. .. Cas-d'un-solide-structuré, , p.76

.. .. Conclusion,

, 86 IV.1 Mesure mécanique de l'énergie libre des interfaces fluidefluide confinées et de leurs tensions de ligne, vol.87

. .. Géométrique, IV.1.1 Descriptions

, 92 IV.1.2.1 Expression de l'énergie libre du ménisque et de la tension de ligne en fonction des forces fluides, p.93

, Variations des composantes de volume et de surface avec l'angle de contact

, 2.2 Phases homogènes et interfaces liquide-vapeur infinies

, 3.2 Phases homogènes et interfaces liquide-vapeur infinies, IV.3 Eau : interactions dispersives et liaisons hydrogènes, vol.118

.. .. Conclusion,

, G Paramètres des simulations d'un fluide de Van der Waals confiné

, Un troisième jeu de simulations étudie l'influence de la longueur caractéristique d

, La tension de surface liquide-gaz ? lg (encart de la Figure 35) est mesurée en simulant un film liquide de N = 3375 particules dans une boîte de simulation

, Les valeurs de la densité ? l à faible pression indiquées

, avec ? I (x, z) la densité volumique de l'espèce chimique

R. Roth, D. Gillespie, W. Nonner, and R. E. Eisenberg, Bubbles, Gating, and Anesthetics in Ion Channels, Biophys. J, vol.94, issue.11, pp.4282-4298, 2008.

S. Iglauer, CO 2 -Water-Rock Wettability : Variability, Influencing Factors, and Implications for CO 2 Geostorage, Acc. Chem. Res, vol.50, issue.5, pp.1134-1142, 2017.

C. Picard, Accumulateurs à nanoporeux lyophobes, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581966

M. Bruce, S. P. Law, . Mcbride, Y. Jiang, H. Wang et al., Line tension and its influence on droplets and particles at surfaces, Prog. Surf. Sci, vol.92, issue.1, pp.1-39, 2017.

H. Joost, A. Weijs, B. Marchand, D. Andreotti, J. H. Lohse et al., Origin of line tension for a Lennard-Jones nanodroplet, Phys. Fluids, vol.23, issue.2, p.22001, 2011.

A. Checco, P. Guenoun, and J. Daillant, Nonlinear Dependence of the Contact Angle of Nanodroplets on Contact Line Curvature, Phys. Rev. Lett, vol.91, issue.18, 2003.

C. A. Ward and J. Wu, Effect of Contact Line Curvature on Solid-Fluid Surface Tensions Without Line Tension, Phys. Rev. Lett, vol.100, issue.25, 2008.

R. C. Tolman, The Effect of Droplet Size on Surface Tension, J. Chem. Phys, vol.17, issue.3, pp.333-337, 1949.

M. Kandu?, Going beyond the standard line tension : Size-dependent contact angles of water nanodroplets, J. Chem. Phys, vol.147, issue.17, p.174701, 2017.

K. Subir, S. A. Das, P. Egorov, D. Virnau, K. Winter et al., Do the contact angle and line tension of surface-attached droplets depend on the radius of curvature ?, 2018.

J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, 1982.

M. Nijmeijer, V. , and J. Leeuwen, Microscopic expressions for the surface and line tension, J. Phys. A, vol.23, issue.19, pp.4211-4235, 1990.

M. J. Nijmeijer, C. Bruin, A. F. Bakker, and J. M. Van-leeuwen, Wetting and drying of an inert wall by a fluid in a molecular-dynamics simulation, Phys. Rev. A, vol.42, issue.10, pp.6052-6059, 1990.

J. Henderson, Statistical mechanics of patterned inhomogeneous fluid phenomena, J. Phys. Condens. Matter, vol.11, issue.3, pp.629-643, 1999.

K. Fujiwara and M. Shibahara, Local pressure components and interfacial tension at a liquid-solid interface obtained by the perturbative method in the Lennard-Jones system, J. Chem. Phys, vol.141, issue.3, p.34707, 2014.

L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev, vol.39, issue.3, pp.1073-1095, 2010.

J. N. Israelachvili, Intermolecular and Surface Forces, 2011.

P. G. De-gennes, Wetting : statics and dynamics, Rev. Mod. Phys, vol.57, issue.3, pp.827-863, 1985.

D. Chandler, Interfaces and the driving force of hydrophobic assembly, Nature, vol.437, issue.7059, pp.640-647, 2005.

I. C. Bourg, L. E. Beckingham, and D. J. Depaolo, The Nanoscale Basis of CO 2 Trapping for Geologic Storage, Environ. Sci. Technol, vol.49, issue.17, pp.10265-10284, 2015.

A. Botan, B. Rotenberg, V. Marry, P. Turq, and B. Noetinger, Carbon Dioxide in Montmorillonite Clay Hydrates : Thermodynamics, Structure, and Transport from Molecular Simulation, J. Phys. Chem. C, vol.114, issue.35, pp.14962-14969, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00531724

L. M. Hamm, I. C. Bourg, A. F. Wallace, and B. Rotenberg, Molecular Simulation of CO 2 -and CO 3 -Brine-Mineral Systems, Rev. Mineral. Geochem, vol.77, issue.1, pp.189-228, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01488417

B. Andreotti and J. H. Snoeijer, Soft wetting and the Shuttleworth effect, at the crossroads between thermodynamics and mechanics, Europhys. Lett, vol.113, issue.6, p.66001, 2016.

P. Nozières and D. E. Wolf, Interfacial properties of elastically strained materials, Z. Phys. B, vol.70, issue.3, pp.399-407, 1988.

L. Boruvka and A. W. Neumann, Generalization of the classical theory of capillarity, J. Chem. Phys, vol.66, issue.12, pp.5464-5476, 1977.

M. Schrader, P. Virnau, and K. Binder, Simulation of vapor-liquid coexistence in finite volumes : A method to compute the surface free energy of droplets, Phys. Rev. E, vol.79, issue.6, 2009.

N. Mark, N. Joswiak, M. F. Duff, B. Doherty, and . Peters, SizeDependent Surface Free Energy and Tolman-Corrected Droplet Nucleation of TIP4P, Water. J. Phys. Chem. Lett, vol.4, issue.24, pp.4267-4272, 2005.

A. Ghoufi, P. Malfreyt, and D. J. Tildesley, Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface, Chem. Soc. Rev, vol.45, issue.5, pp.1387-1409, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01259512

E. Guyon, J. Hulin, and L. Petit, Hydrodynamique Physique. CNRS Editions, 2001.

N. Giovambattista, P. G. Debenedetti, and P. J. Rossky, Effect of Surface Polarity on Water Contact Angle and Interfacial Hydration Structure, J. Phys. Chem. B, vol.111, issue.32, pp.9581-9587, 2007.

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders and Porous Solids, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01915758

M. Vandamme, L. Brochard, B. Lecampion, and O. Coussy, Adsorption and strain : The CO2-induced swelling of coal, J. Mech. Phys. Solids, vol.58, issue.10, pp.1489-1505, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00542308

J. Q. Broughton and G. H. Gilmer, Surface free energy and stress of a Lennard-Jones crystal, Acta Metall, vol.31, issue.6, pp.845-851, 1983.

F. Leroy and F. Müller-plathe, Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method, J. Chem. Phys, vol.133, issue.4, p.44110, 2010.

G. John, F. P. Kirkwood, and . Buff, The Statistical Mechanical Theory of Surface Tension, J. Chem. Phys, vol.17, issue.3, pp.338-343, 1949.

L. Chen, Area dependence of the surface tension of a Lennard-Jones fluid from molecular dynamics simulations, J. Chem. Phys, vol.103, issue.23, pp.10214-10216, 1995.

J. Barrat and J. Hansen, Basic Concepts for Simple and Complex Liquids, 2003.

F. Sedlmeier, D. Horinek, R. R. Netz, and . Nanoroughness, Intrinsic Density Profile, and Rigidity of the Air-Water Interface, Phys. Rev. Lett, vol.103, issue.13, 2009.

R. E. Rozas and J. Horbach, Capillary wave analysis of rough solid-liquid interfaces in nickel, Europhys. Lett, vol.93, issue.2, p.26006, 2011.

M. Kandu?, A. Schlaich, E. Schneck, and R. R. Netz, Hydration repulsion between membranes and polar surfaces : Simulation approaches versus continuum theories, Adv. Colloid Interface Sci, vol.208, pp.142-152, 2014.

F. Bresme, Nanoparticles at fluid interfaces, J. Phys. Condens. Matter, vol.19, issue.41, p.413101, 2007.

L. Guillemot, T. Biben, A. Galarneau, G. Vigier, and E. Charlaix, Activated drying in hydrophobic nanopores and the line tension of water, Proc. Natl. Acad. Sci. U.S.A, vol.109, issue.48, pp.19557-19562, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01087836

D. Lohse and X. Zhang, Surface nanobubbles and nanodroplets, Rev. Mod. Phys, vol.87, issue.3, pp.981-1035, 2015.

J. Drelich, The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems, Colloids Surf, vol.116, issue.1-2, pp.43-54, 1996.

A. Amirfazli and A. W. Neumann, Status of the three-phase line tension : a review, Adv. Colloid Interface Sci, vol.110, issue.3, pp.121-141, 2004.

J. Y. Wang, S. Betelu, and B. M. Law, Line Tension Effects near First-Order Wetting Transitions, Phys. Rev. Lett, vol.83, issue.18, pp.3677-3680, 1999.

T. Pompe and S. Herminghaus, Three-Phase Contact Line Energetics from Nanoscale Liquid Surface Topographies, Phys. Rev. Lett, vol.85, issue.9, pp.1930-1933, 2000.

J. Yang, J. Duan, D. Fornasiero, and J. Ralston, Very Small Bubble Formation at the Solid Water Interface, J. Phys. Chem. B, vol.107, issue.25, pp.6139-6147, 2003.

N. Kameda and S. Nakabayashi, Size-induced sign inversion of line tension in nanobubbles at a solid/liquid interface, Chem. Phys. Lett, vol.461, issue.1-3, pp.122-126, 2008.

A. Xue-hua-zhang, W. A. Quinn, and . Ducker, Nanobubbles at the Interface between Water and a Hydrophobic Solid, Langmuir, vol.24, issue.9, pp.4756-4764, 2008.

M. Bram, . Borkent, F. Sissi-de-beer, D. Mugele, and . Lohse, On the Shape of Surface Nanobubbles, Langmuir, vol.26, issue.1, pp.260-268, 2010.

J. K. Berg, C. M. Weber, and H. Riegler, Impact of Negative Line Tension on the Shape of Nanometer-Size Sessile Droplets, Phys. Rev. Lett, vol.105, issue.7, 2010.

P. Sean, B. M. Mcbride, and . Law, Influence of Line Tension on Spherical Colloidal Particles at Liquid-Vapor Interfaces, Phys. Rev. Lett, vol.109, issue.19, 2012.

L. Heim and E. Bonaccurso, Measurement of Line Tension on Droplets in the Submicrometer Range, Langmuir, vol.29, issue.46, pp.14147-14153, 2013.

B. Lefevre, A. Saugey, J. L. Barrat, L. Bocquet, E. Charlaix et al., Intrusion and extrusion of water in hydrophobic mesopores, J. Chem. Phys, vol.120, issue.10, pp.4927-4938, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00000575

J. Joanny and P. Gennes, Role of long-range forces in heterogeneous nucleation, J. Colloid Interface Sci, vol.111, issue.1, pp.94-101, 1986.

J. O. Indekeu, Line tension near the wetting transition : results from an interface displacement model, Physica A, vol.183, issue.4, pp.439-461, 1992.

T. Getta and S. Dietrich, Line tension between fluid phases and a substrate, Phys. Rev. E, vol.57, issue.1, pp.655-671, 1998.

A. Marmur, Line Tension and the Intrinsic Contact Angle in Solid-Liquid-Fluid Systems, J. Colloid Interface Sci, vol.186, issue.2, pp.462-466, 1997.

L. Schimmele, M. Napiórkowski, and S. Dietrich, Conceptual aspects of line tensions, J. Chem. Phys, vol.127, issue.16, p.164715, 2007.

L. Schimmele and S. Dietrich, Line tension and the shape of nanodroplets, Eur. Phys. J. E, vol.30, issue.4, 2009.

F. Bresme and N. Quirke, Computer Simulation Study of the Wetting Behavior and Line Tensions of Nanometer Size Particulates at a Liquid-Vapor Interface, Phys. Rev. Lett, vol.80, issue.17, pp.3791-3794, 1998.

T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos, On the Water Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes, J. Phys. Chem. B, vol.107, issue.6, pp.1345-1352, 2003.

T. Janne, T. A. Hirvi, and . Pakkanen, Molecular dynamics simulations of water droplets on polymer surfaces, J. Chem. Phys, vol.125, issue.14, p.144712, 2006.

M. Schneemilch and N. Quirke, Effect of oxidation on the wettability of poly(dimethylsiloxane) surfaces, J. Chem. Phys, vol.127, issue.11, p.114701, 2007.

F. Sedlmeier, J. Janecek, C. Sendner, L. Bocquet, R. R. Netz et al., Water at polar and nonpolar solid walls (Review), vol.3, pp.23-39, 2008.

G. Yiapanis, S. Maclaughlin, E. J. Evans, and I. Yarovsky, Nanoscale Wetting and Fouling Resistance of Functionalized Surfaces : A Computational Approach, Langmuir, vol.30, issue.35, pp.10617-10625, 2014.

J. Zhang, F. Leroy, and F. Müller-plathe, Influence of ContactLine Curvature on the Evaporation of Nanodroplets from Solid Substrates, Phys. Rev. Lett, vol.113, issue.4, 2014.

S. Maheshwari, M. Van-der-hoef, and D. Lohse, Line Tension and Wettability of Nanodrops on Curved Surfaces, Langmuir, vol.32, issue.1, pp.316-321, 2016.

S. Cheng and M. O. Robbins, Nanocapillary Adhesion between Parallel Plates, Langmuir, vol.32, issue.31, pp.7788-7795, 2016.

D. Winter, P. Virnau, and K. Binder, Monte Carlo Test of the Classical Theory for Heterogeneous Nucleation Barriers, Phys. Rev. Lett, vol.103, issue.22, 2009.

K. Subir, K. Das, and . Binder, Simulation of binary fluids exposed to selectively adsorbing walls : a method to estimate contact angles and line tensions, Mol. Phys, vol.109, pp.1043-1056, 2011.

S. Sharma and P. G. Debenedetti, Evaporation rate of water in hydrophobic confinement, Proc. Natl. Acad. Sci. U.S.A, vol.109, issue.12, pp.4365-4370, 2012.

R. C. Remsing, E. Xi, S. Vembanur, S. Sharma, P. G. Debenedetti et al., Pathways to dewetting in hydrophobic confinement, Proc. Natl. Acad. Sci. U.S.A, vol.112, issue.27, pp.8181-8186, 2015.

Y. E. Altabet, A. Haji-akbari, and P. G. Debenedetti, Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water, Proc. Natl. Acad. Sci. U.S.A, vol.114, issue.13, pp.2548-2555, 2017.

A. Tinti, A. Giacomello, Y. Grosu, and C. M. Casciola, Intrusion and extrusion of water in hydrophobic nanopores, Proc. Natl. Acad. Sci. USA, vol.114, pp.10266-10273, 2017.

P. Tarazona and G. Navascués, A statistical mechanical theory for line tension, J. Chem. Phys, vol.75, issue.6, pp.3114-3120, 1981.

M. Shao, J. Wang, and X. Zhou, Anisotropy of Local Stress Tensor Leads to Line Tension, Sci. Rep, vol.5, issue.1, 2015.

B. Rotenberg, A. J. Patel, and D. Chandler, Molecular Explanation for Why Talc Surfaces Can Be Both Hydrophilic and Hydrophobic, J. Am. Chem. Soc, vol.133, issue.50, pp.20521-20527, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01897604

L. N. Ho, Y. Schuurman, D. Farrusseng, and B. Coasne, Solubility of Gases in Water Confined in Nanoporous Materials : ZSM-5, MCM-41, and MIL-100

, J. Phys. Chem. C, vol.119, issue.37, pp.21547-21554, 2015.

D. A. Doshi, E. B. Watkins, J. N. Israelachvili, and J. Majewski, Reduced water density at hydrophobic surfaces : Effect of dissolved gases, Proc. Natl. Acad. Sci. U.S.A, vol.102, issue.27, pp.9458-9462, 2005.

M. Mezger, H. Reichert, S. Schoder, J. Okasinski, H. Schroder et al., High-resolution in situ x-ray study of the hydrophobic gap at the water-octadecyl-trichlorosilane interface, Proc. Natl. Acad. Sci. U.S.A, vol.103, issue.49, pp.18401-18404, 2006.

M. Stephan, D. Dammer, and . Lohse, Gas Enrichment at Liquid-Wall Interfaces, Phys. Rev. Lett, vol.96, issue.20, 2006.

D. Bratko and A. Luzar, Attractive Surface Force in the Presence of Dissolved Gas : A Molecular Approach, Langmuir, vol.24, issue.4, pp.1247-1253, 2008.

L. C. Nielsen, I. C. Bourg, and G. Sposito, Predicting CO 2 -water interfacial tension under pressure and temperature conditions of geologic CO 2 storage, Geochim. Cosmochim. Acta, vol.81, pp.28-38, 2012.

L. Zhao, S. Lin, J. D. Mendenhall, K. Pak, D. Yuet et al., Molecular Dynamics Investigation of the Various Atomic Force Contributions to the Interfacial Tension at the Supercritical CO 2 -Water Interface, J. Phys. Chem. B, vol.115, pp.6076-6087, 2011.

H. Zhang and S. J. Singer, Analysis of the subcritical carbon dioxide water interface, J. Phys. Chem. A, vol.115, issue.23, pp.6285-6296, 2011.

S. , A. Bagherzadeh, P. Englezos, S. Alavi, and J. A. Ripmeester, Influence of Hydrated Silica Surfaces on Interfacial Water in the Presence of Clathrate Hydrate Forming Gases, J. Phys. Chem. C, vol.116, issue.47, pp.24907-24915, 2012.

Y. Liang, S. Tsuji, J. Jia, T. Tsuji, and T. Matsuoka, Modeling CO 2 -Water-Mineral Wettability and Mineralization for Carbon Geosequestration, Acc. Chem. Res, vol.50, issue.7, pp.1530-1540, 2017.

G. A. Chapela, G. Saville, S. M. Thompson, and J. S. Rowlinson, Computer simulation of a gas-liquid surface. Part 1, J. Chem. Soc., Faraday Trans, vol.2, issue.7, pp.1133-1144, 1977.

Y. Djikaev and B. Widom, Geometric view of the thermodynamics of adsorption at a line of three-phase contact, J. Chem. Phys, vol.121, issue.12, pp.5602-5610, 2004.

E. B. Tadmor and R. E. Miller, Modeling Materials, Continuum, Atomistic and Multiscale Techniques, 2011.

J. R. Ray and A. Rahman, Statistical ensembles and molecular dynamics studies of anisotropic solids, J. Chem. Phys, vol.80, issue.9, pp.4423-4428, 1984.

M. E. Tuckerman, Statistical Mechanics : Theory and Molecular Simulation, 2010.

R. W. Style, A. Jagota, C. Hui, and E. R. Dufresne, Elastocapillarity : Surface Tension and the Mechanics of Soft Solids, Annu. Rev. Condens. Matter Phys, vol.8, issue.1, pp.99-118, 2017.

R. D. Meade and D. Vanderbilt, Origins of stress on elemental and chemisorbed semiconductor surfaces, Phys. Rev. Lett, vol.63, issue.13, pp.1404-1407, 1989.

W. Haiss, Surface stress of clean and adsorbate-covered solids, Rep. Prog. Phys, vol.64, issue.5, pp.591-648, 2001.

Y. Gennady, N. Gor, and . Bernstein, Revisiting Bangham's law of adsorptioninduced deformation : changes of surface energy and surface stress, Phys. Chem. Chem. Phys, vol.18, issue.14, pp.9788-9798, 2016.

M. Ma, F. Grey, L. Shen, M. Urbakh, S. Wu et al., Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction, Nat. Nanotechnol, vol.10, issue.8, pp.692-695, 2015.

L. Bocquet and R. R. Netz, Nanofluidics : Phonon modes for faster flow, Nat. Nanotechnol, vol.10, issue.8, pp.657-658, 2015.

D. Wolf, Should all surfaces be reconstructed ?, Phys. Rev. Lett, vol.70, issue.5, pp.627-630, 1993.

Q. Xu, K. E. Jensen, R. Boltyanskiy, R. Sarfati, R. W. Style et al., Direct measurement of strain-dependent solid surface stress, Nat. Commun, vol.8, issue.1, 2017.

R. Shuttleworth, The Surface Tension of Solids, Proc. R. Soc. A, vol.63, issue.5, p.444, 1950.

D. Kramer and J. Weissmüller, A note on surface stress and surface tension and their interrelation via Shuttleworth's equation and the Lippmann equation, Surf. Sci, vol.601, issue.14, pp.3042-3051, 2007.

P. Müller, A. Saùl, and F. Leroy, Simple views on surface stress and surface energy concepts, Adv. Nat. Sci. : Nanosci. Nanotechnol, vol.5, issue.1, p.13002, 2013.

G. Gerald, J. Fuller, and . Vermant, Complex Fluid-Fluid Interfaces : Rheology and Structure, Annu. Rev. Chem. Biomol. Eng, vol.3, issue.1, pp.519-543, 2012.

E. M. Grzelak, V. K. Shen, and J. R. Errington, Molecular Simulation Study of Anisotropic Wetting, Langmuir, vol.26, issue.11, pp.8274-8281, 2010.

K. K. Mon, S. Wansleben, D. P. Landau, and K. Binder, Monte Carlo studies of anisotropic surface tension and interfacial roughening in the three-dimensional Ising model, Phys. Rev. B, vol.39, issue.10, pp.7089-7096, 1989.

J. Hansen and I. R. Mcdonald, Theory of Simple Liquids, 2013.

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, vol.5, 1980.

J. De-boer and G. E. Uhlenbeck, Studies in Statistical Mechanics, vol.1, 1962.

H. S. Green, A general kinetic theory of liquids. II. Equilibrium properties, Proc. R. Soc. Lond. Ser.-A, vol.188, pp.10-18, 1012.

J. H. Irving and J. G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics, J. Chem. Phys, vol.18, issue.6, pp.817-829, 1950.

W. Noll, Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen Mechanik, J. Ration. Mech. Anal, vol.4, pp.627-646, 1955.

R. J. Hardy, Formulas for determining local properties in molecular-dynamics simulations : Shock waves, J. Chem. Phys, vol.76, issue.1, pp.622-628, 1982.

P. Schofield and J. R. Henderson, Statistical Mechanics of Inhomogeneous Fluids, Proc. R. Soc. A, vol.379, pp.231-246, 1776.

J. P. Walton and K. E. Gubbins, The pressure tensor in an inhomogeneous fluid of non-spherical molecules, Mol. Phys, vol.55, issue.3, pp.679-688, 1985.

G. Ciccotti and J. P. Ryckaert, Molecular dynamics simulation of rigid molecules, Comput. Phys. Rep, vol.4, issue.6, pp.346-392, 1986.

J. G. Harris, Liquid-vapor interfaces of alkane oligomers : structure and thermodynamics from molecular dynamics simulations of chemically realistic models, J. Phys. Chem, vol.96, issue.12, pp.5077-5086, 1992.

L. C. Reinier, G. Akkermans, and . Ciccotti, On the Equivalence of Atomic and Molecular Pressure, J. Phys. Chem. B, vol.108, issue.21, pp.6866-6869, 2004.

W. K. Otter, M. Kröhn, and J. H. Clarke, Geometric approach to the pressure tensor and the elastic constants, Phys. Rev. E, vol.65, issue.1, 2001.

A. P. Thompson, S. J. Plimpton, and W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys, vol.131, issue.15, p.154107, 2009.

C. Hans and . Andersen, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys, vol.72, issue.4, pp.2384-2393, 1980.

R. E. Miller, E. B. Tadmor, J. S. Gibson, N. Bernstein, and F. Pavia, Molecular dynamics at constant Cauchy stress, J. Chem. Phys, vol.144, issue.18, p.184107, 2016.

D. M. Heyes, Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries, Phys. Rev. B, vol.49, issue.2, pp.755-764, 1994.

J. Alejandre, D. J. Tildesley, and G. A. Chapela, Molecular dynamics simulation of the orthobaric densities and surface tension of water, J. Chem. Phys, vol.102, issue.11, pp.4574-4583, 1995.

P. H. Hünenberger, Calculation of the group-based pressure in molecular simulations. I. A general formulation including Ewald and particle-particle-particlemesh electrostatics, J. Chem. Phys, vol.116, issue.16, pp.6880-6897, 2002.

J. M. Vanegas, A. Torres-sánchez, and M. Arroyo, Importance of Force Decomposition for Local Stress Calculations in Biomembrane Molecular Simulations, J. Chem. Theory Comput, vol.10, issue.2, pp.691-702, 2014.

A. Torres-sánchez, J. M. Vanegas, and M. Arroyo, Examining the Mechanical Equilibrium of Microscopic Stresses in Molecular Simulations, Phys. Rev. Lett, vol.114, issue.25, 2015.

T. Frolov and Y. Mishin, Temperature dependence of the surface free energy and surface stress : An atomistic calculation for Cu(110), Phys. Rev. B, vol.79, issue.4, 2009.

V. B. Shenoy, Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Phys. Rev. B, vol.71, issue.9, 2005.

C. A. Becker, J. J. Hoyt, D. Buta, and M. Asta, Crystal-melt interface stresses : Atomistic simulation calculations for a Lennard-Jones binary alloy, Stillinger-Weber Si, and embedded atom method Ni, Phys. Rev. E, vol.75, issue.6, 2007.

Y. Gennady, N. Gor, and . Bernstein, Adsorption-Induced Surface Stresses of the Water/Quartz Interface : Ab Initio Molecular Dynamics Study, Langmuir, vol.32, issue.21, pp.5259-5266, 2016.

G. Navascués and M. V. Berry, The statistical mechanics of wetting, Mol. Phys, vol.34, issue.3, pp.649-664, 1977.

J. Q. Broughton and G. H. Gilmer, Molecular dynamics investigation of the crystal-fluid interface. VI. Excess surface free energies of crystal-liquid systems, J. Chem. Phys, vol.84, issue.10, pp.5759-5768, 1986.

J. H. Sikkenk, J. O. Indekeu, J. M. Van-leeuwen, and E. O. Vossnack, Moleculardynamics simulation of wetting and drying at solid-fluid interfaces, Phys. Rev. Lett, vol.59, issue.1, pp.98-101, 1987.

. Frank-van-swol, Comment on "Molecular-Dynamics Simulation of Wetting and Drying at Solid-Fluid Interfaces, Phys. Rev. Lett, vol.60, issue.3, pp.239-239, 1988.

J. H. Sikkenk, J. O. Indekeu, J. M. Van-leeuwen, E. O. Vossnack, and . Sikkenk, Phys. Rev. Lett, vol.60, issue.3, pp.240-240, 1988.

J. Z. Tang and J. G. Harris, Fluid wetting on molecularly rough surfaces, J. Chem. Phys, vol.103, issue.18, pp.8201-8208, 1995.

M. J. Nijmeijer and C. Bruin, Comment on "Fluid wetting on molecularly rough surfaces, J. Chem. Phys, vol.103, 1995.

, J. Chem. Phys, vol.105, issue.11, pp.4889-4890, 1996.

J. G. Harris, Comment on 'Fluid wetting on molecularly rough surfaces, J. Chem. Phys, vol.105, p.4889, 1996.

, J. Chem. Phys, vol.105, issue.11, pp.4891-4891, 1996.

J. Jane?ek and R. R. Netz, Interfacial Water at Hydrophobic and Hydrophilic Surfaces : Depletion versus Adsorption, Langmuir, vol.23, issue.16, pp.8417-8429, 2007.

T. Dreher, C. Lemarchand, L. Soulard, E. Bourasseau, P. Malfreyt et al., Calculation of a solid/liquid surface tension : A methodological study, J. Chem. Phys, vol.148, issue.3, p.34702, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01708342

J. Barrat and L. Bocquet, Influence of wetting properties on hydrodynamic boundary conditions at a fluid solid interface, Faraday Discuss, vol.112, issue.0, pp.119-128, 1999.

T. Lee, L. Bocquet, and B. Coasne, Activated desorption at heterogeneous interfaces and long-time kinetics of hydrocarbon recovery from nanoporous media, Nat. Commun, vol.7, p.11890, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02015078

C. Sendner, D. Horinek, L. Bocquet, and R. R. Netz, Interfacial Water at Hydrophobic and Hydrophilic Surfaces : Slip, Viscosity, and Diffusion. Langmuir, vol.25, pp.10768-10781, 2009.

R. Benjamin and J. Horbach, Wall-liquid and wall-crystal interfacial free energies via thermodynamic integration : A molecular dynamics simulation study, J. Chem. Phys, vol.137, issue.4, p.44707, 2012.

V. Kumar, S. Sridhar, and J. R. Errington, Monte Carlo simulation strategies for computing the wetting properties of fluids at geometrically rough surfaces, J. Chem. Phys, vol.135, issue.18, p.184702, 2011.

F. Ould-kaddour and D. Levesque, Molecular simulation of fluid-solid interfaces at nanoscale, J. Chem. Phys, vol.135, issue.22, p.224705, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00645852

D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima et al., Molecular dynamics analysis on wetting and interfacial properties of water-alcohol mixture droplets on a solid surface, J. Chem. Phys, vol.140, issue.3, p.34505, 2014.

S. Nishida, D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa et al., Molecular dynamics analysis of multiphase interfaces based on in situ extraction of the pressure distribution of a liquid droplet on a solid surface, J. Chem. Phys, vol.140, issue.7, p.74707, 2014.

J. Zhang, M. K. Borg, K. Sefiane, and J. M. Reese, Wetting and evaporation of salt-water nanodroplets : A molecular dynamics investigation, Phys. Rev. E, vol.92, issue.5, 2015.

A. Pertsin and M. Grunze, Water Graphite Interaction and Behavior of Water Near the Graphite Surface, J. Phys. Chem. B, vol.108, issue.4, pp.1357-1364, 2004.

J. Guy, G. Gloor, F. J. Jackson, E. Blas, and M. De, Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials, J. Chem. Phys, vol.123, issue.13, p.134703, 2005.

R. Anjan, S. P. Nair, and . Sathian, A molecular dynamics study to determine the solid-liquid interfacial tension using test area simulation method (TASM), J. Chem. Phys, vol.137, issue.8, p.84702, 2012.

H. D. Oliveira, X. Davoy, E. Arche, P. Malfreyt, and A. Ghoufi, Test-area surface tension calculation of the graphene-methane interface : Fluctuations and commensurability, J. Chem. Phys, vol.146, issue.21, p.214112, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01560002

D. Frenkel and B. Smit, Understanding Molecular Simulation, 2002.

J. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints : molecular dynamics of n-alkanes, J. Comput. Phys, vol.23, issue.3, pp.327-341, 1977.

. Hans-c-andersen, Rattle : A "velocity" version of the shake algorithm for molecular dynamics calculations, J. Comput. Phys, vol.52, issue.1, pp.24-34, 1983.

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, 1990.

M. O. Jensen, O. G. Mouritsen, and G. H. Peters, The hydrophobic effect : Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces, J. Chem. Phys, vol.120, issue.20, pp.9729-9744, 2004.

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys, vol.117, issue.1, pp.1-19, 1995.

W. , M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington, Implementing molecular dynamics on hybrid high performance computers -short range forces, Comput. Phys. Commun, vol.182, issue.4, pp.898-911, 2011.

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem, vol.91, issue.24, pp.6269-6271, 1987.

J. G. Harris, H. Kwong, and . Yung, Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model, J. Phys. Chem, vol.99, issue.31, pp.12021-12024, 1995.

R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, 1988.

I. Yeh and M. L. Berkowitz, Ewald summation for systems with slab geometry, J. Chem. Phys, vol.111, issue.7, pp.3155-3162, 1999.

A. Pertsin and M. Grunze, A Computer Simulation Study of Stick Slip Transitions in Water Films Confined between Model Hydrophilic Surfaces. 1. Monolayer Films, Langmuir, vol.24, issue.1, pp.135-141, 2008.

H. Yoshida, H. Mizuno, T. Kinjo, H. Washizu, and J. Barrat, Molecular dynamics simulation of electrokinetic flow of an aqueous electrolyte solution in nanochannels, J. Chem. Phys, vol.140, issue.21, p.214701, 2014.

P. and L. Tallec, Modélisation et calcul des milieux continus. Editions de l'Ecole polytechnique, 2009.

R. G. Winkler, H. Morawitz, and D. Y. Yoon, Novel molecular dynamics simulations at constant pressure, Mol. Phys, vol.75, issue.3, pp.669-688, 1992.

J. M. Míguez, M. M. Piñeiro, A. I. Moreno-ventas, F. J. Bravo, and . Blas, On interfacial tension calculation from the test-area methodology in the grand canonical ensemble, J. Chem. Phys, vol.136, issue.11, p.114707, 2012.

M. Zhou, A new look at the atomic level virial stress : on continuum-molecular system equivalence, Proc. R. Soc. A, vol.459, pp.2347-2392, 2003.

M. Zhou, Thermomechanical continuum representation of atomistic deformation at arbitrary size scales, Proc. R. Soc. A, vol.461, pp.3437-3472, 2005.

K. Arun, C. T. Subramaniyan, and . Sun, Continuum interpretation of virial stress in molecular simulations, Int. J. Solids Struct, vol.45, pp.4340-4346, 2008.

L. Zhang, J. Jasa, and G. Gazonas, Antoine Jérusalem, and Mehrdad Negahban. Extracting continuum-like deformation and stress from molecular dynamics simulations, Comput. Methods Appl. Mech. Eng, vol.283, pp.1010-1031, 2015.

C. Godrèche, Solids Far from Equilibrium, 1991.

H. Mehrer, Diffusion in Solids, 2007.

L. Ruslan, B. B. Davidchack, and . Laird, Simulation of the hard-sphere crystal-melt interface, J. Chem. Phys, vol.108, issue.22, pp.9452-9462, 1998.

T. Frolov and Y. Mishin, Solid-liquid interface free energy in binary systems : Theory and atomistic calculations for the (110) Cu-Ag interface, J. Chem. Phys, vol.131, issue.5, p.54702, 2009.

Y. Gennady, P. Gor, N. Huber, and . Bernstein, Adsorption-induced deformation of nanoporous materials-A review, Appl. Phys. Rev, vol.4, issue.1, p.11303, 2017.

M. V. Ushcats, L. A. Bulavin, V. M. Sysoev, V. Yu, A. N. Bardik et al., Statistical theory of condensation -Advances and challenges, J. Mol. Liq, vol.224, pp.694-712, 2016.

D. L. Goodstein, States of Matter, 2002.

N. Giovambattista, P. G. Debenedetti, and P. J. Rossky, Enhanced surface hydrophobicity by coupling of surface polarity and topography, Proc. Natl. Acad. Sci. U.S.A, vol.106, issue.36, pp.15181-15185, 2009.

N. Sumanth, R. Jamadagni, S. Godawat, and . Garde, Hydrophobicity of Proteins and Interfaces : Insights from Density Fluctuations, Annu. Rev. Chem. Biomol. Eng, vol.2, issue.1, pp.147-171, 2011.

H. Matías, V. Factorovich, D. A. Molinero, and . Scherlis, HydrogenBond Heterogeneity Boosts Hydrophobicity of Solid Interfaces, J. Am. Chem. Soc, vol.137, issue.33, pp.10618-10623, 2015.

B. Widom, Structure of interfaces from uniformity of the chemical potential, J. Stat. Phys, vol.19, issue.6, pp.563-574, 1978.

V. P. Carey and A. P. Wemhoff, Disjoining Pressure Effects in Ultra-Thin Liquid Films in Micropassages-Comparison of Thermodynamic Theory With Predictions of Molecular Dynamics Simulations, J. Heat Transfer, vol.128, issue.12, p.1276, 2006.

Y. Wu, H. L. Tepper, and G. A. Voth, Flexible simple point-charge water model with improved liquid-state properties, J. Chem. Phys, vol.124, issue.2, p.24503, 2006.

J. F. Joanny and P. G. De-gennes, A model for contact angle hysteresis, J. Chem. Phys, vol.81, issue.1, pp.552-562, 1984.

M. R. Powell, L. Cleary, M. Davenport, K. J. Shea, and Z. S. Siwy, Electric-field-induced wetting and dewetting in single hydrophobic nanopores, Nat. Nanotechnol, vol.6, issue.12, pp.798-802, 2011.

K. Leung, A. Luzar, and D. Bratko, Dynamics of Capillary Drying in Water, Phys. Rev. Lett, vol.90, issue.6, 2003.

H. Xue, X. D. Zhang, . Zhang, T. Shi, Z. X. Lou et al., Degassing and Temperature Effects on the Formation of Nanobubbles at the Mica/Water Interface, Langmuir, vol.20, issue.9, pp.3813-3815, 2004.

L. N. Ho, S. Clauzier, Y. Schuurman, D. Farrusseng, and B. Coasne, Gas Uptake in Solvents Confined in Mesopores : Adsorption versus Enhanced Solubility, J. Phys. Chem. Lett, vol.4, issue.14, pp.2274-2278, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00861185

D. A. Kofke, Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line, J. Chem. Phys, vol.98, issue.5, pp.4149-4162, 1993.

R. Sander, Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys, vol.15, issue.8, pp.4399-4981, 2015.

T. Somasundaram, R. M. Lynden-bell, and C. H. Patterson, The passage of gases through the liquid water/vapour interface : a simulation study, Phys. Chem. Chem. Phys, vol.1, issue.1, pp.143-148, 1999.

M. Kandu? and R. R. Netz, Atomistic simulations of wetting properties and water films on hydrophilic surfaces, J. Chem. Phys, vol.146, issue.16, p.164705, 2017.

L. Vlcek, A. A. Chialvo, and D. R. Cole, Optimized Unlike-Pair Interactions for Water-Carbon Dioxide Mixtures Described by the SPC/E and EPM2 Models, J. Phys. Chem. B, vol.115, issue.27, pp.8775-8784, 2011.

L. E. Reichl, A Modern Course in Statistical Physics, 2016.

F. G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne et al., Freezing of Water Confined at the Nanoscale, Phys. Rev. Lett, vol.109, issue.3, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00743730