;. X. Allamigeon, S. Allamigeon, . Gaubert, and . Goubault, The tropical double description method, Proc. Symp. Theor, pp.47-58, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00455341

A. , Computing the vertices of tropical polyhedra using directed hypergraphs, Discrete Comput. Geom, 2012.

[. Amari, Maxplus control design for temporal constraints meeting in timed event graphs, IEEE Trans. Automatic Control, vol.57, pp.462-467, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00752347

;. J. Assan and . Assan, Analyse et synthese de l'approche geométrique pour les systemes lineaires sur un anneau, 1999.

. Assan, On feedback invariance properties for systems over a principal ideal domain, IEEE Trans. Autom. Control, vol.44, issue.8, pp.1624-1628, 1999.

[. Atto, Control of discrete event systems with respect to strict duration: supervision of an industrial manufacturing plant, Comput Inf Syst, vol.61, issue.4, pp.1149-1159, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00660726

[. Baccelli, Synchronization and Linearity, 1992.

. Basile, ;. G. Marro, G. Basile, and . Marro, Controlled and conditioned invariant subspaces in linear system theory, Journal of Optimization Theory and Applications, vol.3, issue.5, pp.306-315, 1969.

. Basile, ;. G. Marro, G. Basile, and . Marro, Controlled and Conditioned Invariant in Linear System Theory, 1992.

;. B. Baynat and . Baynat, Théorie des files d'attentes : des chaines de Markov aux réseaux a forme produit, 2000.

.. Y. Boudec-et-thiran, P. Le-boudec, and . Thiran, Network Calculus. Springer Verlag LNCS 2050, p.33, 2001.

;. H. Braker and . Braker, Algorithms and applications in timed discrete event systems, vol.33, p.103, 1993.

J. Braker, G. Olsder, ;. Butkovic, G. Hegedus, and . Butkovic, An elimination method for finding all solutions of the system of linear equations over an extremal algebra, Controlled Invariance and Dynamic Feedback for Systems over Semirings. SIAM conference on control and its applications, vol.182, pp.394-406, 1984.

[. Cárdenas, Control de Modelos Max Plus Lineales con Restricciones Temporales. Article accepté pour une publication dans Revista Iberoamericana de Automática e Informática Ind.. 2016. <hal-01364596>, 2016.

[. Cochet, Numerical computation of spectral elements in max-plus algebra, Proceedings of the IFAC Conference on System Structure and Control (SSC 98), pp.699-706, 1998.

[. Cohen, Analyse du comportement périodique des systemes de production par la théorie des dioides, Dyna. Stab. Syst, vol.17, issue.4, pp.407-433, 1983.

[. Cohen, Algebraic Tools for the Performance Evaluation of Discrete Event Systems, IEEE Proceedings: Special issue on Discrete Event Systems, vol.77, pp.39-58, 1989.

[. Cohen, Max-plus algebra and system theory: where we are and where to go now, Annu. Rev. Control, vol.23, pp.207-219, 1999.

[. Cohen, Duality and separation theorem in idempotent semimodules, Linear Algebra and Appl, vol.379, pp.395-422, 2004.

;. G. Cohen and . Cohen, Análisis y Control de sistemas de eventos discretos: De redes de Petri temporizadas alálgebra. Cuadernos del Instituto de Matemática Beppo Levi, 2001.

;. G. Conte-et-perdon, A. M. Conte, and . Perdon, Systems over a principal ideal domain: a polynomial model approach, SIAM J. Contr. Optimiz, vol.20, pp.112-124, 1982.

;. G. Conte-et-perdon, A. M. Conte, and . Perdon, Problems and results in a geometric approach to the theory of systems over rings, Linear Algebra for Control Theory, IMA, vol.62, pp.61-74, 1994.

G. Conte and A. M. Perdon, The disturbance decoupling problem for systems over ring, SIAM J. Control Optim, vol.33, pp.750-764, 1995.

G. Conte and A. M. Perdon, Systems over ring geometric theory and applications, Ann. Rev. in Contr, vol.24, pp.113-124, 2000.

;. De-schutter and . Schutter, Max-algebraic system theory for discrete event systems, Ph.D. dissertation, Faculty of Applied Sciences, K.U.Leuven, 1996.

T. [de-schutter, . Van-;-b.-de, T. Schutter, . Van-den, and . Boom, Max-plus algebra and max-plus linear discrete event systems: An introduction, Proceedings of the 9th International Workshop on Discrete Event Systems (WODES 08), pp.36-42, 2008.

. Di-loreto, Some Remarks on Duality over a Commutative Ring, Math. and Computers in Simulation, vol.76, pp.375-387, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00405928

. Di-loreto, Duality between invariant spaces for max-plus linear discrete event systems, SIAM J. Control Optim, vol.48, pp.5606-5628, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00411243

S. Gaubert, Exotic semirings: Examples and general results, support de cours de la 26ièmeÉcole de Printemps d'Informatique Théorique, 1998.

S. Gaubert and J. Gunawardena, The duality theorem for min-max functions, C.R. Acad. Sci, vol.326, issue.1, pp.43-48, 1998.

;. S. Gaubert and . Gaubert, Théorie des Systèmes lineaires dans les Dioides, S. Gaubert. Introdution aux Systèmes DynamiquesàÉvénements Discrets. INRIA Rocquencourt. Francia, 1992.

. Gaubert, ;. S. Katz, R. Gaubert, and . Katz, Rational semimódules over the max-plus semiring and geometric approach to discrete event systems, Kybernetika, vol.40, issue.2, pp.153-180, 2004.

. Gaubert, ;. S. Katz, R. Gaubert, and . Katz, The Minkowski theorem for maxplus convex sets, Linear Algebra and Appl, vol.421, pp.356-369, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00071358

S. Gaubert, R. Katz, ;. S. Gaubert, and R. Katz, Minimal half-spaces and external representation of tropical polyhedra, Journal of Algebraic Combinatorics, vol.431, issue.3, p.325348, 2009.

. Hardouin, Towards Geometric Control of Max-Plus Linear Systems with Applications to Manufacturing Systems, IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp.1149-1154, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00857469

;. M. Hautus and . Hautus, Controlled invariance in systems over ring, Proceeding of the Joint Workshop on Feedback and Synthesis of Linear and Nonlinear Systems, vol.39, pp.107-122, 1982.

[. Heidergott, , 2006.

N. Ito and H. Inaba, Dynamic feedback (A,B)-invariance of submodules for linear systems over commutative Noetherian domains, Lin. Algebra Appl, vol.282, pp.123-129, 1998.

;. R. Katz and . Katz, Problemas de Alcanzabilidad e Invariancia en el Algebra Maxplus, 2003.

;. R. Katz and . Katz, Max-plus (A,B)-invariant spaces and control of timed discreteevent systems, IEEE Trans. Automatic Control, vol.52, issue.2, pp.229-241, 2007.

L. H. Kim, T. E. Kim, ;. Lee, . Lhommeau, and . Lhommeau, Schedule stabilization and robust timing control for time-constrained cluster tools, IEEE international conference on robotics and automation, vol.294, pp.47-54, 2003.

, Tropical and idempotent mathematics and applications, Series Contemporary Mathematics, vol.616, 2014.

[. Litvinov, Admissible initial conditions and control of timed event graphs, Math. Notes, vol.69, issue.5, pp.696-729, 1995.

[. Lotito, A minplus derivation of the fundamental car-traffic law, IEEE Trans. on Automatic Control, vol.50, issue.5, p.33, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00072263

M. , On the control of max plus linear system subject to state restriction, Automatica, vol.47, issue.5, pp.988-992, 2011.

;. T. Murata and . Murata, Petri nets: Properties, analysis and applications, Proc, vol.77, issue.4, pp.541-580, 1989.

;. C. Petri and . Petri, Kommunikation mit Automaten, 1962.

;. E. Sontag and . Sontag, Linear systems over commutative rings: A survey. Ricerche di, Automatica, vol.7, issue.1, pp.1-34, 1976.

W. M. Wonham, Linear Multivariable Control: A Geometric Approach, 1985.

[. Wu, A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints, IEEE Trans. Semiconduct. Manuf, vol.21, pp.224-237, 2008.

[. Spacek, Control of an electroplating line in the max and min algebras, International Journal of Systems Science, vol.30, issue.7, pp.759-778, 1999.

W. M. Wonham-;-w, A. S. Wonham, and . Morse, Decoupling and pole assignment in linear multivariable systems: a geometric approach, Linear Multivariable Control: A Geometric Approach, vol.8, pp.1-18, 1970.

. Wu, A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints, IEEE Trans. Semiconduct. Manuf, vol.21, pp.224-237, 2008.

;. Zimmermann and . Zimmermann, A general separation theorem in extremal algebras, Ekonomicko-matematicky Obzor, vol.13, issue.2, pp.179-201, 1977.