Y. Wang, N. Liu, and X. Xu, Reserch developments on improvement of spray cooling performance, Advanced Materials Research, pp.1735-1739, 2012.

J. Yang, L. C. Chow, and M. R. Pais, Nucleate Boling Heat Transfer in Spray Cooling, Transaction of the ASME, vol.118, issue.668, p.671, 1996.

W. Cheng, W. Zhang, H. Chen, and L. Hu, Spray cooling and flash evaporation cooling: The current development and application, Renew. Sustain. Energy Rev, vol.55, pp.614-628, 2016.

K. A. Estes and I. Mudawar, Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces, Int. J. Heat Mass Transf, vol.38, issue.16, pp.2985-2996, 1995.

K. J. Choi and S. C. Yao, Mechanisms of film boiling heat transfer of normally impacting spray, Int. J. Heat Mass Transf, vol.30, issue.2, pp.311-318, 1987.

L. Ortiz and J. E. Gonzalez, Experiments on Steady-state High Heat Fluxes using Spray Cooling, Experimental Heat Transfer, vol.12, issue.3, pp.215-233, 1999.

S. S. Hsieh, T. C. Fan, and H. H. Tsai, Spray cooling characteristics of water and R-134a. Part I: Nucleate boiling, Int. J. Heat Mass Transf, vol.47, issue.26, pp.5703-5712, 2004.

D. P. Rini, R. H. Chen, and L. C. Chow, Bubble Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling, Journal of Heat Transfer, vol.124, issue.1, pp.63-72, 2001.

S. J. Thiagarajan, S. Narumanchi, C. King, W. Wang, and R. Yang, Enhancement of Heat Transfer With Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings, 2010 14th International Heat Transfer Conference, vol.6, pp.819-828, 2010.

J. H. Kim, S. M. You, and S. U. Choi, Evaporative spray cooling of plain and microporous coated surfaces, Int. J. Heat Mass Transf, vol.47, pp.3307-3315, 2004.

E. Martínez-galván, R. Antón, J. C. Ramos, and R. Khodabandeh, Influence of surface roughness on a spray cooling system with R134a . Part I : Heat transfer measurements, Exp. Therm. Fluid Sci, vol.46, issue.0, pp.183-190, 2013.

R. Chen, L. C. Chow, and J. E. Navedo, Effects of spray characteristics on critical heat flux in subcooled water spray cooling, Int. J. Heat Mass Transf, vol.45, issue.19, pp.4033-4043, 2002.

B. Horacek, K. T. Kiger, and J. Kim, Single nozzle spray cooling heat transfer mechanisms, Int. J. Heat Mass Transf, vol.48, issue.8, pp.1425-1438, 2004.

E. A. Silk, J. Kim, and K. Kiger, Spray cooling of enhanced surfaces: Impact of structured surface geometry and spray axis inclination, Int. J. Heat Mass Transf, vol.49, pp.4910-4920, 2006.

M. Visaria and I. Mudawar, International Journal of Heat and Mass Transfer Effects of high subcooling on two-phase spray cooling and critical heat flux, Int. J. Heat Mass Transf, vol.51, issue.21GÇô22, pp.5269-5278, 2008.

E. A. Silk, J. Kim, and K. Kiger, Spray Cooling Trajectory Angle Impact Upon Heat Flux Using a Straight Finned Enhanced Surface, Summer Heat Transfer Conference, vol.4, pp.743-751, 2005.

R. Zhao, W. Cheng, Q. Liu, and H. Lin-fan, Study on heat transfer performance of spray cooling: model and analysis, Heat Mass Transfer, vol.46, issue.8-9, pp.821-829, 2010.

W. M. Grissom and F. A. Wierum, Liquid spray cooling of a heated surface, Int. J. Heat Mass Transf, vol.24, issue.2, pp.261-271, 1981.

C. Sodtke and P. Stephan, Spray cooling on micro structured surfaces, Int. J. Heat Mass Transf, vol.50, issue.19-20, pp.4089-4097, 2007.

R. Mesler and G. Mailen, Nucleate boiling in thin liquid films, AIChE J, vol.23, issue.6, p.954, 1977.

D. E. Rini, R. H. Chen, and L. C. Chow, Bubble behavior and heat transfer mechanism in FC-72 pool boiling, Exp. Heat Transf, vol.14, issue.1, pp.27-44, 2001.

P. Smakulski and S. Pietrowicz, A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques, Appl. Therm. Eng, vol.104, pp.636-646, 2016.

S. J. Thiagarajan, S. Narumanchi, and R. Yang, Effect of flow rate and subcooling on spray heat transfer on microporous copper surfaces, Int. J. Heat Mass Transf, vol.69, pp.493-505, 2014.

I. Mudawar and W. S. Valentine, Determination of the local quench curve for spray-cooled metallic surfaces, J.Heat Treating, vol.7, issue.2, pp.107-121, 1989.

I. Mudawar, Optimizing and Predicting CHF in Spray Cooling of a Square Surface, J. Heat Transfer, vol.118, issue.3, p.672, 1996.

J. R. Rybicki and I. Mudawar, Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays, Int. J. Heat Mass Transf, vol.49, issue.1-2, pp.5-16, 2006.

M. Ghodbane and J. P. Holman, Experimental study of spray cooling with Freon-113, Int. J. Heat Mass Transf, vol.34, issue.4-5, pp.1163-1174, 1991.

Y. B. Tan, Multi-nozzle spray cooling for high heat fl ux applications in a closed loop system, Appl. Therm. Eng, vol.54, issue.2, pp.372-379, 2013.

T. A. Shedd and A. G. Pautsch, Spray impingement cooling with single-and multiple-nozzle arrays. Part II: Visualization and empirical models, Int. J. Heat Mass Transf, vol.48, issue.15, pp.3176-3184, 2005.

E. Cabrera, Heat flux correlation for spray cooling in the nucleate boiling regime, Exp. Heat Transf, vol.16, issue.1, pp.19-44, 2003.

J. L. Xie, Study of heat transfer enhancement for structured surfaces in spray cooling, Appl. Therm. Eng, vol.59, issue.1-2, pp.464-472, 2013.

L. G. Hansen and B. W. Webb, Air jet impingement heat transfer from modified surfaces, Int. J. Heat Mass Transf, vol.36, issue.4, pp.989-997, 1993.

J. Coursey, J. Kim, and K. Kiger, Spray cooling of high aspect ratio open microchannels, IEEE, pp.188-195, 2006.

R. J. Issa and S. Yao, Numerical Model for Spray-Wall Impaction and Heat Transfer at Atmospheric Conditions, J. Thermophys. Heat Transf, vol.19, issue.4, pp.441-447, 2005.

S. C. Yao and T. L. Cox, A general heat transfer correlation for impacting water sprays on high-temperature surfaces, pp.207-219, 2002.

E. A. Silk, J. Kim, and K. Kiger, Investigation of Enhanced Surface Spray Cooling, International Mechanical engineering congress and exposition Heat Transfer, vol.2, pp.685-690, 2004.

M. S. Sehmbey, M. R. Pais, and L. C. Chow, Effect of surface material properties and surface characteristics in evaporative spray cooling, Journal of Thermophysics and Heat Transfer, vol.6, issue.3, pp.505-512, 1992.

M. R. Pais, L. C. Chow, and E. T. Mahefkey, Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling, J. Heat Transfer, vol.114, issue.1, pp.211-219, 1992.

Z. Zhang, J. Li, and P. Jiang, Experimental investigation of spray cooling on fl at and enhanced surfaces, ATE, vol.51, issue.1-2, pp.102-111, 2013.

Z. Zhang, J. Li, and P. Jiang, Experimental investigation of spray cooling on fl at and enhanced surfaces, ATE, vol.51, issue.1-2, pp.102-111, 2013.

E. Martínez-galván, R. Antón, J. C. Ramos, and R. Khodabandeh, Influence of surface roughness on a spray cooling system with R134a . Part I : Heat transfer measurements, Exp. Therm. Fluid Sci, vol.46, issue.0, pp.183-190, 2013.

Z. Zhang, P. Jiang, D. M. Christopher, and X. Liang, Experimental investigation of spray cooling on micro-, nano-and hybrid-structured surfaces, Int. J. Heat Mass Transf, vol.80, pp.26-37, 2015.

J. L. Alvarado and Y. Lin, Multiple Droplet Impingements on Nanostructured Surfaces for Enhanced Spray Cooling, ASME/JSME 2011 8th Thermal Engineering Joint Conference, pp.10241-10241, 2011.

Z. Zhang, J. Li, and P. Jiang, Experimental investigation of spray cooling on fl at and enhanced surfaces, ATE, vol.51, issue.1-2, pp.102-111, 2013.

S. Nukiyama, The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure, Int. J. Heat Mass Transf, vol.9, issue.12, pp.1419-1433, 1966.

B. B. Mikic and W. M. Rohsenow, A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics, J. Heat Transfer, vol.91, issue.2, pp.245-250, 1969.

M. G. Cooper and A. J. Lloyd, The microlayer in nucleate pool boiling, Int. J. Heat Mass Transf, vol.12, issue.8, pp.895-913, 1969.

P. Stephan and J. Hammer, A new model for nucleate boiling heat transfer, Heat Mass Transf, vol.30, issue.2, pp.119-125, 1994.

F. Demiray and J. Kim, Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling, Int. J. Heat Mass Transf, vol.47, pp.3257-3268, 2004.

M. G. Cooper, Heat Flow Rates in Saturated Nucleate Pool Boiling-A WideRanging Examination Using Reduced Properties, Journal of Electronics Cooling and Thermal Control, vol.1, issue.2, pp.157-239, 1984.

H. T. Phan, Effet des nano-et micro structurations de surface sur le transfert thermique en ébullition, 2010.

K. Stephan and M. Abdelsalam, Heat-transfer correlations for natural convection boiling, Int. J. Heat Mass Transf, vol.23, issue.1, pp.73-87, 1980.

W. Fritz, Maximum volume of vapour bubbles, Phys. Zeitschr, issue.36, pp.379-384, 1935.

H. Honda, H. Takamastu, and J. J. Wei, Enhanced Boiling of FC-72 on Silicon Chips With Micro-Pin-Fins and Submicron-Scale Roughness, J. Heat Transfer, vol.124, issue.2, pp.383-390, 2001.

N. D. Nimkar, S. H. Bhavnani, and R. C. Jaeger, Effect of nucleation site spacing on the pool boiling characteristics of a structured surface, Int. J. Heat Mass Transf, vol.49, pp.2829-2839, 2006.

C. K. Yu and D. C. Lu, Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72, Int. J. Heat Mass Transf, vol.50, pp.3624-3637, 2007.

C. K. Yu, D. C. Lu, and T. C. Cheng, Pool boiling heat transfer on artificial microcavity surfaces in dielectric fluid FC-72, J. Micromechanics Microengineering, vol.16, issue.10, p.2092, 2006.

S. Ujereh, T. Fisher, and I. Mudawar, Effects of carbon nanotube arrays on nucleate pool boiling, Int. J. Heat Mass Transf, vol.50, pp.4023-4038, 2007.

J. J. Wei and H. Honda, Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72, Int. J. Heat Mass Transf, vol.46, issue.21, pp.4059-4070, 2003.

G. Guglielmini, M. Misale, and C. Schenone, Boiling of saturated FC-72 on square pin fin arrays, Int. J. Therm. Sci, vol.41, issue.7, pp.599-608, 2002.

K. N. Rainey and S. M. You, Pool Boiling Heat Transfer From Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72, J. Heat Transfer, vol.122, issue.3, pp.509-516, 2000.

K. ,

S. Rainey, S. You, and . Lee, Effect of pressure, subcooling, and dissolved gas on pool boiling heat transfer from microporous, square pin-finned surfaces in FC-72, Int. J. Heat Mass Transf, vol.46, issue.1, pp.23-35, 2003.

M. S. El-genk and J. L. Parker, Enhanced boiling of HFE-7100 dielectric liquid on porous graphite, Energy Convers. Manag, vol.46, pp.2455-2481, 2005.

M. S. El-genk and J. L. Parker, Nucleate boiling of FC-72 and HFE-7100 on porous graphite at different orientations and liquid subcooling, Energy Convers. Manag, vol.49, issue.4, pp.733-750, 2008.

J. L. Parker and M. S. El-genk, Enhanced saturation and subcooled boiling of FC-72 dielectric liquid, Int. J. Heat Mass Transf, vol.48, issue.18, pp.3736-3752, 2005.

M. S. El-genk and A. F. Ali, Enhanced nucleate boiling on copper micro-porous surfaces, Int. J. Multiph. Flow, vol.36, issue.10, pp.780-792, 2010.

D. F. Chao, N. Zhang, and W. Yang, Nucleate Pool Boiling on CopperGraphite Composite Surfaces and Its Enhancement Mechanism, J. Thermophys. Heat Transf, vol.18, issue.2, pp.236-242, 2004.

P. Warrier, A. Sathyanarayana, Y. Joshi, and A. S. Teja, Screening and Evaluation of Mixture Formulations for Electronics Thermal Management Using Pool Boiling, IEEE Trans. Components, Packag. Manuf. Technol, vol.1, issue.9, pp.1387-1394, 2011.

I. Pranoto, K. C. Leong, and L. W. Jin, The role of graphite foam pore structure on saturated pool boiling enhancement, Appl. Therm. Eng, vol.42, pp.163-172, 2012.

, Fiche de données sécurité HFE7100, 3M, vol.8, pp.8-15, 2017.

, 3M Electronics Markets Materials Division, vol.3, pp.1-8

M. H. Rausch, L. Kretschmer, S. Will, A. Leipertz, and A. P. Fröba, Density, Surface Tension, and Kinematic Viscosity of Hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500, J. Chem. Eng. Data, vol.60, issue.12, pp.3759-3765, 2015.

T. Lindeberg, Feature Detection with Automatic Scale Selection, Int. J. Comput. Vis, vol.30, issue.2, pp.79-116, 1998.

T. Lindeberg, Image Matching Using Generalized Scale-Space Interest Points, J. Math. Imaging Vis, vol.52, issue.1, pp.3-36, 2015.

K. Jaqaman, Robust single-particle tracking in live-cell time-lapse sequences, Nat. Methods, vol.5, issue.8, pp.695-702, 2008.

I. V. Bibliographie-chapitre,

S. J. Thiagarajan, S. Narumanchi, C. King, W. Wang, and R. Yang, Enhancement of Heat Transfer With Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings, 2010 14th International Heat Transfer Conference, vol.6, pp.819-828, 2010.

D. P. Rini, R. H. Chen, and L. C. Chow, Bubble Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling, Journal of Heat Transfer, vol.124, issue.1, pp.63-72, 2001.

B. Horacek, K. T. Kiger, and J. Kim, Single nozzle spray cooling heat transfer mechanisms, Int. J. Heat Mass Transf, vol.48, issue.8, pp.1425-1438, 2004.

C. Sodtke and P. Stephan, Spray cooling on micro structured surfaces, Int. J. Heat Mass Transf, vol.50, issue.19-20, pp.4089-4097, 2007.

S. J. Thiagarajan, S. Narumanchi, and R. Yang, Effect of flow rate and subcooling on spray heat transfer on microporous copper surfaces, Int. J. Heat Mass Transf, vol.69, pp.493-505, 2014.

E. Martínez-galván and J. C. Ramos, Film Thickness and Heat Transfer Measurements in a Spray Cooling System With R134a, J. Electron. Packag, vol.133, p.11002, 2011.

S. S. Hsieh, T. C. Fan, and H. H. Tsai, Spray cooling characteristics of water and R-134a. Part I: Nucleate boiling, Int. J. Heat Mass Transf, vol.47, issue.26, pp.5703-5712, 2004.

J. R. Rybicki and I. Mudawar, Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays, Int. J. Heat Mass Transf, vol.49, issue.1-2, pp.5-16, 2006.

M. Ghodbane and J. P. Holman, Experimental study of spray cooling with Freon-113, Int. J. Heat Mass Transf, vol.34, issue.4-5, pp.1163-1174, 1991.

Y. B. Tan, Multi-nozzle spray cooling for high heat fl ux applications in a closed loop system, Appl. Therm. Eng, vol.54, issue.2, pp.372-379, 2013.

M. G. Cooper, Heat Flow Rates in Saturated Nucleate Pool Boiling-A WideRanging Examination Using Reduced Properties, Journal of Electronics Cooling and Thermal Control, vol.01, issue.02, pp.157-239, 1984.

H. T. Phan, Effet des nano-et micro structurations de surface sur le transfert thermique en ébullition, 2010.

M. W. Wambsganss, D. M. France, J. A. Jendrzejczyk, and T. N. Tran, Boiling Heat Transfer in a Horizontal Small-Diameter Tube, J. Heat Transfer, vol.115, issue.4, p.963, 1993.

K. Nishikawa, Y. Fujita, H. Ohta, and S. Hidaka, Effect of the surface roughness on the nucleate boiling heat transfer over the wide range of pressure, International Heat Transfer Conference, p.6, 1982.

D. Jung, H. Lee, D. Bae, and S. Oho, Nucleate boiling heat transfer coefficients of flammable refrigerants, Int. J. Refrig, vol.27, issue.4, pp.409-414, 2004.

G. Guglielmini, M. Misale, and C. Schenone, Boiling of saturated FC-72 on square pin fin arrays, Int. J. Therm. Sci, vol.41, issue.7, pp.599-608, 2002.

C. K. Yu and D. C. Lu, Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72, Int. J. Heat Mass Transf, vol.50, pp.3624-3637, 2007.

, L'étude bibliographique a permis de sélectionner le refroidissement par spray comme technique prometteuse pour dissiper des flux de chaleur au-delà de 100 W/cm 2 . Une étude hydraulique, utilisant de l'eau et du HFE7100 comme fluides de refroidissement, nous a permis de valider des modèles permettant de déterminer la taille et la vitesse de gouttes provenant d'une sélection de buses de spray. Pour la partie thermique, nous avons conçu une section d'essais (évaporateur) permettant de pulvériser en spray afin d, Résumé Cette étude concerne l'étude des écoulements diphasiques dans le cadre du refroidissement des composants électroniques en systèmes embarqués

, nous avons isolé le phénomène d'ébullition nucléée dans une configuration en ébullition nucléée avec un élément chauffant identique à celui employé avec le refroidissement par spray. Pour améliorer les échanges thermiques, 6 surfaces avec différentes structurations (macroscopiques, microscopiques et hybrides) ont été sélectionnées. Les résultats de tests avec ces surfaces ont été comparés avec une surface lisse tant pour le refroidissement par spray que, Vu la complexité du système de spray influencé par plusieurs paramètres et phénomènes physiques

D. Part, avec un refroidissement par spray, les surfaces macrostructurées nous ont permis de dissiper des puissances thermiques de l'ordre de 140 W/cm 2 avec d'importants coefficients de transfert thermique. D'autre part, avec un système de refroidissement par immersion, une des surfaces hybrides a montré être la plus performante

, Les résultats reportés dans cette thèse ont permis d'approfondir la compréhension des mécanismes de transfert de chaleur en refroidissement par spray. De même, ils ouvrent la voie à l'étude des améliorations et optimisations du système permettant de l'employer en systèmes embarqués

, Mots-clés : refroidissement diphasique, systèmes embarqués, refroidissement par spray, pool boiling, intensification des surfaces, structures hybrides