P. Jacques, Energies 2050. Rapp. tech, pp.1-377, 2012.

D. C. , Proceedings of the Second International Conference on Magnetic Refrigeration at Room Temperature. International Institute of Refrigeration, 2007.

J. Perkins, Apparatus for producing cold and cooling fluids, 1835.

, Protocole de Montréal relatif à des substances qui appauvrissent la couche d'ozone, pp.1-22, 1987.

, Organisation intergouvernementale pour le développement du FROID. « Aperçu sur l'histoire de la production du froid

R. Chandra-arora, Refrigeration and Air Conditioning, PHI Learning Pvt. Ltd, 2012.

M. Molina, F. Sherwood, and R. , « Chlorofluoromethanes in the environment, Rev. Geophys. Space Phys, vol.13, pp.1-35, 1975.

P. Rivet, Impact environnemental du froid et efficacité énergétique, Technique de l'Ingénieur, pp.1-11, 2011.

. Nations-unies, Protocole de Kyoto à la Convention-Cadre des Nations Unies sur les Changements Climatiques, Rapp. tech, pp.1-23, 1998.

. Centeal-froid, La Réglementation F-Gas. Rapp. tech, 2015.

D. Serge, « Réfrigérateur thermoacoustique : études analytiques et expérimentales en vue d'une miniaturisation, pp.1-209, 2001.

J. Charles and P. , Nouvelles expériences sur la caloricité des courants élec-triques, Annales de chimie, I. VI. 1834, pp.371-87

G. Maurice and I. Jean-paul, , 1997.

B. Poudel, Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys, Science, vol.320, pp.36-8075, 2008.

G. Jeffrey-snyder and S. Toberer, Complex thermoelectric materials, Nature Materials, vol.7, pp.1476-1122, 2008.

E. Lon, . Bell, and . Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems, Science, vol.321, pp.36-8075, 2008.

E. W. Magnetische-untersuchungen, Annalen der Physik, p.15213889, 1881.

P. Weiss-et-auguste and P. Le-phénomène-magnétocalorique, J. Phys. Theor. Appl. 7, vol.1, pp.368-3893, 1917.

S. Anders, « Who discovered the magnetocaloric effect ? Warburg, Weiss, and the connection between magnetism and heat, European Physical Journal H, vol.38, pp.507-517, 2013.

P. Langevin, Magnétisme et théorie des électrons, 1905.

P. Debye, Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur, vol.386, 1926.

W. F. Giauque and D. P. Macdougall, Attainment of Temperatures Below 1°Absolute by Demagnetization of Gd2(SO4)3·8H2O, Physical Review, vol.43, pp.768-768, 1933.

G. V. Brown, Magnetic heat pumping near room temperature, Journal of Applied Physics, vol.47, 1976.

C. Zimm, Description and performance of a near-room tempera ture magnetic refrigerator, Advances in Cryogenic Engineering, vol.43, pp.1759-1766, 1998.

Y. U. Bingfeng, A review of magnetic refrigerator and heat pump prototypes built before the year, International Journal of Refrigeration, vol.33, 2010.

K. Vitalij, K. A. Pecharsky, and . Gschneidner-jr, « Magnetocaloric effect and magnetic refrigeration, Journal of Magnetism and Magnetic Materials, vol.200, pp.397-399, 1999.

K. A. V-k-pecharsky and J. R. Gschneidner, Giant Magnetocaloric Effect in Gd5sSi2Ge2, Physical Review Letters, vol.78, pp.31-9007, 1997.

A. Gschneidner, V. K. Pecharsky, and A. O. Tsokol, « Recent developments in magnetocaloric materials, Reports on Progress in Physics, vol.68, pp.1479-1539, 2005.

M. Huong, P. , S. Cho, and Y. U. , « Review of the magnetocaloric effect in manganite materials, Journal of Magnetism and Magnetic Materials, vol.308, 2007.

A. Fujita, Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hybrides, Physical Review B, vol.67, 2003.

A. Chauhan, A review and analysis of the elasto-caloric effect for solid-state refrigeration devices : Challenges and opportunities, MRS Energy &, pp.2329-2229

G. Daniel, Elastocaloric modeling of natural rubber, vol.57, pp.33-38, 2013.

M. Fukuhara, A. Inoue, and N. Nishiyama, « Rubberlike entropy elasticity of a glassy alloy, Applied Physics Letters, vol.89, issue.10, 2006.

B. Erell, Elastocaloric effect associated with the martensitic transition in shape-memory alloys, Physical Review Letters, vol.100, 2008.

S. Marvin, « Cooling efficiencies of a NiTi-Based Cooling Process, Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp.1-7, 2013.

C. Aditya, P. Satyanarayan, and V. Rahul, « Multicaloric effect in Pb(Mn1/3Nb2/3)O3-32PbTiO3single crystals, Acta Materialia, vol.89, 2015.

P. Satyanarayan, A. Chauhan, and V. Rahul, Multiple caloric effects in (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 ferroelectric ceramic, Applied Physics Letters, vol.107, 2015.

C. Jun, Demonstration of high efficiency elastocaloric cooling with large ?t using NiTi wires, Applied Physics Letters, vol.101, issue.7, pp.27-31, 2012.

S. A. Nikitin, Giant elastocaloric effect in FeRh alloy, Physics Letters A, vol.171, p.90432, 1992.

S. Marvin, A. Schütze, and S. Stefan, « Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes, International Journal of Refrigeration, vol.54, 2015.

T. Jaka, A regenerative elastocaloric heat pump, Nature Energy 1, vol.10, pp.1-6, 2016.

Q. Suxin, Design of a hydraulically driven compressive elastocaloric cooling system, Science and Technology for the Built Environment, vol.22, pp.500-506, 2016.

H. Ossmer, S. Miyazaki, and M. Kohl, Elastocaloric heat pumping using a shape memory alloy foil device, pp.726-729, 2015.

S. Kirsch, Continuously Operating Elastocaloric Cooling Device based on Shape Memory Alloys : Development and Realization, 8th International Conference on Caloric Cooling (Thermag VIII). Proceedings : Darmstadt, pp.238-243, 2018.

Y. Suheyla, Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2, Applied Physics Letters, vol.101, 2012.

M. Lluís, Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound, Nature Communications, vol.2, pp.2041-1723, 2011.

Y. Liu, Influence of epitaxial strain on elastocaloric effect in ferroelectric thin films, Applied Physics Letters, vol.106, issue.3, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01258503

A. Czernuszewicz, An idea of the test stand for studies of magnetobarocaloric materials properties and possibilities of their application, Physica Status Solidi (C), vol.11, pp.995-999, 2014.

P. Kobeko and J. Kurtschatov, « Dielektrische Eigenschaften der Seignettesalzkristalle, Zeitschrift für Physik, vol.66, pp.3-4, 1930.

B. Hans, Elektrische Sättigungserscheinungen und elektrokalorischer Effekt von Kaliumphosphat, Helvetica Physica Acta, vol.23, pp.651-696, 1950.

K. Atsushi and S. Etsuro, Electrocaloric Effect in SrTiO3, vol.19, pp.1497-1498, 1964.

A. I. Karchevskii, Electrocaloric effect in polycristalline BaTiO3, Sov. Phys. Sol. Stat, vol.3, p.2249, 1962.

P. , Electrocaloric Effects in Some Ferroelectric and Antiferroelectric Pb(Zr, Ti)O3 Compounds, 1968.

U. Kuhn and F. Luty, « Paraelectric heating and cooling with 0H-dipoles in alkali halides, Solid State Communications, vol.4, pp.31-33, 1965.

B. A. Strukov, « Physical properties of ferroelectrics in the curie point region, Ferroelectrics, vol.12, pp.97-103, 1976.

B. A. Tuttle and D. A. Payne, The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics, Ferroelectrics, vol.37, pp.603-606, 1981.

A. Mischenko, Giant electrocaloric effect in thin film Pb Zr0.95 Ti0, p.5

. O3-», Science 311, vol.5765, pp.1270-1271, 2006.

T. Correlia and Q. Zhang, Electrocaloric Materials : New Generation of Coolers, 2014.

V. Matjaz, Electrocaloric materials for future solid-state refrigeration technologies, Progress in Materials Science, vol.57, pp.980-1009, 2012.

X. Moya, S. Kar-narayan, and N. Mathur, « Caloric materials near ferroic phase transitions, Nature Materials, vol.13, 2014.

H. Moulson, Electroceramics materials properties applications second ed john wiley and sons, 2003.

A. Kitanovski, W. Peter, and . Egolf, « Thermodynamics of magnetic refrigeration, International Journal of Refrigeration, vol.29, issue.1, pp.3-21, 2006.

M. O?bolt, Electrocaloric vs. magnetocaloric energy conversion, International Journal of Refrigeration, vol.37, pp.16-27, 2014.

P. Blumenthal and A. Raatz, « Classification of electrocaloric cooling device types, Epl, vol.115, pp.0-7, 2016.

J. Yanbing and Y. Sungtaek, « A solid-state refrigerator based on the electrocaloric effect, Applied Physics Letters, vol.100, 2012.

C. Rami, An electrocaloric device demonstrator for solid-state cooling, A Letters Journal Exploring, vol.103, 2013.

R. I. Epstein and K. J. Malloy, « Electrocaloric devices based on thin-film heat switches, Journal of Applied Physics, vol.106, 2009.

Y. V. Sinyavsky and V. M. Brodyansky, Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body, Ferroelectrics, vol.131, pp.321-325, 1992.

S. Wataru, Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, pp.1-6, 2013.

P. Uro?, Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device, Applied Physics Letters, vol.106, 2015.


P. Blumenthal, Active electrocaloric demonstrator for direct comparison of PMN-PT bulk and multilayer samples, Ferroelectrics, vol.497, 2016.

S. Daniele, Electrocaloric cooler combining ceramic multi-layer capacitors and fluid, APL Materials, vol.4, pp.911011-911017, 2016.

G. U. Haiming, A chip scale electrocaloric effect based cooling device, Applied Physics Letters, vol.102, 2013.

G. U. Haiming, An electrocaloric refrigerator without external regenerator, Applied Physics Letters, vol.105, 2014.

M. A. Rujun, Highly efficient electrocaloric cooling with electrostatic actuation, Science, vol.357, pp.1130-1134, 2017.

A. Morgan, Electrostatically actuated thermal switch device for caloric film, Applied Physics Letters, vol.112, 2018.

G. Sebald, Matériaux électrocaloriques. 2016, K, vol.734, pp.1-16

G. Sheng and Z. Qiming, Electrocaloric materials for future solidstate refrigeration technologies, Advanced Materials, vol.21, p.796425, 2009.

M. Aly and H. , « Investigations on electrocaloric properties of [111]-oriented 0.955PbZn1/3Nb2/3O3 -0.045PbTiO3 single crystals, Phase Transitions, vol.86, pp.141-1594, 2012.

C. Eric, Relaxor ferroelectrics, vol.76, pp.241-267, 1987.

K. Hamadi, Relaxor or classical ferroelectric behaviour in ceramics with composition Ba(1-x)NaxTi(1-x)NbxO3 », In : Journal of Physics : Condensed Matter, vol.12, pp.5951-5959, 2000.

R. Zhang, Preparation and Characterization of (1 -x) Pb Mg1/3Nb2/3O3-x PbTiO3 Electrocaloric Ceramics, Cryst. Res. Technol, vol.33, pp.827-832, 1998.

B. Asbani, Lead-free Ba0.8Ca0.2(ZrxTi1-x)O3 ceramics with large electrocaloric effect, Applied Physics Letters, vol.106, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01848397

H. Kaddoussi, An agent matching architecture for bilateral contacts in multi agent markets, Solid State Communications, vol.201, pp.64-67, 2015.

L. I. Junning, « Large room-temperature electrocaloric effect in lead-free BaHfxTi1-xO3 ceramics under low electric field, Acta Materialia, vol.115, pp.58-67, 2016.

H. Fei, A systematic modification of the large electrocaloric effect within a broad temperature range in rare-earth doped BaTiO3 ceramics, Journal of Materials Chemistry C, pp.1-29, 2016.

R. Pirc, Negative electrocaloric effect in antiferroelectric PbZrO3, Europhysics Letters, vol.107, 2014.

X. Shi and Q. , Giant electrocaloric response over a broad temperature range in modified BaTiO3 Ceramics, Advanced Functional Materials, vol.24, 2014.

B. Yang, The electrocaloric effect around the orthorhombic-tetragonal first-order phase transition in BaTiO3, AIP Advances, vol.2, 2012.

M. Xavier, Giant electrocaloric strength in single-crystal BaTiO3, Advanced Materials, vol.25, pp.1360-1365, 2013.

V. Yu and . Sinyavskii, Analysis of the efficiency of an electrocaloric cryorefrigerator, Chemical and Petroleum Engineering, vol.31, issue.10, pp.501-506, 1995.

C. Rami, S. Santirajan, and C. Lang, « Investigations of cooling efficiencies in solid-state electrocaloric device, Integrated Ferroelectrics, vol.133, 2012.

P. Biaolin, F. Huiqing, and Z. Qi, « A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba 0.2ZrO3 thin film at room temperature, Advanced Functional Materials, vol.23, pp.2987-2992, 2013.

S. G. Lu, « Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect, Applied Physics Letters, vol.97, 2010.

L. Shebanovs, K. Borman, and W. Lawless, « Electrocaloric Effect in Some Perovskite Ferroelectric Ceramics and Multilayer Capacitors, Ferroelectrics, vol.273, pp.137-141, 2002.

Y. D. Wang, A heat-switch-based electrocaloric cooler, Applied Physics Letters, vol.107, 2015.

H. Shigeki, K. Tsuyoshi, and S. Katsuaki, Electrocaloric Refrigeration using Multi-Layers of Electrocaloric Material Films and Thermal Switches. T. 39. 12, pp.1091-1099, 2018.

B. Neese, Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature, Science, vol.321, pp.821-823, 2008.

S. G. Lu, Electrocaloric effect in ferroelectric polymers, Applied Physics A : Materials Science and Processing, vol.107, pp.559-566, 2012.

L. I. Xinyu, Giant electrocaloric effect in ferroelectric poly(vinylidenefluoridetrifluoroethylene) copolymers near a first-order ferroelectric transition, Applied Physics Letters, vol.101, 2012.

G. Dongzhi, Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system, International Journal of Heat and Mass Transfer, vol.72, pp.559-564, 2014.

B. T. Matthias, C. E. Miller, and J. P. Remeika, Ferroelectricity of glycine sulfate, vol.104, 1956.

S. Hoshino, Y. Okaya, and R. Pepinsky, Crystal structure of the ferroelectric phase of (Glycine), vol.3, 1959.

B. Subramanian, C. Hua, and . Zeng, Water-assisted reconstitution on ferroelectric domains ends of triglycine sulfate (Nh2Ch2COOH)3.H2SO4 crystals, Journal of Materials Chemistry, vol.10, pp.651-656, 2000.

B. A. Strukov, « Thermal Properties of TGS Single Crystals, Physics of the Solid State, vol.14, pp.135-138, 1966.

X. Qian, Large Electrocaloric Effect from Electrical Field Induced Orientational Order-Disorder Transition in Nematic Liquid Crystals Possessing Large Dielectric Anisotropy, Materials research society 1543, pp.13-20, 2013.

T. Maja, Electrocaloric and elastocaloric effects in soft materials Subject Areas : » in : Phil, Trans. R. Soc. Lond. A, vol.374, p.2015301, 2016.

M. Kuriakose, Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, vol.89, pp.1-8, 2014.

Y. Boussoualem, M. Ismaili, and A. Daoudi, « Photo enhancement of spontaneous polarization in ferroelectric liquid crystal doped with azo-molecules, Applied Physics Letters, vol.107, p.11, 2015.

R. B. Meyer, « Ferroelectric Liquid Crystals ». In : le journal de physique, vol.36, pp.69-71, 1975.

A. Noel, . Clark, and T. L. Sven, Surface-stabilized ferroelectric liquid crystal electro-optics : New multistate structures and devices, Ferroelectrics, vol.59, pp.25-67, 1984.

A. Kumar, S. , R. Manohar, and J. P. Shukla, Effect of Dichroic dye on dielectric properties of ferroelectric liquid crystals : A comparative study, Journal of Physics and Chemistry of Solids, vol.68, pp.1700-1706, 2007.

D. P. Singh, « CdSe quantum dots in chiral smectic C matrix : experimental evidence of smectic layer distortion by small and wide angle X-ray scattering and subsequent effect on electro-optical parameters, pp.1-10, 2018.

S. Kar-narayan, Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging, Applied Physics Letters, vol.102, issue.3, 2013.

S. Kar-narayan and N. D. Mathur, « Direct and indirect electrocaloric measurements using multilayer capacitors, Journal of Physics D : Applied Physics, vol.43, issue.3, 2010.

R. Byer and C. Roundy, Pyroelectric Coefficient Direct Measurement Technique and Application To a Nsec Response Time Detector, Ferroelectrics, vol.3, pp.333-338, 1972.

C. Pyroelectricity, Internal Domains, anti Interface Charges in Triglycine Sulfate, Physical Review, vol.212, pp.1235-1243, 1959.

S. Gael, Electrocaloric and pyroelectric properties of 0.75Pb(Mg 1/3Nb2/3)O3-0.25PbTiO3 single crystals, Journal of Applied Physics, vol.100, pp.0-6, 2006.

B. Yang, Entropy-change measurement of electrocaloric effect of BaTiO3 single crystal, Physica Status Solidi (a), vol.209, pp.941-944, 2012.

C. B. Sawyer and C. H. Tower, « Rochelle salt as a dielectric, Science, vol.35, pp.269-273, 1930.

P. Neeraj, K. K. Kumar, and . Raina, Changes in the electro-optical behaviour of ferroelectric liquid crystal mixture via silica nanoparticles doping, Optical Materials, vol.34, issue.11, 2012.

S. G. Lu, « Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers, Applied Physics Letters, vol.97, 2010.

G. Gordon, . Wiseman, and K. K. Juergen, Electrocaloric effect in ferroelectric rochelle salt, Physical Review, vol.131, pp.2023-2027, 1963.

S. Gael, Differential scanning calorimeter and infrared imaging for electrocaloric characterization of poly(vinylidene fluoride-trifluoroethylenechlorofluoroethylene) terpolymer, Applied Physics Letters, vol.101, issue.2, 2012.


B. Yang, G. Ping, Z. Et-san-qiang, and S. , « Kinetic electrocaloric effect and giant net cooling of lead-free ferroelectric refrigerants, Journal of Applied Physics, vol.108, issue.10, 2010.

L. I. Xinyu, Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer, Applied Physics Letters, vol.99, 2011.

V. Matjaz, « Electrocaloric materials for future solid-state refrigeration technologies, Progress in Materials Science, vol.57, pp.980-1009, 2012.

M. Quintero, Decoupling electrocaloric effect from Joule heating in a solid state cooling device, Applied Physics Letters, vol.99, 2011.

B. Vittorio, Direct measurement of the electrocaloric effect in poly-(vinylidene fluoride-trifluoroethylene chlorotrifluoroethylene) terpolymer films, Applied Physics Letters, vol.103, 2013.

S. G. Lu, Enhanced electrocaloric effect in ferroelectric poly(vinylidenefluoride/ trifluoroethylene) 55/45 mol % copolymer at ferroelectric-paraelectric transition, Applied Physics Letters, vol.98, pp.2009-2012, 2011.

B. Ro?i?, Electrocaloric response in substrate-free PMN-0.30PT thick films, Ferroelectrics, vol.465, pp.1-6, 2014.

R. B. Olsen, Observation of a polarocaloric (electrocaloric) effect of 2°C in lead zirconate modified with Sn4+ and Ti4+, Physical Review Letters, vol.45, pp.1436-1438, 1980.

Y. Haruhiko, E. Kenji, and C. W. Garland, « Nonadiabatic scanning calorimeter, Review of Scientific Instruments, vol.69, pp.172-178, 1998.

Z. Kutnjak, J. Petzelt, and R. Blinc, The giant electromechanical response in ferroelectric relaxors as a critical phenomenon, Nature, vol.441, pp.956-959, 2006.

R. Brigita, Influence of the critical point on the electrocaloric response of relaxor ferroelectrics, Journal of Applied Physics, vol.110, pp.1-6, 2011.

G. Dongzhi, Electrocaloric characterization of a poly(vinylidene fluoridetrifluoroethylene-chlorofluoroethylene) terpolymer by infrared imaging, Applied Physics Letters, vol.105, issue.3, 2014.

S. Crossley, Direct electrocaloric measurement of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 films using scanning thermal microscopy, Applied Physics Letters, vol.108, pp.0-5, 2016.

H. Kaddoussi, Indirect and direct electrocaloric measurements of, Journal of all, vol.667, pp.198-203, 2016.

A. Hadj and . Sahraoui, The application of the photopyroelectric method for measuring the thermal parameters of pyroelectric materials, Review of Scientific Instruments, vol.73, p.2766, 2002.

A. Hadj and . Sahraoui, Photopyroelectric study of thermal and pyroelectric parameters temperature dependence of pyroelectric materials, Ferroelectrics 289, pp.97-106, 2003.

S. Longuemart, Study of thermal parameter temperature dependence of pyroelectric materials, Review of Scientific Instruments 74.1 II, pp.805-807, 2003.

A. Sahraoui, Analysis of the photopyroelectric signal for investigating thermal parameters of pyroelectric materials, Review of Scientific Instruments 74.1 II, 2003.

S. Longuemart, Investigations of the thermal parameters of ferroelectric liquid crystals using the pyroelectric effect in the S C * phase, Europhysics Letters, vol.63, pp.453-458, 2003.

S. Longuemart, Study of thermal parameter temperature dependence of pyroelectric materials, Review of Scientific Instruments 74.1 II, pp.805-807, 2003.

S. Delenclos, A new calibration procedure for the determination of thermal parameters and their temperature dependence using the photopyroelectric method, pp.161-164, 2001.

D. Sylvain, Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method, Review of Scientific Instruments 73, vol.7, p.2773, 2002.

L. Jan, A new calorimetric technique for phase change materials and its application to alkane-based PCMs, Materials for Renewable and Sustainable Energy, vol.5, 2016.

P. Losada-pérez, Phase transitions of binary lipid mixtures : A combined study by adiabatic scanning calorimetry and quartz crystal microbalance with dissipation monitoring, Advances in Condensed Matter Physics, 2015.

L. Jan, Investigation of the melting behavior of the reference materials biphenyl and phenyl salicylate by a new type adiabatic scanning calorimeter, Thermochimica Acta, vol.582, pp.68-76, 2014.

L. Jan, Application of a novel type of adiabatic scanning calorimeter for high-resolution thermal data near the melting point of gallium, Journal of Thermal Analysis and Calorimetry, vol.117, pp.173-187, 2014.

R. M. Hill-and-s and . Ichiki, « Polarization Relaxation in Triglycine Sulfate above the Curie Temperature, Physical Review, vol.128, pp.1141-1145, 1962.

T. Krajewski-and-t and . Breczewski, Dielectric and pyroelectric properties of TGS crystals doped with nitroaniline molecules, Ferroelectrics, vol.25, pp.547-550, 1980.

P. Sampathkumar and K. Srinivasan, Pyroelectric properties and electrocaloric effect in TGS 1-x P x single crystals, Materials Research Express, vol.3, pp.2053-1591, 2016.

S. Triebwasser, Study of the Second-Order Ferroelectric Transition in TriGlycine Sulfate, IBM journal, pp.212-217, 1958.

E. F. Dudnik, V. M. Duda, and A. I. Kushnerev, « Ferroelastoelectric phenomena in a uniaxial ferroelectric TGS crystal, Physics of the Solid State, vol.42, pp.139-141, 2000.

V. S. Bondarev, Intensive electrocaloric effect in triglycine sulfate under nonequilibrium thermal conditions and periodic electric field, Physica Status Solidi (B) Basic Research, vol.253, pp.2073-2078, 2016.

K. I. , Critical Behavior in the Spontaneous Polarization of Ferroelectric Tri-Glycine Sulfate, Journal of the physical society of japanournal of the physical society of Japan, vol.49, pp.2263-2269, 1980.

D. Saranya, Electrocaloric effect of PMN -PT thin films near morphotropic phase boundary, Bulletin Materials Science, vol.32, pp.259-262, 2009.

F. Zuyong, S. Dongqi, and D. Shixue, « Large electrocaloric effect in highly (001)-oriented 0.67PbMg1/3Nb2/3O3-0.33PbTiO3 thin films, Solid State Communications, vol.151, pp.123-126, 2011.

S. Ramos, J. Del, M. Cerro, and . Zamora, « Specific Heat of Triglycine Sulfate at Several Applied Electric Fields near the Critical Temperature, Physica Status Solidi, pp.307-313, 1980.

P. Henry and . Beerman, « Investigation of pyroelectric material characteristics for improved infrared detector performance, Infrared Physics & Technology, vol.15, pp.225-231, 1975.

B. Eliane, A photopyroelectric approach for electrocaloric effect characterization of polar materials, Journal of Physics D : Applied Physics, vol.26, pp.22-3727, 2017.

A. Bokov and Y. E. Zuo-guang, Dielectric Relaxation in Relaxor Ferroelectrics, 2012.

G. Stephen and B. M. Robert, Electroclinic effect at the A-C phase change in a chiral smectic liquid crystal, Physical Review Letters, vol.38, pp.848-851, 1977.

L. A. Beresnev and L. M. Blinov, Pyroelectric properties of liquid crystals, Ferroelectrics, vol.33, pp.129-138, 1981.

L. A. Beresnev, Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 158A, vol.1, pp.3-150, 1988.

A. M. Glass, Pyroelectric detection with smectic liquid crystals, Journal of Applied Physics, vol.60, 1986.

N. T. Trung, Giant magnetocaloric effects by tailoring the phase transitions, Applied Physics Letters, vol.96, 2010.