L. Abecia, A. I. Martn-garcia, G. Martinez, C. J. Newbold, and D. R. Yañez-ruiz, Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning1, Journal of Animal Science, vol.91, pp.4832-4840, 2013.

M. Aite, M. Chevallier, C. Frioux, C. Trottier, J. Got et al., Traceability, reproducibility and wiki-exploration for a-la-carte reconstructions reconstructions of genome-scale metabolic models, Plos Comput Biol, vol.14, p.1006146, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807842

H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 1974.

Z. Amribt, H. Niu, and P. Bogaerts, Macroscopic modelling of overflow metabolism and model based optimization of hybridoma cell fed-batch cultures, Biochemical Engineering Journal, vol.70, pp.196-209, 2013.

F. Angulo, R. Munoz, and G. Olivar, Control of a bioreactor using feedback linearization, Mediterranean Conference on Control & Automation. IEEE, pp.1-6, 2007.

J. L. Argyle and R. L. Baldwin, Modeling of Rumen Water Kinetics and Effects of Rumen Ph Changes, Journal of Dairy Science, vol.71, pp.1178-1188, 1988.

F. Backhed, R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon, Hostbacterial mutualism in the human intestine, Science, vol.307, issue.5717, pp.1915-1920, 2005.

J. E. Bailey, Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities, Biotechnology progress, vol.14, pp.8-20, 1998.

R. L. Baldwin, Introduction: history and future of modelling nutrient utilization in farm animals, CAB International, pp.1-9, 2000.

R. L. Baldwin, J. H. Thornley, and D. E. Beever, Metabolism of the lactating cow. II. Digestive elements of a mechanistic model, J. Dairy Res, vol.54, pp.107-131, 1987.

E. Balsa-canto, A. A. Alonso, and J. R. Banga, Computational procedures for optimal experimental design in biological systems, IET Syst Biol, vol.2, pp.163-172, 2008.

E. Balsa-canto and J. R. Banga, AMIGO, a toolbox for advanced model identification in systems biology using global optimization, Bioinformatics, vol.27, pp.2311-2313, 2011.

A. Bannink, J. France, S. Lopez, W. J. Gerrits, E. Kebreab et al., Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall, Animal Feed Science and Technology, vol.143, pp.3-26, 2008.

A. Bannink, H. J. Van-lingen, J. L. Ellis, J. France, and J. Dijkstra, The Contribution of Mathematical Modeling to Understanding Dynamic Aspects of Rumen Metabolism, Frontiers in Microbiology, vol.7, p.1820, 2016.

J. Baranyi, T. Ross, T. A. Mcmeekin, and T. A. Roberts, Effects of parameterization on the performance of empirical models used in 'predictive microbiology, Food Microbiology, vol.13, pp.83-91, 1996.

C. J. Barnes, The Art of Catchment Modeling -What Is a Good Model, Environment International, vol.21, pp.747-751, 1995.

C. Baroukh, R. Muñoz-tamayo, O. Bernard, and J. P. Steyer, Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production, Current Opinion in Biotechnology, vol.33, pp.198-205, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01163456

C. Baroukh, R. Muñoz-tamayo, J. P. Steyer, and O. Bernard, DRUM: A New Framework for Metabolic Modeling under Non-Balanced Growth. Application to the Carbon Metabolism of Unicellular Microalgae, PLoS One, vol.9, issue.8, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123224

C. Baroukh, R. Muñoz-tamayo, J. Steyer, and O. Bernard, A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production, Metabolic Engineering, vol.30, pp.49-60, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01163453

D. Batstone, D. Puyol, X. Flores-alsina, and J. Rodríguez, Mathematical modelling of anaerobic digestion processes: applications and future needs, Rev Environ Sci Biotechnol, pp.1-19, 2015.

D. J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G. Pavlostathis et al., Anaerobic Digestion Model, issue.1, 2002.

A. Belanche, G. De-la-fuente, and C. J. Newbold, Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions, FEMS Microbiology Ecology, vol.91, issue.3, 2015.

R. Bellman and K. J. Astrom, On structural identifiability, Math. Biosci, vol.7, pp.329-339, 1970.

G. Bellu, M. P. Saccomani, S. Audoly, and L. D'angio, DAISY: A new software tool to test global identifiability of biological and physiological systems, Computer Methods and Programs in Biomedicine, vol.88, pp.52-61, 2007.

A. Beopoulos, J. Cescut, R. Haddouche, J. Uribelarrea, C. Molina-jouve et al., Yarrowia lipolytica as a model for bio-oil production, Progress in Lipid Research, vol.48, pp.375-387, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02166774

A. Bernalier, A. Willems, M. Leclerc, V. Rochet, and M. D. Collins, Ruminococcus hydrogenotrophicus sp. nov., a new H 2 /CO 2 -utilizing acetogenic bacterium isolated from human feces, Arch Microbiol, vol.166, issue.3, pp.176-183, 1996.

O. Bernard, Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production, Journal of Process Control, vol.21, pp.1378-1389, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00848385

O. Bernard, B. Chachuat, . Hélias, and J. Rodriguez, Can we assess the model complexity for a bioprocess: theory and example of the anaerobic digestion process, Water Science & Technology, vol.53, pp.85-92, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00122500

M. B. Biggs, G. L. Medlock, G. L. Kolling, and J. A. Papin, Metabolic network modeling of microbial communities, Wiley Interdisciplinary Reviews-Systems Biology and Medicine, vol.7, issue.5, pp.317-334, 2015.

F. Bonnans, J. Giorgi, D. Grelard, V. Heymann, B. Maindrault et al., Bocop ? a collection of examples, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00726992

E. Borenstein, Computational systems biology and in silico modeling of the human microbiome, Briefings in Bioinformatics, vol.13, issue.6, pp.769-780, 2012.

B. Brembs, K. Button, and M. Munafò, Deep impact: unintended consequences of journal rank, Frontiers in human Neuroscience, vol.7, p.291, 2013.

V. Bucci and J. B. Xavier, Towards predictive models of the human gut microbiome, Journal of Molecular Biology, vol.426, pp.3907-3916, 2014.

R. Cagan, The San Francisco declaration on research assessment, Disease models & mechanisms, vol.6, pp.869-870, 2013.

A. Casadevall, S. Bertuzzi, M. J. Buchmeier, R. J. Davis, H. Drake et al., ASM journals eliminate impact factor information from journal websites, Applied and Environmental Microbiology, vol.82, pp.5479-5480, 2016.

A. Casadevall and F. C. Fang, Causes for the persistence of impact factor mania, vol.5, pp.64-78, 2014.

A. Casadevall and F. C. Fang, Impacted science: Impact is not importance, vol.6, 2015.

B. Chachuat, A. B. Singer, and P. I. Barton, Global Methods for Dynamic Optimization and Mixed-Integer Dynamic Optimization, Industrial & Engineering Chemistry Research, vol.45, pp.8373-8392, 2006.

B. Chachuat, B. Srinivasan, and D. Bonvin, Adaptation strategies for real-time optimization, Computers & Chemical Engineering, vol.33, pp.1557-1567, 2009.

E. Charmley, S. R. Williams, P. J. Moate, R. S. Hegarty, R. M. Herd et al., A universal equation to predict methane production of forage-fed cattle in Australia, Animal Production Science, vol.56, issue.2-3, pp.169-180, 2016.

M. Chaves, Predictive analysis of dynamical systems: combining discrete and continuous formalisms. mémoire présenté pour obtenir le diplôme d'habilitation à diriger des recherches, Tech. rep, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00908927

O. Chis, J. R. Banga, and E. Balsa-canto, GenSSI: a software toolbox for structural identifiability analysis of biological models, Bioinformatics, vol.27, pp.2610-2611, 2011.

O. T. Chis, J. R. Banga, and E. Balsa-canto, Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods, PLoS One, vol.6, 2011.

C. Combe, P. Hartmann, S. Rabouille, A. Talec, O. Bernard et al., Longterm adaptive response to high-frequency light signals in the unicellular photosynthetic eukaryote Dunaliella salina, Biotechnology and Bioengineering, vol.112, issue.6, pp.1111-1121, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01102019

L. A. Crompton, J. A. Mills, C. K. Reynolds, and J. France, Fluctuations in methane emission in response to feeding pattern in lactating dairy cows. Modelling Nutrient Digestion and Utilisation in Farm Animals, pp.176-180, 2011.

S. Debruyne, A. Ruiz-gonzález, E. Artiles-ortega, B. Ampe, W. Van-den-broeck et al., Supplementing goat kids with coconut medium chain fatty acids in early life influences growth and rumen papillae development until 4 months after supplementation but effects on in vitro methane emissions and the rumen microbiota are transient, Journal of Animal Science, vol.96, 1978.

L. Denis-vidal and G. Joly-blanchard, Equivalence and identifiability analysis of uncontrolled nonlinear dynamical systems, Automatica, vol.40, pp.287-292, 2004.

R. Descartes, Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences, URL ExtractedfromTheProjectGutenbergcollection, 1637.

D. Quemener, E. Bouchez, and T. , A thermodynamic theory of microbial growth, Isme Journal, vol.8, issue.8, pp.1747-1751, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00825781

J. Dijkstra, Simulation of the dynamics of protozoa in the rumen, Br J Nutr, vol.72, pp.679-699, 1994.

J. Dijkstra, J. L. Ellis, E. Kebreab, A. B. Strathe, S. López et al., Ruminal pH regulation and nutritional consequences of low pH, Animal Feed Science and Technology, vol.172, pp.22-33, 2012.

M. Doreau, V. Fievez, A. Troegeler-maynadier, and F. Glasser, Ruminal metabolism and digestion of long chain fatty acids in ruminants: recent advances in knowledge, Inra Productions Animales, vol.25, issue.4, pp.361-373, 2012.

C. Dragomir, D. Sauvant, J. L. Peyraud, S. Giger-reverdin, and B. Michalet-doreau, Meta-analysis of 0 to 8 h post-prandial evolution of ruminal pH, Animal, vol.2, pp.1437-1448, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01173466

M. R. Droop, Vitamin b12 and marine ecology .iv. the kinetics of uptake, growth and inhibition in Monochrysis lutheri, J. Mar. Biol. Assoc, vol.48, pp.689-773, 1968.

S. H. Duncan, P. Louis, and H. J. Flint, Lactate-utilizing bacteria , isolated from human Feces, that Produce butyrate as a major fermentation product, Society, vol.70, issue.10, pp.5810-5817, 2004.

C. N. Economou, G. Aggelis, S. Pavlou, and D. V. Vayenas, Modeling of single-cell oil production under nitrogen-limited and substrate inhibition conditions, Biotechnology and bioengineering, vol.108, pp.1049-55, 2011.

J. A. Egea, M. Rodríguez-fernández, J. R. Banga, and R. Martí, Scatter search for chemical and bio-process optimization, Journal of Global Optimization, vol.37, pp.481-503, 2006.

J. L. Ellis, J. Dijkstra, E. Kebreab, A. Bannink, N. E. Odongo et al., Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle, J. Agric. Sci, vol.146, pp.213-233, 2008.

J. Farlin and M. Majewsky, Performance indicators: The educational effect of publication pressure on young researchers in environmental sciences, Environmental Science & Technology, vol.47, p.23461664, 2013.

A. M. Feist, M. J. Herrgard, I. Thiele, J. L. Reed, and B. O. Palsson, Reconstruction of biochemical networks in microorganisms, Nature Reviews Microbiology, vol.7, issue.2, pp.129-143, 2009.

V. Fievez, B. Vlaeminck, T. Jenkins, F. Enjalbert, and M. Doreau, Assessing rumen biohydrogenation and its manipulation in vivo, in vitro and in situ, European Journal of Lipid Science and Technology, vol.109, pp.740-756, 2007.

J. L. Firkins and Z. Yu, RUMINANT NUTRITION SYMPOSIUM: How to use data on the rumen microbiome to improve our understanding of ruminant nutrition, Journal of Animal Science, vol.93, pp.1450-1470, 2015.

H. J. Flint, S. H. Duncan, and K. P. Scott, Minireview Interactions and competition within the microbial community of the human colon : links between diet and health, Environmental Microbiology, 2007.

N. C. Friggens, F. Blanc, D. P. Berry, and L. Puillet, Review: Deciphering animal robustness. A synthesis to facilitate its use in livestock breeding and management, Animal, vol.11, pp.2237-2251, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01813761

S. Ghimire, P. Gregorini, and M. Hanigan, Evaluation of predictions of volatile fatty acid production rates by the Molly cow model, Journal of Dairy Science, vol.97, issue.1, pp.354-362, 2014.

S. Giger-reverdin, P. Morand-fehr, and G. Tran, Literature survey of the influence of dietary fat composition on methane production in dairy cattle, Livestock Production Science, vol.82, pp.73-79, 2003.

J. J. Godon, L. Arcemisbehere, R. Escudie, J. Harmand, E. Miambi et al., Overview of the Oldest Existing Set of Substrate-optimized Anaerobic Processes: Digestive Tracts, Bioenergy Research, vol.6, issue.3, pp.1063-1081, 2013.

A. Golubev, How could the Gompertz-Makeham law evolve, Journal of Theoretical Biology, vol.258, issue.1, pp.1-17, 2009.

R. Gonzalez-cabaleiro, J. M. Lema, J. Rodriguez, and R. Kleerebezem, Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses, Energy & Environmental Science, vol.6, pp.3780-3789, 2013.

P. Gregorini, P. Beukes, G. Waghorn, D. Pacheco, and M. Hanigan, Development of an improved representation of rumen digesta outflow in a mechanistic and dynamic model of a dairy cow, Molly. Ecological Modelling, vol.313, pp.293-306, 2015.

P. Gregorini, P. C. Beukes, M. D. Hanigan, G. Waghorn, S. Muetzel et al., Comparison of updates to the Molly cow model to predict methane production from dairy cows fed pasture, Journal of Dairy Science, vol.96, issue.8, pp.5046-5052, 2013.

R. Gresse, F. Chaucheyras-durand, M. A. Fleury, T. Van-de-wiele, E. Forano et al., Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health, Trends Microbiol, vol.25, pp.851-873, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608062

M. A. Groenen, A. L. Archibald, H. Uenishi, C. K. Tuggle, Y. Takeuchi et al., Analyses of pig genomes provide insight into porcine demography and evolution, vol.491, pp.393-398, 2012.
URL : https://hal.archives-ouvertes.fr/cea-00880676

T. Großkopf and O. S. Soyer, Microbial diversity arising from thermodynamic constraints, ISME Journal, vol.10, pp.2725-2733, 2016.

J. Guyader, M. Eugene, P. Noziere, D. P. Morgavi, M. Doreau et al., Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach, Animal, vol.8, issue.11, pp.1816-1825, 2014.

S. Haroche, The secrets of my prizewinning research, Nature News, vol.490, p.311, 2012.

K. Hart, D. Yañez-ruiz, A. Martin-garcia, and C. Newbold, Technical Manual on Respiration Chamber Designs, Sheep Methane Chambers at Aberystwyth University (UK) and CSIC (Spain), pp.77-88, 2014.

J. J. Heijnen and J. P. Dijken, In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorgansims, Biotechnology and Bioengeneering, vol.39, pp.833-852, 1992.

C. S. Henry, M. Dejongh, A. Best, P. M. Frybarger, B. Linsay et al., High-throughput generation, optimization and analysis of genome-scale metabolic models, Nature biotechnology, vol.28, issue.9, pp.977-82, 2010.

T. Hirmajer, E. Balsa-canto, and J. R. Banga, DOTcvpSB, a software toolbox for dynamic optimization in systems biology, BMC Bioinformatics, vol.10, pp.1-14, 2009.

C. Y. Hoh and R. Cord-ruwisch, A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant, Biotechnology and Bioengineering, vol.51, issue.5, pp.597-604, 1996.

P. Huhtanen, M. Ramin, and P. Uden, Nordic dairy cow model Karoline in predicting methane emissions: 1. model description and sensitivity analysis, Livestock Science, 2015.

R. E. Hungate, The Rumen Microbial Ecosystem, Annual Review of Ecology and Systematics, vol.6, pp.39-66, 1975.

T. Hurst and V. Rehbock, Optimal control for micro-algae on a raceway model, Biotechnology progress, vol.34, pp.107-119, 2018.

S. A. Huws, C. J. Creevey, L. B. Oyama, I. Mizrahi, S. E. Denman et al., , p.2161, 2018.

P. H. Janssen, Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics, Anim. Feed Sci. Technol, vol.160, pp.1-22, 2010.

P. H. Janssen and M. Kirs, Structure of the archaeal community of the rumen, Applied and environmental microbiology, vol.74, pp.3619-3625, 2008.

T. C. Jenkins, R. J. Wallace, P. J. Moate, and E. E. Mosley, Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem1, Journal of Animal Science, vol.86, pp.397-412, 2008.

K. N. Joblin, Ruminal acetogens and their potential to lower ruminant methane emissions, Australian Journal of Agricultural Research, vol.50, pp.1307-1313, 1999.

B. Juillet, M. P. Saccomani, C. Bos, C. Gaudichon, D. Tome et al., Conceptual, methodological and computational issues concerning the compartmental modeling of a complex biological system: Postprandial inter-organ metabolism of dietary nitrogen in humans, Mathematical Biosciences, vol.204, pp.282-309, 2006.

P. A. Jumars, Animal guts as nonideal chemical reactors: Partial mixing and axial variation in absorption kinetics, American Naturalist, vol.155, issue.4, pp.544-555, 2000.

J. Karlsson, M. Anguelova, M. , and J. , An Efficient Method for Structural Identifiability Analysis of Large Dynamic Systems, pp.941-946, 2012.

H. Kettle, G. Holtrop, P. Louis, and H. J. Flint, microPop: Modelling microbial populations and communities in R, Methods in Ecology and Evolution, vol.9, issue.2, pp.399-409, 2018.

H. Kettle, P. Louis, G. Holtrop, S. H. Duncan, and H. J. Flint, Modelling the emergent dynamics and major metabolites of the human colonic microbiota, Environmental Microbiology, vol.17, pp.1615-1630, 2015.

H. Kitano, Systems biology: a brief overview, Science, vol.295, issue.5560, pp.1662-1664, 2002.

S. Kittelmann, C. S. Pinares-patino, H. Seedorf, M. R. Kirk, S. Ganesh et al., Two Different Bacterial Community Types Are Linked with the Low-Methane Emission Trait in Sheep, PLoS One, vol.9, issue.7, 2014.

R. Kleerebezem and M. C. Van-loosdrecht, A Generalized Method for Thermodynamic State Analysis of Environmental Systems, Critical Reviews in Environmental Science and Technology, vol.40, pp.1-54, 2010.

A. V. Klieve, Opportunities for biological control of ruminal methanogenesis, Australian Journal of Agricultural Research, vol.50, pp.1315-1319, 1999.

N. Klitgord and D. Segre, Ecosystems biology of microbial metabolism, Current Opinion in Biotechnology, vol.22, issue.4, pp.541-546, 2011.

R. A. Kohn and R. C. Boston, The Role of Thermodynamics in Controlling Rumen Metabolism. Modelling Nutrient Utilization in Farm Animals, pp.11-24, 2000.

S. Labarthe, B. Polizzi, T. Phan, T. Goudon, M. Ribot et al., A mathematical model to investigate the key drivers of the biogeography of the colon microbiota, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01761191

T. Lacour, A. Sciandra, A. Talec, P. Mayzaud, and O. Bernard, Diel variations of carbohydrates and neutral lipids in nitrogen-sufficient and nitrogen-starved cyclostat cultures of Isochrysis sp, Journal of Phycology, vol.48, pp.966-975, 2012.

P. A. Lawrence, The mismeasurement of science, Current biology, vol.17, pp.583-585, 2007.

J. M. Legay, L'expérience et le modèle. Un discours sur la méthode. Collection Sciences en questions, 1997.

L. Perez, L. Muñoz-tamayo, R. Garcia-tirado, J. F. Alvarez, and H. , On parameter interpretability of phenomenological-based semiphysical models. Informatics in Medicine Unlocked 15, 100158, 2019.

P. Lescoat and D. Sauvant, Development of a mechanistic model for rumen digestion validated using the duodenal flux of amino acids, Reprod. Nutr. Dev, vol.35, pp.45-70, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00899733

L. Letellier, Integrity and responsibility in research practices. a guide, CNRS Ethics Committee (COMETS), 2016.

N. E. Lewis, H. Nagarajan, and B. O. Palsson, Constraining the metabolic genotypephenotype relationship using a phylogeny of in silico methods, Nature Reviews Microbiology, vol.10, issue.4, pp.291-305, 2012.

J. Li, H. Zhong, Y. Ramayo-caldas, N. Terrapon, V. Lombard et al., A catalog of microbial genes from the bovine rumen reveals the determinants of herbivory, 2018.

L. Ljung, System Identification Toolbox for use with Matlab, 2007.

G. T. Macfarlane and J. H. Cummings, The colonic flora, fermentation, and large bowel digestive function, pp.51-92, 1991.

R. Mahadevan, J. S. Edwards, and F. J. Doyle, Dynamic flux balance analysis of diauxic growth in Escherichia coli, Biophysical Journal, vol.83, pp.1331-1340, 2002.

F. Mairet, O. Bernard, E. Cameron, M. Ras, L. Lardon et al., Three-reaction model for the anaerobic digestion of microalgae, Biotechnol Bioeng, vol.109, pp.415-425, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00848426

F. Mairet, O. Bernard, P. Masci, T. Lacour, and A. Sciandra, Modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation, Bioresource technology, vol.102, issue.1, pp.142-149, 2011.

F. Mairet, R. Muñoz-tamayo, and O. Bernard, Adaptive control of light attenuation for optimizing microalgae production, Journal of Process Control, vol.30, pp.117-124, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01163455

T. Maiwald and J. Timmer, Dynamical modeling and multi-experiment fitting with PottersWheel, Bioinformatics, vol.24, pp.2037-2043, 2008.

J. Marchetti, G. Bougaran, L. Le-dean, C. Mégrier, E. Lukomska et al., Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries, Aquaculture, vol.326, issue.329, pp.106-115, 2011.

B. C. Martinson, M. S. Anderson, and R. De-vries, Scientists behaving badly, Nature, vol.435, pp.737-738, 2005.

. Mathworks, Global Optimization Toolbox. User's Guide. The Mathworks, 2018.

R. M. May, Uses and abuses of mathematics in biology, Science, vol.303, issue.5659, pp.790-793, 2004.

T. A. Mcallister, S. J. Meale, E. Valle, L. L. Guan, M. Zhou et al., RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis, J. Anim. Sci, vol.93, pp.1431-1449, 2015.

C. Mcsweeney and R. Mackie, Micro-organisms and ruminant digestion: state of knowledge, trends and future prospects, 2012.

J. A. Mills, L. A. Crompton, J. L. Ellis, J. Dijkstra, A. Bannink et al., A dynamic mechanistic model of lactic acid metabolism in the rumen, J. Dairy Sci, vol.97, pp.2398-2414, 2014.

P. J. Moate, R. C. Boston, T. C. Jenkins, and I. J. Lean, Kinetics of ruminal lipolysis of triacylglycerol and biohydrogenation of long-chain fatty acids: New insights from old data, Journal of Dairy Science, vol.91, issue.2, pp.731-742, 2008.

A. S. Moorthy, S. P. Brooks, M. Kalmokoff, and H. J. Eberl, A Spatially Continuous Model of Carbohydrate Digestion and Transport Processes in the Colon, PLoS One, vol.10, issue.12, p.145309, 2015.

A. S. Moorthy and H. J. Eberl, Assessing the influence of reactor system design criteria on the performance of model colon fermentation units, Journal of Bioscience and Bioengineering, vol.117, issue.4, pp.478-484, 2014.

D. P. Morgavi, E. Forano, C. Martin, and C. J. Newbold, Microbial ecosystem and methanogenesis in ruminants, Animal, vol.4, pp.1024-1036, 2010.

D. P. Morgavi, W. J. Kelly, P. H. Janssen, and G. T. Attwood, Rumen microbial (meta)genomics and its application to ruminant production, Animal, vol.7, issue.1, pp.184-201, 2013.

P. Mosoni, C. Martin, E. Forano, and D. P. Morgavi, Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep, Journal of Animal Science, vol.89, issue.3, pp.783-791, 2011.

R. Muñoz-tamayo, Breve elogio a la lentitud en ciencia (A brief tribute for slowness in science), Ciencia y Humanismo 50 años Revista Aleph, pp.473-478, 1996.

R. Muñoz-tamayo, C. A. Aceves-lara, and C. Bideaux, Optimization of lipid production by oleaginous yeast in continuous culture, IFAC Proceedings Volumes (IFACPapersOnline), vol.47, pp.6210-6215, 2014.

R. Muñoz-tamayo and F. Angulo, Aproximación de estimación de estados en un reactor uasb, Revista Colombiana de Tecnolog?as de Avanzada, vol.1, pp.27-33, 2006.

R. Muñoz-tamayo, F. Angulo, and J. E. Marín, Una Perspectiva sobre el Modelado e Identificación de Sistemas de Degradación Anaerobia para el Tratamiento de Aguas Residuales, p.10, 2005.

R. Muñoz-tamayo, J. De-groot, E. Bakx, P. A. Wierenga, H. Gruppen et al., Hydrolysis of beta-casein by the cell-envelope-located p-itype protease of Lactococcus lactis: A modelling approach, International Dairy Journal, vol.21, issue.10, pp.755-762, 2011.

R. Muñoz-tamayo, J. De-groot, P. A. Wierenga, H. Gruppen, M. H. Zwietering et al., Modeling peptide formation during the hydrolysis of ? -casein by Lactococcus lactis, Process Biochemistry, vol.47, issue.1, pp.83-93, 2012.

R. Muñoz-tamayo, S. Giger-reverdin, and D. Sauvant, Mechanistic modelling of in vitro fermentation by rumen microbiota, Anim. Feed Sci. Technol, vol.220, pp.1-21, 2016.

R. Muñoz-tamayo, S. Giger-reverdin, and D. Sauvant, Predicting ruminal pH dynamics by linking microbial metabolism and the host: a theoretical study, 10th INRA-Rowett symposium. Gut Microbiology 20 years and counting, p.105, 2016.

R. Muñoz-tamayo, B. Laroche, M. Leclerc, and E. Walter, Modelling and Identification of in vitro Homoacetogenesis by Human-Colon Bacteria, Proc. 16th IEEE Mediterranean Conference on Control and Automation, pp.1717-1722, 2008.

R. Muñoz-tamayo, B. Laroche, M. Leclerc, and E. Walter, IDEAS: A parameter identification toolbox with symbolic analysis of uncertainty and its application to biological modelling, Proceedings of the 15th IFAC Symposium on System Identification, vol.15, pp.1271-1276, 2009.

R. Muñoz-tamayo, B. Laroche, E. Walter, J. Doré, S. H. Duncan et al., Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species, FEMS microbiology ecology, vol.76, pp.615-639, 2011.

R. Muñoz-tamayo, B. Laroche, E. Walter, J. Doré, and M. Leclerc, Mathematical modelling of carbohydrate degradation by human colonic microbiota, Journal of theoretical biology, vol.266, pp.189-201, 2010.

R. Muñoz-tamayo, F. Mairet, and O. Bernard, Optimizing microalgal production in raceway systems, Biotechnology Progress, vol.29, issue.2, pp.543-552, 2013.

R. Muñoz-tamayo, P. Martinon, G. Bougaran, F. Mairet, and O. Bernard, Getting the most out of it: Optimal experiments for parameter estimation of microalgae growth models, Journal of Process Control, vol.24, pp.991-1001, 2014.

R. Muñoz-tamayo, M. Popova, M. Tillier, D. P. Morgavi, J. Morel et al., Hydrogenotrophic methanogens of the mammalian gut: functionally similar, thermodynamically different. a modelling approach, 2018.

R. Muñoz-tamayo, L. Puillet, J. B. Daniel, D. Sauvant, O. Martin et al., Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?, Animal, vol.12, pp.701-712, 2018.

R. Muñoz-tamayo, J. F. Ramirez-agudelo, R. J. Dewhurst, G. Miller, T. Vernon et al., A parsimonious software sensor for estimating the individual dynamic pattern of methane emissions from cattle, Animal, vol.13, pp.1180-1187, 2019.

R. Muñoz-tamayo, J. P. Steyer, B. Laroche, and M. Leclerc, Human colon: a complex bioreactor. Conceptual modelling for the anaerobic digestion of the functional trophic chain, Proc. 11th World Congress Anaerobic Digestion Bio-energy for our Future, 2007.

R. Muñoz-tamayo and N. Toro-garcía, Propuesta de controlador mpc para un reactor uasb, Scientia Et Technica, vol.12, issue.30, pp.99-104, 2006.

B. A. Nosek, J. R. Spies, and M. Motyl, Scientific utopia: II. restructuring incentives and practices to promote truth over publishability, Perspectives on Psychological Science, vol.7, pp.615-631, 2012.

M. A. Oberhardt, B. Palsson, and J. A. Papin, Applications of genome-scale metabolic reconstructions, Molecular Systems Biology, vol.5, issue.320, pp.1-15, 2009.

A. Offner and D. Sauvant, Comparative evaluation of the Molly, CNCPS, and LES rumen models, Anim. Feed Sci. Technol, vol.112, issue.1, pp.107-130, 2004.

A. Offner and D. Sauvant, Thermodynamic modeling of ruminal fermentations, Animal Research, vol.55, issue.5, pp.343-365, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00890060

A. Ogien, Désacraliser le chiffre dans l'évaluation du service public. Sciences en questions, 2013.

J. D. Orth, I. Thiele, and B. O. Palsson, What is flux balance analysis?, Nature Biotechnology, vol.28, issue.3, pp.245-248, 2010.

F. N. Owens, D. S. Secrist, W. J. Hill, and D. R. Gill, Acidosis in cattle: A review, Journal of Animal Science, vol.76, issue.1, pp.275-286, 1998.

B. O. Palsson, Systems Biology. Properties of Reconstructed Networks, 2006.

I. U. Park, M. W. Peacey, and M. R. Munafo, Modelling the effects of subjective and objective decision making in scientific peer review, Nature, vol.506, pp.93-96, 2014.

F. M. Paulus, N. Cruz, and S. Krach, The impact factor fallacy. Frontiers in psychology 9, 1487.

C. X. Pei, S. Y. Mao, Y. F. Cheng, and W. Y. Zhu, Diversity, abundance and novel 16S rRNA gene sequences of methanogens in rumen liquid, solid and epithelium fractions of Jinnan cattle, Animal, vol.4, pp.20-29, 2010.

C. Pinares-patiño, C. Hunt, R. Martin, J. West, P. Lovejoy et al., Technical Manual on Respiration Chamber Designs, Ministry of Agriculture and Forestry, vol.1, pp.10-28, 2014.

J. Plaizier, M. D. Mesgaran, H. Derakhshani, H. Golder, E. Khafipour et al., Enhancing gastrointestinal health in dairy cows, pp.1-20, 2018.

. Plosmedicine-editors, The impact factor game. it is time to find a better way to assess the scientific literature, PLoS medicine, vol.3, p.291, 2006.

L. Pontryagin, V. Boltyansky, R. Gamkrelidze, and E. M. , Mathematical Theory of Optimal Processes, 1962.

P. B. Pope, A. K. Mackenzie, I. Gregor, W. Smith, M. A. Sundset et al., Metagenomics of the Svalbard Reindeer Rumen Microbiome Reveals Abundance of Polysaccharide Utilization Loci, PLoS One, vol.7, p.104612, 2012.

N. D. Price, J. L. Reed, and B. O. Palsson, Genome-scale models of microbial cells: evaluating the consequences of constraints, Nat Rev Microbiol, vol.2, pp.886-897, 2004.

S. Prigent, C. Frioux, S. M. Dittami, S. Thiele, A. Larhlimi et al., Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks, Plos Computational Biology, vol.13, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01449100

A. Provost, G. Bastin, S. N. Agathos, and Y. J. Schneider, Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells, Bioprocess and Biosystems Engineering, vol.29, issue.5-6, pp.349-366, 2006.

M. J. Ranilla, J. Jouany, and D. P. Morgavi, Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitro, Lett Appl Microbiol, vol.45, pp.675-680, 2007.

A. Raue, J. Karlsson, M. P. Saccomani, M. Jirstrand, and J. Timmer, Comparison of approaches for parameter identifiability analysis of biological systems, Bioinformatics, vol.30, pp.1440-1448, 2014.

J. L. Reed and B. O. Palsson, Thirteen years of building constraint-based in silico models of Escherichia coli, Journal of Bacteriology, vol.185, issue.9, pp.2692-2699, 2003.

M. Revilla, N. C. Friggens, L. P. Broudiscou, G. Lemonnier, F. Blanc et al., Towards the quantitative characterization of piglets' robustness to weaning: A modelling approach, Animal, 2019.

C. Robles-rodríguez, R. Muñoz-tamayo, C. Bideaux, N. Gorret, S. Guillouet et al., Modeling and optimization of lipid accumulation by Yarrowia lipolytica from glucose under nitrogen depletion conditions, Biotechnology and Bioengineering, vol.115, pp.1137-1151, 2018.

J. Rodríguez, R. Kleerebezem, J. M. Lema, and M. C. Van-loosdrecht, Modeling product formation in anaerobic mixed culture fermentations, Biotechnol. Bioeng, vol.93, issue.3, pp.592-606, 2006.

J. Rodríguez, J. M. Lema, and R. Kleerebezem, Energy-based models for environmental biotechnology, Trends Biotechnol, vol.26, issue.7, pp.366-374, 2008.

J. B. Russell and J. L. Rychlik, Factors That Alter Rumen Microbial Ecology, Science, vol.292, issue.5519, pp.1119-1122, 2001.

J. Schaber and E. Klipp, Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks, Current Opinion in Biotechnology, vol.22, issue.1, pp.109-116, 2011.

R. B. Schäfer, S. J. Cooke, R. Arlinghaus, N. Bonada, F. Brischoux et al., Perspectives from early career researchers on the publication process in ecology -a response to Statzner & Resh, vol.56, pp.2405-2412, 2010.

R. Schekman, How journals like Nature, Cell and Science are damaging science. The Guardian, 2013.

R. Schekman and M. Patterson, Reforming research assessment. eLife 2, e00855, original DateCompleted, Original DateCompleted, 2013.

E. Schrödinger, What is Life? The Physical Aspect of the Living Cell, 1944.

S. Schuster and C. Hilgetag, On elementary flux modes in biochemical reaction systems at steady state, Journal of Biological Systems, vol.2, issue.2, pp.165-182, 1994.

P. O. Seglen, Why the impact factor of journals should not be used for evaluating research, BMJ, vol.314, p.498502, 1997.

A. Serment, S. Giger-reverdin, P. Schmidely, O. Dhumez, L. P. Broudiscou et al., In vitro fermentation of total mixed diets differing in concentrate proportion: relative effects of inocula and substrates, Journal of the Science of Food and Agriculture, vol.96, pp.160-168, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01356572

S. K. Shabat, G. Sasson, A. Doron-faigenboim, T. Durman, S. Yaacoby et al., Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants, Isme Journal, vol.10, pp.2958-2972, 2016.

E. Shapiro, Correcting the bias against interdisciplinary research. eLife 3, e02576, original DateCompleted, 2014.

S. Skogestad, Plantwide control: The search for the self-optimizing control structure, Journal of process control, vol.10, issue.5, pp.487-507, 2000.

C. R. Spedding, General aspects of modelling and its application in livestock production, pp.3-13, 1988.

J. Stelling, Mathematical models in microbial systems biology, Curr Opin Microbiol, vol.7, issue.5, pp.513-518, 2004.

S. Stolyar, S. Van-dien, K. L. Hillesland, N. Pinel, T. J. Lie et al., Metabolic modeling of a mutualistic microbial community, Molecular Systems Biology, vol.3, p.92, 2007.

J. Tap, S. Mondot, F. Levenez, E. Pelletier, C. Caron et al., Towards the human intestinal microbiota phylogenetic core, Environ Microbiol, vol.11, issue.10, pp.2574-2584, 2009.

S. Tebbani, F. Lopes, R. Filali, D. Dumur, and D. Pareau, Nonlinear predictive control for maximization of co2 bio-fixation by microalgae in a photobioreactor, Bioprocess and Biosystems Engineering, vol.37, pp.83-97, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00936841

K. R. Theis, N. M. Dheilly, J. L. Klassen, R. M. Brucker, J. F. Baines et al., Getting the Hologenome Concept Right: an Eco-Evolutionary Framework for Hosts and Their Microbiomes, vol.1, pp.28-44, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01483722

S. M. Troy, C. A. Duthie, J. J. Hyslop, R. Roehe, D. W. Ross et al., Effectiveness of nitrate addition and increased oil content as methane mitigation strategies for beef cattle fed two contrasting basal diets, Journal of Animal Science, vol.93, pp.1815-1823, 2015.

E. M. Ungerfeld, A theoretical comparison between two ruminal electron sinks, Frontiers in Microbiology, vol.4, p.319, 2013.

E. M. Ungerfeld, Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis, Frontiers in Microbiology, vol.6, p.37, 2015.

M. E. Van-amburgh, E. A. Collao-saenz, R. J. Higgs, D. A. Ross, E. B. Recktenwald et al., The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5, J Dairy Sci, vol.98, issue.9, pp.6361-6380, 2015.

H. J. Van-lingen, C. M. Plugge, J. G. Fadel, E. Kebreab, A. Bannink et al., Thermodynamic driving force of hydrogen on rumen microbial metabolism: A theoretical investigation, PLoS ONE, vol.11, issue.10, pp.1-18, 2016.

A. Varma and B. O. Palsson, Metabolic capabilities of Escherichia-Coli .2. optimalgrowth patterns, Journal of Theoretical Biology, vol.165, pp.503-522, 1993.

M. J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou et al., Perspectives in mathematical modelling for microbial ecology, Ecological Modelling, vol.321, pp.64-74, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01227423

A. W. Walker, S. H. Duncan, P. Louis, and H. J. Flint, Phylogeny, culturing, and metagenomics of the human gut microbiota, Trends Microbiol, vol.22, pp.267-274, 2014.

E. Walter and L. Pronzato, Identification of Parametric Models from Experimental Data, 1997.

P. J. Weimer, Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations, Frontiers in Microbiology, vol.6, 2015.

P. J. Weimer, J. B. Russell, and R. E. Muck, Lessons from the cow: What the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass, Bioresource technology, vol.100, issue.21, pp.5323-5331, 2009.

S. Widder, R. J. Allen, T. Pfeiffer, T. P. Curtis, C. Wiuf et al., Challenges in microbial ecology: Building predictive understanding of community function and dynamics, ISME Journal, vol.10, issue.11, pp.2557-2568, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01512087

C. Woolston, Psychology: Faking it, Nature, vol.529, pp.555-557, 2016.

L. Xiao, J. Estellé, P. Kiilerich, Y. Ramayo-caldas, Z. Xia et al., A reference gene catalogue of the pig gut microbiome, Nature microbiology, vol.19, p.16161, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01607746

D. R. Yañez-ruiz, L. Abecia, and C. J. Newbold, Manipulating rumen microbiome and fermentation through interventions during early life: a review, Frontiers in Microbiology, vol.6, p.1133, 2015.

K. Zengler and B. O. Palsson, A road map for the development of community systems (CoSy) biology, Nature Reviews Microbiology, vol.10, pp.366-372, 2012.

E. G. Zoetendal, M. Rajilic-stojanovic, and W. M. De-vos, High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota, Gut, vol.57, pp.1605-1615, 2008.