bind Tubulin and Modulate Its Polymerization, J Neurosci, vol.29, pp.11043-11054, 2009.

, D'une part, les NCLs servent à encapsuler et à protéger une ou plusieurs molécules pouvant être lipophiles ou amphiphiles. Ces nano-objets présentent une très bonne stabilité, Particularités des formes hydrogels de NCLs Les formes hydrogel développées permettent d'associer les propriétés des gels et des NCLs

, Les NCLs se présentent classiquement sous la forme d'une suspension. Elles ont majoritairement été envisagées pour des injections IV. Différentes preuves de concept ont été démontrées pour des applications antitumorales : mélanome

, Quelques rares études ont utilisé les NCLs avec des injections SC

. Cependant, leur forme « en suspension » ne leur permet pas d'être retenues sur leur site d'administration, ce qui limite leur période d'action. L'utilisation d'une forme gélifiée de NCLs pourrait permettre de prolonger le temps de résidence des NCLs après leur application et ainsi d'imaginer de nouvelles applications avec une libération soutenue de NCLs

, En parallèle, les hydrogels peuvent être utilisés seuls pour former un dépôt à partir duquel un PA est libéré progressivement. Des hydrogels ont par exemple été développé pour libérer la, p.2

, BMP-2) et ainsi améliorer la régénération osseuse, vol.50

, D'autre études ont développé un hydrogel libérant de façon prolongée de la dexaméthasone dans l

. Cependant, ces formes peuvent plus difficilement mettre en oeuvre des PAs lipophiles, et une forme d'hydrogel chargé en nanosytèmes (encapsulant des PAs lipophiles) sera préférée avec ce type d'actifs

, La stratégie de disperser des NSs dans une matrice gélifiée est la plus simple et la plus explorée

D. Part, En effet, l'injection d'un médicament en SC est à l'origine d'une réaction inflammatoire dite à corps étranger. Celle-ci entraine la formation d'une capsule fibreuse composée de fibroblastes et de dépôt de collagène autour de l'implant, ce qui peut être à l'origine d'une modification de la cinétique de libération du médicament. Cette réaction est systématique et elle peut suivre l'implantation de matériaux de nature diverse

, Ces matériaux non biodégradables sont couramment utilisés dans le développement de médicaments et/ou dispositifs médicaux implantables (approuvés par la FDA et l'ANSM)

, Le développement d'hydrogels implantables utilisant des polymères biodégradables est couramment utilisé en recherche préclinique et commence à se concrétiser au travers d'études cliniques. A ce jour, aucune III

A. Hullmann, Who is winning the global nanorace?, Nat Nanotechnol, vol.1, pp.81-83, 2006.

P. Dobson, The long way to the market, Nat Nanotechnol, vol.11, pp.916-917, 2016.

R. W. Johnson, Sirolimus (Rapamune) in renal transplantation, Curr Opin Nephrol Hypertens, vol.11, pp.603-607, 2002.

J. Camardo, The Rapamune era of immunosuppression 2003: the journey from the laboratory to clinical transplantation, Transplant Proc, vol.35, pp.18-24, 2003.

L. M. Chiechi and E. , IDrugs Investig Drugs J, vol.7, pp.860-864, 2004.

E. Miele, G. P. Spinelli, E. Miele, F. Tomao, and S. Tomao, Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer, Int J Nanomedicine, vol.4, pp.99-105, 2009.

S. M. Hoy, Albumin-bound paclitaxel: a review of its use for the first-line combination treatment of metastatic pancreatic cancer, Drugs, vol.74, pp.1757-1768, 2014.

Y. Barenholz, Doxil ® -The first FDA-approved nano-drug: Lessons learned, J Controlled Release, vol.160, pp.117-134, 2012.

F. Muggia and A. Hamilton, Phase III data on Caelyx in ovarian cancer, Eur J Cancer, vol.37, issue.9, pp.15-18, 2001.

J. Rom, S. Bechstein, C. Domschke, M. Golatta, C. Mayer et al., Efficacy and toxicity profile of pegylated liposomal doxorubicin (Caelyx) in patients with advanced breast cancer, Anticancer Drugs, vol.25, pp.219-224, 2014.

G. Batist, J. Barton, P. Chaikin, C. Swenson, and L. Welles, Myocet (liposome-encapsulated doxorubicin citrate): a new approach in breast cancer therapy, Expert Opin Pharmacother, vol.3, pp.1739-1751, 2002.

E. Rosenthal, I. Poizot-martin, T. Saint-marc, J. P. Spano, and P. Cacoub, Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma, Am J Clin Oncol, vol.25, pp.57-59, 2002.

N. Mandal and I. H. Chisholm, Identifying the proportion of age related macular degeneration patients who would benefit from photodynamic therapy with verteporfin (Visudyne), Br J Ophthalmol, vol.86, pp.118-119, 2002.

F. Aversa, A. Busca, A. Candoni, S. Cesaro, C. Girmenia et al., Liposomal amphotericin B (AmBisome ® ) at beginning of its third decade of clinical use, J Chemother, pp.1-13, 2017.

A. Chachuat and B. Bonnemain, European clinical experience with Endorem, A new contrast agent for liver MRI in 1000 patients, Radiol, vol.35, pp.274-276, 1995.

B. Heurtault, P. Saulnier, B. Pech, J. E. Proust, and J. P. Benoit, A novel phase inversion-based process for the preparation of lipid nanocarriers, Pharm Res, vol.19, issue.6, pp.875-880, 2002.

B. Heurtault, P. Saulnier, B. Pech, M. C. Venier-julienne, J. E. Proust et al., The influence of lipid nanocapsule composition on their size distribution, Eur J Pharm Sci, vol.18, issue.1, pp.55-61, 2003.

B. Heurtault, P. Saulnier, J. P. Benoit, J. E. Proust, B. Pech et al., Lipid nanocapsules, preparation process and use as medicine, pp.20090238865-1, 2009.

N. T. Huynh, C. Passirani, P. Saulnier, and J. P. Benoit, Lipid nanocapsules: a new platform for nanomedicine, Int J Pharm, vol.379, pp.201-209, 2009.

F. Lagarce and C. Passirani, Nucleic-Acid Delivery Using Lipid Nanocapsules, Curr Pharm Biotechnol, vol.17, pp.723-727, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01392476

E. Moysan, Y. González-fernández, N. Lautram, J. Béjaud, G. Bastiat et al., An innovative hydrogel of gemcitabine-loaded lipid nanocapsules: when the drug is a key player of the nanomedicine structure, Soft Matter, vol.10, issue.11, pp.1767-1777, 2014.

N. Wauthoz, G. Bastiat, E. Moysan, A. Cie?lak, K. Kondo et al., Safe lipid nanocapsule-based gel technology to target lymph nodes and combat mediastinal metastases from an orthotopic non-small-cell lung cancer model in SCID-CB17 mice, Nanomedicine Nanotechnol Biol Med, vol.11, issue.5, pp.1237-1245, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392447

A. C. Couffin-hoarau, A. Motulsky, P. Delmas, and J. C. Leroux, In situ-forming pharmaceutical organogels based on the self-assembly of L-alanine derivatives, Pharm Res, vol.21, pp.454-457, 2004.

A. Motulsky, M. Lafleur, A. C. Couffin-hoarau, D. Hoarau, F. Boury et al., Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants, Biomaterials, vol.26, pp.6242-6253, 2005.

F. Plourde, A. Motulsky, A. C. Couffin-hoarau, D. Hoarau, H. Ong et al., First report on the efficacy of l-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs, J Control Release, vol.108, issue.2-3, pp.433-441, 2005.

A. Vintiloiu and J. C. Leroux, Organogels and their use in drug delivery-a review, J Control Release, vol.125, pp.179-192, 2008.

A. Vintiloiu, M. Lafleur, G. Bastiat, and J. C. Leroux, In situ-forming oleogel implant for rivastigmine delivery, Pharm Res, vol.25, issue.4, pp.845-852, 2008.

G. Bastiat and J. C. Leroux, Pharmaceutical organogels prepared from aromatic amino acid derivatives, J Mater Chem, vol.19, pp.3867-3877, 2009.

S. Furberg, The crystal structure of cytidine, Acta Crystallogr, vol.3, pp.325-333, 1950.

S. Furberg, C. S. Peterson, and C. Rømming, A refinement of the crystal structure of cytidine, Acta Crystallogr, vol.18, pp.313-320, 1965.

D. Wu, P. X. Tang, S. S. Li, H. Z. Luo, and H. Li, X-ray powder diffraction data for gemcitabine, Powder Diffr, vol.30, pp.76-78, 2015.

C. H. Görbitz, K. W. Törnroos, and G. M. Day, Single-crystal investigation of L-tryptophan with Z' = 16, Acta Crystallogr B, vol.68, pp.549-557, 2012.

C. B. Hübschle, M. Messerschmidt, and P. Luger, Crystal structure of DL-Tryptophan at 173K, Cryst Res Technol, vol.39, pp.274-278, 2004.

G. Salvi, P. De-los-rios, and M. Vendruscolo, Effective interactions between chaotropic agents and proteins, Proteins, vol.61, pp.492-499, 2005.

B. J. Bennion and V. Daggett, The molecular basis for the chemical denaturation of proteins by urea, Proc Natl Acad Sci U S A, vol.100, pp.5142-5147, 2003.

T. Perrier, P. Saulnier, F. Fouchet, N. Lautram, and J. P. Benoît, Post-insertion into Lipid NanoCapsules (LNCs): From experimental aspects to mechanisms, Int J Pharm, vol.396, pp.204-209, 2010.

A. L. Lainé, J. Gravier, M. Henry, L. Sancey, J. Béjaud et al., Conventional versus stealth lipid nanoparticles: Formulation and in vivo fate prediction through FRET monitoring, J Controlled Release, vol.188, pp.1-8, 2014.

A. C. Groo, M. Bossiere, L. Trichard, P. Legras, J. P. Benoit et al., In vivo evaluation of paclitaxelloaded lipid nanocapsules after intravenous and oral administration on resistant tumor, Nanomed, vol.10, pp.589-601, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01153494

M. S. Sasso, G. Lollo, M. Pitorre, S. Solito, L. Pinton et al., Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy, Biomaterials, vol.96, pp.47-62, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01392469

G. V. Gamboa, S. D. Palma, A. Lifschitz, M. Ballent, C. Lanusse et al., Ivermectin-loaded lipid nanocapsules: toward the development of a new antiparasitic delivery system for veterinary applications, Parasitol Res, vol.115, pp.1945-1953, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388814

A. Clavreul, A. Montagu, A. L. Lainé, C. Tétaud, N. Lautram et al., Targeting and treatment of glioblastomas with human mesenchymal stem cells carrying ferrociphenol lipid nanocapsules, Int J Nanomedicine, vol.10, pp.1259-1271, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392451

M. Roger, A. Clavreul, N. T. Huynh, C. Passirani, P. Schiller et al., Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy, Int J Pharm, vol.423, pp.63-68, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01878529

A. Cikankowitz, A. Clavreul, C. Tétaud, L. Lemaire, A. Rousseau et al., Characterization of the distribution, retention, and efficacy of internal radiation of (188)Re-lipid nanocapsules in an immunocompromised human glioblastoma model, J Neurooncol, vol.131, pp.49-58, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01451658

C. Bastiancich, K. Vanvarenberg, B. Ucakar, M. Pitorre, G. Bastiat et al., Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma, J Control Release Off, vol.225, pp.283-293, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388804

A. Vashist, A. Vashist, Y. K. Gupta, and S. Ahmad, Recent advances in hydrogel based drug delivery systems for the human body, J Mater Chem B, vol.2, pp.147-166, 2013.

W. and K. Ward, A Review of the Foreign-body Response to Subcutaneously-implanted Devices: The Role of Macrophages and Cytokines in Biofouling and Fibrosis, J Diabetes Sci Technol, vol.2, pp.768-777, 2008.

J. M. Anderson, A. Rodriguez, and D. T. Chang, Foreign body reaction to biomaterials, vol.20, pp.86-100, 2008.

G. A. Dijkman, P. F. Del-moral, J. W. Plasman, J. J. Kums, K. P. Delaere et al., A new extra long acting depot preparation of the LHRH analogue Zoladex. First endocrinological and pharmacokinetic data in patients with advanced prostate cancer, J Steroid Biochem Mol Biol, vol.37, pp.933-936, 1990.

J. Perry, A. Chambers, K. Spithoff, and N. Laperriere, Gliadel ® Wafers in the Treatment of Malignant Glioma: A Systematic Review, Curr Oncol, vol.14, issue.5, pp.189-94, 2007.

, Guilford Pharmaceuticals, NDA #20,637 Food and Drug Agency, 2001.

Q. Wang, L. Wang, M. S. Detamore, and C. Berkland, Biodegradable Colloidal Gels as Moldable Tissue Engineering Scaffolds, Adv Mater, vol.20, pp.236-239, 2008.

Q. Wang, J. Wang, Q. Lu, M. S. Detamore, and C. Berkland, Injectable PLGA based colloidal gels for zeroorder dexamethasone release in cranial defects, Biomaterials, vol.31, pp.4980-4986, 2010.

Z. Gu, A. A. Aimetti, Q. Wang, T. T. Dang, Y. Zhang et al., Injectable Nano-Network for Glucose-Mediated Insulin Delivery, ACS Nano, vol.7, pp.4194-4201, 2013.

R. C. Ghanami, B. R. Saunders, C. Bosquillon, K. M. Shakesheff, and C. Alexander, Responsive particulate dispersions for reversible building and deconstruction of 3D cell environments, Soft Matter, vol.6, pp.5037-5044, 2010.

M. R. Fraylich, R. Liu, S. M. Richardson, P. Baird, J. Hoyland et al., Thermally-triggered gelation of PLGA dispersions: towards an injectable colloidal cell delivery system, J Colloid Interface Sci, vol.344, pp.61-69, 2010.

Y. Liang, Y. Qiao, S. Guo, L. Wang, Y. Zhai et al., Investigation on injectable, thermally and physically gelable poly(ethylene glycol)/poly(octadecanedioic anhydride) amphiphilic triblock co-polymer nanoparticles, J Biomater Sci Polym Ed, vol.23, pp.465-482, 2012.

W. W. Yang and E. Pierstorff, Reservoir-based polymer drug delivery systems, J Lab Autom, vol.17, pp.50-58, 2012.

J. C. Gimel and T. Nicolai, Self-diffusion of non-interacting hard spheres in particle gels, J Phys Condens Matter Inst Phys J, vol.23, p.234115, 2011.

S. Babu, J. C. Gimel, T. Nicolai, and C. De-michele, The influence of bond rigidity and cluster diffusion on the self-diffusion of hard spheres with square well interaction, J Chem Phys, vol.128, p.204504, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00338457

S. Babu, J. C. Gimel, and T. Nicolai, Tracer diffusion in colloidal gels, J Phys Chem B, vol.112, pp.743-748, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00206247