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Résumeé

Le comportement normal d’un individu est le résultat de I’interaction entre les
neurones, appelée la corrélation du bruit, qui se déroule entre et au sein des régions cérébrales
bien identifiées. Cette corrélation joue un rdle important dans des fonctions cognitives
majeures telles que ’attention, la mémoire, la perception et la prise de décision. Plusieurs
¢tudes ont montré qu’il y a une diminution de la corrélation du bruit pendant les processus
d’apprentissage et que son augmentation est corrélée avec les échecs comportementaux. De ce
fait, comprendre comment cette corrélation est ajustée en fonction des changements du
comportement est trés important pour déterminer les processus neuronaux sous-jacents. En
effet, ces processus neuronaux sont contrdlés par les neuromodulateurs. Plusieurs maladies
neuropsychiatriques sont liées a une anomalie de régulation de ces neuromodulateurs. Par
exemple, les personnes qui soufrent d’un trouble de déficit de 1’attention avec hyperactivité
(TDAH) ont un déficit attentionnel trés handicapant de la vie quotidienne. Ce déficit
attentionnel est atténué¢ par une augmentation sélective de la neuromodulation
noradrégergique. Cependant les mécanismes d’action des molécules utilisées, telles que la

Ritaline, un agoniste noradrénergique, sont inconnus.

L’objectif de ma these est d’étudier et de comprendre les processus neuronaux liés aux
mécanismes d’action des agonistes noradrénergiques. Plus précisément, j’ai étudié comment
les corrélations du bruit sont ajustées en fonction des changements de l’engagement
attentionnel chez des sujets sains et des sujets ayant recu une manipulation pharmacologique
de leur neuromodulation noradrénergique. Afin de réaliser mes travaux de recherche j’ai
utilisé la technique d’enregistrement élecrtophysiologique chez le primate non-humain
combiné avec des injections pharmacologiques. Mes travaux de recherche ont montrés que
cette corrélation du bruit diminue quand 1’engagement attentionnel augmente. De plus, cette
corrélation du bruit change d’une manicre rythmique dans le temps afin de s’adapter aux
changements comportementaux. Enfin, mes travaux montrent que la modulation
noradrénergique diminue ces corrélations du bruit au sein des réseaux neuronaux mimant une

mise en ceuvre des processus attentionnels.



Abstract

Optimal behavior is the result of interactions between neurons, called noise
correlation, both within and across brain areas. Noise correlations play an important role in
attention, memory, perception and decision-making. Many studies have shown that noise
correlations decrease in the process of learning and to correlate with overt behavioral
performance, higher noise correlations predicting behavioral failures. Identifying how these
neuronal interactions adjust to the ongoing behavioral demand is key to understand the
neuronal processes and computations underlying optimal behavior. Optimizing these neuronal
processes depends on tightly controlled activity in brainstem neurons that release
neuromodulators at their target sites. Understanding the link between neuromodulation and
the variation in noise correlation within distance brain regions would help to describe the

mechanisms by which neuromodulators exerts their functional effects.

My thesis aims to investigate how noise correlations are adjusted to cognitive and task
engagement both in healthy brain state and after the targeting of the attentional function by
systemic noradrenergic modulation. To do so, I combined pharmacology, behavioral and
electrophysiology in non-human primate. Overall, we show that within the prefrontal node of
the attentional parieto-frontal network, noise correlations decrease across tasks as cognitive
engagement and task demands increase and that noradrenergic modulation further decreases

noise correlations mimicking attentional orientation effects.



Mots Cles

Attention
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Abbreviations

ATX Atomexitine

ADHD Attention Deficit Hyperactivity Disorder
FEF Frontal Eye Fields

fMRI Functional Magnetic Resonance Imaging
LIP Lateral IntraParietal area

LFP Local field potential

MUA MultiUnit Activity

NE Norepinephrine

SUA SingleUnit Activity
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Attention flexibly selects visual information

during goal-directed behaviors

Di Bello F., Ben Hadj Hassen S., Ben Hamed S.

Abstract: Immersed in a permanent flow of stimulations, the avoiding of distracting information is critical to
accomplishing daily tasks. In order to guide the selection of relevant visual information and the exclusion of
irrelevant and distracting stimuli, attention implements two mechanisms. Individuals can proactively prioritize
some aspect of relevant stimuli, such that the processing of attended objects result enhanced at the expense of
distracting information. However, more often it happens that salient but irrelevant stimuli succeeded in capturing
attention, and the subsequent visual processing has to be reactively suppressed. Spatial attention has been often
described as a spotlight that includes a focal point in which visual processing results maximized. Despite the
great amount of investigations, we still have very vague indication regarding the functionality of the attentional
spotlight in stimuli selection. Although the exact mechanisms of distractor rejection are still to be discovered,
researchers agree that prefrontal cortex is responsible for filtering task-irrelevant information and controlling
distractor suppression. In this work, we provided to two monkeys a 100% validity cued detection task in which
one of two distractor typologies could be presented on half of trials, while decoding spatial attention exploiting
intracranial recording in left and right FEFs. After reproducing the detection benefit induced by attentional
orienting, we provided neural evidences that proactive and reactive distractor rejection mechanisms can be both
implemented throughout detection tasks, depending on situational factors like distractor location and orienting of
attention. In the present study, we validate the decoding procedure as a reliable tool to accede to the actual
attentional spotlight by showing that selectivity is implemented flexibly according to internal and external
contingencies.

Specific network states underlying correct detection in Prefrontal cortex
Di Bello F., Ben Hadj Hassen S., Amengual J., Ben Hamed S.

Abstract: Visual attention improves perception for attended locations. Neurons in prefrontal cortex show both
attention-related enhancements in firing rates to visual targets, and strong activity associated with perceived
stimuli. Given the complex tuning that characterized cells of this brain area, coherent and testable neural
mechanisms can be fully disclosed only at the level of the population. Dimensionality reduction methods
produce low-dimensional representations of high-dimensional data, that has been proved to produce
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representations able to highlight features of interest in the data. To characterize attentional fluctuations and
determine how these are associated with stimuli detection, we explored the low-dimensional trajectories
generated by the neural population recorded in the left and right FEFs of awake monkeys trained to detect
stimulus presence. Although the neural network reproduces the decoded attentional orienting irrespectively from
trial categories, we found that correct detections present specific characteristics. For instance, the pre-target
period result more stable and characterized by a distinct state, linearly separable to detection failures. Overall,
our results indicate that correct detections are characterized by a specific configuration of the network in
prefrontal cortex.

The prefrontal attentional spotlight continuously explores space at an Alpha rhythm

Prefrontal attentional saccades explore space at an alpha rhythm

Reconciling the attentional spotlight and attentional rhythmic sampling of space

Gaillard C., Ben Hadj Hassen S., Di Bello F., Bihan-Poudec Y., VanRullen R., Ben Hamed S

Abstract: Recent behavioral studies suggest that attention samples space rhythmically (Landau and Fries,
2012, Kastner et al., 2013; VanRullen et al., 2013, Dugué et al., 2016). Oscillations in brain activity have been
described as a possible mechanism supporting attentional processes. However, the precise mechanism through
which this rhythmic exploration of space is subserved remains unknown. In a previous study (Astrand et al.,
2016), we applied machine learning methods to ongoing monkey prefrontal multi-unit population activity, to
decode, in real-time, the (x,y) location of the attentional spotlight. Here, we further demonstrate that the overall
decoded spatial attention information that can be extracted from population multi-unit activity oscillates at a 7-
12Hz rates. These oscillations in attentional information account for stimulus encoding. On trials in which the
target is correctly detected, how much information about the target is available in the neuronal population
oscillates at the same frequency as attentional information. The same is true for the encoding of the distractor on
false alarm trials, in which the distractor is mistaken for a target. Oscillations in the decoded attentional spotlight
also account for variations in overt behavior, whether hit rates in response to a target or false alarm rates in
response to a distractor. Importantly, these oscillations characterize displacements of the decoded attentional
spotlight. While these oscillations are task-independent, we demonstrate that how space is explored by the
decoded attentional spotlight is task specific. In other words, while 7-12Hz oscillations mediate attentional
displacement, top-down control flexibly adjusts these displacements to the ongoing behavioral demands.

Decoding multiplexed attention, temporal expectation and response preparation

information from the prefrontal cortex

Gaillard C., Ben Hadj Hassen S., Di Bello F., Astrand E., Ben Hamed S

Abstract: The frontal eye fields (FEF) plays a key role in top-down attentional control (Ibos, et al. 2013). In a
recent study, we estimate in real-time the (X,y) position of covert spatial attention, i.e. the position of the
attentional spotlight, using classification methods applied to the ongoing monkey FEF multi-unit activity
(Astrand et al., 2016). However, like in other prefrontal cortical areas, information in the FEF is highly
multiplexed both at the single cell level and at the population level. As a result, identifying the information that
is multiplexed with spatial attention information, thus explaining part of the unaccounted for neuronal response
variability, is expected to notably improve our estimation of attentional locus position. In the present study, we
consider three multiplexed variables that are expected to contribute to FEF activity: 1) temporal expectation, 2)
response preparation and 3) intra-trial attention attentional oscillations. These variables are modeled and
implemented in our attention decoding algorithm. Confirming our working hypothesis, we show that taking into
account these variables notably improves our access to the attentional informational content of neuronal activity
in this prefrontal region.
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Real-time decoding of covert attentional spotlight from monkey prefrontal local field
potentials

De Sousa Ferreira C., Gaillard C., Loriette C., Ben Hadj Hassen S., Di Bello F., Ben Hamed S.

Abstract: The ability to access brain information in real-time is important both for a better understanding of
cognitive functions and for the development of therapeutic applications based on brain-machine interfaces. Great
success has been achieved in the field of neural prosthesis. Progress is still needed in decoding higher-order
cognitive processes such as covert attention. Recently, we showed that we can access the position of the covert
attentional spotlight in real-time using classification methods on frontal eye fields multi-unit activity (MUA) in
the non-human primate (Astrand et al., 2016). Importantly, we demonstrated that the (x,y) decoded covert
attentional spotlight parametrically correlates with the behavioural perceptual responses of the monkeys thus
validating our decoding of covert attention. To extend our findings and get closer to non-invasive techniques, we
here replicate our previous work using local field potentials (LFP) signals collected during a cued spatial target
detection task. Specifically, we evaluate the performance of major machine learning methods at extracting the
covert attentional spotlight both from the overall LFP frequency content, and from specific functional frequency
bands. We further quantify how much this extracted information (whether a discrete attentional locus or a
continuous (X,y) attentional locus) correlates with overt behaviour. These results are compared to our previous
MUA decoding results. Overall, this study confirms that the covert attention spotlight can be accessed from LFP
frequency content, in real-time, and can be used to drive high-information content cognitive brain machine
interfaces for the development of new therapeutic strategies.
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Project summary

Attention is the process that enables us to select the most relevant information that is
captured by our senses for further processing, while setting aside the remaining information.
It is a complex, multi-faceted function. However, in certain pathological conditions,
dysfunctions of attentional processes lead to dramatic impairments. For example, children,
adolescents, and adults suffering from ADHD (attention deficit hyperactivity disorder, a
developmental syndrome), have great difficulty in maintaining their concentration on a task
long enough to perform it properly. Their deficit is thus most marked in the time domain of
attention. This attention deficit can potentially be alleviated by selectively increasing
noradrenergic neuromodulation. However, to date, the specific neuronal mechanisms of
action by which noradrenergic agonists exert their therapeutical effects remain unknown, and
the neural bases of their behavioral effects still need to be described. How does
norepinephrine boost up attention? Does it always work? My thesis project will explore the
behavioral determinants and neural bases of the attention boosting effects of enhanced
noradrenergic neurodomulation. The frontal eye field FEF is a cortical area which has been
shown to be at the source of spatial attention top-down control (Buschman et Miller 2007,
Wardak et al. 2006; Ibos et al., 2013; Ekstrom et al. 2009). On the other hand several studies
have demonstrated that functional neuronal correlations between pairs of neurons, otherwise
known as noise correlations, play an important role in perception and decision-making (Ts’o,
Gilbert, et Wiesel 1986; Engel et al. 1991; Ahissar et al. 1992; Zohary, Shadlen, et Newsome
1994; Vaadia et al. 1995; Narayanan et Laubach 2006; Cohen et al. 2010; Poulet et Petersen
2008; Stark et al. 2008).

In the first part of my project I will review the current understanding of the role and
contribution of these neuronal noise correlations to neuronal and cognitive processes
(Chapter I). I will then investigate, in non-human primates, the contribution of noradrenergic
modulation to local, short-range and long-range neural processes underlying normal attention
and by studying the link between interneuronal noise correlation in FEF and attentional
processes (Chapter IT). The second part of my project, I will review the physiological and
behavioral data describing the LC-NE system as a major source of NE then I described the
implication of NE in attention and the models proposed for LC-NE activity and (Chapter

III). I will then present a behavioral study investigating the effect of systemic injection of
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atomexetine (ATX), a neroepinephrine (NE) reuptake inhibitor, on attentional processes
(ChapterlV), on which I have collaborated. The third part of my project is an investigation of
ATX effects on prefrontal neuronal processes during active behavioral tasks, by recording the

neuronal activity from the FEF areas after systemic injection of ATX (ChapterV).
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Determinants and function of shared neuronal noise variability

In our daily life, our brain is confronted to many stimuli at the same time. A major
endeavor of modern neurosciences is to understand how the brain encodes this information
and then decodes it and reads it out in order to guide behavior optimally. However, the
response of a given neuron to the exact same stimulus varies from one presentation to the
next. In other words, the spiking rate of the neurons is not deterministic. This also applies to
the baseline response of the neurons which fluctuates in time and across trials. In this context,
understanding how neurons communicate between each other turns out to be crucial. Indeed,
baseline response fluctuations as well as response neuronal variability are thought to be
shared among neurons and are often referred to as noise correlations. These noise
correlations express the amount of co-variability, in the trial-to-trial fluctuations of
responses pairs of neurons, to repeated presentations of identical stimuli, or under identical

behavioral conditions.

Noise correlation have received a lot of attention and have been measured in a variety of
brains areas, and under a variety of behavioral and stimulus conditions. They appear to have a
profound impact on cortical signal processing as well as onto behavioral performance (Abbott
and Dayan, 1999; Averbeck et al., 2006; Kanitscheider et al., 2015, 2015; Moreno-Bote et al.,
2014; Sompolinsky et al., 2001). Recent populational approaches show that while several
repetitions of the same stimulus elicit different responses, an accurate representation of the
stimulus is obtained by considering the shared response between all neurons (Averbeck et al.,
2006; Shadlen and Newsome, 1998; Tolhurst et al., 1983). Relevant to the present review, the
accuracy of such population codes strongly depends on neuronal correlations, sometimes
deteriorating populational information (Abbott and Dayan, 1999; Averbeck et al., 2006;
Sompolinsky et al., 2001; Zohary et al., 1994) and other times improving it (Froudarakis et
al., 2014). It has also been proposed that noise correlations provide important information
about how the brain adjusts, how it codes and decode sensory stimuli, as a function of the
behavioral context or the stimulus being processed (Ahissar et al., 1992; Cohen and
Newsome, 2008a; Gutnisky and Dragoi, 2008; Kohn and Smith, 2005; Poulet and Petersen,
2008; Vaadia et al., 1995). As a result, several groups have been interested in characterizing
the possible sources of noise correlations, ranging from the internal dynamics of cortical

systems (Ben-Yishai et al., 1995, p.; Ly et al., 2012), the global fluctuations in the excitability
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of cortical circuits (Arieli et al., 1996; Scholvinck et al., 2015) or the shared functional
connectivity across cortical regions (Shadlen and Newsome, 1998). The prevailing hypothesis
is that noise correlations result from random shared fluctuations in the pre-synaptic activity of
cortical neurons (Bair et al., 2001; Bryant et al., 1973; Shadlen and Newsome, 1998; Zohary
et al., 1994). It is however important to note that these different hypotheses on the functional
origins of noise correlations are non-exclusive and possibly reflect the different facets of a
same functional mechanism. Importantly, all of these hypotheses imply a functional and
behavioral role of noise correlations as well as a dependence of noise correlations onto global

physiological states.

In this chapter, we will first provide an operational definition of noise correlations, and
we will review the extent to which noise correlations vary as a function of such parameters as
neuronal distance, cortical layer, neuronal selectivity and cortical area. We will then discuss

the dependence of noise correlation, on cognitive processes within global and local network.

L Low level structural and functional determinants of

shared neuronal variability

1. Good practice when computing noise correlation statistics

How noise correlations are measured vary from one study to the other. Cohen and
Kohn, (2011) have offered guidelines for interpreting noise correlation and the best way to
evaluate the effects of noise correlations onto cortical processing. Most studies compute noise
correlation on the evoked response to a sensory stimulus over multiple presentations (Aertsen
et al., 1989; Ahissar et al., 1992; Bair et al., 2001; Constantinidis and Goldman-Rakic, 2002a;
Espinosa and Gerstein, 1988; Kohn and Smith, 2005). However, some studies have computed
noise correlations during attention processes, ranging from spatial attention (Astrand et al.,
2016; Cohen and Maunsell, 2009a), spatial memory (Meyers et al., 2012) or cognitive
engagement (Section II of present Chapter I ).

Noise correlations represent shared neuronal variability. This variability can be
computed across single well identified neurons (SUA, Bair et al., 2001; Bedenbaugh and
Gerstein, 1997; Constantinidis and Goldman-Rakic, 2002; Kohn and Smith, 2005;
Rosenbaum et al.,, 2010). In this context, spike sorting conventions could affect noise
correlation values and systematically bias their estimates. Alternatively, this variability can be

computed across multi-unit activity (MUA) at distinct recording sites (Cohen and Maunsell,
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2009a; Scholvinck et al., 2015; Stark et al., 2008; Womelsdorf et al., 2007). This affects both
the amplitude of reported noise correlations as well as their range of fluctuations, these being
expectedly higher when computed on MUA rather than on SUA. However, this does not

affect the qualitative observations relative to noise correlations (Cohen and Kohn, 2011).

Noise correlations can be calculated on different time intervals. Most studies use time
intervals ranging between 200ms and 3000ms. Short time intervals will be corrupted by the
spiking variability of individual signals. Longer time intervals will blur dynamic changes in

noise correlations (Section I11 of present Chapter I).

From a statistical point of view, several methods can be used to assess these
correlations (e.g. Pearson, Spearman). The most ubiquitous method is the Pearson correlation
coefficient of spike counts between pair of neurons to repeated presentations of identical
stimulus or behavioral conditions. Because this measure can be affected by overall neuronal
response strength (Astrand et al., 2016; Cohen and Maunsell, 2009a), it is of good practice,
when comparing noise correlations between two different conditions, to compute these noise

correlations on z-scored neuronal responses (Cohen and Kohn, 2011).

Reported ranges of noise correlations vary from one study to the other, but correlations
are typically small and positive. As discussed above, these values depend on the considered
time interval, on whether they are computed onto MUA or SUA, on whether they are during
at sensory or during cognitive processing, as well as on overall response amplitude. Reported
noise correlations varies between 0.01 (Averbeck et al., 2006; Averbeck and Lee, 2003;
Cohen and Maunsell, 2009a; Ecker et al., 2010a; Herrero et al., 2013; Mitchell et al., 2009;
Nevet et al., 2007; Smith and Sommer, 2013) up to 0.4 (Astrand et al., 2016; Bair et al., 2001;
Cohen and Newsome, 2008a; Gawne et al., 1996; Gawne and Richmond, 1993; Gutnisky and
Dragoi, 2008; Hansen et al., 2012; Herrero et al., 2013; Kohn and Smith, 2005; Smith and
Kohn, 2008; Zohary et al., 1994)

Last, noise correlations also depend on structural and functional aspects of cortical
organization. This touches onto the functional role of noise correlations and will be discussed

below.
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2. Noise correlations and population information

When a given stimulus is encoded in large populations of neurons, the problem of the trial to
trial response variability can easily be resolved by averaging. However, the efficiency of
averaging depends on the pattern of noise correlation across neurons (Moreno-Bote et al.,
2014). In this context theoretical studies have shown that the information capacity of a
population code depends on the correlated noise among neurons (Abbott and Dayan, 1999;
Averbeck et al., 2006; Sompolinsky et al., 2001; Tremblay et al., 2015). Noise correlations
can either increase or decrease the encoded information as compared to an uncorrelated
population, depending on the relationship between noise correlations and signal correlations

(Snippe and Koenderink, 1992) as well as the cortical distance between the neurons
(Froudarakis et al., 2014). Theoretical work suggests that, depending on the structure of the
correlations in the neural population, information can either saturate as the number of neurons
increases (Sompolinsky et al., 2001; Zohary et al., 1994) or information can grow together
with the number of neurons in a population increases (Abbott and Dayan, 1999; Shamir and
Sompolinsky, 2004; Wilke and Eurich, 2001). This is still a matter of discussion and recent
studies suggest that the variables that mediate the impact of noise correlation on coding are

complex (Ecker et al., 2011a; Kanitscheider et al., 2015; Moreno-Bote et al., 2014).

3. Structural determinants of shared neuronal variability

a.  Cortical distance effects. Noise correlations reflect co-fluctuations within
neuronal networks. As it’s calculated between pairs of neurons, and as inter-neuronal
distance is a key determinant of the strength of coupling between neurons (Dombeck et al.,
2009; Kerr et al., 2007), it’s important to investigate how distance between neurons affects
noise correlation. Whatever the type of electrodes used during recordings, distance between
two neurons is relative to the distance between the contacts on which neurons pairs are
recorded. Recorded pairs could be located in the same hemisphere (intra-hemispheric noise
correlation) or in opposite hemispheres (inter-hemispheric noise correlation). Most studies
have investigated intra-hemispheric noise correlations because pairs recorded from opposite
hemispheres have very low correlation (Cohen and Maunsell, 2009a). Several studies have
demonstrated that, for non-human primates, distance between pairs of neurons affect noise
correlation value. They tend to be highest for pairs of neurons that are closest to each other
(Constantinidis and Goldman-Rakic, 2002a; Lee et al., 1998a; Smith and Sommer, 2013).
This generalizes in other species including mice (Komiyama et al., 2010). Importantly, noise

correlations are not limited to local populations but persist even between neurons separated
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as much as 10 mm in cortex (Nauhaus et al., 2009; Smith and Kohn, 2008). Variations in
noise correlations as a function of distance in the prefrontal cortex is further explored in
Chapter II of the present document. Overall, inter-neuronal distance is thus a key structural

determinant of the strength of coupling between neurons.

b.  Cortical layer. The spiking activity of neurons is determined by the inputs
(excitatory or inhibitory) they receive from other neurons in their local network. As a result,
one would expect that differences in the source and strength of inputs to neurons in different
cortical layers would impact the degree of correlation in noise. Usually, multilaminar
electrode is used to record neurons across cortical depth (Figurel.A) (Hansen et al., 2012).
Briefly, cortical layers can be subdivided as follows; granular layer, where neurons receive
geniculate input, and in which the spatial spread of connections is small (Adesnik and
Scanziani, 2010; Briggs and Callaway, 2005); supragranular layer, where neurons receive
recurrent input from large cortical distances (up to several mm) via long-range horizontal
circuitry (Bosking et al., 1997; Gilbert and Wiesel, 1983; Karube and Kisvarday, 2011; Ts’o
et al., 1986); and infragranular layer, where neurons receive short-range recurrent input the
other cortical areas and project onto other cortical regions through feedback connections
(Bosking et al., 1997; Gilbert and Wiesel, 1983; Karube and Kisvarday, 2011; Ts’o et al.,
1986). Due to these structural differences, the strength of noise correlations between pairs
of cells are expected to vary in a laminar depend manner. Part of this effect is expected to be
accounted for by sheer inter-neuronal distance effects. However, one also expects an
additional source of inter-layer difference in noise correlations to arise from the functional
nature of the long-range and short-range inputs. As a result, one expects an important
difference in layer effects onto noise correlations between cortical regions (e.g. primary

sensory cortices vs. associative cortices).

Very few studies have actually investigated the effect of neuron layer localization onto
noise correlations. Buffalo et al. (2011) compared noise correlations between pairs of neurons
localized in either V1 deep or superficial layers, and didn’t find any significant difference in
noise correlations across layers. In contrast, Hansen et al. (2012, figure 1.B) show that
neuronal noise correlations in the granular layer of V1 are an order of magnitude weaker than
neuronal noise correlations in the supragranular layers. In V4, attention decrease variability in

superficial layers while it decreases it in the input layer (Nandy et al., 2017). Variations in
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noise correlations as a function of cortical layer in the prefrontal cortex is further explored in

Chapter II of the present document.
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Figurel. (A) Multicontact laminar electrodes used to record neuronal activity across cortical
depth. (B) Each scatter plot represents the 7 score—transformed responses for three example pairs of
cells recorded simultaneously in supragranular , granular, or infragranular layers during the
presentation of a particular stimulus orientation (columns: 0° 45°, 90° and 135°). The trend line
represents the linear regression fit for each pair of cells; tsc for each layer represents the Pearson
correlation coefficient extracted from all eight stimulus orientations. Adapted from (Hansen et al.,
2012)

c. Functional selectivity. Neurons sharing functional selectivity (e.g. coding the
same sensory modality, coding the same spatial location, coding the same motor output or
function etc.), have a stronger coupling than neurons with distinct functional selectivities
(Kohn and Smith, 2005; Shadlen and Newsome, 1998; Zohary et al., 1994). Functional
selectivity is thus expected to affect noise correlation levels. It has been shown that while
correlated variability strongly influences population coding, whether noise correlations are
detrimental or beneficial depend on the functional selectivity of the neuronal pairs ( Figure
2.A), Kanitscheider et al., 2015). This includes the orientation tuning similarity of the
neuronal pair (Averbeck and Lee, 2006; Shadlen and Newsome, 1998; Zohary et al., 1994) as
well as their spatial selectivity (Figure2.B) (Cohen and Maunsell, 2009a; Constantinidis et al.,

2001; Constantinidis and Goldman-Rakic, 2002a; Ferster and Miller, 2000; Huang and
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Lisberger, 2009; Seri¢s et al., 2004). For example, noise correlations in V1 are higher
amongst neurons with similar spatial tuning (Constantinidis et al., 2001; (Constantinidis and
Goldman-Rakic, 2002a); Smith et Kohn 2008a). Likewise, noise correlations in the parietal
cortex are shown to be strongest for similarly spatially tuned neurons and weakest between
cells with opposite preferences (Smith et Kohn 2008; Cohen et Maunsell 2009a). Thanks to
attention, the important stimulus is selected to prioritize the processing of relevant over

irrelevant information.
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Figure2. Noise correlations as a function of spatial selectivity. (A) Average pairwise noise
correlations in the network (V1) are positive and decay with the difference in preferred orientation.
Adapted from (Kanitscheider et al., 2015). (B) Noise correlation is plotted as a function of tuning
difference in prefrontal cortex. Adapted from (Constantinidis and Goldman-Rakic, 2002a).

Il. Functional changes in noise correlations

1. Sleep and wake states. The brain’s internal dynamics and responsiveness to
external stimuli vary widely across different behavioral contexts. Internal brain state can
fluctuate even in the absence of overt behavioral changes. The most notable transitions are the
well-characterized sleep/wake transition and the transitions within the different stages of sleep
(Alexander S. Ecker et al., 2014; Greenberg et al., 2008). Noise correlations are generally
lower during desynchronized states of wakefulness than during synchronized states of sleep
(Alexander S. Ecker et al., 2014; Ecker et al., 2010a; Renart et al., 2010).

2. Wake states. Further, changes in arousal and neuronal excitability modulate the
level of correlated variability in sensory cortex (Alexander S. Ecker et al., 2014; Ecker et al.,
2010a; Goris et al., 2014) . Recent work in the mouse suggests that the overall level of noise
correlations varies across different wakeful brain states (Gentet et al., 2010; Poulet and
Petersen, 2008; Reimer et al., 2014; Vinck et al., 2015). Last, in monkeys, higher noise

correlations are shown to correlate with more behavioral errors, possibly suggesting
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fluctuations in on-task behavioral states (Astrand et al., 2016). These effects are much
stronger than the classical attention effects described below. This is further discussed in
Chapter 3 of the present document.

3. Anesthesia. Many commonly used anesthetics, such as isoflurane, urethane,
and ketamine, substantially alter neural activity by suppressing sensory responses and
increasing response latencies (Drummond, 2000; Kohn et al., 2009) as well as inducing so-
called up and down states (Harris and Thiele, 2011; Renart et al., 2010). Opioids, such as
fentanyl or sufentanil (Kohn and Smith, 2005; Reich, 2001; Smith and Kohn, 2008) have less
dramatic effects onto neural activity (Constantinople and Bruno, 2011; Drummond, 2000),
though they still do affect neural response properties (Schwender et al., 1993) and induce low-
frequency oscillations (Bowdle and Ward, 1989). Ecker et al. (2014) show that spontaneous
transitions in network state under anesthesia induce noise correlation between neurons. These
transitions are absent in awake, fixating monkeys. This indicates a clear qualitative difference
between the awake and the anesthetized states, this despite similar firing rates. The precise
neuronal mechanisms through which anesthesia affect neuronal shared variability is still
unknown.

4. Perceptual learning. It has been shown previously that learning induces
changes in the response magnitude and selectivity of individual neurons (Dragoi et al., 2002;
Muller, 1999; Sharpee et al., 2006). It’s also usually assumed that both learning processes and
faster adaptation processes are mediated by lasting changes in synaptic efficacies, a
phenomenon known as synaptic plasticity. Understanding how learning influences population
coding requires understanding how correlation between neurons is affected by this
phenomenon. Many studies have been interested in studying the variation of noise
correlations during learning (Cohen and Maunsell, 2009a; Gu et al., 2011; Mitchell et al.,
2009; Ni et al., 2018). Theoretical studies suggest that learning or adaptation should reduce
neuronal correlations and hence increase available neuronal population information (Reich,
2001; Schneidman et al., 2003). In an early experimental study, Ahissar et al. ( 1992) have
studied how noise correlations are affected by synaptic plasticity. They found that changes in
noise correlations between neurons are often necessary, but not sufficient, for cortical
plasticity to take place. Interestingly, Gutnisky et Dragoi (2008) have found that brief
adaptation to a stimulus of fixed structure reorganizes the distribution of neuronal correlations
across the entire network in V1 by selectively reducing their mean and variability. This

contrasts with the finding that, in mice motor cortex, there is an increase of temporal
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correlation with learning, specifically among neuron pairs of the same response type
(Komiyama et al., 2010).

From a more general behavioral perspective, Gu et al. (2011) show (Figure3) that
correlated neuronal noise is significantly higher in untrained animals versus trained animals.
More recently, Ni et al. (2018) describe that unlike in V1, there is a robust relationship
between correlated variability and perceptual performance in V4. They suggest that learning-
related changes in average noise correlations are linked to performance and to optimal readout
of visual information by the neuronal population (Ni et al., 2018). These two studies thus

bridge the gap between the above described neuronal mechanisms and overt behavior.
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Figure3. Training effects on behavior and interneuronal correlations. (A) Distributions of
noise correlations for ‘naive’ (top, n=38) and ‘trained’ (bottom, n=89) animals. Black bars indicate
T'noise Values that are significantly different from zero. Arrows: population means. (B) Average (+ sem)
time course of noise correlations in ‘trained’ (red, n=89) and ‘naive’ animals (blue, n=38). Adapted
from (Gu et al., 2011).

5. Attention. Attention is a functional process that enables subjects to select
relevant information for the ongoing behavior and improve her/his ability to detect and
discriminate the features of incoming sensory stimuli. This sensory improvement is
accompanied by an increase in the mean firing rates of neurons driven by the attended
stimulus as well as with a decrease in the mean firing rate of neurons driven by irrelevant
stimuli (for review, see (Reynolds and Chelazzi, 2004). Most studies have investigated how
attention affect noise correlations when attention is spatially focused in the responses fields of
the neurons. Globally, attention decreases noise correlations (Cohen and Maunsell, 2011,
2009b; Herrero et al., 2013; Mitchell et al., 2009; Nandy et al., 2017). Attention reduction in
noise correlations in V4 is proposed to account for benefit decision making in other parts of

the brain and at the behavioral level (Cohen and Maunsell, 2009b; Mitchell et al., 2009). If

26



this is the case, on would expect this reduction to be localized to the output layer of V4.
However, a recent study reports that attention significantly reduces noise correlations in the
V4 input layers. The authors propose that this superficial deccorrelation in V4 neurons is an
active mechanism that serves to remove correlations from the inputs received from the earlier
visual cortices (Nandy et al., 2017).

Neuronal decorrelation by attention may not be systematic but dependent onto
stimulus input. Indeed, Poort and Roelfsema ( 2009) report, in V1, no effect of attention on
noise correlations specifically when noise correlations are shown to have no effect on the
sensitivity of the population of V1, in other words, when population information is maximal.
In the same lines, Ni et al. (2018) show a robust relationship between noise correlations and
the subjects’ performance on an attentional task. Specifically, their attention-related changes
in average noise correlations closely linked to overt behavioral performance. Importantly, this
correlation between noise correlation changes and overt performance was weaker if the
monkeys read out visual information optimally. This suggests a coupling between sensory
processing and subsequent noise correlations changes for optimal cognitive processing.

The studies mentioned above, have only dealt with the spatial orientation of attention
for the detection of one sensory stimulus. An important question is how noise correlations are
affected by attention during the dynamic change of sensory stimuli. Downer et al. (2017)
demonstrate that, in primary auditory cortex Al, attention effects on noise correlations do not
depend only on population tuning to the relevant stimulus but also onto the tuning to the
distractor feature, indicating that noise correlations reflect global sensory input processing
rather than segregated input processing.

The function of attention networks depends onto controlled activity of neurons that
release neuromodulators at their target sites. Herrero et al. (2008) report that attention-induced
firing rate modulations of V1 neurons depend on cholinergic mechanisms. However, more
specifically to noise correlations, they highlight a role of NMDA receptors in V1 noise
correlation regulation ( Herrero et al. 2013). Unfortunately, a comprehensive role of
neuromodulation in changes in neuronal response variance and noise correlations under
spatial attention processes is still missing. This will be further discussed in chapter 4 of the
present document.

6. Task effects. In awake animal spontaneous cortical activity switches between
discrete synchronized and desynchronized states (Engel et al., 2016). During the
synchronized states neuronal pairwise correlations are positive and the population rate has a

large variance, which is indicative of coordinated global fluctuations. In the desynchronized
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states, the variance of neuronal population responses is small and the spontaneous fluctuations
are weaker (Bair et al., 2001; Kohn and Smith, 2005; Smith and Kohn, 2008; Thiele and
Hoffmann, 2008; Zohary et al., 1994). The variations in fluctuation strength partially
correlates with ongoing behavior, such as whisking and locomotion (Crochet and Petersen,
2006; Ferezou et al., 2007). In words, the de-synchronization is limited to neuronal population
that represents the ongoing relevant functions (e.g. attended stimulus) while neurons that are
not engaged in the ongoing computations (e.g. non-attended information) are in a more
synchronized state. As a result, one would expect a continuous adjustment in noise

fluctuations as a function of the ongoing behavior.

Generally speaking, producing optimal behaviors in regard to external and internal
demands, requires an adaptive cognitive control system for selecting relevant information,
and for organizing and optimizing processing pathways. Given the above described
relationship between shared interneuronal variability and noise correlations and optimal
behavior, one expects important changes in noise correlations during adaptive cognitive
control and this at multiple time-scales. This will be addressed in chapter 3 of the present

document.

II1. Bridging the gap between local and global

desynchronization processes

During decorrelated cortical states (low noise correlations), the number of neurons necessary
to achieve highly accurate network performance is thought to be reduced (Abbott and Dayan,
1999; Ecker et al., 2010a; Shadlen and Newsome, 1998). An important question is to identify
the global network measure that coincides with the changes in shared neuronal variability. A
possible correlate of these changes in interneuronal shared variability is global cortical

network changes in functional connectivity.

Resting-state global functional co-activation patterns. In the absence of any task and
any stimulation, brain activity can be characterized by a specific pattern of cortical co-
activation pattern, known as a resting-state functional signature. Spontaneous brain activity
during this rest state is highly structured into characteristic spatiotemporal patterns (resting-
state networks or RSNs, (Fox et al., 2007, 2006; Greicius et al., 2003; Vincent et al., 2007).

Analyzing the patterns of co-activation of these spontaneous brain activities reveal a set of
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organized cortical network, whose activity are ongoing during rest and suspended during the
performance of externally cued tasks. This supports the idea of a default mode of brain
functions (Raichle, 2015). Specifically, the resting state networks that are not associated with
sensory or motor regions have been thought of as a default-mode network, including medial
prefrontal, parietal, posterior and anterior cingulate cortices (Greicius et al., 2003). Similar
networks are identified in humans and monkeys during deep anesthesia, suggesting that this
resting-state default-mode network organization is not only specific to human cortical
functions but also transcends levels of consciousness (Vincent et al., 2007). More recently,
resting state dynamics has been shown to be non-stationary (Allen et al., 2014), the set of
functional correlations between brain areas, the so-called functional connectivity (FC),
changing on a time scale of tens of seconds to minutes, the baseline being probably defined
by rest with eyes closed (Raichle et al., 2015).

Regardless of the technique used, the analysis of these spontaneous fluctuations
usually involves the identification of correlations between remote brain areas, commonly
referred to as functional connectivity. Biswal et al., were the first who demonstrated that there
is a resting state correlation between the activity in the primary motor cortex (M1) and other
brain regions (Biswal et al., 1995). Consequently, several studies have been interested to
identify and characterize these networks (Greicius et al., 2003). In human, these spontaneous
fluctuations were found to be temporally coherent within the neuro-anatomical system that
recapitulates the functional architecture of responses evoked by experimentally tasks (Biswal
et al., 1995; Damoiseaux et al., 2006; Fox et al., 2006; Greicius et al., 2003; Vincent et al.,
2007). Similar results were found in non-human primate (Vincent et al., 2007). These results
have been confirmed and extended to several other systems, including auditory, visual, dorsal
and ventral attention systems and language processing networks (Biswal et al., 1995; Fox et
al., 2006; Greicius et al., 2003; Hampson et al., 2002; Van de Ville et al., 2010). Correlated
fluctuations have been demonstrated between frontal and parietal areas often observed to
increase activity during task performance (Laufs et al., 2003) and within the network of
regions commonly exhibiting activity decreases during task performance (Greicius et al.,
2003; Greicius and Menon, 2004; Laufs et al., 2003). The collective result of the above
studies is that regions similarly modulated by tasks or stimuli tend to exhibit correlated
spontaneous fluctuations even in the absence of tasks or stimuli. This result holds true even at
different spatial and temporal scales, for example, in orientation columns in the visual cortex

(Kenet et al., 2003).
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1. Functional resting-state networks.

In this context, an important question is to understand the relationship between regions
with dissimilar task related functional responses. To answer this question Fox et al. (2005),
specifically checked if the task-related dichotomy between regions routinely exhibiting task-
positive responses and those routinely exhibiting task-negative responses were intrinsically
represented in the resting brain. They have shown that in resting state widely distributed
neuro-anatomical networks are organized through both correlated spontaneous fluctuations
within a network and anticorrelations between networks (Fox et al., 2005, Figure6). Within
these resting state cortical networks, a specific pattern of deactivation is described. This
pattern is often accompanied by increased cognitive demands. This pattern of deactivation is
observed within a specific set of cortical regions known as the Default Mode Network, in an
anti-correlated manner with most of other resting-state cortical networks (Greicius et al.,
2003; Raichle et al., 2001). It is proposed that these patterns of activation and deactivation
represented a shift in the balance from a focus on the subject’s internal state to the external

environment (Shulman et al., 1997).

Figured. Intrinsically defined anticorrelated processing networks in the brain. Positive
nodes are significantly correlated with seed regions involved in focused attention and working
memory (task-positive seeds) and significantly anticorrelated with seed regions routinely deactivated
during attention demanding cognitive tasks (task-negative seeds). Negative nodes are significantly
correlated with task-negative seed regions and significantly anticorrelated with task-positive seed
regions. (Left) Lateral and medial views of left hemisphere. (Center) Dorsal view. (Right) Lateral and
medial views of right hemisphere. From (Fox et al., 2005).
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2. Missing link between global co-activation patterns and local noise
correlations?

This missing link is yet unclear. Recent studies in the non-human primate show that
resting state fMRI fluctuations are controlled by arousal both as demonstrated through
behavioral modulations (Chang et al., 2016) or direct modulation of deep sub-cortical
structures such as the basal forebrain (Turchi et al., 2018) or the thalamus (Liu et al., 2018).
Importantly, these global fluctuations correlate with specific spectral shifts in local field
potentials (LFPs) toward low frequencies (Chang et al., 2016; Liu et al., 2018), thus
identifying the electrophysiological correlated of resting-state network fluctuations. A
parsimonious hypothesis would be that these resting-state network fluctuations would also
coincide with local changes in noise correlations, thus bridging the gap between microscopic
(noise correlations), mesoscopic (LFPs) and macroscopic (fMRI functional connectivity)

functional fluctuations.
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Abstract

Functional neuronal correlations between pairs of neurons are thought to play an
important role in neuronal information processing and optimal neuronal computations during
attention, perception, decision-making and learning. Here, we report dynamic changes in
prefrontal neuronal noise correlations at multiple time-scales, as a function of task
contingencies. Specifically, we record neuronal activity from the macaque frontal eye fields, a
cortical region at the source of spatial attention top-down control, while the animals are
engaged in tasks of varying cognitive demands. First, we show that noise correlations
decrease as cognitive engagement and task demands increase, both across tasks and within-
trials. Second, we demonstrate, for the first time, a rhythmic modulation of noise correlations
in the alpha and the beta frequency ranges that account both for overt behavioral performance
and for layer specific modulations in spike-field coherence. All this taken together
demonstrates a strong functional role of noise correlations in cognitive flexibility.
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1. Introduction

Optimal behavior is the result of interactions between neurons both within and across
brain areas. Identifying how these neuronal interactions flexibly adjust to the ongoing
behavioral demand is key to understand the neuronal processes and computations underlying
optimal behavior. Several studies have demonstrated that functional neuronal correlations
between pairs of neurons, otherwise known as noise correlations, play an important role in
perception and decision-making (Ts’o et al., 1986; Engel et al., 1991; Ahissar et al., 1992;
Zohary et al., 1994; Vaadia et al., 1995; Narayanan et Laubach 2006; Cohen et al., 2010;
Poulet et Petersen 2008; Stark et al., 2008). Specifically, several experimental and theoretical
studies show that noise correlations have an impact on the amount of information that can be
decoded for neuronal populations (Abbott et Dayan 1999; Zohary et al., 1994; Sompolinsky et
al. 2001; Averbeck et al., 2006) as well as on overt behavioral performance (Zohary et al.,
1994; Abbott et Dayan 1999; Sompolinsky et al., 2001; Averbeck et al., 2006; Ecker et al.,
2011; Moreno-Bote et al., 2014; Ekstrom et al., 2008). As a result, understanding how noise
correlations dynamically adjust to task demands is a key step toward clarifying how neural

circuits dynamically control information transfer, thereby optimizing behavioral performance.

Several sources of noise correlations have been proposed, arising from shared
connectivity (Shadlen and Newsome, 1998), global fluctuations in the excitability of cortical
circuits (Ecker et al. 2014; Goris et al., 2014), feedback signals (Wimmer et al., 2015) or
internal areal dynamics (Ben-Yishai et al., 1995; Litwin-Kumar et Doiron 2012; Ly et al.,
2012), or bottom-up peripheral sensory processing (Kanitscheider et al., 2015). From a
cognitive point of view, noise correlations have been shown to change as a function of spatial
attention (Cohen et Maunsell 2009), spatial memory (Meyers et al., 2012) and learning (Gu et
al., 2011; N1 et al., 2018), suggesting that they are subject both to rapid dynamic changes as

well as to longer term changes, supporting optimal neuronal computations (Ni et al., 2018).

Here, we focus onto how multiple task contingencies induce dynamic changes in
prefrontal neuronal noise correlations at multiple time-scales. Specifically, we record
neuronal activity from the macaque frontal eye fields, a cortical region which has been shown
to be at the source of spatial attention top-down control (Buschman et Miller 2007; Wardak et
al., 2006; Ibos et al., 2013; Ekstrom et al., 2008) while the animals are engaged in tasks of
varying cognitive demands, as assessed by their overt behavioral performance. Overall, we
demonstrate that noise correlations dynamically adjust to the cognitive demand, decreasing as

cognitive engagement and task demands increase. These dynamical changes take place both
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across task, as a function of task demands, and within trials, as a function of the probabilistic
structure of the task, demonstrating a top-down control over this neuronal process. We also
demonstrate, for the first time, rhythmic modulations of noise correlation in two specific
functional frequency ranges: the alpha and beta frequency ranges. Crucially, these rhythmic
modulations in noise correlations account both for overt behavioral performance and for layer
specific modulations in spike-field coherence. All this taken together demonstrates a strong
functional role of noise correlations in cognitive flexibility. These findings are discussed in
relation with previously reported functional and structural sources of variations in noise

correlation and a comprehensive model of shared population neuronal variability is proposed.

1I. Method

Ethical statement

All procedures were in compliance with the guidelines of European Community on
animal care (Directive 2010/63/UE of the European Parliament and the Council of 22
September 2010 on the protection of animals used for scientific purposes) and authorized by
the French Committee on the Ethics of Experiments in Animals (C2EA) CELYNE registered
at the national level as C2EA number 42 (protocole C2EA42-13-02-0401-01).

Surgical procedure:

As in Astrand et al. (2016), two male rhesus monkeys (Macaca mulatta) weighing
between 6-8 kg underwent a unique surgery during which they were implanted with two MRI
compatible PEEK recording chambers placed over the left and the right FEF hemispheres
respectively (figure 1a), as well as a head fixation post. Gas anesthesia was carried out using
Vet-Flurane, 0.5 — 2% (Isofluranum 100%) following an induction with Zolétil 100
(Tiletamine at 50mg/ml, 15mg/kg and Zolazepam, at 50mg/ml, 15mg/kg). Post-surgery pain
was controlled with a morphine pain-killer (Buprecare, buprenorphine at 0.3mg/ml,
0.01mg/kg), 3 injections at 6 hours interval (first injection at the beginning of the surgery) and
a full antibiotic coverage was provided with Baytril 5% (a long action large spectrum
antibiotic, Enrofloxacin 0.5mg/ml) at 2.5mg/kg, one injection during the surgery and
thereafter one each day during 10 days. A 0.6mm isomorphic anatomical MRI scan was
acquired post surgically on a 1.5T Siemens Sonata MRI scanner, while a high-contrast oil
filled grid (mesh of holes at a resolution of ImmxImm) was placed in each recording
chamber, in the same orientation as the final recording grid. This allowed a precise
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localization of the arcuate sulcus and surrounding gray matter underneath each of the
recording chambers. The FEF was defined as the anterior bank of the arcuate sulcus and we
specifically targeted those sites in which a significant visual and/or oculomotor activity was
observed during a memory guided saccade task at 10 to 15° of eccentricity from the fixation
point (figure 1A). In order to maximize task-related neuronal information at each of the 24-
contacts of the recording probes, we only recorded from sites with task-related activity

observed continuously over at least 3 mm of depth.
Behavioral task:

During a given experimental session, the monkeys were placed in front of a computer
screen (1920x1200 pixels and a refresh rate of 60 Hz) with their head fixed. Their water
intake was controlled so that their initial daily intake was covered by their performance in the
task, on a trial by trial basis. This quantity was complemented as follows. On good
performance sessions, monkeys received fruit and water complements. On bad performance
sessions, water complements were provided at a distance from the end of the session. Each
recording session consisted of random alternations of three different tasks (see below and
figure 1b), so as to control for possible time in the session or task order effects. For all tasks,
to initiate a trial, the monkeys had to hold a bar in front of the animal chair, thus interrupting
an infrared beam. (1) Fixation Task (figure 1B.1): A red fixation cross (0.7x0.7°), appeared
in the center of the screen and the monkeys were required to hold fixation during a variable
interval randomly ranging between 7000 and 9500ms, within a fixation window of 1.5x1.5°,
until the color change of the central cross. At this time, the monkeys had to release the bar
within 150-800 ms after color change. Success conditioned reward delivery. (2) Target
detection Task (figure 1B.2): A red fixation cross (0.7x0.7°), appeared in the center of the
screen and the monkeys were required to hold fixation during a variable interval ranging
between 1300 and 3400 ms, within a fixation window of 1.5x1.5°, until a green squared target
(0.28x0.28°) was presented for 100 ms in one of four possible positions ((10°,10°), (-10°,10°),
(-10°,-10°) and (10°,-10°)) in a randomly interleaved order. At this time, the monkeys had to
release the bar within 150-800 ms after target onset. Success conditioned reward delivery. (3)
Memory-guided saccade Task (figure 1B.3): A red fixation cross (0.7x0.7°) appeared in the
center of the screen and the monkeys were required to hold fixation for 500 msec, within a
fixation window of 1.5x1.5°. A squared green cue (0.28x0.28°) was then flashed for 100ms at
one of four possible locations ((10°, 10°), (-10°, 10°), (-10°,-10°) and (10°,-10°)). The
monkeys had to continue maintain fixation on the central fixation point for another 700-1900
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ms until the fixation point disappeared. The monkeys were then required to make a saccade
towards the memorized location of the cue within 500-800ms from fixation point
disappearance, and a spatial tolerance of 4°x4°. On success, a target, identical to the cue was
presented at the cued location and the monkeys were required to fixate it and detect a change
in its color by a bar release within 150-800 ms from color change. Success in all of these

successive requirements conditioned reward delivery.
Neural recordings

On each session, bilateral simultaneous recordings in the two FEFs were carried out
using two 24- contact Plexon U-probes. The contacts had an interspacing distance of 250 pm.
Neural data was acquired with the Plexon Omniplex® neuronal data acquisition system. The
data was amplified 400 times and digitized at 40,000 Hz. The MUA neuronal data was high-
pass filtered at 300 Hz. The LFP neuronal data was filtered between 0.5 and 300 Hz. In the
present paper, all analyses are performed on the multi-unit activity recorded on each of the 48
recording contacts. A threshold defining the multi-unit activity was applied independently for
each recording contact and before the actual task-related recordings started. All further
analyses of the data were performed in Matlab™ and using FieldTrip (Oostenveld et al.,
2011) and the Wavelet Coherence Matlab Toolbox (Grinsted et al., 2004), both open source

Matlab™ toolboxes.

Data Analysis

Data preprocessing. Overall, MUA recordings were collected from 48 recording
channels on 26 independent recording sessions (13 for M1 and 13 for M2). We excluded from
subsequent analyses all channels with less than 5 spikes per seconds. For each session, we
identified the task-related channels based on a statistical change (one-way ANOVA, p<0.05)
in the MUA neuronal activity in the memory-guided saccade task, in response to either cue
presentation ([0 400] ms after cue onset) against a pre-cue baseline ([-100 0] ms relative to
cue onset), or to saccade execution go signal and to saccade execution (i.e. fixation point off,
[0 400] ms after go signal) against a pre-go signal baseline ([-100 0] ms relative to go signal),
irrespective of the spatial configuration of the trial. In total, 671 channels were retained for
further analyses out of 1248 channels.

Distance between recording sites. For each electrode, pairs of MUA recordings were
classified along four possible distance categories: D1, spacing of 250 um; D2, spacing of 500

um; D3, spacing of 750 um and D4, spacing of Imm. These distances are an indirect proxy to
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actual cortical distance, as the recordings were performed tangentially to cortical surface, i.e.

more or less parallel to sulcal surface.

MUA spatial selectivity. FEF neurons are characterized by a strong visual, saccadic,
spatial memory and spatial attention selectivity (Bruce et Goldberg 1985; Ibos et al., 2013;
Astrand et al., 2015). We used a one-way ANOVA (p<0.05) to identify the spatially selective
channels in response to cue presentation ([0 400] ms following cue onset) and to the saccade

execution go signal ([0 400] ms following go signal).

Post-hoc t-tests served to further order, for each channels, the neuron’s response in
each visual quadrant from preferred (pl), to least preferred (p4). By convention, positive
modulations were considered as preferred and negative modulations as least preferred. For
example, in a given session, the MUA signal recorded on channel 1 of a probe placed in the
left FEF, could have as best preferred position pl the upper right quadrant, the next best
preferred position p2 the lower right quadrant, the next preferred position p3 the upper left
quadrant and the least preferred position p4 the lower left quadrant. The MUA signal recorded
on channel 14 of this same probe, could have as best preferred position pl the lower right
quadrant, the next best preferred position p2 the upper right quadrant, the next preferred
position p3 the lower left quadrant and the least preferred position p4 the upper left quadrant.
Positions with no significant modulation in any task epoch were labeled as p0 (no selectivity
for this position). Once this was done, for each electrode, pairs of MUA recordings were
classified along two possible functional categories: pairs with the same spatial selectivity
(SSS pairs, sharing the same pl) and pairs with different spatial selectivities (DSS pairs, such
that the pl of one MUA is a pO for the other MUA). For the sake of clarity, we do not
consider partial spatial selectivity pairs (such that the pl of one MUA 1is a non-preferred, p2,
p3 or p4 for the other MUA).

MUA layer attribution. As stated above, our recordings are not tangential to cortical
surface. As a proxy to attribute a given recording channel to upper or lower cortical layers we
proceeded as follows. For each electrode and each channel, we estimated, at the time of cue
onset in the memory-guided saccade task (100ms-500ms from cue onset), the spike-field
coherence in the alpha range (6 to 16 Hz) and the gamma range (40 to 60 Hz). Based on
previous literature (Buffalo et al., 2011a), we used the ratio between the alpha and gamma
spike field-coherence as a proxy to assign the considered LFP signals to a deep cortical layer

site (high alpha / gamma spike-field coherence ratio) or to a superficial cortical layer site (low
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alpha / gamma spike-field coherence ratio). We also categorized MUA signals into visual,
visuo-motor and motor categories, as in Cohen et al. (2009). Briefly, average firing rates were
computed in 3 epochs: [-100 0] ms before cue onset (baseline), [0 200] ms after cue onset
(visual), and [0 200] ms before saccade onset (movement). Neurons with activity statistically
significantly different from the baseline (Wilcoxon rank-sum test, P < 0.05) after cue onset
were categorized as visual. Neurons with activity statistically significantly different from the
baseline (Wilcoxon rank-sum test, P < 0.05) before saccade onset were categorized as
oculomotor. Neurons that were active in both epochs were categorized as visuo-movement
neurons. The LFP categorization along the alpha to gamma spike-field coherence ratio
strongly coincided with the classification of the MUA signals into purely visual sites (low
alpha and gamma spike-field coherence ratio, input FEF layers) and visuo-motor sites (high

alpha and gamma spike-field coherence ratio, output FEF layers, figure 4).

Noise Correlations. The aim of the present work is to quantify task effects onto the
spiking statistics of the FEF spiking activity during equivalent task-fixation epochs. The
statistics that we discuss is that of noise correlations between the MUA activities on the
different simultaneously recorded signals. For each channel, and each task, intervals of
interest of 200ms were defined during the fixation epoch from 300 ms to 500 ms from eye
fixation onset. Specifically, for each channel i, and each trial k, the average neuronal response
ri(k) for this time interval was calculated and z-score normalized into z(k), where zi(k)=ri(k)-
wi/std; and p; and std; respectively correspond to the mean firing rate and standard deviation
around this mean during the interval of interest of the channel of interest i. This z-score
normalization allows to capture the changes in neuronal response variability independently of
changes in mean firing rates. Noise correlations between pairs of MUA signals during the
interval of interest were then defined as the Pearson correlation coefficient between the z-
scored individual trial neuronal responses of each MUA signal over all trials. Only positive
significant noise correlations are considered, unless stated otherwise. In any given recording
session, noise correlations were calculated between MUA signals recorded from the same
electrode, thus specifically targeting intra-cortical correlations. This procedure was applied
independently for each task. Depending on the question being asked, noise correlations were
either computed on activities aligned on fixation onset, or on activities aligned on target
(Fixation and Target detection task) or saccade execution (memory guided saccade task)

signals.
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In order to control for the fact that the observed changes in noise correlations cannot
be attributed to changes in other firing rate metrics, several statistics were also extracted, from
comparable task epochs, from 300 to 500ms following trial initiation and fixation onset. None
of these metrics were significantly affected by the task. Specifically, we analyzed (a) mean
firing rate (ANOVA, p>0.5), (b) the standard error around this mean firing rate (ANOVA,
p>0.6), and (c¢) the corresponding Fano factor (ANOVA, p>0.7). These data, reproducing
previous reports (Cohen et Maunsell 2009) are not shown.

Oscillations in noise correlations. To measure oscillatory patterns in the noise
correlation time-series data, we computed, for each task, and each session (N=12), noise
correlations over time (over successive 200ms intervals, sliding by 10ms, running from
300ms to 1500ms following eye fixation onset for Fixation and Target detection tasks and
from 300ms to 1500ms following cue offset form Memory-guided saccade task). A wavelet
transform (Fieldtrip, Oostenveld et al., 2011) was then applied on each session’s noise
correlation time series. Statistical differences in the noise correlation power frequency spectra
were assessed using a non-parametric Friedman test. When computing the noise correlations
in time, we equalized the number of trials for all tasks and all conditions so as to prevent any
bias that could be introduced by unequal numbers of trials. To control that oscillations in
noise correlations in time cannot be attributed to changes in spiking activity, a wavelet
analysis was also run onto MUA time series data (data not shown).

Spike field Coherence (SFC). In our study monkeys performed three tasks with
different task engagement levels. For each selected channel, SFC spectra were calculated
between the spiking activity obtained in one channel and the LFP activity from the next
adjacent channel in the time interval running from 300ms to 1500ms following eye fixation
onset (Fixation and Target detection task) or cue offset (Memory guided saccade task). We
used a single Hanning taper and applied convolution transform to the Hanning-tapered trials.
We equalized the number of trials for all tasks so as to prevent any bias that could be
introduced by unequal numbers of trials. We used a 4 cycles length per frequency. The
memory guided saccade task is known to involve spatial processes during the cue to target
interval that bias spike field coherence. In this task, SFC was thus measured separately for
trials in which the cued location matched the preferred spatial location of the channel and
trials in which the cued location did not match the preferred spatial location of the channel.

Statistics were computed across channels x sessions, using a non-parametric Friedman test.
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Modulation of behavioral performance by phase of noise correlation alpha and beta
rhythmicity. To quantify the effect of noise correlation oscillations onto behavioral
performance, we used a complex wavelet transform analysis (Fieldtrip, Oostenveld et al.
2011) to compute, for each session and each task, in the noise correlations, the phase of the
frequencies of interest (alpha / beta) following eye fixation onset (for the Fixation and Target
detection tasks) or cue offset (for the Memory guided saccade task). For each session, we
identified hit and miss trials falling at zero phase of the frequency of interest (+/- w /140) with
respect to target presentation or fixation point offset time. In the fixation task, premature
fixation aborts by anticipatory manual response or eye fixation failure were considered as
misses. Hit rates (HR) were computed for this zero phase bin. We then shifted this phase
window by m /70 steps and recalculated the HR, repeating this procedure to generate phase-
detection HR functions, across all phases, for each frequency of interest (Fiebelkorn et al.,
2013). For each session, the phase bin for which hit rate was maximal was considered as the
optimal phase. The effect of a given frequency (alpha or beta) onto behavior corresponds to
the difference between HR at this optimal phase and HR at the anti-optimal phase (optimal
phase + m). To test for statistical significance, observed hit/miss phases were randomized
across trials so as to shuffle the temporal relationship between phases and behavioral
performance. This procedure was repeated 1000 times. 95% CI was then computed and

compared to the observed behavioral data.

IIl. Results

Our main goal in this work is to examine how the degree of cognitive engagement and
task demands impact the neuronal population state as assessed from interneuronal noise
correlations. Cognitive engagement was operationalized through tasks of increasing
behavioral requirements. The easiest task (Fixation task, figure 1B.1) was a central fixation
task in which monkeys were required to detect an unpredictable change in color of the
fixation point, by producing a manual response within 150 to 800ms from color change. The
second task (Target detection task, figure 1B.2) added a spatial uncertainty on top of the
temporal uncertainty of the event associated with the monkeys’ response. This was a target
detection task, in which the target could appear at one of four possible locations, at an
unpredictable time from fixation onset. The monkeys had to respond to this target
presentation by producing a manual response within 150 to 800ms from color change. In the

third task (Memory guided saccade task, figure 1B.3), monkeys were required to hold the
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position of a spatial cue in memory for 700 to 1900ms and to perform a saccade towards that
memorized spatial location on the presentation of a go signal. This latter task thus involved a
temporal uncertainty but no spatial uncertainty. However, in contrast with the previous tasks,
it required the production of a spatially oriented oculomotor response rather than a simple
manual response. Accordingly, both monkeys had higher performances on the memory
guided saccade task than on the target detection task (Figure 1C, Wilcoxon rank sum test,
Monkey 1, p<0.01, Monkey 2, p<0.05), and higher performances on the target detection task

than on the fixation task (Wilcoxon rank sum test, p<0.05).
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Figure 1: (A) Recordings sites. On each session, 24-contact recording probes were placed in
the left and right FEFs. (B.1) Fixation task. Monkeys had to fixate a red central cross and were
rewarded for producing a manual response 150ms to800 ms following fixation cross color change.
(B.2) Target detection task. Monkeys had to fixate a red central cross and were rewarded for
producing a manual response 150ms to 800ms from the onset of a low luminosity target at an
unpredictable location out of four possible locations on the screen. (B.3) Memory-guided saccade
task. Monkeys had to fixate a red central cross. A visual cue was briefly flashed in one of four possible
locations on the screen. Monkeys were required to hold fixation until the fixation cross disappeared
and then produce a saccade to the spatial location indicated by the cue within 300ms from fixation
point offset. On success, the cue re-appeared and the monkeys had to fixate it. They were then
rewarded for producing a manual response 150ms to 800ms following the color change of this new
fixation stimulus. (C) Behavioral performance. Average percentage of correct trials across sessions
for each tasks and each monkey with associated standard errors.
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Neuronal recordings were performed in the prefrontal cortex, specifically in the frontal
eye field (FEF, figure 1A), a structure known to play a key role in covert spatial attention
(Ibos et al., 2013; Gregoriou et al., 2009,2012; Armstrong et al., 2009). In each session, multi-
unit activity (MUA) and local field potential (LFP) were recorded bilaterally, while monkeys
performed these three tasks. In the following, the noise correlations between the different
prefrontal signals of the same hemisphere were computed on equivalent task fixation epochs,
away from both sensory intervening events and motor responses. In a first step, we analyzed
how these noise correlations varied both across tasks, as a function of cognitive engagement
and within-tasks, as a function of the probabilistic structure of the task. In a second step, we
describe the temporal oscillatory structure of noise correlations. We relate these rhythmic
variations to cognitive engagement and we show that they correlate with changes in the
coupling between local field potentials and MUA spiking activity, in specific functional

frequency bands.

Noise correlations decrease as cognitive engagement and task requirements

increase.

In order to characterize how inter-neuronal noise correlations vary as a function of
cognitive engagement and task requirements, we proceeded as follows. In each session
(n=26), noise correlations were computed between each pair of task-responsive channels
(n=671, see Methods), over equivalent fixation task epochs, running from 300 to 500 ms after
eye fixation onset. This epoch was at a distance from a possible visual or saccadic foveation
response and in all three tasks, monkeys were requested to maintain fixation at this stage. It
was also still early on in the trial, such that no intervening sensory event was to be expected
by the monkey at this time. Importantly, fixation behavior, i.e. the distribution of eye position
in within the fixation window, did not vary between the different tasks (Friedman test,
p<0.001). As a result, and because tasks were presented in blocks, any difference in noise
correlations across tasks during this “neutral” fixation epoch are to be attributed to general
non-specific task effects, i.e. differences in the degree of cognitive engagement and task
demands. Noise correlations were significantly different between tasks (Figure 2A, ANOVA,
p<0.001). Specifically, they were higher in the fixation task than in the target detection task
(Figure 2A, Wilcoxon rank sum test, p<0.001) and in the memory guided saccade task
(Wilcoxon rank sum test, p<0.001). They were also significantly higher in the target detection
task than in the memory guided saccade task (Wilcoxon rank sum test, p<0.001). Importantly,

these significant changes in noise correlations existed in the absence of significant differences
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in mean firing rate (ANOVA, p>0.5), standard error around this mean firing rate (ANOVA,
p>0.6), and Fano factor (ANOVA, p>0.7, data not shwon). We thus describe that, in absence
of any sensory or cognitive processing, noise correlations are strongly modulated by cognitive

engagement and task demands.
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Figure2: (A) Noise correlations as a function of task. Average noise correlations across
sessions for each of the three tasks (mean +/- s.e., noise correlations calculated on the neuronal
activities from 300 to 500 after eye fixation onset. Black: fixation task; blue: target detection task;
red: memory guided saccade task. Stars indicate statistical significance following a one-way ANOVA;
*0<0.05; **p<0.01; ***p<0.001. (B) Noise correlations as a function of cortical distance. Average
noise correlations (mean +/- s.e.) across sessions, for each task (conventions as in (A)), from 300 ms
to 500ms after eye fixation onset, as a function of distance between pairs of channels: 250um; 500um;
750um; 1000um. Stars indicate statistical significance following a two-way ANOVA and rank sum
post-hoc tests; *p<0.05; **p<0.01; ***p<0.001.

Cortical distance, spatial selectivity and cortical layer effects on noise correlations

are task independent.

The task differences in noise correlations described above could reflect changes in the
shared functional connectivity, within the large-scale parieto-frontal functional network the
cortical region of interest belongs to (Shadlen and Newsome, 1998) or to global fluctuations
in the excitability of cortical circuits (Scholvinck et al., 2015; Arieli et al., 1996). This large-

scale hypothesis predicts that the observed changes in noise correlations are independent from
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intrinsic connectivity as assessed by the distance, the spatial selectivity or cortical layer
between the pairs of signals across which noise correlations are computed. Alternatively,
these task differences in noise correlations could reflect a more complex reweighing of
functional connectivity and the excitatory/inhibitory balance in the area of interest, due to
local changes in the random shared fluctuations in the pre-synaptic activity of cortical neurons
(Zohary et al., 1994; Bair et al., 2001; Bryant et al., 1973; Shadlen et Newsome 1998). This
local hypothesis predicts that the observed changes in noise correlations depend onto intrinsic
microscale connectivity. In the following, we characterize task differences in noise

correlations as a function of cortical distance, spatial selectivity and cortical layer.

Cortical distance effects. Our recordings were performed as tangentially to FEF
cortical surface as possible. The distance between the different recording probe contacts is
thus a fair proxy to actual cortical tangential distance. Consistent with previous studies
(Constantinidis et Goldman-Rakic 2002; Lee et al., 1998; Smith et Kohn 2008), noise
correlations significantly decreased as the distance between the pair of signals across which
noise correlations were computed increased (Figure 2B). Importantly, this distance effect was
present for all tasks and expressed independently of the main task effect described above (2-
way ANOVA, Task x Distance, Task effect: p<0.001; Distance effect: p<0.001, interaction:
p>0.05). Post-hoc analyses indicate that this distance effect is statistically significant, for all
tasks, beyond 500 um (Wilcoxon rank sum test, Fixation task: p<0.001 for a cortical distance
of 750 um, p<0.005 for 1000 um; Target detection task: p<0.001 for 750 um, p<0.001 for
1000 um; Memory-guided saccade task: p<0.001 for 750 um, p<0.001 for 1000 pum).
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Figure3: Noise correlations as a function of spatial selectivity. Average noise correlations
(mean +/- s.e.) across sessions, for each tasks (conventions as in figure 2), from 300ms to 500ms after
eye fixation onset, as a function of whether noise correlations are calculated over signals sharing the
same spatial selectivity (full bars) or not (empty bars). Stars indicate statistical significance following
a two-way ANOVA and rank sum post-hoc tests; *p<0.05; **p<0.01; ***p<0.001.

52



Spatial selectivity effects. The spatial selectivity of each task-related MUA in response
to cue presentation and saccade execution was assessed using an ANOVA (see methods). As
described previously (Mohler et al., 1973; Bruce et Goldberg 1985), the receptive fields of
FEF neurons are quite large and most MUA responded to cue presentation or saccade
execution in more than one quadrant (94% of MUA). For each MUA, we further identified
the visual quadrant that elicited maximal neuronal response to cue or saccade execution, as
well as, whenever possible the visual quadrant that didn’t elicit any response. In the
following, and under the assumption of a higher functional connectivity between pairs of
MUA sharing the same spatial selectivity, we compared noise correlations between pairs of
neurons sharing the same preferred quadrant and pairs for which the preferred quadrant of one
MUA matched the unresponsive quadrant of the other MUA. Consistent with previous studies
(Bair et al., 2001), noise correlations were significantly lower for different spatial selectivity
pairs than for same spatial selectivity pairs (Figure 3). This spatial selectivity effect was
present for all tasks (2-way ANOVA, Task x Spatial selectivity, Task effect: p<0.001; Spatial
selectivity effect: p<0.001). Post-hoc analyses indicate that this spatial selectivity effect is
statistically significant for all tasks (Wilcoxon rank sum test, Fixation task: p<0.001; Target
detection task: p<0.01; Memory-guided saccade task: p<0.001). However, spatial selectivity
effects were not constant across tasks, possibly suggesting task-dependent functional changes
in spatial selectivity based neuronal interactions (Task x Spatial selectivity interaction:

p<0.05).

Cortical layer effects. FEF neurons are characterized by a strong visual, saccadic,
spatial memory and spatial attention selectivity (Bruce et Goldberg 1985; Ibos et al., 2013;
Astrand et al., 2015). Previous studies have shown that pure visual neurons are located in the
input layers of the FEF while visuo-motor neurons are located in its output layers (Bruce et
Goldberg 1985; Segraves et Goldberg 1987; Schall 1991; Schall et Hanes 1993; Schall et al.,
1995; Schall et Thompson 1999). Independently, Buffalo et al. (2011) have shown that, in
extrastriate area V4, the ratio between the alpha and gamma spike field coherence
discriminated between LFP signals in deep (low alpha / gamma spike field coherence ratio) or
superficial cortical layers (high alpha / gamma spike field coherence ratio). In our own data,
because our recordings were performed tangentially to FEF cortical surface, we have no direct
way of assigning the recorded MUAs to either superficial or deep cortical layers. However,

the alpha / gamma spike field coherence ratio provides a very reliable segregation of visual
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and viso-motor MUAs (figure 4A). We thus consider that, as has been described for area V4,
this measure allows for a robust delineation of superficial and deep layers in area FEF. In the
following, we computed inter-neuronal noise correlations between three different categories
of pairs based on their assigned cortical layer: superficial/superficial pairs, superficial/deep
pairs and deep/deep pairs, where superficial MUA correspond to predominantly visual, low
alpha/gamma spike field coherence ratio signals and deep MUA correspond to predominantly
visuo-motor, high alpha/gamma spike field coherence ratio signals. Noise correlations varied
as a function of cortical layer (Figure 4B). This cortical layer effect was present for all tasks
and expressed independently of the main task effect described above (2-way ANOVA, Task x
Cortical layer, Task effect: p<0.001; Cortical layer effect: p<0.001). As for spatial selectivity,
layer effects were not constant across tasks, possibly suggesting task-dependent functional
changes in within and across layer neuronal interactions (interaction: p<0.05). Unexpectedly,
belonging to the same layer cortical layer didn’t systematically maximize noise correlations.
Indeed, post-hoc analyses indicate significantly lower noise correlations between the
superficial/superficial pairs as compared to the deep/deep pairs (Wilcoxon rank sum test,
Fixation task: p<0.05; Target detection task: p<0.05; Memory-guided saccade task: p<0.01).
Superficial/deep pairs sat in between these two categories and had significantly lower noise
correlations than the deep/deep pairs (Wilcoxon rank sum test, Fixation task: p<0.05; Target
detection task: p<0.05; Memory-guided saccade task: p<0.01) and higher noise correlations

than the superficial/superficial pairs, though this difference was never significant.
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Figure 4: (A) Distribution of alpha spike-field coherence (6-16H7) as a function of gamma
(40-60Hz) spike-field coherence for visual and visuomotor frontal eye field sites. Sites with visual
selectivity but no motor selectivity (green, putative superficial sites) demonstrated stronger gamma-
band spike-field coherence, whereas sites with visuomotor selectivity (black, putative deep sites)
demonstrated stronger alpha-band spike-field coherence. (B) Noise correlations as a function of pair
Sfunctional selectivity. Average of noise correlations (mean +/- s.e.) across sessions, for each task
(conventions as in figure 2), from 300ms to 500ms after eye fixation onset, as a function of pair
functional selectivity: visual-visual, visual-visuomotor, visuomotor-visuomotor. Stars indicate
statistical significance following a two-way ANOVA and rank sum post-hoc tests; *p<0.05;
**0<0.01; ***p<0.001.

Overall, these observations support the co-existence of both a global large-scale
change as well as a local change in functional connectivity. Indeed, task effects onto noise
correlations build up onto cortical distance, spatial selectivity and cortical layer effects,
indicating global fluctuations in the excitability of cortical circuits (Schdlvinck et al., 2015;
Arieli et al., 1996). On top of this global effect, we also note more complex changes as
reflected from statistical interactions between Task and spatial selectivity or layer attribution
effects. This points towards more local changes in neuronal interactions, based on both 1)
functional neuronal properties such as spatial selectivity that may change across tasks
(Womelsdorf et al., 2006,2008; Anton-Erxleben et al., 2007; Ben Hamed et al., 2002) and 2)
the functional reweighing of top-down and buttom-up processes (Buschman et Miller 2007a;

Ibos et al., 2013).
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Impact of the probabilistic structure of the task onto noise correlations.

Up to now, we have shown that noise correlations vary as a function of cognitive
engagement and task demands. This suggests an adaptive mechanism that adjusts noise
correlations to the ongoing behavior. On task shifts, this mechanism probably builds up
during the early trials of the new task, past trial history affecting noise correlations in the
current trials. In Astrand et al. (2016) we show that, in a cued target detection task, while
noise correlations are higher on miss trials than on hit trials, noise correlations are also higher
on both hit and miss trials, when the previous trial was a miss as compared to when it was a
hit. Here, one would expect that on the first trials of task shifts, noise correlations would be at
an intermediate level between the previous and the ongoing task. Task shifts being extremely
rare events in our experimental protocol, this cannot be confirmed. On top of this slow
dynamics carry on effect, one can also expect faster dynamic adjustments to the probabilistic

structure of the task. This is what we demonstrate below.
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Figure 5: Noise correlations decrease as function of expected response probability. Average
noise correlations (mean +/- s.e.) across sessions, for each task (conventions as in figure 2),
calculated on 200 ms before the target (Fixation and Target detection tasks) onset or saccade
execution signal onset (memory guided saccade task), as a function of expected target probability.
Each data point corresponds to noise correlations computed over trials of different fixation onset to
event response intervals, i.e. over trials of different expected response probability. Stars indicate
statistical significance following a two-way ANOVA and rank sum post-hoc tests; *p<0.05; **p<0.01;
***p<0.001.

In each of the three tasks, target probability (saccade go signal probability in the case
of the memory guided saccade task) varied as a function of time. As a result, early target
onset trials had a different target probability than intermediate target onset trials than late
target onset trials. Our prediction was that if monkeys had integrated the probabilistic
structure of the task, this should reflect onto a dynamic adjustment of noise correlations as a
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function of target probability. Figure 5 confirms this prediction. Specifically, for all tasks,
noise correlations were lowest in task epochs with highest target probability (Wilcoxon non-
parametric test, p<0.001 for all pair-wise comparisons). These variations between the highest
and lowest target probability epochs were highly significant and in the order of the 15% or
more (Fixation task: 15%, Target detection task: 40%, Memory-guided saccade task: 14%).
This variation range was lower than the general task effect we describe above but yet quite
similar across tasks. Overall, this indicates that noise correlations are dynamically adjusted to

the task structure, and are lowest at the time of highest behavioral demand in the trial.
Rhythmic fluctuations in noise correlations.

Up to now, we have described within and across task-related variations in noise
correlations, building up onto intrinsic connectivity influences as reflected by cortical
distance, spatial selectivity and layer attribution effects. Looking at noise correlations in time
(figure 6A) reveals an additional source of variation, namely rhythmic changes in noise
correlation levels, phase locked to fixation onset (Fixation and target detection task) or cue
presentation (Memory guided saccade task). These rhythmic fluctuations take place in two
distinct frequency ranges: a high alpha frequency range (10-16 Hz) and a beta frequency
range (20-30Hz), as quantified by a wavelet analysis (figure 6B). These oscillations can be
described in all of the three tasks, this in spite of an overall higher background spectral power
during the memory guided saccade task, both when noise correlations are calculated on trials
in which spatial memory was instructed towards the preferred or the non-preferred location of
the MUA signals (figure 6B, red and green curves respectively). Because spatial selective
processes are at play in the memory guided saccade task, both for trials in which spatial
memory is oriented towards the preferred MUA location (excitatory processes) or towards the
non-preferred location (inhibitory processes), we will mostly focus on the fixation and the
target detection tasks. When compensating the rhythmic modulations of noise correlations for
background power levels (assuming an equal frequency power between all conditions beyond
30Hz), frequency power in the two ranges of interest are higher in the fixation task than in the
target detection task (Friedman non-parametric test, all pairwise comparisons, p<0.001), in
agreement with the proposal that cognitive flexibility coincides with lower amplitude beta
oscillations (Engel et Fries 2010) and that attentional engagement coincides with lower
amplitude alpha oscillations (Thut et al., 2006; Rihs et al., 2009). Importantly, these
oscillations are absent from the raw MUA signals (Friedman non-parametric test, all pairwise

comparisons, p>0.2), as well as when noise correlations are computed during the same task
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epochs but from neuronal activities aligned onto target presentation (or saccade go signal in

the memory guided saccade task, Friedman non-parametric test, all pairwise comparisons,

p>0.2).

Importantly, in all of the three tasks, behavioral performance, defined as the
proportion of correct trials as compared to error trials, varied as a function of alpha and beta
noise correlation oscillations. Indeed, on a session by session basis, we could identify an
optimal alpha (10-16Hz) phase for which the behavioral performance was maximized, in
antiphase with a bad alpha phase, for which the behavioral performance was lowest (figure
6C). These effects were highest in the fixation task (34.6% variation in behavioral
performance) and lowest though significant in the memory-guided saccade task (13.3% in the
target detection task and 9.5% in the memory guided saccade task). Similarly, an optimal beta
(20-30Hz) phase was also found to modulate behavioral performance in the same range as the
observed alpha behavioral modulations (28.3% variation in behavioral performance in the
fixation task, 19.2% in the target detection task and 11% in the memory guided saccade task).
As a result, Alpha and beta oscillation phase in noise correlations were predictive of
behavioral performance, and the strength of these effects co-varied with alpha and beta
oscillation amplitude in noise correlations, being higher in the fixation task, than in the target

detection task than in the memory guided saccade task.
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Figure 6: Rhythmic fluctuations in noise correlations modulate behavioral response and
spike-field coherence in upper input cortical layers. (A) Single memory guided saccade session
example of noise correlation variations as a function of trial time. (B) 1/f weighted power frequency
spectra of noise correlation in time (average +/- s.e.m), for each task, calculated from 300ms to
1500ms from fixation onset (Fixation and Target detection tasks) or following cue offset (Memory
guided saccade task). (C) Hit rate modulation by alpha (top histogram) and beta (bottom histogram)
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noise correlation at optimal phase as compared to anti-optimal phase for all three tasks (color as in
(B), average +/- s.e., dots represent the 95% confidence interval under the assumption of absence of
behavioral performance phase dependence). (D) Spike field coherence between LFP and spike data as
a function of frequency, time intervals as in (B). (E) Spike field coherence calculated as in (C) but as a
function of the layer attribution of each signal, time intervals as in (B). (F) Average SFC (+/- s.e.) in
alpha (10-16Hz, top histogram) and beta (20-30Hz, bottom histogram) for each task and both of
superficial and deep cortical layer signals (t-test, ***: p<0.001).

High alpha and beta oscillations in the local field potentials (LFP) are ubiquitous and
are considered to reflect long-range processes. Beta oscillations have been associated with
cognitive control and cognitive flexibility. On the other hand, alpha oscillations are associated
with attention, anticipation (Thut et al., 2006; Rihs et al., 2009), perception (Varela et al.,
1981; Mathewson et al., 2009; Busch et VanRullen 2010), and working memory (Klimesch,
1997). We hypothesized a functional link between these LFP oscillations and the rhythmic
oscillatory pattern of noise correlations. Figure 6D represents spike field coherence (SFC)
between spiking activity and LFP signals (see Materials and Methods) computed during a
1200ms time interval starting 300ms after either fixation onset (Fixation and Target detection
task) or cue offset (Memory guided saccade task). SFC peaks at both the frequency ranges
identified in the noise correlation spectra, namely the high alpha range (10-16Hz) and the beta
range (20-30Hz). Importantly, this SFC modulation is highest for the fixation task as
compared to the target detection task, thus matching the oscillatory power differences
observed in the noise correlations. SFC are lowest in the memory guided saccade task
whether considering preferred or non-preferred spatial processing. This is probably due to the
fact that the cue to go signal interval of the memory guided saccade task involves memory
processes that are expected to desynchronize spiking activity with respect to the LFP
frequencies of interest (Buffalo et al., 2011, specifically in the 20-30Hz frequency range).
This will need to be further explored.

In figure 4, we show layer specific effects onto noise correlations that build up onto
the global task effects. An important question is whether these layer effects result from layer
specific changes in SFC. Figure 6E represents the SFC data of figure 6D, segregated on the
bases of the attribution of the MUA to either superficial or deep cortical FEF layers. While
SFC modulations are observed in the same frequencies of interest as in figure 6D, clear layer
specific differences can be observed (figure 6F). Specifically, beta range SFC are markedly
significantly lower in the superficial layers than in the deep layers, for both the detection task
and the memory guided saccade task. These, points towards a selective control of correlated
noise in input, superficial FEF layers. In contrast, alpha range SFC are significantly lower in

the superficial layers than in the deep layers only in the memory guided saccade, and
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specifically when spatial memory is oriented towards a non-preferred location. This points
towards overall weaker layer differences for alpha SFC. Alternatively, alpha SFC could result
from a different mechanism than beta SFC. This will need to be further explored. Thus in
spite of the fact that a comprehensive layer effect of alpha SFC is still lacking at this stage,
both alpha and beta noise correlation rhythmicity co-vary with 1) selective SFC modulations
in the alpha and beta frequency ranges (these latter being more pronounced in the superficial
input cortical layers than in the deeper cortical layers) as well as with 2) pronounced

variations in overt behavioral performance.

Overall, we thus identify a last functional oscillatory source of variations in noise
correlations in the alpha and beta ranges that both have an important functional relevance, as
they coincide with systematic variations in behavioral performance. These oscillations reflect
selective changes in SFC, more pronounced in the superficial than in the deep cortical layers.
This oscillatory source of variation in noise correlations adds up on top of the previously
identified sources of variation, namely global task demands and the probabilistic structure of

the task.

1V. Discussion

In this work, our main goal was to examine the impact of cognitive engagement and
task demands onto the neuronal population shared variability as assessed from interneuronal
noise correlations at multiple time scales. Recordings were performed in the macaque frontal
eye fields, a cortical region in which neuronal noise correlations have been shown to vary as a
function of spatial attention (Cohen et Maunsell 2009) and spatial memory (Constantinidis et
Klingberg 2016; Meyers et al., 2012). Noise correlations were computed over equivalent
behavioral task epochs, prior to response production, during a delay in which eyes were fixed
and in the absence of any intervening sensory event or motor response. As a result, any
observed differences in noise correlations are to be assigned to an attention source of shared
neuronal variability.

Overall, we demonstrate, for the first time, that noise correlations dynamically adjust
to task demands at different time scales. Specifically, we show that noise correlations
decrease as cognitive engagement and task demands increase. These task-related variations in
noise correlations co-exist with within-trial dynamic changes related to the probabilistic
structure of the tasks as well as with long- and short-range oscillatory brain mechanisms.

These findings are discussed below in relation with previously reported functional and
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structural sources of variations in noise correlation and a comprehensive model of shared
population neuronal variability is proposed.

Shared neuronal population response variability dynamically adjusts to the
behavioral demands.

Noise correlations have been shown to vary with learning or changes in behavioral
state (V1: Gutnisky et Dragoi 2008; Poort et Roelfsema 2009; Reich 2001; Smith et Kohn
2008; V4: Cohen et Maunsell 2009; Mitchell et al., 2009; Gawne et al., 1996; Gawne et
Richmond 1993; MT: Cohen et Newsome 2008; Huang et Lisberger 2009; Zohary et al.,
1994). For example, shared neuronal population response variability was lower in V1 in
trained than in naive monkeys (Gu et al. 2011). More recently, Ni et al. (2018) describe,
within visual areas, a robust relationship between correlated variability and perceptual
performance, whether changes in performance happened rapidly (attention instructed by a
spatial cue) or slowly (learning). This relationship was robust even when the main effects of
attention and learning were accounted for (Ni et al., 2018). Here, we question whether
changes in noise correlations can be observed simultaneously at multiple time scales. We
describe two different times scales at which noise correlations dynamically adjust to the task
demands.

The first adjustment in noise correlations we describe is between tasks, that is between
blocked contexts of varying cognitive demand, the monkeys knowing that general task
requirements will be constant over a hundred of trials or more. Task performance is taken as a
proxy to cognitive adjustment to the task demands and negatively correlates with noise
correlations in the recorded population. Shared neuronal population variability measure is
largest in the fixation task as compared to the two other tasks, by almost 30%. The difference
between noise correlations in the target detection task as compared to the guided memory
saccade task is in the range of 2%, closer to what has been previously reported in the context
of noise correlation changes under spatial attention (Cohen et Maunsell 2009) or spatial
memory manipulations. Importantly, these changes in noise correlations are o