Skip to Main content Skip to Navigation

Towards Human-Like Prediction and Decision-Making for Automated Vehicles in Highway Scenarios

David Sierra Gonzalez 1, 2 
2 CHROMA - Robots coopératifs et adaptés à la présence humaine en environnements dynamiques
Inria Grenoble - Rhône-Alpes, CITI - CITI Centre of Innovation in Telecommunications and Integration of services
Abstract : During the past few decades automakers have consistently introduced technological innovations aimed to make road vehicles safer. The level of sophistication of these advanced driver assistance systems has increased parallel to developments in sensor technology and embedded computing power. More recently, a lot of the research made both by industry and institutions has concentrated on achieving fully automated driving. The potential societal benefits of this technology are numerous, including safer roads, improved traffic flows, increased mobility for the elderly and the disabled, and optimized human productivity. However, before autonomous vehicles can be commercialized they should be able to safely share the road with human drivers. In other words, they should be capable of inferring the state and intentions of surrounding traffic from the raw data provided by a variety of onboard sensors, and to use this information to make safe navigation decisions. Moreover, in order to truly navigate safely they should also consider potential obstacles not observed by the sensors (such as occluded vehicles or pedestrians). Despite the apparent complexity of the task, humans are extremely good at predicting the development of traffic situations. After all, the actions of any traffic participant are constrained by the road network, by the traffic rules, and by a risk-aversive common sense. The lack of this ability to naturally understand a traffic scene constitutes perhaps the major challenge holding back the large-scale deployment of truly autonomous vehicles in the roads.In this thesis, we address the full pipeline from driver behavior modeling and inference to decision-making for navigation. In the first place, we model the behavior of a generic driver automatically from demonstrated driving data, avoiding thus the traditional hand-tuning of the model parameters. This model encodes the preferences of a driver with respect to the road network (e.g. preferred lane or speed) and also with respect to other road users (e.g. preferred distance to the leading vehicle). Secondly, we describe a method that exploits the learned model to predict the future sequence of actions of any driver in a traffic scene up to the distant future. This model-based prediction method assumes that all traffic participants behave in a risk-aware manner and can therefore fail to predict dangerous maneuvers or accidents. To be able to handle such cases, we propose a more sophisticated probabilistic model that estimates the state and intentions of surrounding traffic by combining the model-based prediction with the dynamic evidence provided by the sensors. In a way, the proposed model mimics the reasoning process of human drivers: we know what a given vehicle is likely to do given the situation (this is given by the model), but we closely monitor its dynamics to detect deviations from the expected behavior. In practice, combining both sources of information results in an increased robustness of the intention estimates in comparison with approaches relying only on dynamic evidence. Finally, the learned driver behavioral model and the prediction model are integrated within a probabilistic decision-making framework. The proposed methods are validated with real-world data collected with an instrumented vehicle. Although focused on highway environments, this work could be easily adapted to handle alternative traffic scenarios.
Document type :
Complete list of metadata

Cited literature [206 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Tuesday, July 16, 2019 - 8:03:07 AM
Last modification on : Monday, May 16, 2022 - 4:46:03 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02184362, version 1


David Sierra Gonzalez. Towards Human-Like Prediction and Decision-Making for Automated Vehicles in Highway Scenarios. Artificial Intelligence [cs.AI]. Université Grenoble Alpes, 2019. English. ⟨NNT : 2019GREAM012⟩. ⟨tel-02184362⟩



Record views


Files downloads