F. Briggs and E. M. Callaway, Laminar Patterns of Local Excitatory Input to Layer 5 Neurons in Macaque Primary Visual Cortex, Cereb. Cortex N. Y. N, vol.15, pp.479-488, 1991.

H. L. Bryant, A. R. Marcos, and J. P. Segundo, Correlations of neuronal spike discharges produced by monosynaptic connections and by common inputs, J. Neurophysiol, vol.36, pp.205-225, 1973.

C. Chang, D. A. Leopold, M. L. Schölvinck, H. Mandelkow, D. Picchioni et al., Tracking brain arousal fluctuations with fMRI, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.4518-4523, 2016.

M. R. Cohen and A. Kohn, Measuring and interpreting neuronal correlations, Nat. Neurosci, vol.14, pp.811-819, 2011.

M. R. Cohen and J. H. Maunsell, When attention wanders: how uncontrolled fluctuations in attention affect performance, J. Neurosci. Off. J. Soc. Neurosci, vol.31, pp.15802-15806, 2011.

M. R. Cohen and J. H. Maunsell, Attention improves performance primarily by reducing interneuronal correlations, Nat. Neurosci, vol.12, pp.1594-1600, 2009.

M. R. Cohen and J. H. Maunsell, Attention improves performance primarily by reducing interneuronal correlations, Nat. Neurosci, vol.12, pp.1594-1600, 2009.

M. R. Cohen and W. T. Newsome, Context-dependent changes in functional circuitry in visual area MT, Neuron, vol.60, pp.162-173, 2008.

C. Constantinidis, M. N. Franowicz, and P. S. Goldman-rakic, Coding Specificity in Cortical Microcircuits: A Multiple-Electrode Analysis of Primate Prefrontal Cortex, J. Neurosci, vol.21, pp.3646-3655, 2001.

C. Constantinidis and P. S. Goldman-rakic, Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex, J. Neurophysiol, vol.88, pp.3487-3497, 2002.

C. M. Constantinople and R. M. Bruno, Effects and Mechanisms of Wakefulness on Local Cortical Networks, Neuron, vol.69, pp.1061-1068, 2011.

S. Crochet and C. C. Petersen, Correlating whisker behavior with membrane potential in barrel cortex of awake mice, Nat. Neurosci, vol.9, pp.608-610, 2006.

J. S. Damoiseaux, S. A. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam et al., Consistent resting-state networks across healthy subjects, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.13848-13853, 2006.

D. A. Dombeck, M. S. Graziano, and D. W. Tank, Functional Clustering of Neurons in Motor Cortex Determined by Cellular Resolution Imaging in Awake Behaving Mice, J. Neurosci, vol.29, pp.13751-13760, 2009.

J. D. Downer, B. Rapone, J. Verhein, K. N. O'connor, and M. L. Sutter, Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex, J. Neurosci, vol.37, pp.5378-5392, 2017.

V. Dragoi, J. Sharma, E. K. Miller, and M. Sur, Dynamics of neuronal sensitivity in visual cortex and local feature discrimination, Nat. Neurosci, vol.5, pp.883-891, 2002.

J. C. Drummond, Monitoring depth of anesthesia: with emphasis on the application of the bispectral index and the middle latency auditory evoked response to the prevention of recall, Anesthesiology, vol.93, pp.876-882, 2000.

D. S. Greenberg, A. R. Houweling, and J. N. Kerr, Population imaging of ongoing neuronal activity in the visual cortex of awake rats, Nat. Neurosci, vol.11, pp.749-751, 2008.

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, Functional connectivity in the resting brain: a network analysis of the default mode hypothesis, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.253-258, 2003.

M. D. Greicius and V. Menon, Default-Mode Activity during a Passive Sensory Task: Uncoupled from Deactivation but Impacting Activation, J. Cogn. Neurosci, vol.16, pp.1484-1492, 2004.

Y. Gu, S. Liu, C. R. Fetsch, Y. Yang, S. Fok et al., Perceptual learning reduces interneuronal correlations in macaque visual cortex, Neuron, vol.71, pp.750-761, 2011.

D. A. Gutnisky and V. Dragoi, Adaptive coding of visual information in neural populations, Nature, vol.452, pp.220-224, 2008.

M. Hampson, B. S. Peterson, P. Skudlarski, J. C. Gatenby, and J. C. Gore, Detection of functional connectivity using temporal correlations in MR images, Hum. Brain Mapp, vol.15, pp.247-262, 2002.

B. J. Hansen, M. I. Chelaru, and V. Dragoi, Correlated Variability in Laminar Cortical Circuits, Neuron, vol.76, pp.590-602, 2012.

K. D. Harris and A. Thiele, Cortical state and attention, Nat. Rev. Neurosci, vol.12, pp.509-523, 2011.

J. L. Herrero, M. A. Gieselmann, M. Sanayei, and A. Thiele, Attention-induced variance and noise correlation reduction in macaque V1 is mediated by NMDA receptors, Neuron, vol.78, pp.729-739, 2013.

J. L. Herrero, M. J. Roberts, L. S. Delicato, M. A. Gieselmann, P. Dayan et al., Acetylcholine contributes through muscarinic receptors to attentional modulation in V1, Nature, vol.454, pp.1110-1114, 2008.

X. Huang and S. G. Lisberger, Noise Correlations in Cortical Area MT and Their Potential Impact on Trial-by-Trial Variation in the Direction and Speed of Smooth-Pursuit Eye Movements, J. Neurophysiol, vol.101, pp.3012-3030, 2009.

I. Kanitscheider, R. Coen-cagli, and A. Pouget, Origin of information-limiting noise correlations, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.6973-6982, 2015.

F. Karube and Z. F. Kisvárday, Axon Topography of Layer IV Spiny Cells to Orientation Map in the Cat Primary Visual Cortex (Area 18), Cereb. Cortex, vol.21, pp.1443-1458, 2011.

T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A. Arieli, Spontaneously emerging cortical representations of visual attributes, Nature, vol.425, pp.954-956, 2003.

J. N. Kerr, C. P. De-kock, D. S. Greenberg, R. M. Bruno, B. Sakmann et al., Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex, J. Neurosci, vol.27, pp.13316-13328, 2007.

A. Kohn and M. A. Smith, Stimulus Dependence of Neuronal Correlation in Primary Visual Cortex of the Macaque, J. Neurosci, vol.25, pp.3661-3673, 2005.

A. Kohn, A. Zandvakili, and M. A. Smith, Correlations and brain states: from electrophysiology to functional imaging, Curr. Opin. Neurobiol, vol.19, pp.434-438, 2009.

T. Komiyama, T. R. Sato, D. H. O'connor, Y. Zhang, D. Huber et al., Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice, Nature, vol.464, pp.1182-1186, 2010.

H. Laufs, K. Krakow, P. Sterzer, E. Eger, A. Beyerle et al., Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest, Proc. Natl. Acad. Sci, vol.100, pp.11053-11058, 2003.

D. Lee, N. L. Port, W. Kruse, and A. P. Georgopoulos, Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex, J Neurosci, vol.18, pp.1161-1170, 1998.

X. Liu, J. A. De-zwart, M. L. Schölvinck, C. Chang, F. Q. Ye et al., Subcortical evidence for a contribution of arousal to fMRI studies of brain activity, Nat. Commun, vol.9, 2018.

C. Ly, J. W. Middleton, and B. Doiron, Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex, Front. Comput. Neurosci, vol.6, p.7, 2012.

E. M. Meyers, X. Qi, and C. Constantinidis, Incorporation of new information into prefrontal cortical activity after learning working memory tasks, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.4651-4656, 2012.

J. F. Mitchell, K. A. Sundberg, and J. H. Reynolds, Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4, Neuron, vol.63, pp.879-888, 2009.

R. Moreno-bote, J. Beck, I. Kanitscheider, X. Pitkow, P. Latham et al., Information-limiting correlations, Nat. Neurosci, vol.17, p.1410, 2014.

J. R. Muller, Rapid Adaptation in Visual Cortex to the Structure of Images, Science, vol.285, pp.1405-1408, 1999.

A. S. Nandy, J. J. Nassi, and J. H. Reynolds, Laminar Organization of Attentional Modulation in Macaque Visual Area V4, Neuron, vol.93, pp.235-246, 2017.

I. Nauhaus, L. Busse, M. Carandini, and D. L. Ringach, Stimulus contrast modulates functional connectivity in visual cortex, Nat. Neurosci, vol.12, pp.70-76, 2009.

A. Nevet, G. Morris, G. Saban, D. Arkadir, and H. Bergman, Lack of Spike-Count and Spike-Time Correlations in the Substantia Nigra Reticulata Despite Overlap of Neural Responses, J. Neurophysiol, vol.98, pp.2232-2243, 2007.

A. M. Ni, D. A. Ruff, J. J. Alberts, J. Symmonds, and M. R. Cohen, Learning and attention reveal a general relationship between population activity and behavior, Science, vol.359, pp.463-465, 2018.

J. Poort and P. R. Roelfsema, Noise correlations have little influence on the coding of selective attention in area V1, Cereb. Cortex N. Y. N, pp.543-553, 2009.

J. F. Poulet and C. C. Petersen, Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice, Nature, vol.454, pp.881-885, 2008.

M. E. Raichle, The brain's default mode network, Annu. Rev. Neurosci, vol.38, pp.433-447, 2015.

M. E. Raichle, A. M. Macleod, A. Z. Snyder, W. J. Powers, D. A. Gusnard et al., A default mode of brain function, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.676-682, 2001.

D. S. Reich, Independent and Redundant Information in Nearby Cortical Neurons, Science, vol.294, pp.2566-2568, 2001.

J. Reimer, E. Froudarakis, C. R. Cadwell, D. Yatsenko, G. H. Denfield et al., Pupil fluctuations track fast switching of cortical states during quiet wakefulness, Neuron, vol.84, pp.355-362, 2014.

A. Renart, J. De-la-rocha, P. Bartho, L. Hollender, N. Parga et al., The asynchronous state in cortical circuits, Science, vol.327, pp.587-590, 2010.

J. H. Reynolds and L. Chelazzi, ATTENTIONAL MODULATION OF VISUAL PROCESSING, Annu. Rev. Neurosci, vol.27, pp.611-647, 2004.

R. J. Rosenbaum, J. Trousdale, and K. Josi?, Pooling and correlated neural activity, Front. Comput. Neurosci, vol.4, p.9, 2010.

E. Schneidman, W. Bialek, and M. J. Berry, Synergy, Redundancy, and Independence in Population Codes, J. Neurosci, vol.23, pp.11539-11553, 2003.

M. L. Schölvinck, A. B. Saleem, A. Benucci, K. D. Harris, and M. Carandini, Cortical state determines global variability and correlations in visual cortex, J. Neurosci. Off. J. Soc. Neurosci, vol.35, pp.170-178, 2015.

D. Schwender, T. Rimkus, R. Haessler, S. Klasing, E. Pöppel et al., EFFECTS OF INCREASING DOSES OF ALFENTANIL, FENTANYL AND MORPHINE ON MID-LATENCY AUDITORY EVOKED POTENTIALS. BJA Br. J. Anaesth, vol.71, pp.622-628, 1993.

P. Seriès, P. E. Latham, and A. Pouget, Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations, Nat. Neurosci, vol.7, pp.1129-1135, 2004.

M. N. Shadlen and W. T. Newsome, The variable discharge of cortical neurons: implications for connectivity, computation, and information coding, J. Neurosci. Off. J. Soc. Neurosci, vol.18, pp.3870-3896, 1998.

M. Shamir and H. Sompolinsky, Nonlinear Population Codes, Neural Comput, vol.16, pp.1105-1136, 2004.

T. O. Sharpee, H. Sugihara, A. V. Kurgansky, S. P. Rebrik, M. P. Stryker et al., Adaptive filtering enhances information transmission in visual cortex, Nature, vol.439, pp.936-942, 2006.

G. L. Shulman, J. A. Fiez, M. Corbetta, Y. L. Buckner, F. M. Miezin et al., Common blood flow changes across visual tasks:, I. Increases in subcortical structures and cerebellum but not in nonvisual cortex, J. Cogn. Neurosci, pp.624-647, 1997.

M. A. Smith and A. Kohn, Spatial and Temporal Scales of Neuronal Correlation in Primary Visual Cortex, J. Neurosci, vol.28, pp.12591-12603, 2008.

M. A. Smith and M. A. Sommer, Spatial and temporal scales of neuronal correlation in visual area V4, J. Neurosci. Off. J. Soc. Neurosci, vol.33, pp.5422-5432, 2013.

H. P. Snippe and J. J. Koenderink, Information in channel-coded systems: correlated receivers, Biol. Cybern, vol.67, pp.183-190, 1992.

S. B. , was supported by ANR grant ANR-14-CE13-0005-1. C.G. was supported by the

, H. was supported by ANR grant ANR-11-BSV4-0011, within the program Investissements d'Avenir

E. , We thank research engineer Serge Pinède for technical support and Jean-Luc Charieau and Fabrice Hérant for animal care. All procedures were approved by the local animal care committee, was supported by the CNRS-DGA and Fondation pour la Recherche Médicale

L. F. Abbott and P. Dayan, The Effect of Correlated Variability on the Accuracy of a Population Code, Neural Comput, vol.11, issue.1, pp.91-101, 1999.

E. Ahissar, E. Vaadia, M. Ahissar, H. Bergman, A. Arieli et al., Dependence of Cortical Plasticity on Correlated Activity of Single Neurons and on Behavioral Context, vol.257, pp.1412-1415, 1992.

K. Anton-erxleben, C. Henrich, and S. Treue, Attention changes perceived size of moving visual patterns, J Vis, vol.7, pp.5-6, 2007.

A. Arieli, A. Sterkin, A. Grinvald, and A. Aertsen, Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses, Science, vol.273, pp.1868-1871, 1996.

K. M. Armstrong, M. H. Chang, and T. Moore, Selection and maintenance of spatial information by frontal eye field neurons, J. Neurosci, vol.29, pp.15621-15629, 2009.

E. Astrand, G. Ibos, J. Duhamel, and S. Ben-hamed, Differential dynamics of spatial attention, position, and color coding within the parietofrontal network, J. Neurosci, vol.35, pp.3174-3189, 2015.

E. Astrand, C. Wardak, P. Baraduc, and S. Ben-hamed, Direct Two-Dimensional Access to the Spatial Location of Covert Attention in Macaque Prefrontal Cortex, Curr. Biol, vol.26, pp.1699-1704, 2016.

B. B. Averbeck, P. E. Latham, and A. Pouget, Neural correlations, population coding and computation, Nat Rev Neurosci, vol.7, pp.358-366, 2006.

W. Bair, E. Zohary, and W. T. Newsome, Correlated firing in macaque visual area MT: time scales and relationship to behavior, J. Neurosci, vol.21, pp.1676-1697, 2001.

S. Ben-hamed, J. Duhamel, F. Bremmer, and W. Graf, Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze, Cereb. Cortex, vol.12, pp.234-245, 2002.

R. Ben-yishai, R. L. Bar-or, and H. Sompolinsky, Theory of orientation tuning in visual cortex, Proc. Natl. Acad. Sci. U.S.A, vol.92, pp.3844-3848, 1995.

C. J. Bruce and M. E. Goldberg, Primate frontal eye fields: I. Single neurons discharging before saccades, Journal of Neurophysiology, vol.53, issue.3, pp.603-638, 1985.

H. L. Bryant, A. R. Marcos, and J. P. Segundo, Correlations of neuronal spike discharges produced by monosynaptic connections and by common inputs, Journal of Neurophysiology, vol.36, pp.205-225, 1973.

E. A. Buffalo, P. Fries, R. Landman, T. J. Buschman, and R. Desimone, Laminar differences in gamma and alpha coherence in the ventral stream, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.11262-11267, 2011.

E. A. Buffalo, P. Fries, R. Landman, T. J. Buschman, and R. Desimone, Laminar differences in gamma and alpha coherence in the ventral stream, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.11262-11267, 2011.

N. A. Busch and R. Vanrullen, Spontaneous EEG oscillations reveal periodic sampling of visual attention, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.16048-16053, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00532579

T. J. Buschman and E. K. Miller, Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations, Neuron, vol.63, pp.386-396, 2009.

T. J. Buschman and E. K. Miller, Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices, Science, vol.315, pp.1860-1862, 2007.

M. Chalk, J. L. Herrero, M. A. Gieselmann, L. S. Delicato, S. Gotthardt et al., Attention Reduces Stimulus-Driven Gamma Frequency Oscillations and Spike Field Coherence in V1, Neuron, vol.66, p.114, 2010.

C. Chandrasekaran, Computational principles and models of multisensory integration, Curr. Opin. Neurobiol, vol.43, pp.25-34, 2017.

J. Y. Cohen, E. A. Crowder, R. P. Heitz, C. R. Subraveti, K. G. Thompson et al., Cooperation and competition among frontal eye field neurons during visual target selection, J. Neurosci, vol.30, pp.3227-3238, 2010.

M. R. Cohen and J. H. Maunsell, Attention improves performance primarily by reducing interneuronal correlations, Nat Neurosci, vol.12, pp.1594-1600, 2009.

M. R. Cohen and J. H. Maunsell, Attention improves performance primarily by reducing interneuronal correlations, Nat. Neurosci, vol.12, pp.1594-1600, 2009.

M. R. Cohen and W. T. Newsome, Context-dependent changes in functional circuitry in visual area MT, Neuron, vol.60, pp.162-173, 2008.

C. Constantinidis and P. S. Goldman-rakic, Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex, J. Neurophysiol, vol.88, pp.3487-3497, 2002.

C. Constantinidis and P. S. Goldman-rakic, Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex, J. Neurophysiol, vol.88, pp.3487-3497, 2002.

C. Constantinidis and T. Klingberg, The neuroscience of working memory capacity and training, Nat. Rev. Neurosci, vol.17, pp.438-449, 2016.

R. Courtemanche, N. Fujii, and A. M. Graybiel, Synchronous, focally modulated betaband oscillations characterize local field potential activity in the striatum of awake behaving monkeys, J. Neurosci, vol.23, pp.11741-11752, 2003.

R. Desimone and J. Duncan, Neural Mechanisms of Selective Visual Attention, Annual Review of Neuroscience, vol.18, pp.193-222, 1995.

A. S. Ecker, P. Berens, R. J. Cotton, M. Subramaniyan, G. H. Denfield et al., State Dependence of Noise Correlations in Macaque Primary Visual Cortex, Neuron, vol.82, pp.235-248, 2014.

A. S. Ecker, P. Berens, G. A. Keliris, M. Bethge, N. K. Logothetis et al., Decorrelated Neuronal Firing in Cortical Microcircuits, Science, vol.327, pp.584-587, 2010.

A. S. Ecker, P. Berens, A. S. Tolias, and M. Bethge, The effect of noise correlations in populations of diversely tuned neurons, J Neurosci, vol.31, issue.40, pp.14272-83, 2011.

L. B. Ekstrom, P. R. Roelfsema, J. T. Arsenault, G. Bonmassar, and W. Vanduffel, Bottom-up dependent gating of frontal signals in early visual cortex, Science, vol.321, pp.414-417, 2008.

A. K. Engel and P. Fries, Beta-band oscillations--signalling the status quo?, Curr. Opin. Neurobiol, vol.20, pp.156-165, 2010.

A. K. Engel, P. Fries, and W. Singer, Dynamic predictions: oscillations and synchrony in top-down processing, Nat. Rev. Neurosci, vol.2, pp.704-716, 2001.

A. K. Engel, P. König, A. K. Kreiter, and W. Singer, Interhemispheric Synchronization of Oscillatory Neuronal Responses in Cat Visual Cortex, Science, vol.252, pp.1177-1179, 1991.

I. C. Fiebelkorn, A. C. Snyder, M. R. Mercier, J. S. Butler, S. Molholm et al., Cortical cross-frequency coupling predicts perceptual outcomes, Neuroimage, vol.69, pp.126-137, 2013.

T. J. Gawne, T. W. Kjaer, J. A. Hertz, and B. J. Richmond, Adjacent visual cortical complex cells share about 20% of their stimulus-related information, Cereb. Cortex, vol.6, pp.482-489, 1996.

T. J. Gawne and B. J. Richmond, How independent are the messages carried by adjacent inferior temporal cortical neurons?, J. Neurosci, vol.13, pp.2758-2771, 1993.

R. L. Goris, J. A. Movshon, and E. P. Simoncelli, Partitioning neuronal variability, Nat Neurosci, vol.17, pp.858-865, 2014.

G. G. Gregoriou, S. J. Gotts, and R. Desimone, Cell-type-specific synchronization of neural activity in FEF with V4 during attention, Neuron, vol.73, pp.581-594, 2012.

G. G. Gregoriou, S. J. Gotts, H. Zhou, and R. Desimone, High-frequency, long-range coupling between prefrontal and visual cortex during attention, Science, vol.324, pp.1207-1210, 2009.

A. Grinsted, J. C. Moore, and S. Jevrejeva, Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Processes in Geophysics, vol.11, pp.561-566, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00302394

Y. Gu, S. Liu, C. R. Fetsch, Y. Yang, S. Fok et al., Perceptual learning reduces interneuronal correlations in macaque visual cortex, Neuron, vol.71, pp.750-761, 2011.

D. A. Gutnisky and V. Dragoi, Adaptive coding of visual information in neural populations, Nature, vol.452, pp.220-224, 2008.

X. Huang and S. G. Lisberger, Noise Correlations in Cortical Area MT and Their Potential Impact on Trial-by-Trial Variation in the Direction and Speed of Smooth-Pursuit Eye Movements, Journal of Neurophysiology, vol.101, pp.3012-3030, 2009.

G. Ibos, J. Duhamel, and S. Ben-hamed, A functional hierarchy within the parietofrontal network in stimulus selection and attention control, J. Neurosci, vol.33, pp.8359-8369, 2013.

J. R. Iversen, B. H. Repp, and A. D. Patel, Top-down control of rhythm perception modulates early auditory responses, Ann. N. Y. Acad. Sci, vol.1169, pp.58-73, 2009.

R. A. Joundi, N. Jenkinson, J. Brittain, T. Z. Aziz, and P. Brown, Driving oscillatory activity in the human cortex enhances motor performance, Curr. Biol, vol.22, pp.403-407, 2012.

I. Kanitscheider, R. Coen-cagli, and A. Pouget, Origin of information-limiting noise correlations, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.6973-6982, 2015.

W. Klimesch, EEG-alpha rhythms and memory processes, Int J Psychophysiol, vol.26, pp.319-340, 1997.

. Vi and . References,

R. Adamec, S. Walling, and P. Burton, Long-lasting, selective, anxiogenic effects of feline predator stress in mice, Physiol. Behav, vol.83, pp.401-410, 2004.

K. L. Agster, B. D. Clark, W. Gao, J. S. Shumsky, H. X. Wang et al., Experimental strategies for investigating psychostimulant drug actions and prefrontal cortical function in ADHD and related attention disorders, Anat. Rec. Hoboken NJ, vol.294, pp.1698-1712, 2007.

K. M. Armstrong, M. H. Chang, and T. Moore, Selection and maintenance of spatial information by frontal eye field neurons, J. Neurosci. Off. J. Soc. Neurosci, vol.29, pp.15621-15629, 2009.

A. F. Arnsten, Modulation of prefrontal cortical-striatal circuits: relevance to therapeutic treatments for Tourette syndrome and attention-deficit hyperactivity disorder, Adv. Neurol, vol.85, pp.333-341, 2001.

A. F. Arnsten, Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction, CNS Drugs, vol.23, pp.33-41, 2009.

A. F. Arnsten, Catecholamine and second messenger influences on prefrontal cortical networks of "representational knowledge": a rational bridge between genetics and the symptoms of mental illness, Cereb. Cortex N. Y. N, pp.6-15, 2007.

A. F. Arnsten, Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways, J. Clin. Psychiatry, vol.67, pp.7-12, 2006.

G. Aston-jones and F. E. Bloom, Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle, J. Neurosci. Off. J. Soc. Neurosci, vol.1, pp.876-886, 1981.

G. Aston-jones and F. E. Bloom, Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli, J. Neurosci. Off. J. Soc. Neurosci, vol.1, pp.887-900, 1981.

G. Aston-jones, C. Chiang, and T. Alexinsky, Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance, Prog. Brain Res, vol.88, pp.501-520, 1991.

G. Aston-jones and J. D. Cohen, Adaptive gain and the role of the locus coeruleusnorepinephrine system in optimal performance, J. Comp. Neurol, vol.493, pp.99-110, 2005.

G. Aston-jones and J. D. Cohen, An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance, Annu. Rev. Neurosci, vol.28, pp.403-450, 2005.

G. Aston-jones and G. C. Harris, Brain substrates for increased drug seeking during protracted withdrawal, Neuropharmacology, vol.47, pp.167-179, 2004.

G. Aston-jones, J. Rajkowski, and J. Cohen, Locus coeruleus and regulation of behavioral flexibility and attention, in: Progress in Brain Research, pp.165-182, 2000.

G. Aston-jones, J. Rajkowski, and P. Kubiak, Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task, Neuroscience, vol.80, pp.697-715, 1997.

G. Aston-jones, J. Rajkowski, P. Kubiak, and T. Alexinsky, Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task, J. Neurosci. Off. J. Soc. Neurosci, vol.14, pp.4467-4480, 1994.

E. Astrand, G. Ibos, J. Duhamel, and S. Ben-hamed, Differential dynamics of spatial attention, position, and color coding within the parietofrontal network, J. Neurosci. Off. J. Soc. Neurosci, vol.35, pp.3174-3189, 2015.

E. Astrand, C. Wardak, P. Baraduc, and S. Ben-hamed, Direct Two-Dimensional Access to the Spatial Location of Covert Attention in Macaque Prefrontal Cortex, Curr. Biol. CB, vol.26, pp.1699-1704, 2016.

A. Bedard, A. Ickowicz, G. D. Logan, S. Hogg-johnson, R. Schachar et al., Selective inhibition in children with attention-deficit hyperactivity disorder off and on stimulant medication, J. Abnorm. Child Psychol, vol.31, pp.315-327, 2003.

C. W. Berridge and B. D. Waterhouse, The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes, Brain Res. Brain Res. Rev, vol.42, pp.33-84, 2003.

J. Biederman, Attention-deficit/hyperactivity disorder: a selective overview, Biol. Psychiatry, vol.57, pp.1215-1220, 2005.

J. M. Birrell and V. J. Brown, Medial Frontal Cortex Mediates Perceptual Attentional Set Shifting in the Rat, J. Neurosci, vol.20, pp.4320-4324, 2000.

J. W. Bisley and M. E. Goldberg, Neuronal activity in the lateral intraparietal area and spatial attention, Science, vol.299, pp.81-86, 2003.

E. J. Bockstaele, J. Chan, and V. M. Pickel, Input from central nucleus of the amygdala efferents to pericoerulear dendrites, some of which contain tyrosine hydroxylase immunoreactivity 14

S. Bouret, A. Duvel, S. Onat, and S. J. Sara, Phasic Activation of Locus Ceruleus Neurons by the Central Nucleus of the Amygdala, J. Neurosci, vol.23, pp.3491-3497, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00079811

S. Bouret and S. J. Sara, Network reset: a simplified overarching theory of locus coeruleus noradrenaline function, Trends Neurosci, vol.28, pp.574-582, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00088131

D. C. Brown, M. S. Co, R. C. Wolff, and M. Atzori, 2012. ?-Adrenergic receptors in auditory cue detection: ?2 receptor blockade suppresses false alarm responding in the rat, Neuropharmacology, vol.62, pp.2178-2183
URL : https://hal.archives-ouvertes.fr/hal-01005779

T. J. Buschman and E. K. Miller, Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices, Science, vol.315, pp.1860-1862, 2007.

G. Bush, J. Holmes, L. M. Shin, C. Surman, N. Makris et al., Atomoxetine increases fronto-parietal functional MRI activation in attention-deficit/hyperactivity disorder: a pilot study, Psychiatry Res, vol.211, pp.88-91, 2013.

T. J. Bussey, B. J. Everitt, and T. W. Robbins, Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: Implications for the neurobiology of emotion, Behav. Neurosci, vol.111, pp.908-919, 1997.

D. B. Bylund, D. C. Eikenberg, J. P. Hieble, S. Z. Langer, R. J. Lefkowitz et al., International Union of Pharmacology nomenclature of adrenoceptors, Pharmacol. Rev, vol.46, pp.121-136, 1994.

M. S. Caetano, L. E. Jin, L. Harenberg, K. L. Stachenfeld, A. F. Arnsten et al., Noradrenergic control of error perseveration in medial prefrontal cortex, Front. Integr. Neurosci, vol.6, 2013.

R. E. Cain, M. C. Wasserman, B. D. Waterhouse, and J. A. Mcgaughy, Atomoxetine facilitates attentional set shifting in adolescent rats, Dev. Cogn. Neurosci, vol.1, pp.552-559, 2011.

M. Corbetta and G. L. Shulman, Control of goal-directed and stimulus-driven attention in the brain, Nat. Rev. Neurosci, vol.3, pp.201-215, 2002.

I. D'andrea, V. Fardella, S. Fardella, F. Pallante, A. Ghigo et al., Lack of kinase-independent activity of PI3K? in locus coeruleus induces ADHD symptoms through increased CREB signaling, EMBO Mol. Med, vol.7, issue.7, pp.904-917, 2015.

E. Darcq and B. L. Kieffer, PI3K signaling in the locus coeruleus: a new molecular pathway for ADHD research, EMBO Mol. Med, vol.7, pp.859-861, 2015.

P. Delagrange, M. H. Canu, A. Rougeul, P. Buser, and J. J. Bouyer, Effects of locus coeruleus lesions on vigilance and attentive behaviour in cat, Behav. Brain Res, vol.53, pp.155-165, 1993.

P. Delagrange, D. Tadjer, J. J. Bouyer, A. Rougeul, and M. Conrath, Effect of DSP4, a neurotoxic agent, on attentive behaviour and related electrocortical activity in cat, Behav. Brain Res, vol.33, pp.33-43, 1989.

C. Delaville, S. Navailles, and A. Benazzouz, Effects of noradrenaline and serotonin depletions on the neuronal activity of globus pallidus and substantia nigra pars reticulata in experimental parkinsonism, Neuroscience, vol.202, pp.424-433, 2012.

R. Desimone and J. Duncan, Neural Mechanisms of Selective Visual Attention, Annu. Rev. Neurosci, vol.18, pp.193-222, 1995.

V. Devauges and S. J. Sara, Activation of the noradrenergic system facilitates an attentional shift in the rat, Behav. Brain Res, vol.39, pp.19-28, 1990.

D. M. Devilbiss, M. E. Page, and B. D. Waterhouse, Locus ceruleus regulates sensory encoding by neurons and networks in waking animals, J. Neurosci. Off. J. Soc. Neurosci, vol.26, pp.9860-9872, 2006.

N. I. Eisenberger, M. D. Lieberman, and K. D. Williams, Does Rejection Hurt? An fMRI Study of Social Exclusion, Science, vol.302, pp.290-292, 2003.

L. B. Ekstrom, P. R. Roelfsema, J. T. Arsenault, G. Bonmassar, and W. Vanduffel, Bottom-up dependent gating of frontal signals in early visual cortex, Science, vol.321, pp.414-417, 2008.

M. Falkenstein, J. Hohnsbein, J. Hoormann, and L. Blanke, Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks, Electroencephalogr. Clin. Neurophysiol, vol.78, pp.447-455, 1991.

S. L. Foote, G. Aston-jones, and F. E. Bloom, Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal, Proc. Natl. Acad. Sci. U. S. A, vol.77, pp.3033-3037, 1980.

K. C. Gatter and T. P. Powell, The projection of the locus coeruleus upon the neocortex in the macaque monkey, Neuroscience, vol.2, pp.441-445, 1977.

M. Genestine, L. Lin, M. Durens, Y. Yan, Y. Jiang et al., Engrailed-2 (En2) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis and behavior, Hum. Mol. Genet, vol.24, pp.5805-5827, 2015.

M. Gesi, P. Soldani, F. S. Giorgi, A. Santinami, I. Bonaccorsi et al., The role of the locus coeruleus in the development of Parkinson's disease, Neurosci. Biobehav. Rev, vol.24, pp.655-668, 2000.

M. S. Gilzenrat, B. D. Holmes, J. Rajkowski, G. Aston-jones, and J. D. Cohen, Simplified dynamics in a model of noradrenergic modulation of cognitive performance, Neural Netw. Off. J. Int. Neural Netw. Soc, vol.15, pp.647-663, 2002.

M. S. Gilzenrat, S. Nieuwenhuis, M. Jepma, and J. D. Cohen, Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function, Cogn. Affect. Behav. Neurosci, vol.10, pp.252-269, 2010.

P. Gisquet-verrier, G. Winocur, . Delatour, and . Beno, Functional dissociation between dorsal and ventral regions of the medial prefrontal cortex in rats 13

J. P. Gottlieb, M. Kusunoki, and M. E. Goldberg, The representation of visual salience in monkey parietal cortex, Nature, vol.391, pp.481-484, 1998.

H. Hagena, N. Hansen, and D. Manahan-vaughan, ?-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory, Cereb. Cortex N. Y. N, pp.1349-1364, 2016.

T. Hammerschmidt, M. P. Kummer, D. Terwel, A. Martinez, A. Gorji et al., Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice, Biol. Psychiatry, vol.73, pp.454-463, 2013.

N. Hansen and D. Manahan-vaughan, Hippocampal long-term potentiation that is elicited by perforant path stimulation or that occurs in conjunction with spatial learning is tightly controlled by beta-adrenoreceptors and the locus coeruleus, Hippocampus, vol.25, pp.1285-1298, 2015.

L. Hein, Adrenoceptors and signal transduction in neurons, Cell Tissue Res, vol.326, pp.541-551, 2006.

T. M. Herrington and J. A. Assad, Neural activity in the middle temporal area and lateral intraparietal area during attentionly cued shifts of attention, J. Neurosci. Off. J. Soc. Neurosci, vol.29, pp.14160-14176, 2009.

D. E. Hill, R. A. Yeo, R. A. Campbell, B. Hart, J. Vigil et al., Magnetic resonance imaging correlates of attention-deficit/hyperactivity disorder in children, Neuropsychology, vol.17, pp.496-506, 2003.

J. A. Hobson, R. W. Mccarley, and P. W. Wyzinski, Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups, Science, vol.189, pp.55-58, 1975.

C. B. Holroyd, J. T. Larsen, and J. D. Cohen, Context dependence of the event-related brain potential associated with reward and punishment, Psychophysiology, vol.41, pp.245-253, 2004.

C. B. Holroyd, S. Nieuwenhuis, N. Yeung, and J. D. Cohen,

C. B. Holroyd, S. Nieuwenhuis, N. Yeung, L. Nystrom, R. B. Mars et al., Dorsal anterior cingulate cortex shows fMRI response to internal and external error signals, Nat. Neurosci, vol.7, pp.497-498, 2004.

R. H. Hou, C. Freeman, R. W. Langley, E. Szabadi, and C. M. Bradshaw, Does modafinil activate the locus coeruleus in man? Comparison of modafinil and clonidine on arousal and autonomic functions in human volunteers, Psychopharmacology (Berl.), vol.181, pp.537-549, 2005.

G. Ibos, J. Duhamel, and S. Ben-hamed, A functional hierarchy within the parietofrontal network in stimulus selection and attention control, J. Neurosci. Off. J. Soc. Neurosci, vol.33, pp.8359-8369, 2013.

K. Janitzky, W. D'hanis, A. Kröber, and H. Schwegler, TMT predator odor activated neural circuit in C57BL/6J mice indicates TMT-stress as a suitable model for uncontrollable intense stress, Brain Res, vol.1599, pp.1-8, 2015.

M. Jepma and S. Nieuwenhuis, Pupil diameter predicts changes in the explorationexploitation trade-off: evidence for the adaptive gain theory, J. Cogn. Neurosci, vol.23, pp.1587-1596, 2011.

E. Jodoj, C. Chiang, and G. Aston-jones, Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons, Neuroscience, vol.83, pp.63-79, 1998.

B. E. Jones, S. T. Harper, and A. E. Halaris, Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat, Brain Res, vol.124, pp.473-496, 1977.

M. Jouvet, Biogenic amines and the states of sleep, Science, vol.163, pp.32-41, 1969.

A. A. Kehagia, G. K. Murray, and T. W. Robbins, Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation, Curr. Opin. Neurobiol, vol.20, pp.199-204, 2010.

K. A. Kiehl, P. F. Liddle, and J. B. Hopfinger, Error processing and the rostral anterior cingulate: an event-related fMRI study, Psychophysiology, vol.37, pp.216-223, 2000.

J. Kim, H. Lee, S. Sim, J. Baek, N. Yu et al., PI3K? is required for NMDA receptor-dependent long-term depression and behavioral flexibility, Nat. Neurosci, vol.14, pp.1447-1454, 2011.

M. D. Lapiz, C. O. Bondi, and D. A. Morilak, Chronic treatment with desipramine improves cognitive performance of rats in an attentional set-shifting test, Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol, vol.32, pp.1000-1010, 2007.

M. D. Lapiz and D. A. Morilak, Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability, Neuroscience, vol.137, pp.1039-1049, 2006.

J. Mantz, C. Milla, J. Glowinski, and A. M. Thierry, Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of evoked responses in the rat prefrontal cortex, Neuroscience, vol.27, pp.517-526, 1988.

E. Marder, Neuromodulation of neuronal circuits: back to the future, Neuron, vol.76, pp.1-11, 2012.

J. Mcgaughy, R. S. Ross, and H. Eichenbaum, Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting, Neuroscience, vol.153, pp.63-71, 2008.

A. Mclean, J. Dowson, B. Toone, S. Young, E. Bazanis et al., Characteristic neurocognitive profile associated with adult attentiondeficit/hyperactivity disorder, Psychol. Med, vol.34, pp.681-692, 2004.

P. J. Mcmillan, S. S. White, A. Franklin, J. L. Greenup, J. B. Leverenz et al., Differential response of the central noradrenergic nervous system to the loss of locus coeruleus neurons in Parkinson's disease and Alzheimer's disease, Brain Res, vol.1373, pp.240-252, 2011.

I. E. Monosov and K. G. Thompson, Frontal eye field activity enhances object identification during covert visual search, J. Neurophysiol, vol.102, pp.3656-3672, 2009.

R. Y. Moore and F. E. Bloom, Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems, Annu. Rev. Neurosci, vol.2, pp.113-168, 1979.

T. Moore, K. M. Armstrong, and M. Fallah, Visuomotor origins of covert spatial attention, Neuron, vol.40, pp.671-683, 2003.

T. Moore and M. Fallah, Microstimulation of the frontal eye field and its effects on covert spatial attention, J. Neurophysiol, vol.91, pp.152-162, 2004.

R. L. Navarra, B. D. Clark, A. T. Gargiulo, and B. D. Waterhouse, Methylphenidate Enhances Early-Stage Sensory Processing and Rodent Performance of a Visual Signal Detection Task, Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol, vol.42, pp.1326-1337, 2017.

R. L. Navarra, B. D. Clark, G. A. Zitnik, and B. D. Waterhouse, Methylphenidate and atomoxetine enhance sensory-evoked neuronal activity in the visual thalamus of male rats, Exp. Clin. Psychopharmacol, vol.21, pp.363-374, 2013.

L. A. Newman, J. Darling, and J. Mcgaughy, Atomoxetine reverses attentional deficits produced by noradrenergic deafferentation of medial prefrontal cortex, Psychopharmacology (Berl.), vol.200, pp.39-50, 2008.

S. Nieuwenhuis, I. C. Van-nieuwpoort, D. J. Veltman, and M. L. Drent, Effects of the noradrenergic agonist clonidine on temporal and spatial attention, Psychopharmacology (Berl.), vol.193, pp.261-269, 2007.

S. E. Petersen and M. I. Posner, The attention system of the human brain: 20 years after, Annu. Rev. Neurosci, vol.35, pp.73-89, 2012.

M. A. Phillips, E. Szabadi, and C. M. Bradshaw, Comparison of the effects of clonidine and yohimbine on pupillary diameter at different illumination levels, Br. J. Clin. Pharmacol, vol.50, pp.65-68, 2000.

J. Rajkowski, P. Kubiak, and G. Aston-jones, Locus coeruleus activity in monkey: phasic and tonic changes are associated with altered vigilance, Brain Res. Bull, vol.35, pp.607-616, 1994.

H. G. Rey, C. Pedreira, and R. Quian-quiroga, Past, present and future of spike sorting techniques, Brain Res. Bull, vol.119, pp.106-117, 2015.

S. D. Robertson, N. W. Plummer, J. De-marchena, and P. Jensen, Developmental origins of central norepinephrine neuron diversity, Nat. Neurosci, vol.16, pp.1016-1023, 2013.

M. R. Roesch and C. R. Olson, Neuronal activity related to reward value and motivation in primate frontal cortex, Science, vol.304, pp.307-310, 2004.

E. T. Rolls, Smell, Taste, Texture, and Temperature Multimodal Representations in the Brain, and Their Relevance to the Control of Appetite, Nutr. Rev, vol.62, pp.193-204, 2004.

A. Rougeul-buser and P. Buser, Rhythms in the alpha band in cats and their behavioural correlates, Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol, vol.26, pp.191-203, 1997.

S. J. Sara, The locus coeruleus and noradrenergic modulation of cognition, Nat. Rev. Neurosci, vol.10, pp.211-223, 2009.

S. J. Sara and S. Bouret, Orienting and reorienting: the locus coeruleus mediates cognition through arousal, Neuron, vol.76, pp.130-141, 2012.

S. J. Sara and M. Segal, Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: implications for cognition. Prog, Brain Res, vol.88, pp.571-585, 1991.

S. J. Sara, A. Vankov, and A. Hervé, Locus coeruleus-evoked responses in behaving rats: a clue to the role of noradrenaline in memory, Brain Res. Bull, vol.35, pp.457-465, 1994.

K. Schutsky, M. Ouyang, C. B. Castelino, L. Zhang, and S. A. Thomas, Stress and glucocorticoids impair memory retrieval via ?2-adrenergic, Gi/o-coupled suppression of cAMP signaling, J. Neurosci. Off. J. Soc. Neurosci, vol.31, pp.14172-14181, 2011.

L. A. Schwarz, K. Miyamichi, X. J. Gao, K. T. Beier, B. Weissbourd et al., Viral-genetic tracing of the input-output organization of a central noradrenaline circuit, Nature, vol.524, pp.88-92, 2015.

S. Shoja-shafti, M. S. Jafarabad, and R. Azizi, Amelioration of deficit syndrome of schizophrenia by norepinephrine reuptake inhibitor, Ther. Adv. Psychopharmacol, vol.5, pp.263-270, 2015.

E. R. Sowell, P. M. Thompson, S. E. Welcome, A. L. Henkenius, A. W. Toga et al., Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder, Lancet Lond. Engl, vol.362, pp.1699-1707, 2003.

L. W. Swanson, The locus coeruleus: A cytoarchitectonic, golgi and immunohistochemical study in the albino rat, Brain Res, vol.110, pp.39-56, 1976.

E. Szabadi, Functional neuroanatomy of the central noradrenergic system, J. Psychopharmacol. Oxf. Engl, vol.27, pp.659-693, 2013.

K. G. Thompson, N. P. Bichot, and T. R. Sato, Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience, J. Neurophysiol, vol.93, pp.337-351, 2005.

L. Tremblay and W. Schultz, Relative reward preference in primate orbitofrontal cortex, Nature, vol.398, pp.704-708, 1999.

T. Vanicek, M. Spies, C. Rami-mark, M. Savli, A. Höflich et al., The norepinephrine transporter in attention-deficit/hyperactivity disorder investigated with positron emission tomography, JAMA Psychiatry, vol.71, pp.1340-1349, 2014.

A. Vankov, A. Hervé-minvielle, and S. J. Sara, Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat, Eur. J. Neurosci, vol.7, pp.1180-1187, 1995.

E. M. Vazey and G. Aston-jones, Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.3859-3864, 2014.

J. Von-der-gablentz, C. Tempelmann, T. F. Münte, and M. Heldmann, Performance monitoring and behavioral adaptation during task switching: an fMRI study, Neuroscience, vol.285, pp.227-235, 2015.

J. D. Wallis and E. K. Miller, Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task, Eur. J. Neurosci, vol.18, pp.2069-2081, 2003.

C. Wardak, G. Ibos, J. Duhamel, and E. Olivier, Contribution of the monkey frontal eye field to covert visual attention, J. Neurosci. Off. J. Soc. Neurosci, vol.26, pp.4228-4235, 2006.

D. Weinshenker, Functional consequences of locus coeruleus degeneration in Alzheimer's disease, Curr. Alzheimer Res, vol.5, pp.342-345, 2008.

M. C. Wiest and M. A. Nicolelis, Behavioral detection of tactile stimuli during 7-12 Hz cortical oscillations in awake rats, Nat. Neurosci, vol.6, pp.913-914, 2003.

E. A. Witte and R. T. Marrocco, Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting, Psychopharmacology (Berl.), vol.132, pp.315-323, 1997.

S. Yantis, J. Schwarzbach, J. T. Serences, R. L. Carlson, M. A. Steinmetz et al., Transient neural activity in human parietal cortex during spatial attention shifts, Nat. Neurosci, vol.5, pp.995-1002, 2002.

R. A. Yeo, D. Hill, R. Campbell, J. Vigil, and W. M. Brooks, Developmental instability and working memory ability in children: a magnetic resonance spectroscopy investigation, Dev. Neuropsychol, vol.17, pp.143-159, 2000.

N. Yeung, Independent Coding of Reward Magnitude and Valence in the Human Brain, J. Neurosci, vol.24, pp.6258-6264, 2004.

N. Yeung, M. M. Botvinick, and J. D. Cohen, The neural basis of error detection: Conflict monitoring and the error-related negativity, Psychol. Rev, pp.931-959, 2004.

Z. Zhao, H. Zhang, E. Bootzin, M. J. Millan, and J. M. O'donnell, Association of changes in norepinephrine and serotonin transporter expression with the long-term behavioral effects of antidepressant drugs, Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol, vol.34, pp.1467-1481, 2009.

A. F. Arnsten, D. S. Segal, S. E. Loughlin, and D. C. Roberts, « Evidence for an Interaction of Opioid and Noradrenergic Locus Coeruleus Systems in the Regulation of Environmental Stimulus-Directed Behavior, Brain Research, vol.222, issue.2, pp.351-63, 1981.

G. Aston-jones, . Rajkowski, and . Kubiak, « Conditioned Responses of Monkey Locus Coeruleus Neurons Anticipate Acquisition of Discriminative Behavior in a Vigilance Task, Neuroscience, vol.80, issue.3, pp.697-715, 1997.

G. Aston-jones, J. Rajkowski, and P. Kubiak, « Conditioned Responses of Monkey Locus Coeruleus Neurons Anticipate Acquisition of Discriminative Behavior in a Vigilance Task, Neuroscience, vol.80, issue.3, p.697715, 1997.

. Aston-jones, J. D. Gary, and . Cohen, « Adaptive Gain and the Role of the Locus Coeruleus-Norepinephrine System in Optimal Performance, The Journal of Comparative Neurology, vol.493, issue.1, pp.99-110, 2005.

A. Bedard, A. Ickowicz, G. D. Logan, S. Hogg-johnson, and R. Schachar, et Rosemary Tannock. 2003. « Selective Inhibition in Children with Attention-Deficit Hyperactivity Disorder off and on Stimulant Medication, vol.31, pp.315-342

C. Berridge, A. Et, and . Dunn, « Restraint-Stress-Induced Changes in Exploratory Behavior Appear to Be Mediated by Norepinephrine-Stimulated Release of CRF, The Journal of Neuroscience, vol.9, issue.10, pp.3513-3534, 1989.

S. Bouret and S. J. Sara, « Network Reset: A Simplified Overarching Theory of Locus Coeruleus Noradrenaline Function », Trends in Neurosciences, vol.28, issue.11, p.82, 2005.

T. J. Buschman and . Miller, « Top-down versus Bottom-up Control of Attention in the Prefrontal and Posterior Parietal Cortices, Science, vol.315, issue.5820, pp.1860-62, 2007.

G. Bush, J. Holmes, L. M. Shin, C. Surman, N. Makris et al., Atomoxetine Increases Fronto-Parietal Functional MRI Activation in Attention-Deficit/Hyperactivity Disorder: A Pilot Study, vol.211, p.91, 2013.

F. P. Bymaster, J. S. Katner, L. David, S. K. Nelson, . Hemrick-luecke et al., Atomoxetine Increases Extracellular Levels of Norepinephrine and Dopamine in Prefrontal Cortex of Rat: A Potential Mechanism for Efficacy in Attention Deficit/Hyperactivity Disorder, vol.27, pp.699-711, 2002.

M. Carli, T. W. Robbins, J. L. Evenden, and B. J. Everitt, « Effects of Lesions to Ascending Noradrenergic Neurones on Performance of a 5-Choice Serial Reaction Task in Rats; Implications for Theories of Dorsal Noradrenergic Bundle Function Based on Selective Attention and Arousal, Behavioural Brain Research, vol.9, issue.3, pp.361-80, 1983.

M. R. Cohen, H. R. Et-john, and . Maunsell, « Attention Improves Performance Primarily by Reducing Interneuronal Correlations », Nature Neuroscience, vol.12, issue.12, pp.1594-1600, 2009.

C. Constantinidis and P. S. Goldman-rakic, Correlated Discharges among Putative Pyramidal Neurons and Interneurons in the Primate Prefrontal Cortex, vol.88, pp.3487-97, 2002.

J. T. Coull, H. C. Middleton, T. W. Robbins, and B. J. Sahakian, Clonidine and Diazepam Have Differential Effects on Tests of Attention and Learning, vol.120, p.32, 1995.

P. Delagrange, M. H. Canu, A. Rougeul, P. Buser, and J. J. Bouyer, Effects of Locus Coeruleus Lesions on Vigilance and Attentive Behaviour in Cat, vol.53, p.65, 1993.

L. B. Ekstrom, R. Pieter, J. T. Roelfsema, G. Arsenault, and . Bonmassar, et Wim Vanduffel. 2008. « Bottom-up Dependent Gating of Frontal Signals in Early Visual Cortex ». Science, vol.321, pp.414-431

S. V. Faraone, J. Biederman, T. Spencer, D. Michelson, L. Adler et al., Atomoxetine and Stroop Task Performance in Adult Attention-Deficit/Hyperactivity Disorder, Journal of Child and Adolescent Psychopharmacology, vol.15, issue.4, p.70, 2005.

C. Guedj, E. Monfardini, A. J. Reynaud, A. Farnè, and M. Meunier, et Fadila Hadj-Bouziane. 2017. « Boosting Norepinephrine Transmission Triggers Flexible Reconfiguration of Brain Networks at Rest ». Cerebral Cortex, vol.27, p.4700, 1991.

D. E. Hill, A. Ronald, R. A. Yeo, B. Campbell, J. Hart et al., « Magnetic Resonance Imaging Correlates of AttentionDeficit/Hyperactivity Disorder in Children, Neuropsychology, vol.17, issue.3, pp.496-506, 2003.

G. Ibos, J. Duhamel, . Et-suliann-ben, and . Hamed, « A Functional Hierarchy within the Parietofrontal Network in Stimulus Selection and Attention Control, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.33, pp.8359-69, 2013.

S. Kastner, K. Desimone, C. S. Konen, S. M. Szczepanski, K. S. Weiner et al., « Topographic Maps in Human Frontal Cortex Revealed in Memory-Guided Saccade and Spatial Working-Memory Tasks, Journal of Neurophysiology, vol.97, issue.5, p.3507, 2007.

. Lee, N. L. Daeyeol, W. Port, A. P. Kruse, . Georgopoulos et al., Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex, J Neurosci, vol.18, pp.1161-1170, 1998.

A. Mclean, J. Dowson, B. Toone, S. Young, E. Bazanis et al., Characteristic Neurocognitive Profile Associated with Adult AttentionDeficit/Hyperactivity Disorder, vol.34, pp.681-92, 2004.

D. Michelson, D. Faries, J. Wernicke, D. Kelsey, K. Kendrick et al., Atomoxetine in the Treatment of Children and Adolescents with Attention-Deficit/Hyperactivity Disorder: A Randomized, Placebo-Controlled, vol.108, p.83, 2001.

R. L. Navarra, D. Brian, G. A. Clark, B. D. Zitnik, and . Waterhouse, « Methylphenidate and Atomoxetine Enhance Sensory-Evoked Neuronal Activity in the Visual Thalamus of Male Rats, Experimental and Clinical Psychopharmacology, vol.21, issue.5, pp.363-74, 2013.

R. L. Navarra, B. D. Et, and . Waterhouse, « Considering Noradrenergically Mediated Facilitation of Sensory Signal Processing as a Component of Psychostimulant-Induced Performance Enhancement, Brain Research, 2018.

A. F. Oke and R. N. Adams, « Selective Attention Dysfunctions in Adult Rats Neonatally Treated with 6-Hydoxydopamine, Biochemistry, and Behavior, vol.9, issue.4, pp.429-461, 1978.

R. Oostenveld, P. Fries, and E. Maris, FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data ». Intell, vol.2011, pp.1-1, 2011.

J. Rajkowski, P. Kubiak, and G. Aston-jones, Locus Coeruleus Activity in Monkey: Phasic and Tonic Changes Are Associated with Altered Vigilance, vol.35, pp.607-623, 1994.

D. C. Roberts, A. P. Zis, and H. C. Fibiger, « Ascending Catecholamine Pathways and Amphetamine-Induced Locomotor Activity: Importance of Dopamine and Apparent Non-Involvement of Norepinephrine, Brain Research, vol.93, issue.3, pp.441-54, 1975.

N. Selden, T. Robbins, B. Et, and . Everitt, « Enhanced Behavioral Conditioning to Context and Impaired Behavioral and Neuroendocrine Responses to Conditioned Stimuli Following Ceruleocortical Noradrenergic Lesions: Support for an Attentional Hypothesis of Central Noradrenergic Function, The Journal of Neuroscience, vol.10, issue.2, pp.531-570, 1990.

N. R. Selden, B. J. Everitt, and T. W. Robbins, « Telencephalic but Not Diencephalic Noradrenaline Depletion Enhances Behavioural but Not Endocrine Measures of Fear Conditioning to Contextual Stimuli, Behavioural Brain Research, vol.43, issue.2, pp.139-54, 1991.

M. A. Smith, A. Et, and . Kohn, « Spatial and Temporal Scales of Neuronal Correlation in Primary Visual Cortex », Journal of Neuroscience, vol.28, issue.48, pp.12591-603, 2008.

E. R. Sowell, M. Paul, S. E. Thompson, A. L. Welcome, A. W. Henkenius et al., Cortical Abnormalities in Children and Adolescents with Attention-Deficit Hyperactivity Disorder, vol.362, pp.1699-1707, 2003.

S. G. Walling, A. M. Robert, J. S. Brown, A. G. Milway, C. W. Earle et al., Selective Tuning of Hippocampal Oscillations by Phasic Locus Coeruleus Activation in Awake Male Rats, vol.21, pp.1250-62, 2011.

C. Wardak, G. Ibos, J. Duhamel, E. Et, and . Olivier, Contribution of the Monkey Frontal Eye Field to Covert Visual Attention, vol.26, p.35, 2006.

R. A. Yeo, D. Hill, R. Campbell, J. Vigil, and W. M. Brooks, Developmental Instability and Working Memory Ability in Children: A Magnetic Resonance Spectroscopy Investigation, vol.17, pp.143-59, 2000.

A. F. Arnsten, Modulation of prefrontal cortical-striatal circuits: relevance to therapeutic treatments for Tourette syndrome and attention-deficit hyperactivity disorder, Adv. Neurol, vol.85, pp.333-341, 2001.

A. F. Arnsten and S. R. Pliszka, Catecholamine influences on prefrontal cortical function: relevance to treatment of attention deficit/hyperactivity disorder and related disorders, Pharmacol. Biochem. Behav, vol.99, pp.211-216, 2011.

G. Aston-jones and F. E. Bloom, Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle, J. Neurosci. Off. J. Soc. Neurosci, vol.1, pp.876-886, 1981.

G. Aston-jones and J. D. Cohen, Adaptive gain and the role of the locus coeruleusnorepinephrine system in optimal performance, J. Comp. Neurol, vol.493, pp.99-110, 2005.

C. W. Berridge, J. S. Shumsky, M. E. Andrzejewski, J. A. Mcgaughy, R. C. Spencer et al., Differential sensitivity to psychostimulants across prefrontal cognitive tasks: differential involvement of noradrenergic ? -and ? -receptors, Biol. Psychiatry, vol.71, pp.467-473, 2012.

S. Bouret and S. J. Sara, Network reset: a simplified overarching theory of locus coeruleus noradrenaline function, Trends Neurosci, vol.28, pp.574-582, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00088131

N. A. Busch and R. Vanrullen, Spontaneous EEG oscillations reveal periodic sampling of visual attention, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.16048-16053, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00532579

T. J. Buschman and E. K. Miller, Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations, Neuron, vol.63, pp.386-396, 2009.

T. J. Buschman and E. K. Miller, Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices, Science, vol.315, pp.1860-1862, 2007.

R. E. Cain, M. C. Wasserman, B. D. Waterhouse, and J. A. Mcgaughy, Atomoxetine facilitates attentional set shifting in adolescent rats, Dev. Cogn. Neurosci, vol.1, pp.552-559, 2011.

M. Carli, T. W. Robbins, J. L. Evenden, and B. J. Everitt, Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats, 1983.

, implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal, Behav. Brain Res, vol.9, pp.361-380

C. Chandrasekaran, Computational principles and models of multisensory integration, Curr. Opin. Neurobiol, vol.43, pp.25-34, 2017.

M. Corbetta, G. Patel, and G. L. Shulman, The reorienting system of the human brain: from environment to theory of mind, Neuron, vol.58, pp.306-324, 2008.

J. T. Coull, H. C. Middleton, T. W. Robbins, and B. J. Sahakian, Clonidine and diazepam have differential effects on tests of attention and learning, Psychopharmacology (Berl.), vol.120, pp.322-332, 1995.

J. T. Coull, A. C. Nobre, and C. D. Frith, The noradrenergic alpha2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting, Cereb. Cortex N. Y. N, vol.11, pp.73-84, 1991.

R. Courtemanche, N. Fujii, and A. M. Graybiel, Synchronous, focally modulated betaband oscillations characterize local field potential activity in the striatum of awake behaving monkeys, J. Neurosci. Off. J. Soc. Neurosci, vol.23, pp.11741-11752, 2003.

L. B. Ekstrom, P. R. Roelfsema, J. T. Arsenault, G. Bonmassar, and W. Vanduffel, Bottom-up dependent gating of frontal signals in early visual cortex, Science, vol.321, pp.414-417, 2008.

A. K. Engel and P. Fries, Beta-band oscillations--signalling the status quo?, Curr. Opin. Neurobiol, vol.20, pp.156-165, 2010.

A. K. Engel, P. Fries, and W. Singer, Dynamic predictions: oscillations and synchrony in top-down processing, Nat. Rev. Neurosci, vol.2, pp.704-716, 2001.

S. V. Faraone, Improving mental health care for children and adolescents: a role for prevention science. World Psychiatry Off, J. World Psychiatr. Assoc. WPA, vol.4, pp.155-156, 2005.

I. C. Fiebelkorn and S. Kastner, A Rhythmic Theory of Attention, Trends Cogn. Sci, 2018.

I. C. Fiebelkorn, M. A. Pinsk, and S. Kastner, A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention, Neuron, vol.99, pp.842-853, 2018.

N. J. Gamo, M. Wang, and A. F. Arnsten, Methylphenidate and atomoxetine enhance prefrontal function through ?2-adrenergic and dopamine D1 receptors, J. Am. Acad. Child Adolesc. Psychiatry, vol.49, pp.1011-1023, 2010.

H. Gelbard-sagiv, E. Magidov, H. Sharon, T. Hendler, and Y. Nir, Noradrenaline Modulates Visual Perception and Late Visually Evoked Activity, Curr. Biol. CB, vol.28, pp.2239-2249, 2018.

S. J. Grant and D. E. Redmond, Neuronal activity of the locus ceruleus in awake Macaca arctoides, Exp. Neurol, vol.84, pp.701-708, 1984.

C. Guedj, E. Monfardini, A. J. Reynaud, A. Farnè, M. Meunier et al., Boosting Norepinephrine Transmission Triggers Flexible Reconfiguration of Brain Networks at Rest, Cereb. Cortex N. Y. N, pp.4691-4700, 2017.

G. Ibos, J. Duhamel, and S. Ben-hamed, A functional hierarchy within the parietofrontal network in stimulus selection and attention control, J. Neurosci. Off. J. Soc. Neurosci, vol.33, pp.8359-8369, 2013.

J. R. Iversen, B. H. Repp, and A. D. Patel, Top-down control of rhythm perception modulates early auditory responses, Ann. N. Y. Acad. Sci, vol.1169, pp.58-73, 2009.

R. A. Joundi, N. Jenkinson, J. Brittain, T. Z. Aziz, and P. Brown, Driving Oscillatory Activity in the Human Cortex Enhances Motor Performance, Curr. Biol, vol.22, pp.403-407, 2012.

W. Klimesch, EEG-alpha rhythms and memory processes, Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol, vol.26, pp.319-340, 1997.

E. Lalo, T. Gilbertson, L. Doyle, V. Di-lazzaro, B. Cioni et al., Phasic increases in cortical beta activity are associated with alterations in sensory processing in the human, Exp. Brain Res, vol.177, pp.137-145, 2007.

M. D. Lapiz and D. A. Morilak, Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability, Neuroscience, vol.137, pp.1039-1049, 2006.

K. E. Mathewson, G. Gratton, M. Fabiani, D. M. Beck, and T. Ro, To See or Not to See: Prestimulus ? Phase Predicts Visual Awareness, J. Neurosci, vol.29, pp.2725-2732, 2009.

J. Mcgaughy, R. S. Ross, and H. Eichenbaum, Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting, Neuroscience, vol.153, pp.63-71, 2008.

R. L. Navarra and B. D. Waterhouse, Considering noradrenergically mediated facilitation of sensory signal processing as a component of psychostimulant-induced performance enhancement, Brain Res, 2018.

R. L. Navarra and B. D. Waterhouse, Considering noradrenergically mediated facilitation of sensory signal processing as a component of psychostimulant-induced performance enhancement, Brain Res, 2018.

L. A. Newman, J. Darling, and J. Mcgaughy, Atomoxetine reverses attentional deficits produced by noradrenergic deafferentation of medial prefrontal cortex, Psychopharmacology (Berl.), vol.200, pp.39-50, 2008.

A. M. Ni, D. A. Ruff, J. J. Alberts, J. Symmonds, and M. R. Cohen, Learning and attention reveal a general relationship between population activity and behavior, Science, vol.359, pp.463-465, 2018.

I. Noorani and R. H. Carpenter, The LATER model of reaction time and decision, Neurosci. Biobehav. Rev, vol.64, pp.229-251, 2016.

B. Noudoost and T. Moore, CONTROL OF VISUAL CORTICAL SIGNALS BY PREFRONTAL DOPAMINE, Nature, vol.474, pp.372-375, 2011.

M. Okazaki, Y. Kaneko, M. Yumoto, and K. Arima, Perceptual change in response to a bistable picture increases neuromagnetic beta-band activities, Neurosci. Res, vol.61, pp.319-328, 2008.

A. F. Oke and R. N. Adams, Selective attention dysfunctions in adult rats neonatally treated with 6-hydoxydopamine, Pharmacol. Biochem. Behav, vol.9, pp.429-432, 1978.

S. E. Petersen and M. I. Posner, The attention system of the human brain: 20 years after, Annu. Rev. Neurosci, vol.35, pp.73-89, 2012.

M. I. Posner, Orienting of attention, Q. J. Exp. Psychol, vol.32, pp.3-25, 1980.

T. A. Rihs, C. M. Michel, and G. Thut, A bias for posterior alpha-band power suppression versus enhancement during shifting versus maintenance of spatial attention, NeuroImage, vol.44, pp.190-199, 2009.

T. W. Robbins and A. F. Arnsten, The Neuropsychopharmacology of Fronto-Executive Function: Monoaminergic Modulation Executive function: the set of processes that help to optimize performance in complex conditions requiring several components of cognitive function, 2009.

D. C. Roberts, A. P. Zis, and H. C. Fibiger, Ascending catecholamine pathways and amphetamine-induced locomotor activity: Importance of dopamine and apparent noninvolvement of norepinephrine, Brain Res, vol.93, pp.441-454, 1975.

N. Selden, T. Robbins, and B. Everitt, Enhanced behavioral conditioning to context and impaired behavioral and neuroendocrine responses to conditioned stimuli following ceruleocortical noradrenergic lesions: support for an attentional hypothesis of central noradrenergic function, J. Neurosci, vol.10, pp.531-539, 1990.

N. R. Selden, B. J. Everitt, and T. W. Robbins, Telencephalic but not diencephalic noradrenaline depletion enhances behavioural but not endocrine measures of fear conditioning to contextual stimuli, Behav. Brain Res, vol.43, pp.139-154, 1991.

E. Seu and J. D. Jentsch, Effect of acute and repeated treatment with desipramine or methylphenidate on serial reversal learning in rats, Neuropharmacology, vol.57, pp.665-672, 2009.

G. Thut, Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection, J. Neurosci, vol.26, pp.9494-9502, 2006.

F. J. Varela, A. Toro, E. R. John, and E. L. Schwartz, Perceptual framing and cortical alpha rhythm, Neuropsychologia, vol.19, pp.675-686, 1981.

C. Wardak, G. Ibos, J. Duhamel, and E. Olivier, Contribution of the monkey frontal eye field to covert visual attention, J. Neurosci. Off. J. Soc. Neurosci, vol.26, pp.4228-4235, 2006.

B. D. Waterhouse and R. L. Navarra, The locus coeruleus-norepinephrine system and sensory signal processing : A historical review and current perspectives, Brain Res, pp.1-15, 2018.

E. A. Witte and R. T. Marrocco, Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting, Psychopharmacology (Berl.), vol.132, pp.315-323, 1997.