R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics, pp.21-467, 1982.

M. Bhushan and M. B. Ketchen, CMOS Test and Evaluation: A Physical Perspective, 2015.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 2011.

A. Montanaro, Quantum algorithms: an overview, Npj Quantum Information, vol.2, p.15023, 2016.

P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput, vol.26, p.1484, 1997.

J. P. Buhler, H. W. Lenstra, and C. Pomerance, Factoring integers with the number field sieve, The development of the number field sieve, pp.50-94, 1993.

L. Grover, Quantum mechanics help in searching a needle in a haystack, Phys. Rev. Lett, vol.79, pp.325-328, 1997.

M. B. Hastings, D. Wecker, B. Bauer, and M. Troyer, Improving quantum algorithms for quantum chemistry, Quantum Info. Comput, vol.15, issue.1, 2015.

S. Jordan, K. Lee, and J. Preskill, Quantum algorithms for quantum field theories, Science, vol.336, pp.1130-1133, 2012.

A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations. PRL, 103 150502, 2009.

D. W. Berry, High-order quantum algorithm for solving linear differential equations, Journal of Physics A: Mathematical and Theoretical, pp.47-105301, 2014.

N. Wiebe, D. Braun, and S. Lloyd, Quantum algorithm for data fitting, Phys. Rev. Lett, vol.109, p.50505, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00989813

S. Aaronson, Read the fine print, Nature Physics, pp.11-291, 2015.

D. J. Reilly, Engineering the quantum-classical interface of solid-state qubits, Npj Quantum Information, vol.1, p.15011, 2015.

D. P. Divincenzo, The physical implementation of quantum computation, Fortshritte der Physik, vol.48, pp.771-783, 2000.

M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science, vol.339, p.1169, 2013.

J. M. Gambetta, J. M. Chow, and M. Steffen, Building logical qubits in a superconducting quantum computing system, npj Quantum Information, 1932.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby et al., Coherent manipulation of coupled electron spins in semiconductor quantum dots, Science, vol.309, p.2180, 2005.

E. A. Chekhovich, M. N. Makhonin, A. I. Tartakovskii, A. Yacoby, H. Bluhm et al., Nuclear spin effects in semiconductor quantum dots, Nature Materials, pp.12-494, 2013.

L. M. Vandersypen, H. Bluhm, J. S. Clarke, A. S. Dzurak, R. Ishihara et al., Interfacing spin qubits in quantum dots and donors-hot, dense, and coherent, vol.3, p.34, 2017.

J. R. Petta, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Manipulation of a single charge in a double quantum dot. PRL, vol.93, p.186802, 2004.

M. Veldhorst, J. C. Hwang, C. H. Yang, A. W. Leenstra, B. De-ronde et al., An addressable quantum dot REFERENCES qubit with fault-tolerant control-fidelity, Nature Nanotechnology, pp.9-981, 2014.

M. Veldhorst, C. H. Yang, J. C. Hwang, W. Huang, J. P. Dehollain et al., A two-qubit logic gate in silicon, Nature, vol.526, p.410, 2015.

J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R. Delbecq et al., A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99, Nature Nanotechnology, vol.9, pp.13-102, 2018.

D. Loss and D. P. Divincenzo, Quantum computation with quantum dots, PRA, vol.57, issue.120, 1998.

R. Maurand, X. Jehl, D. Kotekar-patil, A. Corna, H. Bohuslavskyi et al., A cmos silicon spin qubit, Nature Communications, vol.7, p.13575, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02005935

A. Corna, L. Bourdet, R. Maurand, A. Crippa, D. Kotekar-patil et al., Electrically driven electron spin resonance mediated by spin-valley-orbit coupling in a silicon quantum dot, Npj Quantum Information, issue.6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02005720

J. Levy, Universal quantum computation with spin-1/2 pairs and heisenberg exchange, PRL, vol.89, p.147902, 2002.

D. P. Divincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, Universal quantum computation with the exchange interaction, Nature, vol.408, p.339, 2000.

Z. Shi, C. B. Simmons, J. R. Prance, J. K. Gamble, T. S. Koh et al., Fast hybrid silicon double-quantum-dot qubit, Phys. Rev. Lett, vol.108, p.140503, 2012.

L. Hutin, L. Bourdet, B. Bertrand, A. Corna, H. Bohuslavskyi et al.,

C. Bäuerle, T. Meunier, M. Sanquer, X. Jehl, S. De-franceschi et al., All-electrical control of a hybrid electron spin/valley quantum bit in soi cmos technology, IEEE Transactions on Electron Devices, vol.65, p.5151, 2018.

D. Castelvecchi, Silicon gains ground in quantum-computing race, Nature news, 2018.

E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman, D. E. Savage et al., Electrical control of a long-lived spin qubit in a si/sige quantum dot, Nature Nanotechnology, pp.9-666, 2014.

J. T. Muhonen, J. P. Dehollain, A. Laucht, F. E. Hudson, R. Kalra et al., Storing quantum information for 30 seconds in a nanoelectronic device, Nature Nanotechnology, pp.9-986, 2014.

L. R. Schreiber and H. Bluhm, Silicon comes back, Nature Nanotechnology, vol.9, p.966, 2014.

S. Barraud, R. Coquand, M. Casse, M. Koyama, and J. ,

V. Hartmann, C. Maffini-alvaro, C. Comboroure, F. Vizioz, O. Aussenac et al., Performance of omega-shaped-gate silicon nanowire mosfet with diameter down to 8 nm, IEEE Electron Device Letters, pp.33-1526, 2012.

N. S. Lai, W. H. Lim, C. H. Yang, F. A. Zwanenburg, W. A. Coish et al., Pauli spin blockade in a highly tunable silicon double quantum dot, Scientific Reports, vol.1, p.110, 2011.

H. Bohuslavskyi, D. Kotekar-patil, R. Maurand, A. Corna, S. Barraud et al., Pauli blockade in a few-hole pmos double quantum dot limited by spin-orbit interaction, Applied Physics Letters, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01849344

B. Voisin, R. Maurand, S. Barraud, M. Vinet, X. Jehl et al., Electrical control of g-factor in a few-hole silicon nanowire mosfet, Nano Lett, vol.16, p.88, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02009388

S. D. Liles, R. Li, C. H. Yang, F. E. Hudson, M. Veldhorst et al., Spin and orbital structure of the first REFERENCES six holes in a silicon metal-oxide-semiconductor quantum dot, Nature Communications, pp.9-3255, 2018.

L. Bourdet and Y. Niquet, All-electrical manipulation of silicon spin qubits with tunable spin-valley mixing, PRB, vol.97, p.155433, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02141918

D. J. Ibberson, L. Bourdet, J. C. Abadillo-uriel, I. Ahmed, S. Barraud et al.,

, Electric-field tuning of the valley splitting in silicon corner dots, Appl. Phys. Lett, vol.113, p.53104, 2018.

A. Corna, Single spin control and readout in silicon coupled quantum dots, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01586070

D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor et al., Resonantly driven cnot gate for electron spins, Science, pp.359-439, 2018.

S. Schaal, A. Rossi, S. Barraud, J. J. Morton, and M. F. Gonzalezzalba, A cmos dynamic random access architecture for radiofrequency readout of quantum devices, 2018.

J. M. Martinis, Qubit metrology for building a fault-tolerant quantum computer, Npj Quantum Information, vol.1, p.15005, 2015.

A. Crippa, R. Maurand, D. Kotekar-patil, A. Corna, H. Bohuslavskyi et al., Level spectrum and charge relaxation in a silicon double quantum dot probed by dual-gate reflectometry, Nano Letters, pp.17-1001, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02005819

A. West, B. Hensen, A. Jouan, T. Tanttu, C. H. Yang et al., Gate-based single-shot readout of spins in silicon, 2018.

P. Pakkiam, A. V. Timofeev, M. G. House, M. R. Hogg, T. Kobayashi et al., Single-shot single-gate rf spin readout in silicon, 2018.

M. Urdampilleta, D. J. Niegemann, E. Chanrion, B. Jadot, C. Spence et al., Gate-based high fidelity spin read-out in a cmos device, 2018.

S. J. Devitt, W. J. Munro, and K. Nemoto, Quantum error correction for beginners, Reports on Progress in Physics, pp.76-076001, 2013.

B. M. , Quantum error correction for quantum memories, Rev. Mod. Phys, vol.87, p.307, 2015.

D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer, Gate-count estimates for performing quantum chemistry on small quantum computers, Phys. Rev. A, vol.90, p.22305, 2014.

R. Van-meter and C. Horsman, A blueprint for building a quantum computer, Commun. ACM, vol.56, p.84, 2013.

A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M. Hazard et al., Shuttling a single charge across a one-dimensional array of silicon quantum dots, 2018.

D. M. Zajac, T. M. Hazard, X. Mi, E. Nielsen, and J. R. Petta, Scalable gate architecture for a one-dimensional array of semiconductor spin qubits, vol.6, p.54013, 2016.

L. Hutin, B. Bertrand, R. Maurand, M. Urdampilleta, B. Jadot et al., Soi cmos technology for quantum information processing, IEEE International Conference on IC Design and Technology, pp.1-4, 2017.

V. Mazzocchi, P. G. Sennikov, A. D. Bulanov, M. F. Churbanov, B. Bertrand et al., 99.992integration of silicon spin qubits, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02005552

K. Takeda, J. Kamioka, T. Otsuka, J. Yoneda, T. Nakajima et al., A fault-tolerant addressable spin qubit in a natural silicon quantum dot, Sci Adv, vol.2, 2016.

L. Petit, J. M. Boter, H. G. Eenink, G. Droulers, M. L. Tagliaferri et al., Spin lifetime and charge noise in hot silicon quantum dot qubits, 2018.

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak et al., Strong spin-photon coupling in silicon, Science, 2018.

A. J. Landig, J. V. Koski, P. Scarlino, U. C. Mendes, A. Blais et al., Coherent spin-photon coupling using a resonant exchange qubit, Nature, vol.560, p.179, 2018.

X. Mi, M. Benito, S. Putz, D. M. Zajac, J. M. Taylor et al., A coherent spin-photon interface in silicon, Nature, vol.555, p.599, 2018.

F. K. Malinowski, F. Martins, T. B. Smith, S. B. Bartlett, A. C. Doherty et al., Fast spin exchange between two distant quantum dots, 2018.

D. P. Franke, J. Clarke, L. Vandersypen, and M. Veldhorst, Rent's rule and extensibility in quantum computing, 2018.

E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle, S. Visser et al., Cryo-cmos for quantum computing, 2016 IEEE International Electron Devices Meeting (IEDM), 2016.

J. M. Hornibrook, J. I. Colless, I. D. Conway-lamb, S. J. Pauka, H. Lu et al., Cryogenic control architecture for large-scale quantum computing, p.24010, 2015.

S. D. Franceschi, L. Hutin, R. Maurand, L. Bourdet, H. Bohuslavskyi et al., Soi technology for quantum information processing, IEEE International Electron Devices Meeting
URL : https://hal.archives-ouvertes.fr/hal-02018095

S. Barraud, R. Lavieville, L. Hutin, H. Bohuslavskyi, M. Vinet et al., Development of a cmos route for electron pumps to be used in quantum metrology, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02017930

H. Bohuslavskyi, S. Barraud, L. Bourdet, A. Crippa, B. Bertrand et al., Nanowire soi quantum dots with electrostatically controlled tunnel coupling, Silicon Nanoelectronics Workshop, 2018.

S. Barraud, M. Berthome, R. Coquand, M. Casse, T. Ernst et al.,

P. Samson, K. K. Perreau, O. Bourdelle, T. Faynot, and . Poiroux, Scaling of trigate junctionless nanowire mosfet with gate length down to 13 nm, IEEE Electron Device Letters, vol.33, p.1225, 2013.

M. Casse, Caracterisation Electrique et Modelisation du Transport dans les Dispositifs CMOS Avances, 2014.
URL : https://hal.archives-ouvertes.fr/tel-00974652

B. Voisin, V. Nguyen, J. Renard, X. Jehl, S. Barraud et al., Few-electron edge-state quantum dots in a silicon nanowire field-effect transistor, Nano Lett, vol.14, p.2094, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02009720

P. Harvey-collard, B. D'anjou, M. Rudolph, N. T. Jacobson, J. Dominguez et al., High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism, vol.8, p.21046, 2018.

R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. Vandersypen, Spins in few-electron quantum dots, Rev. Mod. Phys, vol.79, p.1217, 2007.

F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. Hollenberg et al., Silicon quantum electronics. RMP, vol.85, p.961, 2013.

F. H. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack et al., Driven coherent oscillations of a single electron spin in a quantum dot, Nature, pp.442-766, 2006.

K. C. Nowack, F. H. Koppens, Y. V. Nazarov, and L. M. , Vandersypen. Coherent control of a single electron spin with electric fields, Science, vol.318, p.1430, 2007.

F. H. Koppens, J. A. Folk, J. M. Elzerman, R. Hanson, L. H. Van-beveren et al., Control and detection of singlettriplet mixing in a random nuclear field, Science, vol.309, p.1346, 2005.

F. Qassemi, W. A. Coish, and F. K. Wilhelm, Stationary and transient leakage current in the pauli spin blockade, Phys. Rev. Lett, vol.102, p.176806, 2009.

S. Nadj-perge, S. M. Frolov, J. W. Van-tilburg, J. Danon, Y. V. Nazarov et al., Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade, Phys. Rev. B, vol.81, p.201305, 2010.

J. Danon and Y. V. Nazarov, Pauli spin blockade in the presence of strong spin-orbit coupling, PRB, vol.80, p.41301, 2009.

M. Hofheinz, Coulomb blockade in silicon nanowire MOSFETs, 2006.
URL : https://hal.archives-ouvertes.fr/tel-00131052

S. Nadj-perge, S. M. Frolov, E. P. Bakkers, and L. P. , Kouwenhoven. Spin-orbit qubit in a semiconductor nanowire, Nature, pp.468-1084, 2010.

J. W. Van-den, S. Berg, V. S. Nadj-perge, S. R. Pribiag, E. P. Plissard et al., Fast spin-orbit qubit in an indium antimonide nanowire, Phys. Rev. Lett, vol.110, p.66806, 2013.

H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu et al., Dephasing time of gaas electron-spin qubits coupled to a nuclear bath exceeding 200us, Nat. Phys, vol.7, p.109, 2011.

G. De-lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, Universal dynamical decoupling of a single solid-state spin from a spin bath, Science, vol.330, p.60, 2010.

B. M. Maune, M. G. Borselli, B. Huang, T. D. Ladd, P. W. Deelman et al.,

. Hunter, Coherent singlet-triplet oscillations in a silicon-based double quantum dot, Nature, pp.481-344, 2012.

X. Wu, D. R. Ward, J. R. Prance, D. Kim, J. K. Gamble et al., Two-axis control of a singlet-triplet qubit with an integrated micromagnet, Proc. Natl. Acad. Sci, vol.111, p.11938, 2014.

C. Testelin, F. Bernardot, B. Eble, and M. Chamarro, Hole-spin dephasing time associated with hyperfine interaction in quantum dots, Phys. Rev. B, vol.79, p.195440, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01229257

R. Li, F. E. Hudson, A. S. Dzurak, and A. R. Hamilton, Pauli spin blockade of heavy holes in a silicon double quantum dot, Nano Lett, vol.15, p.7314, 2015.

B. Voisin, R. Maurand, S. Barraud, M. Vinet, X. Jehl et al., Electrical control of g-factor in a few-hole silicon nanowire mosfet, Nano Lett, vol.16, p.88, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02009388

D. Kotekar-patil, A. Corna, R. Maurand, A. Crippa, A. Orlov et al., Pauli spin blockade in cmos double quantum dot devices, Phys. Status Solidi B, vol.254, p.1600581, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02005908

W. G. Van-der-wiel, S. De-franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha et al., Electron transport through double quantum dots, Rev. Mod. Phys, vol.75, p.1, 2002.

V. N. Golovach, X. Jehl, M. Houzet, M. Pierre, B. Roche et al., Single-dopant resonance in a single-electron transistor, Phys. Rev. B, vol.83, p.75401, 2011.

Y. M. Niquet, D. Rideau, C. Tavernier, H. Jaouen, and X. Blase, Onsite matrix elements of the tight-binding hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys, vol.79, p.245201, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00992736

M. Pierre, M. Hofheinz, X. Jehl, M. Sanquer, G. Molas et al., Background charges and quantum effects in quantum dots transport spectroscopy, Eur. Phys. J. B, vol.70, p.475, 2009.

K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Current rectification by pauli exclusion in a weakly coupled double quantum dots system, Science, vol.297, p.1313, 2002.

G. Yamahata, T. Kodera, H. O. Churchill, K. Uchida, C. M. Marcus et al., Magnetic field dependence of pauli spin blockade: A window into the sources of spin relaxation in silicon qunatum dots, Phys. Rev. B, vol.86, p.115322, 2012.

A. Pfund, I. Shorubalko, K. Ensslin, and R. Leturcq, Suppression of spin relaxation in an inas nanowire double quantum dot, Phys. Rev. Lett, vol.99, p.36801, 2007.

S. V. Pribiag, S. Nadj-perge, S. M. Frolov, J. W. Van-den, I. Berg et al., Electrical control of single hole spins in naowire quantum dots, Nat. Nanotechnol, vol.8, p.170, 2013.

A. Zarassi, Z. Su, J. Danon, J. Schwenderling, M. Hocevar et al., Magnetic field evolution of spin blockade in ge/si nanowire double quantum dots, Phys. Rev. B, vol.95, p.155416, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01555601

L. V. Assali, H. M. Petrilli, R. B. Capaz, B. Koiller, X. Hu et al., Hyperfine interactions in silicon quantum dots, vol.83, p.165301, 2011.

S. Nadj-perge, V. S. Pribiag, J. W. Van-den, K. Berg, S. R. Zuo et al., Kouwenhoven. Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires, Phys. Rev. Lett, vol.108, p.166801, 2012.

T. H. Stoof and Y. V. Nazarov, Time-dependent resonant tunneling via two discrete states, vol.53, p.1050, 1996.

X. Hao, R. Ruskov, M. Xiao, C. Tahan, and H. Jiang, Electron spin resonance and spin-valley physics in a silicon double quantum dot, Nature Communications, vol.5, p.3860, 2014.

B. Voisin, Control of electrons and uniques dopants in silicon transistors, 2013.

Z. Zeng, F. Triozon, S. Barraud, and Y. Niquet, A simple interpolation model for the carrier mobility in trigate and gate-all-around silicon nwfets, IEEE Transactions on Electron Devices, vol.64, p.2485, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01973715

L. Bourdet, J. Li, J. Pelloux-prayer, F. Triozon, M. Cassé et al., Contact resistances REFERENCES in trigate and finfet devices in a non-equilibrium green's functions approach, Journal of Applied Physics, pp.119-084503

M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee et al., A single-atom transistor, Nature Nanotechnology, vol.7, p.242, 2012.

H. Bohuslavskyi, S. Barraud, M. Cassé, V. Barrai, B. Bertrand et al., 28nm fully-depleted soi technology: Cryogenic control electronics for quantum computing, Silicon Nanoelectronics Workshop, pp.143-144, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02018135

H. Bohuslavskyi, S. Barraud, V. Barral, M. Casse, L. L. Guevel et al., Cryogenic characterization of 28nm fdsoi ring oscillators with energy efficiency optimization, IEEE Transactions on Electron Devices, pp.65-3682, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887151

A. Beckers, F. Jazaeri, H. Bohuslavskyi, L. Hutin, S. D. Franceschi et al., Design-oriented modeling of 28 nm fdsoi cmos technology down to 4.2 k for quantum computing, Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon, pp.1-4, 2018.

B. Doris, B. Desalvo, K. Cheng, P. Morin, and M. Vinet, Planar fully-depleted-silicon-on-insulator technologies: Toward the 28nm node and beyond, Solid-State Electronics, pp.117-154, 2016.

N. Planes, O. Weber, V. Barral, S. Haendler, D. Noblet et al., 28nm fdsoi technology platform for high-speed lowvoltage digital applications, 2012 Symposium on VLSI Technology (VLSIT), pp.133-134, 2012.

D. Jacquet, F. Hasbani, P. Flatresse, R. Wilson, F. Arnaud et al.,

P. Menut, A. Cathelin, I. Vongsavady, and P. Magarshack, A 3 ghz dual core processor arm cortex tm -a9 in 28 nm utbb fd-soi cmos with ultra-wide voltage range and energy efficiency optimization, IEEE Journal of Solid-State Circuits, vol.49, p.812, 2014.

T. Skotnicki, C. Fenouillet-beranger, C. Gallon, F. Boeuf, S. Monfray et al., Innovative materials, devices, and cmos technologies for low-power mobile multimedia, IEEE Transactions on Electron Devices, pp.55-96, 2008.

C. Fenouillet-beranger, P. Perreau, L. Tosti, O. Thomas, J. Noel et al., Low power utbox and back plane (bp) fdsoi technology for 32nm node and below, 2011 IEEE International Conference on IC Design & Technology, pp.1-4, 2011.

A. Ortiz-conde, F. J. Sanchez, J. J. Liou, A. Cerdeira, M. Estrada et al., A review of recent mosfet threshold voltage extraction methods. Microelectronics Reliability, pp.42-583, 2002.

E. D. Gutierrez, J. Deen, and C. Claeys, Low Temperature Electronics: Physics, Devices, Circuits, and Applications, 2001.

R. Wacquez, M. Vinet, M. Pierre, B. Roche, X. Jehl et al., Single dopant impact on electrical characteristics of soi nmosfets with effective length down to 10nm, 2010 Symposium on VLSI Technology, pp.193-194, 2010.

F. Balestra and G. Ghibaudo, Device and Circuit Cryogenic Operation for Low Temperature Electronics, 2001.

F. Balestra and G. Ghibaudo, Brief review of the mos device physics for low temperature electronics, Solid-State Electronics, pp.37-1967, 1994.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 2006.

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, On the universality of inversion layer mobility in si mosfet's: Part i-effects of substrate impurity concentration, IEEE Transactions on Electron Devices, pp.41-2357, 1994.

S. Saito, D. Hisamoto, S. Kimura, and M. Hiratani, Unified mobility model for high-/spl kappa/ gate stacks

, IEEE International Electron Devices Meeting, 2003.

S. M. Thomas, M. J. Prest, T. E. Whall, D. R. Leadley, P. Toniutti et al., On the role of coulomb scattering in hafnium-silicate gated silicon n and p-channel metal-oxide-semiconductor-field-effect-transistors, Journal of Applied Physics, pp.110-124503, 2011.

M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, Effective electron mobility in si inversion layers in metal-oxide-semiconductor systems with a high-k insulator: The role of remote phonon scattering, Journal of Applied Physics, pp.90-4587, 2001.

S. Datta, G. Dewey, M. Doczy, B. S. Doyle, B. Jin et al., High mobility si/sige strained channel mos transistors with hfo/sub 2//tin gate stack, IEEE International Electron Devices Meeting, 2003.

C. G. Sodini, T. W. Ekstedt, and J. L. Moll, Charge accumulation and mobility in thin dielectric mos transistors, Solid-State Electronics, vol.25, p.833, 1982.

G. Ghibaudo, New method for the extraction of mosfet parameters, Electronics Letters, pp.24-543, 1988.
URL : https://hal.archives-ouvertes.fr/jpa-00227914

M. Casse, L. Thevenod, B. Guillaumot, L. Tosti, F. Martin et al., Carrier transport in hfo/sub 2//metal gate mosfets: physical insight into critical parameters, IEEE Transactions on Electron Devices, vol.53, p.759, 2006.

V. Nguyen, Y. Niquet, F. Triozon, I. Duchemin, O. Nier et al., Quantum modeling of the carrier mobility in fdsoi devices, IEEE Transactions on Electron Devices, vol.61, p.3096, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02137701

L. Brunet, X. Garros, F. Andrieu, G. Reimbold, E. Vincent et al., New method to extract interface states density at the back and the front gate interfaces of fdsoi transistors from cv-gv measurements, IEEE International SOI Conference, pp.1-2, 2009.

R. M. Incandela, L. Song, H. A. Homulle, F. Sebastiano, E. Charbon et al., Nanometer cmos characterization and compact modeling at deep-cryogenic temperatures, pp.58-61, 2017.

N. C. Dao, A. E. Kass, M. R. Azghadi, C. T. Jin, J. Scott et al., An enhanced mosfet threshold voltage model for the 6-300k temperature range. Microelectronics Reliability, pp.69-105, 2017.

T. Elewa, F. Balestra, S. Cristoloveanu, I. M. Hafez, and J. ,

A. Colinge,

J. R. Auberton-herve and . Davis, Performance and physical mechanisms in simox mos transistors operated at very low temperature, IEEE Transactions on Electron Devices, vol.37, p.1007, 1990.

M. Lundstrom, Fundamentals of Nanotransistors: 6 (Lessons from Nanoscience: A Lecture Notes Series), 2017.

M. Shin, Electrical Characterization and Modeling of advanced FD-SOI transistors for sub-22nm nodes, 2015.

M. Mouis, J. W. Lee, D. Jeon, M. Shi, M. Shin et al., Source/drain induced defects in advanced mosfets: what device electrical characterization tells, Phys. Status Solidi C, vol.11, p.138, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02050888

B. K. Esfeh, M. Masselus, N. Planes, M. Haond, and J. ,

D. Raskin, V. Flandre, and . Kilchytska, 28 fdsoi analog and rf figures of merit at cryogenic temperatures, Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), pp.1-3, 2018.

V. Kilchytska, S. Makovejev, S. Barraud, T. Poiroux, J. Raskin et al., Trigate nanowire mosfets analog figures of merit, Solid-State Electronics, pp.112-78, 2015.

Z. Lun, D. S. Ang, and C. H. Ling, A novel subthreshold slope technique for the extraction of the buried-oxide interface trap density in the fully depleted soi mosfet, IEEE Electron Device Letters, vol.21, p.411, 2000.

P. Galy, J. C. Lemyre, P. Lemieux, F. Arnaud, D. Drouin et al., Cryogenic temperature characterization of a 28-nm fd-soi dedicated structure for advanced cmos and quantum technologies co-integration, IEEE Journal of the Electron Devices Society, vol.6, p.594, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01914251

R. S. Murphy, Prospects for the MOS transistor as a high frequency device, INAOE, 1997.

H. Homulle, S. Visser, B. Patra, and E. Charbon, Design techniques for a stable operation of cryogenic field-programmable gate arrays, Review of Scientific Instruments, vol.89, p.14703, 2018.

B. Lengeler, Semiconductor devices suitable for use in cryogenic environments, Cryogenics, vol.14, p.439, 1974.

A. Beckers, F. Jazaeri, and C. Enz, Characterization and modeling of 28 nm bulk cmos technology down to 4.2 k, IEEE Journal of the Electron Devices Society, pp.1-1, 2018.

A. Akturk, M. Holloway, S. Potbhare, D. Gundlach, B. Li et al., Compact and distributed modeling of cryogenic bulk mosfet operation, IEEE Transactions on Electron Devices, vol.57, p.1334, 2010.

A. Beckers, F. Jazaeri, and C. Enz, Cryogenic mos transistor model, IEEE Transactions on Electron Devices, pp.1-9, 2018.

I. M. Hafez, G. Ghibaudo, and F. Balestra, Assessment of interface state density in silicon metal-oxide-semiconductor transistors at room, liquid-nitrogen, and liquid-helium temperatures, Journal of Applied Physics, vol.67, p.1950, 1990.

B. Roche, B. Voisin, X. Jehl, R. Wacquez, M. Sanquer et al., A tunable, dual mode field-effect or single electron transistor, Appl. Phys. Lett, vol.100, p.32107, 2012.

M. Cassé, K. Tachi, S. Thiele, and T. Ernst, Spectroscopic charge pumping in si nanowire transistors with a high-/metal gate, Appl. Phys. Lett, vol.96, p.123506, 2010.

G. Ghibaudo, Transport in the inversion layer of a mos transistor: use of kubo-greenwood formalism, Journal of Physics C: Solid State Physics, pp.19-767, 1986.

N. Ma and D. Jena, Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor fieldeffect transistors, 2D Materials, 2 015003, 2015.

W. Bludau, A. Onton, and W. Heinke, Temperature dependence of the band gap of silicon, Journal of Applied Physics, pp.45-1846, 1974.

T. Poiroux, O. Rozeau, P. Scheer, S. Martinie, M. Jaud et al., Leti-utsoi2.1: A compact model for utbb-fdsoi technologies-part ii: Dc and ac model description, IEEE Transactions on Electron Devices, vol.62, p.2760, 2015.

D. Kitamaru, Y. Uetsuji, N. Sadachika, and M. Miura-mattausch, Complete surface-potential-based fully-depleted silicon-on-insulator metal-oxide-semiconductor field-effect-transistor model for circuit simulation, Japanese Journal of Applied Physics, pp.43-2166, 2004.

I. M. Lifshitz, The energy spectrum of disordered systems, Advances in Physics, pp.13-483, 1964.

A. Gold, J. Serre, and A. Ghazali, Density of states in a twodimensional electron gas: Impurity bands and band tails, PRB, vol.37, p.4589, 1988.

P. Van-mieghem, Theory of band tails in heavily doped semiconductors, RMP, vol.64, p.755, 1992.

S. Yaida, Instanton calculus of lifshitz tails, vol.93, 2016.

N. Mott and E. A. Davis, Electronic processes in non crystalline materials, 1979.

S. A. Vitale, J. Kedzierski, P. Healey, P. W. Wyatt, and C. L. Keast, Work-function-tuned tin metal gate fdsoi transistors for subthreshold operation, IEEE Transactions on Electron Devices, vol.58, p.419, 2011.

F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. K. Ko et al., Dynamic threshold-voltage mosfet (dtmos) for ultra-low voltage vlsi, IEEE Transactions on Electron Devices, pp.44-414, 1997.

H. Soeleman, K. Roy, and B. C. Paul, Robust subthreshold logic for ultra-low power operation, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9 90, 2001.

V. Kilchytska, A. Neve, L. Vancaillie, D. Levacq, S. Adriaensen et al., Influence of device engineering on the analog and rf performances of soi mosfets, IEEE Transactions on Electron Devices, pp.50-577, 2003.

T. Tanaka, Y. Momiyama, and T. Sugii, Fmax enhancement of dynamic threshold-voltage mosfet (dtmos) under ultra-low supply voltage, International Electron Devices Meeting. IEDM Technical Digest, pp.423-426, 1997.

C. H. Chenming, Modern Semiconductor Devices for Integrated Circuits, 2009.

J. Laramée, M. J. Aubin, and J. D. Cheeke, Behavior of cmos inverters at cryogenic temperatures. Solid-State Electronics, pp.28-453, 1985.

J. B. Burr, Cryogenic ultra low power cmos, IEEE Symposium on Low Power Electronics. Digest of Technical Papers, pp.82-83, 1995.

E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle, S. Visser et al., Cryo-cmos for quantum computing, Presentation given during 2016 IEEE International Electron Devices Meeting (IEDM), 2016.

J. Yuan, K. A. Moen, J. D. Cressler, H. Rücker, B. Heinemann et al., Sige hbt cml ring oscillator with 2.3-ps gate delay at cryogenic temperatures, IEEE Transactions on Electron Devices, vol.57, p.1183, 2010.

H. Homulle, L. Song, E. Charbon, and F. Sebastiano, The cryogenic temperature behavior of bipolar, mos, and dtmos transistors in standard cmos, IEEE Journal of the Electron Devices Society, vol.6, 2018.

M. L. Schneider, C. A. Donnelly, S. E. Russek, B. Baek, M. R. Pufall et al., Rippard. Ultralow power artificial synapses using nanotextured magnetic josephson junctions, Sci Adv, vol.4, 2018.

I. V. Vernik, T. A. Ohki, M. B. Ketchen, and M. Bhushan, Performance characterization of pd-soi ring oscillators at cryogenic temperatures, 2010 IEEE International SOI Conference (SOI), pp.1-2, 2010.

P. Clapera, S. Ray, X. Jehl, M. Sanquer, A. Valentian et al., Design and cryogenic operation of a hybrid quantum-cmos circuit, p.44009, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01588270

L. Hutin, R. Maurand, D. Kotekar-patil, A. Corna, H. Bohuslavskyi et al., Si cmos platform for quantum information processing, IEEE Symposium on VLSI Technology, pp.1-2, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02018109

M. Shin, M. Shi, M. Mouis, A. Cros, E. Josse et al., Low temperature characterization of 14nm fdsoi cmos devices, 11th International Workshop on Low Temperature Electronics (WOLTE), pp.29-32, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02049067

M. H. Na, E. J. Nowak, W. Haensch, and J. Cai, The effective drive current in cmos inverters, Digest. International Electron Devices Meeting, pp.121-124, 2002.

B. Zhai, L. Nazhandali, J. Olson, A. Reeves, M. Minuth et al., A 2.60pj/inst subthreshold sensor processor for optimal energy efficiency, Symposium on VLSI Circuits, pp.154-155, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00552680

B. Zhai, S. Pant, L. Nazhandali, S. Hanson, J. Olson et al., Energy-efficient subthreshold processor design, IEEE Transactions, pp.17-1127, 2009.

J. Hu, J. E. Park, G. Freeman, and H. S. Wong, Effective drive current in cmos inverters for sub-45nm technologies, NTSI Nanotech, 2008.

F. Jazaeri, A. Pezzotta, and C. Enz, Free carrier mobility extraction in fets, IEEE Transactions on Electron Devices, vol.64, p.5279, 2017.

F. Sebastiano, H. Homulle, B. Patra, R. Incandela, J. Van-dijk et al., Cryo-cmos electronic control for scalable quantum computing, 54th ACM/EDAC/IEEE Design Automation Conference (DAC), pp.1-6, 2017.

M. Sanquer, M. Specht, L. Ghenim, S. Deleonibus, and G. Guegan, Coulomb blockade in low-mobility nanometer size si mosfet's. PRB, pp.61-7249, 2000.

J. P. Van-dijk, E. Kawakami, R. N. Schouten, M. Veldhorst, L. M. Vandersypen et al., The impact of classical control electronics on qubit fidelity, 2018.

S. Kamohara, N. Sugii, K. Ishibashi, K. Usami, H. Amano et al., A perpetuum mobile 32bit cpu on 65nm sotb cmos technology with reverse-body-bias assisted sleep mode, IEEE Hot Chips 26 Symposium (HCS), pp.1-1, 2014.

N. Sugii, Y. Yamamoto, H. Makiyama, T. Yamashita, H. Oda et al., , 2014.

E. G. Ioannidis, S. Haendler, C. G. Theodorou, N. Planes, C. A. Dimitriadis et al., Statistical analysis of dynamic variability in 28nm fd-soi mosfets, pp.214-217, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02001909

J. Ekin, Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing, 2006.

B. E. Kane, A silicon-based nuclear spin quantum computer, Nature, vol.393, p.133, 1998.

W. H. Lim, F. A. Zwanenburg, H. Huebl, M. Möttönen, K. W. Chan et al., Observation of the single-electron regime in a highly tunable silicon quantum dot, Appl. Phys. Lett, vol.95, p.242102, 2009.

X. Jehl, B. Voisin, B. Roche, E. Dupont-ferrier, S. D. Franceschi et al., The coupled atom transistor, Journal of Physics: Condensed Matter, vol.27, p.154206, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01611290

G. P. Lansbergen, R. Rahman, C. J. Wellard, I. Woo, J. Caro et al., Gate-induced quantum-confinement transition of a single dopant atom in a silicon finfet, Nature Physics, pp.4-656, 2008.

M. Urdampilleta, A. Chatterjee, C. C. Lo, T. Kobayashi, J. Mansir et al., Charge dynamics and spin blockade in a hybrid double quantum dot in silicon, Phys. Rev. X, vol.5, p.31024, 2015.

A. C. Betz, R. Wacquez, M. Vinet, X. Jehl, A. L. Saraiva et al., Dispersively detected pauli spin-blockade in a silicon nanowire field-effect transistor, Nano Lett, vol.15, p.4622, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01587150

T. F. Watson, B. Weber, Y. Hsueh, L. C. Hollenberg, R. Rahman et al., Atomically engineered electron spin lifetimes of 30 s in silicon, Sci Adv, p.3, 2017.

E. Dupont-ferrier, B. Roche, B. Voisin, X. Jehl, R. Wacquez et al., Coherent coupling of two dopants in a silicon nanowire probed by landau-zener-stückelberg interferometry, Phys. Rev. Lett, vol.110, p.136802, 2013.

B. Roche, R. Riwar, B. Voisin, E. Dupont-ferrier, R. Wacquez et al., A two-atom electron pump, Nature Communications, vol.4, p.1581, 2013.

P. Harvey-collard, N. T. Jacobson, M. Rudolph, J. Dominguez, G. A. Eyck et al., Coherent coupling between a quantum dot and a donor in silicon, Nature Communications, vol.8, p.1029, 2017.

K. Ono, G. Giavaras, T. Tanamoto, T. Ohguro, X. Hu et al., Hole spin resonance and spin-orbit coupling in a silicon metal-oxidesemiconductor field-effect transistor, Phys. Rev. Lett, vol.119, p.156802, 2017.

X. Jehl, M. Sanquer, G. Bertrand, G. Guegan, S. Deleonibus et al., Silicon single electron transistors with soi and mosfet structures: the role of access resistances, IEEE Transactions on Nanotechnology, vol.2, p.308, 2003.

L. L. Guevel, G. Billiot, H. Bohuslavskyi, S. Barraud, L. Hutin et al., Fdsoi cryogenic electronics for quantum computing, 2018.

X. Jehl, B. Voisin, T. Charron, P. Clapera, S. Ray et al., Hybrid metal-semiconductor electron pump for quantum metrology, vol.3, p.21012, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02009836

L. P. Kouwenhoven, A. T. Johnson, N. C. Van-der, C. J. Vaart, C. T. Harmans et al., Quantized current in a quantum-dot turnstile using oscillating tunnel barriers, PRL, vol.67, p.1626, 1991.

L. J. Geerligs, V. F. Anderegg, P. A. Holweg, J. E. Mooij, H. Pothier et al., Frequency-locked turnstile device for single electrons, PRL, vol.64, p.2691, 1990.