Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol.1, 2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed et al., Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, IEEE Signal processing magazine, vol.29, issue.6, pp.82-97, 2012.

A. Graves, A. Mohamed, and G. Hinton, Speech recognition with deep recurrent neural networks, Acoustics, speech and signal processing (icassp), 2013 ieee international conference on, pp.6645-6649, 2013.

R. Collobert and J. Weston, A unified architecture for natural language processing: Deep neural networks with multitask learning, Proceedings of the 25th international conference on Machine learning, pp.160-167, 2008.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, Advances in neural information processing systems, pp.3111-3119, 2013.

D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly learning to align and translate, 2014.

I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with neural networks, Advances in neural information processing systems, pp.3104-3112, 2014.

G. Lample, M. Ott, A. Conneau, L. Denoyer, and M. Ranzato, Phrase-based & neural unsupervised machine translation, 2018.

A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature, vol.542, issue.7639, p.115, 2017.

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, Advances in neural information processing systems, pp.2672-2680, 2014.

A. Radford, L. Metz, and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, 2015.

A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. Lecun, The loss surfaces of multilayer networks, Artificial Intelligence and Statistics, pp.192-204, 2015.

S. Mallat, Understanding deep convolutional networks, Phil. Trans. R. Soc. A, vol.374, p.20150203, 2016.

J. Kadmon and H. Sompolinsky, Optimal architectures in a solvable model of deep networks, Advances in Neural Information Processing Systems, pp.4781-4789, 2016.

M. Baity-jesi, L. Sagun, M. Geiger, S. Spigler, G. B. Arous et al., Comparing dynamics: Deep neural networks versus glassy systems, 2018.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, International conference on machine learning, pp.448-456, 2015.

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau et al., Learning to learn by gradient descent by gradient descent, Advances in Neural Information Processing Systems, pp.3981-3989, 2016.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the inception architecture for computer vision, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.2818-2826, 2016.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, science, vol.220, issue.4598, pp.671-680, 1983.

E. Gardner, Maximum storage capacity in neural networks, Europhysics Letters), vol.4, issue.4, p.481, 1987.

D. J. Amit, H. Gutfreund, and H. Sompolinsky, Storing infinite numbers of patterns in a spin-glass model of neural networks, Physical Review Letters, vol.55, issue.14, p.1530, 1985.

H. Seung, H. Sompolinsky, and N. Tishby, Statistical mechanics of learning from examples, Physical review A, vol.45, issue.8, p.6056, 1992.

R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky, Determining computational complexity from characteristic 'phase transitions, Nature, vol.400, issue.6740, p.133, 1999.

M. Mézard, G. Parisi, and R. Zecchina, Analytic and algorithmic solution of random satisfiability problems, Science, vol.297, issue.5582, pp.812-815, 2002.

F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly et al., Spectral redemption in clustering sparse networks, Proceedings of the National Academy of Sciences, vol.110, issue.52, pp.20935-20940, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01223434

F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, Statistical-physics-based reconstruction in compressed sensing, Physical Review X, vol.2, issue.2, p.21005, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00716897

H. C. Nguyen, R. Zecchina, and J. Berg, Inverse statistical problems: from the inverse ising problem to data science, Advances in Physics, vol.66, issue.3, pp.197-261, 2017.

S. Cocco, R. Monasson, L. Posani, S. Rosay, and J. Tubiana, Statistical physics and representations in real and artificial neural networks, Physica A: Statistical Mechanics and its Applications, vol.504, pp.45-76, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807620

J. Tubiana and R. Monasson, Efficient sampling and parametrization improve restricted boltzmann machines, 2018.

J. Tubiana and R. Monasson, Emergence of compositional representations in restricted boltzmann machines, Physical review letters, vol.118, issue.13, p.138301, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01555107

J. Tubiana, S. Cocco, and R. Monasson, Learning protein constitutive motifs from sequence data, 2018.

J. Tubiana, S. Cocco, and R. Monasson, Learning lattice proteins with restricted boltzmann machines : compositional regime and comparative analysis, 2018.

Y. Lecun, Lectures at Collège de France, 2016.

Y. Bengio, A. Courville, and P. Vincent, Representation learning: A review and new perspectives, IEEE transactions on pattern analysis and machine intelligence, vol.35, pp.1798-1828, 2013.

S. Muellerstein, A. Loccisano, S. Firestine, and J. Evanseck, Principal components analysis: A review of its application on molecular dynamics data, Annual Reports in Computational Chemistry, vol.2, pp.233-66, 2006.

M. A. Turk and A. P. Pentland, Face recognition using eigenfaces, Computer Vision and Pattern Recognition, pp.586-591, 1991.

D. L. Ruderman and W. Bialek, Statistics of natural images: Scaling in the woods, Advances in neural information processing systems, pp.551-558, 1994.

A. Hyvärinen, J. Karhunen, and E. Oja, , vol.46, 2004.

B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, vol.381, issue.6583, p.607, 1996.

A. Ng, Sparse autoencoder, CS294A Lecture notes, vol.72, pp.1-19, 2011.

T. Lee, M. Girolami, A. J. Bell, and T. J. Sejnowski, A unifying information-theoretic framework for independent component analysis, Computers & Mathematics with Applications, vol.39, issue.11, pp.1-21, 2000.

D. L. Ringach, R. M. Shapley, and M. J. Hawken, Orientation selectivity in macaque v1: diversity and laminar dependence, Journal of Neuroscience, vol.22, issue.13, pp.5639-5651, 2002.

J. Zylberberg, J. T. Murphy, and M. R. Deweese, A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of v1 simple cell receptive fields, PLoS computational biology, vol.7, issue.10, p.1002250, 2011.

T. Poggio and F. Anselmi, Visual cortex and deep networks: learning invariant representations, 2016.

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller et al., API design for machine learning software: experiences from the scikitlearn project, ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp.108-122, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00856511

J. Mairal, M. Elad, and G. Sapiro, Sparse representation for color image restoration, IEEE Transactions on image processing, vol.17, issue.1, pp.53-69, 2008.

D. Taubman and M. Marcellin, JPEG2000 image compression fundamentals, standards and practice: image compression fundamentals, standards and practice, vol.642, 2012.

A. J. Bell and T. J. Sejnowski, The "independent components" of natural scenes are edge filters, Vision research, vol.37, issue.23, pp.3327-3338, 1997.

S. Makeig, A. J. Bell, T. Jung, and T. J. Sejnowski, Independent component analysis of electroencephalographic data, Advances in neural information processing systems, pp.145-151, 1996.

M. J. Mckeown, S. Makeig, G. G. Brown, T. Jung, S. S. Kindermann et al., Analysis of fmri data by blind separation into independent spatial components, Human brain mapping, vol.6, issue.3, pp.160-188, 1998.

D. L. Donoho, Compressed sensing, IEEE Transactions on information theory, vol.52, issue.4, pp.1289-1306, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00369486

D. Donoho and J. Tanner, Observed universality of phase transitions in highdimensional geometry, with implications for modern data analysis and signal processing, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.367, pp.4273-4293, 1906.

M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, Compressed sensing mri, IEEE signal processing magazine, vol.25, issue.2, pp.72-82, 2008.

E. Ising, Beitrag zur theorie des ferromagnetismus, Zeitschrift für Physik, vol.31, issue.1, pp.253-258, 1925.

L. Onsager, Crystal statistics. i. a two-dimensional model with an order-disorder transition, Physical Review, vol.65, issue.3-4, p.117, 1944.

P. W. Anderson, Absence of diffusion in certain random lattices, Physical review, vol.109, issue.5, p.1492, 1958.

P. W. Anderson, Localized magnetic states in metals, Physical Review, vol.124, issue.1, p.41, 1961.

J. L. Lebowitz and O. Penrose, Rigorous treatment of the van der waals-maxwell theory of the liquid-vapor transition, Journal of Mathematical Physics, vol.7, issue.1, pp.98-113, 1966.

S. Kirkpatrick and D. Sherrington, Infinite-ranged models of spin-glasses, Physical Review B, vol.17, issue.11, p.4384, 1978.

J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the national academy of sciences, vol.79, pp.2554-2558, 1982.

D. J. Amit, Modeling brain function: The world of attractor neural networks, 1992.

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learning algorithm for boltzmann machines, Cognitive science, vol.9, issue.1, pp.147-169, 1985.

P. Smolensky, Information processing in dynamical systems: Foundations of harmony theory, tech. rep., COLORADO UNIV AT BOULDER DEPT OF COMPUTER SCIENCE, 1986.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by backpropagating errors, nature, vol.323, issue.6088, p.533, 1986.

G. E. Hinton, Training products of experts by minimizing contrastive divergence, Neural computation, vol.14, issue.8, pp.1771-1800, 2002.

M. Welling, M. Rosen-zvi, and G. E. Hinton, Exponential family harmoniums with an application to information retrieval, Advances in neural information processing systems, pp.1481-1488, 2005.

R. Salakhutdinov, A. Mnih, and G. Hinton, Restricted boltzmann machines for collaborative filtering, Proceedings of the 24th international conference on Machine learning, pp.791-798, 2007.

G. E. Hinton, S. Osindero, and Y. Teh, A fast learning algorithm for deep belief nets, Neural computation, vol.18, issue.7, pp.1527-1554, 2006.

D. Erhan, Y. Bengio, A. Courville, P. Manzagol, P. Vincent et al., Why does unsupervised pre-training help deep learning?, Journal of Machine Learning Research, vol.11, pp.625-660, 2010.

A. Fischer and C. Igel, An introduction to restricted boltzmann machines, Iberoamerican Congress on Pattern Recognition, pp.14-36, 2012.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, The Journal of Machine Learning Research, vol.15, issue.1, pp.1929-1958, 2014.

D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2013.

M. Mezard and A. Montanari, Information, physics, and computation, 2009.

M. Welling and Y. W. Teh, Approximate inference in boltzmann machines, Artificial Intelligence, vol.143, issue.1, pp.19-50, 2003.

M. Mezard and T. Mora, Constraint satisfaction problems and neural networks: A statistical physics perspective, Journal of Physiology-Paris, vol.103, issue.1-2, pp.107-113, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00266040

V. Sessak and R. Monasson, Small-correlation expansions for the inverse ising problem, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.5, p.55001, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00340939

S. Cocco and R. Monasson, Adaptive cluster expansion for inferring boltzmann machines with noisy data, Physical review letters, vol.106, issue.9, p.90601, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00566281

S. Cocco, S. Leibler, and R. Monasson, Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods, Proceedings of the National Academy of Sciences, vol.106, issue.33, pp.14058-14062, 2009.

O. Marre, S. E. Boustani, Y. Frégnac, and A. Destexhe, Prediction of spatiotemporal patterns of neural activity from pairwise correlations, Physical review letters, vol.102, issue.13, p.138101, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00444939

G. Tavoni, U. Ferrari, F. P. Battaglia, S. Cocco, and R. Monasson, Functional coupling networks inferred from prefrontal cortex activity show experience-related effective plasticity, Network Neuroscience, vol.1, issue.3, pp.275-301, 2017.

L. Posani, S. Cocco, K. Je?ek, and R. Monasson, Functional connectivity models for decoding of spatial representations from hippocampal ca1 recordings, Journal of computational neuroscience, vol.43, issue.1, pp.17-33, 2017.

L. Meshulam, J. L. Gauthier, C. D. Brody, D. W. Tank, and W. Bialek, Collective behavior of place and non-place neurons in the hippocampal network, Neuron, vol.96, issue.5, pp.1178-1191, 2017.

L. Posani, S. Cocco, and R. Monasson, Integration and multiplexing of positional and contextual information by the hippocampal network, p.269340, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01880128

S. Cocco, R. Monasson, L. Posani, and G. Tavoni, Functional networks from inverse modeling of neural population activity, Current Opinion in Systems Biology, vol.3, pp.103-110, 2017.

C. Gardella, O. Marre, and T. Mora, Modeling the correlated activity of neural populations: A review, 2018.

W. Bialek, A. Cavagna, I. Giardina, T. Mora, E. Silvestri et al., Statistical mechanics for natural flocks of birds, Proceedings of the National Academy of Sciences, 2012.

T. Bury, Market structure explained by pairwise interactions, Physica A: Statistical Mechanics and its Applications, vol.392, issue.6, pp.1375-1385, 2013.

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, Proceedings of the 27th international conference on machine learning (ICML-10), pp.807-814, 2010.

A. Barra, A. Bernacchia, E. Santucci, and P. Contucci, On the equivalence of hopfield networks and boltzmann machines, Neural Networks, vol.34, pp.1-9, 2012.

N. , L. Roux, and Y. Bengio, Representational power of restricted boltzmann machines and deep belief networks, Neural computation, vol.20, issue.6, pp.1631-1649, 2008.

R. M. Neal, Annealed importance sampling, Statistics and computing, vol.11, issue.2, pp.125-139, 2001.

R. Salakhutdinov and I. Murray, On the quantitative analysis of deep belief networks, Proceedings of the 25th international conference on Machine learning, pp.872-879, 2008.

L. Bottou, Large-scale machine learning with stochastic gradient descent, Proceedings of COMPSTAT'2010, pp.177-186, 2010.

W. Krauth, Statistical mechanics: algorithms and computations, vol.13, 2006.

Y. Bengio and O. Delalleau, Justifying and generalizing contrastive divergence, Neural computation, vol.21, issue.6, pp.1601-1621, 2009.

A. Fischer and C. Igel, Empirical analysis of the divergence of gibbs sampling based learning algorithms for restricted boltzmann machines, International Conference on Artificial Neural Networks, pp.208-217, 2010.

G. Desjardins, A. Courville, Y. Bengio, P. Vincent, and O. Delalleau, Tempered markov chain monte carlo for training of restricted boltzmann machines, Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp.145-152, 2010.

T. Tieleman, Training restricted boltzmann machines using approximations to the likelihood gradient, Proceedings of the 25th international conference on Machine learning, pp.1064-1071, 2008.

L. Younes, On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates, Stochastics: An International Journal of Probability and Stochastic Processes, vol.65, pp.177-228, 1999.

G. Desjardins, A. Courville, and Y. Bengio, Adaptive parallel tempering for stochastic maximum likelihood learning of rbms, 2010.

K. Cho, T. Raiko, and A. Ilin, Parallel tempering is efficient for learning restricted boltzmann machines, The 2010 International Joint Conference on, pp.1-8, 2010.

Y. Sugita and Y. Okamoto, Replica-exchange molecular dynamics method for protein folding, Chemical physics letters, vol.314, issue.1-2, pp.141-151, 1999.

J. R. Anderson and C. Peterson, A mean field theory learning algorithm for neural networks, Complex Systems, vol.1, pp.995-1019, 1987.

S. Cocco and R. Monasson, Adaptive cluster expansion for the inverse ising problem: convergence, algorithm and tests, Journal of Statistical Physics, vol.147, issue.2, pp.252-314, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00634921

J. P. Barton, E. De-leonardis, A. Coucke, and S. Cocco, Ace: adaptive cluster expansion for maximum entropy graphical model inference, Bioinformatics, vol.32, issue.20, pp.3089-3097, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01528510

M. Welling and G. E. Hinton, A new learning algorithm for mean field boltzmann machines, International Conference on Artificial Neural Networks, pp.351-357, 2002.

M. Gabrié, E. W. Tramel, and F. Krzakala, Training restricted boltzmann machine via the? thouless-anderson-palmer free energy, Advances in Neural Information Processing Systems, pp.640-648, 2015.

E. W. Tramel, M. Gabrié, A. Manoel, F. Caltagirone, and F. Krzakala, A deterministic and generalized framework for unsupervised learning with restricted boltzmann machines, 2017.

J. Sohl-dickstein, P. B. Battaglino, and M. R. Deweese, New method for parameter estimation in probabilistic models: minimum probability flow, Physical review letters, vol.107, issue.22, p.220601, 2011.

M. Ekeberg, T. Hartonen, and E. Aurell, Fast pseudolikelihood maximization for directcoupling analysis of protein structure from many homologous amino-acid sequences, Journal of Computational Physics, vol.276, pp.341-356, 2014.

D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp.1027-1035, 2007.

N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton, Smem algorithm for mixture models, Neural computation, vol.12, issue.9, pp.2109-2128, 2000.

K. Cho, T. Raiko, and A. T. Ihler, Enhanced gradient and adaptive learning rate for training restricted boltzmann machines, Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp.105-112, 2011.

G. E. Hinton, A practical guide to training restricted boltzmann machines, pp.599-619, 2012.

D. C. Liu and J. , On the limited memory bfgs method for large scale optimization, Mathematical programming, vol.45, issue.1-3, pp.503-528, 1989.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initialization and momentum in deep learning, International conference on machine learning, pp.1139-1147, 2013.

G. Montavon and K. Müller, Deep boltzmann machines and the centering trick, Neural Networks: Tricks of the Trade, pp.621-637, 2012.

H. Shimodaira, Improving predictive inference under covariate shift by weighting the log-likelihood function, Journal of statistical planning and inference, vol.90, issue.2, pp.227-244, 2000.

R. Salakhutdinov, Learning deep boltzmann machines using adaptive mcmc, Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp.943-950, 2010.

C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther, Ladder variational autoencoders, Advances in neural information processing systems, pp.3738-3746, 2016.

L. Mescheder, S. Nowozin, and A. Geiger, Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks, 2017.

W. A. Little, The existence of persistent states in the brain, From High-Temperature Superconductivity to Microminiature Refrigeration, pp.145-164, 1974.

D. J. Amit, H. Gutfreund, and H. Sompolinsky, Spin-glass models of neural networks, Physical Review A, vol.32, issue.2, p.1007, 1985.

D. J. Amit, H. Gutfreund, and H. Sompolinsky, Statistical mechanics of neural networks near saturation, Annals of physics, vol.173, issue.1, pp.30-67, 1987.

M. Mézard, G. Parisi, and M. Virasoro, Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications, vol.9, 1987.

M. Mézard, Mean-field message-passing equations in the hopfield model and its generalizations, Physical Review E, vol.95, issue.2, p.22117, 2017.

W. Gerstner and J. L. Van-hemmen, Associative memory in a network of 'spiking'neurons, Network: Computation in Neural Systems, vol.3, issue.2, pp.139-164, 1992.

D. J. Amit, H. Gutfreund, and H. Sompolinsky, Information storage in neural networks with low levels of activity, Physical Review A, vol.35, issue.5, p.2293, 1987.

M. V. Tsodyks and M. V. Feigel'man, The enhanced storage capacity in neural networks with low activity level, Europhysics Letters), vol.6, issue.2, p.101, 1988.

M. Tsodyks, Associative memory in asymmetric diluted network with low level of activity, Europhysics Letters), vol.7, issue.3, p.203, 1988.

L. Personnaz, I. Guyon, and G. Dreyfus, Collective computational properties of neural networks: New learning mechanisms, Physical Review A, vol.34, issue.5, p.4217, 1986.

I. Kanter and H. Sompolinsky, Associative recall of memory without errors, Physical Review A, vol.35, issue.1, p.380, 1987.

E. Agliari, A. Barra, A. Galluzzi, F. Guerra, and F. Moauro, Multitasking associative networks, Physical review letters, vol.109, issue.26, p.268101, 2012.

E. Agliari, A. Annibale, A. Barra, A. Coolen, and D. Tantari, Immune networks: multitasking capabilities near saturation, Journal of Physics A: Mathematical and Theoretical, vol.46, issue.41, p.415003, 2013.

P. Sollich, D. Tantari, A. Annibale, and A. Barra, Extensive parallel processing on scale-free networks, Physical review letters, vol.113, issue.23, p.238106, 2014.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow et al., Theano: new features and speed improvements, 2012.

G. Parisi, Order parameter for spin-glasses, Physical Review Letters, vol.50, issue.24, p.1946, 1983.

M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M. Virasoro, Nature of the spin-glass phase, Physical review letters, vol.52, issue.13, p.1156, 1984.

A. Decelle, G. Fissore, and C. Furtlehner, Spectral dynamics of learning in restricted boltzmann machines, Europhysics Letters), vol.119, issue.6, p.60001, 2017.

A. Decelle, G. Fissore, and C. Furtlehner, Thermodynamics of restricted boltzmann machines and related learning dynamics, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01675310

M. J. Macias, V. Gervais, C. Civera, and H. Oschkinat, Structural analysis of ww domains and design of a ww prototype, Nature Structural and Molecular Biology, vol.7, issue.5, p.375, 2000.

W. P. Russ, D. M. Lowery, P. Mishra, M. B. Yaffe, and R. Ranganathan, Natural-like function in artificial ww domains, Nature, vol.437, issue.7058, pp.579-583, 2005.

C. , Mossbauer spectroscopy in biological systems, vol.67, pp.22-24, 1969.

C. B. Anfinsen, Principles that govern the folding of protein chains, Science, vol.181, issue.4096, pp.223-230, 1973.

K. Lindorff-larsen, S. Piana, R. O. Dror, and D. E. Shaw, How fast-folding proteins fold, Science, vol.334, issue.6055, pp.517-520, 2011.

K. A. Dill and J. L. Maccallum, The protein-folding problem, 50 years on, science, vol.338, issue.6110, pp.1042-1046, 2012.

S. Kmiecik, D. Gront, M. Kolinski, L. Wieteska, A. E. Dawid et al., Coarsegrained protein models and their applications, Chemical Reviews, vol.116, issue.14, pp.7898-7936, 2016.

C. Dominguez, R. Boelens, and A. M. Bonvin, Haddock: a protein-protein docking approach based on biochemical or biophysical information, Journal of the American Chemical Society, vol.125, issue.7, pp.1731-1737, 2003.

D. Schneidman-duhovny, Y. Inbar, R. Nussinov, and H. J. Wolfson, Patchdock and symmdock: servers for rigid and symmetric docking, Nucleic acids research, vol.33, issue.suppl_2, pp.363-367, 2005.

D. D. Boehr, R. Nussinov, and P. E. Wright, The role of dynamic conformational ensembles in biomolecular recognition, Nature chemical biology, vol.5, issue.11, p.789, 2009.

A. Goate, M. Chartier-harlin, M. Mullan, J. Brown, F. Crawford et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial alzheimer's disease, Nature, vol.349, issue.6311, p.704, 1991.

J. Wang, B. J. Gu, C. L. Masters, and Y. Wang, A systemic view of alzheimer disease-insights from amyloid-? metabolism beyond the brain, Nature Reviews Neurology, vol.13, issue.10, p.612, 2017.

M. R. Arkin, Y. Tang, and J. A. Wells, Small-molecule inhibitors of protein-protein interactions: progressing toward the reality, Chemistry & biology, vol.21, issue.9, pp.1102-1114, 2014.

D. E. Scott, A. R. Bayly, C. Abell, and J. Skidmore, Small molecules, big targets: drug discovery faces the protein-protein interaction challenge, Nature Reviews Drug Discovery, vol.15, issue.8, p.533, 2016.

M. Bakail and F. Ochsenbein, Targeting protein-protein interactions, a wide open field for drug design, Comptes Rendus Chimie, vol.19, issue.1-2, pp.19-27, 2016.

G. P. Smith and V. A. Petrenko, Phage display, Chemical reviews, vol.97, issue.2, pp.391-410, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01677196

B. I. Dahiyat and S. L. Mayo, De novo protein design: fully automated sequence selection, Science, vol.278, issue.5335, pp.82-87, 1997.

B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard et al., Design of a novel globular protein fold with atomic-level accuracy, science, vol.302, issue.5649, pp.1364-1368, 2003.

C. A. Rohl, C. E. Strauss, K. M. Misura, and D. Baker, Protein structure prediction using rosetta, Methods in enzymology, vol.383, pp.66-93, 2004.

O. Khersonsky and S. J. Fleishman, Why reinvent the wheel? building new proteins based on ready-made parts, Protein Science, vol.25, issue.7, pp.1179-1187, 2016.

P. Huang, S. E. Boyken, and D. Baker, The coming of age of de novo protein design, Nature, vol.537, issue.7620, p.320, 2016.

S. Gonen, F. Dimaio, T. Gonen, and D. Baker, Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces, Science, vol.348, issue.6241, pp.1365-1368, 2015.

J. B. Bale, S. Gonen, Y. Liu, W. Sheffler, D. Ellis et al., Accurate design of megadalton-scale two-component icosahedral protein complexes, Science, vol.353, issue.6297, pp.389-394, 2016.

J. Nakai, M. Ohkura, and K. Imoto, A high signal-to-noise ca 2+ probe composed of a single green fluorescent protein, Nature biotechnology, vol.19, issue.2, p.137, 2001.

U. Consortium, Uniprot: the universal protein knowledgebase, Nucleic acids research, vol.46, issue.5, p.2699, 2018.

S. R. Eddy, Accelerated profile hmm searches, PLoS computational biology, vol.7, issue.10, p.1002195, 2011.

U. Göbel, C. Sander, R. Schneider, and A. Valencia, Correlated mutations and residue contacts in proteins, Proteins: Structure, Function, and Bioinformatics, vol.18, issue.4, pp.309-317, 1994.

J. Cheng and P. Baldi, Improved residue contact prediction using support vector machines and a large feature set, BMC bioinformatics, vol.8, issue.1, p.113, 2007.

M. Weigt, R. A. White, H. Szurmant, J. A. Hoch, and T. Hwa, Identification of direct residue contacts in protein-protein interaction by message passing, Proceedings of the National Academy of Sciences, vol.106, issue.1, pp.67-72, 2009.

F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks et al., Direct-coupling analysis of residue coevolution captures native contacts across many protein families, Proceedings of the National Academy of Sciences, vol.108, issue.49, pp.1293-1301, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01589010

S. Cocco, C. Feinauer, M. Figliuzzi, R. Monasson, and M. Weigt, Inverse statistical physics of protein sequences: A key issues review, Reports on Progress in Physics, vol.81, issue.3, p.32601, 2018.

H. Kamisetty, S. Ovchinnikov, and D. Baker, Assessing the utility of coevolution-based residue-residue contact predictions in a sequence-and structure-rich era, Proceedings of the National Academy of Sciences, vol.110, issue.39, pp.15674-15679, 2013.

D. T. Jones, D. W. Buchan, D. Cozzetto, and M. Pontil, Psicov: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments, Bioinformatics, vol.28, issue.2, pp.184-190, 2011.

S. Ovchinnikov, D. E. Kim, R. Y. Wang, Y. Liu, F. Dimaio et al., Improved de novo structure prediction in casp 11 by incorporating coevolution information into rosetta, Proteins: Structure, Function, and Bioinformatics, vol.84, pp.67-75, 2016.

S. Ovchinnikov, H. Park, N. Varghese, P. Huang, G. A. Pavlopoulos et al., Protein structure determination using metagenome sequence data, Science, vol.355, issue.6322, pp.294-298, 2017.

M. J. Skwark, D. Raimondi, M. Michel, and A. Elofsson, Improved contact predictions using the recognition of protein like contact patterns, PLoS computational biology, vol.10, issue.11, p.1003889, 2014.

S. Wang, S. Sun, Z. Li, R. Zhang, and J. Xu, Accurate de novo prediction of protein contact map by ultra-deep learning model, PLoS computational biology, vol.13, issue.1, p.1005324, 2017.

D. Malinverni, S. Marsili, A. Barducci, and P. De-los-rios, Large-scale conformational transitions and dimerization are encoded in the amino-acid sequences of hsp70 chaperones, PLoS computational biology, vol.11, issue.6, p.1004262, 2015.

S. Ovchinnikov, H. Kamisetty, and D. Baker, Robust and accurate prediction of residueresidue interactions across protein interfaces using evolutionary information, Elife, vol.3, p.2030, 2014.

T. A. Hopf, C. P. Schärfe, J. P. Rodrigues, A. G. Green, O. Kohlbacher et al., Sequence co-evolution gives 3d contacts and structures of protein complexes, Elife, vol.3, p.3430, 2014.

J. Yu, M. Vavrusa, J. Andreani, J. Rey, P. Tufféry et al., Interevdock: a docking server to predict the structure of protein-protein interactions using evolutionary information, Nucleic acids research, vol.44, issue.W1, pp.542-549, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455572

J. K. Mann, J. P. Barton, A. L. Ferguson, S. Omarjee, B. D. Walker et al., The fitness landscape of hiv-1 gag: Advanced modeling approaches and validation of model predictions by in vitro testing, PLoS Comput Biol, vol.10, p.1003776, 2014.

M. Figliuzzi, H. Jacquier, A. Schug, O. Tenaillon, and M. Weigt, Coevolutionary landscape inference and the context-dependence of mutations in beta-lactamase tem-1, Molecular Biology and Evolution, vol.33, issue.1, pp.268-280, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01284957

T. A. Hopf, J. B. Ingraham, F. J. Poelwijk, C. P. Schärfe, M. Springer et al., Mutation effects predicted from sequence co-variation, Nature biotechnology, vol.35, issue.2, p.128, 2017.

W. Bialek and R. Ranganathan, Rediscovering the power of pairwise interactions, 2007.

A. Coucke, High dimensional inference with correlated data: statistical modeling of protein sequences beyond structural prediction, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01736980

M. Jäger, Y. Zhang, J. Bieschke, H. Nguyen, M. Dendle et al., Structure-function-folding relationship in a ww domain, Proceedings of the National Academy of Sciences, vol.103, issue.28, pp.10648-10653, 2006.

A. Coucke, G. Uguzzoni, F. Oteri, S. Cocco, R. Monasson et al., Direct coevolutionary couplings reflect biophysical residue interactions in proteins, The Journal of chemical physics, vol.145, issue.17, p.174102, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01528504

S. W. Lockless and R. Ranganathan, Evolutionarily conserved pathways of energetic connectivity in protein families, Science, vol.286, issue.5438, pp.295-299, 1999.

G. Casari, C. Sander, and A. Valencia, A method to predict functional residues in proteins, Nature Structural and Molecular Biology, vol.2, issue.2, p.171, 1995.

D. M. Weinreich, Y. Lan, C. S. Wylie, and R. B. Heckendorn, Should evolutionary geneticists worry about higher-order epistasis?, Current opinion in genetics & development, vol.23, pp.700-707, 2013.

F. J. Poelwijk, M. Socolich, and R. Ranganathan, Learning the pattern of epistasis linking genotype and phenotype in a protein, p.213835, 2017.

N. Halabi, O. Rivoire, S. Leibler, and R. Ranganathan, Protein sectors: evolutionary units of three-dimensional structure, Cell, vol.138, issue.4, pp.774-786, 2009.

O. Rivoire, K. A. Reynolds, and R. Ranganathan, Evolution-based functional decomposition of proteins, PLoS computational biology, vol.12, issue.6, p.1004817, 2016.

R. N. Mclaughlin, F. J. Poelwijk, A. Raman, W. S. Gosal, and R. Ranganathan, The spatial architecture of protein function and adaptation, Nature, vol.491, issue.7422, p.138, 2012.

R. G. Smock, O. Rivoire, W. P. Russ, J. F. Swain, S. Leibler et al., An interdomain sector mediating allostery in hsp70 molecular chaperones, Molecular systems biology, vol.6, issue.1, p.414, 2010.

T. Te?ileanu, L. J. Colwell, and S. Leibler, Protein sectors: Statistical coupling analysis versus conservation, PLoS computational biology, vol.11, issue.2, p.1004091, 2015.

E. Shakhnovich and A. Gutin, Enumeration of all compact conformations of copolymers with random sequence of links, The Journal of Chemical Physics, vol.93, issue.8, pp.5967-5971, 1990.

L. Mirny and E. Shakhnovich, Protein folding theory: From lattice to all-atom models, Annual Review of Biophysics and Biomolecular Structure, vol.30, issue.1, p.11340064, 2001.

H. Jacquin, A. Gilson, E. Shakhnovich, S. Cocco, and R. Monasson, Benchmarking inverse statistical approaches for protein structure and design with exactly solvable models, PLoS computational biology, vol.12, issue.5, p.1004889, 2016.

M. Sudol, H. I. Chen, C. Bougeret, A. Einbond, and P. Bork, Characterization of a novel protein-binding module-the ww domain, FEBS letters, vol.369, issue.1, pp.67-71, 1995.

P. Ascenzi, A. Bocedi, M. Bolognesi, A. Spallarossa, M. Coletta et al., The bovine basic pancreatic trypsin inhibitor (kunitz inhibitor): a milestone protein, Current Protein and Peptide Science, vol.4, issue.3, pp.231-251, 2003.

B. Bukau and A. L. Horwich, The hsp70 and hsp60 chaperone machines, Cell, vol.92, issue.3, pp.351-366, 1998.

S. Miyazawa and R. L. Jernigan, Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading, Journal of molecular biology, vol.256, issue.3, pp.623-644, 1996.

M. Sudol and T. Hunter, New wrinkles for an old domain, Cell, vol.103, issue.7, pp.1001-1004, 2000.

X. Espanel and M. Sudol, A single point mutation in a group i ww domain shifts its specificity to that of group ii ww domains, Journal of Biological Chemistry, vol.274, issue.24, pp.17284-17289, 1999.

D. M. Fowler, C. L. Araya, S. J. Fleishman, E. H. Kellogg, J. J. Stephany et al., High-resolution mapping of protein sequence-function relationships, Nature methods, vol.7, issue.9, p.741, 2010.

Y. Kato, M. Ito, K. Kawai, K. Nagata, and M. Tanokura, Determinants of ligand specificity in groups i and iv ww domains as studied by surface plasmon resonance and model building, Journal of Biological Chemistry, vol.277, issue.12, pp.10173-10177, 2002.

L. Otte, U. Wiedemann, B. Schlegel, J. R. Pires, M. Beyermann et al., Ww domain sequence activity relationships identified using ligand recognition propensities of 42 ww domains, Protein Science, vol.12, issue.3, pp.491-500, 2003.

H. Shigetomi, A. Onogi, H. Kajiwara, S. Yoshida, N. Furukawa et al., Anti-inflammatory actions of serine protease inhibitors containing the kunitz domain, Inflammation research, vol.59, issue.9, pp.679-687, 2010.

M. S. Bajaj, J. J. Birktoft, S. A. Steer, and S. P. Bajaj, Structure and biology of tissue factor pathway inhibitor, Thrombosis and haemostasis, vol.86, issue.04, pp.959-972, 2001.

E. Fries and A. M. Blom, Bikunin-not just a plasma proteinase inhibitor, The international journal of biochemistry & cell biology, vol.32, issue.2, pp.125-137, 2000.

M. Levitt and A. Warshel, Computer simulation of protein folding, Nature, vol.253, issue.5494, p.694, 1975.

T. A. Hopf, L. J. Colwell, R. Sheridan, B. Rost, C. Sander et al., Threedimensional structures of membrane proteins from genomic sequencing, Cell, vol.149, issue.7, pp.1607-1621, 2012.

S. Cocco, R. Monasson, and M. Weigt, From principal component to direct coupling analysis of coevolution in proteins: Low-eigenvalue modes are needed for structure prediction, PLoS computational biology, vol.9, issue.8, p.1003176, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00764377

A. Haldane, W. F. Flynn, P. He, and R. M. Levy, Coevolutionary landscape of kinase family proteins: Sequence probabilities and functional motifs, Biophysical journal, vol.114, issue.1, pp.21-31, 2018.

R. D. Finn, A. Bateman, J. Clements, P. Coggill, R. Y. Eberhardt et al., Pfam: the protein families database, Nucleic acids research, vol.42, issue.D1, pp.222-230, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01294685

M. Marquart, J. Walter, J. Deisenhofer, W. Bode, and R. Huber, The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors, Acta Crystallographica Section B: Structural Science, vol.39, issue.4, pp.480-490, 1983.

M. Chen, D. R. Keene, F. K. Costa, S. H. Tahk, and D. T. Woodley, The carboxyl terminus of type vii collagen mediates antiparallel-dimer formation and constitutes a new antigenic epitope for eba autoantibodies, Journal of Biological Chemistry, 2001.

E. Kohfeldt, W. Göhring, U. Mayer, M. Zweckstetter, T. A. Holak et al., Conversion of the kunitz-type module of collagen vi into a highly active trypsin inhibitor by site-directed mutagenesis, European journal of biochemistry, vol.238, issue.2, pp.333-340, 1996.

D. Kirchhofer, M. Peek, W. Li, J. Stamos, C. Eigenbrot et al., Tissue expression, protease specificity, and kunitz domain functions of hepatocyte growth factor activator inhibitor-1b (hai-1b), a new splice variant of hai-1, Journal of Biological Chemistry, vol.278, issue.38, pp.36341-36349, 2003.

A. Grzesiak, I. Krokoszynska, D. Krowarsch, O. Buczek, M. Dadlez et al., Inhibition of six serine proteinases of the human coagulation system by mutants of bovine pancreatic trypsin inhibitor, Journal of Biological Chemistry, vol.275, issue.43, pp.33346-33352, 2000.

H. S. Chand, A. E. Schmidt, S. P. Bajaj, and W. Kisiel, Structure function analysis of the reactive site in the first kunitz-type domain of human tissue factor pathway inhibitor-2, Journal of Biological Chemistry, 2004.

K. Merigeau, B. Arnoux, D. Perahia, K. Norris, F. Norris et al., 1.2 å refinement of the kunitz-type domain from the ?3 chain of human type vi collagen, Acta Crystallographica Section D: Biological Crystallography, vol.54, issue.3, pp.306-312, 1998.

J. Kraut, Serine proteases: structure and mechanism of catalysis, Annual review of biochemistry, vol.46, issue.1, pp.331-358, 1977.

J. J. Perona and C. S. Craik, Structural basis of substrate specificity in the serine proteases, Protein Science, vol.4, issue.3, pp.337-360, 1995.

L. Hedstrom, Serine protease mechanism and specificity, Chemical reviews, vol.102, issue.12, pp.4501-4524, 2002.

J. J. Perona and C. S. Craik, Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold, Journal of Biological Chemistry, vol.272, issue.48, pp.29987-29990, 1997.

L. Hedstrom, J. J. Perona, and W. J. Rutter, Converting trypsin to chymotrypsin: residue 172 is a substrate specificity determinant, Biochemistry, vol.33, issue.29, pp.8757-8763, 1994.

L. Hedstrom, S. Farr-jones, C. A. Kettner, and W. J. Rutter, Converting trypsin to chymotrypsin: ground-state binding does not determine substrate specificity, Biochemistry, vol.33, issue.29, pp.8764-8769, 1994.

A. J. Guseman, S. L. Speer, G. M. Perez-goncalves, and G. J. Pielak, Surface charge modulates protein-protein interactions in physiologically relevant environments, Biochemistry, vol.57, issue.11, pp.1681-1684, 2018.

A. Pasternak, D. Ringe, and L. Hedstrom, Comparison of anionic and cationic trypsinogens: the anionic activation domain is more flexible in solution and differs in its mode of bpti binding in the crystal structure, Protein science, vol.8, issue.1, pp.253-258, 1999.

J. C. Young, V. R. Agashe, K. Siegers, and F. U. Hartl, Pathways of chaperone-mediated protein folding in the cytosol, Nature reviews Molecular cell biology, vol.5, issue.10, p.781, 2004.

E. R. Zuiderweg, L. E. Hightower, and J. E. Gestwicki, The remarkable multivalency of the hsp70 chaperones, Cell Stress and Chaperones, vol.22, issue.2, pp.173-189, 2017.

P. Bork, C. Sander, and A. Valencia, An atpase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins, Proceedings of the National Academy of Sciences, vol.89, issue.16, pp.7290-7294, 1992.

C. Scheufler, A. Brinker, G. Bourenkov, S. Pegoraro, L. Moroder et al., Structure of tpr domain-peptide complexes: critical elements in the assembly of the hsp70-hsp90 multichaperone machine, Cell, vol.101, issue.2, pp.199-210, 2000.

A. Buchberger, H. Schröder, M. Büttner, A. Valencia, and B. Bukau, A conserved loop in the atpase domain of the dnak chaperone is essential for stable binding of grpe, Nature Structural and Molecular Biology, vol.1, issue.2, p.95, 1994.

D. Brehmer, S. Rüdiger, C. S. Gässler, D. Klostermeier, L. Packschies et al., Tuning of chaperone activity of hsp70 proteins by modulation of nucleotide exchange, Nature Structural and Molecular Biology, vol.8, issue.5, p.427, 2001.

K. Briknarová, S. Takayama, L. Brive, M. L. Havert, D. A. Knee et al., Structural analysis of bag1 cochaperone and its interactions with hsc70 heat shock protein, Nature Structural and Molecular Biology, vol.8, issue.4, p.349, 2001.

H. Sondermann, C. Scheufler, C. Schneider, J. Höhfeld, F. Hartl et al., Structure of a bag/hsc70 complex: convergent functional evolution of hsp70 nucleotide exchange factors, Science, vol.291, issue.5508, pp.1553-1557, 2001.

R. Qi, E. B. Sarbeng, Q. Liu, K. Q. Le, X. Xu et al., Allosteric opening of the polypeptide-binding site when an hsp70 binds atp, Nature Structural and Molecular Biology, vol.20, issue.7, p.900, 2013.

E. B. Bertelsen, L. Chang, J. E. Gestwicki, and E. R. Zuiderweg, Solution conformation of wild-type e. coli hsp70 (dnak) chaperone complexed with adp and substrate, Proceedings of the National Academy of Sciences, vol.106, issue.21, pp.8471-8476, 2009.

C. J. Oldfield and A. K. Dunker, Intrinsically disordered proteins and intrinsically disordered protein regions, Annual review of biochemistry, vol.83, pp.553-584, 2014.

E. B. Sarbeng, Q. Liu, X. Tian, J. Yang, H. Li et al., A functional dnak dimer is essential for the efficient interaction with heat shock protein 40 kda (hsp40), Journal of Biological Chemistry, p.114, 2015.

N. Morgner, C. Schmidt, V. Beilsten-edmands, I. Ebong, N. A. Patel et al., Hsp70 forms antiparallel dimers stabilized by post-translational modifications to position clients for transfer to hsp90, Cell reports, vol.11, issue.5, pp.759-769, 2015.

S. Sinai, E. Kelsic, G. M. Church, and M. A. Novak, Variational auto-encoding of protein sequences, 2017.

A. J. Riesselman, J. B. Ingraham, and D. S. Marks, Deep generative models of genetic variation capture mutation effects, 2017.