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Abstract

Phonons contribute to resonant inelastic X-ray scattering (RIXS) as a consequence of

the coupling between electronic and lattice degrees of freedom. Unlike other techniques

that are sensitive to electron-phonon interactions, RIXS can give access to momentum

dependent coupling constants. Information about the dispersion of the electron-phonon

interaction is highly desirable in the context of understanding anisotropic conventional

and unconventional superconductivity [1, 2].

We considered the phonon contribution to RIXS from the theoretical point of

view. In contrast to previous studies [3–5], we emphasize the role of the core-hole

lattice coupling. Our model, with parameters obtained from first principles, shows that

even in the case of a deep core-hole, RIXS probes exciton-phonon coupling rather than

a direct electron-phonon coupling.

This difference leads to quantitative and qualitative deviations from the interpre-

tation of the implied electron-phonon coupling from the standard view expressed in the

literature. Thus, our objective is to develop a rigorous approach to quantify electron-

phonon coupling within the context of RIXS measurements. The ability to accurately

reproduce experimental results from first-principles calculations, without recourse to

adjustable parameters, should be viewed as the ultimate test of a proper understanding

of the phonon contribution to RIXS.

We start by considering only the core-hole–phonon interaction within the context

of X-ray photoemission spectroscopy. We combine an ab initio calculation of the real-

space response function with many-body Green’s functions techniques to reproduce the

vibrational side-bands in SiX4 (X = H,F) molecules. The approach we developed is

suitable for application to crystalline materials.
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We next consider the phonon contribution to X-ray absorption spectra. Unlike

the charged excitations generated by X-ray photoemission, X-ray absorption creates a

neutral excitation that we approximate as a core-hole and an excited electron. We first

solved the electronic part of the problem on the level of the Bethe-Salpeter equation

and then dressed the resulting 2-particle excitonic quasiparticle with the exciton-phonon

interactions using the cumulant ansatz. The viability of this methodology was tested

by calculating the N K-edge XAS of the N2 molecule and the O K−edge of acetone.

The resulting vibronic spectra agreed favorably with experimental results.

Finally, we construct a hybrid formulation of the RIXS cross section that preserves

explicit summation over a small number of final states, but replaces the summation over

intermediate states, which might be enormously expensive, with a Green’s function. We

develop an expansion of the Green’s function and derive both analytically exact (in the

no-recoil limit) and approximate solutions. The formalism was again tested on the O

K−edge of acetone and agrees well with the experiment. To provide an outlook towards

future work, we discuss application of the developed formalism to crystalline materials.
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Résumé

Les phonons contribuent à la diffusion inélastique résonante des rayons X (RIXS) du fait

du couplage entre les degrés de liberté électronique et ceux du réseau. Contrairement à

d’autres techniques sensibles aux interactions électron-phonon, la technique RIXS peut

donner accès aux constantes de couplage dépendantes du moment. Des informations

sur la dispersion de l’interaction électron-phonon sont très précieuses dans le contexte

de la supraconductivité anisotrope conventionnelle et non conventionnelle [1, 2].

Nous avons considéré la contribution des phonons sur la diffusion RIXS d’un point

de vue théorique. Contrairement aux études précédentes, [3–5], nous soulignons le

rôle du couplage du réseau avec les trous de coeur. Notre modèle, avec les paramètres

obtenus ab-initio, montre que même dans le cas d’un trou de coeur profond, la technique

RIXS sonde le couplage exciton-phonon plutôt qu’un couplage direct électron-phonon.

Cette différence conduit à des écarts quantitatifs et qualitatifs pour le couplage

électron-phonon implicite par rapport à l’interprétation standard dans la littérature.

Ainsi, notre objectif est de développer une approche rigoureuse pour quantifier le cou-

plage électron-phonon dans le contexte des mesures de diffusion RIXS. La possibilité

de reproduire avec précision les résultats expérimentaux à partir des calculs ab-initio,

sans recourir à des paramètres ajustés, doit être considérée comme le test ultime d’une

compréhension correcte de la contribution des phonons sur la diffusion RIXS.

Nous commençons notre travail en considérant uniquement l’interaction trou de

coeur-phonon dans le contexte de la spectroscopie par photoémission de rayons X. Nous

combinons un calcul ab-initio de la fonction de réponse en espace réel avec des tech-

niques de fonctions de Green à plusieurs corps pour reproduire les bandes latérales vibra-

tionnelles dans les molécules SiX4 (X = H,F). L’approche que nous avons développée

peut être appliquée aux matériaux cristallins.
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Nous examinons ensuite la contribution des phonons aux spectres d’absorption des

rayons X. Contrairement aux excitations chargées générées par la photoémission par

rayons X, l’absorption des rayons X crée une excitation neutre que nous approchons en

tant que trou de coeur et électron excité. Nous résolvons d’abord la partie électronique

du problème au niveau de l’équation de Bethe-Salpeter, puis nous habillons la quasi-

particule excitonique à 2 particules résultante avec les interactions exciton-phonon en

utilisant l’Ansatz des cumulants. La viabilité de cette méthode a été testée en calculant

le seuil K XAS de la molécule N2 et le seuil K d’Oxygène de l’acétone. Les spectres

vibrationnels obtenus concordent avec les résultats expérimentaux.

Enfin, nous construisons une formulation hybride de la section transversale RIXS

qui préserve la sommation explicite sur un petit nombre d’états finals, mais remplace la

sommation sur les états intermédiaires, ce qui pourrait être extrêmement coûteux, par

une fonction de Green. Nous avons obtenu un développement de la fonction de Green et

dérivé des solutions analytiques exactes (dans la limite de non-recul) et approximatives.

Le formalisme a de nouveau été testé sur le seuil K de l’acétone et est bien en accord

avec l’expérience. En perspectives des travaux futurs, nous discutons de l’applicabilité

de notre formalisme aux matériaux cristallins.
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Chapter 1

Introduction

This chapter introduces some general aspects of the electron-phonon interaction,

particularly as it related to the theory of superconductivity. We further discuss

experimental techniques that are used to obtain information about the coupling

between the electronic and lattice degrees of freedom.

Contents

1.1 Electron-phonon interaction . . . . . . . . . . . . . . . . . . 2

1.2 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Quantifying electron-phonon coupling . . . . . . . . . . . . 5
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1.1. ELECTRON-PHONON INTERACTION

1.1 Electron-phonon interaction

Electron-phonon coupling (EPC) is an inescapable aspect of condensed matter systems

that has a pronounced influence on many quantities of interest. Interactions between

electrons and phonons induce structural and magnetic transitions and contribute to

the temperature dependence of charge and spin transport [6–11]. We first introduce a

generic many-body Hamiltonian which describes the interaction between electronic and

lattice subsystems, following [12, 13] we have

H = He +HI +
∑
ij

Vei(ri −Rj) . (1.1)

Here, the electronic part He part normally contains the electron kinetic term and all

electron-electron interaction; HI describes the lattice subsystem. The electron-lattice

interaction (Vei) is governed by the potential which depends on both coordinates of

the electrons ri and ions Rj. The origin of this potential is the electron-ion attractive

interaction, but the explicit form depends on the particular approximation for the

generic many-body problem [11]. In the absence of the electron-lattice interaction one

can write the total wave-function simply as a product of the electronic and lattice parts

|ψtot〉 = |ψe〉 |ψI〉. This is not any more correct in the presence of the mutual interaction.

The solution in the fully interacting case can be found by expanding the electron-lattice

potential around the equilibrium positions. Atomic displacements Qj are taken to be

a small parameter, and the resulting potential which acts on an electron becomes

Vei(ri) =
∑
j

Vei(R
0
j−ri)+

∑
j

∇RVei(R
0
j−ri)Qj+

1

2!

∑
j,j′

(∇R)2Vei(R
0
j−ri)QjQj′+O(Q3) .

(1.2)

It follows that we can first solve the electronic problem in the presence of the static

external potential which is defined by the term Vei(R
0
j − ri). Then the dynamics of

the electron-ion potential can be accounted for using Eq. 1.2 in a perturbative way.

Combing Eqs. 1.1 and 1.2 in the second quantization formalism we have [11, 12]

H =
∑
α

εαc
+
α cα +

∑
ν

ων(b
+
ν bν + 1/2) +

∑
α1,α2,ν

Mν
α1,α2

c+
α1
cα2(bν + b+

ν )

+
∑

α1,α2,ν,ν′

(M (2))ν,ν
′

α2,α1
c+
α1
cα2(bν + b+

ν )(bν′ + b+
ν′) . (1.3)

2



1.2. SUPERCONDUCTIVITY

Here we assumed harmonic lattice vibrations (phonons) and b+
ν and bν are the phonon

creation and annihilation operators, respectively. The energy of an electron εα is defined

in the presence of the equilibrium ion potential and c+
α , cα are electron creation and

annihilation operators respectively. The subscript α = {n,k} represents the band

index and momentum vector of the electron, while ν = {λ, q} stands for the phonon

mode and wave-vector. Electron-phonon interaction terms are defined in this context

by the first and the second order coupling constants Mν
α,α, (M (2))ν,ν

′
α,α , respectively.

1.2 Superconductivity

In addition to dictating the electronic transport properties of metals [6, 14] and renor-

malizing the electronic bands in semiconductors and insulators [15–18], the electron-

phonon interaction produces the attractive force between electrons that binds Cooper

pairs in conventional Bardeen–Cooper–Schrieffer (BCS) superconductors [19].

The theory of conventional superconductivity requires the presence of an attractive

potential apart from the Coulomb repulsion. This competitive interaction leads to the

formation of the quasi-particle states close to the Fermi level. For conventional super-

conductors, the attractive potential is generated by the electron-phonon interaction.

Thus, the critical temperature Tc of the normal-superconducting state transition de-

pends on the strength of the electron-phonon interaction (λ). The approximate relation

between Tc and λ is given by McMillan [20]

Tc =
θD

1.145
exp[− 1.04(1 + λ)

λ− µ∗ − 0.62λµ∗
] (1.4)

where µ∗ is related to the double average of the Coulomb potential on the Fermi surface.

The parameter λ is a double average of the Eliashberg function [7] on Fermi surface

λ =
∑
kk′

1

N(0)2

∫ ∞
0

dω′α2Fkk′(ω′)
2ω′

ω2
n + (ω′)2

δ(εk)δ(εk′) , (1.5)

where the Fermi energy is set to zero and the momentum dependent Eliashberg function

is

α2Fkk′ =
∑
λ

|Mk,k′ |2δ(ω − ωλ(k − k′)) . (1.6)

3



1.2. SUPERCONDUCTIVITY

The latter reflects the Migdal [6] approximation for the self-energy, i.e., neglects the

electron-phonon vertex correction. The parameter λ also gives the electron mass en-

chantment at the Fermi energy. Improvements of Eq. 1.4 can found elsewhere [11, 13].

In general, one finds the critical temperature by solving the coupled equations for the

temperature dependent energy gap ∆ and the quasi-particle renormalization function

Z(iω) in the Eliashberg theory [21] (for the isotropic case)

Z(iωn) = 1 +
1

|2n+ 1|
∑
n′

[λ(n− n′) + δnn′(γN + γP )]δnn′

Z(iωn)∆(iωn) =

|ω′n<ωc|∑
n′

[λ(n− n′)− µ∗ + δnn′(γN − γP )]∆(iωn) . (1.7)

The n for which a non-trivial solution of ∆ exists gives the critical temperature. The

inverse lifetimes γP and γN correspond to the average over the Fermi surface of the

interaction with paramagnetic and non-magnetic impurities receptively.

The isotropic approximation is mainly valid for metallic superconductors. In this

case, the momentum dependence of the electron-phonon coupling constant does not

play an essential role since all modes and wave-vectors contribute to the formation

of the superconducting states. This is, however, not the case for the unconventional

superconductors which show strong anisotropic properties [1] and thus need careful

treatment of the momentum dependence of the coupling strengths.

The discovery of the high-temperature copper-based superconductors [22] proves

that there are still missing parts in the description of the superconducting state. The

description of the modern theories of unconventional superconductivity goes beyond the

purpose of this section and can be found elsewhere [23, 24]. Although we do not want

to make any claim in favor of one or another interpretation, we would like to emphasize

the role of the mutual influence of the electron and lattice degrees of freedom in phase

transitions in general.

Unconventional superconductivity is accompanied by a complex phase diagram,

i.e., different symmetry breakings with respect to the carrier level dopping or other

external parameters. This can be seen as a result of the existence of multiple intertwined

orders, including spin, charge and lattice degrees of freedom [2, 23]. This interplay

between different degrees of freedom is particular to excitations around quantum critical
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points in strongly correlated materials. To get a complete picture, one has to obtain

full information on the strengths of these interactions including coupling to the lattice

degrees of freedom [1, 25, 26].

Although the electron-phonon interaction on its own is not sufficient for unconven-

tional superconductivity, it may still play a role in the formation of such phenomena

[27–29]. The dispersion relation of the electron-phonon interaction is tightly connected

with the formation of charge density waves and can boost or suppress the creation of

superconducting pairs [30, 31], depending on the wave-vector. This motivates mapping

the electron-phonon coupling strength throughout the Brillouin zone.

1.3 Quantifying electron-phonon coupling

Several experimental techniques can measure electron-phonon coupling strengths to

varying degrees of efficacy.

Inelastic scattering Inelastic neutron scattering is an excellent and well-established

technique to experimentally measure the dispersion of low-energy collective excitations

such as phonons. Here, the linewidth of phonon features contains information about

electron-phonon coupling. The electron-phonon coupling Mν′

kk′ contributes to the self-

energy of the phonon Green’s function through the vertices in the polarization diagrams.

Phonon self-energy then contains double average over BZ and all electronic energies of

this matrix elements and defines linewidth for every phonon mode2. However, the over-

all broadening of the phonon peaks is quite small, which makes it difficult to determine

charateristic coupling constant even for compounds with strong electron-phonon inter-

action [32]. Conventional inelastic X-ray scattering can provide similar information as

inelastic neutron scattering [33, 34].

Charged and neutral excitations The electron-phonon interaction can also be

probed by investigating electronic spectra of materials. For example, in angle-resolved

photo-emission spectroscopy (ARPES), which can map the dispersion of the valence

electron bands, the electron-phonon interaction manifests as an anomalous ’kinks’ on

the band structure, or even produces satellite structure [35–37]. The dispersion of
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the electron-phonon coupling constant appears as a correction to the quasi-particle

picture and renormalizes quasiparticle energies and spectral weights, and bestows them

with lifetimes [18, 38, 39]. But ARPES probes an effective coupling constant averaged

over the phonon modes and wave-vectors. One can also consider scanning tunneling

spectroscopy [40, 41] or electron energy loss spectroscopy [42]. In the same spirit,

neutral excitations can be used to detect the electron-phonon interaction, such as in

Raman and optical spectroscopies [43, 44].

All of these approaches have certain unsatisfactory limitations concerning accu-

rately quantifying the electron-phonon interaction strength throughout the full Bril-

louin zone. Resonant inelastic X-ray scattering (RIXS) – which can generate collective

excitations by the perturbation present in the intermediate, resonantly core-excited

state – has emerged in the last decade as a new technique for accomplishing this ob-

jective [2, 3]. RIXS holds certain advantages over these other techniques including

element and orbital selectivity, sensitivity to small sample quantities, and momentum

resolution. Most importantly, it is commonly assumed that RIXS offers a direct probe

of electron-phonon coupling [2, 45], contrary to the indirect nature of some of the other

measurements.
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Chapter 2

Resonant Inelastic X-ray Scattering

The purpose of this chapter is to provide an overview of the RIXS technique and

motivate our subsequent studies. We will briefly discuss different methods to calculate

the phonon contribution in RIXS, and will show the importance of the core-hole in

the formation of the phonon contribution in RIXS.
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2.1. INTRODUCTION

2.1 Introduction

Resonant inelastic X-ray scattering (RIXS) is a technique based on the second order in-

teraction of an X-ray photon with matter. This means that RIXS involves two photons,

which we label incoming and outgoing. The energy of the incoming photon is normally

tuned to be close to the resonant transition of a core-electron to a conduction level; this

leads to the resonant photon absorption. The following de-excitation and emission of

the outgoing photon creates the final state, which might be different from the ground-

state. Quantities of particular interest are the energy loss (ωloss = ωi(ki) − ωo(ko)),

momentum transfer (q = kin+kout) and change in the polarization of the photons. The

energy and momentum transferred to the sample during the scattering process generate

various excitations in the material, such as orbital, magnon, phonon, charge transfer,

charge density wave, etc. One of the advantages of RIXS is the long life-time of the

final states and consequently high resolution of the spectra. The latter is mainly defined

by the instrumental broadening and today the overall resolution can be better than 25

meV [46]. This gives access to very low energy excitations and offers a powerful probe

for studying unconventional superconductors, strongly correlated systems, and other

materials [1, 26]. Detailed reviews on the RIXS technique can be found here [3, 47].

The RIXS cross-section can be approximated by the second order contribution

from the electron-photon operator with respect to the vector potential A. The electron-

photon interaction in the non-relativistic limit contains terms linear and quadratic in

A [12, 49]

V =
∑
i

[
−1

c
pi ·A(ri)−

1

c
µi ·B(ri) +

1

2c2
|A(ri)|2

]
; B =∇×A . (2.1)

The above expression obtained expanding square term ([pi− 1
c
A]2) in the Hamiltonian

of an electron in the electromagnetic field and accounting for the magnetic field - spin

interactions. This form reflects the choice of gauge ∇ · A = 0. Coordinate position,

momentum and magnetic moment of a given electron are denoted as ri, pi and µi

respectively. Here and after we will refer to the first two terms as V I and to the term

with |A|2 as V II . The vector potential may be written in terms of field creation and
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2.1. INTRODUCTION

annihilation a+
k,α, ak,α operators as

A(r, t) =
∑
k,α

√
2πc2ωk

V
ξ(k, α)(akαe

−iωkt+k·r + h.c.) . (2.2)

Here the index k stands for the momentum of the photon and the subscript α runs over

all different modes and the polarization unit vector ξ gives the polarization of each mode.

The photon field operators obey boson commutation relation [ak,α, a
+
k,α] = δk′kδα,α′ .

For the seek of simplicity we will introduce the following notation for electron-photon

interaction, separating the photon parts (l = kl, αl)

V I
l (t) = [∆I

l ale
−iωlt + h.c.]

V II
l1,l2

(t) = [∆̃II
l1,l2

al1al2e
−i(ωl1+ωl2 )t + h.c.] + [∆II

l1,l2
a+
l1
al2e

−i(ωl2−ωl1 )t + h.c.] (2.3)

The rate of electronic transitions due to interaction with the electromagnetic field

and consequently the cross-section of the inelastic scattering process can be found

from perspectives of time-dependent perturbation theory. Here we should consider

time evolution of initial many-body state which is driven by the following operator

in the interaction picture representation U(t) = eiH0te−iHt, where H = H0 + V and

H0 = Hs
0 + Hp

0 describes the unperturbed electronic system and the free photon parts

respectively. The practilce way to proceed is to expand the time-evolution opera-

tor in the powers of interaction (see Appendix F). Terms which are quadratic in

the vector potential will contribute to the transition rate of the two-photon processes

WFI ∼ d
dt

∣∣∣〈o,ΨF |U(t) |ΨI , i〉(2)
∣∣∣2. However only two of them are relevant for the scat-

tering [48]

〈ψF , o|U(t) |ΨI , i〉(2)
scattering =

[
〈ΨF |∆II

i,o |ΨI〉+
∑
M

〈ΨF | (∆I
o)

+ |ΨM〉 〈ΨM |∆I
i |ΨI〉

(EMI − ωi + iΓM)

]

×(e−i(EFI−ωloss+iΓF )t − 1)

EFI − ωloss + iΓF
. (2.4)

Here we factorized out non-interacting photon’s parts in initial and final wave-

functions leaving only explicit energy dependence. The subscripts i, o represents prop-

erties of incoming and outgoing photon respectively. The following shorthand notation
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are used ωloss = ωo − ωi, EMI = EM −EI and similarly EFI = EF −EI . Here ΨM , ΨI

and ΨF are the many-body wave-functions and EM , EI , EF are the eigenvalues of unper-

turbed Hamiltonian Hs
o . The decay of the intermediate and final states are represented

by the inverse lifetimes ΓM and ΓF respectively. Due to the resonant nature of the pro-

cess, i.e. resonant regarding the transition to the intermediate state ωi ∼ EM −EI , the

contribution from the first term in Eq. 2.4 in the RIXS process is negligible. The ∆II

portion of the first term dominates in non-resonant inelastic X-ray scattering (NRIXS).

Since we will work only with the resonant part from now, we will drop the superscript

of ∆I = ∆ to simplify the notations.

Roughly speaking, RIXS can be viewed as a two step process in which the inter-

mediate states are populated by an XAS-like absorption of the incident photon. The

intermediate states subsequently decay to the final states through an XES-like emission

of the outgoing photon, leaving some set of lower energy excitations in the final state.

In practice, these two processes are poorly separable due to mutual interference effects,

though this view offers an approximate formulation of RIXS in terms of the convolution

of XAS and XES spectra [50]. The full cross-section is given by the Kramers-Heisenberg

equation [51]

σ(ωi, ωloss) =
ωo
ωi

∑
F

∣∣∣∣∣∑
M

〈ΨF |∆+
o |ΨM〉 〈ΨM |∆i |ΨI〉

EMI − ωi + iΓM

∣∣∣∣∣
2

δ(EFI − ωloss) . (2.5)

In practice, due to the local character of a core excitation, ∆i,∆o can be approximated

by the dipole expansion. The inverse core-hole lifetime is defined by ΓM . In principle,

the excited state might decay through different channels. The Auger process, where

the de-excitation of the excited electron is non-radiative and leads to the creation of

another electron, gives a significant contribution to the broadening of the final state

in X-ray absorption in total electron yield measurements. It remains unclear whether

RIXS is sensitive to the Auger decay rate or it the intermediate state lifetime is instead

governed by the fluorescence decay channel, which gives longer core-hole lifetimes.

Equation 2.5 is written with the assumption that the final state has an infinite life-

time. The final state contains various kinds of excitations that have different lifetimes,

but these tend to be much longer than the intermediate state lifetime. This fact makes

RIXS features quite sharp compared to the XAS energy resolution and consequently
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allows access to the fine structure of the electronic transitions.

Figure 2.1: Low energy part of RIXS O K-edge spectrum of quasi-one-dimensional
cuprate compound (Li2CuO2) [4]. The RIXS spectrum (a) showing dd excitations,
phonon satellites, Zhang-Rice singlet and charge transfer peak. The right panel shows
phonon satellites around the elastic peak (b) and on the dd electronic excitations (c).
Figure adapted from the work of Johnston et al [4].

There is a common separation between the contributions to RIXS. For the so-

called direct RIXS the energy of the emitted photon is generally independent of the

incident photon energy. The direct contribution to RIXS can often be explained by the

density of states, and is also referred to as the fluorescence contribution [45]. The other,

indirect contribution, arises from secondary excitations generated by the perturbation

caused by the intermediate state. This contribution can only be explained with a many-

body picture. Since the emission energy varies with the incident energy, keeping the

energy loss constant, these features are sometimes called Raman-like. Thus, the indirect

contribution includes collective excitations (phonons, magnons) which accompany the

electronic transitions. These various secondary excitations can often be distinguished by

the loss energy at which they appear, however, sometimes it is not obvious to separate

low energy (e.g. phonon and magnon) features, since they can have similar energies

and show higher harmonics.
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2.2. LOW-ENERGY EXCITATIONS

Figure 2.2: Mapping of the ground state potential energy surface. By obtaining the
peak positions of the phonon satellites around the elastic line (a), one can reconstruct
the parameters of the Morse potential and consequently the potential energy surface of
the ground state (b). As an example, one can see the ground state reconstruction done
by for acetone compounds from RIXS spectra. Figure adapted from work of Schreck
et al [52].

2.2 Low-energy excitations

The main focus of our work is the phonon contribution. Typical phonon lifetimes

in the final state are of the order of a few ns, corresponding to a broadening of ∼
10 meV , which is smaller than the characteristic phonon energy. Only recently have

the instruments reached sufficient resolving power to distinguish phonon excitations in

crystalline materials. This progress in resolution makes RIXS a very powerful technique

[1, 25, 26] to study collective excitations and their coupling to the electronic system [4].

The phonon contribution to RIXS has an indirect nature. After absorbing the incident

photon, the lattice responds to the perturbation present in the intermediate state, time-

evolving on an excited-state potential energy surface for the duration of the core-hole

lifetime. When the photo-excited electron decays back to the core-state, the lattice

will inevitably be caught out of equilibrium with respect to the ground-state potential

energy surface, leaving some occupation of phonons in the final state. In different

words, this process involves transitions from initial phonon level to multiple phonon
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2.2. LOW-ENERGY EXCITATIONS

levels of the intermediate state and from all populated intermediate state phonon levels

to each phonon level of the final state (Fig. 2.3). The probabilities of those transitions

defined by the overlap of phonon wavefunctions in the ground state, core-excited state,

and final state, and consequently by the relative position of the corresponding potential

energy surfaces.

The RIXS phonon cross-section reflects a combination of couplings of initial, inter-

mediate and final states configurations to the collective modes. This means that apart

from the dispersion relation of the phonon, which one can obtain by tuning both the

energy loss and the momentum transfer, one can also extract the coupling constants

from the relative intensities of the harmonics of these excitations.

nph = 2

nph = 0

nph = 1

| I
e , nph >

| M
e , nph >

| F
e , nph >

nph = 0

nph = 1

nph = 2

Figure 2.3: Schematic representation of the RIXS process regrading phonon contribu-
tion. Superscripts I, M and F correspond to electronic initial, intermediate and final
state, respectively. Only one intermediate and final electronic state are shown. Each
final state contains contributions from all possible intermediate phonon states.

Knowledge about the electron-phonon coupling at all points in the Broilloun zone
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would help for rigorous testing of competing theories of unconventional superconduc-

tivity [1, 23]. The ability to resolve collective excitations for different momenta transfer

makes RIXS a potentially valuable new tool for studying electron-phonon coupling. As-

suming zero phonon population in the initial state, the phonon mainly would be created

during the propagation of an excited, intermediate state, which reflects the coupling of

excited electron-core-hole pairs to the lattice. However, the electron-phonon coupling

which is relevant for transport properties involves the electronic ground state. Thus, it

is important to correctly identify the meaning of the coupling constant that is observed

by RIXS and how it is related to the transport electron-phonon coupling.

A standard interpretation of the electron-phonon interaction from RIXS is given

by Ament et al [45]. The model constructed by the authors is inspired by cuprates,

which have a single unoccupied d orbital. To treat the electron-phonon interaction

they use a Holstein-type Hamiltonian, where a single electronic orbital couples to a

single (Einstein) phonon mode. The RIXS cross-section can then be obtained using

an analytical solution of the Hamiltonian by the Lang-Firsov canonical transforma-

tion: H ′ = e−SHeS, where S =
√
gc+c(b − b+) [12]. The overlap between vibrational

wave-functions in the Kramers-Heisenberg equation is given by Franck-Condon factors

(B(n, n′))

σ(ωi, ωloss) =
∑
nf

∣∣∣∣∣∑
nm

Bn′′n′(g)Bnm0(g)

ωi − (g − nm)ω0 + iγm

∣∣∣∣∣
2

δ(ωloss − nfω0) . (2.6)

Here n′ = min(nm, nf ), n
′′ = max(nm, nf ), and g = (M/ω0)2 is the dimensionless

coupling strength. The inverse core-hole life-time γm is defined by the decay of vibronic

intermediate state. The analytical expression for the Franck-Condon factors is [45]

Bmn(g) = (−1)m
√
e−gm!n!

n∑
l=0

(−g)l
√
gm−n

(n− l)!l!(m− n+ l)!
. (2.7)

The simplicity of this model has led to its widespread use for quantitative explanation

of experimental results [5, 53]. This model produces multiple phonon peaks around

the elastic line, the relative intensities of which are proportional to the absolute of the

coupling strength g =
M2
eff

ω2
vib

(see Fig 2.2). The main parameters of this model are the

electron-phonon coupling, the phonon frequency and the core-hole life-time. The latter
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is well defined form other experiments.

Figure 2.4: Phonon contribution to RIXS calculated using model Hamiltonian 2.8.
Different spectra are offset arbitrarily in vertical axis. The two main dimensionless
parameters of the model are the coupling strength g = M2

ω2
vib

and the ratio between

the inverse intermediate life-time and the vibrational frequency γ/ωvib. On the left,
RIXS spectra are presented with respect to variation of the coupling strength; the
intermediate state life-time was fixed γ ∼ ωvib. The coupling strength controls the final
state population of the phonon levels. The monotonic damping of the peak intensities,
however, can be broken by increasing the intermediate state lifetime (right). If the
lifetime is longer then the characteristic time of oscillation ( γ/ωvib < 1) the spectra
start to deviate from monotonic decay.

Another recent paper by Johnston et al [4] focused on RIXS studies of the quasi

1D cuprate Li2CuO2. They applied exact diagonalize to a small CuO cluster using

an extended Hubbard-type Hamiltonian with a few bands. A linear electron-phonon

interaction was included for a dispersionless mode. The presence of the core-hole in

the intermediate state was included through an on-site Coulomb attraction, but direct

core-hole–phonon coupling was neglected.

The dispersion of the one-phonon contribution to RIXS for an 8-band CuO cluster

was calucalted using digramatic techniques by Devereaux et al [2]. Although this study

makes progress by including phonon dispersion, the direct coupling of the core-hole to

phonons was still neglected. Also, application of such results is limited to the weak

coupling limit since it includes only one lowest order diagram. Example results were
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provided assuming a generic form for the q dependence of the electron-phonon coupling

strength [54].

Another application of the phonon contribution to RIXS is to quantify (valence)

excited-state potential energy surfaces. At the true elastic line of the RIXS signal, the

electronic (and vibrational) system returns to the ground state. For the quasielastic

contribution, the system returns to the electronic ground-state, but with some number

of phonon excitations. The frequency spacing of these phonon features corresponds to

the curvature of the ground-state potential energy surface. RIXS features corresponding

to final states with electronic excitations may also be accompanied by a phonon tail.

In this case, the frequency spacing of the phonon features may differ from that at

the quasielastic region, indicating that the curvature of the corresponding excited-state

potential energy surface differs from the ground-state potential energy surface. In

this way, it has been demonstrated by the group of Föhlisch that RIXS is a valuable

technique for revealing excited-state potential energy surfaces [52].

Taking everything into account there are three different approaches to study the

phonon contribution in RIXS: (i) simplified model approaches [5, 45, 53]; (ii) an ap-

proaches based on the model calculations of the small clusters and exact diagonalization;

(iii) advanced quantum chemistry calculations using an explicit electronic and vibra-

tional Hilbert spaces for small molecules [55–58]. The simplified model approaches are

clearly not satisfactory, and the last two cases are difficult to scale for proper calcula-

tions with full momentum dependence. This creates the necessity for a new approach

which has to treat correctly both the electronic structure of the excited state and the

dispersion of the collective excitations and can be scaled to crystalline materials.

However, before we will discuss possibilities for the approaches, we would like to

point out the critical difference between the ground state coupling to the lattice and

coupling to the lattice in the presence of core-excitation. This aspect was missing in

previous studies based on model approaches.
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2.3 Ab-initio + model study

To show the importance of the electron-hole and hole-phonon interactions we preformed

a model study based on parameters calculated from first principles.

The objective is to see how the model proposed by Ament et al [45] can reproduce

an experiment using an ab-initio calculations of the coupling constant. Usually, the

series of the phonon satellites from the experiment can be closely fitted with this model

by adjusting the coupling constant. The resulting coupling might be misinterpreted

as the electron-phonon coupling constant, though this will not be correct if the contri-

bution from the core-hole-phonon coupling is non-negligible. To clarify this point, we

calculated coupling constants for three types of electronic excitations. We considered

excited electron, core-hole and exciton type of electronic excitations. The phonon con-

tribution to RIXS was obtained using Eq. 2.6 and the results were compared to the

experimental data.

For this, we considered the O K-edge RIXS of the acetone molecule. The choice

of this compound was based on two factors: (i) availability of a high-resolution experi-

mental data [52] and (ii) that the compound should be relatively simple/well studied,

to avoid uncertainties in the ground state calculations.

After photo-absorption, the excited electron is well localized in an anti-bonding

orbital. According to the experimental data, the main contribution to the vibrational

part of RIXS comes from the CO stretching mode. The RIXS process was considered in

the spirit of the Holstein Hamiltonian with one local mode and single electronic orbital

H = εc+
i ci + ωvib(b

+b+
1

2
) +Meffc

+
i ci(b+ b+) . (2.8)

First, we assumed that RIXS is a direct probe of electron-phonon coupling. This

means that the excited state consists only of the excited electron and that the core-

hole is omitted. The structure was first relaxed in the ground state and then an extra

electron was added to the lowest unoccupied (anti-bonding) orbital. The gradient of the

potential energy surface was obtained by varying the C-O inter-atomic distance around

the ground-state equilibrium and calculating within SCF DFT the total energies for the

excited state electronic configuration and all distances. Thus the tangent of the slope
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of the excited potential energy surface at the ground state equilibrium distance gives

the gradients, and consequently the coupling constant M =
√

h̄
ωvibµ

F . The phonon

contribution to RIXS obtained using model 2.6 and this calculated electron-phonon

coupling constant is shown in Fig. 2.3 in red (see also Tab. 2.1).

Second, the same procedure was repeated for the electronic excitations including

only the core-hole. The 1s core-hole on the oxygen site was modeled with a pseudo-

potential. In this case, the operators c+
i and ci correspond to the creation and anni-

hilation of the core-hole and Meff is coupling of the core-hole to the local vibration.

The force was found as well from the excited state potential energy surfaces and the

resulting phonon contribution to RIXS is shown in Fig. 2.3 in green.

Third, the exciton configuration of the excited state was created using both a core-

hole on the 1s level and an extra electron in the lowest unoccupied orbital [59, 60]. Such

an excited state generaly has to be treated within the Bethe-Salpeter equation (BSE)

[61–63]. For this particular case DFT SCF relaxation of the electronic density gives

similar results to the solution of the BSE (see Chapter 5). At this point to preserve the

form of the Hamiltonian 2.8 one has to use an effective treatment of the two-particle

problem, which we will discuss at the end of this section to avoid distraction from the

main conclusion. Again the excited state potential energy surface along C-O stretching

mode was used to calculate the exciton-phonon coupling constant. The phonon RIXS

contribution from exciton-phonon coupling is shown in blue (Fig. 2.3).

Table 2.1: Vibronic forces for acetone obtained from the slope of the excited-state
PES (CO stretching mode) evaluated at the ground-state equilibrium bond length with
respect to different types of excitations.

Excitation type Force (eV/Å)

electron -1.0
core-hole -3.5
exciton -7.7

The resulting phonon contribution for the three types of electronic excitations

are shown in Fig. 2.3 along with the experimental data from the work of [52]. The

comparison clearly shows that satisfactory reproduction of the experimental data is
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possible only with the exciton-phonon interaction. This leads to the conclusion that

RIXS in fact is a probe of exciton-phonon coupling even in the case of a deep core-hole.

An interesting aspect is that the phonon coupling of an exciton is stronger then the

sum of the core-hole and excited electron coupling. This can be explained considering

the structure of the LUMO in terms of atomic orbitals. The presence of the core-

hole potential on the oxygen site tends to shift the energy of the atomic orbitals,

and consequently modifies the contribution from oxygen orbitals. Thus, the electron-

hole interaction also indirectly contributes to the strength of resulting exciton-phonon

interaction. Our study of the O K-edge RIXS of acetone clearly shows the importance

of direct coupling of the core-hole to vibrations.

Cu L-edge Since many RIXS studies are performed at the Cu L3 edge, we now

estimate the contribution from a Cu 2p hole in generating lattice dynamics. We select

crystalline Cu2O for this test and approximate the forces on nearest neighbor oxygen

sites due to an excitation on a copper site. As in the acetone example, we model an

extra electron, a core-hole, and an exciton.

The resulting forces are given in Table 2.2. The force resulting from the introduc-

tion of a Cu 2p core-hole is approximately 60 % of the force due to an exciton, and

slightly larger than the force from the addition of an electron localized at the copper

site. From this, we conclude that the Cu 2p hole is not screened enough to neglect it’s

coupling to phonons.

Table 2.2: Forces on the nearest neighbor oxygens due to an electronic excitation on a
Cu site in crystalline Cu2O.

Excitation type Force (eV/Å)

effective electron 0.135
core-hole 0.165
exciton 0.257

The experimental structure was initially relaxed in order to minimize the electron-

ion forces for the ground-state configuration. Keeping the ground-state atomic positions

fixed, SCF calculations were made for core-hole and ’exciton’ configurations. For these,
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Figure 2.5: RIXS spectrum at the O-K edge of acetone showing a progression of phonon
excitations. Calculations resulting from an electron-phonon coupling constant assuming
an intermediate state with an excited electron (red), an oxygen core-hole (green), and
an exciton (blue) are compared to experimental results (open symbols) [52]. Calculated
spectra are shown without the elastic contribution and are normalized to the intensity
of the first phonon peak. Inset: calculated potential energy surfaces (PES) for the
three possible excited states along with the ground-state (GS) PES (gray). The dashed
vertical line indicates the ground-state equilibrium C=O bond length and the black
dots are placed at the minima of each PES. All PES curves are offset arbitrarily in
energy.

we made a copper pseudopotential with one electron removed from the 2p shell and used

this pseudopotential on one of the copper sites in the supercell. The core-hole configu-

ration has an overall positive charge of 1|e| for the supercell that can be compensated

by a uniform negative charge.

Explicitly adding an extra electron to the bottom of the conduction band (instead

of using a uniform neutralizing charge density) gives the exciton configuration since this

extra electron will be localized around the core-hole site. For each configuration, we
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obtain the force on the oxygen atoms nearest to the copper site with the core-hole. We

find that the force on the nearest oxygen atoms for the core-hole configuration is 64 %

of the force resulting from the exciton configuration. This strongly suggests that even

for the deeply bound Cu 2p levels a core-hole is not completely screened and contributes

directly to the generation of phonons.

To mimic the addition of an extra, localized electron, to otherwise neutral Cu2O,

we substituted Zn for one of the Cu sites. Due to the impurity nature of the Zn atom,

the highest occupied electron level is localized around the zinc site. We repeated the

calculation after removing this electron (giving a supercell with total positive charge of

1|e|) and defined the force due to the excited electron as the difference between forces

on nearest oxygen atoms for the neutral and charged (Zn and Zn+1) impurity configu-

rations (Fe = (FZn−O) − (FZn+1−O)). The resulting force on the nearest oxygen site is

smaller than for either the exciton or core-hole configurations, possibly due to the less

localized nature of the extra electron compared to the bound exciton. Although more

effective schemes for localizing an extra electron can likely be constructed with a local

orbital basis DFT code, the comparison between the core-hole and exciton configura-

tions already indicates that the core-hole–phonon coupling should not be neglected at

the Cu L3-edge.

Model Hamiltonian for exciton-phonon interaction For the case of a single

exciton which couples to the vibrational mode, the model Hamiltonian 2.8 has to be

rewritten in terms of two-particle operators which are ai =
∑

e,hA
i
ehc

+
e ch and a+

i =∑
e,hA

i∗
ehcec

+
h

H = εia
+
i ai + ωvib(b

+b+
1

2
) +Meffa

+
i ai(b+ b+) . (2.9)

Here εi is an exciton energy and coefficients Aieh contain information about particle-

hole interactions in general defined by the eigenvectors of two interacting particles

Hamiltonian such as BSE one which is in details discussed in Chapters 3 and 5. However

the main parameter of this model is an effective exciton-phonon coupling and in this

study was found again using constrained DFT calculation of the potential energy surface

along CO stretching mode Meff = −
√

h̄
2µωCO

∂RCOE
DFT
i (R0). The electronic excitation

is charge neutral, and it is no longer obeys Fermi statistics and in general, as well

deviates from regular bosonic commutation relation [64]. However the limit of low
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exciton density, this commutator can be approximate as a quasi-bosonic one [a+
p , ap′ ]

∼=
δpp′ [65]. Thus in contrast to the initial model Hamiltonian, Eq. 2.9 describes boson-

boson interactions. Although it does not change the analytical expression in Eq. 2.6

for the RIXS cross-section, one has to be aware that it leads to a sign change in the

expression for the canonical exciton creation and annihilation operators (see Appendix

D).

Numerical details For all calculations in this section, we used a pseudopotential

based plane-wave DFT code (QUANTUM ESPRESSO) [66] with periodic boundary

conditions. The applicability of the DFT plane-wave methods was checked by calcu-

lation of well known ground state properties, such as the molecule orbitals and vi-

brational frequencies. The acetone molecule was modelled in the gas phase using a

(20Å × 20Å × 20Å) supercell with one molecule in the middle. We used ultrasoft,

PBE/GGA pseudopotentials taken from the Quantum-ESPRESSO pseudopotential li-

brary, and a plane-wave cutoff of 60 Ry for the wave-functions and 600 Ry for the

charge density. For the Cu2O crystal, DFT calculations were performed on a (3×3×3)

supercell using LDA norm-conserving pseudo-potentials.
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2.4 Conclusion

In this section, we investigated the nature of electron-phonon coupling as probed by

RIXS. Despite the advantages of this technique, such as momentum selectivity and long

final state lifetime, we caution that the resulting coupling constant obtained from RIXS

is an excited state-lattice coupling, and thus contains contributions from both excited

electron and core-hole.

Using the model proposed by Ament et al [45] and ab-initio based calculations

of the coupling constants for three types of the electronic excitations present in the

intermediate state of RIXS (excited electron, core-hole and exciton), we showed that

only exciton-phonon coupling can reproduce the experimental spectra. As an example,

we considered the acetone molecule and vibrational contribution to O K-edge RIXS.

We also showed the importance of the core-hole contirbution to the resulting exciton-

lattice coupling in the crystalline copper based material Cu2O with a deep 2p hole.

This study highlights the importance of the direct core-hole phonon coupling, which

was omitted in previous studies [2, 5, 45, 53, 67].

Results of this model study show a clear need for a rigorous approach to reproduce

the phonon contribution to RIXS from first-principles for crystalline materials.
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Chapter 3

Spectral functions

The objective of this chapter is to introduce the Green’s functions and spectral functions

techniques. We consider and compare different types of Green’s function expansions

(Dyson’s equation and cumulant) for electron-phonon interactions. We also discuss

the two-particle problem with electron-electron interactions and the Bethe-Salpeter

equation (BSE), which is relevant in the context of neutral excitations.
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3.1. GREEN’S FUNCTIONS

3.1 Green’s functions

The Green’s function is a powerful tool of many-body physics which provides insight

about the response of a system to a perturbation. From the strict mathematical defi-

nition, it follows that a Green’s function (G) gives the response of a linear differential

operator (L) to an impulse perturbation

LG(x, x′, t, t′) = δ(x− x′)δ(t− t′) . (3.1)

This helps turn the differential non-homogeneous equitation Lφ(x′, t′) = f(x′, t′) into

the integral equation

φ(x, t) = φ0(x, t) +

∫
dx′dt′G(x, x′, t, t′)f(x′, t′) , (3.2)

where φ is a solution of the homogeneous equation. Another advantage is if the right

side of the inhomogeneous differential equation depends on φ (f(x) = V φ(x)) the

resulting solution can be found in a self-consistent way. If the system is described by

the Hamiltonian H0 then the Green’s function can be written using its eigenstates and

eigenvectors

G(r, r′, ω) =
∑
m

〈r|φm〉 〈φm|r′〉
εm − ω ± iγ

. (3.3)

An infinitesimal γ is introduced to remove singularities at ω = εm; the plus and minus

shifts the pole to the upper or lower half of the complex plane. In the time domain

this corresponds to either causal (forward) or anti-causal (backward) propagation of

the particle. The Green’s function may be written in the time domain for forward or

backward propagation as

G>(r, r, t, t′) = −i 〈0|ψ(r, t)ψ+(r′, t′) |0〉

G<(r, r′, t, t′) = −i 〈0|ψ+(r, t)ψ(r′, t′) |0〉 . (3.4)

The field creation (annihilation) operator ψ+(ψ) inserts a test particle (anti-particle)

at space-time point r′, t′ and removes it at another point r, t. In this sense the Green’s

function can be viewed as a correlation function or particle propagator. Both forms of

Eq. 3.4 satisfy Eq. 3.1 [12], and this brings uncertainties in the definition of the Green’s
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function. One possible choice is the time-ordered Green’s function, which involves both

causal and anti-causal solutions. Using the time-ordering operator (see Appendix F)

the Green’s function reads

G(r, r, t, t′) = −i 〈0|Tψ(r, t)ψ+(r′, t′) |0〉 , (3.5)

although this choice is not unique [12] (here we will work by default with the time-

ordered Green’s function). The field operator can be expanded as a linear combina-

tion of momentum creation operators (under the assumption that we are working with

fermions) as ψ+(r, t) = 1√
N

∑
k c

+
k (t)eik·r. The spin index will be omitted for simplic-

ity. The initial wave-function 〈0| is considered to be the many-body ground state of

the system. Here and after we will stick to the zero-temperature case, neglecting initial

population of phonons (n0
ph). It is a reasonable choice for both high energy optical

phonon modes in the low-temperature regime (e.g. high temperature superconducting

cooper based materials ωph ∼ 70− 80 meV ; kT = 25− 8 meV ; n0
ph ∼ 10−2− 10−4 and

for vibrational population in case of molecules even within at the room temperature

(ωvib ∼ 200 meV ; kT = 25 meV ; n0
ph ∼ 10−4). Further consideration of the finite-

temperature effects can be performed using Matsubara frequency technique [12]. The

Green’s function can be related to the density of states using completeness of the basis

states H0 |n〉 = εn |n〉 and inserting the identity 1 =
∑

n |n〉 〈n|

Gm(t, t′) = −i
∑
n

〈0|Tcm(t) |n〉 〈n| c+
m(t′) |0〉

= −i
∑
n

| 〈n| c+
m |0〉 |eiεmte−iεnt

′
θ(t− t′)− i

∑
n

| 〈n| cm |0〉 |e−iεmte−iεnt
′
θ(t′ − t) . (3.6)

Fourier transforming gives

Gm(ω) =
∑
n

| 〈n| c+
m |0〉 |2

εn − εm − ω + iγ
+
∑
n

| 〈n| cm |0〉 |2
εn − εm − ω − iγ

. (3.7)

Using the relation limγ→0
1

x±iγ = P 1
x
±πδ(x), the imaginary part of the Green’s function

Eq. 3.7 gives the density of states (spectral function)

Am(ω) = − 1

π
Im Gm(ω) . (3.8)
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This makes the Green’s function a convenient tool to study many electronic properties

that relate to the density of states. By definition, the spectral function is non-negative

and the first moment of the one particle spectral function is 1 (
∫
dωAm(ω) = 1).

So far we have only considered unperturbed systems. However, it is typically the

case that the full Hamiltonian, H, of a system cannot be solved exactly. One then

separates the Hamiltonian into a solvable part, H0, and a (hopefully small) perturba-

tion, V . The Green’s function formalism allows access to the solution of the perturbed

system. The Green’s function will now deviate from the initial definition of Eq. 3.1

since the field operator is normally defined by the eigenstates of H0 (ψα) while the total

wave-functions |Ψ〉 are unknown and corresponds to H

iGα(t, t′) = 〈Ψ(t)|Tcα(t)S(t, t′)c+
α (t′) |Ψ(t′)〉 . (3.9)

In the interaction picture the time evolution of operators is driven by H0 but the

propagation of the wave-function is defined by the interaction potential and scatterring

matrix S(t′, t) (see Appendix F). To find a relation between |Ψ〉 and the unperturbed

wave-function |0〉 one of the possible assumptions is that the interaction potential is

turned on very slowly, this means |Ψ(t)〉 = S(t,∞) |0〉. The analogous treatment can

be applied to the bra state assuming that the potential vanishes in the limit of infinite

time. This leads to the same final state apart of the phase factor 〈0|S(∞,t)
〈0|S(∞,−∞)|0〉 [12].

Eq. 3.16 then becomes

iGα(t, t′) =
〈0|Tcα(t)S(∞,−∞)c+

α (t′) |0〉
〈0|S(∞,−∞) |0〉 . (3.10)

Using an expansion of the S-matrix one can rewrite Eq. 3.10. The expansion leads to a

series of correlation functions which due to the Wick’s theorem can be related to a set

of integrals constructed using single particle Green’s functions and interaction vertices.

Those integrals can be expressed as Feynman diagrams. The denominator in Eq. 3.10

cancels all disconnected diagrams in the numerator and will be omitted. Contributions

from all connected terms is indicated with a subscript 〈| |〉c. This leads to the expansion

of the Green’s function

iGα(t, t′) =
∑
n

(−i)n
n!

∫
..

∫
dt1..dtn 〈0|Tcα(t)V (t1)V (tn)c+

α (t′) |0〉c . (3.11)
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The challenge will be how to evaluate Eq. 3.11 in practice.

3.2 Dyson’s expansion

Feynman diagrams can be used to visualize the terms in the expansion of Eq. 3.11 after

applying Wick’s theorem. The latter states that the expectation values of time-ordered

operators can be expressed in terms of all different combinations of time-ordered pairs

〈TABCD〉 = 〈TAB〉 〈TCD〉+ 〈TAC〉 〈TBD〉+ 〈TBC〉 〈TDA〉, though one has to be

careful with sign changes coming from odd permutations of fermion operators. Since

the main focus of this work is the electron-phonon interaction, the perturbation term

that we consider is the electron-phonon interaction

V (t) =
∑
α,α′,ν

Mν
αα′c

+
α′(t)cα(t)Bν(t) . (3.12)

The series expansion of the electron Green’s function is

Gα(t, t′) =
∑
n

Wn(t, t′)

= G0
α(t, t′)+i

∑
α,ν

∫ ∫
dt1dt2M

ν
αα′M

ν
αα′G

0
α(t, t1)G0

α′(t1, t2)Dν(t1, t2)G0
α′(t, t1)+.. (3.13)

The odd terms in the interacting potential vanish because of the parity of the phonon

operator in Eq. 3.12. The momentum conservation for the second term implies qν =

kα−kα′ , where qν is a phonon wave-vector and kα−kα′ is a difference between momenta

of the initial and scattered electron. The Fourier transform of this series gives

Gα(ω) = G0
α(ω) +G0

α(ω)Σ0(ω)G0
α(ω) +G0

α(ω)(Σ0
α)2(ω)G0

α(ω) +G0
α(ω)Σ1

α(ω)G0
α(ω).. ,

(3.14)

where Σ0(ω) =
∑

α,ν |Mν
αα′|2

∫
dωG0

α′(ω)Dν(ω−ω′) is the kernel of the expansion. One

can notice that the third term involves replicas of the the second order term (as well

as other contribution with crossings of the phonon lines Σ1
α(ω), see Fig. 3.1d, e) and so
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on. This series may be expressed succinctly as the Dyson equation

Gα(ω) =
G0
α(ω)

1 +G0
α(ω)Σ(ω)

. (3.15)

If one calculates the self-energy including higher orders irreducible diagrams, the re-

sulting Green’s function will converge to the exact one

Σα(ω) =
∑
j

Σ(j)
α (ω) , (3.16)

here j run over all irreducible diagrams. Dyson’s equation is very powerful because

instead of calculating each term in the series of Eq. 3.13 individually, one can just

calculate a single (or small number) self-energy diagram, which will then be included

to infinite order. Dyson’s equation can also be found using the equation of motion

and variation of the functional derivatives [68]. For the case of screened electron-

electron interactions, the self-energy can be expressed with Hedin’s set of self-consistent

equations [69]. However, due to numerical difficulties, it is common to use a lowest order

term in the self-energy together with Dyson’s equation, which formally can be denoted

as G0W 0 in contrast to GW .

Self-energy Regarding the electron-phonon problem there are two types of the lowest

order terms in the self-energy. The first, so called Fan-Migdal term, [11, 12], originates

from the linear electron-phonon interaction in Eq. 1.2 and has a visual analogy to G0W 0

(see Fig. 3.1)

ΣFM
α (t, t′) = −i

∑
ν,α1

Mν
αα1

G0
α1

(t, t′)Dν(t, t
′) . (3.17)

This term is represented by the electron-phonon bubble diagram, and describes the

scattering of an electron due to interaction with a phonon of momentum and wave-

vector ν = {qν , λν} to the state α1 and back. The second is the Debye-Waller term (see

Fig. 3.1). It is proportional to the second order electron-phonon interaction (last term

in Eq. 1.2) and reads

ΣDW
α (t, t′) =

∑
ν,α

(M (2))ναα(2Nν + 1) . (3.18)
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Here Nν is the number of phonons in the initial state, which in thermal equilibrium is

defined by the temperature of the system. In the limit of zero-temperature, however,

it gives a constant shift to the energy of the quasi-particle.

Spectral function Using Eqs. 3.15 and 3.8 one can write the spectral function of

the one particle Greeen’s function. The spectral function (A(ω) = 1
π
|ImGα(ω)| ) from

Dyson’s equation is

AD(ω) =
1

π

|Im Σα(ω)|
|ω − εα − Re Σα(ω)|2 + |Im Σα(ω)|2 . (3.19)

Here the self-energy is Σα = ΣFM
α + ΣDW

α . The quasi-particle peak is shifted by the

electron-phonon interaction. The shift is primarily given by Re Σα(ω), however if the

contribution from Im Σα(ω) at ω = εα+Re Σα(ω) is non-negligible it also contributes to

the final shift of the quasi-particle peak. Eq. 3.19 gives rise to one satellite. The weight

which was transferred from the quasi-particle peak to the satellite due to the electron-

phonon interaction can be found by expanding the self-energy around the position of

the quasiparticle peak (Eqp
α ). The renormalization of the quasipraticle weight is [69, 70]

Zqp
α =

(
1− Re

∂Σα(ω)

∂ω

∣∣∣∣
ω=Eqp

α

)−1

. (3.20)

Despite the fact that Dyson’s equation accounts for an infinite number of replicas of

the FM and DW self-energy terms, the spectral function defined by Eq. 3.19 is not fully

satisfactory and poorly reproduces the experimental spectral function [70, 71].

3.3 Cumulant expansion

The cumulant ansatz to the interacting Green’s function originates in the linked-cluster

expansion [73] and provides an exact solution with only the lowest order self-energy for

the case of an isolated, deep core-hole [74, 75]. This is similar to the observation that the

Holstein-type vibronic Hamiltonian can be solved exactly by a canonical transformation

when electronic recoil is neglected. The cumulant expansion is no longer exact when

recoil becomes important, such as for valence level electrons and holes, nevertheless, its
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Figure 3.1: Few lowest order diagrams representing electron-phonon interactions. Dia-
grammatic form of the Fan-Migdal (a) and Debye-Waller (b) terms of electron-phonon
self-energy. (c) Replica of the FM term which appears in both Dyson’s and cumulant
expansions in the fourth order. The fourth order terms which includes self-consistent
inclusion (d) and vertex correction (e), which are neglected in the Dyson+FM expansion
and approximately treated within the cumulant+FM expansion [70, 72]
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recent use in such cases has been promising [70, 76–79].

The moments expansion of the Green’s function in orders of the interactions (see

Eq. 3.1) can be written as

G(t, t′) =
∑
n

Wn(t, t′) . (3.21)

The general idea is to find the functions Cm(t, t′) in terms of Wn(t). Here m and n

correspond to the orders in the interaction potential. The existence of such a solution is

guaranted by a one to one correspondence between the statistical distributions defined

by moments and cumulants [12]. By expanding the exponential function in Eq. 3.22

we have

G(t, t′) = G0(t, t′)exp(
∑
m

Cm(t, t′)) . (3.22)

The general idea is to find the functions Cm(t, t′) in terms of Wn(t). By expanding the

exponential function in Eq. 3.22 we have

exp(
∑
m

Cm(t)) =
∑
n

1

n!
(
∑
m

Cm(t)) = 1 + C1 + C2(t) + ...+
C2

1

2!
(t) + .. . (3.23)

Equating terms of the same order in Eqs. 3.21 and 3.22, the cumulants for any order

can be find from

W1(t) = C1(t)G0(t)

W2(t) = (C2(t) +
C2

1(t)

2!
)G0(t)

W3(t) = (C3(t) +
C3

1(t)

3!
+ C2(t)C1(t))G0(t)

... (3.24)

In practice, often only the lowest order cumulant is evaluated (C ≈ C1), but even such

truncation of the cumulant series accounts for infinite numbers of diagrams due to the

exponential form.

To be more specific we will focus on the electron-phonon interacting terms Eq. 3.12.

Due to the parity of the phonon operator the odd terms in the interaction potential

vanish in the expansion Eq. 3.1 (i.e. W1 = 0 and C1 = 0) and the lowest non-zero term

has the second order in the electron-phonon interaction (the notation for electronic
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states α is omitted for simplicity)

W2(t, t′) = (−i)2

∫ ∫
dt1dt2

∑
ν

|Mν |2G0(t, t1)G0(t1, t2)Dν(t1, t2)G0(t2, t
′) (3.25)

and the resulting lowest order cumulant is (form Eq. 3.24 C2 = W2/G
0)

C2(t, t′) = −[G0(t, t′)]−1

∫ ∫
dt1dt2

∑
ν

|Mν |2G0(t, t1)G0(t1, t2)Dν(t1, t2)G0(t2, t
′) .

(3.26)

Using notation for the lowest order Dyson’s self-energy (Eq. 3.17) the second order

cumulant reads

C2(t, t′) = −[G0(t, t′)]−1

∫ ∫
dt1dt2G

0(t, t1)Σ(t1, t2)(t1, t2)G0(t2, t
′) . (3.27)

Combing Eqs. 3.24 and 3.27 the interacting Green’s function using the second order

cumulant becomes

G(t, t′) = G0(t, t′)eC2(t,t′) . (3.28)

To highlight the difference between expansions 3.15 and 3.29 one sees that the

lowest order self-energy leads to the inclusion of quite different types of diagrams.

Rewriting the exponent as a series in C2 we can keep track of the terms which are

treated by the second order cumulant

G(t, t′) = G0(t, t′)

+

∫ ∫
dt1dt2G

0(t, t2)Σ(t1, t2)G0(t2, t
′)

+
1

2!
[G0(t, t′)]−1[

∫ ∫
dt1dt2G

0(t, t2)Σ(t2, t3)G0(t2, t
′)]2

+ .. . (3.29)

The first two terms are the same as in Dyson’s series, but already the third term is

new. The resulting interacting Green’s function includes all replica of the FM term,

and partially includes self-consistency and vertex correction terms (see Fig. 3.1 d, e).

Further, one can rewrite the time integrals in Eq. 3.27 using the energy representation
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of the Green’s function

C(t, t′) = −[G0(t, t′)]−1

∫
dω[G0(ω)]2Σ(ω)e−iω(t−t′) . (3.30)

Using the explicit definition of non-interacting Green’s function and the spectral rep-

resentation of the self-energy, the second order cumulant becomes [70, 78]

Cα(t, t′) =
1

π

∫
dω
|Im Σα(ω + εα)|(e−iω(t−t′) + iω(t− t′)− 1)

ω2
. (3.31)

The factor (e−iωt+iωt−1) defines the structure of the spectral function in the cumulant

representation. The exponential term gives rise to multiple satellites, while the term

linear in t leads to the quasiparticle shift and the -1 generates the quasiparticle weight.

In the case of the time-ordered Green’s function, the limits of integration in Eq. 3.32

are taken over all occupied states for holes and all unoccupied state for particles. In

an alternative formulation using the retarded formulation of Green’s function both

solutions are mixed, which leads to particle-hole recoil effects [78]. For the case of core-

level spectroscopy, this effect likely contributes less to the resulting spectral function,

and we will use the time ordered formulation. The DW appears due to the lowest order

quadratic electron-phonon coupling, and by analogy to the FM term can be treated

within the cumulant expansion. However, the DW term contributes only to the shift of

the quasiparticle. The interacting particle Green’s function can be written as

G(t, t′) = −ie−i(εα+ΣDWα )(t−t′)eCα(t,t′) (3.32)

where the cumulant Cα is defined by the FM term. Unlike in Dyson’s equation, the

weight of the quasiparticle line is defined by the exponential factor

Z = exp

(
Re

∂ΣFM
α (ω)

∂ω

∣∣∣∣
ω=εα

)
. (3.33)

The spectral function can be found as

AC(ω) = − 1

π
Im

∫
dte−iωtG(t) . (3.34)

The expansion of the Greens function in terms of cumulants appears to be quite
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a powerful tool for some types of interactions. From a statistical point of view, the

exponential generating function relates to random processes. Thus, presumably such

an ansatz for the solution will work well in cases where the interacting events are weakly

correlated.

First-principles work with the cumulant expansion has mainly been employed to

describe plasmon satellites in conjunction with Hedin’s GW self-energy (G is the single

particle Green’s function and W the screened Coulomb interaction). This has proven to

be quite successful at reproducing the valence-level photoemission spectrum of silicon

[76, 80–84] and has even reasonably reproduced the low energy plasmon satellites in

SrVO3 [85, 86] and charge transfer effects in the XPS [87] and XAS [88] spectra of NiO,

suggesting the applicability of the GW-cumulant approach may extend to moderately

correlated materials. Only very recently has the cumulant expansion been applied to

the vibronic coupling problem [35, 70, 71, 89]. Here, one exchanges the plasmonic GW

self-energy for the Fan-Migdal vibronic self-energy GD (D is the phonon propagator).

These studies focused on valence level photoemission.

Dyson vs Cumulant The spectral functions for the Green’s functions constructed

from Dyson’s equation and the cumulant expansion, for the same level of approxima-

tion (non self-consistent Fan-Migdal) are shown in Fig. 3.2. The simple model of one

non-dispersive electronic band, one non-dispersive phonon mode with linear electron-

phonon coupling was considered. Such strong disagreement comes from the fact that an

exponential series tends to treat not only the replicas of self-energy diagrams, as is the

case when using Dyson’s expansion, but also approximately [72] includes diagrams with

vertex corrections and self-consistent parts. Thus, the cumulant expansion produces

superior spectral functions even without computationally expensive self-consistent cal-

culations.

This observation is in agreemnet with recent works on the electron-phonon cou-

pling for valence spectroscopy [70] and studies of the core-hole-plasmon interactions

[77, 84, 85]. From the results of the model study, one can see that the electron-phonon

interaction tends to break the quasi-particle picture. Moreover, it tends to redistribute

spectral weight between quasi-particle peak and multiple satellites and attributes an

energy shift [12, 71, 78]. We find that combining the cumulant expansion with FM self-

energy leads to a more accurate spectral function [35, 70] in analogy to results based on
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Figure 3.2: Comparison between model core-hole spectral functions obtained using
cumulant (blue) and Dyson (red) expansions and FM type self-energy. The cumulant
ansatz gives an exact solution in this limit (see text) and can be seen as a reference
[75]. The coupling strength was chosen in the intermediate regime g ∼ 1. The grey line
corresponds to the quasi-particle spectral function without electron-phonon interaction.
A small broadening is added to model the lifetime effects. Apart from the incorrect
shifts of the quasi-particle energy, the spectral function of the Dyson expansion also
fails to reproduce the satellite structure, and produces only one misplaced phonon peak
instead of several equally spaced phonon satellites.

the mixture of the GW self-energy and cumulant expansion for plasmons [77, 79, 80, 82].

3.4 Bethe-Salpeter equation

Apart from the electron-phonon interactions, we treat the electron-hole interaction on

the level of the Bethe-Salpeter approach. In this section, we will follow [68] considering

variation of the correlation function with respect to the external potential in the spirit of

linear response. This approach is analogues to the standard diagrammatic techniques,

which we used in the previous sections.

One particle properties obtained within the regular KS DFT approach often have

to be corrected by including many-body effects. For example, to predict optical /
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electronic properties of insulators, one has to deal with one electron removal / addition

events. For example, the ability to accurately predict electronic band gaps is of general

interest.

DFT does not guarantee the excited state configuration to be realistic, and not

surprisingly tends to underestimate the band gap [84]. Improvements involve many-

body corrections beyond the mean-field DFT level. These corrections can be accounted

for with Dyson’s equation, considering the KS DFT states as an unperturbed solution.

Instead of working with bare electron-electron interactions one can write the expansion

of the Green’s function in terms of the screened Coulomb interaction W , which makes

the series converge faster. Following [69], the set of self-consist equations for calculating

the self-energy and appropriate vertex are (1 = t1, r1)

Σ(1, 2) = iG(1, 3̄)W (1, 4̄)Γ(3̄, 4̄, 2) (3.35)

W (1, 2) = v(1, 2) + v(1, 3̄)P (3̄, 4̄)W (4̄, 2) (3.36)

P (1, 2) = −iG(1, 3̄)Γ(3̄, 4̄, 2)G(2+, 4̄) (3.37)

Γ(1, 2, 3) = δ(1, 2)δ(2, 3) +
δΣ(1, 2)

δG(4̄, 5̄)
G(4̄, 6̄)G(7̄, 5̄)Γ(6̄, 7̄, 3) . (3.38)

Here G(1, 2) is defined by Dyson’s equation, which is also a part of the self-consistent

scheme. Due to computational expenses, the vertex function Γ is often set to 1 in

all equations and the resulting set of equation defines the GW approximation. In the

lowest approximation, we can obtain the self-energy as just G0W 0, where W 0 is the

screened Coulomb potential with the polarization P = iGG calculated in the random

phase approximation (RPA).

While we have defined the self-energy correction for the one particle problem, we

now look at the two particle problem. The two particle correlation function is formally

defined by a functional derivative of the one-particle Green’s function with respect to

a non-local perturbation

L(1, 2, 3, 4) =
δG(1, 3)

δUext(2, 4)

∣∣∣∣
Uext=0

, (3.39)
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and the functional derivative in Eq. 3.41 is

δG(1, 2)

δVext(3, 4)
= G(1, 5̄)

δG−1(5̄, 6̄)

δUext(3, 4)
G(6̄, 2) . (3.40)

Expressing G−1(5, 6) from Dyson’s equation for the two-particle correlation function we

have

L(1, 2, 3, 4) = G(1, 3)G(2, 4) +G(1, 5̄)
δΣ(5̄, 6̄)

δG(7̄, 8̄)

δG(7̄, 8̄)

δUext(3, 4)
G(6̄, 2) . (3.41)

Finally the Bethe-Salpeter Equation reads

L(1, 2, 1′, 2′) = L0(1, 2, 1′, 2′) + L0(1, 2, 3, 3′)Ξ(3̄, 3̄′, 4̄, 4̄′)L(4̄, 4̄′, 2, 2′) , (3.42)

where L0 is an uncorrelated part and the four point vertex function is derived from the

chain rule [68] as Ξ = δΣ
δG

. Here, we explicitly use the Hartree and screened Coulomb

term in the GW approximation for the self-energy and this gives for the vertex function

[61]

iΞ(1, 2, 3, 4) = δ(1, 3)δ(2, 4)vc(1, 2)− δ(1, 2)δ(3, 4)W (1, 3) +G(1, 3)
δW (1, 3)

δG(4, 2)
. (3.43)

The approximation which implies that the response to the external potential is static

Figure 3.3: Bethe-Salpeter equation in diagrammatic form. The four point vertex
function is defined as a functional derivative of the one-particle self-energy δΣ(1,2)

δ(G(1,2))
.

(there is no dependence on the energy of excitations), comes from neglecting the func-

tional derivative of the screened potential δW (1,2)
G(3,4)

≈ 0. This approximation completely

misses the dynamical response such as the plasmonic contribution, but in general it still

captures a lot of physics and shows good agreement for XAS [62, 90].
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The lowest approximation for the self-energy G0W 0 neglects higher order contribu-

tions, e.g., diagrams with crossed lines and with electron-electron vertex corrections. It

leads to the so-called ladder approximation where the electron-hole interaction events

occur one after another without entanglements. The validity of such approximation

was discussed in the original paper of Salpeter and Bethe [91] for the small coupling

limit.

By definition, the Green’s function operator is a resolvent of the linear differential

equation

L̂(ω) =
1

HBSE − z
, (3.44)

where z is an imaginary frequency and HBSE is an effective two-particle Hamiltonian.

The important comment on such a representation of the BSE is that the effective Hamil-

tonian is not fully hermitian [92], due to the possible mixing of causal and anti-causal

excitons (coupled particles). The approximation we use neglects such effects and is

known as the Tamm-Dancoff approximation (TDA) [93, 94] (where only forward prop-

agation of an exciton was considered) and it works reasonably well for bulk materials

[95]. We start by writing HBSE in the independent particle-hole basis

HBSE = he − hh + Ξ , (3.45)

where the single particle parts might be dressed he = HKS − hxc + ΣGW . The core-hole

also normally includes local spin-orbit terms χ and life-time effects Hh = Eα + χ+ Σα.

The electron-hole interaction includes two terms Ξ = −VD+Vx. The first is the screened

direct attractive Coulomb term

VD =

∫ ∫
dr′drcα(r′)c+

k (r)W (r, r′, ω = 0)ck(r)c+
α (r′) , (3.46)

the second is the repulsive exchange term

VX =

∫ ∫
drdr′cα(r′)c+

k (r)
1

|r − r′|ck(r
′)c+

α (r) . (3.47)

In the equations above the spin index was omitted, but one has to keep in mind that

the exchange term acts on the spin states of the particle too. The static response

calculations mean that there is no energy dependence in the screened interaction W (ω =

0). The transition energies differ from the difference between quasi-particle levels due
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to these Coulomb interactions. This captures electron-hole interactions which occur

during the XAS process. Apart from this, to obtain the absorption coefficient one has

to calculate a transition matrix elements dα,k [90].

41



3.4. BETHE-SALPETER EQUATION

42



Chapter 4

XPS: Charged excitations

Due to doubts in the RIXS community about the role that the core-hole plays in

generating the phonon contribution to RIXS spectra [2, 4, 5, 96], we first focused

on the problem of the core-hole phonon coupling. This section is dedicated to the

calculation of X-ray photo-emission spectra including phonon sidebands. This effect is

mainly intrinsic and thus reflects coupling of the deep core-hole to lattice degrees of

freedom. We apply a Green’s function formalism and develop a numerical approach for

parameter-free calculations of the phonon contribution to the spectra. To demonstrate

our approach, we preform calculations on SiX4 (X = F,H) molecules.

Contents

4.1 Photo-current . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Core-hole Green’s function . . . . . . . . . . . . . . . . . . . 46

4.3 Core-hole phonon interaction . . . . . . . . . . . . . . . . . 48

4.4 Real-time approach and nuclear response function . . . . 50

4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

43



4.1. PHOTO-CURRENT

4.1 Photo-current

X-ray photoemission spectrocopy (XPS) is a well-established technique to measure elec-

tronic binding energies [97, 98]. An incoming X-ray photon knocks out a core-electron,

and the quantity which is measured is the photo-current. By scanning the emitted

energy one can access different states within the system, e.g., the spin-orbit split 2p1/2

and 2p3/2 levels.

The photo-current is proportional to the rate of the bound-state–continuum tran-

sitions per atom. The first order of the electron-photon interaction gives this rate

according to Fermi’s golden rule as [48]

J(ω) ≈
∑
F

| 〈ψF |∆ |ψI〉 |2δ(ω − EFI) . (4.1)

Here the capital letters F, I correspond to many-body initial and final states, and the

photon energy ω and photon operator ∆ describes the linear electron-photon inter-

actions . We will consider the latter in the generic form of the second quantization

formalism

∆ =
∑
k,α

dk,αc
+
k cα + h.c. . (4.2)

Here the matrix elements dk,α are the projection of the core state α wave-function after

the interaction with the photon onto the continuum state wave-function of the photo-

electron with momentum k. The actual form of the photon operator is presented in

Eq. 2.1 and in the lowest order is proportional to A · pi. The electron-photon matrix

elements are roughly independent of k (dα,k ≈ dα) assuming that k � kF .

In the independent particle picture the many-body wavefunction can be written as a

single Slatter determinant, and the difference between the initial and final energy is just

the binding energy of the core-electron. The transition rate is nominally proportional

to the density of occupied states.

J0
k (ω) ≈

occ∑
α

|dα|2|δ(ω − εα − εk) . (4.3)

This simple picture is insufficient to reproduce the real experimental spectra, which
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might contain multiple satellites around the binding energy of the photo-electron [39,

78, 99]. These additional satellite features can be explained in the context of many-body

theory and are related to the interaction of the core-hole with the electronic (plasmonic

effects) [75] and atomic (phonons) [100, 101] structures. This leads to changes in the

effective energy of the core-hole. These satellites can provide information about the

strength of coupling between the electronic and lattice degrees of freedom, which is of

particular interest for us.

In principle, the XPS signal includes intrinsic (related to the core-hole) and ex-

trinsic (photo-electron) contributions as well as interactions that lead to interference

effects [88]. Taking into account that the high energy photo-electron interacts less with

the system than the bound hole, we can neglect extrinsic contributions in this problem

[75]. The final state many-body wave-function can be then written as a product of |k〉
photo-electron wave-function and many-body wave-function of the system with a core-

hole |ψf〉 (|ΨF 〉 = |ψf〉 |k〉) and the same for initial state |ΨI〉 = |ψi〉 |0〉. Expanding

the square in Eq. 4.3 we obtain

Jk(ω) ≈
∑
f

| 〈k| c+
k |0〉 |2

∑
α

|dα|2 〈ψi| c+
α |ψf〉 〈ψf | cα |ψi〉 δ(ω − εfi − εk) . (4.4)

Here the εfi = εf − εi is the energy difference between the systems with and without

a core-hole. This leads to the formulation of the photo-current in terms of spectral

functions (| 〈k| c+
k |0〉 |2 = 1)

Jk(ω) ≈ −
∑
α

|dα|2Aα(ω − εk) , (4.5)

where the spectral function accounts for the density of the core-hole in the presence of

many-body interactions. The spectral function is obtained from the core-hole Green’s

function as

Aα(ω) = − 1

π
Im Gα(ω) . (4.6)

The independent particle picture can be viewed as a lowest-order approximation.

In this case the spectral function is a delta function, centered around the core-hole

binding energy Im G0
α(ω) ∼ δ(ω − εα). Moreover, the many-body interactions can be
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accounted for using Green’s functions techniques. One can start with a quasi-particle

picture Gqp
α (ω) and include electron-phonon interactions as a correction to the ’static’

(fixed nuclei) quasi-particle spectral function [87, 102]

J(ω) =
∑
α

∫
dω′J0

α(ω − ω′)Aα(ω′) . (4.7)

The pure electronic XPS spectra (J0) are obtained in the presence of the core-hole-

electron interactions, which lead to the quasi-particle corrections (screening of the core-

hole and life-time effects). The core-hole spectral function (A(ω)) then dresses the

core-hole propagator with the electron-phonon interactions.

The interaction of the core-hole with surrounding atoms (ions) can be accounted

for with the Green’s function techniques. Taking into account the different time and,

consequently, energy scales of the electron-electron (∼ fs) and electron-phonon (∼
ns) interactions, one can treat them separately. Thus, we assume the core-hole is

instantaneously screened by the valence electron density.

Recent studies of the plasmonic contribution to valence and core-level photoe-

mission spectra show the advantage of the cumulant ansatz for the electronic Green’s

function [77, 78, 84]. The extension of this approach to the electron-phonon interaction

problem also seems to be promising for the valence photoemission spectra of both met-

als [71] and insulators [70]. In the same spirit, we combine the cumulant expansion of

the Green’s function with an ab-initio based method to treat the phonon contribution

to XPS.

4.2 Core-hole Green’s function

The problem of the hole interacting with phonons is governed by the Fröhlich type

Hamiltonian [11] (see also Chapter 1)

H = h0
ch + h0

vib +
∑
λ,q,α

Mλ,q
α c+

α cα(bλ,q + b+
λ,−q) . (4.8)
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Here h0
ch =

∑
α εαc

+
α cα and εα is the energy of the core-hole level, which was found in the

absence of the electron-phonon interaction. The core-hole state could be found, e.g. by

a Hartree-Fock or density functional calculation. The free phonon part is assumed to be

harmonic with arbitrary q dispersion, and c+
α , cα are the hole creation and annihilation

operators, respectively. Mλ,q
α is the core-hole phonon coupling and λ represents phonon

mode.

The typical electron-phonon self-energy in the second order (lowest non-zero term)

contains the Fan-Migdal and the Debye-Waller [11] terms. The last one involves non-

linear electron-phonon coupling and is responsible only for the shift of the quasi-particle

energy. The structure of the spectral function however is controlled by the energy-

dependent Fan-Migdal terms [12]. It has a visual analogy to the electronic G0W0

approximation (neglecting vertex corrections Γ = 1)

ΣFM
α =

∑
α,λ,q

|Mλ,q
α |2

∫
dω′G0

α(ω)D0
λ,q(ω − ω′) . (4.9)

The objective is to calculate the core-hole Green’s function dressed by the electron-

phonon interactions. Recalling the cumulant ansatz which was introduced in the pre-

vious chapter we have

Gα(t) = G0
α(t)eCα(t) , (4.10)

where the core-hole Green’s function in the absence of the electron-phonon interaction is

G0
α(t) = −iθ(t)eiεαt, and the quasi-particle energy without electron-phonon interaction

is assumed to be known. Therefore we will focus on the influence of the electron-phonon

interaction. We employed a modified second-order cumulant from Eq. 3.27 using the

bosonic excitations spectrum (βα(ω))

Cα(t) =

∫
dω
βα(ω)(e−iωt + iωt− 1)

ω2
. (4.11)

The intensity with which the perturbation generates bosons of energy ω is given by

βα(ω). It takes into account the response of the system to the perturbation caused by

a core-excitation, and it is related to the imaginary part of the self-energy as

β(ω) = |Im Σ(ω + εα)| . (4.12)
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The energy shift as well as renormalization factor of the quasi-particle peak can be

expressed in terms of the excitation spectrum as [70, 78]

∆Eα =

∫
dω
βα(ω)

ω
and Zα = exp

[∫
dω
βα(ω)

ω2

]
. (4.13)

Thus, to find the interacting core-hole Green’s function one has to calculate the bosonic

excitation spectrum or the self-energy itself, which consists of the response function, in

our case a phonon Green’s function and the core-hole phonon couplings. The excitation

spectrum can be constructed in the time domain from the phonon response function

and the core-hole – phonon coupling constants

βα(t) =
∑
qλ

|Mqλ
α |2D(t− t′) . (4.14)

4.3 Core-hole phonon interaction

To go beyond the Born-Oppenheimer approximation the interaction of the electronic

and ionic subsystems should be treated explicitly. We will start our discussion consid-

ering a single core-hole with quasi-particle energy calculated in the presence of other

electrons, however neglecting any vibrational contribution. We assume the vibrational

part of the Hamiltonian to be harmonic with a frequency calculated, e.g. from density

functional perturbation theory (DFPT). The interaction is driven by the total effective

potential at the core-hole site. Within a real-space representation the potential is

Veff =

∫
ψ+
α (r)ψα(r)Veff (r)dr =

∫
ρα(r)Veff (r)dr , (4.15)

where ρα(r) is the density operator for the localized core-hole, which can reasonably be

modelled as a delta function on the core-hole site (rα). The effective potential differs

from a bare electron-nuclear term since it also includes screening effects from the rest of

the electronic system. Without explicitly writing an exact analytical expression for Veff

we can expand it in a Taylor series using displacements form the nuclear equilibrium

positions QRi
as parameters of the expansion, following Eq. 1.2

Assuming that the creation of the core-hole can be tread as a small perturbation

to the system, we will consider only the linear term in this expansion. The first term
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is responsible for the renormalization of the atomic equilibrium positions. Following

standard texts [12] (see Eq. 1.3), the interacting potential (Veff ) in the first order

approximation is

Veff =
∑
λ,q

Mλ,q
α c+

α cαBλq . (4.16)

It involves one phonon operator, the linear electron-phonon coupling Mλ,q
α and the num-

ber operator for the core-hole. The phonon momentum, q runs over the full Brillouin

zone taking into account translation invariance of the crystalline material. The phonon

operator is Bλ,q = b+
λ,−q + bλ,q. Since the core-hole is localized in space we will first

find the coupling constants in real-space and then Fourier transform them. The linear

electron-phonon coupling constant is defined as

Mλ,q
α =

∑
G

√
h̄

2µNωλ,q
ξλ,q ·

∑
i

〈ψα|∇Ri
V (rα −R0

i ) |ψα〉 e−i(q+G)Ri . (4.17)

Here µ is the reduced mass of the unit cell, and N comes from the normalization of the

Fourier transform.

Noticing that the gradient of the interaction potential is a force which is acting

on the core-hole from the atom with position Ri we can relate the coupling constants

to the forces in real-space. Another numerical simplification comes from the symmetry

between forces acting on the core-hole and forces acting on the surrounding atoms due

to the core-hole creation. Thus, using DFT based calculations of the atomic response

to suddenly switching on the core-hole one can find the interatomic forces

FRi
= 〈ψα|∇Ri

V (rα −R0
i ) |ψα〉 , (4.18)

and those forces can be used to obtain the coupling constant as

Mλ,q
α =

∑
G

√
h̄

2µNωλ,q

∑
i

FRi
· ξλ,qe−i(q+G)Ri . (4.19)

To calculate this forces we performed supercell DFT calculations, placing a core-hole

on a central atom and calculating the forces resulting on all other atoms.

Eq. 4.19 contains a sum over all projections of the forces onto the polarization
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of the phonon with momentum q and mode λ. The coupling constant can be found

without calculating explicitly the forces by applying the frozen phonon approach. Thus

now we will look at the total force which appears in the system due to the distortion

along mode ξλ,q. The total force can be found, using the Hellman-Feynman theorem,

as a first derivative of potential energy surface along a normal mode displacement

F λ,q
α = −〈ψ| dHα

dQλ,q

|ψ〉 = − dEtot
dQλ,q

. (4.20)

4.4 Real-time approach and nuclear response func-

tion

Since the final state of the XPS experiment describes the system with a core-hole, it is

not a surprise that the response of both electronic and nuclear subsystems contribute a

lot to the formation of this state. Due to the sudden creation of the core-hole (the time

of transition is much smaller than the characteristic time of the atomic movements) the

nuclei do not have time to adjust their positions to the new charge density distribution.

The nuclear response to such a perturbation leads to collective excitation of phonons,

and the electron-phonon coupling defines how many of them will be activated. From

the Kubo formula, it follows that the linear response function is proportional to the

retarded correlation function of the observable

χ(t, t′, r, r′) = 〈0| [Q(t, r)Q(t′, r)] |0〉 . (4.21)

In our case, the observable is the atomic positions (Eq. 4.22), and the correlation

function gives the retarded phonon Green’s function. The phonon operator can be

found form real-space displacement operators Q transformed into momentum space.

This allows us to use real-space calculations to obtain the system response as well as

the excited state phonon Green’s functions. The phonon field operator is

Bq,λ(t) =
∑
i

√
µωqλ

2h̄N
δRi(t)e

iq·Ri · ξq,λ . (4.22)

The summation index runs over all atoms in the supercell and δRi defines the time-

dependent displacements of the nuclei from their equilibrium positions. The displace-
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ment - displacement correlation function gives the dynamical response and time-dependent

phonon Green’s function. From now on, we will assume the correlation function in con-

text of classical displacements. Moreover we will neglect thermal disorder, though it

can be added using MD calculations. Finally the phonon Green’s function becomes

Dq,λ(t) = −i
∑
ij

Qλ,q
i (t)Qλ,q

j (0)eiq(Ri−Rj) . (4.23)

The normalized displacement along a given mode is Qλ,q
j =

√
µωqλ

2h̄N
δRi · ξq,λ. These

displacements can be found from the DFT based molecular dynamics calculation. The

quantum nature of the electronic interactions and screening can be captured within BO

MD calculations. The time dependence of the nuclear positions has to be projected onto

the normal phonon coordinates. In the end one has a real-time, real-space displacement-

displacement correlation function.

Molecular dynamics simulations are also suitable for non-linear responses since

they will capture any an-harmonic response. The an-harmonic effects can be seen as a

phonon-phonon interaction and can be added to the harmonic, non-interacting phonon

Green’s function, using the self-energy concept and Dyson expansion. Thus in the case

of an-harmonicity of the correlation function, the obtained phonon Green’s function is

implicitly dressed by the phonon-phonon interactions.

4.5 Numerical results

The theory developed in the previous sections is meant to be applied to crystalline

material, although this section is dedicated to tests on small molecules. Molecules often

show strong electron-vibrational coupling with vibrational frequencies that are usually

higher than in solids. Therefore the fine vibrational structure in the XPS spectra can

be well pronounced, despite the short lifetime of the core excitation. This availability

of experimental spectra with well resolved vibrational side-band makes molecules good

references for theoretical testing.

Here we consider excitation of the Si 2p core-level in a family of tetrahedral

molecules SiX4 (X = H,F). Calculations were performed to mimic the gas-phase by

placing a single molecule in the center of a 15 Å vacuum cell. All density functional
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Figure 4.1: Diagram for the core excitation process. Bottom: the ground state (GS)
potential energy surface (PES) of the SiX4 (X = F,H) molecule. Top: the excited (Ex)
state configuration of the same molecule, after emission of the photo-electron form
the core-level. Due to uncompensated charge on the silicon site ligands moves along
normal mode coordinate around new equilibrium. The shift of the minimum of excited
state PES with respect to GS proportional to the electron-phonon coupling constant

∆Rλ = gλα

√
h̄

2µωλ
. The energy shift of the zero-phonon line is ∆εα and in harmonic

approximation is equal to gλαωλ.

theory, density functional perturbation theory, and ab initio molecular dynamics calcu-

lations were performed with a pseudopotential-based, plane-wave DFT code (QUAN-

TUM ESPRESSO) [66] with periodic boundary conditions. Unless stated otherwise,

we used ultrasoft, PBE/GGA pseudopotentials taken from the Quantum-ESPRESSO

pseudopotential library, and a plane-wave cutoff of 50 Ry for the wave-functions and

400 Ry for the charge density. For MD we used time step of 50 h̄/ERyd.

First, the electronic and atomic structures were relaxed in the absence of a core-
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Figure 4.2: The time-dependent core-hole Green’s function calculated using ab-initio
based MD and cumulant ansatz. (a) The imaginary part of the phonon Green’s function
calculated obtained as displacement autocorrelation function from the atomic response
to the sudden creation of the Si 2p core-hole. (b) The fully interacting core-hole Green’s
function calculated using Eq. 4.14 for secondary excitation spectrum and the second
order cumulant expansion in the limit of harmonic response.

hole. Then the sudden creation of the core-hole was introduced by changing the Si

pseudopotential to one with a 2p core-hole calculated using the pseudopotential gener-

ator code OPIUM (GIPAW).

Using Born-Oppenheimer molecular dynamics (BO MD) we let the ligands respond

to this charge perturbation on the silicon site. BO MD involves self-consistent relaxation

of the electronic structure at each time step. After the introduction of the core-hole, the

system develops new Born-Oppenheimer surfaces due to the rapid screening response of

the electron density. The nuclei, which were initially at equilibrium with respect to the

ground-state BO surfaces, are suddenly away from the minima of the new BO surfaces
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Figure 4.3: Core-hole spectral functions for SiX4 (X = F,H). The energy of the single
particle is set to zero, and the energy of the zero-phonon peak gives an absolute value
for the quasiparticle energy shift ∆εα. The broadening has a Lorentzian shape and
originates from the finite core-lifetime.

(Fig. 4.1).

We extract the forces corresponding to Eq. 4.20 at the t = 0 time step and build

the phonon Green’s function from the temporal autocorrelation function according to

Eq. 4.23.

The only vibrational mode which was activated in the MD simulations is a fully

symmetric (a1) ligand stretching mode. As expected, it is clear from the period of

oscillations that the frequency strongly depends on the mass of ligands. The obtained

correlation function and the vibrational Green’s function in real space can then be

projected onto the normal coordinates.

In this specific case, the response can be well approximated as harmonic, which also

means that we are in the linear response regime. In the energy domain the vibrational

Green’s function is given by a delta function at the vibrational frequency. Both the

vibrational frequencies and coupling constants obtained from the molecular dynamics

are listed in Tab. 4.5. As an alternative approach to obtain the excited state vibrational

frequency we fit the bottom of the excited state potential energy surface with a quadratic

polynomial. We used the coefficients to calculate the frequency of vibrations in the

classical limit. Those values obtained from the BO MD simulation are in agreement

with the frequency and coupling constant calculated form the potential energy surface.
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Figure 4.4: Calculated XPS spectra of SiF4 compared to experimental results [99] (open
symbols). Shaded curves represent the individual 2p3/2 (red) and 2p1/2 (blue) contri-
butions. Vertical gray lines indicate the positions of electronic peaks in the absence of
electron-phonon interactions.

Table 4.1: Parameters of core-hole vibrational coupling calculated from BO MD for
SiX4 (X = F,H) for vibrational mode with a1 symmetry λ. The coupling strength
(g = M2

ω2 ) is a unitless parameter of the interaction.The experimental frequency obtained
from the energy separation of the vibrational side-bands.

Compound Mλ
α , meV gλα ωλ, meV ωexpλ , meV

SiH4 200 0.25 290 290

SiF4 270 2.4 105 110

In order to calculate the core-hole Green’s function one can Fourier transform the

secondary excitation spectrum βα(t) obtained in time the domain (see Eq. 4.14) and
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Figure 4.5: Calculated XPS spectra of SiH4 compared to experimental results [99] (open
symbols). Shaded curves represent the individual 2p3/2 (red) and 2p1/2 (blue) contri-
butions. Vertical gray lines indicate the positions of electronic peaks in the absence of
electron-phonon interactions.

calculate the cumulant using Eq. 4.11. Noticing that in the harmonic limit β(ω) is a

weighted delta function centered at the vibrational frequency, the integral in Eq. 4.11

can be taken analytically, and the expression for the cumulant simplifies to

Cα(t) =
∑
λ

(Mλ
α)2 e

−iωλt+iωλt−1

ω2
λ

(4.24)

The resulting core-hole Green’s function in the time domain for the Si 2p hole is

presented in Fig. 4.2b. The resulting spectral functions for SiF4 and SiH4 are shown

after shifting the quasi-particle energy to zero in Fig. 4.3. The overall shape of the

spectral function dramatically depends on the ratio between the coupling constant and

the phonon frequency, i.e., on the coupling strength. The smaller coupling strength
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corresponds to a more asymmetric spectral function (the case of SiH4).

Inspecting Eq. 4.24 one can notice that the core-hole Green’s function is propor-

tional to the double exponential function Gα(t) ∼ e−gλegλe
−iωλt . By expanding the first

exponent in powers of the coupling strength Gα(t) ∼ e−gλ
∑

n
gn

n!
e−iωλnt which gives a

set of delta functions separated by the vibrational energy and weighted by the factor

e−gλ g
n

n!
. Those weights correspond to the Poisson probabilities of a random process.

Thus the shape of the spectral function in the limit of small g is given by the Poisson

generating function. However, in the limit of strong coupling the overall shape of the

spectral function becomes more Gaussian-like because the intensity of the first peak

goes down due to e−g [12]. This explains the shape of the vibrational spectra.

Turning finally to the XPS spectra, the silicon 2p orbitals are split by spin-orbit

coupling into 2p3/2 and 2p1/2 levels, which are separated by about 0.6 eV [103]. To

compare our calculations with experimental results [99], we obtain the full silicon 2p

XPS signal by convolving each spectral function with a bare core-hole spectrum. This

consists of two delta functions (for the 2p3/2 and 2p1/2 levels) that have a 2:1 intensity

ratio. This comparison is presented in Fig. 4.4 and 4.5. An additional linewidth,

beyond the Lorentzian core-hole broadening, was added by further convolving with a

Gaussian to account for the experimental resolution [99]. The bare core-hole spectral

function used in the convolution with the vibronic spectral function was constructed

by hand from experimental knowledge of the Si 2p spin-orbit splitting and binding

energies. Values for the spin-orbit splitting and the respective binding energies (which

depend moderately on the local chemical environment) could be obtained numerically,

e.g. from all-electron DFT or Hartree-Fock calculations.
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4.6 Conclusions

In this section, we showed that the fine vibrational structure in the experimental XPS

spectra comes from the strong coupling between the deep core-hole and the vibrational

degrees of freedom. Thus neglecting such effects in the RIXS process might lead to

significant qualitative and quantitative mistakes.

To reproduce the XPS vibrational side-bands, we applied the cumulant ansatz for

the interacting core-hole Green’s function. Taking into account the localized character

of the core-hole, we performed calculations of the coupling constants using the inter-

atomic forces from the core-excited state at time zero. The excited state phonon Green’s

function was calculated using the displacement-displacement correlation function ob-

tained from BO molecular dynamics. We tested the approach on small molecules. The

calculated XPS spectra are in a good agreement with the experimental ones.

The benefits of this approach are that it can be applied directly to crystalline

materials and is also capable of capturing anharmonic effects as they will occur naturally

during the MD simulation. To account for strong electronic correlations one can go

beyond the present DFT study and calculate the electronic structure with various kinds

of techniques (DFT+U, DMFT, Gutzwiller, slave bosons).
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Chapter 5

XAS: Neutral excitations

Characterizing the coupling of neutral excitations to phonon degrees of freedom is es-

sential for the general understanding of the phonon contribution to RIXS. In contrast

to XPS, where the sample becomes charged after interaction with a photon, RIXS in-

volves only neutral excitations. In this sense, despite the conceptual differences between

XAS and RIXS, both probe the same type of electronic excitations and consequently

reflect the same interactions. In the present chapter, we focus on phonon contributions

to XAS, regarding this problem as a reference for the correct understanding of the

processes that form the intermediate state in RIXS.
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5.1 Introduction

X-ray absorption spectroscopy (XAS) is a resonant technique that probes unoccupied

states. The absorption cross-section is defined by the first order electron-photon interac-

tion (due to the resonant nature of the process other contributions are negligible) within

time-dependent perturbation theory [48]. In contrast to photo-emission techniques, af-

ter interaction between the X-ray photon and the core-electron, the latter remains in

the sample filling an unoccupied orbital. Tuning the energy of the incoming photon to

be close to the resonant transitions between atomic levels and conduction states one can

achieve orbital and element selectivity. XAS paired with XES (which probes occupied

states) provides information on the electronic structure of the absorber, such as the

energy splitting between levels, hybridization of atomic orbitals as well as information

about the local environment. One can find detailed reviews on these techniques else-

where [104, 105]. In the limit of weak overlap between the core and the excited electron

wave-functions, one can probe the density of the unoccupied states [105]. However,

often the electronic structure appears in a mixed way due to strong multiplet effects

[104]. All single electron transitions in reality are accompangied by dynamical effects,

such as contributions from plasmons [106] or phonons [44, 107, 108]. The electron-

phonon interaction contributes to the absorption process as a self-energy correction to

the electronic spectral function. Thus, the resulting spectra contain unique signatures

of the electron-phonon interaction.

The electron-phonon interaction tends to break the quasi-particle picture of elec-

tronic excitations, i.e., it attributes a shift to the quasiparticle peak and gives rise to

phonon side-bands. However, the resulting spectral function in many cases is not a

one particle property [88]. Using optical absorption one can measure an energy gap in

semiconducting/insulating materials, and the electron-phonon interaction renormalizes

this gap even in the zero-temperature limit [109] due to the energy shift of the hole

and photo-electron levels. Both non-equilibrium electron-electron and electron-phonon

interactions accompany the existence of the hole and an excited electron. Thus, in the

general case the electron–phonon and hole–phonon interactions appear to be entangled.

One limitation of the X-ray absorption technique in measuring the electron-phonon

coupling is that the lifetime of the excited state is usually very short. The lifetime

broadening is often more prominent than the splitting between phonon side-bands and
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the fine structure vanishes. In this case, the electron-phonon coupling is reflected in

the additional broadening of the quasiparticle peak [108] as well as in small changes in

the Lorentzian form of the peak. Also in contrast to RIXS, XAS provides information

in a phonon mode and wavevector averaged way.

Fermi’s golden rule The absorption cross-section (σabs) and absorption coefficient

(µ = σabs/Na), where Na is a concentration of absorbing atoms, is defined by Fermi’s

golden rule [48]. A transition from the core-level (or levels) occurs due to the interaction

with X-rays

µ(ω) = 4π2αω
∑
F

| 〈ΨF |∆ |ΨI〉 |2δ(ω − EFI) , (5.1)

where |ΨI〉 and |ΨF 〉 are the many-body ground and excited states, respectively. The

term 4π2αω where α ∼ 1/137 is the fine structure constant and ω is the photon energy,

will be omitted for simplicity.

Depending on the overlap between the excited electron and the core-level hole

wave-function the XAS process might be considered in two different pictures. From the

real-space impurity picture it can be seen as a probe of local atomic orbitals with strong

exchange interactions (mainly L-edges of transition metals). From the band structure

perspective it is seen as a probe of a continuous density of the states if the exchange

term is negligible (K-edges). In the latter case, the sum over final states in Eq. 5.1

should be replaced by the integration over the final many-body density of states

µ(ω) ∼=
∫
dEFN(Ef )| 〈ΨF |∆ |ΨI〉 |2δ(ω − EFI) . (5.2)

The density is weighted by the transition matrix elements which are defined by the

electron-photon operator discussed in Chapter 2 . The cross-section depends mainly on

the first order terms in time-dependent perturbation theory due to the resonance nature

of the transition and the linear (in A) electron-photon operator ∆. A simplification

can be achieved by taking into account that the photon wavelength is much larger than

the atomic dimension. The electron-phonon interaction can be treated approximately

assuming the parameter k · ri to be small.

The energy of the excited core-electron is of the same order as the binding energy

h̄ω ∼ Ze2

Ratom
. Assuming also that ri ∼ Ratom then kr is of the order of Zα ∼ Z/137 < 1
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(α = 1/137). And thus the exponential factor in many cases can be expanded up to

the first few terms e−ik·r ≈ 1 + k · r +O((k · r)2).

The first term in this expansion is called the electric dipole (E1) approximation

and is proportional to the momentum operator V (0) ∼ pi. The lowest contribution from

the magnetic term contributes at higher order in kr then E1 and is called the magnetic

dipole (M1). Since in this work we will not be treating any spin involved interactions,

the magnetic term will not appear explicitly, but it can be added without any specific

requirements.

The transition matrix elements for both E1 and M1 will be zero unless the selection

rules are satisfied. The selection rules come from the form of the interacting potential

and atomic orbitals. The difference between the total angular momentum of the ground

and excited states has to be ∆J = 0,±1. At the same time the difference for the

secondary total angular momentum quantum number has to be ∆MJ = ±1. The

higher order transitions in k · r satisfy different selection rules.

In the following text we will use a generic form of ∆I unless otherwise specified.

The coupling of the photon to the electronic structure leads to the annihilation of a

core-electron and creation of an excited electron in an unoccupied conduction band

orbital. One can express the electron-photon operator using the second quantization

formalism

∆ =
∑
β,α

dα,βc
+
β cα + h.c , (5.3)

where the matrix elements dα,β contain all information about the electronic translations.

Moreover, the indices α and β represent the core-hole and excited electron, respectively,

and consequently run over unoccupied states for the excited electron and occupied for

the core-hole, though we usually pick a specific core-level. The electron creation and

annihilation operators are c+
i , ci respectively.

XAS in terms of many-body Green’s functions It is convenient to use the

Green’s function formalism to obtain the absorption cross-section. By expanding the

square of the matrix elements in Eq. 5.1

µ(ω) =
∑
F

〈ψI |∆+ |ψF 〉 〈ψF |∆ |ψI〉 δ(ω − EFI) , (5.4)
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and replacing the summation over final states with a propagator

(Im Λ(ω) = − 1
π

∑
F |ψF 〉 〈ψF | δ(ω − EF )) we get

µ(ω) = − 1

π
Im 〈ψI |∆+Λ(ω + EI)∆ |ψI〉 . (5.5)

A distinct advantage of this formulation is an absence of an explicit summation over

the final states, which might be enormously expensive for the vibronic problem in

crystalline materials. Taking into account that the interaction term is a two-particle

operator, the many-body Green’s function Λ can be reasonably approximated as a two-

particle one [61, 62]. The interaction with other particles will come as a correction to

the two particle picture. This approximation, however, is less accurate for open shell

compounds.

Eq. 5.5 shows that after the creation of the neutral excitation in the system all

information on the internal interactions is hidden in the Green’s function, i.e., the

main focus will be on the calculation of the two-particle Green’s function and related

spectral function. For convenience, we will refer to the fully interacting two-particle

Green’s function as Λ and to the two-particle Green’s function in the absence of the

electron-phonon interaction as L.

Both electron-hole and electron-phonon vertex parts of the two particle Green’s

function make calculations non-trivial. One could attempt to treat both types of in-

teraction within a Bethe-Salpeter formalism [109]. Alternatively, as it was done for

plasmons, one can consider a cumulant approach to the electron-phonon interaction in

the particle-hole basis [88] (See appendix E). However, an important simplification of

the problem can be achieved if we change the idea of what we treat as a quasi-particle.

Instead of the separately dressed electron and hole, here we suggest to treat the resulting

electron-hole exciton as the quasi-particle itself. This approach leads to the separation

of the pure electronic and electron-phonon contributions, which can be justified based

on the distinctly different time-scales of the interactions. The resulting exciton quasi-

particle calculated in the presence of electronic interactions then interacts effectively

with phonons, however in a different way than the non-interacting electron and hole.

This idea is consistent with the conclusions of the recent work by Antonious and Louie

[109] on the optical exciton-phonon coupling, although they use the Dyson approach to

treat the exciton-phonon interaction and we will employ the cumulant expansion.

63



5.2. CUMULANT EXPANSION FOR THE EXCITON-PHONON INTERACTION

5.2 Cumulant expansion for the exciton-phonon in-

teraction

The advantage of working in the excitonic basis is the possibility to first solve the elec-

tronic problem and then, applying approximate methods, to account for the phonon

contribution, instead of directly solving the substantial vibronic problem. This scheme

can be applied to both solids and molecules. Generally, even the pure electron in-

teraction part cannot be solved exactly [61, 68]. Nevertheless, this separation still

significantly reduces the effort one needs to apply to solve the electron-phonon prob-

lem. In this section we will rewrite Fermi’s golden rule in terms of an exciton Green’s

function and treat it with a combination of the BSE and the cumulant expansion. First,

let us reintroduce the exciton Green’s function in the absence of the exciton-phonon

interaction

Lξ,ξ(ω) =
∑
α,β

(Aξαβ)∗Aξαβ
εαβ − ω ± iγ

. (5.6)

Using Eq. 3.44 the exciton Green’s function and coefficients Aξαβ can obtained by solving

the BSE Hamiltonian (see Chapter 3). The index ξ = {nξ,kξ} is a shorthand notation

for the exciton band and momentum. Using completeness of the excitonic basis, one

can rewrite Eq. 5.5 for the absorption coefficient as

µ(ω) = −
∑
ξ2,ξ1

1

π
Im 〈ψI |∆+ |ψξ1〉 〈ψξ1|Λ(ω + EI) |ψξ2〉 〈ψξ2|∆ |ψI〉 . (5.7)

The Green’s function operator Λ(ω) =
∑

m
|ψm〉〈ψm|
Em−ω−iγ is composed of the eigenvectors and

eigenvalues of the fully vibronic Hamiltonian. The wave-functions |ψξ〉 = |ψeξ〉 |χph〉 in-

clude both electronic (HBSE |ψeξ〉 = εξ |ψeξ〉) and phonon (H0
ph |χph〉 = ωph |χph〉) degrees.

This reduces the initial many-body problem to that of a purely electronic exciton with

a self-energy due to interaction with the lattice. Since the initial state wave-function

|ψI〉 contains neither electronic nor phonon excitations it will be referred to as |0〉. The

electron-photon operator ∆ acts directly only on the electronic states and the initial

phonon state remains unchanged. As in the previous section

dξ = 〈χph| 〈ψeξ |∆ |0〉 |χph〉 =
∑
α,β

dα,β 〈ψeξ | cαc+
β |0〉 =

∑
α,β

dα,βA
ξ
αβ . (5.8)
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Such matrix elements are projections of the electronic part of the state ξ onto the initial

non-interacting electronic wave-functions |ψα〉 |ψβ〉, where α and β represent states for

the hole and particle, respectively. The matrix elements are weighted by the electron

transition probability from state α to β. Eq. 5.7 then becomes

µ(ω) = −
∑
ξ2,ξ1

1

π
(dξ2)

∗dξ1Im 〈0| aξ2Λ(ω)a+
ξ1
|0〉 . (5.9)

We now focus on the fully interacting Green’s function Λ. It is essential for the following

chapter to stress the fact that even if Λ is, in general, non-diagonal in the exciton

subspace, it is for sure diagonal in the phonon subspace

Λξ,ξ′(ω) = 〈χ0
ph| 〈0| aξΛ(ω)a+

ξ′ |0〉 |χ0
ph〉 . (5.10)

In the absence of the electron-phonon interaction (or other types of dynamical interac-

tions that are not part of the BSE) Λ is always diagonal in the excitonic basis (ξ = ξ′).

It reduces to just the electronic Green’s function Eq. 5.6. The full spectrum is also

proportional to the exciton density of states

µ(ω) = −
∑
ξ

1

π
|dξ|2ImLξ(ω) . (5.11)

In contrast, if there is an electron-phonon interaction, these pure electronic states can

be mixed. However, non-diagonal elements of the exciton Green’s function are only

non-zero when kξ1 = kξ2 and nξ1 6= nξ2 .

Assuming that the excitonic bands, energy-wise, are well separated (εξ1 − εξ2 �
h̄ωph), the off-diagonal terms in the exciton Green’s function can be neglected. The

exciton-phonon scattering events are still present in the limit of one band. The fully

interacting Green’s function can be obtained from the S-matrix expansion by analogy

to Eq. 3.13 but starting from the pure electronic BS problem (aξ =
∑

α,β A
ξ
αβcαc

+
β ) in

the time domain as (εξ > 0)

iΛξξ(t, t
′) =

∑
n

(−i)2n

(2n)!

∫
..

∫
dτ1dτ2n 〈0|Taξ(t)V1(t1)V2n(t2n)a+

ξ (t′) |0〉c . (5.12)

Due to the cancellation theorem [12], the expansion contains only connected diagrams
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Figure 5.1: Expansion of an exciton propagator dressed by interactions with phonons
(wavy red lines). The black exciton-lines include electron-electron interactions. The
heavy red line represents the fully interacting exciton propagator within the cumulant
expansion.

and all operators are defined according to the Heisenberg representation. Exponential

re-summation of the above series (see Chapter 3) leads to a cumulant expansion similar

to the one particle case. Denoting the Green’s function in the absence of electron-

phonon interactions as Lξ = −i 〈0|Taξ(t)a+
ξ (0) |0〉, within the framework of the cumu-

lant ansatz Eq. 5.12 reads

Λξξ(t, t
′) = Lξ(t, t

′)eCξ(t,t
′) . (5.13)

In the lowest order the cumulant can be approximated as a second order term in the

exciton-phonon coupling Cξ ∼ C
(2)
ξ (t). Equating terms of the same order in the coupling

constant this expression for the second-order cumulant can be found in terms of regular

moments (Eq. 3.24) and gives

Cξ(t, t
′) = −[Lξ(t− t′)]−1

∑
ν,ξ1

|Mν
ξξ1
|2

×
∫ ∫

dτ1dτ2Lξ(t− τ)Lξ1(τ1 − τ2)Dν(τ1 − τ2)Lξ(τ2 − t′) . (5.14)

Using the expression for the Fan-Migdal self-energy Σ = iLDΓ with Γ = 1 the above
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equation can be written as

Cξ(t, t
′) = [Lξ(t− t′)]−1

×
∫ ∫

dτ1dτ2Lξ(t− τ1)Σξ(τ1, τ2)Lξ(τ2 − t′) . (5.15)

The second order approximation of the cumulant series seems to be sufficient, although

one can improve convergence by including either a higher order cumulant [101] or a

different type of self-energy [110]. The above equation can also be formulated as a

Fourier transform of frequency dependent functions (t′ = 0)

Cξ(t) =
1

π

∫
dω
|ImΣξ(ω + εξ)|(e−iωt − iωt+ 1)

ω2
. (5.16)

The critical difference between the formulation of the problem in the exciton basis

is that now the cumulant does not contain a phonon exchange term explicitly. It is now

absorbed by the electronic self-energy of the quasi-particle. However, the self-energy

has to be carefully evaluated. In contrast to Eq. 3.17, now the self-energy involves the

calculation of the exciton-phonon coupling constants and the dispersion of excitonic

levels

Σξ(t, t
′) = i

∑
ν,ξ1

|Mν
ξξ1
|2Lξ1(t1, t2)Dν(t1, t2) . (5.17)

The vertices Mν
ξξ1

have to be evaluated in the presence of the electron-electron interac-

tions. Thus, Σξ involves the first-order correction to the electron-electron interaction

in the presence of atomic displacements.

Debye-Waller self-energy In general there is one more term present in the

second order exciton-phonon self-energy (see Eq. 3.32). The Debye-Waller (DW) term

is proportional to higher order exciton-phonon coupling and involves two-phonon oper-

ators Eq. 1.2. In the new basis of the excitonic states, one can express the DW part of

the self-energy as

ΣDW (t) =
∑
ξ,ν

M
(2)
ξ,ξ′ 〈0|Bν(t)Bν(t) |0〉 =

∑
ξ,ν

M
(2)
ξ,ξ′ [2N + 1] . (5.18)
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Only coupling constants are affected by the change of the basis. Here, N is the number

of phonons in the ground state. This contribution to the spectral function is limited to

a constant shift proportional to the second order coupling constant.

Spectral function To find the XAS spectrum one has to combine Eqs. 5.7 and

5.12. The resulting expression for absorption is proportional to the density of states of

the fully interacting Green’s function

µ(ω) = − 1

π

∑
ξ

(dξ)
∗dξIm Λξ(ω) . (5.19)

The spectral function is nearly diagonal in the electronic space Aξ(ω) = − 1
π
Im Λξ(ω).

The above equation accounts for many body corrections in a simple way [88, 102]

µ(ω) =
∑
ξ

∫
dωµ0

ξ(ω − ω′)Aξ(ω) , (5.20)

as a convolution of a pure electronic solution µ0
ξ(ω) with the exciton-phonon spectral

function (Aξ)

µ0
ξ(ω) = − 1

π
(dξ)

∗dξIm Lξ(ω) . (5.21)

The electronic contribution is an excitonic quasi-particle solution, which is known e.g.

from solution of the BSE. The presence of the electron-phonon interaction redistributes

the weight of the quasi-particle peak between phonon side-bands while conserving the

total weight. This is a convenient way to include many-body corrections if the quasi-

particle part is already known. However, such an approach fails when the exciton-

phonon interaction mixes different excitonic bands, because off-diagonal terms of the

bare excitonic propagator can no longer be neglected.

Exciton-phonon coupling constant The electron-lattice matrix elements

Mν
ξ,ξ′ =

√
h̄

2Nµων
ξν · F ν

ξξ′ (5.22)

are evaluated as an exciton-phonon scattering process rather than separate electron-

phonon and core-hole–phonon scattering events. Q0
ν =

√
h̄

2Nµων
is an amplitude of the
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phonon eigenvector with index ν = {λ, q}. Thus, the exciton-phonon interaction is

defined by the variation of an electronic interacting part of BSE Hamiltonian 5.22 with

respect to atomic displacements along the phonon polarization vector ξν . We construct

the exciton-phonon coupling constants by generalizing the frozen-phonon procedure pre-

sented by Tinte and Shirley [63] and Gilmore and Shirley [108] to study the vibrational

contribution to the XAS linewidth of SrTiO3. This defines the force constants

F ν
ξξ′ = −∂Qν

[
EGS
tot (Qν) + 〈ψ′ξ|HBSE(Qν) |ψξ〉

] ∣∣
δQν=0

(5.23)

as derivatives of the excited-state total energy with respect to given atomic displace-

ments. This expression splits the atomic position dependent excited-state total energy

into the sum of the ground-state potential energy surface (PES) EGS
tot (Q) and the en-

ergy separation between the ground- and excited-state PES (HBSE(Q)). In the above

expression, ξ and ξ′ are excitonic eigenstates of the equilibrium lattice and Eq. 5.23

accounts also for the scattering between exciton states by phonons.

5.3 Numerical results

The results of this section are limited to small molecules, but the advantage of such an

approach is the possibility to apply it to crystalline materials. One should consider the

following results as a proof of concept rather than the end stage of the research.

To demonstrate the above methodology we calculate the vibrational contributions

to the K-edge of N2, the O K-edge of CO and the O K-edge of acetone. We select these

molecules because for each of them the problem can be well approximated as a single

exciton state interacting with a single vibrational stretching mode and also because

high-resolution experimental data exist and show multiple phonon side-bands.

To obtain the cumulant using Eq. 5.16 one has to calculate the exciton Green’s

function and the self-energy using Eq. 5.17 (here we only include the linear electron-

phonon coupling). Thus, the quantities one has to evaluate to calculate the exciton-

phonon vibrational spectral function are the exciton Green’s function, exciton-phonon

coupling constants, and the phonon Green’s functions.

The acetone O K-edge XAS consists of an isolated feature at 531.5 eV and a
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Figure 5.2: Calculation of the O-K XAS of CO (top) and acetone (bottom). The arrows
indicate the 1s1π∗ resonance. The insets show the 1s1π∗ excited-state PES for the C-O
bond stretching constructed as the sum of the ground-state PES and the BSE excitation
energy. The tangent lines at the ground-state C-O equilibrium bond lengths give the
excited-state forces. The blue curves are quadratic fits of the excited state potential
energy.
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broad continuum at higher energy. The main feature corresponds to the excitation of

an oxygen 1s electron into a π∗ anti-bonding orbital between the oxygen and nearest

carbon atom. We obtain the purely electronic absorption spectrum by solving the

Bethe-Salpeter equation with all atoms fixed at their equilibrium positions using the

OCEAN code [90, 111] with Quantum-ESPRESSO as the underlying DFT engine [66].

To model the gas phase we used a vacuum box of the size 20 Å × 20 Å × 20 Å.

The size of the box was converged with respect to the excited state forces. For the

ground state calculation we used the LDA functional and norm-conserving pseudopo-

tentials with a converged energy cutoff of 100 Ry. Convergence of the BSE calculations

was reached for acetone by including 96 unoccupied bands for the core-hole screening

calculation and 72 bands for the exciton basis. The result of the calculation is shown

in Fig. 5.2. We focus on the 1s1π∗ feature at 531.5 eV.

To evaluate the exciton-vibron force constant we perform the numerical derivative

in Eq. 5.23 explicitly by repeating the BSE calculation several times while moving the

oxygen atom in order to make incremental adjustments to the C-O bond length. Then

we construct the excited state potential energy surface as

E∗ξ (Qν) = EGS(Qν) + ∆Eeh(Qν) . (5.24)

The BSE excitation energy ∆Eeh(Qν) is obtained in this case by variation of the core-

level energy and the energy of the 2p binding energy with respect to the conduction

band minimum. The detailed results of the calculation are shown in Fig. 5.3. Finally

the excited-state potential energy surface constructed as the sum of the ground-state

PES and the BSE excitation energy is given in the inset of Fig. 5.2. The forces were

obtained using numerical derivatives of the potential energy surface

F ν
ξξ = lim

∆Qν→0

E∗ξ (∆Qν/2)− E∗ξ (−∆Qν/2)

∆Qν

(5.25)

where the index ξ refers to the specific exciton present in the excited state calculation.

For the CO and N2 molecules the same set of calculations were performed for the 1s1π∗

excitation and the bond stretching mode.

As an alternative approach to obtain the exciton-phonon coupling constants we

generated the excited-state potential energy surface with simpler self-consistent DFT
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calculations using a core-hole pseudopotential and placing an extra electron in the

LUMO orbital [60, 112]. In this case, the calculation for each molecule was done

using the Quantum-ESPRESSO DFT package and PBE ultra-soft pseudo-potentials.

Additional 1s core-hole pseudopotentials were used to simulate the XAS final state.

The validity of the DFT plane-wave methods for the description of the these molecules

was further verified by the reproduction of the ground state vibrational frequencies.

The derivative of the BSE-derived excited-state potential energy surface at the

ground-state equilibrium bond length gives an exciton-vibrational force constant for the

acetone molecule of F = −7.6 eV/Å for the bond stretching mode. This is equivalent

to a value of M = 0.35 eV or g = 5.4. This is consistent with the value of F = −7.7

eV/Å obtained from the constrained core-hole DFT calculations. The same procedures

were done for the CO (N2) molecule resulting in a BSE force constant of F = −13.7

eV/Å (F = −6.7 eV/Å), corresponding to M = 0.51 eV (M = 0.24 eV) and g = 9.7

(g = 0.92), again showing good agreement with the constrained core-hole DFT result

of F = −11.7 eV/Å (F = −7.0 eV/Å).

The phonon Green’s function was modeled in the harmonic limit using the fre-

quency obtained from a quadratic fit to the excited-state potential energy surface. For

acetone, this gives ω = 0.15 meV, while for CO we find ω = 0.164 meV and for N2

ω = 0.25 meV. Although in the present case the frequencies can be observed experi-

mentally as the energy separation between phonon side-bands. Anharmonic vibrational

responses could be obtained through atomic displacement autocorrelation functions,

as done for XPS, generated by excited-state molecule dynamic simulations or higher

polynomial fitting of the excited state PES. However, beyond the challenge of such

calculations, in many periodic systems the harmonic response will be sufficient.

With the exciton-phonon coupling constant and the phonon Green’s function, we

evaluate the exciton self-energy Σξ in Eq. 5.17. The exciton cumulant is then formed

by Eq. 5.40 and the imaginary part of the resulting full exciton Green’s function gives

the effective XAS spectral function. Since the cases we are considering (the oxygen

1s1π∗ resonance of acetone and CO, and the N K-edge of N2) involve excitations into

isolated levels, the exciton spectral function is effectively equivalent to the XAS signal.

The pure electronic spectrum can be approximated as a single Lorentzian with core-

hole lifetime broadening. Additional instrumental broadening was added using the
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Figure 5.3: Details of calculating the exciton vibrational coupling for the acetone
molecule within the frozen phonon framework. All sub-figures show a variation of the
quantities used in the calculations with respect to displacement along the C-O stretch-
ing mode. From top to bottom and from left to right: variation of the ground state
energy, core-level shift, energy of the conducting band minimum, shift of the electronic
excitation 1s1π∗.
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Figure 5.4: Comparison between experimental XAS spectra [113] (black circles) and
calculation (red curve) using the cumulant ansatz for the exciton-phonon interaction
at the K-edge of the N2 molecule. The grey line corresponds to the position of the
exciton in the absence of the exciton-phonon interaction. Small differences between
the calculation and experiment regarding the positions and intensities of the phonon
sidebands can be attributed to an-harmonic effects.

HWHM corresponding to the original experimental work [58, 113]. The final spectra

are compared to the experimental data in Figs. 5.4 and 5.5, though sufficiently high

resolution experimental data is not currently available for the XAS of acetone.

As with the XPS results, the energy shift of the quasiparticle peak and the de-

gree of symmetry of the overall spectral shape depend on the exciton-phonon coupling

strength. N2 has a relatively weak coupling (g ∼ 0.92), and its spectrum shows notice-

able asymmetry while the coupling strength of CO is much larger (g ∼ 9.7) and the

spectrum is more symmetric. The overall agreement between the calculation and exper-

iment for CO is quite good while deviations in the intensities of higher order satellites
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Figure 5.5: Comparison between experimental XAS spectra [114] (black circles) and
calculations (red and blue curves) using the cumulant ansatz for the exciton-phonon
interaction at the K-edge of oxygen of CO and acetone (C3H6O). The dashed lines
correspond to the positions of the excitons in the absence of the exciton-phonon inter-
action.

are noticeable for N2. This could indicate anharmonicity of the excited-state vibrations

that were neglected in the calculation .

5.4 Discussions

We have reformulated the problem of two interacting particles (electron and hole) in the

presence of Coulomb and electron-phonon interactions in terms of an excitonic quasi-

particle that interacts with bosonic collective modes. This brings certain simplifications

to the many-body calculations. However, it also hides the real quantities which are of

interest to us, such as the electron-phonon coupling in the absence of a core-hole. We

will now discuss how the electron-phonon coupling constant appears in the context of

the exciton-phonon interaction, using a model Hamiltonian framework.
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Secondly, regarding the numerical evaluation of the Fan-Migdal self-energy in the

excitonic basis, it is desirable to find a ’cheaper’ way than the frozen phonon approach

to calculate the exciton-phonon matrix elements. The limitation of the frozen phonon

approach is a necessity to use supercell BSE calculations for each momentum transfer

q. This, however, can be overcome in framework of the DFPT.

Finally, we address how to include exciton-phonon interband scattering terms.

Such scattering may occur close to excitonic band intersections.

Model Hamiltonian Here we start with a simple model that is relevant for the

L-edge XAS of transition metals

H =
∑
α

εαc
+
α cα − εβc+

β cβ −
∑
α1,α2

Jα1α2
β c+

α1
cα2c

+
β cβ +

∑
α

Uαβc
+
α cαc

+
β cβ

−
∑
ν

Mν
ββc

+
β cβBν +

∑
ν,α1,α2

Mν
α1α2

c+
α1
cα2Bν +

∑
ν

ων(b
+
ν bν +

1

2
) . (5.26)

We assume a minimal electronic Hilbert space consisting of two electronic levels α =

{1, 2} and one hole level β. The particle operators cα and cβ correspond to the electron

and hole, respectively. We assume that the single particle energies εα/εβ are defined

in the presence of the valence electron-electron interactions, and explicitly treat only

the electron-hole direct Coulomb Uαβ and exchange Jα1α2
β interactions. The electron

and hole phonon interactions are treated by the linear term, neglecting second order

couplings. The index ν stands for q, λ phonon wave vector and mode. The phonon

operator is Bν = b+
−q,λ + bq,λ. The choice of signs in the Eq. 5.26 implies that all

constants are positive. The negative sign of the core-hole–phonon coupling highlights

the sign difference of the particles and consequently different attraction/repulsion action

on the ions. However it depends on the orbital structure of the absorbing atom and the

screening.

We first consider the electronic part He of the Hamiltonian H

He =
∑
α

εαc
+
α cα − εβc+

β cβ −
∑
α1,α2

Jα1α2
β c+

α1
cα2c

+
β cβ +

∑
α

Uαβc
+
α cαc

+
β cβ . (5.27)

The corresponding Hilbert subspace has a dimension of 2 and the basis wave-functions
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are |ψ1
eh〉 = |ψα1〉 |ψβ〉 and |ψ2

eh〉 = |ψα2〉 |ψβ〉. The excitonic basis is the defined by

the eigenvectors of He which can be generalized to the BSE problem (Eq. 3.45). If the

unitary operator S can canonically transform the electronic Hamiltonian H ′e = S−1HeS,

then it also defines the expansion of excitonic states in terms of the independent particle-

hole basis. The coefficients of the expansion are the elements of the inverse matrix

(|ψξ〉 = S−1 |ψeh〉). For such a small system the matrix of the canonical transformation

can be found analytically under the assumption that the Hamiltonian matrix is real

and symmetric (J21 = J12 = J).

The coefficients can then be written in terms of model parameters

|ψeξ1〉 = − J
D
|ψ1
eh〉+

∆ +D

2D
|ψ2
eh〉 (5.28)

|ψeξ2〉 =
J

D
|ψ1
eh〉+

D −∆

2D
|ψ2
eh〉 . (5.29)

Here D =
√

∆2 + 4J2 and the difference between diagonal elements of the Hamiltonian

He is ∆ = εα1 − εα2 + U11 − U22 + J11 − J22.

The solution of the electronic Hamiltonian then can be defined on the bigger Hilbert

space including phonon states as |ψξ〉 = |ψeξ〉 |χph〉. The states |ψξ〉 are the eigenstates

of the Hamiltonian H with zero electron-phonon coupling. In the new basis {ψξ} the

Hamiltonian from Eq. 5.26 becomes

H̃ =
∑
ξ

εξa
+
ξ aξ +

∑
ν

ων(b
+
ν bν +

1

2
) +

∑
ν,ξ2,ξ1

Mν
ξ1ξ2

a+
ξ1
aξ2Bν . (5.30)

The above transformation leads to a partial diagonalization of the Hamiltonian H. The

electron-electron interaction is now absorbed by the energies εξ and coupling constants

in the new basis Mν
ξ,ξ′ .

The Hamiltonian 5.30 describes the interaction of an exciton with phonons. The

exact expressions for the exciton-phonon coupling for our model system are (under

assumption that the variation of the model parameters J and U with respect to the

phonon eigenvectors is zero)
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Mν
ξ1ξ2

=

√
h̄

2Nµω
〈ψξ2| ∇νVeff |ψξ1〉 =

√
h̄

2Nµω

∑
i,j

Aξ1i (Aξ2j )∗ 〈ψjeh| ∇νVeff |ψieh〉

=
∑
i,j

Aξ1i (Aξ2j )∗[Mν
αiαj

+Mν
αα] . (5.31)

Using the relations between transform matrix elements and the parameters of the model

5.29 we obtain

Mν
ξ1ξ1

=
J2

D2
[Mν

α1α1
+Mν

β1β1
] +

(∆ +D)2

4D2
[Mν

α2α2
+Mν

β2β2
] (5.32)

− J(∆ +D)

2D2
[Mν

α2α1
+Mν

β1β2
+Mν

α1α2
+Mν

β2β1
]

Mν
ξ1ξ2

= − J
2

D2
[Mν

α1α1
+Mν

ββ]− (D −∆)J

2D2
[Mν

α1α2
+Mν

ββ] (5.33)

+
(∆ +D)J

2D2
[Mν

α2α1
+Mν

ββ]− (D2 −∆2)

4D2
[Mν

α2α2
+Mν

ββ] .

The remaining exciton-phonon matrix elements are simply symmetric to Eqs. 5.32 and

5.33 with respect to permutation of electronic levels.

Terms which can be considered as the exciton-phonon coupling (with no change

in exciton states (Mν
ξ1ξ1

)) involve both coupling (Mα1,α1) and scattering (Mα1,α2) from

the single electron-hole basis representations. Also, even if the scattering term (Mν
α1α2

)

is small compared to the coupling term (Mν
α1α1

) in the electron-hole basis this relation

might not be satisfied in the exciton basis. This is due to a strong mixing effect of the

exchange interaction on the electronic states. In contrast, the difference between the

diagonal parts of the electronic interaction ∆ in the absence of the exchange interaction

does not significantly affect the composition of the resulting exciton-phonon couplings.

This model might be a prototype for the electron-phonon interaction in the L-edge

spectra of transition metals in an octahedral crystal structure like SrTiO3 with two

conduction bands composed of 3d states (Eg and T2g). Due to the strong multiplet

effects the resulting exciton-phonon coupling is composed of many electron-phonon
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Figure 5.6: Model study of the exciton-phonon coupling. As a starting point the model
with two conduction bands and one core-hole level was taken Eq. 5.26. Initial dispersion
of the coupling constants is shown on the left side of the figure. Model parameters are
J = 0.3 eV and ∆ = 0.1 eV. The resulting exciton-phonon coupling is shown on the
right side of the figure. The interband scattering of the electron-phonon matrix elements
is neglected.

coupling terms.

Similar mixing of the electron-phonon coupling may occur due to the strong Coulomb

effects of the electronic valence levels. As an example one can consider a one band Hub-

bard model for a cuprate where the mixing comes from the hopping parts.

Connection to DFPT The calculation of exciton-phonon matrix elemets using

density functional perturbation theory is computationally preferable since it employs

mainly unit-cell calculations [11]. A reasonable approach for the calculation of excited-

state forces within the BSE and DFPT frame-work was formulated in the work of
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Ismail-Beigi and Louie [59]. In the following, we suggest a generalization of the excited

state force calculation for the cases which includes scattering of an exciton. The ex-

cited state calculation of the exciton-phonon coupling should include both variations

of the single particle energies and the variation of the interaction terms. In the BSE

framework the latter are given by variation of the effective two particle term Eq. 3.45

∂qHBSE = ∂qεα − ∂qεβ + ∂qKα,α′,β,β′ . (5.34)

The first two terms are proportional to the variation of the quasi-particle Hamiltonian,

which describes particle and hole excited states (it might include a GW corrections or in

the limited cases it might be a regular KS Hamiltonian). From the Hellmann-Feynman

theorem we have ∂qεi = 〈ψi| ∂qHqp |ψi〉. It is common to use static approximation for

the BSE calculations [61, 62] δW (1,2)
δG(3,4)

= 0. It means that the vertex function includes

only a momentary interaction and neglects dynamical effects. The variation of the BSE

kernel of Eq. 3.43 includes both variation of the single particle wave-functions and the

vertex function. The W is a functional of the electron Green’s funciton. From the chain

rule the variation of W is ∂qW (1, 4) = δW (1,2̄)
G(3̄,4)

∂qG(3̄, 4) and thus it is assumed to be

zero [59]. One can argue about the importance of the dynamical effects, but in many

cases [90] static calculations provide sufficient results for a pure electronic calculation.

The remaining terms contain a variation of the wave-function and unperturbed kernel.

The first-order correction to the wave-functions is

∂q |ψα〉 =
∑
α1

|ψα1〉 〈ψα1| ∂q |ψα〉 ∼=
∑
α1 6=α

|ψα1〉
〈ψα1| ∂qVKS |ψα〉

εα1 − εα
. (5.35)

Finally projecting results of Eq. 5.34 onto the excitonic basis one can write the exciton-

phonon coupling as

Mν
ξ,ξ′ =

∑
α,α′,β,β′

(Aξα,β)∗Aξ
′

α′,β′ [(M
ν
α,α −Mν

β,β)δβ,β′δα,α′ (5.36)

+
∑
α1

(Mν
α1,α

)∗

εα1α

Kα1,β,α′,β′ +
∑
α1

(Mν
α1,α′

)

εα1α′
Kα,β,α1,β′

+
∑
β1

(Mν
β1,β

)∗

εβ1β
Kα,β1,α′,β′ +

∑
β1

(Mν
β1,β′

)

εβ1β′
Kα,β,α′,β1 ] .
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Here εαβ = εα − εβ and Mν
α,α′ , M

ν
β,β′ are electron-phonon and core-hole phonon matrix

elements which can be directly found using DFPT formalism [11, 17, 66] (see also

Appendix B). Thus one can use the DFPT calculations to obtain the exciton coupling

constant including first order corrections to the BSE kernel.

Interband scattering If the non-diagonal exciton-phonon interaction is strong com-

pared to the energy gap between excitonic bands (in areas of intersection) the general

form of the expansion of the Green’s function is

iΛξξ′(t, t
′) =

∑
n

(−i)2n

(2n)!

∫
..

∫
dτ1dτ2n 〈0|Taξ′(t)V1(t1)V2n(t2n)a+

ξ (t′) |0〉c . (5.37)

Momentum conservation implies kξ = kξ′ and nξ = nξ′ . The second order self-energy

contains electron-phonon matrix elements of two different scattering events. The exci-

ton scatters first from the initial state ξ to the intermediate ξ1 and then to ξ′

Σξξ′(t, t
′) = i

∑
nξ1 ,kξ1 ,ν

Mν
ξ′,ξ1M

ν
ξ′,ξ1Lξ1(t− t′)Dν(t− t′)δkξ,k′ξ . (5.38)

The general ansatz for the solution in terms of cumulants is [78]

Figure 5.7: Lowest order bubble diagram, which shows the interband scattering event.
The momentum and band index of an exciton appear as kξ and nξ respectively.

Λξξ′(t, t
′) = Lξ(t, t

′)eCξξ′ (t) . (5.39)

Following the same steps as in the previous section for the diagonal contribution, the

expression for the second order cumulant with non-diagonal matrix elements is formally
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(using Eq. 5.38) given by

Cξξ′(t, t
′) = −[Lξ(t− t′)]−1

×
∫ ∫

dτ1dτ2Lξ(t− τ1)Σξξ′(τ1, τ2)Lξ′(τ2 − t′) . (5.40)

The above approximation for the cumulant has to be of the same accuracy as for the

interband scattering since it includes the same type of diagrams. However, the number

of electron-phonon matrix elements increases the total number of possible states for

scattering and consequently the computational expense. The presence of the non-

diagonal Green’s function elements also breaks the approximation to get Eq. 5.21. The

full spectrum is no longer proportional to the density of states since it contains a sum

over all elements of the imaginary part of the Green’s function rather than the trace

µ(ω) = − 1

π

∑
ξ1,ξ2

(dξ1)
∗dξ2Im Λξ1ξ2(ω) . (5.41)

Such a generalization allows accounting for contributions from dark exciton states (not

accessible by direct transition from the core-level).
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5.5 Conclusion

The main result of this section is the formalism for providing a convenient and effi-

cient solution of the electron-phonon coupling problem for neutral excitations. Using

the Green’s function formalism, we developed an efficient method to account for the

phonon contribution to XAS. In the spirit of the BO approximation, we suggested that

the solution of the two particle problem could be effectively found by separating the

electron-phonon and the electron-electron interactions. We first solved the problem of

the interacting electron and hole in the absence of the electron-phonon interaction. Us-

ing the solution of the BSE problem, we constructed an effective quasiparticle exciton

propagator. We then dressed the exciton-propagator with phonons using the cumulant

ansatz. The exciton-phonon matrix elements were calculated for an excited state con-

figuration using the frozen-phonon approach. The formalism was tested on molecules

which show strong vibrational contributions in XAS. The results of these calculations

are in good agreement with high-resolution experimental spectra for the oxygen and

nitrogen K-edge in CO and N2.

This result serves as a basis for the correct interpretation of RIXS spectra. In

XAS, the Green’s function appears to be diagonal in the vibrational space. This makes

absorption spectra proportional to the spectral function of the exciton. Even though

this condition is not held in the RIXS process, the virtual intermediate state of RIXS

is the final state of the XAS process. Thus, with some modifications we can apply this

formalism in the context of RIXS.
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Chapter 6

Green’s function approach to RIXS

To obtain parameters of the electron-phonon interaction from the RIXS experiment

one has to understand the formation of the phonon contribution to RIXS. Here we

employ the first principle type of calculations as an ultimate test of the approxima-

tion we made. The phonon contribution requires treatment which is going beyond

the present well-established methods to calculate X-ray spectra for solids. Thus the

objective of this section will be the development of a rigorous way to calculate the

dynamical (phonon) contribution to RIXS spectra with the possibility of application to

the crystalline materials.
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6.1. INTRODUCTION

6.1 Introduction

The general introduction to RIXS techniques and in particular to the phonon contribu-

tion were given in Chapter 2. The numerical limitations and difficulty of the problem

lead to the extensive model studies. The motivation for our work was the absence of

the rigorous approach to treat electron-phonon interaction in the RIXS process, which

is applicable to solids. Moreover, we argue that previous studies mistreated significant

contribution from the electron-hole and hole-phonon interactions. The argument for

this was a screening of the core-hole, however, the numerical conformation was missing.

Those interactions are generally crucial for the excited state problems and lead to the

quantitative and qualitative differences in the resulting value of the electron-phonon

coupling. In this section we will focus on the phonon contribution to the quasi-elastic

line, i.e., the electronic final state has to be the ground state. However, the low-energy

boson excitations will have a non-thermal population at the end of the RIXS process.

6.2 Convolution of XAS and XES

One of common approximations for Kramers-Heisenberg equation presents RIXS as a

convolution of the XAS-like spectra and the XES spectra with resonant denominator

[50]. The advantage of such approach is a direct connection to the first order processes,

but at the same time it is the lowest order approximation

σ0(ωi, ωloss) =

∫
dω1

µ0
e(ω1)µ̃0

a(ωi − ω1 − ωloss)
|ω1 − ωloss + iΓ|2 , (6.1)

where µ0
e is single particle emission and slightly modified µ̃0

a absorption spectra. µ̃0
a

involves incoming energy dependent transition operators instead of regular dipole op-

erators due to the difference between intermediate and final state core-hole potentials.

And Γ is an inverse intermediate state lifetime. The zero superscript means that those

quantities are calculated in the single particle picture in absence of the electron-phonon

interactions.

Taking into account the spectral function representation of the XAS (Eq. 5.20)

and XES we can correct the pure electronic transition using a convolution with the
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vibronic spectral functions. So the resulting RIXS cross-section can be presented as a

convolution of the pure electronic cross-section 6.1 and the effective vibrational spectral

function

σ(ωi, ωloss) =

∫ ∫
dω′dωσ0(ωi − ω′, ωloss − ω′ + ω”)Aeff (ω

′, ω′′) . (6.2)

Such form of the convolved cross-section is similar to the one presented in work of

Kas et al [50] regarding plasmonic contribution to RIXS although the effective spectral

function is different

Aeff (ω
′, ω′′) = Aa(ω

′)Ae(ω
′, ω′′) . (6.3)

Here the absorption spectral function is the same as in the previous chapter (see

5.20). The transition probabilities for emission case are different for different initial

number of phonons n0. Therefore spectral function has to be modified accordingly

Ae(ω
′, ω′′) =

∑
n0,ν

1
π
Im Gn0

e (ω”)δ(ω′ − n0ων). The delta function δ(ω′ − n0ων) allows

explicitly connect absorption process and initial population of phonon levels for emission

process. Thus Aaeeff it takes into account that the initial phonon states for XES process

were populated by the XAS process. The details on the XAS/ XES transitions with

non-equilibrium phonon population can be found in Appendix C.

Such consideration, however, contains weaknesses and resulting effective spectral

function reproduces vibrational RIXS badly. To point out what is missing we will

rewrite the KH equation using the notation for interference and incoherent terms. Ex-

panding the square of the matrix elements ((
∑

iAi)
2 =

∑
i(Ai)

2 + 2
∑

i<j AiAj) we

obtain

σcoh(ωi, ωloss) = σincoh(ωi, ωloss) + σinterf (ωi, ωloss) . (6.4)

Here full cross-section is denoted as coherent one, the incoherent part contains only the

sum of the squares

σincoh(ωi, ωloss) =
∑
F

∑
M

|〈ΨF |∆+
o |ΨM〉 〈ΨM |∆i |ΨI〉

ωi − (EM − EI) + iΓM

∣∣∣∣2 δ(ωloss − (EF − EI)) (6.5)
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Figure 6.1: Model calculation of the phonon contribution in RIXS using a convolution
with spectral function (blue line) and the results of the full Kramer-Heisenberg equation
plus exact diagonalization calculations for the coherent and incoherent part σcoh and
σincoh. On the left panel the results are shown for the long core-hole lifetime limit and
the opposite case on the right.

The interference part σintef contains all terms with a cross intermediate states. The

results of the model calculation (see Fig.6.2) suggests that the separation of the RIXS

effective spectral function into XES and XAS-like components neglects the quantum

interference effects which are present in the KH equitation. Inspecting carefully KH

and spectral function w given in Eq. 6.3, one can conclude that | 〈Ψf |∆+
o |ψm〉 |2 and

| 〈Ψm|∆i |Ψi〉 |2 (i.e. the incoherent parts) are present in the spectral function con-

sideration. However matrix elements 〈Ψf |∆+
o |ΨM1〉 〈ΨM1|∆i |Ψi〉 are omitted, where

ΨM1 ,ΨM1 represent different intermediate phonon states. Due to the importance of the

interference part we developed more rigorous approach to find a proper effective spec-

tral function. For this purpose we combined the cumulant expansion and consideration

of the off-diagonal exciton Green’s function.
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6.3 Kramers-Heisenberg equation in the excitonic

basis

Green’s functions to RIXS In contrast to the absorption cross-section, KH equa-

tion is not simply proportional to the two particle spectral function since the final state

might has a non-thermal equilibrium population of the phonon excitations. However,

we still can rewrite the KH equation in terms of Green’s function. Expanding square

in Eq. 2.5 we obtained

σ(ωi, ωloss) =
∑
F

∑
M2,M1

〈ΨI |∆o |ΨM1〉 〈ΨM1|∆+
i |ΨF 〉

ωi − (EM − EI) + iΓM

〈ΨF |∆+
o |ΨM2〉 〈ΨM2 |∆i |ΨI〉

ωi − (EM − EI)− iΓM

×δ(ωloss − (EF − EI)) . (6.6)

The sum over final states together with delta function is proportional to the imaginary

part of the many-body Green’s function operator Im GF (ω) = − 1
π

∑
F |ψF 〉 〈ψF | δ(ω −

ωF ). Although keeping assumption that the final state wave-function contains no ex-

citations apart from the phonons one can approximate many body final state Green’s

function as a phonon one (Gf ∼ D). In the similar way the intermediate state prop-

agation reads in terms of Green’s function Λ(ω) =
∑

M
|ΨM 〉〈ΨM |
ω−EM+iΓM

. And finally the

cross-section 6.6 in terms of final and intermediate states Green’s functions reeds as

σ(ωi, ωloss) = − 1

π
Im 〈ΨI |∆oΛ(ωi + Ei)∆

+
i D(ωloss)∆

+
o Λ+(ωi + EI)∆i |ΨI〉 , (6.7)

In this representation the cross-section is given as an expectation value of three

Green’s function operators without neither the intermediate nor the final state wave-

functions. However, in contrast to XAS, the evolution of such product does not lead to

simple representation. Thus we will attack this problem from the different perspective.

Going one step back we will introduce explicitly sum over the final state and present

the problem in terms of the off-diagonal intermediate state Green’s function.

Using completeness of the final state basis which consists of the various phonon

states, the final state Green’s function operator can be turned into non-thermal prop-
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agator

σ(ωi, ωloss) = − 1

π
Im

∑
F1,F2

〈ΨI |∆oΛ(ωi + Ei)∆
+
i |ψF2〉 〈ψF2 |D(ωloss) |ψF1〉

× 〈ψF1|∆+
o Λ+(ωi + EI)∆i |ΨI〉 i (6.8)

The electronic part of the RIXS intermediate state is the same as a final state in the

XAS process. In close analogy to the XAS we will approximate the electronic many-

body intermediate state Green’s function as a two-particle Green’s function. We also

neglect possible phonon-phonon interaction, and thus the phonon Green’s function has

to be diagonal (δF1,F2).

Thus evaluation of the RIXS cross-section is directly connected to the evaluation

of the off-diagonal elements of the intermediate state Green’s function. We will now

rewrite it in the excitonic basis (taking into account advantage of the excitonic basis

for the XAS problem) and inspect the origin of the off-diagonal parts.

The initial state in the zero-temperature limit contains no-phonons and no-electronic

excitations. Here and after we will use |ψI〉 = |0〉 |ni = 0〉, where the ni = 0 is the oc-

cupation number of the phonon initial state. The final state |ψF 〉 = |0〉 |nf〉 contains

no-electronic excitations (and consequently no interaction with phonons), however it

describes non-thermal population of the phonon states nf .

In the excitonic basis KH equation 6.8 can be written using |ψζ〉 = |ψeξ〉 |nph〉.
The electronic part of the wave-function |ψeξ〉 =

∑
e,hA

ξ
e,h |e, h〉 is a solution of the pure

electronic BSE problem. Inserting complete set of the new basis states
∑

ζ |ψζ〉 〈ψζ | = 1

(index ζ = {ξ, nph} runs over both electronic and vibrational states) in Eq. 6.7 we have

σ(ωi, ωloss) = − 1

π
Im

∑
F,ζ1,ζ2,ζ3,ζ4

〈ψI |∆o |ψζ1〉 〈ψζ1|Λ(ωi + Ei) |ψζ2〉 〈ψζ2 |∆+
i |ψF 〉

× 〈ψF |∆+
o |ψζ3〉 〈ψζ3|Λ+(ωi + EI) |ψζ4〉 〈ψζ4|∆i |ψI〉Dnf (ωloss) . (6.9)

Let’s focus first on the matrix elements with the electron-photon operators. Since

they operate only on electronic space the phonon part of the wave-function remains
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unchanged

doζ = 〈ψI |∆o |ψζ〉 = 〈ni = 0| 〈0|∆o |ψξ〉 |n = 0〉 = 〈0|∆o |ψξ〉

diζ = 〈ni = 0| 〈0|∆i |ψeξ〉 |n = 0〉 = 〈0|∆i |ψeξ〉 (6.10)

and similar for final states

doζ = 〈ψF |∆o |ψζ〉 = 〈nf | 〈0|∆o |ψξ〉 |nf〉 = 〈0|∆o |ψξ〉

diζ = 〈ni = 0| 〈0|∆i |ψeξ〉 |n = 0〉 = 〈0|∆i |ψeξ〉 . (6.11)

From the form of the electron-photon interaction one can see that the matrix elements

doξ, d
o
ξ contain information about polarization and wave-vector of the incoming and out-

going photon, although for now we will treat them as known. In an explicit notations

of the exciton and the phonon part of the wave-functions the KH equation becomes

σ(ωi, ωloss) = − 1

π

∑
f,nf

∑
ξ1,ξ2

doξ2(d
i
ξ1

)+ 〈ni| 〈ψξ2|Λ(ωi) |ψξ1〉 |nf〉

×diξ2(doξ1)+ 〈nf | 〈ψξ1 |Λ+(ωi) |ψξ2〉 |ni〉 Im Dnf (ωloss) . (6.12)

Here Dn(ω) = 〈n|D(ω) |n〉 is a non-thermal phonon Green’s function and it con-

trols the number of phonons in the final state. Two exciton Green’s functions are

responsible for the amplitude of the peaks with energy loss equals to the energy of

the phonon state nf (their product gives the RIXS amplitude). Both of them are

non-diagonal in electronic and vibrational subspaces

Λ
(ni,nf)
ξ1,ξ2

(ω) = 〈ni| 〈ψξ1|Λ(ω) |ψξ2〉 |nf〉 . (6.13)

Assuming zero-initial phonon population (ni = 0) from now on only one superscript

will be used to denote off-diagonal elements in vibrational space. In case of nf = 0

(elastic line contribution) the exciton Green’s function becomes diagonal in vibrational

space and reduces to the one which was evaluated for the XAS case Eq.5.13.

Equation 6.13 does not contain explicit summation over the intermediate states,

which can be seen as a significant simplification of the problem. Nevertheless it contains
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explicit summation over final state phonons (f = λ,q, nλ,q), which in fact can be

reduced to the manageable range.

In absence of the exciton-phonon interaction Λ0
ξξ = Lξ is diagonal in the excitonic

basis and the cross-section reduces to merely weighted delta function form

σ(ωi, ωloss) = − 1

π

∑
ξ

|doξ|2|diξ|2|Lξ(ωi)|2δ(ωloss) . (6.14)

Eq. 6.12 is written in the assumption of the quasi-elastic limit but may, also be gener-

alized for other electronic configurations of the final state. In the following section, we

will discuss the evaluation of RIXS amplitudes using the off-diagonal exciton Green’s

functions.

6.4 Off-diagonal Green’s function

The off-diagonal in vibrational space elements of the Green’s function breaks the condi-

tion of the conservation of the number of particles. During the scattering of an exciton

from time t′ to t there is a non-zero probability to create some number of phonons

which will remain in the system at the moment of the annihilation of the exciton.

For simplicity we will consider one phonon mode and wave-vector, and afterwards

we will generalize it for an arbitrary numbers of modes. The final state phonon wave

function |nν〉 = (b+ν )nν√
nν !
|0〉 is related to the ground state (no phonons and no excitons)

wave-function |0〉 with a bosonic normalization factor. Rewriting Eq. 6.13 in time

domain we have

iΛ
(nν)
ξ1,ξ2

(t, t′) =
1√
nν !
〈0| bnνν (t)aξ1(t)S(t, t′)a+

ξ2
(t′) |0〉 . (6.15)

The phonon annihilation operators bν(t) make the equation different from the one

which we used for diagonal in vibrational space Green’s function (see XAS Chapter)

5.10. After expanding the S-matrix presence of such operators gives rise to a non-closed

92



6.5. NO-RECOIL LIMIT

type of diagrams. The S-matrix as defined before by the exciton-phonon interaction is

S(t, t′) = Te−i
∫ t
t′ dt1V (t1) . (6.16)

The time-dependent interaction term in the Hamiltonian is (V = H −H0)

V (t) =
∑
ξ1,ξ2,ν

Mν
ξ2ξ1

a+
ξ2

(t)aξ1(t)Bν(t) . (6.17)

Here and after index ν = λ, q represents the mode and the wave-vector of the phonon.

Here, as well as in previous chapters, we will focus on the linear electron-phonon cou-

pling and then shortly discuss contribution form the higher-order terms.

6.5 No-recoil limit

As we saw without an exciton-phonon interaction the full Green’s function is diagonal

in both electronic and vibrational spaces (Eq. 6.14). First we will consider the localized

excitation which interacts with the local vibrational mode. This can significantly sim-

plify the structure of the resulting Green’s function, making it diagonal in the excitonic

but still non-diagonal in vibrational space. The exciton-phonon interaction term in this

limit is

V =
∑
λ,ξ

Mλ
ξξa

+
ξ aξBλ . (6.18)

We denote final state phonon mode as λ′ and for simplicity we drop this index in the

notation for the off-diagonal Green’s function leaving only n as a superscript denoting

the number of phonons in the final state. The expansion of the S-matrix leads to the

following time-ordered series in exciton-phonon interactions (t′ = 0)

Λ(n)(ξ, ξ, t) = −i
∞∑
m=0

(−i)2m

(2m)!

∫ t

0

dt1· · ·
∫ t

0

dt2m 〈0|T (bλ′(t))
naξ(t)V (t2m) · · ·V (t1)a+

ξ (0) |0〉 .

(6.19)

here and after we implicitly suggest consideration of only connected diagrams [12]

in the S-matrix expansions. We will first consider the results for n = 0, 1 and then
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write down the generic solution of these series for an arbitrary number of final state

phonons. The term with zero real (final state) phonons can be written formally as

Λ(0)(ξ, ξ, t) = −i
∞∑
m=0

(−i)2m

(2m)!

∫ t

0

dt1· · ·
∫ t

0

dt2m 〈0|Taξ(t)V (t2m) · · ·V (t1)a+
ξ (0) |0〉 .

(6.20)

Since H0 commutes with the number operator a+
ξ aξ and all exciton lines have the same

index ξ, we may factor out the bare exciton Green’s function iLξ(t) = 〈0|Taξ(t)a+
ξ (0) |0〉

from this series [12, 74, 75] leaving

Λ(0)(ξ, ξ, t) = Lξ(t)
∞∑
m=0

(−i)2mMλ1
ξξ · · ·Mλ2m

ξξ

(2m)!

×
∑

λ1...λ2m

∫ t

0

dt1 · · ·
∫ t

0

dt2m 〈0|TBλ2m(t2m) · · ·Bλ1(t1) |0〉 . (6.21)

After pairing all phonon operators into phonon Green’s function the series can be

summed up giving an exponential generating function exp[Cξ(t)] which involves only

interactions with virtual phonons [75]. We thus obtain

Λ(0)(ξ, ξ, t) = Lξ(t)e
C(t) , (6.22)

where the Cξ(t) is the second order cumulant introduced in the previous section. And

imaginary part of Λ(0)(ξ, ξ, t) is proportional to the spectral function of an exciton ξ.

For the case of one real (final state) phonon (n=1), two types of phonon Green’s

function will be present in the expansion Eq. 6.20 after pairing all phonon operators.

One is related to the propagation of virtual phonons, and the other describes the real

phonon. Using the same argument as before, we factor the bare exciton propagator out

of the series

Λ(1)(ξ, ξ, λ′, t) = Lξ(t)
∞∑
m=0

(−i)2mMλ1
ξξ · · ·Mλ2m

ξξ

(2m+ 1)!∑
λ1...λ2m+1

( 2m +1)

∫ t

0

dt2m+1M
λ′

ξ 〈0|TBλ2m+1(t2m+1)bλ′(t) |0〉 δλ′λ2m+1

×
∫ t

0

dt1· · ·
∫ t

0

dt2m 〈0|TBλ2m(t2m) · · ·Bλ1(t1) |0〉 . (6.23)
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The main difference between Λ(1) and Λ(0) is the presence of the first integral, with

integration variable t2m+1. This integral contains the real phonon with one vertex and

a single time integration variable and may be condensed to the expression

Y (ξ, λ′, t) = iMλ′

ξ

∫ t

0

D>
λ′(t− τ)dτ . (6.24)

Since this Y factor does not involve virtual phonons it may be considered separately. It

appears 2m+1 times in the (2m+1)-th term in the expansion of Eq. 6.23 and combines

with 1
(2m+1)!

to give a final factor of 1
(2m)!

. If we factor this term out of the sum, the

remaining terms are the same as the Λ(0) contribution for the virtual phonon dressed

exciton propagator. This gives

Λ(1)(ξ, ξ, λ′, t) = Λ(0)(ξ, ξ, t)Y (ξ, λ′, t) . (6.25)

Extending this result to an arbitrary number of final state phonons we have

Λ(n)(ξ, ξ, λ′, t) = Λ(0)(ξ, ξ, t)
[Y (ξ, λ′, t)]n√

n!
. (6.26)

The factor 1√
n!

comes from the normalization of the final-state vibrational wave-function.

Thus the off-diagonal elements of exciton Green’s function can be expressed as the prod-

uct of the diagonal contributions and the phonon vertex. The Eq.6.26 gives an exact

solution in this limit. The non-local character of the phonon excitations also can be

included within such approximation and leads to the same answer (Eq. 6.26 ),

∀q : Mν
kξ,kξ+q

= Mν
kξ,kξ

; εkξ+q = εkξ . (6.27)

The physical meaning of this limit can be viewed as flat, (dispersionless) excitonic

bands. Thus if one can neglect the exciton intra-band scattering, the resulting coupling

constant as well as exciton energy will stay the same through all the momentum space.

6.6 Numerical results

For numerical demonstration, we again chose the O K-edge of the acetone molecule

which involves the coupling of a single localized exciton to the C=O bond stretching
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Figure 6.2: Comparison of the RIXS spectra calculated within the Green’s function for-
malism for acetone (blue line) with experiment (red dots) The differences in the elastic
line intensities arise from the Thomson scattering and other sample dependent effects.
The small difference in peak position and intensities of the higher energy satellites arises
from the neglected anharmonicity of the potential energy curve.

mode. There are two different unoccupied π orbitals in the acetone molecule. However,

due to the character of the stretching mode, the exciton-vibrational coupling less likely

leads to scattering of an exciton. From experimental observation other vibrational

modes are negligible [52, 58]. According to 6.26 and 6.28 the RIXS cross-section can

be written as

σ(ωi, ωloss)|ξ = − 1

π

∑
n

|doξ|2|diξ|2|Λ(n)
ξ (ωi, λ)|2ImDn

λ(ωloss) , (6.28)

where the excitonic state is ξ = 1s1π∗ and the vibrational mode λ represents the C-O

stretching mode. It is clear that the electron-photon matrix elements doξ d
o
ξ are only
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a scaling factors and for simplicity can be omitted. The non-diagonal exciton Green’s

function Λ
(n)
ξ in vibrational space is in fact diagonal in the electronic space.

It consists of the diagonal in vibrational space Green’s function Λ(0)(t) and the

explicit interaction with real (final) states phonons Y (t) according to 6.26. The Λ(0)(t) =

Lξ(t)e
C(t) was calculated using the cumulant form defined in the previous Chapter 5 for

the acetone molecule. The exciton-phonon coupling constantM = 0.35 eV was obtained

from frozen phonon BSE calculations and the phonon frequency ωex = 0.15 eV from

the excited state potential energy surface.

The part of the off-diagonal Green’s function which reflects interaction with real

state phonon Y (t) we calculated using 6.24. For phonon modes in periodic crystals

it is reasonable to assume a single vibrational frequency for both the ground and the

core-excited states. This will be less accurate for local vibrational modes in molecules.

However, evaluating the Franck-Condon overlap integrals for a model of acetone we

found that the different curvatures of the ground and core-excited PES should lead only

minor corrections to the shape of the RIXS spectrum for the present case. Consequently,

we used the excited state frequency for the calculation of the RIXS amplitude 6.29 and

ground state frequency for the calculation of final state non-thermal equilibrium Green’s

function (see 6.30) calculated from the ground state potential energy surface and DFPT

(ω = 0.214 eV ). The lifetime of the intermediate state also has to be included in the

calculation of the exciton non-diagonal Green’s function

Λ(n)(t) = Λ0(t)
Y n(t)√
n!

e−(Γm/h̄)t . (6.29)

The inverse intermediate state lifetime Γm is also consistent with the XAS calcula-

tions for acetone. The final spectrum was calculated using the non-equilibrium phonon

Green’s functions and the RIXS amplitudes. The phonon Green’s function was mod-

elled as

Dn
λ(ω) = −i

∫ ∞
0

dte−inωλteiωte−(γph/h̄)t , (6.30)

where γph is a small positive constant which represents the phonon lifetime in the ground

state, and it was taken 0.04 eV . Additional Gaussian broadening was added to the final

spectrum, given as in Fig. 6.5 to account for the experimental resolution. The resulting
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spectra, as well as the experimental data from the work of [52], are presented in Fiq.

6.5. While the overall agreement with experiment is favorable, small differences in the

intensities and peak positions at higher oscillator numbers can be attributed to the

neglection of anharmonic contributions [52]. The difference in the elastic line intensity

is the consequence of the Thompson scattering [58] and other sample dependent effects.

These preclude the quantitative use of the elastic line and we use normalization of

calculated and experimental spectrum using intensity of the first phonon.

The calculation of the RIXS amplitude was done in time domain (Eq. 6.29), and

then it was Fourier transformed. For the calculation of RIXS, one can use a single

point Fourier transformation of non-diagonal Green’s function since only the amplitude

at incoming energy is required. This reduces the size of the problem from Nt×Nt to Nt,

which is the number of time steps. The latter is, in fact, a convergence parameter and

decreases with increase of Γm. The incoming photon energy dependent RIXS amplitude

|Λ(n)(ωi)| is shown in Fig. 6.4. The variation of the incoming energy from the resonance

leads to noticeable changes in the intensity of the phonon satellites.

6.7 Discussion

Despite of the success of the Green’s function approach in the no-recoil limit the recoil

effects might be important for the general consideration of the solids. Thus we discuss

two possible ways of the generalization of the obtained results.

Vertex function The results obtained in the previous section (Eq. 6.26) may be

considered from the diagrammatic perspective as corrections to the exciton-phonon

scattering vertex. Here we will discuss the cumulant representation of such vertex

correction which in the no-recoil reproduces the results of the previous section but has

more freedom for an extension.

For clarity we will focus on the one phonon contribution. Formally the series

Eq. 6.23 can be seen as the moments expansion for vertex with one real phonon and

two exciton lines. Keeping for now the no-recoil limit the lowest non-zero term can be
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Figure 6.3: Calculation of Λ0(t) and Y n(t). The imaginary part of Λ0 in the frequency
space gives a regular spectral function. The imaginary part of function Yn(ω) contains
however negative parts which model the phase of the interaction. The resulting RIXS
amplitude |Λ(n)(ω)|2 is a convolution of these two functions for specific n. The boarding
on the right side panel and damping on the left comes from the finite lifetime.
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Figure 6.4: Influence of the detuning effect on the RIXS spectra. The left panel, shows
RIXS amplitude for different number of real phonons n = 0− 4. The right panel shows
the resulting RIXS spectra for incoming energy in and out of the resonance. The finite
lifetime tends to smooth the structure of the RIXS amplitude and decrease effects of
the detuning. Although for a long core-hole lifetime even small detuning (∆ωi ∼ ωvib
becomes important aspect in the formation of the phonon peak ratios.
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Figure 6.5: Comparison of the RIXS cross-sections calculated using the exact diagonal-
ization techniques and the Green’s function method.
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written as (here we use short notations t1 = 1 and f(t̄) =
∫ t

0
dτf(τ))

Γ
(1)
0 (ξ, ν ′, 1, 2, 3) = −iMν

ξξLξ(1, 4̄)D>
ν′(2, 4̄)Lξ(4̄, 3) . (6.31)

The superscript Γ(1) means that there is one final state phonon. This is a lowest order

three-point vertex. Assuming that 1 = 2 = t, 3 = t′ according to notations from the

previous section, it is reduced to Lξ(t)Yξ(ν, t). The higher order terms have the same

irreducible structure as well as the further interactions with the virtual phonons (see

Fig. 6.6 with the set of diagrams included in the second order vertex correction)

Γ(1)(ξ, ν ′, 1, 2, 3) =
∑
n

Γ2n+1(ξ, ν ′, 1, 2, 3) . (6.32)

Then using an exponential ansatz for the generating function of such series the resulting

real phonon vertex can be presented as

Γ(1)(ξ, ν ′, 1, 2, 3) = Γ0(ξ, ν ′, 1, 2, 3)exp(
∑
n

Fn(ξ, ν ′, 1, 2, 3)) . (6.33)

The expression for Wn can be found equating all terms in Eqs. 6.32 and 6.33 with the

same order in exciton-phonon coupling as it was done for the cumulant expnasion of

the Green’s function [12, 101]. The truncation gives series
∑

n Fn(ξ, ν ′, 1, 2, 3) at the

lowest order, Eq. 6.33 gives the exponential form of vertex correction in the third order

of exciton-phonon coupling

Γ(1)(ξ, ν ′, 1, 2, 3) = Γ0(ξ, ν ′, 1, 2, 3)exp[(Γ0(1, 2, 3))−1Γ3(1, 2, 3)] . (6.34)

The third order term in the expansion 6.32 has the second order in the coupling with

virtual phonons and first in coupling with real phonon and consists of three terms (Fig.

6.6 )

Γ3(123) =
1

3
[Γ3a(123) + Γ3b(123) + Γ3c(123)] , (6.35)

102



6.7. DISCUSSION

where

Γ3a(ξ, ν
′, 1, 2, 3) = Mν′

ξξLξ(26̄)Σξ(6̄5̄)Lξ(5̄4̄)Dν′(34̄)Lξ(4̄1) (6.36)

Γ3b(ξ, ν
′, 1, 2, 3) = Mν′

ξξLξ(26̄)Σξ(5̄4̄)Lξ(6̄5̄)Dν′(36̄)Lξ(4̄1)

Γ3c(ξ, ν
′, 1, 2, 3) = Mν′

ξξ

∑
ν

|Mν
ξξ|2Lξ(26̄)Lξ(6̄5̄)Dν(6̄4̄)Lξ(5̄4̄)Dν′(35̄)Lξ(4̄1).

Here Σ denotes just a bubble exciton-phonon diagram in analogy to the FM self-energy.

One can see that in the limit of the non-dispersive exciton bands (which is true for

no-recoil limit) the integration over internal variables for exciton lines cancels out :

Lξ(12̄)Lξ(2̄3) = Lξ(13) and all time integrals in the Eq. 6.36 equally contribute to Eq.

6.35 which reduces to Eq. 6.26 (for 1 = t′ = 0, 2 = 3 = t)

Γ(1)(ξ, ν, t) = Lξ(t)Yξ,ν(t)e
Cξ(t) = Λ(1)(ξ, ν, t) . (6.37)

Thus the exponential form of the vertex correction 6.34 leads to correct results in

the limit of non-dispersive excitonic band. This is sufficient as a motivation search to

the approximate solution of the dispersive case in the same form. The lowest order

expression 6.35 can be written without an assumption of the no-recoil limit. The

disadvantage of such treatment, however, is a rapid scaling of the number of irreducible

terms in the lowest order cumulant with the number of real phonons. For one real

phonon, there are three terms for two real phonons there are six and so on. However,

computationally such complication can be overcome using parallel performance.

Finite momentum Transfer Limit To account for recoil in the exciton-phonon

scattering process the exciton Green’s function must be off-diagonal in both vibrational

and excitonic subspaces. Formally we can rewrite the Eq. 6.20 as

Λ(n)(ξ′, ξ, t) = −i
∞∑
m=0

(−i)2m

(2m)!

∫ t

0

dt1· · ·
∫ t

0

dt2m 〈0|T (bν′(t))
naξ′(t)V (t2m) · · ·V (t1)a+

ξ (0) |0〉 .

(6.38)

The interaction potential has the general form of the linear electron-phonon coupling.

Using the cumulant expansion of the vertex function one can write down an exciton
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Figure 6.6: Low order diagrams for exciton-phonon interactions during the RIXS pro-
cess. Black lines are bare exciton propagators, red oscillating curves represent virtual
phonons while blue oscillating curves are used for real phonons.

Green’s function for n, number of real phonons as

Λ(n)(ξ, ξ, ν ′, t) = Γ
(n)
0 (ξ, ξ′, ν ′, t)exp(F2n+1(ξ′, ξ, ν,′ , t)) , (6.39)

where Γ
(n)
0 (ξ, ξ′, ν ′, t) is a lowest (n + 2) point exciton-phonon vertex and the lowest

non-zero cumulant F2n+1(ξ′, ξ, ν,′ , t) for such configuration can be written by analogy

to F3 from Eq. 6.34. In principle for solids where the dispersion of the excitation

plays a key role the phonon contribution to RIXS is often limited by few peaks for each

mode [4, 5]. Thus the off-diagonal Green’s function can be estimated for just a few

real (final state) phonons. However, such approximation still has to be tested regarding

limitations and convergences for model studies.

As an alternative approach we suggest a more straightforward way of approximat-

ing the exciton-phonon off-diagonal Green’s function. The RIXS amplitudes Λ(n) can

be represented by the diagrams in Fig. 6.7. The basic element of the diagrams is Λξ,

which gives the full contribution in the n = 0 case where the final state contains no

phonons. This is the same as the XAS phonon-dressed exciton propagator given by
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Eq.5.13 in Chapter 5 (see also Fig. 5.2). In context of RIXS we refer to this term as the

exciton propagator dressed by virtual (intermediate state) phonons. This term includes

the contributions of virtual phonons to infinite order.

Figure 6.7: Diagrams for the RIXS amplitudes for (a) zero, (b) one and (c) two real
(final-state) phonons. Heavy red lines indicate phonon-dressed exciton propagators and
blue oscillating curves represent final-state phonons.

When the final-state contains a non-zero number of phonons, the RIXS amplitudes

may be written down following usual diagrammatic rules using Mν′

ξξ′ for a vertex Λξ for

an exciton line and D>
ν′ for a phonon propagator. The term with one real (final-state)

phonon (Fig. 6.7b) is

Λ(1)(ξ, ξ′, ν ′, t) = iMν′

ξξ′Λξ(t− τ̄)D>
ν′(t− τ̄)Λξ′(τ̃) , (6.40)

where internal time integration is implied by the shorthand notation. The phonon

Green’s function iD>
ν′(t − τ) = 〈0|Tbν′(t)b+

ν′(τ) |0〉 is a causal one (half of the full

phonon Green’s function) and corresponds to the propagation of a real phonon which

is created at time τ and destroyed at time t > τ . For two real phonons (Fig. 6.7c), we
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have

Λ(2)(ξ, ξ′, ν ′, ν ′′, t) = i2
∑
ξ1

Mν′′

ξξ1
Λξ(t− τ̃2)D>

ν′′(t− τ̃2)

× Λξ1(τ̃2 − τ̃1)Mν′

ξ1ξ′D
>
ν′(t− τ̃1)Λξ′(τ̃1) . (6.41)

One can build the higher terms Λ(n) contributing any number of real phonons to the

RIXS final state by analogy. This approximation contains an infinite number of specific

types of diagrams but neglects others. The missing type of the contribution involves

vertex correction to the exciton-phonon scattering process (in the lowest order see

diagram (c) in Fig. 6.6). However such evaluation accounts the vertex correction of

the virtual phonon. The numerical evaluation of these terms for a periodic crystal is

feasible, though cumbersome. We studied such approximation as the lowest correction

to the basic exciton-phonon scattering process. It closely reproduced the intensity of

the full calculations in the no-recoil limit for different coupling constant (see Fig. 6.8).

Weak coupling In the limit of weak coupling one can consider only the lowest order

diagrams. For example, Devereaux et al. [2] recently calculated the RIXS cross-section

for a small cluster model of CuO in the limit of no virtual phonons and one final-state

phonon.

In an effort to quantify the region of applicability of this weak coupling limit, we

compare model calculations of the 1-phonon contribution to RIXS σ(1) as a function of

coupling strength i) when all virtual phonons are neglected, ii) when virtual phonons

are included to infinite order without vertex corrections, and iii) when virtual phonons

are included to infinite order with vertex corrections.

These results are presented in Fig. 6.8. The yellow line gives the intensity of the first

phonon peak when virtual phonons are neglected. The red and blue lines correspond

to the inclusion of all virtual phonons, without or with vertex corrections, respectively.

The solid lines are evaluated using a ratio ΓM/ωph of the intermediate-state lifetime

to phonon frequency appropriate for the Cu L-edge of a 2D cuprate, while the dashed

lines use a value consistent with the O K-edge.

We confirm that the weak coupling approximation is reasonable for coupling strengths

less than about 1. However, this depends on the ratio of the core-hole lifetime and the
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phonon frequency. Due to the longer core-hole lifetime of the O 1s level, the curves for

the O K-edge including virtual phonons deviate from the weak coupling approximation

earlier than those for the Cu L-edge. For the O K-edge the values of σ(1) including

virtual phonons already differ by a factor of 2 from the weak coupling approximation

by g = 1.

The deviation of the results including with all virtual phonons (red and blue curves)

from the zero virtual phonon values (yellow line) indicates that the calculated σ(1)

contribution is over-estimated since the 2-phonon contribution (σ(2)) becomes non-

negligible and takes spectral weight from σ(1). If the coupling strength varies throughout

the Brillouin zone the correction to the one phonon intensity will also vary in momentum

space, likely making it important to go beyond the weak coupling limit.

For periodic systems with several active phonon modes at different frequencies it

can be difficult to distinguish the second harmonic of low frequency modes from the first

harmonic of higher frequency modes. This makes it difficult to experimentally identify

weak coupling cases. This partly explains why quantitative experimental studies of

electron-phonon coupling by RIXS are still limited. However, we note that some of

these measurements report intermediate or even strong coupling values [5, 27, 67, 96].

For reference, in Fig. 6.8 we use vertical dashed lines to indicate experimentally obtained

coupling parameters for TiO2 and the quasi-1D Li2CuO2.
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Figure 6.8: Intensity of the first phonon peak with respect to the coupling strength.
Calculations were performed for a single phonon mode in the no-recoil limit using
different approximations: yellow line - lowest order contribution (no virtual phonons);
red curves - virtual phonons, but no vertex corrections (Eq. 6.40); blue curves - virtual
phonons including vertex corrections (Eq. 6.25). Dashed and solid lines correspond
to different core-hole lifetimes. The ratio ΓM/ωvib was set to 2 (dashed lines) and
6 (solid lines) as typical values for O K- and Cu L-edges, respectively. All curves
were consistently normalized to the value of the lowest order contribution (yellow line).
Vertical dashed lines indicate values of the coupling strength measured by RIXS for
TiO2 [5] and Li2CuO2 [67].
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6.8 Conclusion

In this section the problem of the phonon contribution to RIXS with the Green’s func-

tion formalism. First, we discussed the idea of presenting phonon in RIXS as a con-

volution of two spectral functions related to the XAS and XES process. Then the

Kramers-Heisenberg cross-section was presented in terms of off-diagonal Green’s func-

tion in the excitonic basis and final state non-thermal phonon Green’s function. While

keeping explicit summation over the final state we implicitly account for the virtual

phonon contribution.

We discussed the expansion of the non-diagonal exciton Green’s function in pres-

ence of the exciton-phonon interaction. The expression for the non-diagonal exciton

Green’s function was obtained in the no-recoil limit, where the non-depressive exciton

(or localized exciton) couples to the phonon degrees of freedom. We tested formalism

on the acetone molecule, where the experimental RIXS spectra show rich vibrational

contribution. Using developed formalism and parameter-free calculation we reproduced

the vibrational contribution in the harmonic limit successfully.

We discussed possibles ways of the extensions of the formalism for periodic ma-

terials where the scattering of an exciton is important. Suggested approach based on

the diagrammatic construction of the non-diagonal Green’s funciton elements overcome

current limitation of the weak coupling limit RIXS calculations [2].
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7.1 Outlook

The objective of this project was to develop a rigorous approach to account for the

phonon contribution in RIXS and to relate the measured quantity to the electron-

phonon coupling constant. The work consists of four parts: (I) model ab-initio based

study of the phonon contribution to RIXS; (II) core-hole-phonon interactions and the

phonon contribution to XPS; (III) coupling of neutral excitations (excitons) to phonons

and the phonon contribution to XAS; (IV) Green’s function approach to the phonon

contribution to RIXS.

We studied the phonon contribution to the RIXS loss spectrum from the qualita-

tive, quantitative and formal perspectives. Contrary to common assertion, we found

that RIXS is not a direct probe of electron-phonon coupling, even when measured at

the Cu L3-edge. Both excitonic binding effects and direct core-hole-phonon interac-

tions cause considerable deviations from the electron-phonon interpretation. We found,

however, that an exciton-phonon coupling description is able to quantitatively explain

previous experimental data for acetone. We expect that the exciton-phonon description

of the RIXS interaction will hold in general. This result significantly impacts the use of

RIXS to quantify electron-phonon coupling strengths in cuprates and other materials.

This creates motivation for further development of a rigorous approach that will be

suitable for crystalline materials.

The core-hole phonon interaction was not included in previous studies of the

phonon contribution to RIXS [2–4]. To demonstrate the importance of the role played

by the core-hole, we started with a description of the phonon contributions to X-ray

photoemission.The experimental X-ray photoemission spectra [99] at the shallow Si 2p

level (around 100 eV) of silicon tetra-halides show obvious phonon sidebands, clearly

signaling the ability of the core-hole to excite vibrations. We combined the cumulant

ansatz for the core-hole Green’s function with real-space MD calculations of the system

response and coupling strength. The developed approach allowed us to successfully

reproduce experimental data for the small molecules SiF4 and SiH4. Moreover, this

approach can be directly scaled to crystalline materials. Furthermore, this approach is

also capable of capturing any anharmonic response of the lattice.

The next step of our studies was the development of an efficient formalism to treat
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the coupling between neutral electronic excitations and phonon degrees of freedom.

For RIXS this process plays an essential role in the formation of the intermediate

state. The complication comes from the presence of both electron-phonon and electron-

electron interaction. The latter tends to mix the independent particle state and form an

exciton bond state. Using an argument of the different time scales of the interactions

we described first the electron-electron interaction on the level of the BSE and then

dressed the resulting exciton propagator within the framework of the cumulant with

the exciton-phonon interactions. This procedure leads to significant simplification of

the interacting two-particle problem. However, it involves the calculation of the excited

state coupling to phonons. The approach was tested on the K-edge XAS spectra for

the N2 and acetone molecules.

The model calculation of the RIXS phonon contribution using an exciton-phonon

coupling constant showed quantitative agreement with the experimental data for ace-

tone. This motivated us to develop a many-body Green’s function description of the

phonon contribution to RIXS within an excitonic representation. We employed a cu-

mulant expansion for the exciton Green’s function in conjunction with a Fan-Migdal

type exciton self-energy. This methodology provided an accurate reproduction of the

phonon satellite structure observed experimentally in the X-ray absorption spectrum of

acetone. It also successfully reproduced the phonon excitation series measured by RIXS.

The Green’s function formulation is advantageous compared to wavefunction-based cal-

culations that require enormous summations of all possible RIXS intermediate states.

Our methodology includes only an explicit summation over the RIXS final states which

are limited to the lowest few phonon oscillator levels in practice.

We demonstrated our formalism on acetone due to the availability of high qual-

ity and unambiguous experimental data. However, this methodolgy is extendible to

periodic crystals. Periodic systems present additional numerical challenges associated

with sampling phonon coupling strengths throughout the Brillouin zone. Although

computationally demanding, such sampling is still possible within the framework of

first-principles calculations [70].
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7.2 Perspectives

As a perspective of this project the following steps should be done.

First, the application of the formalism developed herein to crystalline materials

would be of interest for the RIXS field in general. However, it requires calculating

phonon frequncies and exciton-phonon coupling strengths throughout the Brillouin

zone. The frozen phonon approach used in this work will become too computationally

expensive when applied to periodic systems. As we suggested at the end of Chapter

5 the calculation of exciton-phonon coupling values can be done analogously to den-

sity functional perturbation theory, which would allow application to a broader set of

compounds.

Furthermore, beyond the understanding and quantitative results for the exciton-

phonon coupling from RIXS developed in this thesis, one has to solve the inverse

problem to disentangle the values of the electron-phonon coupling constants from the

exciton-phonon coupling values. This, however, requires knowledge of the core-hole-

phonon coupling which was defined in Chapter 4. Model Hamiltonian calculations can

also be used to clarify this point.

At the same time, the methodology can be applied to other bosonic modes, such as

magnons. Nevertheless, no other bosons appear to couple as strongly as phonons. Thus

they do not show multiple harmonics in RIXS, and the weak coupling limit should be

sufficient for studying such excitation.
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Appendix A

Density functional theory

Density functional theory in the last couple of decades became a powerful technique

to obtain ground state properties for both solids and molecules. From one side due to

the Hohenberg and Kohn theorem [115] and on the other side due to the progress in

computational development. The statements which are in the origin of the DFT are

general, but in practice there several limitations which rise needs for correction and

instantaneous developments of new approach within the DFT basis [116]. As it is clear

from the name of the techniques that the key point is the density of the system

n(r) =

∫ ∫
ψ(r1, ..rn)ψ∗(r1, .., rn)dr1..drn . (A.1)

Any observable is defined by the expectation values of the corresponding operator and

thus to get any kind of information of the system (and especially about the ground state

energy) the bottleneck problem is a solution of the many-body Schrödinger equation.

The great simplification of the problem comes with the understanding [115] that there

is one to one correspondence between the ground state density of the system and the

ground state wave-function. This makes any observable a functional of the ground state

density n0. And since ψ[n0] are the ground state wave-function, they have to minimize

the energy

EGS = min
n→n0

〈ψ[n]|H |ψ[n]〉 = 〈ψ[n]|T + U + V |ψ[n]〉 . (A.2)

Here electron kinetic T and interaction U are unique and the system depending part is

the hidden in V (in the BO approximation V is commonly the nuclei potential). Thus
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the ground state density has to minimize also the following terms

EGS = min
n→n0

(F [n] + V [n]) , (A.3)

where the system dependend functional V [n] can be written as V [n] =
∫
n(r)v(r)dr.

If one knows the external potential he can find the ground state density and the vice

verse. One has to admit the uniqcnees of the solution in the non-degenerate case. On

the other side if the density is not the ground state density the expectation value on

the right side of Eq. A.2 will be equal or bigger then the ground state one. This was

also proven by Hohenberg and Kohn [115]. Finally the concept is

n(r) <=> ψ(r, .., rn) <=> vext(r) . (A.4)

The ground state density defines the many-body wave-functions and from the later

one can find the external potential. However, it does not give a precise receipt on

how to do it on practice. The main difficulties related to the non-local character of

the density functionals. The first particle approach which was formulated a long time

before the HK theorems by Thomas and Fermi [117, 118]. This approximation which

indeed treats explicit dependence of terms in Eq. A.2 on electronic density, although it

neglects entirely correlations and exchange terms which are non-local and appear from

the kinetic term T . The modern DFT approach based on the Kohn-Sham ansatz [119].

The idea is to employ an auxiliary system of non-interacting electrons to get the initial

guess for density and exchange-correlation potential and then solve realistic problem

self-consistently. This makes DFT techniques an effective single-particle approach. The

ansatz, however, works well with many solids and molecules but fails to some strong

correlation effects (e.g., the Mott-insulator state in the copper-based, etc. [116]). The

Hamiltonian of the auxiliary system is simple and consists of the kinetic term and

effective potential

HKS =
1

2
∇2 + Veff (r) (A.5)

The solutions of such Hamiltonian for Nks particles defines density function and the

population of the ψi orbitals, which are called Kohn-Sham orbitals. The kinetic term

explicitly is

Tks = −
Nks∑
i

1

2
|∇ψi|2 = Tks[n] . (A.6)
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On the other side, the expression for effective potential is less defined. Writing explic-

itly Hartree term for an electron-electron interaction as well as the external (system-

dependent) potential, all exchange and correlation terms effectively introduced as Exc[n].

Finally the ground state energy of the auxiliary system

EKS[n] = Ts[n] +

∫
drVext(r)n(r) +

1

2

∫
drdr′

n(r)n(r′)

|r− r′| + Exs[n] . (A.7)

Equating such effective ground state energy to the ground state of the fully interacting

system the exchange-correlation part then is

Exs[n] = 〈T 〉 − Ts[n] + 〈Vint〉 − EH [n] . (A.8)

The difference between interacting and non-interacting particles kinetic terms defines

correlation contribution and the exchange term is known as a Fock term. The last can

be written explicitly in terms of single orbitals. In other words, the KS equations is

an attempt to reformulated the many-body interacting problem in terms of the non-

interacting part and active exchange-correlation part which can be approximated to be

local or semi-local. Under the assumption that the exact exchange-correlation potential

is a known solution of N Eq. A.5 leads to the exact ground state energy and density of

the interacting system. There several approaches to defining exchange-correlation part

and the semi-local form is

Exc[n] =

∫
drn(r)εxc([n], r) , (A.9)

where ε([n], r) energy density depends on the electronic density at the point r . This

the similar to Dirac term in the TF model the first guess for an exchange-correlation

functional is the local density approximation (LDA). In this case εxc assumed to be

identical to one of the homogeneous electron gas with the same density, for which the

exchange-correlations terms are local. Moreover, the generalization accounting for spin

degrees of freedom leads to the local spin density approximation where the exchange

and correlation terms are defined as functions of spin up and spin down densities. On

top of the local description, the further improvements come from the gradients of the
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density, the generalized gradient approximation (GGA) reads

E(GGA)
xc [n] =

∫
drn(r)εhomx ([n], r)Fxc(n, |∇n|, |∇n|2, ..) , (A.10)

The expansion of the XC terms in terms of the density gradients has to be corrected

(generalized) to avoid divergence and non-physical behavior for higher orders. The GGA

is a most commonly used form of the exchange-correlation functional [120] and also can

be written for the spin-polarized case. In case of strong orbital localization of electrons,

as it happens for many of transition metal oxides, mean-field DFT (LDA/GGA) calcula-

tions tends significantly underestimate on-site electron-electron interaction. One of the

possible ways to improve the situation is to apply extra coulomb potential U selectively

for few orbitals. This approximation leads to the shift of the localized orbitals with

respect to others and correct properties, such as band gaps. This approach is known as

LDA+U and has the similar origin to the Hubbard U [121]. The most precise form of

the Exc comes from the mixing of different type of the exchange-correlation functional.

The so-called hybrid functional is in fact mixture of the LDA/GGA functionals and pure

Hartree-Fock exchange functional of the orbitals. The motivation comes from adiabatic

continuation from non-interacting to interacting system [122]. Since non-interacting

solution has to driven by functional in a pure LDA picture but on the other end, the

fully interacting system obeys the HF exchange useful, taking an average answer those

functionals are weighted in different ways. One suggested by Perdew and Ernzerhof,

and Burke is

Exc = ELDA
xc +

1

4
(EHF

xc − EGGA/LDA
xc ) , (A.11)

it was tested on a large number of system and find to be satisfactory [123].

The eigenvalues of the KS Hamiltonian in principle does not correspond to the real

excitation energies (energy of removal or addition of one electron but ), although the

can be used as starting point to get excitation energies using a perturbation expansion

for an excited wave-function and eigenstates.
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Pseudo-potential formalism

One of the great simplification in the framework of KS DFT, achieved by using the

pseudo-potential formalism. The core-electrons are strongly localized and mainly does

not involved in the molecular bonds, in contrast to valence electrons. Such a difference

in the behavior also reflects in the form of the wave-functions. The idea of the pseudo-

potentials is to describe the valence electrons using the smooth wave-functions and hide

core-electron by modifying the total scattering potential of the nuclear. Formally this

can be achieved by the orthogonalized plane-wave (OPW) method [116]

ψlm(r) = ψ̃lm(r) +
∑
j

Bjlmujlm(r) , (A.12)

where initial wave-function ψlm decomposed in the smooth part (ψ̃lm) which is made

to be orthogonal to ujlm. The ujlm can be chosen optimally for the specific problem,

but are always chosen to be a core atomic states. Since the wave-function ψlm has

to obey the effective KS Hamiltonian with an effective potential V , the corresponding

Hamiltonian for pseudo-wave-function includes an extra part in the effective potential

Vp = V + VR . (A.13)

The effective potential, in fact, is smoother then the original one, but also has to be

non-local because of VRψ̃
v(r) =

∑
j(ε

v
i − εcj) 〈ψcj | |ψvi 〉ψc(r). Although using an the

fact of to preserve scattering properties potential does not has to be unique we can

choose the effective part to be smooth and weak, which leads to rapid convergence in

momentum space. Thus one can reduce the initial all electron problem to the valence

electron problem in the effective ionic potential, which can approximate from the full

HF calculation of a single atom. In general, the solution of the pseudo-Hamiltonian has

to be considered as a generalized eigenvalue problem, since the pseudo-wave-function

are not orthonormal. The further generalization leads the ultra-soft pseudo-potential

approach, which priorities the smoothness of the pseudo-wave-function. On the other

side, one can choose the pseudo-wave-function to be normalized as a solution of the
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Hamiltonian with a potential model build to reproduce valence all electron properties

V nc =
∑
lm

|Ylm〉Vlm(r) 〈Ylm| . (A.14)

here Ylm are the spherical harmonics defined by the angular momentum and spin. This

formulation implies semi-local potential (local regarding the radial part but non-local

regarding angular quantum number). So the resulting functions preserve conditions

〈ψnci | |ψncj 〉 = δij but looses in smoothness, compare to ultra-soft ones. Also initial OPW

method now days is reformulated within the projected augmented waves approach [124].
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Appendix B

Density functional perturbation

theory

One of the main assumptions in DFT was BO approximation. The electron-nuclear

potential we considered as an external to the electronic system, which has to be mini-

mized. This picture, however, neglect mutual interactions between electron subsystem

and subsystem of ions. Such interactions are essential for the various type of phe-

nomena in the solid states from electronic transitions to electron and spin transport

properties [6–11]. Notably, exchange of phonons produces the attractive interaction

between electrons that binds Cooper pairs in conventional BCS superconductors [19].

As observed in photoemission and inverse photoemission, phonons renormalize quasi-

particle energies and spectral weights and bestow them with lifetimes [18, 38, 39]. The

many-body wave-function using a solution for interacting electrons and fixed nuclear

as a parameter leads to the generalization of the Hamiltonian Eq. A.4

[
∑
α

1

2Mα

∇2
Rα

+ E(R)]Ψ(R) = ẼΨ(R) , (B.1)

here the energy E(R) is a solution of the many-body Hamiltonian H(R) Eq. B.1 which

depends on position of the nuclei R = {Rα}, thus BO potential energy surface. The

first term represent the kinetic term of the nuclear with mass Mα. The general way of

proceeding the electron-lattice interacting problem, is an expansion of the H(r,R) =

T (r) + VKS(r,R) and consequently VKS(R) interacting potential, which depends on
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the nuclear position in terms of atomic position displacements Qα = Rα −R0
α. The

the first and the second gradients of the potential energy surface E(R) defines an

electron-phonon couplings terms and inter-atomic forces, and force constants (second

derivatives) from the Hellmann-Fyanman theorem

Fα = 〈Ψ| ∂H(R)

∂Qα

|Ψ〉 =
∂E(R)

∂Qα

Uα,β =
∂Fα(R)

∂Qβ

=
∂2E(R)

∂Qβ∂Qα

. (B.2)

The phonon eigenstates and eigenvalues in harmonic limit can also be related to the

inter-atomic forces constants at the equilibrium position (since the first derivatives van-

ish) [125]. Differentiating the equation of motion for the atomic displacement operator,

where getting a condition for the normal mode frequencies. The electron-phonon in-

teraction matrix elements and properties of the phonon, therefore, can obtained using

a derivative of the ground-state solutions with respect to atomic displacements. In the

following section, we will see how it works in practice for within the DFT framework

and in details consider the electron-phonon interaction in first and the second order.

Phonons

In the harmonic approximation, the Hamiltonian for nuclei at the equilibrium positions

can be written using second-order derivatives of the BO potential energies [126]. We

introduce following notations Qpα is the displacement vector for atom with coordinates

Rpα = Rp + τα. Index p defines the position of the unitcell in the solid and α defines

the position of the atom inside the unitcell.

Hn =
∑
α,β

Uαβ,p,p′Qαp ·Qβp′ −
∑
α,p

1

2Mα

∇2
αp . (B.3)

here we omitted constant contribution from unperturbed potential V (R0). It implicitly

stated that the matrix elements defined by ground state many-body electronic wave-

functions and thus depends on the electronic density. The Hamiltonian B.3 becomes
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diagonal using the second quantized form of the atomic displacements operator

Qαp = i
∑
q,λ

√
h̄

2NqMαωλ(q)
ξαq,λ(bq,λ + b+

−q,λ)e
iq·Rp , (B.4)

Here creation and annihilation operators b, b+ respect bosonic commutation relations

[bq, b
+
q′ ] = δq,q′ . The polarization vector ξλ,q and ωλ(q) are respectively normalized

eigenfunctions and eigenvectors of

∑
α

Ddm
αbeta(q)ξαλ,q = ωλ(q)ξβλ,q (B.5)

where the dynamical matrix is

Ddm(q)α,beta =
∑
p

1√
MαMβ

Uαβp0e
iq·Rp (B.6)

Finally the phonon Hamiltonian reads

H =
∑
λ,q

ωλ(q)(b+
q,λbq,λ + 1/2) (B.7)

The force constants and dynamical matrix it self can then be find in terms of the first

order derivatives of the electron ground state density and KS potential [11].

Electron-phonon interaction

To eliminate the electron-phonon interaction we will expand the ground-state KS po-

tential VKS(r,Rα) in terms of the atomic displacements similar to Eq. 1.2 (here index

l represent Cartesian coordinate)

VKS(r,R) =
∑
α

VKS(r,R0
pα)+

∑
p,α,l

∂VKS(r,R0
pαl)

∂Qpα,l

Qpα,l+
∑

p,p′,α,β,l,m

1

2

∂2VKS(r,R0
pαl)

∂Qpαl∂Qp′βm
QpαlQp′βm+... .

(B.8)
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The atomic displacements can be rewritten using normal modes coordinates and re-

spective phonon operators Eq. B.4. The first order term then is

V
(1)
KS(r,R0) =

∑
p,α,l

∂VKS(r, R0
pαl)

∂Qpαl

Qpαl =
∑
q,λ

∆λ,qVKS(bqλ + b+
−qλ) , (B.9)

where ∆λ,qVKS = ∆q,λvkse
iqr And recalling the electron-phonon terms in the Hamilto-

nian Eq. 1.3 Heph = H
(1)
eph +H

(2)
eph

H
(1)
eph =

∑
n′,n,q,λ

M
(1)
n,n′k,qc

+
n′k+qcnk(b

+
−q,λ + bq,λ) , (B.10)

H
(2)
eph =

∑
n,n′q,q′,λ,λ′

M
(2)
n,n′k,q,q′,λ,λ′c

+
n′k+q+q′cnk(b

+
−q,λ + bq,λ)(b

+
−q′,λ′ + bq′,λ′) . (B.11)

The electron-phonon coupling of the first and the second order has energy units and

consist of the electron-phonon matrix elements and phonon normal amplitudes

M
(1)
n,k,q,λ =

√
h̄

2Nµωλ(q)
〈ψn′k+q|∆q,λvKS |ψnk〉 , (B.12)

M
(2)
n,n′k,q,q′,λ,λ′ =

h̄

2Nµ
√
ωλ′(q′)ωλ(q)

〈ψn′k+q+q′ |∆q′,λ′∆q,λvKS |ψnk〉 , (B.13)

Thus the calculation of the dispersive electron-phonon coupling constants entirely

rely on the variation of KS potential

∆q,λVKS =
∑
α,l

ξα,lq,λ

∑
p

e−iq(r−Rp)
∂VKS
∂Qα,l

|r=Rp , (B.14)

Frozen-phonon calculation The most intuitive way of calculating the electron-

phonon matrix elements is to take numerical derivatives with respect to displacements

along the phonon eigenvectors

∆q,λVKS(r,R) = lim
Qq,λ→0

VKS(r, R0 +Qq,λ)− VKS(r,R0)

Qq,λ

. (B.15)

This involve at least two shots of full self-consistent calculations for VKS(r,R0 +Qq,λ)

and VKS(r,R0), within a supercell which sufficiently big to model phonon mode with

126



vector q . The obvious limitation of such approach is a dramatic increase of computa-

tional time with q → 0.

DFPT To overcome supercell limitations one can explicitly find a derivatives of the

density dependent terms in the KS potential within the unitcell [11, 126].

VKS(r,R) =
Zre

2

|R− r| +

∫
dr′

n(r′, r)

|r − r′| + Vxs(r, r) +
∑
r′

Vnn(r, r′) , (B.16)

The nuclear-nuclear interaction is just un-screened Coulomb interaction, and it can be

evaluated analytically [126] and was omitted here. The exchange-correlation potential is

the functional derivative of the exchange functional with respect to electronic density:

Vxc = δExc[n(r,r)]
δn(r,r)

and the rest two terms are the Hartree term and electron-nuclear

interaction. The general idea is to find a correction to the solution of the Hamiltonian

around the equilibrium atomic positions using perturbation theory. The parameter of

an expansion is the atomic displacements Qpαl = Rpαl −R0
pαl. The key point is that

the variation of the potential with respect to Qpαm leads to the variation of the density.

The variation of the electron-nuclear interaction in the momentum space does not

depend on the variation of the electronic density and in thus just gives

∂p,αqVen = −i(q+G)Ven(q+G)e−i(q+G)·Rp . (B.17)

however, one has to be careful since in the pseudopotential implementation electron-

nuclear potential will be non-local. The Hartree part reads

∂p,αqVH(G) ∼ VH(q+G)∂p,αqn(G) , (B.18)

as well as the exchange-correlation term

∂p,αqVxc(G) ∼
∑
G′

fxc(q+G, q+G′)∂p,αqn(G′) , (B.19)

where fxc is the second order functional derivative of the exchange-correlation functional

with respect to electronic density with Q = 0. Thus the calculation of the electron-

phonon coupling mainly relies on the calculation of the electronic density variation. The

later can be calculated within DFPT considering an induced change in the electronic
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wave-function up to the first order. It can be calculated using Sternhaimer equation

[126] for arbitrary q.

(HKS
k+q − εnk)∆ψnk = −∂pαqVKSψnk . (B.20)

The solutions of the B.21 defines the density variation as (for spin unpolarized system)

∂p,αqn(q)(r) = 2
∑
n,k

ψ∗n,k∆ψnk . (B.21)

One can start with unscreened electron-nuclear interaction and the added screening

including Hartree and exchange-correlation terms self-consistently. Then the second

order matrix-elements and the phonon frequencies and dynamical can be found in a

similar spirit by taking higher derivatives of potential.
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Appendix C

Green’s functions: non-thermal

phonon population

For the case of X-ray emission spectroscopy one core-level hole is present in the initial

state, which can be then filled by the outer electron. The processes have the inverse

character to XAS however since interaction with phonons is now present in the initial

state the cumulant contains an extra type of diagram which leads to the sign change of

the exponential factor in Eq. 3.33 (e−iωt − iωt − 1), which then gives rise to satellites

on the other side of zero-phonon line (symmetrical to XAS) [75].

However for the most cases emission problem first conjugate to absorption of the

photon. Since the lifetime of the excited state typically less then characteristic phonon

time τ ∼ 1/ωD, the phonon system often doesn’t have time to relax and adjust to

the presence of the electronic excitation [127, 128] the initial population of the phonon

levels for emission process will be driven by the previous XAS process. Thus, to obtain

XES vibrational contribution it is important to understand how the spectral function

modifies in the present of non-thermal phonon population of the initial state. The

results of this appendix, however, limited to the no-recoil limit.

If initial state contains N0 phonons both spectral function for emission and ab-

sorption have to be modified in the same way (AN0
ξ (ω) = 1

π

∫
dte−iωtGN0

ξ (t)):

GN0
ξ (t) = fN0(t)G

0
ξ(t)e

Cξ(t) , (C.1)
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Figure C.1: Spectral function of the electron Green’s function calculated in the presence
of the non-thermal population of the initial phonon state. Left panel shows the spectral
function for zero initial state phonons (N0

vib = 0)) and right panel shows the spectral
function for one initial state phonon (N0

vib = 1)) case.

where

fN0(t) =
∑
ν

N0∑
k

(−1)k

k!
N0k|Yν(t)|2kDN0−k

ν (t) . (C.2)

Time-dependent factor fN0(t) represent interaction of an exciton with phonons which

are already present in the initial state. Here Dν represent phonon Green’s function in

the zero-temperature limit of the wave vector q and mode λ (ν = q, λ)) and one phonon

vertex is Yξ(ν, t) = Mν
ξ

∫ t
0
dτDν(τ). This results obtained from the diagrammatic eval-

uation of the electron Green’s function with non-equilibrium phonon population in the

initial state. In the language of Franck-Condon factors, ImGn0
ξ (ω) represent the proba-

bility of transition between n0 level of the initial oscillator to any level of the final state

oscillator.

And non-zero temperature limit simply can be obtained taking into account tem-

perature population of the initial vibrational levels G(t, β) =
∑

n,ν e
βωνnGn(t), where β

is the inverse temperature.
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Appendix D

Lang-Firsov transformation

The Lang-Firsov canonical transformation [129] was first introduced to partially diag-

onalize the Hamiltonian with the first order electron-phonon interaction. Terms which

include a scattering of an electron (c+
k+qck) are remains in the transformed Hamiltonian.

Thus, even if it is helpful to use such transformation for many electron-phonon prob-

lems, the exact solution might be obtained if interaction with phonon does not change

the electronic state (e.g., Holstein type of Hamiltonian).

H = εec
+
i ci + ωλ(b

+
λ bλ + 1/2) +Mc+

i ci(b
+
λ + bλ) . (D.1)

Using the generating function of the canonical transformation S = (Mλ
i /ωλ)c

+
i ci(b

+
λ−bλ)

we have:

H̃ = eSHe−S . (D.2)

And new annihilation electronic and phonon operators (ci and bi) in the old basis are

c̃i = ci + (Mλ
i /ωλ)[c

+
i ci(b

+
λ − bλ), ci] + ..

= ci + (Mλ
i /ωλ)(b

+
λ − b)[ni, ci] +

1

2!
(Mλ

i /ωλ)
2(b+

λ − bλ)2[ni, [ni, ci]]... = cie
−M

λ
i

ωλ
(b+λ−bλ)

b̃λ = bλ+(Mλ
i /ωλ)[c

+
i ci(b

+
λ−bλ), bλ]+.. = bλ+(Mλ

i /ωλ)c
+
i ci[b

+
λ , bλ]+0 = bλ−(Mλ

i /ωλ)c
+
i ci .

(D.3)
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And similar for creation operators

c̃i
+ = c=

i e
Mλ
i

ωλ
(b+λ−bλ)

; b̃+
λ = b+

λ − (Mλ
i /ωλ)c

+
i ci . (D.4)

The resulting Hamiltonian H̃ can be seen as a displaced harmonic oscillator with

respect to original one Hvib = ω0(b+
λ bλ + 1/2). This can be shown rewriting vibrational

part of H̃vib in terms of momentum and coordinate operators

H ′vib =
mω2

0

2
(x− α)2 +

3mω2
0

2
α2 +

p2

2m
, (D.5)

where α =
√

Mh̄
2mω3

0
. Here the position xeq = 0 correspond to the minimum of the non-

interacting harmonic oscillator. The coupling constant M than leads to the shift of the

minimum of the potential energy with respect to xeq = α and vertical shift in energy

∆E =
3mω2

0

2
α2.

Going then to exciton-phonon problem one should in principle correct the results

taking into account different statistic of the interacting particles. The excitons satisfie

para-bosonic statistics [64]. However in the low exciton density limit which is the case

for light-driven excitations , it is reasonable to treat them as bosons and thus [a+
ξ , aξ′ ] ∼

δξ,ξ′ [65, 109]. Applying the same form of the transformation to the interacting boson-

boson problem we have (S =
Mλ
ξ

ωλ
a+
ξ aξ(b

+
λ −bλ)). Transformed phonon operators in both

cases are the same:

b̃ = b−
Mλ

ξ

ωλ
a+
ξ aξ; (b̃+ = b+

λ −
Mλ

ξ

ωλ
a+
ξ aξ) . (D.6)

While exciton and electron operators differ by the sign in the exponential factor

ãξ = aξe
Mλ
ξ

ωλ
(b+λ−bλ)

(ãξ
+ = a+

ξ e
−
M
ξλ

ωλ
(b+λ−bλ)

) . (D.7)

However, since aξ appears only in the pair with complex conjugate (a+
ξ ) exponential

factor is canceled. Thus interacting exciton-phonon Hamiltonian can be diagonalized

by this transformation and small change does not affect the analytical form of the

Franck-Condon factors in Eq. 2.6.
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Appendix E

Two-partcile cumulant expansion

This appendix dedicated to the electron-phonon interaction in the context of the two-

particle Green’s function. However, here we neglected the contribution from the electron-

electron interaction. The two particle interacting Hamiltonian with a linear electron-

phonon term has the following form

H = H0 +
∑

ν1,β1,β2

Mν1
β1,β2

c+
β2
cβ2Bν1 +

∑
ν2

Mν2
α1,α2

c+
α2
cα1Bν1 . (E.1)

Here the β,α are represent excited electron and hole momentum and band index {n,k}
respectively. And similar the index ν = {q, λ} defines the phonon wave-vector q and the

mode λ. The electron-hole Coulomb interactions are omitted in this model. The non-

interacting part of the Hamiltonian is just a sum of single particle parts H0 = he + hh.

Although both he and hh may contain quasi-particle correction form electron-electron

interaction in the solids. The two particles four points Green’s function in time domain

(1 = t1)

iLαα′,ββ′(1, 1
′, 2, 2′) =

〈0|Tc+
α′(2

′)c′β(2)S(2, 2′, 1′, 1)c+
β (1)c+

α (1′) |0〉
〈0|S |0〉 . (E.2)

The expansion of the S-matrix leads to the series in the interacting potential V . The

normalization factor 〈0|S |0〉 cancels contribution form the disconnected diagrams. As-
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suming that 1 = 1′, 2 = 2′ for the expansion of the Green’s function we have

L(1, 2) =
∑
n

(−i)n
n!

Wn(1, 2) , (E.3)

hereWn is n-th order of moment of electron-phonon interaction and contains all different

terms of n-th order which appears after application of the Wick’s theorem. On the

other hand the two particle Green’s function (correlation function) can be written in a

cumulant form

L(1, 2) = L0(1, 2)exp[
∑
m

Cm(1, 2)] , (E.4)

Then one can find any order of cumulant in terms of moments Ln [78, 101, 107]. The

first non-zero term in Eq. E.3 which includes electron-phonon interaction is

W2(1, 2) = −〈0| cβ′(2)c+
α′(2)V (3̄)V (4̄)cβ(1)c+

α (1) |0〉c , (E.5)

and after applying the Wick’s theorem it turns into 4 for different combinations of

the non-interacting Green’s functions.

W2a(1, 2) = −Gβ(1, 2)δββ′
∑
α1,ν

Mν
α,α1

Mν
α1,α′Gα(1, 3̄)Gα1(3̄, 4̄)Dν(3̄, 4̄)Gα(3̄, 2) , (E.6)

W2b(1, 2) = −Gα(1, 2)δαα′
∑
β1,ν

Mν
β,β1

Mν
β1,β′Gβ(1, 2̄)Gβ1(3̄, 4̄)Dν(3̄, 4̄)Gβ(4̄, 2) , (E.7)

W2c(1, 2) = −
∑
ν

Mν
α,α′M

ν
β,β′Gα(1, 3̄)Gα′(3̄, 2)Dν(3̄, 4̄)Gβ(1, 4̄)Gβ′(4̄, 2) , (E.8)

W2d(1, 2) = −
∑
ν

Mν
α,α′M

ν
β,β′Gα(1, 4̄)Gα′(4̄, 2)Dν(4̄, 3̄)Gβ(1, 3̄)Gβ′(3̄, 2) , (E.9)

The lowest cumulant (the second order cumulant in electron-phonon interaction) has

simple relation the terms written above W2a + W2b + W2c + W2d = L0C2. Thus the

cumulant C ∼ C2 (truncating the cumulant series after the second order) has the

following from (here we used notation for the FM self-energy (ΣFM
α,α′) and lowest phonon

exchange term Ξxph
α,β,α′β′ = i

∑
νM

ν
α,α′M

ν
β,β′ [Dν(1, 2) +Dν(3, 4)])

Cα,α(1, 2) = (−i)2[Gα(1, 2)]−1Gα(1, 3̄)ΣFM
α,α′(3̄, 4̄)Gα′(4̄, 2) , (E.10)
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Cβ,β(1, 2) = (−i)2[Gβ(1, 2)]−1Gβ(1, 3̄)ΣFM
β,β′(3̄, 4̄)Gβ′(4̄, 2) , (E.11)

Cγ(1, 2) = (−i)2[Gα(1, 2)Gβ(1, 2)]−1Gα(1, 3̄)Gβ(1, 4̄)Ξxph
α,β,α′β′(3̄, 4̄, 5̄, 6̄)Gα(5̄, 2)Gβ(6̄, 2)

(E.12)

And resulting two particles Green’s function is

Lαα′ββ′(1, 2) = Gα(1, 2)Gβ(1, 2)e
Cα′α(1,2)+Cβ′β(1,2)+Cγ

α′α,ββ′ (1,2)
. (E.13)

First two terms of the cumulants are one-particle kernels for the electron-phonon and

core-hole-phonon contribution. However, the last one contains the phonon exchange

term and is responsible for the interference effects in the resulting two-particle spec-

tral function. A similar expression was obtained for plasmon contribution in X-ray

absorption problem [87].
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Appendix F

Time-dependent perturbation

theory

Interaction presentation

There are three standard views on time evaluation in quantum mechanics. In the

Schrödinger picture, the wave-function cares all information of the time evaluation of

the system ψ(t). The wavefunction should obey the differential equation

i
dψ(t)

dt
= Hψ(t) . (F.1)

In contrast to this presentation and Eq. F.1 one can describe the system using the

equation of motion

i
dO(t)

dt
= [H(t), O(t)] , (F.2)

and time evolution of the operators itself ( Heisenberg picture). So this is enough if the

solution of the stationary Hamiltonian (Hψ = εψ ) is known. However, in many cases,

there is a part of the Hamiltonian which easily can be solved H0, and the rest (V =

H−H0) normally contains interaction. Then splitting initial problem into two parts, let

the operator propagate in time according to the solution of H0 : OI(t) = eiH0tOe−iH0t

and the wavefunction will contains the information about the time evolution under

the interacting potential ψI(t) = e−iHteiH0tψ(0) (subscript I denote the interaction
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representation). These three representations are lead to the same expectation value of

the observable. In the Schrödinger representation it is

〈O(t)〉 = 〈ψ(t)|O(0) |ψ(t)〉 = 〈ψ| eiHtOe−iHt |ψ〉 , (F.3)

and according to the Heisenberg representation the expectation value is

〈O(t)〉 = 〈ψ(0)|O(t) |ψ(0)〉 = 〈ψ| eiHtOe−iHt |ψ〉 . (F.4)

Finally, in the interaction representation we have

〈O(t)〉 = 〈ψI(t)|OI(t) |ψI(t)〉 = 〈ψ| eiHte−iH0teiH0tO(0)e−iH0teiH0te−iHt |ψ〉

= 〈ψ| eiHtOe−iHt |ψ〉 . (F.5)

Time-evaluation operator

The time evolution which comes from the interacting part of the Hamiltonian is given

by the time evolution operator of the from :U(t) = eiH0te−iHt. The time derivative of

the operator will be

dU(t)

dt
= ieiH0t(H0 −H)e−iHt = −ieiH0tV e−iH0U(t) = −iV (t)U(t) . (F.6)

Thus it can be defined self consistently as

U(t) = U(0)− i
∫ t

0

dt1V (t1)U(t1) , (F.7)

or alternatively, applying chain rule n times, as a sum of n orders in the interaction

potential

U(t) = 1 +
∞∑
n=1

(−i)n
∫ t

0

dt1..

∫ tn−1

0

dtnV (t1)..V (tn) . (F.8)

The integrals of the type:
∫ t

0
dt1
∫ t1

0
O(t1)O(t2)dt2 = 1

2!

∫ t
0

∫ t
0
dt1dt2T [O(t1)O(t2)] might

be rewritten using the time ordering operator T which orders operator with the smaller
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time at the right:

T [O(t1)O(t2)] = θ(t1 − t2)O(t1)O(t2) + θ(t2 − t1)O(t2)O(t1) (F.9)

And a prefactor 1
2!

came form the double counting of the integral contribution in the

last case. And Eq. F.8 become:

U(t) = 1 +
∞∑
n=1

(−i)n
n!

∫ t

0

dt1..

∫ t

0

dtnTV (t1)..V (tn) . (F.10)

As a shorthand notation one can use the exponential generating function to denote the

series in Eq. F.11:

U(t) = Te−i
∫ t
0 dt1V (t1) . (F.11)

Similarly to account for propagation form t to arbitrary t′ on can introduce the scat-

tering matrix S(t, t)

S(t, t′) = U(t′)U+(t) . (F.12)

One can see that it as well satisfies the chain rule and lead to the generalization of the

expansion Eq. F.11 changing integration limits form t to t′.

Time-dependent coefficients

The usual question which has to be addressed by the time-dependent theory is how the

probability to find the system in one of the basis states evolve with time. If initially

at time t′ = 0 unperturbed system is in the state i, which describes by the stationary

solution of the H0 |i〉 = εi |i〉, the probability to find system in the state n after passing

some time (t − t′) in perturbed regime, is | 〈n|U(t) |i〉 |2. The time-evolution is driven

here by the time evolution operator. In the absence of the perturbation, this projection

would be non-zero only if n = i, since each of basis states will be evolving in time as

e−iεnt, but the mixing of them will be preserved. The state 〈i| then has a time-dependent

coefficient of an expansion in the initial basis

|i〉 =
∑
n

|n〉 〈n|U(t) |i〉 =
∑
n

cni(t) |n〉 , (F.13)
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so the transition probability proportional to the square of these coefficients. We can

treat this time-dependent process of state mixing in different order of approximations.

Combining Eq. F.13 and expansion of time evolution operator Eq. F.11

cni(t) = c
(0)
ni (t) + c

(1)
ni (t) + c

(2)
ni (t) + ... . (F.14)

The approximate coefficients itself are (up to the second order)

c
(0)
ni (t) = δni ,

c
(1)
ni (t) = −i

∫ t

0

dt 〈n|V (t1) |i〉 dt1

c
(2)
ni (t) = i2

∫ t

0

dt1

∫ t

0

dt2
1

2
〈n|TV (t1)V (t2) |i〉 dt2dt1 . (F.15)

Using them it’s possible to calculate transition rate d|cni(t)|2
dt

and in the application to

light induced transition the differential cross-section. Noticing that V (t) = eiH0tV e−iH0t

the matrix element become 〈n|V (t) |i〉 = Vnie
−iεnit. Then if we will assume harmonic

nature of a perturbation V (t) = V (e−iωt+eiωt) this give rise to two terms for first order

coefficient

c
(1)
ni (t) = −i

∫ t

0

Vnie
i(εni−ω)t1dt1 − i

∫ t

0

Vnie
i(εni+ω)t1dt1 . (F.16)

and four terms for second order

c
(2)
ni (t) = −

∫ t

0

∫ t

0

dt1dt2
∑
m

VnmVmie
i(εmi−ω)t1ei(εnm−ω)t2

−
∫ t

0

∫ t

0

dt1dt2
∑
m

VnmVmie
i(εmi−ω)t1ei(εnm+ω)t2

−
∫ t

0

∫ t

0

dt1dt2
∑
m

VnmVmie
i(εmi+ω)t1ei(εnm−ω)t2

−
∫ t

0

∫ t

0

dt1dt2
∑
m

VnmVmie
i(εmi+ω)t1ei(εnm+ω)t2 . (F.17)

All these terms correspond to the combinations of absorption, emission or scattering

processes.
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to vibrational modes through resonant X-ray scattering. Nat. Commun., 8:14165,

2017.

[56] E. Ertan, V. Kimberg, F. Gel’Mukhanov, F. Hennies, J. E. Rubensson,

T. Schmitt, V. N. Strocov, K. Zhou, M. Iannuzzi, A. Föhlisch, M. Odelius, and
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