. Li, vertical (bottom) displacements of the gate tip for different FSI models compared to experiments and to, Time history of the horizontal (top) and, 2015.

, (right) for different FSI models compared to experiments

, Fluid pressure field at different instants (rows) for different FSI models compared to corresponding snapshots from Antoci et al. experiments, p.130

. .. , Dam-break configuration with a single APR box (red), p.131

, Time history of the horizontal (top) and vertical (bottom) displacements of the gate tip for different FE solvers with APR compared to experiments, p.132

, (right) for different FE solvers with APR compared to experiments, p.132

, Fluid pressure field at different instants (rows) for different FE solvers with APR compared to corresponding snapshots from Antoci et al. experiments

. .. Fsi-sloshing-problem, 134 7.10 Rolling tank configuration, BOTIA-VERA (2015)

, Gaps between the clamped beam and the tank

, Clamped beam in mid depth oil configuration

, Time history of the forced roll motion

, Time history of the local x-displacement of the the beam extremity, p.137

, Physical and numerical parameters of the hydrostatic water column in the elastic plate test case

, Physical and numerical parameters for the deformable beam impact, p.84

, 2 Physical and numerical parameters of the Antoci dam break, p.89

, Physical and numerical parameters for the 3D dam-break through an elastic gate

.. .. Physical,

, Averaged forces and solid-solid contact surfaces, smooth road, p.154

A. , THE DAM-BREAK FLOW THROUGH AN ELASTIC GATE Instant t=0, p.8

A. Figure, 11: Pressure field comparison for different loading formulations (columns) at different instants (lines), HHT scheme with ? s =

B. Albert, Tires and hydroplaning. SAE Technical Paper, 1968.

C. Antoci, Simulazione numerica dell'interazione fluido-struttura con la tecnica SPH, 2006.

C. Antoci, M. Gallati, S. , and S. , Numérical simulation of fluid structure interaction by SPH, IOP Computers and Structures, vol.85, pp.879-890, 2007.

M. Antuono, A. Colagrossi, M. , and S. , Numerical diffusive terms in weakly-compressible SPH scheme, Computer Physics Communications, vol.183, pp.2570-2580, 2012.

M. Antuono, A. Colagrossi, S. Marrone, M. , and D. , Freesurface flows solved by means of SPH schemes with numerical diffusive terms, Computer Physics Communications, vol.181, pp.532-549, 2010.

M. Antuono, S. Marrone, A. Colagrossi, B. , and B. , Energy balance in the ?-SPH scheme, Computer Methods in Applied Mechanics and Engineering, vol.289, pp.209-226, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199577

S. Attaway, M. Heinstein, S. , and J. , Coupling of Smooth Particle Hydrodynamics with the Finite Element method, Nuclear Engineering and Design, vol.150, pp.199-205, 1994.

D. Barcarolo, J. Candelier, D. Guibert, and M. De-leffe, Hydrodynamics performance simulations using SPH for automotive applications, Proceedings of the 9th SPHERIC Conference, 2014.

D. Barcarolo, G. Oger, L. E. Touzé, and D. , Adaptive particle refinement and derefinement applied to Smoothed Particle Hydrodynamics method, Journal of Computational Physics, vol.273, pp.640-657, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01161467

K. Bathe, Finite Element procedures, 1995.

T. Belytschko, W. Liu, M. , and B. , Nonlinear Finite Elements for Continua and Structures, 2000.

J. Bonet and T. Lok, Variational and momentum preservation aspects of smooth particle hydrodynamics, Computer Methods in Applied Mechanics and Engineering, vol.180, issue.1-2, pp.97-115, 1999.

E. Botia-vera, Experimental and statistical investigation of canonical problems in sloshing, 2015.

B. Bouscasse, A. Colagrossi, S. Marrone, A. , and M. , Nonlinear water wave interaction with floating bodies in SPH, Journal of Fluids ans Structures, vol.42, pp.112-129, 2013.

F. Caleyron, Y. Chuzel-marmot, C. , and A. , Modeling of reinforced concrete trough SPH-FE coupling and its application to the simulation of a projectile's impact onto a slab, International Journal for Numerical Methods in Biomedical Engineering, vol.27, pp.882-898, 2009.

J. Cercos-pita, M. Antuono, A. Colagrossi, S. , and A. , SPH energy conservation for fluid-solid interactions, Computer Methods in Applied Mechanics and Engineering, vol.317, pp.771-791, 2017.

L. Chiron, Couplages et améliorations de la méthode SPH pour traiter de? ecoulements multi-échelles temporelles et spatiales, 2017.

L. Chiron, G. Oger, M. De-leffe, L. E. Touzé, and D. , Analysis and improvements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerations, Journal of Computational Physics, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01636022

J. Cho, H. Lee, J. Sohn, G. Kim, and J. Woo, Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire, European Journal of Mechanics A/Solids, vol.25, pp.914-926, 2006.

A. Colagrossi, A meshless Lagrangian method For free-surface flows and interface flows with fragmentation, 2001.

A. Colagrossi, M. Antuono, L. E. Touzé, and D. , Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model, Physical Review E, p.84, 2009.

A. Colagrossi, M. Antuono, A. Souto-iglesias, L. E. Touzé, and D. , Theoretical analysis and numerical verification of the consistency of viscous smoothedparticle-hydrodynamics formulations in simulating free-surface flows, Physical Review E, 2011.

A. Colagrossi and A. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of Computational Physcis, vol.191, pp.448-475, 2003.

A. Colagrossi and A. Landrini, Numerical simulation of interfacial flows by Smoothed Particle Hydrodynamics, Journal of Computational Physcis, vol.191, pp.448-475, 2003.

M. De-leffe, Modélisation d'écoulements visqueux par méthode SPH en vue d'applicationà l'hydrodynamique navale, 2009.

. De and T. Vuyst, Coupling between meshless and Finite Element methods, International Journal of Impact Engineering, vol.31, pp.1054-1064, 2005.

J. Degroote, A. Souto-iglesias, W. Van-paepegem, S. Annerel, P. Bruggeman et al., Partitioned simulation of the interaction between an elastic structure and free surface flow, Computer Methods in Applied Mechanics and Engineering, vol.199, pp.2085-2098, 2010.

W. Dehnen and H. Aly, Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Monthly Notices of the Royal Astronomical Society, vol.425, pp.1068-1082, 2012.

J. Deuff, Extrapolation au réel des mesures de pressions obtenues sur des cuves modèle réduit, 2007.

J. Donea, S. Giuliani, H. , and J. , An arbitrary Lagrangian-Eulerian Finite Element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.33, pp.689-723, 1982.

J. Donea, A. Huerta, J. Ponthot, R. , and A. , Arbitrary Lagrangian-Eulerian Methods, 2004.

M. Doring, Développement d'une méthode SPH pour les applicationsà surface libre en hydrodynamique, 2005.

F. Dubois, Partial Riemann problem, boundary conditions, and gas dynamics, in Absorbing Boundaries and Layers, Domain Decomposition Methods: Applications to Large Scale Computations, pp.16-77, 1982.

C. Farhat and M. Lesoinne, Two efficient staggered algorithms for the serial and parallel solution of three dimensional nonlinear transient aeroelastic problems, Computer Methods in Applied Mechanics and Engineering, vol.182, pp.499-515, 2000.

C. Farhat, A. Rallu, K. Wang, and T. Belytschko, Robust and provably second-order explicit-explicit and implicit-explicit staggered time integrators for highly non-linear compressible fluidstructure interaction problems, International Journal for Numerical Methods in Engineering, vol.84, pp.73-107, 2010.

J. Feldman and J. Bonet, Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problem, Int. J. Numer. Meth. Eng, vol.72, pp.295-324, 2007.

C. Felippa, K. Park, F. , and C. , Partitioned analysis of coupled mechanical systems, Computer Methods in Applied Mechanics and Engineering, 1999.

M. Ferrand, D. R. Laurence, B. D. Rogers, D. Violeau, K. et al., Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless sph method, International Journal for Numerical Methods in Fluids, vol.71, pp.446-472, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00691603

A. Ferrari, M. Dumbser, E. Toro, A. , and A. , A new 3D parallel SPH scheme for free-surface flows, Computers and Fluids, vol.38, pp.1203-1217, 2009.

J. Fish and T. Belytschko, First course in finite elements, 2007.

G. Fourey, Développement d'une méthode de couplage fluide structure SPH Eléments Finis en vue de son applicationá l'hydrodynamique navale, 2012.

G. Fourey, C. Hermange, G. Oger, T. Le, and D. , An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods, Computer Physics Communications, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01636009

W. Gengenbach, Experimental investigation of tires on wet pavements. Automotive technology magazine, 1968.

J. Gilbert, Accelerating an SPH-FEM Solver using Heterogeneous Computing for use in Fluid-Structure Interaction Problems, 2015.

R. Gingold and J. Monaghan, Smoothed Particle Hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, vol.181, pp.375-389, 1977.

P. Groenenboom and B. Cartwright, Hydrodynamics and fluid-structure interaction by coupled SPH-FE method, Journal of Hydraulic Research, vol.48, pp.61-73, 2010.

P. Guilcher, Contribution au développement d'une méthode SPH pour la simulation numérique des interactions houle structure, 2008.

R. Hernquist, N. Katz, R. , P. , and J. , Treesph: a unification of SPH with the hierarchical tree method, Astrophys. J. Suppl. Ser, vol.70, pp.419-446, 1989.

H. Hilber, R. Hughes, T. , and R. , Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Engineering and Structural Dynamics, vol.5, issue.3, pp.283-292, 1977.

C. Hirt and B. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, vol.39, pp.201-225, 1981.

W. Horne and R. Dreher, Phenomena of pneumatic tire hydroplaning, 1963.

W. Horne, T. Yager, I. , and L. , Recent studies to investigate effects of tire footprint aspect ratio on dynamic hydroplaning speed. American society for testing and material, vol.929, pp.26-46, 1986.

S. Hwang, A. Khayyer, H. Gotoh, P. , and J. , Development of a fully lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems, Journal of Fluids and Structures, 2014.

S. Idelsohn, J. Marti, A. Souto-iglesias, O. , and E. , Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM, Computational Mechanics, vol.43, pp.125-132, 2008.

G. Johnson, Linking of lagrangian particle methods to standard finite element methods for high velocity impact computations, Nuclear Engineering and Design, vol.150, pp.265-274, 1994.

A. Khayyer and H. Gotoh, Enhancement of stability and accuracy of the moving particle semi-implicit method, Journal of Computational Physics, vol.230, pp.3093-3118, 2011.

T. Kim and H. Jeong, Hydroplaning simulation for tires using FEM, FDM and an asymptotic method, Journal of Mechanical Science and Technology, vol.11, issue.6, pp.901-908, 2010.

M. Koishi, T. Okano, L. Olovsson, H. Saito, and M. Makino, Hydroplaning simulation using fluid-structure interaction in LS-DYNA, 2001.

S. Koshizuka and Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nuclear Science and Engineering, vol.123, issue.3, pp.421-434, 1996.

S. Krenk, Energy conservation in newmark based time integration algorithms, Computer Methods in Applied Mechanics and Engineering, vol.195, pp.6110-6124, 2016.

S. Kumar, K. Anupam, T. Scarpas, K. , and C. , Study of hydroplaning risk on rolling and sliding passenger car, Procedia -Social and Behavioral Sciences, vol.53, pp.1020-1028, 2012.

J. Leduc, F. Leboeuf, L. , and M. , Improvement of multiphase model using preconditioned riemann solvers, Proceeding of the 5th international SPHERIC workshop, 2010.

C. Lee, H. Noguchi, K. , and S. , Fluid-shell structure interaction analysis by coupled particle and finite element method, Computer & Structures, vol.85, pp.668-697, 2007.

A. Leroy, D. Violeau, M. Ferrand, K. , and C. , Unified semianalytical wall boundary conditions applied to 2-d incompressible SPH, Journal of Computational Physics, vol.261, pp.106-129, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00945510

Z. Li, Développement d'une méthode de simulation de couplage fluide structureà l'aide de la méthode SPH, 2013.

Z. Li, A. Combescure, L. , and F. , Coupling of Finite Volume and Finite Element subdomains using different time integrators, International Journal For Numerical Methods in Fluids, vol.72, pp.1286-1306, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00931438

Z. Li, J. Leduc, J. Nunez-ramirez, A. Combescure, M. et al., A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion, Computational Mechanics, vol.55, issue.4, pp.697-718, 2015.

K. Liao and C. Hu, A coupled FDM-FEM method for free surface flow interaction with thin elastic plate, Journal of Marine Science and Technology, vol.18, issue.1, pp.1-11, 2013.

L. Libersky, A. Petschek, T. Carney, J. Hipp, A. et al., , 1993.

, High Strain Lagrangian Hydrodynamics: A three-dimensional SPH code for dynamic material response, Journal of Computational Physics, vol.109, pp.67-75

L. Lucy, A numerical approach to the testing of the fission hypothesis, Astronomical Journal, vol.82, pp.1013-1024, 1977.

J. Marongiu, Méthode numérique lagrangienne pour la simulation d'écoulements a surface libre. Application aux turbines Pelton, 2007.

J. Marongiu, F. Leboeuf, J. Caro, P. , and A. , Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method, Journal of Hydraulic Research, vol.48, pp.40-49, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00566051

S. Marrone, A. Antuono, A. Colagrossi, G. Colicchio, D. Le-touzé et al., ?-SPH model for simulating violent impact flows, Computer methods in applied mechanics and engineering, vol.200, pp.1526-1542, 2011.

S. Marrone, A. Colagrossi, D. Le-touzé, G. , and G. , Fast free-surface detection and level-set function definition in SPH solver, Journal of Computational Physics, vol.229, pp.352-366, 2010.

A. Mayrhofer, M. Ferrand, C. Kassiotis, D. Violeau, M. et al., Unified semi-analytical wall boundary conditions in sph: analytical extension to 3-d, Numerical Algorithms, vol.68, pp.15-34, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01318437

C. Michler, S. Hulshoff, E. Van-brummelen, and R. Borst, A monolithic approach to fluid-structure interaction, Computers & Fluids, vol.33, pp.839-848, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00450614

D. Molteni and A. Colagrossi, A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH, Computer Physics Communications, vol.180, pp.861-872, 2009.

J. Monaghan, On the problem of penetration in particle method, Journal of Computational Physics, vol.82, p.1, 1989.

J. Monaghan, Smoothed particle hydrodynamics, Annual review of Astronomy and Astrophysics, vol.30, pp.543-574, 1992.

J. Monaghan, Simulating free-surface flows with sph, Journal of Computational Physics, vol.110, pp.399-406, 1994.

J. Monaghan and R. Gingold, Shock Simulation by the Particle Method SPH, Journal of Computational Physics, vol.52, pp.374-389, 1983.

J. Morris, J. Fox, Z. , and Y. , Modeling Low Reynolds Number Incompressible Flows Using SPH, Journal of Computational Physics, vol.136, pp.214-226, 1997.

Y. Nakajima, E. Seta, T. Kamegawa, O. , and H. , Hydroplaning analysis by FEM and FVM -effect of tire rolling and tire pattern on hydroplaning, International Journal Automotive Technology, vol.1, issue.1, pp.26-34, 2000.

R. Nelson and J. Papaloizou, Variable smoothing lengths and energy conservation in smoothed particle hydrodynamics, Monthly Notices of The Royal Astronomical Society, vol.270, pp.1-20, 1994.

J. Nunez-ramirez, J. Marongiu, M. Brun, C. , and A. , A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time-steps, International Journal For Numerical Methods in Engineering, vol.109, pp.1391-1417, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01852097

G. Oger, Aspects théorique de la méthode SPH et applicationsà l'hydrodynamiquè a surface libre, 2006.

G. Oger, M. Doring, A. , B. Ferrant, and P. , Twodimensional SPH simulations of wedge water entries, Journal of Computational Physics, vol.213, pp.803-822, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00699477

G. Oger, D. Le-touzé, D. Guibert, M. De-leffe, J. Biddiscombe et al., On distributed memory MPI-based parallelization of SPH codes in massive HPC context, Computer Physics Communications, vol.200, pp.1-14, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01636002

G. Oger, D. Marrone, D. Le-touzé, and M. De-leffe, SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms, Journal of Computational Physics, vol.313, pp.76-98, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01636003

C. Oh, T. Kim, H. Jeong, K. Park, K. et al., Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method, Journal of Mechanical Science and Technology, vol.22, issue.1, pp.34-40, 2008.

T. Okano and M. Koishi, Hydroplaning simulation using msc, 2001.

S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulations, Journal of Computational Physics, vol.79, pp.12-49, 1988.

K. Paik and P. Carrica, Fluidstructure interaction for an elastic structure interacting with free surface in a rolling tank, Ocean Engineering, vol.84, pp.201-212, 2014.

B. Peseux, L. Gornet, D. , and B. , Hydrodynamic impact: Numerical and experimental investigations, Journal of Fluids and Structures, vol.21, issue.3, pp.277-303, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01006935

C. Peskin, The immersed boundary method, Acta Numerica, pp.479-517, 2002.

S. Piperno and C. Farhat, Partitioned procedures for the transient solution of coupled aerobatic problems : Part II energy transfer analysis and three dimensional applications, Computer methods in applied mechanics and engineering, vol.190, pp.3147-3170, 2001.

N. Quinlan, M. Basa, L. , and M. , Tuncation errors in mesh-free particle methods, International Journal for Numerical Methods in Engineering, vol.66, pp.2064-2085, 2006.

N. Quinlan, L. Lobovsky, N. , and R. , Development of the meshless finite volume particle method with exact and efficient calculation of interparticle are, Computer Physics Communications, vol.185, pp.1544-1563, 2014.

P. Randle and L. Libersky, Smoothed particle hydrodynamics: Some recent improvements and applications, Computer methods in applied mechanics and engineering, vol.139, pp.375-408, 1996.

H. Ribet, P. Laborde, M. , and M. , Numerical modeling of the impact on water of a flexible structure by explicit Finite Element Method -comparisons with radioss numerical results and experiments, Aerospace Science and Technology, vol.2, pp.83-91, 1999.

Y. Scolan, Hydro-elastic behaviour of a conical shell impacting on a quiescentfree surface of an incompressible liquid, Journal of Sound and Vibration, vol.277, pp.163-203, 2003.

Y. Shao, T. Yamakwa, T. Kikuchi, K. Shibata, K. et al., A three-dimensional coupling method for fluidstructure interaction problems by using explicit MPS method and Hamiltonian MPS method, Transactions of the Japanese Society of Computational Engineering ans Science, pp.1-7, 2013.

D. Shepard, A two-dimensional interpolation function for irregularly spaced data, Proceeding of the 23rd ACM National Conference, pp.517-524, 1968.

. Simulia, Abaqus/CAE User's Manual 6, vol.12, 2012.

A. Souto-iglesias, L. Delorme, L. Perez-rojas, A. , and S. , Liquid moment amplitude assessment in sloshing type problems with smooth particle hydrodynamics, Ocean Engineering, vol.33, pp.1462-1484, 2006.

P. Tait, Report on some of the physical properties of fresh water and sea water, Physical Chemistry, vol.2, pp.1-76, 1888.

B. Van-leer, Towards the ultimate conservative difference scheme. V a second order to godunov method, Journal of Computational Physics, vol.32, pp.101-136, 1979.

R. Van-loon, P. Anderson, . Van-de, F. Vosse, S. J. et al., Comparison of various fluid structure interaction methods for deformable bodies, Computer and Structures, vol.85, pp.833-843, 2007.

J. Vila, On particle weighted methods and Smooth Particle Hydrodynamics, Mathematical Models and Methods in Applied Science, vol.9, issue.2, 1999.

S. Vincent, A. Sarthou, J. Caltagirone, F. Sonilhac, P. Février et al., Augmented lagrangian and penalty methods for the simulation of two phase flows interacting with moving solids. application to hydroplaning flows interacting with real tire tread patterns, Journal of Computational Physics, vol.230, pp.956-983, 2011.

D. Violeau, A. Leroy, M. , and A. , Exact computation of sph wall renormalising integrals in 3-d, Proceeding of the 9th SPHERIC workshop, 2014.

H. Wendland, Piecewise polynomial, positive definite and compactly supported radial function of minimal degree, Advances in Computational Mathematics, vol.4, pp.389-396, 1995.

B. Wiess, B. Roeger, M. , and R. , Influence of Pattern Void on Hydroplaning and Related Target Conflicts, Tire Science and Technology, vol.37, issue.3, 2009.

Q. Yang, SPH Simulation of Fluid Structure Interaction Problems with Application to Hovercraft, 2012.

Q. Yang, V. Jones, M. , and L. , Free-surface flow interactions with deformable structures using an SPH-FEM model, Ocean Engineering, vol.55, pp.136-147, 2012.

Z. Zhang, H. Qiang, G. , and W. , Coupling of Smoothed Particle Hydrodynamics and Finite Element method for impact dynamics simulation, Engineering Structures, vol.33, pp.255-264, 2011.